Issue 05

# national**grid**

### Enhanced Frequency Control Capability (EFCC)

Progress report: January to June 2017



BELECTRIC<sup>®</sup> Centrica Flexitricity





SIEMENS Ingenuity for life

## Contents

| Executive summary                                                        | 3  |
|--------------------------------------------------------------------------|----|
| Project background and business case                                     | 4  |
| Project manager's report                                                 | 5  |
| Project steering committee                                               | 5  |
| Project progress against SDRC milestones                                 | 5  |
| Project risks                                                            | 5  |
| Project knowledge sharing and dissemination                              | 5  |
| Knowledge dissemination event                                            | 6  |
| Forecast for the next reporting period                                   | 7  |
| Business case update                                                     | 8  |
| Project budget                                                           | 8  |
| Bank account                                                             | 8  |
| Progress against budget                                                  | 8  |
| Successful delivery reward criteria (SDRC)                               | 9  |
| Learning outcomes                                                        | 10 |
| Intellectual property rights                                             | 16 |
| Risk management                                                          | 16 |
| Assurance statement                                                      | 17 |
| Appendix A: EFCC project plan                                            | 18 |
| Appendix B: Bank statement                                               | 19 |
| Appendix C: Project risk register, risk management and contingency plans | 22 |



Enhanced Frequency Control Capability (EFCC) Progress report: January to June 2017 Page 3

Great Britain's electricity sector is becoming increasingly decarbonised; many traditional thermal power stations have closed and more will continue to close. There is also more renewable generation on the electricity network, including solar PV and wind.

This changing energy landscape leads to system challenges that are explained in National Grid's System Operability Framework (SOF)\*. One of the challenges is that while traditional thermal power

\* http://www.nationalgrid.com/SOF

stations provide inertia, renewable generation technologies typically do not. Inertia acts as a natural aid in maintaining system frequency. Reducing system inertia increases the risk of rapid changes in system frequency and the consequences of faults on the electricity network.

National Grid is working with industry and academia on the Enhanced Frequency Control Capability (EFCC) project. This aims to provide greater clarity on the application and benefits of innovative ways to control frequency in low-inertia transmission systems.

It will explore how technologies such as demand-side response (DSR), solar PV, wind and different ways of operating combined cycle gas turbines (CCGTs) can help to keep the transmission system stable in the most cost-effective and efficient way.

#### Summary of progress: January to June 2017

During this reporting period we focused on demonstrating the GE Grid Solutions monitoring and control system (MCS) and on handing it over to project partners for validation and field trials. Site acceptance tests (SATs) were successfully completed at the University of Manchester, the University of Strathclyde and at the solar PV plant owned and operated by Belectric. Site acceptance tests for all remaining project partners will continue throughout the next reporting period, when the validation and demonstration of rapid frequency control will begin in earnest.

We are working with DONG Energy and Siemens to agree an approach to potential wind turbine trials. The aim will be to demonstrate a windfarm's ability to provide fast frequency response. A stage-one contract has been signed for trials to take place on test turbines and this work has started. We are discussing a stage-two contract for trials on a fully operational, commercial windfarm. One of the main outstanding challenges in finalising this stage-two contract is the sharing of liabilities during the work.

Through continuing engagement with industrial and commercial electricity customers, Flexitricity now has all the necessary contracts in place across the three DSR categories targeted by the project: static Rate of Change of Frequency (RoCoF), real inertia and simulated inertia/dynamic RoCoF. Preparation and installation work is now taking place.

A highlight of this reporting period was the hugely successful second knowledge dissemination and stakeholder engagement event at the Technology Innovation Centre at the University of Strathclyde on 14 March. Approximately 120 stakeholders from across the industry attended and the entire project team delivered a day of interactive sessions sharing their knowledge and insights.

The project team is now focused on the next phase of the project. This phase will include validating and demonstrating rapid frequency control. We will develop a commercial framework to encourage the widest participation in a new market for fast frequency response. We will also assess the data communications infrastructure needed to support the monitoring and control system and determine how best to integrate this into business as usual activities.

Enhanced Frequency Control Capability (EFCC) Progress report: January to June 2017 Page 4

# Project background and business case

We need to increase our use of renewable generation in order to meet future carbon reduction targets. However, this presents a challenge because most renewable generation does not provide inertia (an object's resistance to any change in motion) and a reduction in system inertia is known to increase the risk of rapid changes to system frequency and the threat of faults or blackout. This in turn will mean we have to deliver more frequency response more quickly, to keep the transmission network stable. Through our Enhanced Frequency Control Capability (EFCC) project we are working with industry and academia to clarify the application and benefits of innovative ways to control frequency in low-inertia transmission systems. The project aims to explore how technologies like wind, solar PV, demand-side response (DSR) and combined cycle gas turbines (CCGTs) can help to keep the transmission system stable in the most cost-effective and efficient way.

By developing an innovative wide-area monitoring and control frequency response system, the EFCC project aims to open the door to more frequency response being provided by newer, more sustainable energy solutions. It will also develop and introduce commercial incentives and products designed to encourage the widest participation in a new market for fast frequency response.

The challenge of managing low system inertia is not unique to National Grid. So we'll share important knowledge generated by the project with relevant network licensees and service providers. We'll also share the results of trials, and the solutions offered, with global Transmission System Operators (TSOs). To discover more, please visit our project website at <u>www2.nationalgrid.com/efcc</u> or email us at <u>box.EFCC@nationalgrid.com</u>. The project received formal approval and the Project Direction in December 2014. This is the fifth progress report and covers the period of January to June 2017.

Major project deliverables and issues during the reporting period include the following.

**Site acceptance testing** – the main focus was on demonstrating the GE Grid Solutions monitoring and control system and handing it over to other project partners for validation and field trials. Site acceptance tests have been successfully completed at the University of Manchester, the University of Strathclyde and the solar PV plant owned and operated by Belectric. Further site acceptance tests for the remaining project partners will continue throughout the next reporting period.

**Knowledge dissemination event** – in March the project hosted a second hugely successful knowledge dissemination and stakeholder engagement event that attracted around 120 stakeholders from across the industry. The entire project team delivered a day of interactive sessions designed to share their knowledge and insights.

**Work Package 2.5: Wind** – we reported previously that the project had yet to confirm the involvement of a commercially operational windfarm. Throughout this reporting period we have continued to engage with DONG Energy and Siemens in order to draw up an outline schedule for testing windfarms' capabilities to provide rapid frequency response and the associated costs of doing so.

Further detail on each of these project highlights can be found later in this report.

#### **Project steering committee**

The project steering committee is responsible for:

- developing and agreeing project activities
- approving project results
- raising, testing and reducing identified risks to the project
- authorising changes to the project plan.

The project steering committee continues to hold frequent teleconference meetings to discuss project progress, identify and manage risks, and agree actions. We are holding more individual project partner engagement meetings too.

There have been no changes to the steering committee hierarchy within this reporting period.

### Project progress against SDRC milestones

Progress against our successful delivery reward criteria (SDRC) milestones during this reporting period is shown in Table 1 below. Further details are also provided in the SDRC chapter later in this report.

#### Table 1

SDRC summary: January to June 2017

| Description                                                                                             | Due Date      | Status                    |
|---------------------------------------------------------------------------------------------------------|---------------|---------------------------|
| Description                                                                                             | Due Date      | Status                    |
| Agreements in place with DSR customers for participation in EFCC trials                                 | 30 June 2016* | Achieved<br>30 April 2017 |
| Monitoring and control system<br>developed successfully: Application<br>development: Revision completed | 31 March 2017 | Achieved<br>24 March 2017 |
| EFCC knowledge dissemination and stakeholder engagement event                                           | 31 March 2017 | Achieved<br>14 March 2017 |

\* For further information please refer to our December 2016 EFCC progress report.

### **Project risks**

The robust project structure and governance process make sure that any issues or changes that could affect project delivery are identified quickly, and that actions are put into place to resolve them. Appendix C provides an update of the project risk register. Major risks for this reporting period can also be found later in this report.

#### Project knowledge sharing and dissemination

The project team will continue to:

- record and share all lessons learned throughout the lifetime of the project
- discuss and assess all learning points through ongoing reviews and project meetings
- share outcomes and breakthroughs at conferences, workshops and university demonstration events as appropriate
- upload and share reports on the project website wherever possible – most of the reports that are produced throughout the lifetime of the project are part of the intellectual property that's being developed.

Events that were attended and publications that were submitted during this reporting period by all project partners are listed in Table 2 that follows.



## Project manager's report cont.

Enhanced Frequency Control Capability (EFCC) Progress report: January to June 2017 Page 6

#### Table 2

Knowledge-sharing events: January to June 2017

| Event / Publication                                                                              | Date                                                                        | Organisation                                           | Contribution                                                                                                              |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Energy Storage Network                                                                           | January 2017                                                                | Flexitricity                                           | Presentation of inertia response and other opportunities to<br>energy storage developers                                  |
| Cornwall Energy<br>Smart Flexible Energy System                                                  | February 2017                                                               | Flexitricity                                           | Panel session covering role of frequency response in system balancing                                                     |
| REA Energy Storage                                                                               | February 2017                                                               | Flexitricity                                           | Presentation of inertia response and other opportunities to<br>energy storage developers                                  |
| IET, Manchester, UK<br>International Conference on AC and<br>DC Power Transmission               | February 2017                                                               | University of Strathclyde                              | Studies of dynamic interactions in hybrid AC-DC grids under different fault conditions using real-time digital simulation |
| NIC EFCC Knowledge Dissemination<br>Event                                                        | March 2017                                                                  | All                                                    | Full project knowledge dissemination and stakeholder<br>engagement event (for further information see below)              |
| Data Centre World                                                                                | March 2017                                                                  | Flexitricity                                           | Static RoCoF opportunities for datacentres                                                                                |
| Alexa Capital                                                                                    | March 2017                                                                  | Flexitricity                                           | Explanation of EFCC opportunities at a round-table investment forum                                                       |
| IEEE PES, Istanbul, Turkey<br>5th International Istanbul Smart Grid<br>and Cities Congress       | April 2017                                                                  | University of Manchester and University of Strathclyde | Smart integrated adaptive centralised controller for islanded micro-grids under minimised load shedding                   |
| CIGRE, Saint-Petersburg, Russia<br>Relay Protection and Automation for<br>Electric Power Systems | April 2017                                                                  | University of Manchester                               | A centralised under frequency load-shedding controller based<br>on state estimator for micro-grid applications            |
| IEEE PES, Torino, Italy<br>Innovative Smart Grid Technologies<br>(ISGT) Conference               | September<br>2017<br>(paper<br>pre-selected in<br>this reporting<br>period) | University of Strathclyde                              | Application of a MW scale motor generator set to establish power hardware in the loop capability                          |

#### **Knowledge dissemination event**

On 14 March the project hosted a hugely successful second knowledge dissemination and stakeholder engagement event at the Technology Innovation Centre at the University of Strathclyde.

The entire project team delivered a day of interactive sessions designed to share their knowledge and insights. Sessions included GE Grid Solutions presenting EFCC concepts and demonstrating PhasorController capabilities; and the Universities of Manchester and Strathclyde presenting their latest simulation analysis and their real-time digital simulator (RTDS) capabilities.

The University of Strathclyde had also developed a simulationbased tool that allows users to visualise the impact of various levels and types of EFCC response on power system frequency following disturbances. This open-source graphical software tool, called the 'System Frequency Response Demonstrator', is capable of demonstrating a power system's frequency behaviour during disturbances under different system operating conditions (e.g. demand levels, inertia values etc.) with and without various user-configurable levels and types of EFCC response. The tool is available to download from: http://dx.doi.org/10.15129/caf3e32e-c07d-4366-867f-89296117cc3d.

Around 120 stakeholders from across the industry attended the event, including generator representatives, financiers, academics and consultants. With so many experts assembled in one place, the project team worked hard to make the most of that opportunity by encouraging feedback throughout the day. For further information, please visit our project website at <u>www2.nationalgrid.com/efcc</u>.





#### Forecast for the next reporting period

The project activities for the next reporting period are shown in Table 3 below.

#### *Table 3*

Work package activities: July to December 2017

| Work Package | Description                      | Partner                                          | Comments                                                                                                                                                                                                                                                           | Status  | Timescale            |
|--------------|----------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------|
| 1            | Monitoring and Control<br>Scheme | GE Grid Solutions<br>Flexitricity                | Demonstration Phase 4: installation, configuration and<br>SAT of phasor measurement units (PMUs) and control<br>hardware for demand-side response field trials                                                                                                     | Green   | Jul 2017 to Aug 2017 |
| 1            | Monitoring and Control<br>Scheme | GE Grid Solutions<br>Centrica                    | Demonstration Phase 4: installation, configuration<br>and SAT of PMUs and control hardware for<br>large-scale-generation field trials                                                                                                                              | Green   | Jul 2017 to Aug 2017 |
| 1            | Monitoring and Control<br>Scheme | GE Grid Solutions<br>National Grid               | Demonstration Phase 4: installation, configuration<br>and SAT of PMUs and control hardware for National<br>Grid testing                                                                                                                                            | Green   | Jul 2017 to Aug 2017 |
| 1            | Monitoring and Control Scheme    | GE Grid Solutions                                | Deliver control platform revision report outlining<br>revisions to the MCS control platform                                                                                                                                                                        | Green   | Jul 2017             |
| 1            | Monitoring and Control<br>Scheme | GE Grid Solutions                                | Deliver performance report outlining review of the field trials associated with the different partners and recommendations for control parameter tuning                                                                                                            | Green   | Jul 2017 to Dec 2017 |
| 2.1          | Demand-Side<br>Response          | Flexitricity                                     | Prepare for and start demand-side response field trials                                                                                                                                                                                                            | Green   | Jul 2017 to Nov 2017 |
| 2.2          | Large-Scale<br>Generation        | Centrica                                         | Prepare for and start large-scale-generation field trials                                                                                                                                                                                                          | Green   | Jul 2017 to Nov 2017 |
| 2.3          | Solar PV Power Plant             | Belectric                                        | Prepare for and start solar PV power plant field trials                                                                                                                                                                                                            | Green   | Jul 2017 to Oct 2017 |
| 2.5          | Wind                             | DONG Energy<br>Siemens                           | Prepare for and start wind field trials                                                                                                                                                                                                                            | Green   | Jul 2017 to Nov 2017 |
| 3            | Optimisation                     | University of<br>Manchester                      | System studies on representative GB transmission<br>network to assess proportionate responses from<br>service providers and develop an optimal<br>supervisory control strategy                                                                                     | Amber*1 | Jul 2017 to Nov 2017 |
| 4            | Validation                       | Universities of<br>Manchester and<br>Strathclyde | Implement monitoring and control system for<br>Hardware in the Loop (HiL) and Power Networks<br>Demonstration Centre (PNDC) testing and start<br>validating GE Grid Solutions' developed system                                                                    | Amber*1 | Jul 2017 to Nov 2017 |
| 6            | Commercial                       | National Grid                                    | Start to assess economic value of new rapid frequency service                                                                                                                                                                                                      | Amber*2 | Jul 2017 to Dec 2017 |
| 7            | Communications                   | National Grid                                    | Start evaluating the communication infrastructure<br>requirements and assess the current technical<br>capabilities of the system. Coordinate installation of<br>additional PMUs at National Grid substations to<br>increase wide-area monitoring (WAMs) capability | Amber*2 | Jul 2017 to Jan 2018 |

| Status | Description                                       |
|--------|---------------------------------------------------|
| Red    | Unlikely to complete by due date                  |
| Amber  | Minor issues but expected to complete by due date |
| Green  | On track to complete by due date                  |

\*1 These activities are amber because of the delay in recruiting research assistants at the University of Manchester, as previously reported. The affected work packages continue to be reviewed to make sure that the necessary study analysis is completed. \*<sup>2</sup> These activities are amber because we are still awaiting the necessary commercial and technical resource.

#### Business case update Work Package 2.4: Battery Storage

It has previously been reported that the project would not be awarded the requested funding for a new battery storage unit for combined solar PV and battery storage trials. However, the project team believes that battery storage can still play a significant role in ensuring system reliability. Therefore Network Innovation Allowance (NIA) funding has been sought, and subsequently approved, to cover the costs of leasing the Belectric battery storage facility for the duration of the EFCC trials.

This decision was approved because changes in the project's approach and the energy landscape have removed much of the risk to consumers:

- leasing the Belectric battery storage unit significantly reduces the value of funds sought
- recent changes in the energy landscape have identified an increased requirement for flexible generation. New storage technologies – particularly batteries – are emerging into the market and there's a lot of discussion within the industry about their future role and the new options they could bring to the electricity sector.

### **Project budget**

Project expenditure is within the budget defined by the Project Direction\*.

#### **Bank account**

Bank statements have been provided to Ofgem. Due to the confidential nature of the project bank statements, these have been included within a redacted appendix of this report.

\* https://www.ofgem.gov.uk/sites/default/files/docs/2015/01/enic\_project\_ direction\_efcc\_final\_0.pdf

#### **Progress against budget**

Table 4 details the project expenditure to date (as of 31 May 2017) and highlights any variances against the budget.

#### Table 4

Proposed and actual spend: January 2015 to June 2017 (£000s)

| Cost Category       | Actual | Budget | Variance |
|---------------------|--------|--------|----------|
| Labour              | 709.4  | 1607.5 | (898.1)  |
| Equipment           | 485.8  | 574.0  | (88.2)   |
| Contractors         | 1639.0 | 1861.3 | (222.3)  |
| IT                  | 86.0   | 86.0   | 0.0      |
| IPR costs           | 0.0    | 0.0    | 0.0      |
| Travel and expenses | 87.5   | 110.5  | (23.0)   |
| Payments to users   | 209.8  | 650.0  | (440.2)  |
| Contingency         | 348.9  | 553.7  | (204.8)  |
| Decommissioning     | 0.0    | 0.0    | 0.0      |
| Other               | 40.0   | 40.0   | 0.0      |
| Totals              | 3606.4 | 5483.0 | (1876.6) |

Our labour needs are monitored regularly to make sure the right resources are allocated to the project. These costs remain under budget over the full lifecycle of the project. As such, recruitment processes are under way for additional resource for the remainder of the project to ensure the satisfactory completion of all project deliverables.

Payment dates for contractor spend have been realigned with the revised system studies and field trial schedules, including the revised timescales agreed for Work Package 2.5: Wind.

Actual spend on payments to users is consistent with the schedule of the project field trials, including the adjustments made to the timeline for Work Package 2.1: Demand Side Response.



#### **GE Grid Solutions**

The following work relates to the SDRC and was led by GE Grid Solutions during this reporting period. The document detailed below is covered by GE Grid Solutions' background intellectual property rights, so can't be published on the project's knowledge sharing website.

#### Work Package 1:

### Monitoring and Control System – Application Development – Revision Completed

GE Grid Solutions delivered a report outlining revisions to the applications designed and developed for fast frequency response. The report was issued on 24 March 2017.

The project has now moved into the demonstration phase, during which GE Grid Solutions' control platform and power systems applications will be validated through technical field trials at various project partner deployment sites. Multiple site acceptance tests have already been successfully completed at project partner sites. The academic partners have designed their joint academic test plan as well as their respective test cases. They will continue to run tests to validate the monitoring and control schemes.

#### All project partners

#### Knowledge dissemination event

All project partners hosted a hugely successful second knowledge dissemination and stakeholder engagement event at the University of Strathclyde's Technology Innovation Centre on 14 March 2017.

### Successful delivery reward criteria for the next reporting period

There are seven SDRCs due in the next reporting period of July to December 2017, as shown below in Table 5.

#### Table 5

| SDRCs for the next reporting period: July to December 2017 | SDRCs . | for | the | next | repor | ting | period | July | to | Decem | ber | 2017 |
|------------------------------------------------------------|---------|-----|-----|------|-------|------|--------|------|----|-------|-----|------|
|------------------------------------------------------------|---------|-----|-----|------|-------|------|--------|------|----|-------|-----|------|

| Description                                                                                                                                     | Due Date            | Status            | Comments  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------|-----------|
| Monitoring and control<br>system developed<br>successfully: Control<br>platform development:<br>Revision completed                              | 31 July 2017        | Green             | -         |
| Response analysis from<br>service providers:<br>CCGT power stations                                                                             | 31 July 2017        | Red* <sup>3</sup> | See below |
| Response analysis from<br>service providers:<br>Windfarm                                                                                        | 31 July 2017        | Red <sup>*3</sup> | See below |
| Response analysis from<br>service providers: PV<br>power plant                                                                                  | 31 October 2017     | Green             | -         |
| Response analysis from<br>service providers:<br>Demand-side response                                                                            | 30 November<br>2017 | Green             | -         |
| Successful validation of<br>response: Successful<br>delivery of<br>representative models<br>and validation of trial<br>results using the models | 30 November<br>2017 | Green             | -         |
| Successful<br>development of new<br>enhanced frequency<br>response service as<br>part of new balancing<br>services                              | 31 December<br>2017 | Amber*3           | See below |

\*<sup>3</sup> These activities are considered amber or red because they are unlikely to be completed by the original due date. However, they will all be completed in advance of project closure in March 2018. In line with proposed Network Innovation Competition (NIC) governance changes announced by Ofgem, the project steering committee is of the opinion that these "non-material" changes are deemed acceptable. This is to be formally confirmed with Ofgem in due course.

#### Future successful delivery reward criteria

The one remaining SDRC after this reporting period is: recommendations regarding the implementation of the new service. This is due by 31 January 2018.

This is alongside the annual requirement to host a project knowledge dissemination and stakeholder engagement event.

### Learning outcomes

Enhanced Frequency Control Capability (EFCC) Progress report: January to June 2017 Page 10

### This section describes what has been learnt in the project during this reporting period.

#### Work Package 1: Monitoring and Control System

This reporting period has focused on demonstrating the monitoring and control system, as well as handing it over to project partners for validation and field trials.

GE Grid Solutions worked with academic and commercial project partners to agree on deployment scope, set-up and configuration. Deployment reports and site acceptance test (SAT) procedures were issued to relevant partners for review and execution. GE Grid Solutions provided onsite support for the installation and integration of the PhasorController units at various deployment sites. Completed SATs are as follows:

- 8 February 2017 University of Manchester (RTDS)
- 22 February 2017 University of Strathclyde (PNDC)
- 8 March 2017 Belectric (solar PV power plant).

Further SATs for the remaining project partners will continue throughout the next reporting period.

After the above three SATs were completed, GE Grid Solutions provided further support by answering questions and addressing issues raised subsequently by project partners. The validation of fast frequency response schemes will continue during the next reporting period and the remainder of 2017.

In addition, a report outlining revisions to the monitoring and control system applications designed for fast frequency response was issued by GE Grid Solutions on 24 March 2017.

#### Work Package 2.1: Demand-Side Response

Through continuing engagement with industrial and commercial electricity customers, Flexitricity now has all the necessary contracts in place for the trial phase of the project. Preparation and installation work is now under way at around half of the sites. This period has confirmed our expectation that EFCC needs a high level of technical diligence when dealing with sites and testing equipment for deployment. Participating sites include:

- a major chemicals producer with a load of approximately 6MW in the static RoCoF trial
- a district heating scheme with two 3MW combined heat and power (CHP) engines in the real inertia trial
- a horticultural company with two 1.5MW CHP engines in the real inertia trial
- a wastewater treatment site with two participating loads sludge pumping and aeration in the dynamic RoCoF trial
- a wastewater pumping station in the dynamic RoCoF trial
- a cold store in the dynamic RoCoF trial.

This exercise has demonstrated the potential for a broad range of industrial and commercial customers to use a commercial EFCC service.

Through the EFCC project, Flexitricity has developed in-house capability to inject simulated frequency events into site equipment



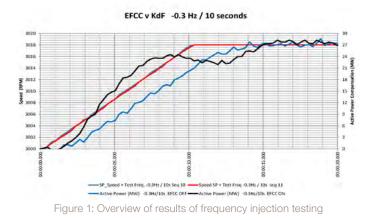




and to measure accurately how the loads respond to these stimuli. Inertia response has more onerous requirements than conventional frequency response, so validating the capabilities of different loads could impose a significant per-site cost – type testing could reduce this burden. This is considered a commercial matter for the post-project period.

During the trial phase we will take detailed online measurements of performance. This is particularly important at the two CHP sites that are delivering the 'spinning inertia' form of the service because we need more in-depth information, to identify how CHP engine controls interact with system frequency at short timescales.

#### Work Package 2.2: Large-Scale Thermal Generation


Centrica's activities to date have centred on testing revised frequency control logic before implementation on a gas turbine at South Humber Bank power station. Now that it has been implemented, the revised frequency control logic has been tested by observing how frequency injection tests change the active power output. The test results have been encouraging and broadly in line with simulation results. The revised frequency control logic remains in place, although it is not active. This allows power station staff to analyse how the revised frequency control logic would have responded to actual power system events.

As demonstrated at the first EFCC knowledge dissemination and stakeholder engagement event, Centrica's revised frequency control logic has the potential to speed up the delivery of frequency response. Using computer simulation, Centrica showed that initiating frequency response by using rate of change of frequency (RoCoF) could increase the speed of delivery of frequency response by up to three seconds.

Moving on from computer-based simulation, Centrica carried out more simulations using a stand-alone version of the CCGT distributed control system (DCS), housed in racks. This set-up allowed Centrica to make further modifications to the revised frequency control logic. One aspect of the simulations that was particularly important – and crucial to Centrica's success – was to explore how this revised frequency control logic meshes with existing frequency control logic. The team had to be certain that the RoCoF-based initiated frequency response would not cause any unintended consequences to the plant at South Humber Bank or to the stability of the wider power system.

Once Centrica was satisfied that the revised frequency control logic was robust enough to be used on the actual plant, it was downloaded onto the live DCS during an outage of the CCGT module. Centrica also drew up a programme for frequency injection tests, which was then agreed with National Grid.

The testing was carried out during two days in early March 2017. It involved a series of frequency injections to see how the actual plant behaved in response to a simulated system frequency. The tests were successful and were presented at the second EFCC knowledge dissemination and stakeholder engagement event in Glasgow. Figure 1 illustrates the improvement in frequency response delivery during the early stages of a simulated frequency event.



Although the test results were generally considered successful, the interaction between conventional frequency response (KdF) and RoCoF-based frequency response is very important to all concerned. Although the revised frequency control logic is not being used in a live environment, Centrica is able to analyse how it would respond to actual power system events using the CCGT module's DEPP system – a fast data recorder with a resolution down to 40ms.

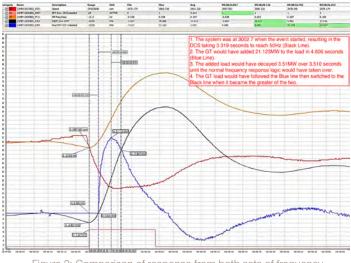



Figure 2: Comparison of response from both sets of frequency control logic to an actual system event

On Tuesday 9 May 2017 there was a low frequency event caused by the instantaneous loss of import of 1000MW from the French interconnector. This provided an opportunity to examine how the revised frequency control logic would have responded to an actual power system event. From a RoCoF perspective this was an interesting scenario. South Humber Bank power station is situated approximately 250 miles away from the source of the event and – as is being learned and demonstrated elsewhere in this project – this was used to identify that measured RoCoF is by no means uniform across the entire power system.

Initial analysis of this actual power system event, shown in Figure 2, is encouraging. It gave rise to some new areas of focus, particularly in the context of the interaction between the conventional KdF-based frequency response and the RoCoF-based frequency response. What was particularly interesting about the 9 May event was that the system frequency was above 50.0Hz at the point when the event occurred. So if South Humber Bank power station had been used for response by National Grid at that time, it would have been providing a highfrequency response at the start of the frequency drop. Centrica is currently examining how the withdrawal of the conventional KdFbased high-frequency response and the delivery of the RoCoF-based frequency response would have interacted.

As we move into the summer and experience times of lower inertia than is generally the case in winter, more real system events should provide further data for Centrica to fine-tune the revised frequency control logic.

Work is also ongoing with GE Grid Solutions to determine the optimal method for installing the local PhasorController at South Humber Bank, to integrate South Humber Bank's CCGT fully with the wider EFCC project. This work has determined that Centrica will need to install fibre optic cable between the 400kV substation and one of the power station module electronics rooms.

#### Work Package 2.3: Solar PV

Belectric carried out the following activities during this reporting period at the Rainbows solar PV power plant:

- installed all the required components at the solar PV power plant
  continued to develop the software for the Belectric hybrid
- controller, including a framework and new control algorithms integrated a cloud movement camera and a solar PV model into
- the Belectric hybrid controller these are used to calculate the resource attributes at any moment in time
- integrated the GE Grid Solutions PhasorController into the solar PV power plant – communications between the Belectric hybrid controller and the GE Grid Solutions PhasorController were developed and commissioned in close collaboration with GE Grid Solutions using the communication protocol IEC 61850 GOOSE
- integrated the GE Grid Solutions PMU measurement equipment into the collecting station of the solar PV power plant and commissioned the PhasorPoint measurement software in collaboration with GE Grid Solutions
- developed a solution for the distributed data stream management of PMU protocol data and the division between internal and external data – the distributed data stream management of PMU log data is still under development
- carried out a successful site acceptance test and the PMU equipment is now operational
- created and shared a test plan to demonstrate the frequency response capabilities of the solar PV power plant.

The following learning outcomes have been achieved during this reporting period:

- positive and negative frequency response is possible from solar PV, but only by integrating a cloud movement camera and a solar PV model into the Belectric hybrid controller. This can be done by shifting down the operating point of the solar PV plant, but it's a cost-intensive solution and can only be applied for short periods of time
- the implementation and use of the new communication protocol IEC 61850 GOOSE between the Belectric hybrid controller and GE Grid Solutions' PhasorController proved successful
- the integration of GE Grid Solutions' PhasorController, PMU equipment and PhasorPoint measurement software has been demonstrated and is working with the Belectric controller components within the solar PV power plant.

Also, as explained earlier in this report, the concept of a Belectric hybrid solar PV and battery storage resource is still being pursued.

Belectric continues to work towards this and achieved the following objectives and learning outcomes during this reporting period:

- the combination of solar PV and battery storage can provide a positive and negative frequency response with more regulating power and at a lower cost than can be achieved using solar PV only
- the site is being prepared for the installation of the battery storage unit – once installed the battery storage unit will be commissioned.

#### Work Package 2.5: Wind

During this reporting period, we have continued to work with DONG Energy and Siemens to develop an agreed approach to potential wind turbine tests. These tests will aim to demonstrate a windfarm's ability to provide fast, initiated frequency response.

The use of a GE Grid Solutions PhasorController during these windfarm tests is no longer within the project scope. The park pilot in the windfarm can measure the power system frequency and instruct the windfarm to provide the required frequency response in the specified form. So there's no need to use a third-party asset.

A stage-one contract was signed in October 2016 for trials to take place on test turbines. This work is already under way and has so far achieved the following:

- analysed field trials on a test turbine although the first field trials didn't provide a full mapping of the inertial response performance across the entire operating range, they validated that the loads are inside acceptable levels to proceed with more detailed field trials for this turbine model. This testing of inertial response on the test turbine was run on 14 June 2017. Additional tests at other wind conditions are to follow shortly
- performed a set of simulations to get an estimate of the expected performance in the entire wind range – the simulations used the BHawC aero-elastic code, a validated structural model of the SWT-7.0-154 turbine and the turbine controller
- carried out initial tests these indicate that 10% of available power will not be available at all production levels. All further simulations are to be based on 5% magnitude for a duration of 10 seconds
- presented field trial results and a subset of the simulations at the EFCC knowledge dissemination and stakeholder engagement event on 14 March in Glasgow.

Further field validation will need to be carried out to confirm these results. Software has been modified and prepared for field trials during the spring at various wind conditions. These trials will validate the latest learnings and will document the response and the recovery profile for multiple wind conditions.

As part of the stage-one works, DONG Energy will also assess the overall volume of response that can be achieved from the proposed scheme on its portfolio of wind and the commercial implications of doing so.

A stage-two contract for trials on a fully operational, commercial windfarm is still being discussed. One of the main outstanding challenges in finalising the stage-two contract is to determine how liabilities will be shared during these activities.

#### Work Packages 3 and 4: Optimisation and Validation

#### (i) The University of Manchester

The University of Manchester has been working on system studies and service provider modelling in DIgSILENT PowerFactory software and real-time digital simulator (RTDS) hardware in the loop (HiL) testing to validate the performance of the GE Grid Solutions' monitoring and control system (MCS).

### Validation activities through system studies using DIgSILENT PowerFactory

The main challenge of EFCC system studies was that the detailed models of the various response provider technology types were not made available to the University of Manchester. Without detailed models, any fast frequency control scheme will be based on generic, and therefore possibly inaccurate, assumptions about technology capabilities. As a result, true performance will not align with simulated performance.

To overcome this issue the University of Manchester has developed detailed models of doubly fed induction generator (DFIG) based wind energy conversion systems and combined cycle gas turbines (CCGTs) in DIgSILENT PowerFactory for use in system studies. These models are integrated into the simple but practical two-area Kundur network model, as well as a large-scale, complex, 36-zone GB network model, and their frequency response is assessed.

This can be summarised as follows.

Integration of CCGTs into the representative two-area and 36-zone GB test power networks and the assessment of frequency response

During this stage the University of Manchester investigated the main components of CCGTs. It also addressed the control loops of the CCGTs that either directly affect the response of the power plant to power system disturbances or have an effect on the design or operation of the plant.

The model incorporated gas turbine, heat recovery steam generator and steam turbine, as well as speed control, temperature control and inlet guide vane control. This is illustrated in Figure 3. The appropriate model of CCGTs for short-term dynamic study following a frequency excursion was simulated in DIgSILENT PowerFactory. The designed and developed CCGT model and its controllers were tested on a two-area test system as well as a large-scale, complex, 36-zone GB network model.

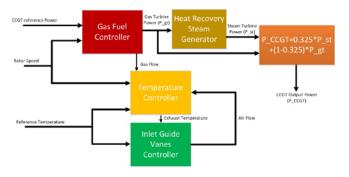



Figure 3: CCGT block diagram model

The University of Manchester investigated the dynamic impact of CCGTs on small-signal stability and electromechanical modes using modal analysis, and evaluated the impact of high penetrations of CCGTs on frequency response. It also used time-domain dynamic studies to validate high CCGT integration effects in full and partial load operation modes. It also evaluated the condition of different areas from the frequency nadir and the maximum rate of change of frequency (RoCoF) for an n-1 contingency and a worst-case scenario.

Simulation results from the dynamic performance of the CCGT in two operational modes of full and partial load showed that although RoCoF of the whole system is identical in these two scenarios, the frequency nadir and steady state frequency of the CCGT in full load are less than they are in partial load. The results showed that with extra CCGTs on the power system, large frequency decay in nadir and steady-state conditions would be more probable if the CCGTs are on full-load operation. The system operator would therefore need to review its frequency control approaches to operate CCGTs in partial mode, in order to enhance RoCoF, frequency nadir and steady-state frequency deviation.

#### Integration of DFIG into the representative two-area and 36-zone GB test power networks and the assessment of frequency response

Based on a GE manufacturer report, the University of Manchester developed a model, as illustrated in Figure 4, to study DFIG's short-term dynamic response to a system frequency deviation.

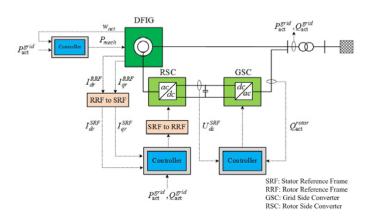



Figure 4: DFIG block diagram model

During this stage the team focused on describing and modelling the main DFIG components within DIgSILENT PowerFactory: rotor side converter, grid side converter, pitch angle controller, speed controller and active power controller. It also carried out an analytical investigation of the available inertia and droop responses, based on de-loading from the DFIG, to help support the inertial and primary frequency control in power system networks.

The model was used in conjunction with the simple but practical two-area test system and a large-scale, complex, 36-zone GB network model to study the impact of increasing levels of DFIG generation on frequency control. The team carried out modal analysis and dynamic time-domain simulations to study the power system frequency response and investigate how DFIGs can affect this response on a test power system with wind penetration levels of low (25%) and medium (50%).

The simulation results showed that the frequency nadir and steady-state frequency deviation deteriorated when DFIGs were integrated into the network without governor-like primary controllers.

The team observed that the two quantities are improved by increasing the DFIG penetration levels from 25% to 50% – meaning that higher wind penetration allows more responsive frequency regulation of the system, provided that the DFIGs are equipped with the proposed governing function.

#### **RTDS HiL testing**

The University of Manchester's goal within the EFCC project is to provide the necessary expertise and equipment to carry out a range of Hardware in the Loop (HIL) testing on the monitoring and control system (MCS) manufactured by GE Grid Solutions. The performance of GE Grid Solutions' MCS needs to be validated through a variety of system cases and operational conditions. Those scenarios and system cases which couldn't be included in actual field trials were examined by real-time digital simulation facilities in Manchester.

In this project, the University of Manchester copes with the real-time simulation phase of testing using its RTDS facilities to accomplish HiL testing of the EFCC scheme.

The HiL tests will focus on the following items:

- Power system and component modelling in RSCAD software (the simulation environment used by RTDS) The University of Manchester developed the power system test networks in RTDS. It also studied and configured the communication links between RTDS and the MCS. It developed two power system test models for testing and validation of the MCS:
  - a two-area test system
  - a GB network test system, which can be considered as an appropriate representation of the actual GB system.

Although the bulk of the studies used the above two test systems, the 36-zone test system was used to demonstrate proof of concept of EFCC for a larger system.

The test systems were selected based on the needs of the test and the fact that the hardware available places limitations on the size of the test system and the complexity of the equipment models that can be included.

#### Real-time HiL simulation of EFCC using RTDS capabilities to validate the performance of the MCS developed by GE Grid Solutions

In February 2017, site acceptance testing was carried out at the University of Manchester, using procedures designed to verify and exercise the controllers designed for the EFCC project. These included the Phasor Data Concentrator (PDC), as well as controller devices like the PhasorControllers and PhasorPoint.

The following GE Grid Solutions hardware was installed: a central supervisor (CS), two regional aggregators (RAs) and four local controllers (LCs). GE Grid Solutions also provided the University of Manchester with the following software:

- Straton PLC IDE
- licence for Straton
- library files for Straton
- PhasorPoint installation package.

Before the SAT demonstration, virtual PMU components of the RTDS using the IEEE C37.118.2 protocol – an extremely realistic environment – were configured for the two-area test system and the GB network test system models. These components monitor power system quantities such as voltage, current and frequency. The GTNET-GSE hardware component was also configured for bidirectional communication between RTDS and the EFCC local controllers via IEC 61850 GOOSE, for the two-area test system and the GB network test system models.

When an event is detected, the EFCC scheme, via the local controllers, sends control commands to the resources modelled in RTDS using IEC 61850 GOOSE. The HiL configuration allows testing of the EFCC scheme's capability to detect events in a timely way: to verify that the EFCC scheme instructs the correct amount of resource at the correct time. This allows the team to assess how effective controls are in helping to manage frequency in a highly flexible and realistic environment.

To meet the testing requirements of the EFCC project, the University of Manchester developed some additional features for the test system models in RUNTIME simulation of RSCAD, including:

- dynamic inertia control panel
- disturbance control panel
- generation control panel
- short-circuit control panel.

The University of Manchester also focused on the RTDS-HiL testbed and communication set-up, as illustrated in Figure 5.



Figure 5: RTDS-HiL testbed and communication setup

Lessons learned from testing will be significant and will be reported via EFCC project reports, at EFCC knowledge dissemination and stakeholder engagement events, at international conferences and in peer-reviewed journal publications.

While doing the tests, the University of Manchester unearthed a bug within the demand-side response local controller (DSR-LC) and reported it to GE Grid Solutions for their evaluation and debugging of the DSR-LC wide-area response. GE Grid Solutions has identified a defect within the resource allocation block algorithm of the DSR-LC. There was a flip-flop in the logic, which was not being driven from the correct signal, so was not able to reset correctly when required. This issue has now been fixed and the algorithm revised and improved for the resource allocation block. GE Grid Solutions has made some further minor improvements, including:

- revised reset logic
- revised discrete trigger hold and recovery logic

- revised continuous response deployment during ramp-down followed by another event.

### (ii) The University of Strathclyde

In the past six months, the team at the University of Strathclyde has been finalising the development of the testbed arrangements at the Power Networks Demonstration Centre (PNDC), commissioning the EFCC controllers and preparing all of the resources required for the formal tests.

This has included the following major activities.

Completed implementation of a dedicated Power-Hardware in the Loop (P-HiL) testbed

As outlined in the previous six-monthly report, the team has successfully developed and validated an effective control algorithm for the motor-generator at the PNDC. This algorithm allows the motor-generator to lock its output frequency and voltage phase angle with an external transmission grid simulated using the real time digital simulator (RTDS). This allows the PNDC network to be synchronised with a simulated wider grid.

During the intervening six months, the team has closed the loop in order to feed signals relating to actual PNDC network behaviour back to the simulated grid in RTDS. This means that any changes in behaviour within the actual PNDC network (such as voltage levels and real and reactive power exchanges with the external simulated grid) are now passed between the RTDS simulated main grid system and the actual local PNDC system via the motorgenerator set and current feedback loop.

Consequently the loads and the EFCC controlled resources at the PNDC can be scaled in the simulated overall grid system to a desired size that is realistic in terms of future EFCC implementations. Any frequency response instructed by EFCC using the PNDC resource will be reflected accurately within the wider system simulation, so the complete P-HiL testbed has been successfully established, tested and reported in publications.

#### Site acceptance test (SAT) at PNDC

The SAT relating to the GE Grid Solutions' supplied EFCC hardware was completed during March 2017. The controllers were commissioned and all predefined tests were carried out satisfactorily.

### Validation of the communication interfaces between the EFCC controllers and the PNDC facilities

The University of Strathclyde comprehensively tested the communication between the EFCC controllers and the PNDC facilities. The tests involved using the PNDC's own communications switch interfaced with the various communicating devices involved in the EFCC scheme. The team specified and procured a suitable communication emulator for testing the impact of communication system latency and jitter on EFCC system performance. This will be used in the formal testing programme later in the project.

### Familiarisation with the EFCC scheme and configuration of the EFCC controllers

The team at the University of Strathclyde and the PNDC has also been familiarising itself with the hardware and software associated

with the EFCC scheme. For example, using PhasorPoint for monitoring and recording controllers' and PMUs' outputs and understanding the settings and effects of the various parameters that can be configured within the controllers. Assisted by GE Grid Solutions, the team has also established controller settings that are suitable for the tests to be carried out at the PNDC.

#### Initiation of the first stage of the formal test programme

The team has started the first stage of formal tests to validate the EFCC scheme in local operational mode. More detail will be contained in the next project progress report.

#### Knowledge dissemination

The team has worked closely with National Grid and other partners to share the knowledge generated from the project through papers, dissemination events and sharing of open-source software. The knowledge dissemination section of this report provides more information about this.

#### Work Package 6: Commercial

The full development of the EFCC commercial service started in January 2017. The work package focuses on how the commercial service could be developed and offered to the industry. It aligns with other industry initiatives, particularly the product simplification strategy outlined in the System Needs and Product Strategy\* document.

The work package will require collaboration with the University of Manchester, which will be helping National Grid develop the commercial service, and with GE Grid Solutions because of the potential impact on the optimisation algorithm. Technical information from the project's response providers and results from their field trials will also be used to help with the development of the commercial framework.

#### Work Package 7: Communications

The project continues to consider what is needed for the data communications infrastructure to support the GE Grid Solutions' monitoring and control system. Demonstrations at the University of Manchester and the University of Strathclyde's PNDC, which form part of Work Package 4: Validation, will investigate communications latency and the capabilities of fast, round-trip control of the scheme. The results of these investigations will be available at the end of the project. National Grid will also assess what data communications will be required from an operational perspective to support the monitoring and control system.

National Grid will also carry out a demonstration of GE Grid Solutions' monitoring and control system using the central supervisor, regional aggregator and local controller units. The scope of the demonstration is being finalised and system simulation and/or network trials are being considered.

A technical assessment of how the monitoring and control system would integrate with the Electricity National Control Centre (ENCC) is being considered – information about this will be included in the project's closure report. GE Grid Solutions and all other project partners will make versions of their reports and documents available on the project website wherever possible, in order to meet the requirements to publish intellectual property developed within this project. Full versions will be made available to all project partners as part of the multi-party contract they signed. This approach to the review and publication of background and foreground intellectual property will be repeated on all documents produced throughout the project.

### **Risk management**

#### **Current risks**


All project partners regularly monitor and review project risks. Crucial risks for this reporting period are detailed below and a full risk register can be found in Appendix C of this report.

| Risk<br>no. | Work streams /<br>area | Risk description                                                                                                        | Cause                                                                                                    | Consequence                                                                                                                | Risk owner         | Likelihood<br>(1-5) | Financial<br>impact<br>(1 - 5) | Reputational<br>impact<br>(1 - 5) | RAG | Escalation route | Action plan                                                                                                                                                                                                  | Control opinion        |
|-------------|------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|--------------------------------|-----------------------------------|-----|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 5           | General                | Significant changes to the GB electricity system during the project.                                                    | Priorities or strategies for planning and managing the GB system may change.                             | Solution may no longer be suitable.<br>Assumptions may no longer be<br>accurate or appropriate.                            | Project<br>Manager | 5                   | 3                              | 4                                 | 20  | Steering Group   | We will consider future developments and scenarios. We will ensure<br>usefulness of solution matches planning of system. Providing regular<br>project updates to all project partners.                       | Partially<br>Effective |
| 6           | General                | Critical staff leave National Grid or our project partners during project lifecycle.                                    | Usual and unavoidable staff turnover results in key staff leaving National Grid or our project partners. | Progress of the project is delayed.<br>The project team doesn't have the<br>expertise to deliver the project.              | Project<br>Manager | 5                   | 2                              | 4                                 | 20  | Steering Group   | Knowledge of, and responsibility for, project to not rely with one person.<br>Ensure there is documentation and guidance to help anyone joining<br>project team. Thorough handover processes to be in place. | Partially<br>Effective |
| 34          | WP2.1 - DSR            | Flexitricity is unable to provide participants for planned trials.                                                      | Timing, risk and commercial terms makes it difficult to<br>recruit DSR participants.                     | Trials are limited or unable to take<br>place. The suitability and<br>performance of the technology is not<br>established. | Flexitricity       | 1                   | 3                              | 3                                 | 3   | Project Manager  | Participants provided for planned trials. Residual risk is that sites withdraw.                                                                                                                              | Effective              |
| 56          | WP2.5 - Wind           | EFCC project needs to agree with DONG<br>and Siemens and associated Joint Venture<br>partners for the use of wind farm. | Delay in agreeing use of wind farm.                                                                      | Delays to work package and overall<br>project outcomes.                                                                    | National Grid      | 4                   | 5                              | 5                                 | 20  | Project Manager  | Agree schedule of tests and activities early in the negotiation process and start contractual discussions in parallel.<br>Contractual discussions taking place and approaching completion.                   | Partially<br>Effective |
| 63          | General                | General back-loading of deliverables in the project.                                                                    | Slippage against baseline for deliverables.                                                              | Compromising scope and quality of deliverables.                                                                            | Project<br>Manager | 5                   | 4                              | 5                                 | 25  | Steering Group   | NGET and partners have monthly reviews of planned deliverables,<br>identifying any issues with delivery, investigating alternatives and<br>escalating to Steering Group.                                     | Partially<br>Effective |
| 66          | WP2 - All              | Test programme and schedule not clearly defined.                                                                        | Test programme format not clearly defined, impacting scheduling of commercial trials.                    | Delays in test plan starting and quality of test outputs.                                                                  | Project<br>Manager | 5                   | 3                              | 4                                 | 20  | Steering Group   | Escalation to Steering Group for discussion and resolution.                                                                                                                                                  | Partially<br>Effective |

national**grid** 

Enhanced Frequency Control Capability (EFCC) Progress report: January to June 2017 Page 17

This EFCC progress report has been produced in agreement with the entire project steering committee. All project partners have been involved in writing and reviewing it. The report has been approved by the EFCC project steering committee and by Graham Stein, Electricity Policy and Performance Manager, on behalf of Richard Smith, the project sponsor. Every effort has been made to make sure that all information in the report is true and accurate.



#### Appendix A: EFCC project plan

|                                   |                                                               | Apr-17 | May                                                             | Jun          | Jul        | Aug                   | Sep         | Oct        | Nov | Dec | Jan-18 | Feb | Mar |
|-----------------------------------|---------------------------------------------------------------|--------|-----------------------------------------------------------------|--------------|------------|-----------------------|-------------|------------|-----|-----|--------|-----|-----|
| WP 1<br>Monitoring<br>and Control | GE – Control Platform<br>Development                          |        |                                                                 | ntroller pla |            |                       |             |            |     |     |        |     |     |
|                                   | GE – Site Acceptance DSR<br>and CCGT                          | 5      | Site acceptance DSR and CCGT                                    |              |            |                       |             |            |     |     |        |     |     |
|                                   | GE – Performance Review                                       |        |                                                                 |              |            | Perfo                 | ormance r   | eview      |     |     |        |     |     |
|                                   | GE – Data Scheme Review                                       |        | Data scheme review                                              |              |            |                       |             |            |     |     |        |     |     |
| WP 2                              | Flexitricity – DSR                                            |        | ٦                                                               | Fest and de  | emonstrat  | e respons             | e capabilit | ty         |     |     |        |     |     |
| Assessment<br>of Response         | Centrica – Large-Scale<br>Generation                          |        | 7                                                               |              |            |                       |             |            |     |     |        |     |     |
|                                   | Belectric - PV Power Plant                                    |        | Test and demonstrate response capability                        |              |            |                       |             |            |     |     |        |     |     |
|                                   | Dong / Siemens – Wind                                         |        | Test and demonstrate response capability                        |              |            |                       |             |            |     |     |        |     |     |
| WP 3<br>Optimisation              | University of Manchester –<br>System Studies                  | Sy     | System studies of the co-ordinated supervisory control strategy |              |            |                       |             |            |     |     |        |     |     |
| WP 4<br>Validation                | Universities – Validation of<br>Monitoring and Control Scheme |        |                                                                 |              |            |                       |             |            |     |     |        |     |     |
|                                   | Universities – RTDS/PNDC<br>Testing                           |        |                                                                 |              |            | the individabled sour |             |            |     |     |        |     |     |
|                                   | Universities – Validate<br>Supervisory Control                |        | Valic                                                           | lation of th | e co-ordii | nated supe            | ervisory co | ontrol     |     |     |        |     |     |
| WP 5<br>Dissemination             | All Partners                                                  |        |                                                                 |              |            | C                     | ngoing di   | sseminatic | n   |     |        |     |     |
| WP 6                              | National Grid / GE                                            |        |                                                                 |              |            |                       |             | 141        |     |     | 1      |     |     |
| Commercial                        | National Grid / University                                    |        |                                                                 |              |            | ommercial             |             |            |     |     | 1      |     |     |
|                                   | of Manchester                                                 |        |                                                                 |              |            |                       |             |            |     | ce  |        |     |     |
| WP 7<br>Communication             | National Grid<br>s                                            |        |                                                                 |              | Asse       | ssment of (           | communic    | cations    |     |     |        |     |     |

### Appendix C: Project risk register, risk management and contingency plans

| Risk<br>no. | Work streams /<br>area         | Risk description                                                                                                       | Cause                                                                                                                                                                                                                                 | Consequence                                                                                                                                                                                                                                | Risk owner                                  | Likelihood<br>(1-5) | Financial<br>impact<br>(1 - 5) | Reputational<br>impact<br>(1 - 5) | RAG | Escalation route | Action plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Control opinion        |
|-------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------|--------------------------------|-----------------------------------|-----|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 2           | General                        | Partners leave project before completion.                                                                              | Decision is taken by partner to leave the project.<br>Reason could be commercial, operational, etc.                                                                                                                                   | Work is lost or unable to start and<br>the usefulness of the project results<br>is reduced or project is delayed.                                                                                                                          | Project<br>Manager                          | 3                   | 2                              | 4                                 | 12  | Steering Group   | Ensure thorough contracts in place. Procurement processes have<br>considered ongoing size and reliability of partners. Project management<br>is engaging with partners to resolve issues.                                                                                                                                                                                                                                                                                                   | Partially<br>Effective |
| 3           | General                        | Estimated costs are substantially different to actual costs.                                                           | Full scope of work is not understood. Cost estimates<br>are not validated. Project is not managed closely.                                                                                                                            | Overspend requiring Ofgem change request approval.                                                                                                                                                                                         | Project<br>Manager                          | 2                   | 3                              | 4                                 | 8   | Steering Group   | Ensure cost estimates are thorough and realistic and reflect full scope of work. Estimates validated based on tenders and market knowledge. Contingency included.                                                                                                                                                                                                                                                                                                                           | Partially<br>Effective |
| 4           | General                        | Material costs increase.                                                                                               | The cost of materials rises for unforeseen circumstances.                                                                                                                                                                             | Potential project funding gap.<br>Alternative funding is required or the<br>project scope is reduced.                                                                                                                                      | Project<br>Manager                          | 3                   | 2                              | 3                                 | 9   | Steering Group   | Each partner to assess cost of equipment for ongoing basis and provide change requests for additional spend.                                                                                                                                                                                                                                                                                                                                                                                | Partially<br>Effective |
| 5           | General                        | Significant changes to the GB electricity system during the project.                                                   | Priorities or strategies for planning and managing the GB system may change.                                                                                                                                                          | Solution may no longer be suitable.<br>Assumptions may no longer be<br>accurate or appropriate.                                                                                                                                            | Project<br>Manager                          | 5                   | 3                              | 4                                 | 20  | Steering Group   | We will consider future developments and scenarios. We will ensure<br>usefulness of solution matches planning of system. Providing regular<br>project updates to all project partners.                                                                                                                                                                                                                                                                                                      | Partially<br>Effective |
| 6           | General                        | Critical staff leave National Grid or our project partners during project lifecycle.                                   | Usual and unavoidable staff turnover results in key<br>staff leaving National Grid or our project partners.                                                                                                                           | Progress of the project is delayed.<br>The project team doesn't have the<br>expertise to deliver the project.                                                                                                                              | Project<br>Manager                          | 5                   | 2                              | 4                                 | 20  | Steering Group   | Knowledge of, and responsibility for, project to not rely with one person.<br>Ensure there is documentation and guidance to help anyone joining<br>project team. Thorough handover processes to be in place.                                                                                                                                                                                                                                                                                | Partially<br>Effective |
| 7           | General                        | Quality of technology is insufficient: the monitoring and control system and/or equipment installed at response sites. | Least cost option taken ahead of quality and reliability considerations; quality control insufficient at suppliers.                                                                                                                   | The solution offered is not reliable<br>and commercial opportunities will be<br>reduced. Costs are incurred through<br>delays and replacements.                                                                                            | All Partners                                | 4                   | 3                              | 3                                 | 12  | Project Manager  | All partners have been assessed based on reputation, track record and responses to NG tender. Ensure that price is not the prioritised criteria. Ensure quality control procedures are in place and followed throughout project.                                                                                                                                                                                                                                                            | Partially<br>Effective |
| 9           | General                        | Costs of solution over lifetime are high.                                                                              | Full cost of solution is not considered and/or<br>understood.                                                                                                                                                                         | The solution's usefulness and<br>commercial opportunities are<br>restricted.                                                                                                                                                               | Project<br>Manager                          | 4                   | 4                              | 3                                 | 16  | Steering Group   | Full long-term costs of solution have been considered as part of detailed<br>cost benefit analysis calculations.                                                                                                                                                                                                                                                                                                                                                                            | Partially<br>Effective |
| 11          | General                        | Component failure during project.                                                                                      | Equipment will be run in new ways that may cause problems or failures.                                                                                                                                                                | The equipment may need to be repaired or replaced. The tests may be delayed.                                                                                                                                                               | Belectric,<br>Centrica, GE,<br>Flexitricity | 4                   | 3                              | 3                                 | 12  | Project Manager  | Thorough checks before tests. Clear understanding of equipment<br>capabilities. Particular stress points identified. Spare parts and repairs<br>lined up.                                                                                                                                                                                                                                                                                                                                   | Partially<br>Effective |
| 12          | General                        | Strategic spares policy.                                                                                               | Spares policy for new technology may not be suitable when all risks are considered.                                                                                                                                                   | If suitable spares are not identified<br>and available, the risks of losing the<br>PMU/controller in the network may<br>reduce effectiveness of project.                                                                                   | National Grid                               | 4                   | 3                              | 3                                 | 12  | Project Manager  | Contingency plans will be drawn up to include potential alternative monitoring locations that could be used for continued operations if equipment and/or communications fail. Off-the shelf products that are readily replaceable are used. The proposed structure will contain PMUs in each zone that should allow continued supervisory actions with the loss of a device. For the controller, redundancy will be planned for to ensure the loss of the controller is suitably backed-up. | Partially<br>Effective |
| 13          | General                        | Maintenance requirements.                                                                                              | Manufacturer recommends intensive and regular<br>maintenance activities that do not fit with project<br>owner's expectations.                                                                                                         | Regular intensive maintenance<br>requires additional resource of field<br>staff. This could affect the network<br>operation, reducing power transfer<br>levels and constraint costs.                                                       | National Grid                               | 3                   | 3                              | 3                                 | 9   | Project Manager  | Seek to work with the manufacturers to understand maintenance<br>requirements and the impact on the design or selection of components.<br>Remote VPN access to controller for remote logging and maintenance,<br>especially for beta release stages.                                                                                                                                                                                                                                        | Partially<br>Effective |
| 14          | General                        | Loss of telecommunications.                                                                                            | Technical fault leads to loss of telecommunications between systems.                                                                                                                                                                  | Reduced availability and performance.                                                                                                                                                                                                      | National Grid                               | 3                   | 3                              | 4                                 | 12  | Project Manager  | Design scheme for continued operation or graceful degradation if<br>telecommunications are lost.                                                                                                                                                                                                                                                                                                                                                                                            | Partially<br>Effective |
| 15          | General                        | Inefficient operation of MCS.                                                                                          | MCS incorrectly configured, resulting in spurious<br>tripping or excessive amounts of control initiation<br>commands.                                                                                                                 | Over-response from resources<br>reducing stability; excessive<br>set-point changes in generators<br>reducing asset lifetime.                                                                                                               | National Grid                               | 3                   | 3                              | 5                                 | 15  | Project Manager  | The scheme will be extensively tested in a laboratory environment before<br>it's used on the network. The system will also be evaluated using<br>recorded measurements from the GB systems allowing tuning and<br>configuration in a safe environment. Academic partners will also provide<br>suitable facilities to test response on generators to reduce risk to assets<br>after deployment.                                                                                              | Partially<br>Effective |
| 16          | General                        | High operation and maintenance costs.                                                                                  | Cost for inspection, maintenance, repairs, spares, etc. are higher than expected.                                                                                                                                                     | Excessive OPEX costs compared to<br>current alternatives.                                                                                                                                                                                  | National Grid                               | 4                   | 3                              | 3                                 | 12  | Project Manager  | Financial impact of 3 defined in original business case.<br>Maintenance requirements and spares etc. identified during tender<br>evaluation.<br>Further work to be carried out to fully determine OPEX requirements.                                                                                                                                                                                                                                                                        | Partially<br>Effective |
| 17          | General                        | Delays in installing key control scheme components.                                                                    | Supplier of TO/TSO delays base installation. Delays in<br>implementing control scheme platforms and comms<br>routes to PMUs/controllers/controllable resources.<br>Co-ordination of National Grid and supplier staff<br>availability. | Delays in key control scheme<br>component will push back the trial,<br>leaving less time for reports, tuning<br>and dissemination.                                                                                                         | National Grid                               | 4                   | 2                              | 3                                 | 12  | Project Manager  | Select vendor with track record of commercial WAMs installations.<br>Supplier must have experience of deploying in utility environment. Direct<br>support by supplier via VPN for diagnosis. Comprehensive training by<br>supplier for IT personnel in all three partners in IT requirements of WAMs<br>project.                                                                                                                                                                            | Partially<br>Effective |
| 18          | General                        | Communications between devices<br>underperforms.                                                                       | Communication infrastructure is not fit for purpose.                                                                                                                                                                                  | The existing communication<br>infrastructure may inhibit the speed<br>of response of a control, reducing<br>scheme effectiveness.                                                                                                          | National Grid                               | 4                   | 5                              | 4                                 | 20  | Project Manager  | Work closely with National Grid and partners to ensure that new comms<br>links not critical to project success. Ensure that the communications<br>infrastructure is well understood and the chosen control scheme can best<br>work with available infrastructure.                                                                                                                                                                                                                           | Partially<br>Effective |
| 19          | General                        | Outage required for commissioning.                                                                                     | Inability to obtain the relevant outages for<br>commissioning.                                                                                                                                                                        | Possible delays to commissioning programme or cost of outage.                                                                                                                                                                              | National Grid                               | 5                   | 1                              | 3                                 | 15  | Project Manager  | Outages identified and incorporated in scheme requirement document.                                                                                                                                                                                                                                                                                                                                                                                                                         | Partially<br>Effective |
| 20          | General                        | Commissioning procedures encounter<br>problems.                                                                        | Commissioning procedures are unclear or untested, being difficult to complete in practice.                                                                                                                                            | Delays in commissioning the project.                                                                                                                                                                                                       | National Grid                               | 4                   | 3                              | 3                                 | 12  | Project Manager  | Identify and agree all the commissioning procedures with the supplier for<br>the new technology, and the problems that might be encountered.                                                                                                                                                                                                                                                                                                                                                | Partially<br>Effective |
| 21          | General                        | Capital costs.                                                                                                         | Costs higher than anticipated.                                                                                                                                                                                                        | Project budget exceeded.                                                                                                                                                                                                                   | National Grid                               | 3                   | 3                              | 3                                 | 9   | Project Manager  | Proactively managing the finance budget to ensure that it stays within<br>original project budget.                                                                                                                                                                                                                                                                                                                                                                                          | Partially<br>Effective |
| 22          | Health, Safety & Environmental | Use of new equipment causes a safety incident.                                                                         | Lack of experience and knowledge about new pieces of equipment.                                                                                                                                                                       | Health and safety risks caused by<br>lack of experience. Inefficient<br>working could result. Note that<br>controller is low-voltage equipment,<br>and actions are taken through<br>existing standard protection and<br>control equipment. | Project<br>Manager                          | 2                   | 1                              | 4                                 | 8   | Steering Group   | Specialist tools and training required for maintenance activity. Procedures to be developed and reviewed by all partners SHES consultants. Controller to go through rigorous testing.                                                                                                                                                                                                                                                                                                       | Partially<br>Effective |

Appendix C: Project risk register, risk management and contingency plans cont.

| Risk<br>no. | Work streams /<br>area  | Risk description                                                                          | Cause                                                                                                                                                                                                                                                           | Consequence                                                                                          | Risk owner | Likelihood<br>(1-5) | Financial<br>impact<br>(1 - 5) | Reputational<br>impact<br>(1 - 5) | RAG | Escalation route | Action plan                                                                                                              |
|-------------|-------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------|---------------------|--------------------------------|-----------------------------------|-----|------------------|--------------------------------------------------------------------------------------------------------------------------|
| 23          | WP1 - Control<br>System | Technology partner fails to deliver suitable product on time.                             | Problems with design and build.                                                                                                                                                                                                                                 | Project is delayed.                                                                                  | GE         | 1                   | 2                              | 2                                 | 2   | Project Manager  | Contracts to be p<br>requirements in p<br>to identify and re                                                             |
|             |                         |                                                                                           |                                                                                                                                                                                                                                                                 |                                                                                                      |            |                     |                                |                                   |     |                  | Hardware platfor<br>commercially av<br>suitability compl<br>secured during p<br>collaboration fra<br>established/put     |
|             |                         |                                                                                           |                                                                                                                                                                                                                                                                 |                                                                                                      |            |                     |                                |                                   |     |                  | Product conside<br>Modbus and Dig                                                                                        |
|             |                         |                                                                                           |                                                                                                                                                                                                                                                                 |                                                                                                      |            |                     |                                |                                   |     |                  | Suitability for 4-2                                                                                                      |
|             |                         |                                                                                           |                                                                                                                                                                                                                                                                 |                                                                                                      |            |                     |                                |                                   |     |                  | GE demonstration<br>during Training a<br>at the University                                                               |
| 24          | WP1 - Control<br>System | Technical specification is not clear enough to deliver the technology or contains errors. | Requirements not fully understood. Quality control<br>processes insufficient.                                                                                                                                                                                   | The technology developed may not match requirements or be suitable.                                  | GE         | 2                   | 2                              | 2                                 | 4   | Project Manager  | Care to be taken partners. Review and other partne                                                                       |
|             |                         |                                                                                           |                                                                                                                                                                                                                                                                 |                                                                                                      |            |                     |                                |                                   |     |                  | Specifications Ev<br>review. Review c                                                                                    |
|             |                         |                                                                                           |                                                                                                                                                                                                                                                                 |                                                                                                      |            |                     |                                |                                   |     |                  | Resource allocat<br>specification and                                                                                    |
|             |                         |                                                                                           |                                                                                                                                                                                                                                                                 |                                                                                                      |            |                     |                                |                                   |     |                  | Presentations co<br>face-to-face Stee                                                                                    |
|             |                         |                                                                                           |                                                                                                                                                                                                                                                                 |                                                                                                      |            |                     |                                |                                   |     |                  | Dedicated works                                                                                                          |
|             |                         |                                                                                           |                                                                                                                                                                                                                                                                 |                                                                                                      |            |                     |                                |                                   |     |                  | GE demonstratio<br>during Training ar<br>at the University of                                                            |
| 25          | WP1 - Control<br>System | Flexible embedded real-time controller not commercially available.                        | A controller with the flexibility to employ the required algorithm is not currently available and will require                                                                                                                                                  | Delays in sourcing suitable<br>resources may extend the<br>development period and delay              | GE         | 1                   | 1                              | 2                                 | 2   | Project Manager  | Source suitable of start in good time                                                                                    |
|             |                         |                                                                                           | significant development. Resources must be in place for a timely start to the platform development.                                                                                                                                                             | deployment and trials.                                                                               |            |                     |                                |                                   |     |                  | Two embedded s<br>since January 20                                                                                       |
|             |                         |                                                                                           |                                                                                                                                                                                                                                                                 |                                                                                                      |            |                     |                                |                                   |     |                  | Hardware platfor<br>The project team<br>purposes.                                                                        |
|             |                         |                                                                                           |                                                                                                                                                                                                                                                                 |                                                                                                      |            |                     |                                |                                   |     |                  | Bi-weekly meetin<br>TPSA boards, BS<br>Tasks, deliverable                                                                |
|             |                         |                                                                                           |                                                                                                                                                                                                                                                                 |                                                                                                      |            |                     |                                |                                   |     |                  | 4-20mA currently                                                                                                         |
|             |                         |                                                                                           |                                                                                                                                                                                                                                                                 |                                                                                                      |            |                     |                                |                                   |     |                  | Digital capabilities digitals available.                                                                                 |
|             |                         |                                                                                           |                                                                                                                                                                                                                                                                 |                                                                                                      |            |                     |                                |                                   |     |                  | Proposal to imple<br>discuss option pr<br>interfaces.                                                                    |
|             |                         |                                                                                           |                                                                                                                                                                                                                                                                 |                                                                                                      |            |                     |                                |                                   |     |                  | GE demonstratio<br>during Training ar<br>the University of I                                                             |
| 26          | WP1 - Control<br>System | Event detection and response algorithms not available on embedded real-time controller.   | The controller will use custom functions that are not<br>currently available on the embedded control platform<br>to determine the appropriate reaction. These<br>functions must be developed and tested before<br>deployment. New control approaches need to be | Extension required for the development period, which delays all consecutive elements of the project. | GE         | 2                   | 1                              | 2                                 | 4   | Project Manager  | Staged approach<br>year. Allow suffici<br>there's enough e<br>also allow for reso<br>early testing.                      |
|             |                         |                                                                                           | developed.                                                                                                                                                                                                                                                      |                                                                                                      |            |                     |                                |                                   |     |                  | The project has a<br>for phasor data c<br>event detection.<br>architecture, deve<br>and allows for an<br>updates and con |
|             |                         |                                                                                           |                                                                                                                                                                                                                                                                 |                                                                                                      |            |                     |                                |                                   |     |                  | Event detection a<br>and demonstrate<br>commercial partr<br>Control Platform<br>project, i.e. demo                       |

|                                                                                                                                                                                                                                                                                                                                 | Control opinion        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| e put in place to penalise delays. Clear specification<br>in place. Development of technology to be closely managed<br>resolve potential problems.                                                                                                                                                                              | Effective              |
| form delivered by GE unit in Massy/France. Product<br>available by summer 2015. Assessment of technical<br>pleted with positive result. GE management support<br>g project approval and project review meetings. A formal<br>ramework with GE internal supplier currently being<br>ut in place.                                 |                        |
| dered suitable for C37.118, IEC 61850, IEC 60780-5-104,<br>Digitals (up to six digitals).                                                                                                                                                                                                                                       |                        |
| 1-20mA and Digital captured separately in Risk Register.                                                                                                                                                                                                                                                                        |                        |
| ations of hardware functionality successful demonstrated<br>g and Demonstration #1 FAT (Oct 2016) and demonstrations<br>ty of Manchester, PNDC and Belectric (Feb-Mar 2017).                                                                                                                                                    |                        |
| en over technical specification, with input from all relevant<br>ew process in place and then regular communication with GE<br>ners to identify and resolve issues quickly.                                                                                                                                                     | Effective              |
| Event Detection and Control Platform were issued for partner<br>comments assessed/discussed during project meetings.                                                                                                                                                                                                            |                        |
| cation and optimisation split into two parts, i.e. functional nd design report. Formal QA with project partners done.                                                                                                                                                                                                           |                        |
| concepts Event Detection and Resource Allocation during teering Committee meeting.                                                                                                                                                                                                                                              |                        |
| kshops for optimisation with NG and UoM.                                                                                                                                                                                                                                                                                        |                        |
| tions of application functionality successfully demonstrated<br>and Demonstration #1 FAT (Oct 2016) and demonstrations<br>by of Manchester, PNDC and Belectric (Feb-Mar 2017).                                                                                                                                                  |                        |
| e development resources before project begins so it can me.                                                                                                                                                                                                                                                                     | Partially<br>Effective |
| d software developers have been working on the project 2015.                                                                                                                                                                                                                                                                    |                        |
| form commercially available from summer 2015 onwards.<br>am has two units available for development and test                                                                                                                                                                                                                    |                        |
| tings with TPSA Massy team to ensure timely delivery of new BSP upgrades, knowledge transfer and documentation.<br>bles and issues recorded/tracked in MS Project.                                                                                                                                                              |                        |
| ntly not in TPSA Product Roadmap.                                                                                                                                                                                                                                                                                               |                        |
| ties limited in terms of board hardware setup and number of le.                                                                                                                                                                                                                                                                 |                        |
| plement Modbus to 4-20mA/ digital convertors and to product development TPSA in terms of 4-20mA and digital                                                                                                                                                                                                                     |                        |
| tions of flexible real-time controller functionality successful<br>and Demonstration#1 FAT (Oct 2016) and demonstrations at<br>of Manchester, PNDC and Belectric (Feb-Mar 2017).                                                                                                                                                |                        |
| ach to application development with simple initial target in first<br>ficient resources for all stages of algorithm development so<br>n effort in the project's early stages to avoid delays. This will<br>esources to make any modifications that come out of the                                                              | Effective              |
| s aimed for early/staged end-to-end testing/demonstration<br>a concentrator, regional aggregator, system aggregator and<br>n. This agile approach has validated/confirmed system<br>evelopment strategies and design concepts at early stages<br>any fine-tuning. Project partners receive regular progress<br>onfidence level. |                        |
| n and response algorithms have been successfully tested<br>ated. Applications have been handed over to academic and<br>artners for simulation testing and technology field trials.<br>m and Applications are taken into the next phase of the<br>monstration phase.                                                             |                        |

Appendix C: Project risk register, risk management and contingency plans cont.

| Risk<br>no. | Work streams /<br>area  | Risk description                                                                           | Cause                                                                                                                                                                                                                                                                                                                                                                                                                              | Consequence                                                                                                                                                                                                                         | Risk owner    | Likelihood<br>(1-5) | Financial<br>impact<br>(1 - 5) | Reputational<br>impact<br>(1 - 5) | RAG | Escalation route | Action plan                                                                                                                                                                                                                                                                                                            |
|-------------|-------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------|--------------------------------|-----------------------------------|-----|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 27          | WP1 - Control<br>System | Resource interoperability.                                                                 | Using distributed resources for frequency response is<br>untested in the UK and the availability of resources<br>when called upon is critical. There must exist a<br>sufficient information exchange between the<br>controller and the individual resources so that<br>resources can be called upon in a timely manner.                                                                                                            | Lack of comms path or<br>interoperability issues between the<br>controller and the resources may<br>lead to delayed initiation of response<br>and reduced ability of the central<br>control scheme to halt frequency<br>excursions. | GE            | 2                   | 2                              | 2                                 | 4   | Project Manager  | Agree common<br>components thro<br>by all controllable<br>Plan demonstrat<br>to all response p<br>benefit that cent<br>Need for differer<br>resources.<br>The concepts of<br>highlighted durin<br>Specifications E<br>were issued for p<br>GE will continue<br>requirements an<br>Interface discuss<br>supporting 4-20 |
| 28          | WP1 - Control<br>System | Resource flexibility.                                                                      | Resources do not offer enough flexibility for control<br>under proposed control scheme. They either offer a<br>response that is difficult to quantify or one that is<br>difficult to tune.                                                                                                                                                                                                                                         | May require redesign of the control<br>scheme adding delays to<br>deployment.                                                                                                                                                       | GE            | 3                   | 2                              | 2                                 | 6   | Project Manager  | Collaborate clos<br>control scheme<br>resource types.<br>partners on opti                                                                                                                                                                                                                                              |
| 29          | WP1 - Control<br>System | Control scheme trial outcome.                                                              | Due to the innovative nature of the project, the selected control scheme's trials may yield negative results, or introduce additional problems.                                                                                                                                                                                                                                                                                    | The selected control scheme will be<br>unable to effectively deploy<br>resources to arrest a frequency<br>excursion.                                                                                                                | GE            | 3                   | 2                              | 2                                 | 6   | Project Manager  | The risk is mitiga<br>control, local con<br>problems with o                                                                                                                                                                                                                                                            |
| 30          | WP1 - Control<br>System | Controller scalability for roll-out.                                                       | The controller will be developed for trial locations<br>using a limited number of sites and corresponding<br>PMU measurements. The control platform's<br>performance may be reduced because of more<br>measurement and resource data with larger-scale<br>roll-out. Another risk is exceeding the computational<br>capacity of the controller with complex algorithms<br>and increased inputs, e.g. more resources to<br>optimise. | Timely roll-out of the scheme could<br>be put at risk, delaying full<br>effectiveness of the scheme and<br>putting the learning from the project<br>into action. The risk for this stage of<br>the project is minimal.              | GE            | 3                   | 4                              | 2                                 | 12  | Project Manager  | Laboratory testir<br>more inputs thar<br>control platform<br>limits.<br>One of the learni<br>control system for<br>roll-out.<br>Controller develop<br>platforms – othe<br>performance is r<br>GE will continue<br>throughout the p<br>improvement.                                                                     |
| 31          | WP1 - Control<br>System | Additional testing and tuning.                                                             | The controller may require additional tests and fine<br>tuning based on real system measurements from the<br>UK network to ensure robust operation. Data will<br>need to be gathered over a sufficient period to<br>determine the control scheme performance.                                                                                                                                                                      | The selected control scheme will be<br>unable to effectively deploy<br>resources to arrest a frequency<br>excursion.                                                                                                                | National Grid | 3                   | 3                              | 3                                 | 9   | Project Manager  | Information gath<br>system measure<br>environment to t<br>UK system. This<br>period for sufficie                                                                                                                                                                                                                       |
| 32          | WP1 - Control<br>System | Data quality.                                                                              | Inadequate data quality from PMUs due to problems<br>with communications infrastructure, incompatible<br>PMUs or from existing PMUs where experience has<br>shown poor-quality data.                                                                                                                                                                                                                                               | Controller application value and performance reduced.                                                                                                                                                                               | GE            | 4                   | 1                              | 1                                 | 4   | Project Manager  | Require data pro<br>evidence of acco<br>where possible.<br>Review of data c<br>out.<br>EFCC algorithms<br>issues. Concept<br>introduced to inc<br>quality issues.                                                                                                                                                      |
| 33          | WP1 - Control<br>System | RoCoF trip risk.                                                                           | Controllable resources that arrest frequency<br>excursion may be conflicted by own loss of mains<br>RoCoF settings and trip. Also, risk of fast response<br>rolling off at df/dt=0 when it should be sustained.                                                                                                                                                                                                                    | Loss of effectiveness of resources<br>– unavailable for frequency support<br>or prematurely returned to normal<br>service.                                                                                                          | GE            | 4                   | 1                              | 2                                 | 8   | Project Manager  | For trial purpose<br>detection, but th<br>provide learning<br>co-ordination of<br>response.                                                                                                                                                                                                                            |
| 34          | WP2.1 - DSR             | Flexitricity is unable to provide participants<br>for planned trials.                      | Timing, risk and commercial terms makes it difficult to<br>recruit DSR participants.                                                                                                                                                                                                                                                                                                                                               | Trials are limited or unable to take<br>place. The suitability and<br>performance of the technology is not<br>established.                                                                                                          | Flexitricity  | 1                   | 3                              | 3                                 | 3   | Project Manager  | Participants prov<br>or we can't find                                                                                                                                                                                                                                                                                  |
| 36          | WP2.1 - DSR             | DSR trials prove infeasible.                                                               | Complex technical interaction with existing<br>commercial site processes.                                                                                                                                                                                                                                                                                                                                                          | Ability of DSR to deliver EFCC not proven.                                                                                                                                                                                          | Flexitricity  | 3                   | 4                              | 4                                 | 12  | Project Manager  | Pursue three sep<br>inertia, simulated<br>Investigate techr<br>(especially simul                                                                                                                                                                                                                                       |
| 37          | WP2.1 - DSR             | Total delay between detection and action too long for distributed resources including DSR. | Long signalling chain including communicating with remote sites.                                                                                                                                                                                                                                                                                                                                                                   | Cannot dispatch certain resources fast enough.                                                                                                                                                                                      | Flexitricity  | 2                   | 3                              | 3                                 | 6   | Project Manager  | Include at least of compensate for                                                                                                                                                                                                                                                                                     |
| 38          | WP2.1 - DSR             | Cost of DSR too high for large-scale roll-out.                                             | Controls modifications (especially RoCoF and<br>simulated inertia), spark spread (especially real<br>inertia).                                                                                                                                                                                                                                                                                                                     | Project does not result in economic source of EFCC from DSR.                                                                                                                                                                        | Flexitricity  | 3                   | 3                              | 4                                 | 12  | Project Manager  | Pursue three sep<br>inertia, simulated                                                                                                                                                                                                                                                                                 |
|             |                         |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     |               |                     |                                |                                   |     |                  |                                                                                                                                                                                                                                                                                                                        |

|                                                                                                                                                                                                                                                                | Control opinion        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| n standards and offer a simple IO for all controllable<br>hrough standard interface protocols, which will be agreed<br>ble resources.                                                                                                                          | Effective              |
| ration without critical requirement for communication path<br>providers. Evaluate local control and assess the added<br>ntral control brings if made available.                                                                                                |                        |
| ent interface protocols to communicate with distributed                                                                                                                                                                                                        |                        |
| of Local Control Units and Central Supervisor were<br>ring project partner meeting 30 April.<br>Event Detection, Control Platform and Resource Allocation                                                                                                      |                        |
| r partner review and comments were addressed.<br>Je engagement with project partners to discuss                                                                                                                                                                |                        |
| and concepts for different WP1 Applications.<br>Issions with project partners continue. Interfaces<br>20mA and digital addressed separately.                                                                                                                   |                        |
| e is designed according to limits of operation of various<br>s. Especially, collaboration between GE and academic<br>otimisation.                                                                                                                              | Effective              |
| gated by using candidate solutions based on wide-area<br>control and a hybrid approach using both. If there are<br>one candidate solution, other solutions will be available.                                                                                  | Effective              |
| sting will allow scalability testing of the control platform with<br>an will be used in the trials. This will allow the limits of the<br>m to be found and define new ways to overcome these                                                                   | Partially<br>Effective |
| rning outcomes of the project will be how to deploy the<br>for larger roll-out, which will minimise the risk of delayed                                                                                                                                        |                        |
| elopment path enables easy porting between hardware<br>ner hardware solutions will be considered if greater<br>s needed.                                                                                                                                       |                        |
| ue performance testing/monitoring at different stages<br>a project life-cycle and look into areas for further                                                                                                                                                  |                        |
| thered from VISOR can provide an extended period of<br>irrements. This data can be replayed in the laboratory<br>test the control scheme with real measurements from the<br>nis will validate the behaviour and allow a longer capture<br>icient disturbances. | Partially<br>Effective |
| proving proof prior installations. Use PMUs that have<br>exceptable practical performance, and standards compliance<br>e. Applications to be robust to data packet loss.<br>a quality issues and resolution/improvement to be carried                          | Partially<br>Effective |
| ms have been designed/developed to deal with data quality<br>pts such as confidence level and weighting have been<br>nclude additional meta-data and logic to deal with data                                                                                   |                        |
| ses, RoCoF should be low enough to avoid conflicts of LoM<br>the problem will be asessed for future roll-out. Project will<br>g outcome that can inform future grid codes. Also,<br>of control to ensure smooth transitions between stages of                  | Partially<br>Effective |
| rovided for planned trials. Residual risk is that sites withdraw d companies to sign-up for the dynamic RoCoF trials.                                                                                                                                          | Effective              |
| eparate technical approaches to spread risk (RoCoF, real ed inertia).                                                                                                                                                                                          | Partially<br>Effective |
| hnical feasibility for higher risk technical approaches<br>Iulated inertia) prior to trials.                                                                                                                                                                   |                        |
| t one fast-acting technical approach (RoCoF) for DSR, to<br>or other possible signalling delays.                                                                                                                                                               | Partially<br>Effective |
| eparate technical approaches to spread risk (RoCoF, real<br>ed inertia).                                                                                                                                                                                       | Partially<br>Effective |

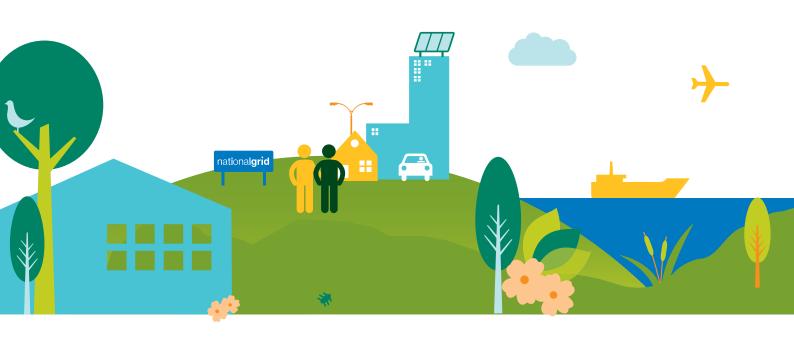
Appendix C: Project risk register, risk management and contingency plans cont.

|             |                                      |                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                              |                    |                     | -                              |                                   |     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |
|-------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|--------------------------------|-----------------------------------|-----|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Risk<br>no. | Work streams /<br>area               | Risk description                                                                                                                                     | Cause                                                                                                                                                                                                                                                                                                                                                                                                                            | Consequence                                                                                                                                                                                                                                    | Risk owner         | Likelihood<br>(1-5) | Financial<br>impact<br>(1 - 5) | Reputational<br>impact<br>(1 - 5) | RAG | Escalation route | Action plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Control<br>opinion     |
| 39          | WP2.1 - DSR                          | DSR deployment lead time too long.                                                                                                                   | Normal delays in dealing with industrial and commercial energy users.                                                                                                                                                                                                                                                                                                                                                            | Unable to operate long enough trial;<br>some customers are ready too late<br>for trial.                                                                                                                                                        | Flexitricity       | 3                   | 3                              | 3                                 | 9   | Project Manager  | Start EP recruitment during phase 1; show flexibility on trial dates and durations.                                                                                                                                                                                                                                                                                                                                                                                                     | Partially<br>Effective |
| 40          | WP2.2<br>- Large-Scale<br>Generation | CCGT operators struggle to get relevant technical input from OEM.                                                                                    | Lack of communication or timely response from OEM.                                                                                                                                                                                                                                                                                                                                                                               | The project is delayed.                                                                                                                                                                                                                        | Centrica           | 1                   | 2                              | 2                                 | 2   | Project Manager  | Draw up "heads of terms" with OEM. Pay OEM (from funding) for relevant technical input.                                                                                                                                                                                                                                                                                                                                                                                                 | Partially<br>Effective |
| 41          | WP2.3 - PV<br>Power Plant            | Bad weather (low irradiation).                                                                                                                       | Poor weather conditions will mean that trials cannot take place.                                                                                                                                                                                                                                                                                                                                                                 | Insufficient test conditions will lead to delays in testing.                                                                                                                                                                                   | Belectric          | 3                   | 2                              | 2                                 | 6   | Project Manager  | Plan tests accordingly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Partially<br>Effective |
| 44          | WP3 -<br>Optimisation                | Detailed models of the various technology<br>types are not made available to academic<br>partners for system studies.                                | Poor communication and project management.<br>Possible restrictions on data.                                                                                                                                                                                                                                                                                                                                                     | Without detailed technology models,<br>any optimised control scheme will be<br>based on generic assumptions about<br>technology capabilities, which may not<br>be accurate. This means that true and<br>simulated performances will not align. | Universities       | 3                   | 2                              | 3                                 | 9   | Project Manager  | Detailed models of Doubly Fed Induction Generator (DFIG) and<br>Combined Cycle Gas Turbine (CCGT) are developed in PowerFactory for<br>system studies and other service providers modelling are on-going.                                                                                                                                                                                                                                                                               | Partially<br>Effective |
| 45          | WP4 - Validation                     | Unable to model the UK network with<br>sufficient detail using the RTDS facilities in<br>order to thoroughly validate proposed control<br>solutions. | Lack of required data. Lack of expertise on project.                                                                                                                                                                                                                                                                                                                                                                             | Wide scale roll-out may be severely<br>impacted by issues not flagged<br>during the validation phase.                                                                                                                                          | Universities       | 2                   | 3                              | 3                                 | 6   | Project Manager  | Reduced substation model of 36-zone GB system has been simulated<br>and modelled in RTDS. The required data are extracted from<br>PowerFactory model and then RTDS model has been built.                                                                                                                                                                                                                                                                                                | Partially<br>Effective |
| 46          | WP5 -<br>Dissemination               | Knowledge gained from the project is not<br>shared properly with industry and other<br>interested parties.                                           | Lack of resources dedicated to dissemination. Failure to deliver events, website, etc.                                                                                                                                                                                                                                                                                                                                           | A major benefit of, and reason for,<br>the project is lost. Performance of<br>solution and lessons learned are not<br>shared.                                                                                                                  | Project<br>Manager | 1                   | 3                              | 5                                 | 5   | Steering Group   | Ensure knowledge sharing is a priority of project. Establish formal<br>processes to disseminate results, reports, etc. Use working group,<br>internet, academic partners to facilitate sharing.                                                                                                                                                                                                                                                                                         | Partially<br>Effective |
| 47          | WP6 -<br>Commercial                  | Market for EFCC not taken up by possible resource providers.                                                                                         | Knowledge not disseminated, meaning providers<br>unable to prepare. Commercial arrangements not<br>attractive.                                                                                                                                                                                                                                                                                                                   | The successful roll-out of the solution will be delayed.                                                                                                                                                                                       | Project<br>Manager | 4                   | 4                              | 4                                 | 16  | Steering Group   | Ensure that knowledge is shared. Establish clear communication<br>channels with interested parties. Develop commercial terms thoroughly<br>before roll-out.                                                                                                                                                                                                                                                                                                                             | Partially<br>Effective |
| 48          | WP1 - Control<br>System              | Demonstration partner fails to install and<br>configure demonstration set-up on time for<br>SAT.                                                     | Challenges with installation and configuration or lack of understanding/training.                                                                                                                                                                                                                                                                                                                                                | Demonstration is delayed, which is likely to affect other activities.                                                                                                                                                                          | GE                 | 3                   | 1                              | 1                                 | 3   | Project Manager  | GE will provide PMU/MCS training during Demonstration #1 timeframe<br>(combined with FAT). GE support effort during installation has been<br>quantified for the different demonstration phases. Scope of works,<br>functional design specification and system design specification will be<br>produced as input to partner installation activities.<br>Demonstration #1 has been successfully completed;<br>Deployments at UOM, PNDC and Belectric have been completed<br>successfully. | Effective              |
| 49          | WP1 - Control<br>System              | PMU/MCS hardware delivery.                                                                                                                           | Late delivery of PMUs and/or MCS controllers.                                                                                                                                                                                                                                                                                                                                                                                    | Demonstration is delayed, which is likely to affect other activities.                                                                                                                                                                          | GE                 | 2                   | 1                              | 1                                 | 2   | Project Manager  | Engage early with suppliers and project stakeholders to make sure<br>delivery and installation are on schedule.<br>PMU hardware delivered to site.<br>Controller hardware available for configuration in Edinburgh.<br>Hardware delivered to UoM, PNDC and Belectric sites.                                                                                                                                                                                                             | Partially<br>Effective |
| 50          | WP1 - Control<br>System              | The number of interface protocols impacts the development and testing effort.                                                                        | Project partners decide on multiple interfaces and/or<br>different messaging protocols.                                                                                                                                                                                                                                                                                                                                          | Extra design, development and testing effort required, which would affect project delivery timelines.                                                                                                                                          | GE                 | 2                   | 1                              | 2                                 | 4   | Project Manager  | Interfaces developed and tested. Development and testing has been<br>impacted due to extra scope and complexity. Milestone Testing Control<br>Platform missed. Interim report issued and control platform testing<br>extended by one month. Final report issued to project partners end of<br>Sept 2016. Overall timelines respected and Demonstration Phase is as<br>planned.                                                                                                          | Effective              |
| 55          | WP1 - Control<br>System              | Number of PhasorController applications.                                                                                                             | Concept design frequency control has identified<br>potential for the following controller applications:<br>- local PhasorController for system aggregation, fault<br>detection, event detection and resource allocation.<br>- regional controller for regional aggregation and fault<br>detection.<br>- central PhasorController for management and<br>distribution of configuration data (settings, thresholds,<br>parameters). | Depending on the demonstration<br>schemes envisioned, more<br>hardware might be needed. Extra<br>effort might be required to develop,<br>configure and test the extra<br>controller units.                                                     | GE                 | 3                   | 2                              | 2                                 | 6   | Project Manager  | Number of applications and control platform capabilities have been<br>defined and verified. Demonstration #1 has proven working concept.<br>Successful SATs at UoM, PNDC and Belectric. Academic testing<br>ongoing.                                                                                                                                                                                                                                                                    | Effective              |
| 56          | WP2.5 - Wind                         | EFCC project needs to agree with DONG<br>and Siemens and associated Joint Venture<br>partners for the use of wind farm.                              | Delay in agreeing use of wind farm.                                                                                                                                                                                                                                                                                                                                                                                              | Delays to work package and overall<br>project outcomes.                                                                                                                                                                                        | National Grid      | 4                   | 5                              | 5                                 | 20  | Project Manager  | Agree schedule of tests and activities early in the negotiation process and<br>start contractual discussions in parallel.<br>Contractual discussions taking place and approaching completion.                                                                                                                                                                                                                                                                                           | Partially<br>Effective |
| 58          | WP1 - Control<br>System              | 4-20mA interface.                                                                                                                                    | 4-20mA currently not part of TPSA product roadmap due to other priorities.                                                                                                                                                                                                                                                                                                                                                       | Full 4-20mA interface not ready for demonstration testing.                                                                                                                                                                                     | GE                 | 2                   | 3                              | 2                                 | 6   | Project Manager  | Communicate proposal for inclusion of Advantech ADAM 6024 Convertor<br>Modbus to 4-20mA.<br>Successfully tested.                                                                                                                                                                                                                                                                                                                                                                        | Effective              |
| 59          | WP1 - Control<br>System              | Digital interface not ready for testing.                                                                                                             | Capabilities digital interface limited. Alternative<br>hardware solution required if more than six digitals are<br>needed. Product enhancement required within TPSA<br>product roadmap.                                                                                                                                                                                                                                          | Full digital interface not ready for<br>demonstration testing if more than<br>six digitals needed.                                                                                                                                             | GE                 | 2                   | 3                              | 2                                 | 6   | Project Manager  | Communicate proposal for inclusion of Advantech ADAM 6024 Convertor<br>Modbus to Digital for setups requiring more than six digitals.<br>Successfully tested.                                                                                                                                                                                                                                                                                                                           | Effective              |
| 61          | WP2.5 - Wind                         | Revised timeline for wind workpack does not coordinate with the other workpacks.                                                                     | Delays caused by the length of time to sign new partner contracts and unforeseen model data validation issues.                                                                                                                                                                                                                                                                                                                   | Wind test findings not being<br>available in time for meaningful<br>inclusion in the project conclusions<br>and recommendations.                                                                                                               | Project<br>Manager | 4                   | 3                              | 4                                 | 16  | Steering Group   | Work with partners to identify and resolve contractual issues and escalate any modelling issues.                                                                                                                                                                                                                                                                                                                                                                                        | Partially<br>Effective |
| 62          | WP3 -<br>Optimisation                | Revised timeline for University of Manchester affects work deliverables of the project.                                                              | University of Manchester deliverables slipping due to<br>delays in project recruitment and acquiring the<br>appropriate tools for the systems studies.                                                                                                                                                                                                                                                                           | Timeline for work deliverables compromised.                                                                                                                                                                                                    | Project<br>Manager | 4                   | 3                              | 4                                 | 16  | Steering Group   | Revised project timeline agreed with University of Manchester, with associated project dependencies identified and managed.                                                                                                                                                                                                                                                                                                                                                             | Partially<br>Effective |

Appendix C: Project risk register, risk management and contingency plans cont.

| Risk<br>no. | Work streams /<br>area               | Risk description                                                  | Cause                                                                                                 | Consequence                                                                         | Risk owner                  | Likelihood<br>(1-5) | Financial<br>impact<br>(1 - 5) | Reputational<br>impact<br>(1 - 5) | RAG | Escalation route | Action plan                                                                                                                                                                                            | Control opinion        |
|-------------|--------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------|---------------------|--------------------------------|-----------------------------------|-----|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 63          | General                              | General back-loading of deliverables in the project.              | Slippage against baseline for deliverables.                                                           | Compromising scope and quality of deliverables.                                     | Project<br>Manager          | 5                   | 4                              | 5                                 | 25  | Steering Group   | NGET and partners monthly have review of planned deliverables,<br>identifying any issues with delivery, investigating alternatives and<br>escalating to Steering Group.                                | Partially<br>Effective |
| 64          | General                              | Handoffs between partners are delayed.                            | Handoffs are not clear in the plan or not proactively managed to ensure the planned timeline is kept. | Delays compromising other work deliverables.                                        | Project<br>Manager          | 5                   | 3                              | 3                                 | 15  | Steering Group   | Dependency management planning included as standing agenda item at<br>Steering Group meetings, where handoffs, with dates, are confirmed or<br>delivery issues are discussed and solutions identified. | Partially<br>Effective |
| 65          | WP4 - Validation                     | System testing is delayed.                                        | Additional trial equipment requirements identified, which are not immediately available.              | Delay in testing phase, knocking on<br>to delaying the general project<br>timeline. | University of<br>Manchester | 3                   | 3                              | 3                                 | 9   | Steering Group   | Additional trial equipment (such as GPS grandmaster clock and managed<br>ethernet switch) are delivered with three months' delay.                                                                      | Partially<br>Effective |
| 66          | WP2 - All                            | Test programme and schedule not clearly defined.                  | Test programme format not clearly defined, impacting scheduling of commercial trials.                 | Delays in test plan starting and quality of test outputs.                           | Project<br>Manager          | 5                   | 3                              | 4                                 | 20  | Steering Group   | Escalation to Steering Group for discussion and resolution.<br>UoM are developing test template.                                                                                                       | Partially<br>Effective |
| 67          | WP2.2<br>- Large-Scale<br>Generation | Trial timeline delayed due to potentially volatile market prices. | Recent high market prices creates reluctance to carry out non-essential work on plant.                | Centrica delays testing programme.                                                  | Centrica                    | 1                   | 3                              | 3                                 | 3   | Project Manager  | Centrica mitigation is that work is low risk and may be delayed a week or<br>two if prices are exceptionally high at the time of planned works.                                                        | Effective              |
| 68          | WP7 - Comms                          | Delay in delivering the workpack.                                 | Understanding the nature of the WP deliverables and<br>unable to access specialist resourcing skills. | Work package is not delivered on<br>time, undermining success of<br>project.        | Project<br>Manager          | 5                   | 3                              | 4                                 | 20  | Steering Group   | Recruit specialist resource and draw upon existing expertise within NGET.                                                                                                                              | Partially<br>Effective |
| 69          | WP6 -<br>Commercial                  | Delay in delivering the commercial workpack.                      | Understanding the nature of the WP deliverables and<br>unable to access specialist resourcing skills. | Work package is not delivered on time, undermining success of project.              | Project<br>Manager          | 5                   | 3                              | 4                                 | 20  | Steering Group   | Recruit specialist resource and draw upon existing expertise within NGET.                                                                                                                              | Partially<br>Effective |

#### **Closed risks**


| 8  | General                 | Technology cannot be easily upgraded.                                                                      | Monitoring and control technology and/or response<br>equipment is designed without full consideration for<br>future developments.                                                                                                                                                                                                                                                                                                | Technology is less useful in the<br>future as the electricity system<br>continues to develop. Required<br>upgrades are costly or impossible.                                       | GE                             | 4 | 2 | 3 | 12 | Project Manager | Future requirements considered and built into specification. Flexibility has been built in. Scheme updates can be facilitated through library updates.                                                                                                                                                                                                                                                                                            | Effective |
|----|-------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---|---|---|----|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 10 | General                 | Academic service providers can't recruit appropriate staff to work on the project.                         | Lack of suitable candidates or interest in the project.                                                                                                                                                                                                                                                                                                                                                                          | Trials are limited or can't take place.<br>The suitability and performance of<br>the technology is not established.                                                                | Academic<br>Project<br>Manager | 1 | 1 | 1 | 1  | Project Manager | Academics have a large internal candidate-base of experienced<br>post-doctoral research assistants. Reputation and facilities of partners will<br>attract high-calibre candidates. Process for advertising for suitable<br>candidates is progressing. A PhD student has been assigned for UoM.<br>The RA started in January. Student already recruited for UoS.<br>Closed 16 May as recruitment has taken place and staff are in situ.            | Effective |
| 35 | WP2.1 - DSR             | DSR recruitment: industrial and commercial electricity customers unwilling to participate.                 | I&C energy managers' workloads, comprehension of<br>the proposition, duration of trials, uncertainty of<br>long-term commercial service, opportunity cost.                                                                                                                                                                                                                                                                       | Not proved that DSR can deliver EFCC.                                                                                                                                              | Flexitricity                   | 4 | 2 | 4 | 16 | Project Manager | Use Flexitricity's extensive existing customer base and contracting process for recruitment. Risk closed. Merged with risk 34.                                                                                                                                                                                                                                                                                                                    | Effective |
| 42 | WP2.4 - Storage         | Local problems delay installation and commissioning.                                                       | Issues around grid connection and accessibility cause delays.                                                                                                                                                                                                                                                                                                                                                                    | The project is delayed.                                                                                                                                                            | Belectric                      | 3 | 2 | 3 | 9  | Project Manager | Careful and detailed up-front planning; project plan not too tight.<br>Closed as workpack 2.4 is descoped.                                                                                                                                                                                                                                                                                                                                        | Effective |
| 51 | WP2.4 - Storage         | Ofgem needing to accept storage in Smarter<br>Frequency Control.                                           | Insufficient argumentation in front of Ofgem.                                                                                                                                                                                                                                                                                                                                                                                    | Storage combined with PV not part of Smart Frequency Control.                                                                                                                      | NG/Belectric                   | 2 | 3 | 3 | 6  | Project Manager | Prepare justification for battery storage to Ofgem.<br>Closed as workpack 2.4 is descoped.                                                                                                                                                                                                                                                                                                                                                        | Effective |
| 52 | WP2.5 - Wind            | EFCC project needs to agree with all Joint<br>Venture partners for use of Lincs, Lynn or<br>Inner Dowsing. | Delay in agreeing use of wind farm.                                                                                                                                                                                                                                                                                                                                                                                              | Delays to project                                                                                                                                                                  | Project<br>Manager             | 1 | 1 | 1 | 1  | Steering Group  | Communication taking place with Dong and Siemens.<br>Risk closed. Merged with risk 56.                                                                                                                                                                                                                                                                                                                                                            | Effective |
| 57 | WP1 - Control<br>System | Number of PhasorController applications.                                                                   | Concept design frequency control has identified<br>potential for the following controller applications:<br>- local PhasorController for system aggregation, fault<br>detection, event detection and resource allocation.<br>- regional controller for regional aggregation and fault<br>detection.<br>- central PhasorController for management and<br>distribution of configuration data (settings, thresholds,<br>parameters). | Depending on the demonstration<br>schemes envisioned, more<br>hardware may be needed. Extra<br>effort may be required to develop,<br>configure and test extra controller<br>units. | GE                             | 3 | 2 | 2 | 6  | Project Manager | GE will further develop controller concepts and schemes. GE will work<br>with project partners to establish suitable demonstration set-ups. Impact<br>assessment will be conducted to assess potential extra requirements in<br>terms of hardware and/or effort. Project partners to confirm/justify<br>number of controllers with National Grid. GE to plan procurement<br>internally.<br>Closed. Partners have confirmed number of controllers. | Effective |

# Enhanced Frequency Control Capability (EFCC) Progress report: January to June 2017 Page 26

# nationalgrid

National Grid National Grid House Warwick Technology Park Gallows Hill Warwick CV34 6DA

www.nationalgrid.com

