Contents page for legal text changes for CMP265

WACM	Pages
Original	2-64
WACM 1	65-127
WACM 2	128 – 190
WACM 3	191 – 253
WACM 4	254 – 316
WACM 5	317 – 379
WACM 6	380 - 442
WACM 7	443 – 505
WACM 8	506 – 568
WACM 9	569 – 631
WACM 10	632 – 694
WACM 11	695 – 757
WACM 12	758 – 821
WACM 13	822 – 885
WACM 14	886 – 949
WACM 15	950 – 1013
WACM 16	1014 – 1077
WACM 17	1078 - 1141
WACM 18	1142 – 1205

Contents page for legal text changes for CMP265

WACM	Pages
Original	2-64
WACM 1	65-127
WACM 2	128 – 190
WACM 3	191 – 253
WACM 4	254 – 316
WACM 5	317 – 379
WACM 6	380 - 442
WACM 7	443 – 505
WACM 8	506 – 568
WACM 9	569 – 631
WACM 10	632 – 694
WACM 11	695 – 757
WACM 12	758 – 821
WACM 13	822 – 885
WACM 14	886 – 949
WACM 15	950 – 1013
WACM 16	1014 – 1077
WACM 17	1078 - 1141
WACM 18	1142 – 1205

CMP265 Original

14.15 Derivation of the Transmission Network Use of System Tariff

- 14.15.1 The Transmission Network Use of System (TNUoS) Tariff comprises two separate elements. Firstly, a locationally varying element derived from the DCLF ICRP transport model to reflect the costs of capital investment in, and the maintenance and operation of, a transmission system to provide bulk transport of power to and from different locations. Secondly, a non-locationally varying element related to the provision of residual revenue recovery. The combination of both these elements forms the TNUoS tariff.
- 14.15.2 For generation TNUoS tariffs the locational element itself is comprised of five separate components. Three wider components
 - o Wider Peak Security Component
 - Wider Year Round Not-shared component
 - o Wider Year Round component

These components reflect the costs of the wider network under the different generation backgrounds set out in the Demand Security Criterion (for Peak Security component) and Economy Criterion (for both Year Round components) of the Security Standard. The two Year Round components reflect the unshared and shared costs of the wider network based on the diversity of generation plant types.

Two local components -

- o Local substation, and
- Local circuit

These components reflect the costs of the local network.

Accordingly, the wider tariff represents the combined effect of the three wider locational tariff components and the residual element; and the local tariff represents the combination of the two local locational tariff components.

14.15.3 The process for calculating the TNUoS tariff is described below.

The Transport Model

Model Inputs

14.15.4 The DCLF ICRP transport model calculates the marginal costs of investment in the transmission system which would be required as a consequence of an increase in demand or generation at each connection point or node on the transmission system, based on a study of peak demand conditions using both Peak Security and Year Round generation backgrounds on the transmission system. One measure of the investment costs is in terms of MWkm. This is the concept that ICRP uses to calculate marginal costs of investment. Hence, marginal costs are estimated initially in terms of increases or decreases in units of kilometres (km) of the transmission system for a 1 MW injection to the system.

- 14.15.5 The transport model requires a set of inputs representative of the Demand Security and Economy Criterion set out in the Security Standards. These conditions on the transmission system are represented in the Peak Security and Year Round background respectively as follows:
- Nodal generation information per node (TEC, plant type and SQSS scaling factors)
- Nodal <u>net</u> demand information
- Transmission circuits between these nodes
- The associated lengths of these routes, the proportion of which is overhead line or cable and the respective voltage level
- The cost ratio of each of 132kV overhead line, 132kV underground cable, 275kV overhead line, 275kV underground cable and 400kV underground cable to 400kV overhead line to give circuit expansion factors
- The cost ratio of each separate sub-sea AC circuit and HVDC circuit to 400kV overhead line to give circuit expansion factors
- 132kV overhead circuit capacity and single/double route construction information is used in the calculation of a generator's local charge.
- Offshore transmission cost and circuit/substation data
- 14.15.6 For a given charging year "t", the nodal generation TEC figure and generation plant types at each node will be based on the Applicable Value for year "t" in the NETS Seven Year Statement in year "t-1" plus updates to the October of year "t-1". The contracted TECs and generation plant types in the NETS Seven Year Statement include all plant belonging to generators who have a Bilateral Agreement with the TOs. For example, for 2010/11 charges, the nodal generation data is based on the forecast for 2010/11 in the 2009 NETS Seven Year Statement plus any data included in the quarterly updates in October 2009.
- 14.15.7 Scaling factors for different generation plant types are applied on their aggregated capacity for both Peak Security and Year Round backgrounds. The scaling is either Fixed or Variable (depending on the total demand level) in line with the factors used in the Security Standard, for example as shown in the table below.

Generation Plant Type	Peak Security Background	Year Round Background
Intermittent	Fixed (0%)	Fixed (70%)
Nuclear & CCS	Variable	Fixed (85%)
Interconnectors	Fixed (0%)	Fixed (100%)
Hydro	Variable	Variable
Pumped Storage	Variable	Fixed (50%)
Peaking	Variable	Fixed (0%)
Other (Conventional)	Variable	Variable

These scaling factors and generation plant types are set out in the Security Standard. These may be reviewed from time to time. The latest version will be used in the calculation of TNUoS tariffs and is published in the Statement of Use of System Charges

14.15.8 National Grid will categorise plant based on the categorisations described in the Security Standard. Peaking plant will include oil and OCGT technologies and Other (Conv.) represents all remaining conventional plant not explicitly stated elsewhere in the table In the event that a power station is made up of more than one technology type, the type of the higher Transmission Entry Capacity (TEC) would apply.

I

- 14.15.9 Nodal <u>net</u> demand data for the transport model will be based upon the GSP <u>net</u> demand that Users have forecast to occur at the time of National Grid Peak Average Cold Spell (ACS) Demand for year "t" in the April Seven Year Statement for year "t-1" plus updates to the October of year "t-1".
- 14.15.10 Subject to paragraphs 14.15.15 to 14.15.22, Transmission circuits for charging year "t" will be defined as those with existing wayleaves for the year "t" with the associated lengths based on the circuit lengths indicated for year "t" in the April NETS Seven Year Statement for year "t-1" plus updates to October of year "t-1". If certain circuit information is not explicitly contained in the NETS Seven Year Statement, The Company will use the best information available.
- 14.15.11 The circuit lengths included in the transport model are solely those, which relate to assets defined as 'Use of System' assets.
- 14.15.12 For HVDC circuits, the impedance will be calculated to provide flows based on a ratio of the capacity provided by the HVDC link relative to the capacities on all major transmission system boundaries that it parallels.
- 14.15.13 The transport model employs the use of circuit expansion factors to reflect the difference in cost between (i) AC Circuits and HVDC circuits. (ii) underground and sub-sea circuits, (iii) cabled circuits and overhead line circuits, (iv) 132kV and 275kV circuits, (v) 275kV circuits and 400kV circuits, and (vi) uses 400kV overhead line (i.e. the 400kV overhead line expansion factor is 1). As the transport model expresses cost as marginal km (irrespective of cables or overhead lines), some account needs to be made of the fact that investment in these other types of circuit (specifically HVDC and sub-sea cables of various voltages, 400kV underground cable, 275kV overhead line, 275kV underground cable, 132kV overhead line and 132kV underground cable) is more expensive than for 400kV overhead line. This is done by effectively 'expanding' these more expensive circuits by the relevant circuit expansion factor, thereby producing a larger marginal kilometre to reflect the additional cost of investing in these circuits compared to 400kV overhead line. When calculating the local circuit tariff for a generator, alternative 132kV and offshore expansion factors to those used in the remainder of the tariff calculation are applied to the generator's local circuits.
- 14.15.14 The circuit expansion factors for HVDC circuits and AC subsea cables are determined on a case by case basis using the costs which are specific to individual projects containing HVDC or AC subsea circuits.

Adjustments to Model Inputs associated with One-off Works

- 14.15.15 Where, following the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge that related to One-off Works carried out on an onshore circuit, and such One-off Works would affect the value of a TNUoS tariff paid by the User, the transport model inputs associated with the onshore circuit shall be adjusted by The Company to reflect the asset value that would have been modelled if the works had been undertaken on the basis of the original asset design rather than the One-off Works.
- 14.15.16 Subject to paragraphs 14.15.17 to 14.15.19, where, prior to the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge (or has paid a charge to the relevant TO prior to 1st April 2005 on the same principles as a

Page 3 of 63

One-Off Charge) that related to works equivalent to those described under paragraph 14.15.15, an adjustment equivalent to that under paragraph 14.15.15 shall be made to the transport model inputs as follows.

- 14.15.17 Such adjustment shall be made following a User's request, which must be received by The Company no later than the second occurrence of 31st December following the implementation of CUSC Modification CMP203.
- 14.15.18 The Company shall only make an adjustment to the transport model inputs, under paragraph 14.15.16 where the charge was paid to the relevant TO prior to 1st April 2005 where evidence has been provided by the User that satisfies The Company that works equivalent to those under paragraph 14.15.15 were funded by the User.
- 14.15.19 Where a User has sufficient reason to believe that adjustments under paragraph 14.15.18 should be made in relation to specific assets that affect a TNUoS tariff that applies to one of its sites and outlines its reasoning to The Company, The Company shall (upon the User's request and subject to the User's payment of reasonable costs incurred by The Company in doing so) use its reasonable endeavours to assist the User in obtaining any evidence The Company or a TO may have to support its position.
- 14.15.20 Where a request is made under paragraph 14.15.16 on or prior to 31st December in a charging year, and The Company is satisfied based on the accompanying evidence provided to The Company under paragraph 14.15.17 that it is a valid request, the transport model inputs shall be adjusted accordingly and taken into account in the calculation of TNUoS tariffs effective from the year commencing on the 1st April following this and otherwise from the next subsequent 1st April.
- 14.15.21 The following table provides examples of works for which adjustments to transport model inputs would typically apply:

Ref	Description of works	Adjustments	
1	Undergrounding - A User requests to underground an overhead line at a greater cost.	As the cable cost will be more expensive than the overhead line (OHL) equivalent, the circuit will be modelled as an OHL.	
2	Substation Siting Decision - A User requests to move the existing or a planned substation location to a place that means that the works cannot be justified as economic by the TO.	As the revised substation location may result in circuits being extended. If this is the case, the originally designed circuit lengths (as per the originally designed substation location) would be used in the transport model.	
3	Circuit Routing Decision - A User asks to move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	As any circuit route changes that extend circuits are likely to result in a greater TNUoS tariff, the originally designed circuit lengths would be used in the transport model.	

Ref	Description of works	Adjustments
4	Building circuits at lower voltages - A User requests lower tower height and therefore a different voltage.	As lower voltage circuits result in a higher expansion factor being used, the circuits would be modelled at the originally designed higher voltage.

14.15.22 The following table provides examples of works for which adjustments to transport model typically would not apply:

Ref	Description of works	Reasoning
1	Undergrounding - A User chooses to have a cable installed via a tunnel rather than buried.	Cable expansion factors are applied in the transport model regardless of whether a cable is tunnelled and buried, so there is no increased TNUoS cost.
2	Additional circuit route works - A User asks for screening to be provided around a new or existing circuit route.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
3	Additional circuit route works - A User requests that a planned overhead line route is built using alternative transmission tower designs.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
4	Additional substation works - A User asks for screening to be provided around a new or existing substation.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
5	Additional substation works - Changes to connection assets (e.g. HV-LV transformers and associated switchgear), metering, additional LV supplies, additional protection equipment, additional building works, etc.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
6	Diversion - A User asks to temporarily move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	The temporary circuit changes will not be incorporated into the transport model.

7	Connection Entry Capacity (CEC) before Transmission Entry Capacity (TEC). A User asks for a connection in a year prior to the relating TEC; i.e. physical connection without capacity.	No additional works are being undertaken, works are simply being completed well in advance of the generator commissioning. The One-Off Charge reflects the depreciated value of the assets prior to commissioning (and any TNUOS being charged).	
8	Early asset replacement - An asset is replaced prior to the end of its expected life.	As the asset is simply replaced, no data in the transport model is expected to change.	
9	Additional Engineering/ Mobilisation costs - A User requests changes to the planned works, that results in additional operational costs.	The data in the transport model is unaffected.	
10	Offshore (Generator Build) - Any of the works described above or under paragraph 14.15.18.	The value of the works will not form part of the asset transfer value therefore will not be used as part of the offshore tariff calculation.	
11	Offshore (Offshore Transmission Owner (OFTO) Build) - Any of the works described above or under paragraph 14.15.18.	As part of determining the TNUoS revenue associated with each asset, the value of the One-Off Works would be excluded when pro-rating the OFTO's allowed revenue against assets by asset value.	

14.15.23 The Company shall publish any adjusted transport model inputs that it intends to use in the calculation of TNUoS tariffs effective from the year commencing on the following 1st April in the NETS Seven Year Statement October Update. Any further adjustments that The Company makes shall be published by The Company upon the publication of the final TNUoS tariffs for the year concerned.

Model Outputs

- 14.15.24 The transport model takes the inputs described above and carries out the following steps individually for Peak Security and Year Round backgrounds.
- 14.15.25 Depending on the background, the TEC of the relevant generation plant types are scaled by a percentage as described in 14.15.7, above. The TEC of the remaining generation plant types in each background are uniformly scaled such that total national generation (scaled sum of contracted TECs) equals total national ACS Demand.
- 14.15.26 For each background, the model then uses a DCLF ICRP transport algorithm to derive the resultant pattern of flows based on the network impedance required to meet the nodal <u>net</u> demand using the scaled nodal generation, assuming every circuit has infinite capacity. Flows on individual transmission circuits are compared for both backgrounds and the background giving rise to

Page 6 of 63

the highest flow is considered as the triggering criterion for future investment of that circuit for the purposes of the charging methodology. Therefore all circuits will be tagged as Peak Security or Year Round depending upon the background resulting in the highest flow. In the event that both backgrounds result in the same flow, the circuit will be tagged as Peak Security. Then it calculates the resultant total network Peak Security MWkm and Year Round MWkm, using the relevant circuit expansion factors as appropriate.

- 14.15.27 Using these baseline networks for Peak Security and Year Round backgrounds, the model then calculates for a given injection of 1MW of generation at each node, with a corresponding 1MW offtake (<u>net_demand</u>) distributed across all demand nodes in the network, the increase or decrease in total MWkm of the whole Peak Security and Year Round networks. The proportion of the 1MW offtake allocated to any given demand node will be based on total background nodal <u>net</u> demand in the model. For example, with a total GB <u>net_demand</u> of 60GW in the model, a node with a <u>net_demand</u> of 600MW would contain 1% of the offtake i.e. 0.01MW.
- 14.15.28 Given the assumption of a 1MW injection, for simplicity the marginal costs are expressed solely in km. This gives a Peak Security marginal km cost and a Year Round marginal km cost for generation at each node (although not that used to calculate generation tariffs which considers local and wider cost components). The Peak Security and Year Round marginal km costs for demand at each node are equal and opposite to the Peak Security and Year Round nodal marginal km respectively for generation and this is used to calculate demand tariffs. Note the marginal km costs can be positive or negative depending on the impact the injection of 1MW of generation has on the total circuit km.
- 14.15.29 Using a similar methodology as described above in 14.15.27, the local and wider marginal km costs used to determine generation TNUoS tariffs are calculated by injecting 1MW of generation against the node(s) the generator is modelled at and increasing by 1MW the offtake across the distributed reference node. It should be noted that although the wider marginal km costs are calculated for both Peak Security and Year Round backgrounds, the local marginal km costs are calculated on the Year Round background.
- 14.15.30 In addition, any circuits in the model, identified as local assets to a node will have the local circuit expansion factors which are applied in calculating that particular node's marginal km. Any remaining circuits will have the TO specific wider circuit expansion factors applied.
- 14.15.31 An example is contained in 14.21 Transport Model Example.

Calculation of local nodal marginal km

14.15.32 In order to ensure assets local to generation are charged in a cost reflective manner, a generation local circuit tariff is calculated. The nodal specific charge provides a financial signal reflecting the security and construction of the infrastructure circuits that connect the node to the transmission system.

14.15.33 Main Interconnected Transmission System (MITS) nodes are defined as:

- Grid Supply Point connections with 2 or more transmission circuits connecting at the site; or
- connections with more than 4 transmission circuits connecting at the site.

Page 7 of 63

- 14.15.34 Where a Grid Supply Point is defined as a point of supply from the National Electricity Transmission System to network operators or non-embedded customers excluding generator or interconnector load alone. For the avoidance of doubt, generator or interconnector load would be subject to the circuit component of its Local Charge. A transmission circuit is part of the National Electricity Transmission System between two or more circuit-breakers which includes transformers, cables and overhead lines but excludes busbars and generation circuits.
- 14.15.35 Generators directly connected to a MITS node will have a zero local circuit tariff.
- 14.15.36 Generators not connected to a MITS node will have a local circuit tariff derived from the local nodal marginal km for the generation node i.e. the increase or decrease in marginal km along the transmission circuits connecting it to all adjacent MITS nodes (local assets).

Calculation of zonal marginal km

- 14.15.37 Given the requirement for relatively stable cost messages through the ICRP methodology and administrative simplicity, nodes are assigned to zones. Typically, generation zones will be reviewed at the beginning of each price control period with another review only undertaken in exceptional circumstances. Any rezoning required during a price control period will be undertaken with the intention of minimal disruption to the established zonal boundaries. The full criteria for determining generation zones are outlined in paragraph 14.15.42. The number of generation zones set for 2010/11 is 20.
- 14.15.38 Demand zone boundaries have been fixed and relate to the GSP Groups used for energy market settlement purposes.
- 14.15.39 The nodal marginal km are amalgamated into zones by weighting them by their relevant generation or demand capacity.
- 14.15.40 Generators will have zonal tariffs derived from both, the wider Peak Security nodal marginal km; and the wider Year Round nodal marginal km for the generation node calculated as the increase or decrease in marginal km along all transmission circuits except those classified as local assets.

The zonal Peak Security marginal km for generation is calculated as:

$$WNMkm_{j_{PS}} = \frac{NMkm_{j_{PS}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiPS} = \sum_{j \in Gi} WNMkm_{jPS}$$

Where

Gi	=	Generation zone
j	=	Node
NMkm _{PS}	=	Peak Security Wider nodal marginal km from transport model
WNMkm _{PS}	=	Peak Security Weighted nodal marginal km
ZMkm _{PS}	=	Peak Security Zonal Marginal km

Gen = Nodal Generation (scaled by the appropriate Peak Security Scaling factor) from the transport model Similarly, the zonal Year Round marginal km for generation is calculated as

$$WNMkm_{j_{YR}} = \frac{NMkm_{j_{YR}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiYR} = \sum_{j \in Gi} WNMkm_{jYR}$$

Where

NMkm _{YR}	=	Year Round Wider nodal marginal km from transport model
WNMkm _{YR}	=	Year Round Weighted nodal marginal km
ZMkm _{YR}	=	Year Round Zonal Marginal km
Gen	=	Nodal Generation (scaled by the appropriate Year Round Scaling
		factor) from the transport model

14.15.41 The zonal Peak Security marginal km for demand zones are calculated as follows:

$$WNMkm_{j_{PS}} = \frac{-1 * NMkm_{j_{PS}} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{Di_{PS}} = \sum_{j \in Di} WNMkm_{j_{PS}}$$

Where:

I

Di	=	Demand zone
Dem	=	Nodal <u>Net</u> Demand from transport model

Similarly, the zonal Year Round marginal km for demand zones are calculated as follows:

$$WNMkm_{jYR} = \frac{-1 * NMkm_{jYR} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{DiYR} = \sum_{j \in Di} WNMkm_{jYR}$$

- 14.15.42 A number of criteria are used to determine the definition of the generation zones. Whilst it is the intention of The Company that zones are fixed for the duration of a price control period, it may become necessary in exceptional circumstances to review the boundaries having been set. In both circumstances, the following criteria are used to determine the zonal boundaries:
- i.) Zoning is determined using the generation background with the most MWkm of circuits. Zones should contain relevant nodes whose total wider marginal costs

from the relevant generation background (as determined from the output from the transport model, the relevant expansion constant and the locational security factor, see below) are all within +/-£1.00/kW (nominal prices) across the zone. This means a maximum spread of £2.00/kW in nominal prices across the zone.

- ii.) The nodes within zones should be geographically and electrically proximate.
- iii.) Relevant nodes are considered to be those with generation connected to them as these are the only ones, which contribute to the calculation of the zonal generation tariff.
- 14.15.43 The process behind the criteria in 14.15.42 is driven by initially applying the nodal marginal costs from the relevant generation background within the DCLF Transport model onto the appropriate areas of a substation line diagram. Generation nodes are grouped into initial zones using the +/- £1.00/kW range. All nodes within each zone are then checked to ensure the geographically and electrically proximate criteria have been met using the substation line diagram. The established zones are inspected to ensure the least number of zones are used with minimal change from previously established zonal boundaries. The zonal boundaries are finally confirmed using the demand nodal costs from the relevant generation background for guidance.
- 14.15.44 The zoning criteria are applied to a reasonable range of DCLF ICRP transport model scenarios, the inputs to which are determined by The Company to create appropriate TNUoS generation zones. The minimum number of zones, which meet the stated criteria, are used. If there is more than one feasible zonal definition of a certain number of zones, The Company determines and uses the one that best reflects the physical system boundaries.
- 14.15.45 Zones will typically not be reviewed more frequently than once every price control period to provide some stability. However, in exceptional circumstances, it may be necessary to review zoning more frequently to maintain appropriate, cost reflective, locational cost signals. For example, if a new generator connecting to the transmission system would cause the creation of a new generation zone for that generator alone, it may not be appropriate from a cost reflective perspective to wait until the next price control period to undertake this rezoning. If any such rezoning is required, it will be undertaken against a background of minimal change to existing generation zones and in line with the notification process set out in the Transmission Licence and CUSC.

Accounting for Sharing of Transmission by Generators

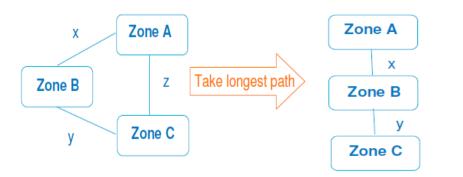
- 14.15.46 A proportion of the marginal km costs for generation are shared incremental km reflecting the ability of differing generation technologies to share transmission investment. This is reflected in charges through the splitting of Year Round marginal km costs for generation into Year Round Shared marginal km costs and Year Round Not-Shared marginal km which are then used in the calculation of the wider £/kW generation tariff.
- 14.15.47 The sharing between different generation types is accounted for by (a) using transmission network boundaries between generation zones set by connectivity between generation charging zones, and (b) the proportion of Low Carbon and Carbon generation behind these boundaries.

Page 10 of 63

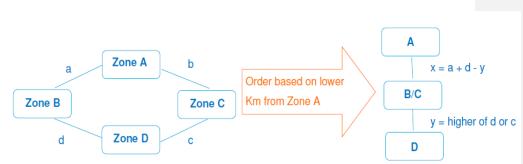
14.15.48 The zonal incremental km for each generation charging zone is split into each boundary component by considering the difference between it and the neighbouring generation charging zone using the formula below;

$$BIkm_{ab} = ZIkm_b - ZIkm_a$$

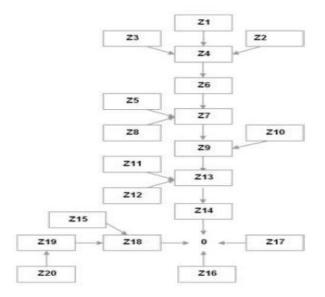
Where;


Blkm_{ab} = boundary incremental km between generation charging zone A and generation charging zone B Zlkm = generation charging zone incremental km.

14.15.49 The table below shows the categorisation of Low Carbon and Carbon generation. This table will be updated by National Grid in the Statement of Use of System Charges as new generation technologies are developed.


Carbon	Low Carbon
Coal	Wind
Gas	Hydro (excl. Pumped Storage)
Biomass	Nuclear
Oil	Marine
Pumped Storage	Tidal
Interconnectors	

Determination of Connectivity


- 14.15.50 Connectivity is based on the existence of electrical circuits between TNUoS generation charging zones that are represented in the Transport model. Where such paths exist, generation charging zones will be effectively linked via an incremental km transmission boundary length. These paths will be simplified through in the case of;
 - Parallel paths the longest path will be taken. An illustrative example is shown below with x, y and z representing the incremental km between zones.

 Parallel zones – parallel zones will be amalgamated with the incremental km immediately beyond the amalgamated zones being the greater of those existing prior to the amalgamation. An illustrative example is shown below with a, b, c, and d representing the the initial incremental km between zones, and x and y representing the final incremental km following zonal amalgamation.

14.15.51 An illustrative Connectivity diagram is shown below:

The arrows connecting generation charging zones and amalgamated generation charging zones represent the incremental km transmission boundary lengths towards the notional centre of the system. Generation located in charging zones behind arrows is considered to share based on the ratio of Low Carbon to Carbon cumulative generation TEC within those zones.

14.15.52 The Company will review Connectivity at the beginning of a new price control period, and under exceptional circumstances such as major system reconfigurations or generation rezoning. If any such reassessment is required, it will be undertaken against a background of minimal change to existing Connectivity and in line with the notification process set out in the Transmission Licence and the CUSC.

Calculation of Boundary Sharing Factors

14.15.53 Boundary sharing factors (BSFs) are derived from the comparison of the cumulative proportion of Low Carbon and Carbon generation TEC behind each of the incremental MWkm boundary lengths using the following formulae –

Page 12 of 63

If $\frac{LC}{LC+C} \le 0.5$, then all Year round marginal km costs are shared i.e. the BSF is 100%.

Where:

LC = Cumulative Low Carbon generation TEC behind the relevant transmission boundary C = Cumulative Carbon generation TEC behind the relevant transmission

C = Cumulative Carbon generation TEC behind the relevant transmission boundary

If
$$\frac{LC}{LC+C}$$
 > 0.5 then the BSF is calculated using the following formula: -

$$BSF = \left(-2 \times \left(\frac{LC}{LC+C}\right)\right) + 2$$

Where:

BSF = boundary sharing factor.

14.15.54 The shared incremental km for each boundary are derived from the multiplication of the boundary sharing factor by the incremental km for that boundary;

$$SBIkm_{ab} = BIIkm_{ab} \ x \ BSF_{ab}$$

Where;

 $SBIkm_{ab}$ = shared boundary incremental km between generation charging zone A and generation charging zone B

 BSF_{ab} = generation charging zone boundary sharing factor.

14.15.55 The shared incremental km is discounted from the incremental km for that boundary to establish the not-shared boundary incremental km. The not-shared boundary incremental km reflects the cost of transmission investment on that boundary accounting for the sharing of power stations behind that boundary.

$$NSBIkm_{ab} = BIkm_{ab} - SBIkm_{ab}$$

Where;

 $NSBIkm_{ab}$ = not shared boundary incremental km between generation charging zone A and generation charging zone B.

14.15.56 The shared incremental km for a generation charging zone is the sum of the appropriate shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRS}$$

Where;

 $ZMkm_{nYRS}$ = Year Round Shared Zonal Marginal km for generation charging zone n.

Page 13 of 63

14.15.57 The not-shared incremental km for a generation charging zone is the sum of the appropriate not-shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRNS}$$

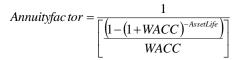
Where;

ZMkm_{nYRNS} = Year Round Not-Shared Zonal Marginal km for generation zone n.

Deriving the Final Local £/kW Tariff and the Wider £/kW Tariff

14.15.58 The zonal marginal km (ZMkm_{Gi}) are converted into costs and hence a tariff by multiplying by the Expansion Constant and the Locational Security Factor (see below). The nodal local marginal km (NLMkm^L) are converted into costs and hence a tariff by multiplying by the Expansion Constant and a Local Security Factor.

The Expansion Constant


- 14.15.59 The expansion constant, expressed in £/MWkm, represents the annuitised value of the transmission infrastructure capital investment required to transport 1 MW over 1 km. Its magnitude is derived from the projected cost of 400kV overhead line, including an estimate of the cost of capital, to provide for future system expansion.
- 14.15.60 In the methodology, the expansion constant is used to convert the marginal km figure derived from the transport model into a £/MW signal. The tariff model performs this calculation, in accordance with 14.15.95 14.15.117, and also then calculates the residual element of the overall tariff (to ensure correct revenue recovery in accordance with the price control), in accordance with 14.15.133.
- 14.15.61 The transmission infrastructure capital costs used in the calculation of the expansion constant are provided via an externally audited process. They also include information provided from all onshore Transmission Owners (TOs). They are based on historic costs and tender valuations adjusted by a number of indices (e.g. global price of steel, labour, inflation, etc.). The objective of these adjustments is to make the costs reflect current prices, making the tariffs as forward looking as possible. This cost data represents The Company's best view; however it is considered as commercially sensitive and is therefore treated as confidential. The calculation of the expansion constant also relies on a significant amount of transmission asset information, much of which is provided in the Seven Year Statement.
- 14.15.62 For each circuit type and voltage used onshore, an individual calculation is carried out to establish a £/MWkm figure, normalised against the 400KV overhead line (OHL) figure, these provide the basis of the onshore circuit expansion factors discussed in 14.15.70 14.15.77. In order to simplify the calculation a unity power factor is assumed, converting £/MVAkm to £/MWkm. This reflects that the fact tariffs and charges are based on real power.
- 14.15.63 The table below shows the first stage in calculating the onshore expansion constant. A range of overhead line types is used and the types are weighted by recent usage on the transmission system. This is a simplified calculation for 400kV OHL using example data:

Page 14 of 63

400kV	400kV OHL expansion constant calculation					
MW	Туре	£(000)/k	Circuit km*	£/MWkm	Weight	
А	В	С	D	E = C/A	F=E*D	
6500	La	700	500	107.69	53846	
6500	Lb	780	0	120.00	0	
3500	La/b	600	200	171.43	34286	
3600	Lc	400	300	111.11	33333	
4000	Lc/a	450	1100	112.50	123750	
5000	Ld	500	300	100.00	30000	
5400	Ld/a	550	100	101.85	10185	
Sum			2500 (G)		285400 (H)	
				Weighted Average (J= H/G):	114.160 (J)	

*These are circuit km of types that have been provided in the previous 10 years. If no information is available for a particular category the best forecast will be used.

14.15.64 The weighted average £/MWkm (J in the example above) is then converted in to an annual figure by multiplying it by an annuity factor. The formula used to calculate of the annuity factor is shown below:

- 14.15.65 The Weighted Average Cost of Capital (WACC) and asset life are established at the start of a price control and remain constant throughout a price control period. The WACC used in the calculation of the annuity factor is the The Company regulated rate of return, this assumes that it will be reasonably representative of all licensees. The asset life used in the calculation is 50 years; the appropriateness of this is reviewed when the annuity factor is recalculated at the start of a price control period. These assumptions provide a current annuity factor of 0.066.
- 14.15.66 The final step in calculating the expansion constant is to add a share of the annual transmission overheads (maintenance, rates etc). This is done by multiplying the average weighted cost (J) by an 'overhead factor'. The 'overhead factor' represents the total business overhead in any year divided by the total Gross Asset Value (GAV) of the transmission system. This is recalculated at the start of each price control period. The overhead factor used in the calculation of the expansion constant for 2009/10 is 1.8%. The overhead and annuitised costs are then added to give the expansion constant.
- 14.15.67 Using the previous example, the final steps in establishing the expansion constant are demonstrated below:

400kV OHL expansion constant calculation	Ave £/MWkm
OHL	114.160

Page 15 of 63

Annuitised	7.535
Overhead	2.055
Final	9.589

- 14.15.68 This process is carried out for each voltage onshore, along with other adjustments to take account of upgrade options, see 14.15.73, and normalised against the 400KV overhead line cost (the expansion constant) the resulting ratios provide the basis of the onshore expansion factors. The process used to derive circuit expansion factors for Offshore Transmission Owner networks is described in 14.15.78.
- 14.15.69 This process of calculating the incremental cost of capacity for a 400kV OHL, along with calculating the onshore expansion factors is carried out for the first year of the price control and is increased by inflation, RPI, (May–October average increase, as defined in The Company's Transmission Licence) each subsequent year of the price control period. The expansion constant for 2010/11 is 10.633.

Onshore Wider Circuit Expansion Factors

- 14.15.70 Base onshore expansion factors are calculated by deriving individual expansion constants for the various types of circuit, following the same principles used to calculate the 400kV overhead line expansion constant. The factors are then derived by dividing the calculated expansion constant by the 400kV overhead line expansion constant. The factors will be fixed for each respective price control period.
- 14.15.71 In calculating the onshore underground cable factors, the forecast costs are weighted equally between urban and rural installation, and direct burial has been assumed. The operating costs for cable are aligned with those for overhead line. An allowance for overhead costs has also been included in the calculations.
- 14.15.72 The 132kV onshore circuit expansion factor is applied on a TO basis. This is to reflect the regional variation of plans to rebuild circuits at a lower voltage capacity to 400kV. The 132kV cable and line factor is calculated on the proportion of 132kV circuits likely to be uprated to 400kV. The 132kV expansion factor is then calculated by weighting the 132kV cable and overhead line costs with the relevant 400kV expansion factor, based on the proportion of 132kV circuitry to be uprated to 400kV. For example, in the TO areas of National Grid and Scottish Power where there are no plans to uprate any 132kV circuits, the full cable and overhead line costs of 132kV circuit are reflected in the 132kV expansion factor calculation.
- 14.15.73 The 275kV onshore circuit expansion factor is applied on a GB basis and includes a weighting of 83% of the relevant 400kV cable and overhead line factor. This is to reflect the averaged proportion of circuits across all three Transmission Licensees which are likely to be uprated from 275kV to 400kV across GB within a price control period.
- 14.15.74 The 400kV onshore circuit expansion factor is applied on a GB basis and reflects the full costs for 400kV cable and overhead lines.
- 14.15.75 AC sub-sea cable and HVDC circuit expansion factors are calculated on a case by case basis using actual project costs (Specific Circuit Expansion Factors).

Page 16 of 63

- 14.15.76 For HVDC circuit expansion factors both the cost of the converters and the cost of the cable are included in the calculation.
- 14.15.77 The TO specific onshore circuit expansion factors calculated for 2008/9 (and rounded to 2 decimal places) are:

Scottish Hydro Region

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	27.79
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.24	

Scottish Power & National Grid Regions

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	30.22
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.80	

Onshore Local Circuit Expansion Factors

- 14.15.78 The local onshore circuit tariff is calculated using local onshore circuit expansion factors. These expansion factors are calculated using the same methodology as the onshore wider expansion factor but without taking into account the proportion of circuit kms that are planned to be uprated.
- 14.15.79 In addition, the 132kV onshore overhead line circuit expansion factor is sub divided into four more specific expansion factors. This is based upon maximum (winter) circuit continuous rating (MVA) and route construction whether double or single circuit.

400kV underground cable factor:	22.39
275kV underground cable factor:	22.39
132kV underground cable factor:	30.22
400kV line factor:	1.00
275kV line factor:	1.14
132kV line factor (single; <200MVA):	10.00
132kV line factor (double; <200MVA):	8.32
132kV line factor (single; >=200MVA):	7.13
132kV line factor (double; >=200MVA):	4.42

Offshore Circuit Expansion Factors

14.15.80 Offshore expansion factors (£/MWkm) are derived from information provided by Offshore Transmission Owners for each offshore circuit. Offshore expansion factors are Offshore Transmission Owner and circuit specific. Each Offshore Transmission Owner will periodically provide, via the STC, information to derive an annual circuit revenue requirement. The offshore circuit revenue shall include revenues associated with the Offshore Transmission Owner's reactive compensation equipment, harmonic filtering equipment, asset spares and HVDC converter stations.

14.15.81 In the first year of connection, the offshore circuit expansion factor would be calculated as follows:

$\frac{CRevOFTO1}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$

Where:

CRevOFTO1	=	The offshore circuit revenue in £ for Year 1
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

14.15.82 In all subsequent years, the offshore circuit expansion factor would be calculated as follows:

$$\frac{AvCRevOFTO}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$$

Where:

AvCRevOFTO	=	The annual offshore circuit revenue averaged over the
		remaining years of the onshore National Electricity
		Transmission System Operator (NETSO) price control
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

- 14.15.83 For the avoidance of doubt, the offshore circuit revenue values, *CRevOFTO1* and *AvCRevOFTO* shall be determined using asset values after the removal of any One-Off Charges.
- 14.15.84 Prevailing OFFSHORE TRANSMISSION OWNER specific expansion factors will be published in this statement. These shall be recalculated at the start of each price control period using the formula in paragraph 14.15.71. For each subsequent year within the price control period, these expansion factors will be adjusted by the annual Offshore Transmission Owner specific indexation factor, *OFTOInd*, calculated as follows;

$$OFTOInd_{t,f} = \frac{OFTO \operatorname{Rev}Ind_{t,f}}{RPI_{t}}$$

where:

OFTOInd _{t,f}	=	the indexation factor for Offshore Transmission Owner <i>f</i> in respect of charging year <i>t</i> ,
OFTORevInd _t f	=	the indexation rate applied to the revenue of Offshore Transmission Owner f under the terms of its Transmission Licence in respect of charging year t , and
<i>RPI</i> _t	=	the indexation rate applied to the expansion constant in respect of charging year <i>t</i> .

Offshore Interlinks

14.15.85 The revenue associated with an Offshore Interlink shall be divided entirely between those generators benefiting from the installation of that Offshore Interlink. Each of these Users will be responsible for their charge from their charging date, meaning that a proportion of the Offshore Interlink revenue may be socialised prior to all relevant Users being chargeable. The proportion associated with each User will be based on the Measure of Capacity to the MITS using the Offshore Interlink(s) in the event of a single circuit fault on the User's circuit from their offshore substation towards the shore, compared to the Measure of Capacity of the other Users.

Where:

An *Offshore Interlink* is a circuit which connects two offshore substations that are connected to a Single Common Substation. It is held in open standby until there is a transmission fault that limits the User's ability to export power to the Single Common Substation. In the Transport Model, they are to be modelled in open standby.

A Single Common Substation is a substation where:

- i. each substation that is connected by an Offshore Interlink is connected via at least one circuit without passing through another substation; and
- ii. all routes connecting each substation that is connected by an Offshore Interlink to the MITS pass through.

The Measure of Capacity to the MITS for each Offshore substation is the result of the following formula or zero whichever is larger. For the situation with only one interlink, all terms relating to C should be set to zero:

```
For Substation A:
min { Cap_{IAB}, ILF_A \times TEC_A - RCap_A, Cap_B - ILF_B \times TEC_B + min (Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation B:

min { ILF_B \times TEC_B - RCap_B, min (Cap_{IAB}, Cap_A - ILF_A \times TEC_A)

+ min ( Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation C:

min { Cap_{IBC}, ILF_{C} \times TEC_{C} - RCap_{C}, Cap_{B} - ILF_{B} \times TEC_{B} + min (Cap_{IAB}, Cap_{A} - ILF_{A} \times TEC_{A}) }

and
```

Cap _{IAB} = B	total capacity of the Offshore Interlink between substations A and
Cap _{IBC} = C	total capacity of the Offshore Interlink between substations B and
Cap _X =	total capacity of the circuit between offshore substation X and the Single Common Substation, where X is A, B or C.
RCap _x =	remaining capacity of the circuit between offshore substation X and the Single Common Substation in the event of a single cable fault, where X is A, B or C.
TEC _x =	the sum of the TEC for the Users connected, or contracted to connect, to offshore substation X, where X is A, B or C, where the value of TEC will be the maximum TEC that each User has held since the initial charging date, or is contracted to hold if prior to the initial charging date.

- ILF_x = Offshore Interlink Load Factor, where X is A, B or C. The Offshore Interlink Load Factor (ILF) is based on the Annual Load Factor (ALF). Until all the Users connected to a Single Common Substation have a station specific Annual Load Factor based on five years of data, the generic ALF for the fuel type will be used as the ILF for all stations. When all Users have a station specific ALF, the value of the ALF in the first such year will be used as the ILF in the calculation for all subsequent charging years.
- 14.15.86 The apportionment of revenue associated with Offshore Interlink(s) in 14.15.85 applies in situations where the Offshore Interlink was included in the design phase, or if one or more User(s) has already financially committed or been commissioned then only where that User(s) agrees to the Offshore Interlink.
- 14.15.87 Alternatively to the formula specified in 14.15.85 the proportion of the OFTO revenue associated with the Offshore Interlink allocated to each generator benefiting from the installation of an Offshore Interlink may be agreed between these Users. In this event:
- a. All relevant Users shall notify The Company of its respective proportions three months prior the OTSDUW asset transfer in the case of a generator build, or the charging date of the first generator, in the case of an OFTO build.
- b. All relevant Users may agree to vary the proportions notified under (a) by each writing to The Company three months prior to the charges being set for a given charging year.
- c. Once a set of proportions of the OFTO revenue associated with the Offshore Interlink has been provided to The Company, these will apply for the next and future charging years unless and until The Company is informed otherwise in accordance with (b) by all of the relevant Users.
- d. If all relevant Users are unable to reach agreement on the proportioning of the OFTO revenue associated with the Offshore Interlink they can raise a dispute. Any dispute between two or more Users as to the proportioning of such revenue shall be managed in accordance with CUSC Section 7 Paragraph 7.4.1 but the reference to the 'Electricity Arbitration Association' shall instead be to the 'Authority' and the Authority's determination of such dispute shall, without prejudice to apply for judicial review of any determination, be final and binding on the Users.

The Locational Onshore Security Factor

14.15.88 The locational onshore security factor is derived by running a secure DCLF ICRP transport study based on the same market background as used for Zoning in the DCLF ICRP transport model. This calculates the nodal marginal costs where peak <u>net</u> demand can be met despite the Security and Quality of Supply Standard contingencies (simulating single and double circuit faults) on the network. Essentially the calculation of secured nodal marginal costs is identical to the process outlined above except that the secure DCLF study additionally calculates a nodal marginal cost taking into account the requirement to be secure against a set of worse case contingencies in terms of maximum flow for each circuit.

- 14.15.89 The secured nodal cost differential is compared to that produced by the DCLF ICRP transport model and the resultant ratio of the two determines the locational security factor using the Least Squares Fit method. Further information may be obtained from the charging website¹.
- 14.15.90 The locational onshore security factor derived for 2010/11 is 1.8 and is based on an average from a number of studies conducted by The Company to account for future network developments. The security factor is reviewed for each price control period and fixed for the duration.

Local Security Factors

- 14.15.91 Local onshore security factors are generator specific and are applied to a generator's local onshore circuits. If the loss of any one of the local circuits prevents the export of power from the generator to the MITS then a local security factor of 1.0 is applied. For generation with circuit redundancy, a local security factor is applied that is equal to the locational security factor, currently 1.8.
- 14.15.92 Where a Transmission Owner has designed a local onshore circuit (or otherwise that circuit once built) to a capacity lower than the aggregated TEC of the generation using that circuit, then the local security factor of 1.0 will be multiplied by a Counter Correlation Factor (CCF) as described in the formula below;

$$CCF = \frac{D_{\min} + T_{cap}}{G_{cap}}$$

Where; D_{min} = minimum annual net demand (MW) supplied via that circuit in the absence of that generation using the circuit

 T_{cap} = transmission capacity built (MVA)

G_{cap} = aggregated TEC of generation using that circuit

CCF cannot be greater than 1.0.

14.15.93 A specific offshore local security factor (LocalSF) will be calculated for each offshore connection using the following methodology:

$$LocalSF = \frac{NetworkExportCapacity}{\sum_{k} Gen_{k}}$$

Where:

 NetworkExportCapacity =
 the total export capacity of the network disregarding any Offshore Interlinks

 k
 =
 the generation connected to the offshore network

1 http://www.nationalgrid.com/uk/Electricity/Charges/

Page 21 of 63

- 14.15.94 The offshore security factor for single circuits with a single cable will be 1.0 and for multiple circuit connections will be capped at the locational onshore security factor, derived as 1.8 for 2010/11.
- 14.15.95 The offshore local security factor for configurations with one or more Offshore Interlinks is updated so that the offshore circuit tariff will include the proportion of revenue associated with the Offshore Interlink(s). The specific offshore local security factor for configurations involving an Offshore Interlink, which may be greater than 1.8, will be calculated for each offshore connection using the following methodology:

LocalSE =	$\frac{\text{IRevOFTO} \times \text{NetworkExportCapacity}}{\text{OP} \times \text{OFTO} \times \sum_{i} C_{i}} + LocalSF_{initial}$
Locust -	$CRevOFTO \times \sum Gen_k$
	k

Where:

IRevOFTO =	The appropriate proportion of the Offshore Interlink(s) revenue in £
	associated with the offshore connection calculated in 14.15.85
CRevOFTO =	The offshore circuit revenue in £ associated with the circuit(s) from the
	offshore substation to the Single Common Substation.
<u>LocalSF_{initial} =</u>	Initial Local Security Factor calculated in 14.15.80 and 14.15.81
	And other definitions as in 14.15.80.

Initial Transport Tariff

14.15.96 First an Initial Transport Tariff (ITT) must be calculated for both Peak Security and Year Round backgrounds. For Generation, the Peak Security zonal marginal km (ZMkm_{PS}), Year Round Not-Shared zonal marginal km (ZMkm_{YRNS}) and Year Round Shared zonal marginal km (ZMkm_{YRS}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT, Year Round Not-Shared ITT and Year Round Shared ITT respectively:

 $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$

Where ZMkm _{GiPS} ZMkm _{GiYRNS} charging zone	= = e	Peak Security Zonal Marginal km for each generation zone Year Round Not-Shared Zonal Marginal km for each generation
ZMkm _{GiYRS}	=	Year Round Shared Zonal Marginal km for each generation
charging zon	е	
EC	=	Expansion Constant
LSF	=	Locational Security Factor
	=	Peak Security Initial Transport Tariff (£/MW) for each generation
zone		
ITT _{GiYRNS}	=	Year Round Not-Shared Initial Transport Tariff (£/MW) for each
generation charging zone		
ITT _{GiYRS}	=	Year Round Shared Initial Transport Tariff (£/MW) for each
generation ch	narging	zone.

- CUSC v1.12
 - 14.15.97 Similarly, for demand the Peak Security zonal marginal km (ZMkm_{PS}) and Year Round zonal marginal km (ZMkm_{YR}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT and Year Round ITT respectively:

		$ZMkm_{DiPS} \times EC \times LSF = ITT_{DiPS}$
		$ZMkm_{DiYR} \times EC \times LSF = ITT_{DiYR}$
Where ZMkm _{DiP} ZMkm _{DiY}	0	Peak Security Zonal Marginal km for each demand zone Year Round Zonal Marginal km for each demand zone
ITT _{DiPS} ITT _{DiYR}	= =	Peak Security Initial Transport Tariff (\pounds /MW) for each demand one Year Round Initial Transport Tariff (\pounds /MW) for each demand zone
14.15.98	GSP group revenue ree metered tria	tep is to multiply these ITTs by the expected metered triad <u>gross</u> demand and generation capacity to gain an estimate of the initial covery for both Peak Security and Year Round backgrounds. The ad <u>gross GSP group</u> demand and generation capacity are based on forecasts provided by Users and are confidential.
a.		ad gross GSP group demand is net demand for all GSP groups less exports for all GSP groups .
Where		

ITRR _G =	Initial Transport Revenue Recovery for generation		
G _{Gi} =	Total forecast Generation for each generation zone (based		
	on <u>analysis of</u> confidential User forecasts)		
ITRR _D =	Initial Transport Revenue Recovery for gross GSP group		
	demand		
D _{Di} =	Total forecast Metered Triad gross GSP group Demand for		
each			
	demand zone (based on <u>analysis of</u> confidential User		
	forecasts).		

In addition, the initial tariffs for generation are also multiplied by the **Peak Security flag** when calculating the initial revenue recovery component for the Peak Security background. Similarly, when calculating the initial revenue recovery for the Shared component of the Year Round background, the initial tariffs are multiplied by the **Annual Load Factor** (see below).

Peak Security (PS) Flag

14.15.99 The revenue from a specific generator due to the Peak Security locational tariff needs to be multiplied by the appropriate Peak Security (PS) flag. The PS flags indicate the extent to which a generation plant type contributes to the need for transmission network investment at peak demand conditions. The PS

Page 23 of 63

flag is derived from the contribution of differing generation sources to the demand security criterion as described in the Security Standard. In the event of a significant change to the demand security assumptions in the Security Standard, National Grid will review the use of the PS flag.

Generation Plant Type	PS flag
Intermittent	0
Other	1

Annual Load Factor (ALF)

- 14.15.100 The ALF for each individual Power Station is calculated using the relevant TEC (MW) and corresponding output data. Where output data is not available for a Power Station, including for new Power Stations and emerging Power Station technologies, generic data for the appropriate generation plant type will be used.
- 14.15.101 For a given charging year "t" the Power Station ALF will be based on information from the previous five charging years, calculated for each charging year as set out below.

$$ALF = \frac{\sum_{p=1}^{17520} GMWh_p}{\sum_{p=1}^{17520} TECp \times 0.5}$$

Where:

 $\mathsf{GMWh}_{\mathsf{p}}$ is the maximum of FPN or actual metered output in a Settlement Period related to the power station TEC (MW); and

 TEC_{p} is the TEC (MW) applicable to that Power Station for that Settlement Period including any STTEC and LDTEC, accounting for any trading of TEC.

- 14.15.102 The appropriate output (FPN or actual metered) figure is derived from **BM Unit** data available to National Grid and relates to the total TEC of the Power Station.
- 14.15.103 Once all five charging year ALFs have been calculated for the individual Power Station they are compared, and the highest and lowest figures are discarded. The final ALF, to be used for transmission charging purposes, is calculated as the average of the remaining three ALFs.
- 14.15.104 In the event that only four charging years of complete output (FPN or actual metered) data are available for an individual Power Station then the higher three charging years ALF would be used in the calculation of the final ALF. In the event that only three charging years of complete output (FPN or actual metered) data are available then these three charging years would be used.
- 14.15.105 Due to the aggregation of output (FPN or actual metered) data for dispersed generation (e.g. cascade hydro schemes), where a single generator BMU consists of geographically separated power stations, the ALF would be calculated based on the total output of the BMU and the overall TEC of those Power Stations.

Page 24 of 63

1

- 14.15.106 In the event that there are not three full charging years of an individual power station's output available, missing output (FPN or actual metered) data would be replaced by generic data for that generation plant type to ensure three charging years of information are available for the Power Station. The derivation of the generic data is described in paragraphs 14.15.111-14.15.114.
- 14.15.107 Users will receive draft ALFs before 25th December of the charging year (t-1) for the charging year (t) and will have a period of 15 working days from date of publishing to notify the Company of any errors. Failure to agree changes relating to errors will be treated as a charging dispute under the CUSC.
- 14.15.108 The ALFs used in the setting of final tariffs will be published in the annual Statement of Use of System Charges. Changes to ALFs after this publication will not result in changes to published tariffs (e.g. following dispute resolution).

Derivation of Generic ALFs

14.15.109 The generic ALF is derived from the average annual output of the ten most recently commissioned GB generation of a particular generation plant type that have at least five charging years' data, using an identical methodology to that used for the Power Station specific calculation described above. Where less than ten GB generators of a particular generation plant type exist, then data from all existing generators of that particular generation plant type will be used. Example generation plant type categories are listed below;

Fuel Type
Biomass
Coal
Gas
Hydro
Nuclear (by reactor
type)
Oil & OCGTs
Pumped Storage
Onshore Wind
Offshore Wind
CHP

- 14.15.110 The Company will keep these categories under review and update as necessary. Where within a category there is a significant locational difference consideration will be given to zonal generic factors. The factors used will be published in the Statement of Use of System Charges and will be reviewed annually.
- 14.15.111 If a User can demonstrate that the generation plant type of a Power Station has changed, consideration will be given to the use of relevant generic ALF information in the calculation of their charges until sufficient specific data is available.
- 14.15.112 For new and emerging generation plant types, where insufficient data is available to allow a generic ALF to be developed, The Company will use the best information available e.g. from manufactuers and data from use of similar technologies outside GB. The factor will be agreed with the relevant Generator. In the event of a disagreement the standard provisions for dispute in the CUSC will apply.

TNUoS Embedded Export Tariff Embedded exports are exports measured on a half-hourly basis by 14.15.113 Metering Systems, in accordance with the BSC, that are not subject to generation TNUoS and where all associated generation holds a nonterminated Capacity Market obligation at any point during the charging <u>year.</u> The ownership of a Capacity Market obligation can be from auction or from a trade. The embedded export tariff will be applied to the metered Triad volumes 14.15.114 of Embedded Exports for each demand zone as follows: $EET_{Di} = ITT_{DiPS} + ITT_{DiYR} + EX$ Where Peak Security Initial Transport Tariff for the demand zone; ITT_{DiPS} = ITT_{DiYR} = Year Round Initial Transport Tariff for the demand zone, and EX £0 =

Initial Revenue Recovery

=

=

14.15,<u>115</u> For the Peak Security background the initial tariff for generation is multiplied by the total forecast generation capacity and the PS flag to give the initial revenue recovery:

$$\sum_{G_i=1}^{n} (ITT_{G_i PS} \times G_{G_i} \times F_{PS}) = ITRR_{GPS}$$

Where ITRR_{GPS}

G_{Gi}

Peak Security Initial Transport Revenue Recovery for generation Total forecast Generation for each generation zone (based on <u>analysis of</u> confidential User forecasts)

F _{PS}	=	Peak Security flag appropriate to that generator type
n	=	Number of generation zones

The initial revenue recovery for <u>gross GSP group</u> demand for the Peak Security background is calculated by multiplying the initial tariff by the total forecast metered triad <u>gross GSP group</u> demand:

$$\sum_{Di=1}^{14} (ITT_{DiPS} \times D_{Di}) = ITRR_{DPS}$$

Where:

ITRRDPS	=	Peak Security Initial Transport Revenue Recovery for gross GSP
		group demand
D _{Di}	=	Total forecast Metered Triad gross GSP group Demand for each
		demand zone (based on analysis of confidential User forecasts)

14.15,<u>116</u> For the Year Round background, the initial tariff for generation is multiplied by the total forecast generation capacity whilst calculating Initial Recovery for Not-Shared component whereas the initial tariff for Shared component is multiplied by both, the total forecast generation capacity and the ALF to give the initial revenue recovery:

$$\sum_{G_{i=1}}^{n} (ITT_{G_{i}YRNS} \times G_{G_{i}}) = ITRR_{G_{YRNS}}$$
$$\sum_{G_{i=1}}^{n} (ITT_{G_{i}YRS} \times G_{G_{i}} \times ALF) = ITRR_{G_{YRS}}$$

Where:

ITRR _{GYRNS} generation	=	Year Round Not-Shared Initial Transport Revenue Recovery for		
ITRR _{GYRS} generation	=	Year Round Shared Initial Transport Revenue Recovery for		
ALF	=	Annual Load Factor appropriate to that generator.		

14.15,117 Similar to the Peak Security background, the initial revenue recovery for gross <u>GSP group</u> demand for the Year Round background is calculated by multiplying the initial tariff by the total forecast metered triad gross GSP group demand:

$$\sum_{Di=1}^{14} \left(ITT_{DiYR} \times D_{Di} \right) = ITRR_{DYR}$$

=

Where:

ITRR

Year Round Initial Transport Revenue Recovery for gross GSP group demand

14.15.118The initial revenue recovery for Embedded Exports is the Embedded Export Tariff multiplied by the total forecast volume of Embedded Export at triad:

$$ITRR_{EE} = \sum_{Di=1}^{14} (EET_{Di} \times EEV_{Di})$$

<u>Where</u>

ITTR _{EE}	= Initial Revenue impact for Embedded Exports
EEV _{Di}	= Forecast Embedded Export metered volume at Triad
<u>(MW)</u>	

For the avoidance of doubt, the initial revenue recovery for affected embedded exports can be positive or negative.

Page 27 of 63

V1.12-01 April 2016

Deleted: 115

I

I

1

Deriving the Final Local Tariff (£/kW)

Local Circuit Tariff

14.15,119 Generation with a local circuit tariff is calculated by multiplying the Year Round nodal marginal km along the local circuit by the expansion constant and the relevant local security factor (whether onshore or offshore) and summing across local circuits to give the local circuit tariff:

$$\sum_{k} \frac{NLMkm_{Gj}^{L} \times EC \times LocalSF_{k}}{1000} = CLT_{Gi}$$

Where		
k	=	Local circuit k for generator
NLMkm _{Gj} L	=	Year Round Nodal marginal km along local circuit k using local
		circuit expansion factor.
EC	=	Expansion Constant
LocalSF _k	=	Local Security Factor for circuit k
CLT _{Gi}	=	Circuit Local Tariff (£/kW)

Onshore Local Substation Tariff

- 14.15,120 All chargeable generation is subject to the local substation tariff component which is determined by assessing the generation substation type which is the substation at the connection charging boundary, against three cost determining factors:
 - (a) HV connection voltage the voltage at the boundary between the User's connection assets and the transmission system;
 - (b) Sum of TEC at the generation substation the combined TEC of all generation at the connecting substation; and
 - (c) The level of redundancy at the generation substation single busbar / single switch mesh connections are examples of no redundancy connections, whereas examples of connections with redundancy include double busbar and mesh sub station designs.
- 14.15,121 Using the above factors, the corresponding £/kW tariffs (quoted to 3dp) that will be applied during 2010/11 are:

Substation	Connection	Substation Voltage (a)		
Rating (b)	Type (c)	132kV	275kV	400kV
<1320MW	No redundancy	0.133	0.081	0.065
<1320MW	Redundancy	0.301	0.192	0.155
>=1320MW	No redundancy	n/a	0.257	0.208
>=1320MW	Redundancy	n/a	0.417	0.336

14.15,<u>122</u> The process for calculating Local Substation Tariffs will be carried out for the first year of the price control and will subsequently be indexed by RPI for each subsequent year of the price control period.

Deleted: 116

Deleted: 117

Deleted: 118

I

14.15,123 The effective Local Tariff (£/kW) is calculated as the sum of the circuit and substation onshore and/or offshore components:

$$ELT_{Gi} = CLT_{Gi} + SLT_{Gi}$$

Where

14.15,<u>124</u> Where tariffs do not change mid way through a charging year, final local tariffs will be the same as the effective tariffs:

14.15,125 Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$LT_{Gi} = \frac{12 \times \left(ELT_{Gi} \times \sum_{Gi=1}^{21} G_{Gi} - FLL_{Gi}\right)}{b \times \sum_{Gi=1}^{21} G_{Gi}} \quad \text{and} \quad FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{21} G_{Di}}$$

Where:

b = number of months the revised tariff is applicable for

FLL = Forecast local liability incurred over the period that the original tariff is applicable for

14.15,<u>126</u> For the purposes of charge setting, the total local charge revenue is calculated by:

$$\text{LCRR}_{\text{G}} = \sum_{j=Gi} \text{LT}_{\text{Gi}} * G_j$$

Where LCRR_G G_i

 Local Charge Revenue Recovery
 Forecast chargeable Generation or Transmission Entry Capacity in kW (as applicable) for each generator (based on <u>analysis of</u> confidential information received from Users)

Offshore substation local tariff

14.15,127 All offshore chargeable generation is subject to an offshore substation tariff. The offshore substation tariff shall be the sum of transformer, switchgear and platform components.

14.15,128 Each tariff component, expressed in £/kW, shall be the ratio of the Offshore Transmission Owner revenue (£) and rating associated with the transformers, switchgear or platform (kW) at each offshore substation. The Offshore Transmission Owner revenue of each tariff component shall include that associated with asset spares. In the case of the platform component, the relevant rating shall be the lower of the transformer or switchgear ratings. As with the offshore circuit expansion factors, the Offshore Transmission Owner revenue associated with each tariff component shall be averaged over the remaining years of the NETSO price control.

Page 29 of 63

V1.12-01 April 2016

Deleted: 121

Deleted: 120

Deleted: 122

Deleted: 123

Deleted: 124

- 14.15,129 Offshore Transmission Owner revenue associated with interest during construction and project development overheads will be attributed to the relevant asset category with which it is associated. If these or any other costs included in the Offshore Transmission Owner revenue are not readily attributable to a given asset category, they will be pro-rated across the various asset categories based on their relative cost.
- 14.15,130 For 2010/11 a discount of £0.345590/kW shall be provided to the offshore substation tariff to reflect the average cost of civil engineering for onshore substations. This will be inflated by RPI each year and reviewed every price control period.
- 14.15,131 Offshore substation tariffs shall be reviewed at the start of every onshore price control period. For each subsequent year within the price control period, these shall be inflated in the same manner as the associated Offshore Transmission Owner Revenue.
 - 14.15,<u>132</u> The revenue from the offshore substation local tariff is calculated by:

$$SLTR = \sum_{\substack{All offshore \\ substatios}} \left(SLT_k \times \sum_k Gen_k \right)$$

Where:		
SLT _k	=	the offshore substation tariff for substation k
Gen _k	=	the generation connected to offshore substation k

The Residual Tariff

14.15,133 The total revenue to be recovered through TNUoS charges is determined each year with reference to the Transmission Licensees' Price Control formulas less the costs expected to be recovered through Pre-Vesting connection charges. Hence in any given year t, a target revenue figure for TNUoS charges (TRR_i) is set after adjusting for any under or over recovery for and including, the small generators discount is as follows:

$$TRR_t = R_t - PVC_t - SG_{t-1}$$

Where

- TRR_t = TNUoS Revenue Recovery target for year t
- R_t = Forecast Revenue allowed under The Company's RPI-X Price Control Formula for year t (this term includes a number of adjustments, including for over/under recovery from the previous year). For further information, refer to Special Condition D2 of The Company's Transmission Licence. PVC_t = Forecast Revenue from Pre-Vesting connection charges for year t
- SG_{t-1} = The proportion of the under/over recovery included within R_t which relates to the operation of statement C13 of the The Company Transmission Licence. Should the operation of statement C13 result in an under recovery in year t 1, the SG figure will be positive and vice versa for an over recovery.
- 14.15,134 In normal circumstances, the revenue forecast to be recovered from the initial transport tariffs will not equate to the total revenue target. This is due to a number of factors. For example, the transport model assumes, for simplicity, smooth incremental transmission investments can be made. In reality, transmission investment can only be made in discrete 'lumps'. The transmission system has been planned and developed over a long period of

Page 30 of 63

V1.12-01 April 2016

Deleted: 126

Deleted: 127

Deleted: 128

Deleted: 129

Deleted: 130

time. Forecasts and assessments used for planning purposes will not have been borne out precisely by events and therefore some distinction between an optimal system for one year and the actual system can be expected.

14.15,135 As a result of the factors above, in order to ensure adequate revenue recovery, a constant non-locational **Residual Tariff** for generation and demand is calculated, which includes infrastructure substation asset costs. It is added to the initial transport tariffs for both Peak Security and Year Round backgrounds so that the correct generation / demand revenue split is maintained and the total revenue recovery is achieved.

$$RT_{D} = \frac{(p \times TRR) - ITRR_{DPS} - ITRR_{DYR} - ITRR_{EE}}{\sum_{Di=1}^{14} D_{Di}}$$

$$RT_{G} = \frac{\left[(1-p) \times TRR\right] - ITRR_{GPS} - ITRR_{GYRNS} - ITRR_{GYRS} - LCRR_{G}}{\sum_{Gi=1}^{n} G_{Gi}}$$

Where RT

= Residual Tariff (£/MW)

Proportion of revenue to be recovered from demand

Final £/kW Tariff

р

14.15,136 The effective Transmission Network Use of System tariff (TNUoS) for generation and gross demand can now be calculated as the sum of the initial transport wider tariffs for Peak Security and Year Round backgrounds, the non-locational residual tariff and the local tariff:

$$ET_{Gi} = \frac{ITT_{GiPS} + ITT_{GiYRNS} + ITT_{GiYRS} + RT_{G}}{1000} + LT_{Gi}$$
$$= \frac{ITT_{DiPS} + ITT_{DiYR} + RT_{D}}{1000}$$

Where

ET_{Gi} = Effective Generation TNUoS Tariff expressed in £/kW (ET_{Gi} would only be applicable to a Power Station with a PS flag of 1 and ALF of 1; in all other circumstances ITT_{GiPS}, ITT_{GiPRNS} and ITT_{GiPRS} will be applied using Power Station specific data)

ET_{Di} = Effective Gross Demand TNUoS Tariff expressed in £/kW

The effective Transmission Network Use of System tariff (TNUoS) for affected embedded exports and grandfathered embedded exports can now be calculated by expressing the embedded export tariff in £/kW values:

$$ET_{EEi} = \frac{EET_{Di}}{1000}$$

Where **Where**

ET_{EEi} = Effective Embedded Export TNUoS Tariff expressed in £/kW

Page 31 of 63

Deleted: ¶ $RT_D = \frac{(p \times TRR)}{2}$ Ī

Deleted: 132

For the purposes of the annual Statement of Use of System Charges ET_{Gi} will be published as ITT_{GIPS} ; ITT_{GIYRS} , ITT_{GIYRS} , RT_G and LT_{Gi}

14.15,137 Where tariffs do not change mid way through a charging year, final demand and generation tariffs will be the same as the effective tariffs.

 $FT_{Gi} = ET_{Gi}$ $FT_{Di} = ET_{Di}$ $F\overline{T_{EEAi}} = ET_{EEi}$

14.15,<u>138</u> Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$FT_{Gi} = \frac{12 \times \left(ET_{Gi} \times \sum_{Gi=1}^{20} G_{Gi} - FL_{Gi}\right)}{b \times \sum_{Gi=1}^{27} G_{Gi}}$$

$$FT_{EEi} = \frac{12 \times (ET_{EEi} \times \sum_{Di=1}^{14} EET_{Di} - FL_{Di})}{b \times \sum_{Di=1}^{14} EET_{Di}} \text{ and } FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{14} EET_{Di}}$$

Where:

b = number of months the revised tariff is applicable for

FL = Forecast liability incurred over the period that the original tariff is applicable for

Note: The ET_{Gi} element used in the formula above will be based on an individual Power Stations PS flag and ALF for Power Station G_{Gi}, aggregated to ensure overall correct revenue recovery.

14.15.139 If the final gross_demand TNUoS Tariff results in a negative number then this is collared to £0/kW with the resultant non-recovered revenue smeared over the remaining demand zones:

If $FT_{Di} < 0$, then i = 1 to z

Therefore,

 $NRRT_{D} = \frac{\sum_{i=1}^{z} \left(FT_{Di} \times D_{Di}\right)}{\sum_{i=-i+1}^{14} D_{Di}}$

For i= 1 to z: $RFT_{Di} = 0$

For *i*=z+1 to 14:
$$RFT_{Di} = FT_{Di} + NRRT_D$$

Where

Page 32 of 63

V1.12-01 April 2016

Deleted: 40

Deleted: 134

CUS	SC v1.12		
	$NRRT_{D} = Non Recovered Revenue Tariff (\pounds/kW)$ RFT _{Di} = Revised Final Tariff (\pounds/kW)		
	14.15,140 The tariffs applicable for any particular year are detailed in The Company's Statement of Use of System Charges, which is available from the Charging website. Archived tariff information may also be obtained from the Charging website.	Deleted: 137	
	14.15, <u>141</u> The zonal maps referenced in The Company's Statement of Use of System Charges and available on the Charging website contain detailed information for the charging year in question of which Grid Supply Points fall into which TNUoS zones.	Deleted: 138	
	14.15,142 New Grid Supply Points will be classified into zones on the following basis:	Deleted: 139	
	• For demand zones, according to the GSP Group to which the Grid Supply Point is allocated for energy market settlement purposes.		
	• For generation zones, with reference to the geographic proximity to existing zones and, where close to a boundary between existing zones, with reference to the marginal costs arising from transport model studies. The GSP will then be allocated to the zone, which contains the most similar marginal costs.		
I	14.15,143 The Company has available, upon request, the DCLF ICRP transport model, tariff model template and data necessary to run the model, consisting of nodal values of generation and demand connection points to the NETS. The model and data will enable the basic nodal charges to be determined and will also allow sensitivity analysis concerning alternative developments of generation and demand to be undertaken. The model is available from the Charging Team and whilst it is free of charge, it is provided under licence to restrict its distribution and commercial use.	Deleted: 140	
ļ	14.15,144 The Company will be pleased to run specific sensitivity studies for Users under a separate study contract in line with the fees set out in the Statement of Use of System Charges . Please contact the Charging Team .	Deleted: 141	
I	14.15,145 The factors which will affect the level of TNUoS charges from year to year include-;	Deleted: 142	
	 the forecast level of peak demand on the system the Price Control formula (including the effect of any under/over recovery from the previous year), the expansion constant, the locational security factor, the PS flag the ALF of a generator changes in the transmission network HVDC circuit impedance calculation changes in the pattern of generation capacity and demand. changes in the pattern of embedded exports 		
	14.15,146 In accordance with Standard Licence Condition C13, generation directly connected to the NETS 132kV transmission network which would normally be subject to generation TNUoS charges but would not, on the basis of generating capacity, be liable for charges if it were connected to a licensed distribution network qualifies for a reduction in transmission charges by a designated sum,	Deleted: 143	

Page 33 of 63

1

determined by the Authority. Any shortfall in recovery will result in a unit amount increase in <u>gross</u> demand charges to compensate for the deficit. Further information is provided in the Statement of the Use of System Charges.

Stability & Predictability of TNUoS tariffs

14.15,147 A number of provisions are included within the methodology to promote the stability and predictability of TNUoS tariffs. These are described in 14.29.

14.16 Derivation of the Transmission Network Use of System Energy Consumption Tariff and Short Term Capacity Tariffs

- 14.16.1 For the purposes of this section, Lead Parties of Balancing Mechanism (BM) Units that are liable for Transmission Network Use of System Demand Charges are termed Suppliers.
- 14.16.2 Following calculation of the Transmission Network Use of System £/kW Gross Demand Tariff (as outlined in Chapter 2: Derivation of the TNUoS Tariff) for each GSP Group is calculated as follows:

$$p/kWh Tariff = (NHHD_F * £/kW Tariff - FL_G) *100$$

NHHC_G

Where:

 \pounds/kW Tariff = The \pounds/kW Effective <u>Gross</u> Demand Tariff (\pounds/kW), as calculated previously, for the GSP Group concerned.

 \mathbf{NHHD}_{F} = The Company's forecast of Suppliers' non-half-hourly metered Triad Demand (kW) for the GSP Group concerned. The forecast is based on historical data.

 FL_{G} = Forecast Liability incurred for the GSP Group concerned.

 $\rm NHHC_{G}$ = The Company's forecast of GSP Group non-half-hourly metered total energy consumption (kWh) for the period 16:00 hrs to 19:00hrs inclusive (i.e. settlement periods 33 to 38) inclusive over the period the tariff is applicable for the GSP Group concerned.

Short Term Transmission Entry Capacity (STTEC) Tariff

14.16.3 The Short Term Transmission Entry Capacity (STTEC) tariff for positive zones is derived from the Effective Tariff (ET_{Gi}) annual TNUoS £/kW tariffs (14.15.112). If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the STTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (i.e. over the whole financial year, not just the period that the STTEC is applicable for). STTECs will not be reconciled following a mid year charge change. The premium associated with the flexible product is associated with the analysis that 90% of the annual charge is linked to the system peak. The system peak is likely to occur in the period of November to February inclusive (120 days, irrespective of leap years). The calculation for positive generation zones is as follows:

$$\frac{FT_{Gi} \times 0.9 \times STTEC \ Period}{120} = STTEC \ tariff \ (\pounds/kW/period)$$

Where:

FT	=	Final annual TNUoS Tariff expressed in £/kW
Gi	=	Generation zone
STTEC Period	=	A period applied for in days as defined in the CUSC

Page 35 of 63

- 14.16.4 For the avoidance of doubt, the charge calculated under 14.16.3 above will represent each single period application for STTEC. Requests for multiple /STTEC periods will result in each STTEC period being calculated and invoiced separately.
- 14.16.5 The STTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.

Limited Duration Transmission Entry Capacity (LDTEC) Tariffs

14.16.6 The Limited Duration Transmission Entry Capacity (LDTEC) tariff for positive zones is derived from the equivalent zonal STTEC tariff for up to the initial 17 weeks of LDTEC in a given charging year (whether consecutive or not). For the remaining weeks of the year, the LDTEC tariff is set to collect the balance of the annual TNUoS liability over the maximum duration of LDTEC that can be granted in a single application. If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the LDTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (ie over the whole financial year, not just the period that the STTEC is applicable for). LDTECs will not be reconciled following a mid year charge change:

Initial 17 weeks (high rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.9 \times 7}{120}$$

Remaining weeks (low rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.1075 \times 7}{316 - 120} \times (1 + P)$$

where FT is the final annual TNUoS tariff expressed in £/kW; G_i is the generation TNUoS zone; and P is the premium in % above the annual equivalent TNUoS charge as determined by The Company, which shall have the value 0.

- 14.16.7 The LDTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.
- 14.16.8 The tariffs applicable for any particular year are detailed in The Company's **Statement of Use of System Charges** which is available from the **Charging website**. Historical tariffs are also available on the **Charging website**.

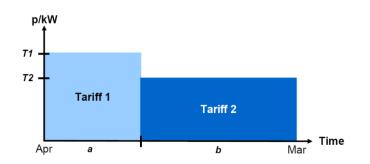
14.17 Demand Charges

Parties Liable for Demand Charges

- 14.17.1 Demand charges are subdivided into charges for gross demand, energy and embedded export. The following parties shall be liable for some or all of the categories of demand charges:
 - The Lead Party of a Supplier BM Unit;
 - Power Stations with a Bilateral Connection Agreement;
 - Parties with a Bilateral Embedded Generation Agreement
- 14.17.2 Classification of parties for charging purposes, section 14.26, provides an illustration of how a party is classified in the context of Use of System charging and refers to the paragraphs most pertinent to each party.

Basis of Gross Demand Charges

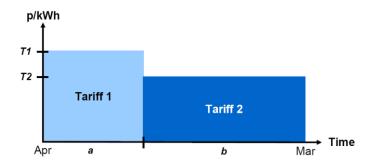
app


app

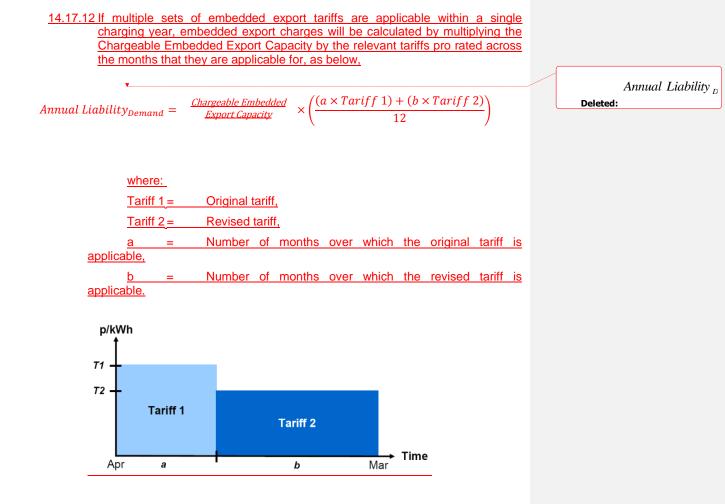
- 14.17.3 <u>Gross d</u>emand charges are based on a de-<u>minimis</u> £0/kW charge for Half Hourly and £0/kWh for Non Half Hourly metered demand.
 - 14.17.4 Chargeable <u>Gross</u> Demand Capacity is the value of Triad <u>gross</u> demand (kW). Chargeable Energy Capacity is the energy consumption (kWh). The definition of both these terms is set out below.
 - 14.17.5 If there is a single set of <u>gross</u> demand tariffs within a charging year, the Chargeable <u>Gross</u> Demand Capacity is multiplied by the relevant <u>gross</u> demand tariff, for the calculation of <u>gross</u> demand charges.
 - 14.17.6 If there is a single set of energy tariffs within a charging year, the Chargeable Energy Capacity is multiplied by the relevant energy consumption tariff for the calculation of energy charges..
 - 14.17.7 If multiple sets of <u>gross</u> demand tariffs are applicable within a single charging year, <u>gross</u> demand charges will be calculated by multiplying the Chargeable <u>Gross</u> Demand Capacity by the relevant tariffs pro rated across the months that they are applicable for, as below,

Annuc	ıl Liabilit <u>;</u>	y _{Demand} = <u>Cha</u>	nrge. man	<u>able Gross</u> <u>d Capacity</u>	$\times \left(\frac{(a)}{a}\right)$	< Tariff 2	$\frac{1}{12} + (b)$	×Tariff 2	<u>!)</u>)	
whe	re:						_			
Tarif	ff 1 =	Original ta	ariff	,						
Tarif	ff 2 =	Revised ta	arif	f,						
a licable,	=	Number	of	months	over	which	the	original	tariff	is
b licable.	=	Number	of	months	over	which	the	revised	tariff	is

Deleted: minimus


Deleted: Annual Liability D

14.17.8 If multiple sets of energy tariffs are applicable within a single charging year, energy charges will be calculated by multiplying relevant Tariffs by the Chargeable Energy Capacity over the period that that the tariffs are applicable for and summing over the year.


Annual Liability $_{Energy} = Tariff \ 1 \times \sum_{TI_s}^{TI_E} Chargeable Energy Capacity + Tariff \ 2 \times \sum_{TZ_s}^{TI_E} Chargeable Energy Capacity$

Where: T1s Start date for the period for which the original tariff is = applicable, End date for the period for which the original tariff is T1_E applicable, Start date for the period for which the revised tariff is T2s _ applicable, End date for the period for which the revised tariff is T2_E = applicable.

Basis of Embedded Export Charges

- 14.17.9 Embedded export charges are based on a £/kW charge for Half Hourly metered embedded export.
- <u>14.17.10 Chargeable Embedded Export Capacity is the value of Embedded Export at</u> <u>Triad (kW). The definition of this term is set out below.</u>
- 14.17.11 If there is a single set of embedded export tariffs within a charging year, the Chargeable Embedded Export Capacity is multiplied by the relevant embedded export tariff, for the calculation of embedded export charges.

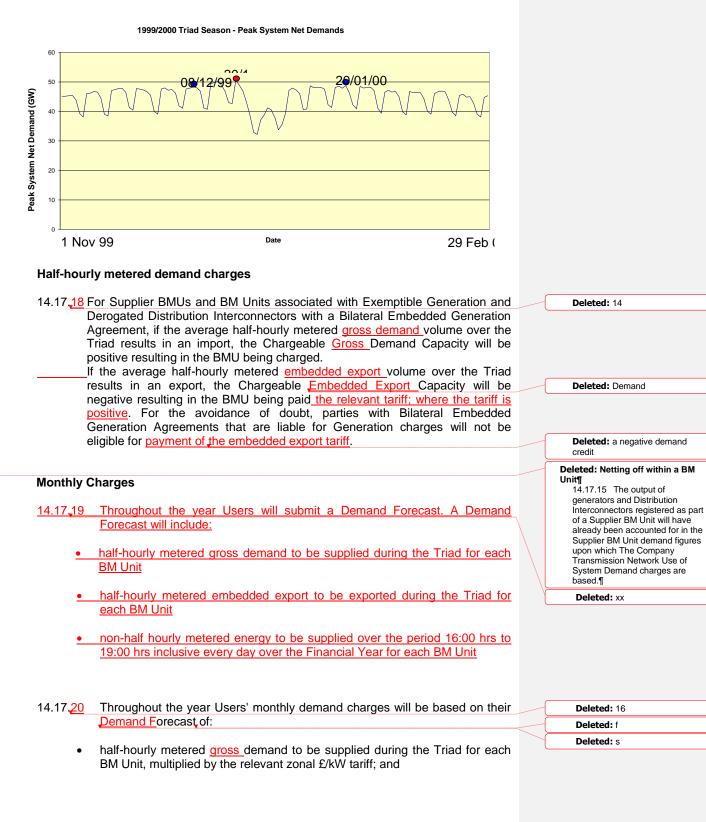
Supplier BM Unit

14.17,<u>13</u> A Supplier BM Unit charges will be the sum of its energy, <u>gross_demand_and</u> <u>embedded export</u> liabilities where:

- The Chargeable <u>Gross</u> Demand Capacity will be the average of the Supplier BM Unit's half-hourly metered <u>gross</u> demand during the Triad (and the £/kW tariff),
- The Chargeable Embedded Export Capacity will be the average of the Supplier BM Unit's half-hourly metered embedded export during the Triad (and the £/kW tariff), and
- The Chargeable Energy Capacity will be the Supplier BM Unit's non halfhourly metered energy consumption over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year (and the p/kWh tariff).

Power Stations with a Bilateral Connection Agreement and Licensable Generation with a Bilateral Embedded Generation Agreement

Page 39 of 63


V1.12-01 April 2016

Deleted: 9

CUSC v1.12	
14.17,14 The Chargeable Gross Demand Capacity for a Power Station with a Bilateral	Deleted: 10
Connection Agreement or Licensable Generation with a Bilateral Embedded	
Generation Agreement will be based on the average of the gross import over	Deleted: net
each Triad leg of the BM Units associated with the Power Station (in Appendix C of its Bilateral Connection Agreement or Bilateral Embedded Generation Agreement, including metered additional load) during the Triad.	
Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement	
14.17,15,The demand charges for Exemptible Generation and Derogated Distribution	Deleted: 11
Interconnector with a Bilateral Embedded Generation Agreement will be the sum of its gross demand and embedded export liabilities where:	Deleted: An
sum of his gross demand and embedded export liabilities where.	
 The Chargeable Gross Demand Capacity for Exemptible Generation and Deve geted Distribution Intercomposition with a Dilatoral Each added Composition 	
Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement will be based on the average of the metered <u>gross demand</u> of	Deleted: volume
each BM Unit specified in Appendix C of the Bilateral Embedded Generation	Deleted: volume
Agreement during the Triad.	
The Chargeable Embedded Export Capacity for Exemptible Generation and	
 <u>The Chargeable Embedded Export Capacity for Exemptible Generation and</u> Derogated Distribution Interconnectors with a Bilateral Embedded Generation 	
Agreement will be based on the average of the metered embedded export of	
each BM Unit specified in Appendix C of the Bilateral Embedded Generation	
Agreement during the Triad.	
Small Generators Tariffs	
14.17.16 In accordance with Standard Licence Condition C13, any under recovery from	Deleted: 12
the MAR arising from the small generators discount will result in a unit amount	
of increase to all GB gross demand tariffs.	
The Triad	
The mau	
14.17,17 The Triad is used as a short hand way to describe the three settlement periods	Deleted: 13
of highest transmission system demand within a Financial Year, namely the	
half hour settlement period of system peak net demand and the two half hour	
settlement periods of next highest <u>net</u> demand, which are separated from the	
system peak <u>net</u> demand and from each other by at least 10 Clear Days, between November and February of the Financial Year inclusive. Exports on	
directly connected Interconnectors and Interconnectors capable of exporting	
more than 100MW to the Total System shall be excluded when determining the	
system peak net demand. An illustration is shown below.	

I

I

- half-hourly metered embedded export to be supplied during the Triad for each BM Unit, multiplied by the relevant zonal £/kW tariff; and
- non-half hourly metered energy to be supplied over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year for each BM Unit, multiplied by the relevant zonal p/kWh tariff

Users' annual TNUoS demand charges are based on these forecasts and are split evenly over the 12 months of the year. Users have the opportunity to vary their demand forecasts on a quarterly basis over the course of the year, with the demand forecast requested in February relating to the next Financial Year. Users will be notified of the timescales and process for each of the quarterly updates. The Company will revise the monthly Transmission Network Use of System demand charges by calculating the annual charge based on the new forecast, subtracting the amount paid to date, and splitting the remainder evenly over the remaining months. For the avoidance of doubt, only positive demand forecasts (i.e. representing <u>a net</u> import from the system) will be <u>used in the calculation of charges</u>.

Demand forecasts for a User will be considered positive where:

- The sum of the gross demand forecast and embedded export forecast is positive; and
- The non-half hourly metered energy forecast is positive.

14.17.21 Users should submit reasonable forecasts of gross demand, embedded export and energy in accordance with the CUSC. The Company shall use the following methodology to derive a forecast to be used in determining whether a User's forecast is reasonable, in accordance with the CUSC, and this will be used as a replacement forecast if the User's total forecast is deemed unreasonable. The Company will, at all times, use the latest available Settlement data.

For existing Users:

- i) The User's Triad <u>gross</u> demand<u>and embedded export</u> for the preceding Financial Year will be used where User settlement data is available and where The Company calculates its forecast before the Financial Year. Otherwise, the User's average weekday settlement period 35 half-hourly metered (HH) <u>gross</u> demand <u>and embedded export</u> in the Financial Year to date is compared to the equivalent average <u>gross</u> demand<u>and</u> <u>embedded export</u> for the corresponding days in the preceding year. The percentage difference is then applied to the User's HH <u>gross</u> demand<u>and</u> <u>embedded export</u> at Triad in the preceding Financial Year to derive a forecast of the User's HH <u>gross</u> demand <u>and embedded export</u> at Triad for this Financial Year.
- ii) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day in the Financial Year to date is compared to the equivalent energy consumption over the corresponding days in the preceding year. The percentage difference is then applied to the User's total NHH energy consumption in the preceding Financial Year to derive a forecast of the User's NHH energy consumption for this Financial Year.

For new Users who have completed a Use of System Supply Confirmation Notice in the current Financial Year:

Page 42 of 63

V1.12-01 April 2016

Deleted: accepted

Deleted: 17

1

iii) The User's average weekday settlement period 35 half-hourly metered (HH) gross demand and embedded export over the last complete month for which The Company has settlement data is calculated. Total system average HH gross demand and embedded export for weekday settlement period 35 for the corresponding month in the previous year is compared to total system HH_gross demand and embedded export at Triad in that year and a percentage difference is calculated. This percentage is then applied to the User's average HH gross demand and embedded export for weekday settlement period 35 over the last month to derive a forecast of the User's HH gross demand and embedded export at Triad for this Financial Year.

- iv) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day over the last complete month for which The Company has settlement data is noted. Total system NHH energy consumption over the corresponding month in the previous year is compared to total system NHH energy consumption over the remaining months of that Financial Year and a percentage difference is calculated. This percentage is then applied to the User's NHH energy consumption over the month described above, and all NHH energy consumption in previous months is added, in order to derive a forecast of the User's NHH metered energy consumption for this Financial Year.
- 14.17.22 14.28 Determination of The Company's Forecast for Demand Charge Purposes illustrates how the demand forecast will be calculated by The Company.

Reconciliation of Demand Charges

14.17,23 The reconciliation process is set out in the CUSC. The demand reconciliation process compares the monthly charges paid by Users against actual outturn charges. Due to the Settlements process, reconciliation of demand charges is carried out in two stages; initial reconciliation and final reconciliation.

Initial Reconciliation of demand charges

14.17,24 The initial reconciliation process compares Users' demand forecasts and corresponding monthly charges paid over the year against actual outturn data (using latest Settlement data available at the time) and corresponding charges. Initial reconciliation is carried out in two parts; Initial Reconciliation Part 1 deals with the reconciliation of half-hourly metered demand charges and Initial Reconciliation Part 2 deals with the reconciliation of non-half-hourly metered demand charges.

Initial Reconciliation Part 1– Half-hourly metered demand

- 14.17.25 The Company will identify the periods forming the Triad once it has received Central Volume Allocation data from the Settlement Administration Agent for all days up to and including the last day of February. Once The Company has notified Users of the periods forming the Triad they will not be changed even if disputes are subsequently resolved which would change the periods forming the Triad.
- 14.17,<u>26</u> Initial outturn charges for half-hourly metered <u>gross</u> demand will be determined using the latest available data of actual average Triad <u>gross</u> demand (kW) multiplied by the zonal <u>gross</u> demand tariff(s) (£/kW) applicable to the months

Page 43 of 63

Deleted: 18

Deleted: 19

Deleted: 20

Deleted: 1

Deleted: 22

Сι

l

I

I

l

I

SC v1.12			
	concerned for each zone for that Financial Year. These acture reconciled against the monthly charges paid in respect of demand.		
<u>14.17,2</u>	7 Initial outturn charges for half-hourly metered embedded determined using the latest available data of actual average export (kW) multiplied by the zonal embedded export tariff(s) to the months concerned for each zone for that Financial Yo values are then reconciled against the monthly charges paid hourly embedded exports.	e Triad embedded (£/kW) applicable ear. These actual	Deleted: xx
Initial F	econciliation Part 2 – Non-half-hourly metered demand		
14.17	8 Actual payments for non-half-hourly metered demand will be the latest available actual energy consumption data (kWh) for hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 3 multiplied by the energy consumption tariff(s) (p/kWh) applica concerned for each zone. These actual values are then reco- monthly charges paid in respect of non-half-hourly energy con-	r the period 16:00 38) over the year able to the months onciled against the	Deleted: 23
Final R	econciliation of demand charges		
14.17.2	<u>9</u> The final reconciliation process compares Users' charges (as the initial reconciliation process using the latest available outturn demand charges (based on final settlement data of demand, embedded exports and non-half-hourly energy const	data) against final half-hourly gross	Deleted: 24
14.17	<u>Pinal actual charges will be determined using the final dem data taken from the Final Reconciliation Settlement Reconciliation Volume Allocation Run.</u>		Deleted: 25
Recon	iliation of manifest errors		
14.17	1 In the event that a manifest error, or multiple errors in the cal tariffs results in a material discrepancy in aUsers T reconciliation process for all Users qualifying under Section accordance with Sections 14.17,24 to 14.17,30. The reconciliation is not practicable, a post-year reconciliation will the form of a one-off payment.	NUoS tariff, the 14.17. <u>33</u> will be in onciliation process 5. Where such	Deleted: 26 Deleted: 28 Deleted: 20 Deleted: 25
14.17	2 A manifest error shall be defined as any of the following:		Deleted: 27
	 a) an error in the transfer of relevant data between Licensees or Distribution Network Operators; b) an error in the population of the Transport Model with c) an error in the function of the Transport Model; or d) an error in the inputs or function of the Tariff Model. 		
14.17	<u>3</u> A manifest error shall be considered material in the event that the net effect of multiple errors, has an impact of the lesser of the l		Deleted: 28
	a) an error in a User's TNUoS tariff of at least +/-£0.50/		
	Page 44 of 63	V1.12– 01 April 2016	

b) an error in a User's TNUoS tariff which results in an error in the annual TNUoS charge of a User in excess of +/-£250,000.

14.17,<u>34</u> A manifest error shall only be reconciled if it has been identified within the charging year for which the error has an effect. Errors identified outside of this period will not be eligible for reconciliation retrospectively.

Implementation of P272

- 14.17,<u>35</u>.1 BSC modification P272 requires Suppliers to move Profile Classes 5-8 to Measurement Class E - G (i.e. moving from NHH to HH settlement) by April 2016. The majority of these meters are expected to transfer during the preceding Charging Years up until the implementation date of P272 and some meters will have been transferred before the start of 1ST April 2015. A change from NHH to HH within a Charging Year would normally result in Suppliers being liable for TNUoS for part of the year as NHH and also being subject to HH charging. This section describes how the Company will treat this situation in the transition to P272 implementation for the purposes of TNUoS charging; and the forecasts that Suppliers should provide to the Company.
- 14.17,<u>35.2</u> Notwithstanding 14.17,<u>13</u>, for each Charging Year which begins after 31 March 2015 and prior to implementation of BSC Modification P272, all demand associated with meters that are in NHH Profile Classes 5 to 8 at the start of that charging year as well as all meters in Measurement Classes E G will be treated as Chargeable Energy Capacity (NHH) for the purposes of TNUoS charging for the full Charging Year unless 14.17,<u>35.3</u> applies.
 - 14.17,35.3 Where prior to 1st April 2015 a Profile Class meter has already transferred to Measurement Class settlement (HH) the associated Supplier may opt to treat the demand volume as Chargeable Demand Capacity (HH) for the purposes of TNUoS charging up until implementation of P272, subject to meeting conditions in 14.17,35.6. If the associated Supplier does not opt to treat the demand volume as Demand Capacity (HH) it will be treated by default as Chargeable Energy Capacity (NHH) for each full Charging Year up until implementation of P272.
 - 14.17,35.4 The Company will calculate the Chargeable Energy Capacity associated with meters that have transferred to HH settlement but are still treated as NHH for the purposes of TNUoS charging from Settlement data provided directly from Elexon i.e. Suppliers need not Supply any additional information if they accept this default position.
- 14.17,35.5 The forecasts that Suppliers submit to the Company under CUSC 3.10, 3.11 and 3.12 for the purpose of TNUoS monthly billing referred to in 14.17,20 and 14.17,21 for both Chargeable Demand Capacity and Chargeable Energy Capacity should reflect this position i.e. volumes associated those Metering Systems that have transferred from a Profile Class to a Measurement Class in the BSC (NHH to HH settlement) but are to be treated as NHH for the purposes of TNUoS charging should be included in the forecast of Chargeable Energy Capacity and not Chargeable Demand Capacity, unless 14.17,35.3 applies.
 - 14.17,<u>35</u>.6 Where a Supplier wishes for Metering Systems that have transferred from Profile Class to Measurement Class in the BSC (NHH to HH settlement) prior to 1st April 2015, to be treated as Chargeable Demand Capacity (HH/

Page 45 of 63

V1.12-01 April 2016

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 9

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 16

Deleted: 17

Deleted: 29

Deleted: 29

I

Measurement Class settled) it must inform the Company prior to October 2015. The Company will treat these as Chargeable Demand Capacity (HH / Measurement Class settled) for the purposes of calculating the actual annual liability for the Charging Years up until implementation of P272. For these cases only, the Supplier should notify the Company of the Meter Point Administration Number(s) (MPAN). For these notified meters the Supplier shall provide the Company with verified metered demand data for the hours between 4pm and 7pm of each day of each Charging Year up to implementation of P272 and for each Triad half hour as notified by the Company prior to May of the following Charging Year up until two years after the implementation of P272 to allow reconciliation (e.g. Mav 2017 and May 2018 for the Charging Year 2016/17). Where the Supplier fails to provide the data or the data is incomplete for a Charging Year TNUoS charges for that MPAN will be reconciled as part of the Supplier's NHH BMU (Chargeable Energy Capacity). Where a Supplier opts, if eligible, for TNUoS liability to be calculated on Chargeable Demand Capacity it shall submit the forecasts referred to in 14.17,35.5 taking account of this.

14.17,35.7 The Company will maintain a list of all MPANs that Suppliers have elected to be treated as HH. This list will be updated monthly and will be provided to registered Suppliers upon request.

Further Information

- 14.17,<u>36</u> 14.25 Reconciliation of Demand Related Transmission Network Use of System Charges of this statement illustrates how the monthly charges are reconciled against the actual values for <u>gross</u> demand, <u>embedded export</u> and consumption for half-hourly <u>gross demand</u>, <u>embedded export</u> and non-halfhourly metered demand respectively.
- 14.17,<u>37</u> **The Statement of Use of System Charges** contains the £/kW zonal gross demand tariffs, <u>the £/kW zonal embedded export tariffs</u>, and the p/kWh energy consumption tariffs for the current Financial Year.
- 14.17,<u>38</u> 14.27 Transmission Network Use of System Charging Flowcharts of this statement contains flowcharts demonstrating the calculation of these charges for those parties liable.

Deleted: 29 Deleted: 30

Deleted: 29

Deleted: 31

Deleted: 32

....

14.24 Example: Calculation of Zonal Gross Demand Tariff

Let us consider all nodes in a demand zone in this example

The table below shows a sample output of the transport model comprising the node, the Peak Security and Year Round marginal km of an injection at the node with a consequent withdrawal at the distributed reference node, the generation sited at the node, scaled to ensure total national generation = total national <u>net</u> demand and the <u>net</u> demand sited at the node.

Demand Zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	<u>Net</u> Demand (MW)
14	ABHA4A	-77.25	-230.25	127
14	ABHA4B	-77.27	-230.12	127
14	ALVE4A	-82.28	-197.18	100
14	ALVE4B	-82.28	-197.15	100
14	AXMI40_SWEB	-125.58	-176.19	97
14	BRWA2A	-46.55	-182.68	96
14	BRWA2B	-46.55	-181.12	96
14	EXET40	-87.69	-164.42	340
14	HINP20	-46.55	-147.14	0
14	HINP40	-46.55	-147.14	0
14	INDQ40	-102.02	-262.50	444
14	IROA20_SWEB	-109.05	-141.92	462
14	LAND40	-62.54	-246.16	262
14	MELK40_SWEB	18.67	-140.75	83
14	SEAB40	65.33	-140.97	304
14	TAUN4A	-66.65	-149.11	55
14	TAUN4B	-66.66	-149.11	55
		Totals		2748

In order to calculate the <u>gross</u> demand tariff we would carry out the following steps:

(i) calculate the demand weighted nodal shadow costs

For this example zone this would be as follows:

Demand zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	Net Demand (MW)	Peak Security Demand Weighted Nodal Marginal km	Year Round Demand Weighted Nodal Marginal km
14	ABHA4A	-77.25	-230.25	127	-3.57	-10.64
14	ABHA4B	-77.27	-230.12	127	-3.57	-10.64
14	ALVE4A	-82.28	-197.18	100	-2.99	-7.17
14	ALVE4B	-82.28	-197.15	100	-2.99	-7.17
14	AXMI40_SWEB	-125.58	-176.19	97	-4.43	-6.22
14	BRWA2A	-46.55	-182.68	96	-1.63	-6.38
14	BRWA2B	-46.55	-181.12	96	-1.63	-6.33
14	EXET40	-87.69	-164.42	340	-10.85	-20.34
14	INDQ40	-102.02	-262.50	444	-16.48	-42.41
14	IROA20_SWEB	-109.05	-141.92	462	-18.33	-23.86
14	LAND40	-62.54	-246.16	262	-5.96	-23.47
14	MELK40_SWEB	18.67	-140.75	83	0.56	-4.25
14	SEAB40	65.33	-140.97	304	7.23	-15.59
14	TAUN4A	-66.65	-149.11	55	-1.33	-2.98
14	TAUN4B	-66.66	-149.11	55	-1.33	-2.98
		Totals		2748	-49.19	-190.43

(ii) sum the Peak Security and Year Round demand weighted nodal shadow costs to give zonal figures. For this example zone this is shown in the above table and is 49.19km for Peak Security background and 190.43km for Year Round background.

(iii) calculate the transport tariffs by multiplying the figures in (ii) above by the expansion constant (& dividing by 1000 to put into units of £/kW):

For this example zone, assuming an expansion constant of $\pm 10.07/MWkm$ and a locational security factor of 1.80:

a) Peak Security tariff – 49.19km <u>* £10.07/MWkm * 1.8</u> = <u>£0.89/kW</u> 1000

Page 49 of 63

b) Year Round tariff -<u>190.43km * £10.07/MWkm * 1.8</u> = <u>£3.45/kW</u> 1000

(iv) We now need to calculate the residual tariff. This is calculated by taking the total revenue to be recovered from demand (calculated as c.73% of total The Company_ TNUoS target revenue for the year), less the revenue which would be recovered through the demand transport tariffs and revenue recovery through embedded export tariffs, divided by total expected gross GSP group demand.

Assuming the total revenue to be recovered from TNUoS is £1067m, the total recovery from <u>gross GSP group</u> demand would be $(73\% \times £1067m) = £779m$. Assuming the total recovery from <u>gross GSP group</u> demand transport tariffs is £140m, total recovery from <u>embedded export tariffs is -£10m</u> and total forecast chargeable <u>gross GSP group</u> demand capacity is 50000MW, the demand residual tariff would be as follows:

 $\frac{\pounds779m - \pounds140m - -\pounds10m}{50,000MW} = \pounds12.98/kW$

 (v) to get to the final tariff, we simply add on the demand residual tariff calculated in (v) to the zonal transport tariffs calculated in (iii(a)) and (iii(b))

For zone 14:

 $\pounds 0.89/kW + \pounds 3.45/kW + \pounds 12.98/kW =$ $\pounds 17.32/kW$

- To summarise, in order to calculate the <u>gross</u> demand tariffs, we evaluate a <u>net</u> demand weighted zonal marginal km cost multiply by the expansion constant and locational security factor then we add a constant (termed the residual cost) to give the overall tariff.
- (vii) The final demand tariff is subject to further adjustment to allow for the minimum £0/kW gross_demand charge. The application of a discount for small generators pursuant to Licence Condition C13 will also affect the final gross_demand tariff.

Deleted: gross

Deleted: 130m

Deleted:	$\pounds779m - \pounds130m$	_
Deleteu:	50000MW	_

14.25 Reconciliation of <u>Gross</u> Demand Related Transmission Network Use of System Charges

This appendix illustrates the methodology used by The Company in the reconciliation of Transmission Network Use of System charges for <u>gross</u> demand. The example highlights the different stages of the calculations from the monthly invoiced amounts, right through to Final Reconciliation.

Monthly Charges

Suppliers provide half-hourly (HH) gross demand and embedded export forecasts and non-halfhourly (NHH) demand forecasts by BM Unit every quarter. An example of such forecasts and the corresponding monthly invoiced amounts, based on tariffs of £10.00/kW for gross demand, £5.00/kW for embedded export and 1.20p/kWh for energy consumption, is as follows:

	Forecast HH Triad <u>Gross</u> Demand <u>HHD_E (</u> kW)	HH <u>Gross</u> <u>Demand</u> Monthly Invoiced Amount (£)	Forecast HH Triad Embedded Export HHEE _E (kW)	<u>HH</u> <u>Embedded</u> <u>Generation</u> <u>Monthly</u> <u>Invoiced</u> <u>Amount (£)</u>	Forecast NHH Energy Consumpti on NHHC _F (kW h)	NHH Monthly Invoiced Amount (£)	Net Monthly Invoiced Amount (£)
Apr	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
May	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jun	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jul	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Aug	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Sep	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Oct	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Nov	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Dec	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Jan	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Feb	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Mar	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Total		72,000		<u>(3,000)</u>		216,000	<u>297</u> ,000

As shown, for the first nine months the Supplier provided a 12,000kW HH triad <u>gross</u> demand forecast, and hence paid HH <u>gross demand</u> monthly charges of £10,000 ((12,000kW x £10.00/kW)/12) for that BM Unit. In January the Supplier provided a revised forecast of 7,200kW, implying a forecast annual charge reduced to £72,000 (7,200kW x £10.00/kW). The Supplier had already paid £90,000, so the excess of £18,000 was credited back to the supplier in three £6,000 instalments over the last three months of the year.

The Supplier provided an embedded export triad forecast of -600kW and hence was paid an embedded export credit of £250 ((600kW x £5.00/kW)/12) for that BM Unit (For the avoidance of doubt, if the embedded export tariff is negative this will result in a debit).

The Supplier also initially provided a 15,000,000kWh NHH energy consumption forecast, and hence paid NHH monthly charges of £15,000 ((15,000,000kWh x 1.2p/kWh)/12) for that BM Unit. In July the Supplier provided a revised forecast of 18,000,000kWh, implying a forecast annual charge increased to £216,000 (18,000,000kWh x 1.2p/kWh). The Supplier had already

paid £45,000, so the remaining £171,000 was split into payments of £19,000 for the last nine months of the year.

The right hand column shows the net monthly charges for the BM Unit.

Initial Reconciliation (Part 1a)

The Supplier's outturn HH triad <u>gross</u> demand, based on <u>initial</u> settlement data (and therefore subject to change in subsequent settlement runs), was 9,000kW. The HH triad <u>gross</u> demand reconciliation charge is therefore calculated as follows:

HHD Reconciliation Charge = $(HHD_A - HHD_F) \times \pounds/kW$ Tariff

= (9,000kW - 7,200kW) x £10.00/kW

= 1,800kW x £10.00/kW

= £18,000

To calculate monthly interest charges, the outturn HHD charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHD charge less the HH <u>gross demand</u> monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 1b)

The Supplier's outturn HH triad embedded export, based on initial settlement data (and therefore subject to change in subsequent settlement runs), was 700kW. The HH triad embedded export reconciliation charge is therefore calculated as follows:

HHEE Reconciliation Charge = (HHEE_A – HHEE_E) x £/kW Tariff

 $= (-500 \text{kW} - -600 \text{kW}) \times \text{\pounds}5.00/\text{kW}$

 $= 100 \text{kW} \times \text{\pounds}5.00/\text{kW}$

= **£500**

To calculate monthly interest charges, the outturn HHEE charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHEE charge less the HH embedded generation monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 2)

The Supplier's outturn NHH energy consumption, based on initial settlement data, was 17,000,000kWh. The NHH energy consumption reconciliation charge is therefore calculated as follows:

Deleted: Please note that payments made to BM Units with a net export over the Triad, based on initial settlement data, will also be reconciled at this stage.¶ As monthly payments will not be made on the basis of a negative forecast, the HHD Reconciliation Charge for an exporting BM Unit will represent the full actual payment owed to that BM Unit (subject to adjustment by subsequent settlement runs). Interest will be calculated as described above.¶

NHHC Reconciliation Charge = $(NHHC_A - NHHC_F) \times p/kWh$ Tariff

100

= <u>(17,000,000kWh - 18,000,000kWh) x 1.20p/kWh</u>

100

= <u>-1,000,000kWh x 1.20p/kWh</u> 100 = **-£12,000**

worked example 4.xls - Initial!J104

The monthly reconciliation amount is equal to the outturn energy consumption charge for that month less the NHH monthly invoiced amount. Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

The net initial TNUoS demand reconciliation charge is therefore $\pounds 6,500$ (£18,000 + $\pounds 500$ - $\pounds 12,000$).

Final Reconciliation

Finally, let us now suppose that after all <u>final</u> Settlement data has been received (up to 14 months after the relevant dates), the outturn HH triad <u>gross</u> demand, <u>HH triad embedded export</u> and NHH energy consumption values were 9,500kW, <u>-550kW</u> and 16,500,000kWh, respectively.

Final HH <u>Gross Demand</u>	= (9,500kW - 9,000kW) x £10.00/kW
<u>Reconciliation Charge</u>	= £5,000
Final HH Embedded Export	= (-550kW500kW) x £5.00/kW
Reconciliation Charge	= -£250

Final NHH Reconciliation Charge = $(16,700,000kWh - 17,000,000kWh) \times 1.20p/kWh$ 100 = -£3,600

Consequently, the net final TNUoS demand reconciliation charge will be $\pounds 1, \underline{150} (\pounds 5,000 + -\pounds 250 + -\pounds 3,600)$.

Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

Outturn data for BM Units with a net export over the Triad will be received at this stage and final reconciliation will be carried out, as required. Interest will be calculated as described above.

Terminology:

 HHD_A = The Supplier's outturn half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

Page 53 of 63

Deleted: 000

I

 HHD_F = The Supplier's forecast half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

<u>HHEE_A = The Supplier's outturn half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

<u>HHEE_E = The Supplier's forecast half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

NHHC_A = The Supplier's outturn non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1^{st} to March 31^{st} , for the demand zone concerned.

NHHC_F = The Supplier's forecast non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1st to March 31st, for the demand zone concerned.

£/kW Tariff = The £/kW <u>Gross</u> Demand <u>or Embedded Export</u> Tariff as shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

p/kWh Tariff = The Energy Consumption Tariff shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

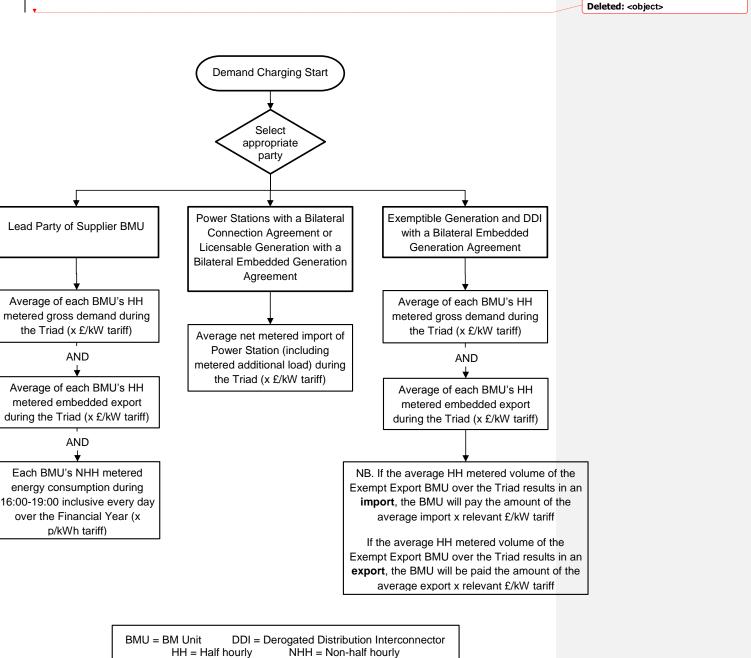
14.26 Classification of parties for charging purposes

In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precendence.

In the following diagrams, the parties liable for Transmission Network Use of System charges are outlined in red.

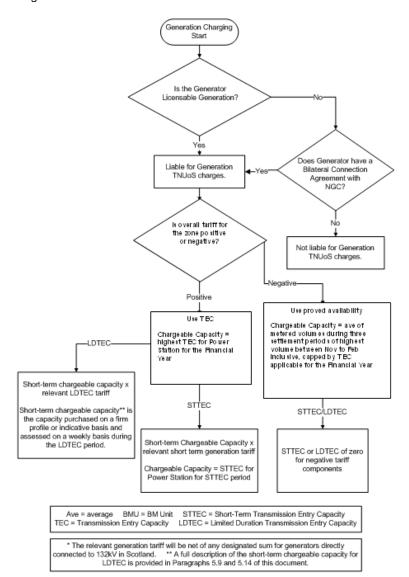
SUPPLIER		
Supplier Use of System Agreen	nent	
Supplier BMU1 BMUn		
Demand Charges	Generation Charges	
See 14.17, <mark>13</mark> and 14.17, <mark>18</mark> .	None.	Deleted: 9
		Deleted: 14
Gen Unit Gen Unit BMU1 BMUn	Station Additional Load BMU Load BMU	
Demand Charges	Generation Charges	
Demand Charges See 14.17.<u>18</u>.	See 14.18.1 i) and 14.18.3 to 14.18.9 and	Deleted: 10
· ·	J. J	Deleted: 10

Bilateral Emb	edded Generation	Agreement Ap	pendix C	7
Gen Unit BMU1	Gen Unit BMUn	Station Load BMU	Additional Load BMU	
Demand Charges	7. <u>15</u> and 14.17. <u>18</u> .	Generation Cl See 14.18.1 ii	U	
Jee 14.17. <u>14</u> , 14.17	<u>, 10</u> and 14.17, <u>10</u> .	For generator 14.18.12 and	s in positive zone 14.18.18.	es, see 14.18.3 to es, see 14.18.3 to


-{	Deleted: 10
-	Deleted: 11
Y	Deleted: 14

14.27 Transmission Network Use of System Charging Flowcharts

The following flowcharts illustrate the parties liable for Demand and Generation TNUoS charges and the calculation of those charges.


In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precedence.

Page 57 of 63

Generation Charges

14.28 Example: Determination of The Company's Forecast for Demand Charge Purposes

The Company will use the latest available settlement data for calculation of HH demand and NHH energy consumption forecasts for the Financial Year.

The Financial Year runs from 1st April to 31st March inclusive and for the purpose of these examples the year April 2005 to March 2006 is used.

Where the preceding year's settlement data is not available at the time that The Company needs to calculate its forecast, The Company will use settlement data from the corresponding period in Financial Year minus two unless indicated otherwise.

All values used with the examples are purely for illustrative purposes only.

i) Half-Hourly (HH) Metered Demand Forecast – Existing User

At the time of calculation of a HH demand forecast before the relevant Financial Year (approximately 10th March), The Company will be aware at a system level which dates will be used for the determination of Triad. However, The Company may not have settlement data at a User level if the Triad dates were to span a period that includes the latter half of February.

When undertaking forecasting before the relevant Financial Year, The Company will use the User's Triad demand for the previous year for its forecast providing it holds User settlement data for this period, thus:

F = T

where:

F = Forecast of User's HH demand at Triad for the Financial Year

T = User's HH gross_demand and embedded export_at Triad in Financial Year minus one

Where The Company determines its forecast within a Financial Year:

F = T * D/P

where:

- F = Forecast of User's HH demand at Triad for the Financial Year
- T = User's HH gross demand and embedded export at Triad in the preceding Financial Year
- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the preceding Financial Year

Where The Company determines its forecast before the relevant Financial Year and User settlement data for the Triad period is not available, The Company shall apply the formula immediately above (within year forecast) but substitute the following definitions for the values T, D, and P:

T = User's HH gross demand and embedded export at Triad in the Financial Year minus two

Page 59 of 63

- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year minus one, to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the Financial Year minus two

Example (where User settlement data is not yet available for the Triad period):

The Company calculates a HH demand forecast on the above methodology at 10th March 2005 for the period 1st April 2005 to 31st March 2006.

Gross demand:

F = 10,000 * 13,200 / 12,000

F = 11,000 kW,Deleted: hwhere:T = 10,000 kW, (period November 2003 to February 2004)Deleted: hD = 13,200 kW, (period 1st April 2004 to 15th February 2005#)Deleted: hP = 12,000 kW, (period 1st April 2003 to 15th February 2004)Deleted: h

Latest date for which settlement data is available.

Embedded export:

F = -280 * -300 / -350

<u>F = -240 kW</u>

where:

T = -280 kW (period November 2003 to February 2004)

D = -300 kW (period 1st April 2004 to 15th February 2005#)

P = -350 kW (period 1st April 2003 to 15th February 2004)

<u># Latest date for which settlement data is available.</u>

ii) Non Half-Hourly (NHH) Metered Energy Consumption Forecast – Existing User

F = E * D/P

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- E = User's summed NHH energy consumption over the hours 16:00 to 19:00 for each day in the preceding Financial Year

Page 60 of 63

- D = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the Financial Year to date
- P = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the period corresponding to D in the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th June 2005 for the period 1st April 2005 to 31st March 2006.

- F = 50,000,000 * 4,400,000 / 4,000,000
- F = 55,000,000 kWh

where:

- E = 50,000,000 kWh (period 1st April 2004 to 31st March 2005)
- D = 4,400,000 kWh (period 1st April 2005 to 15th May 2005#)
- P = 4,000,000 kWh (period 1st April 2004 to 15th May 2004)
- # Latest date for which settlement data is available

Where forecasting before the relevant Financial Year concerned, The Company would in the above example use values for E and P from Financial Year 2003/04 and D from Financial Year 2004/05.

iii) Half-Hourly (HH) Metered Demand Forecast – New User

F = M * T/W

where:

- F = Forecast of User's HH metered <u>gross</u> demand <u>and embedded export</u> at Triad for the Financial Year
 - M = User's HH average weekday period 35 demand for the last complete month for which settlement data is available
- T = Total system HH <u>gross</u> demand <u>and embedded export</u> at Triad in the preceding Financial Year
 - W = Total system HH average weekday settlement period 35 metered demand for the corresponding period to M for the preceding year

Example:

The Company calculates a HH demand forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2004 to 31st March 2006.

Gross demand:

F = 1,000 * 17,000,000 / 18,888,888

6056 11.12				
l	F =	900 kW _e	(Deleted: h
	where			
l	M =	1,000 kW _* (period 1 st July 2005 to 31 st July 2005)		Deleted: h
l	T =	17,000,000 kW, (period November 2004 to February 2005)	(Deleted: h
1	W =	18,888,888 kW _v (period 1 st July 2004 to 31 st July 2004)		Deleted: h
	Embed	ded export:		
	<u>F =</u>	<u>150 * 7,200,000 / 6,000,000</u>		
	<u>F =</u>	<u>180 kW</u>		
	where:			

- M = 150 kW (period 1st July 2005 to 31st July 2005)
- T = 7,200,000 kW (period November 2004 to February 2005)
- <u>W = 6,000,000 kW (period 1^{st} July 2004 to 31^{st} July 2004)</u>

iv) Non Half Hourly (NHH) Metered Energy Consumption Forecast – <u>New User</u>

F = J + (M * R/W)

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- J = Residual part month summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day where new User registration takes place other than on the first of a month
- M = User's summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the last complete month for which settlement data is available
- R = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period from the start of that defined under M but for the preceding year and until the end of that preceding Financial Year
- W = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period identified in M but for the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2005 to 31st March 2006.

- F = 500 + (1,000 * 20,000,000,000 / 2,000,000,000)
- F = 10,500 kWh

where:

- J = 500 kWh (period 10th June 2005 to 30th June 2005)
- M = 1,000 kWh (period 1st July 2005 to 31st July 2005)
- R = 20,000,000,000 kWh (period 1st July 2004 to 31st March 2005)
- W = 2,000,000,000 kWh (period 1st July 2004 to 31st July 2004)

CMP265 WACM1

14.15 Derivation of the Transmission Network Use of System Tariff

- 14.15.1 The Transmission Network Use of System (TNUoS) Tariff comprises two separate elements. Firstly, a locationally varying element derived from the DCLF ICRP transport model to reflect the costs of capital investment in, and the maintenance and operation of, a transmission system to provide bulk transport of power to and from different locations. Secondly, a non-locationally varying element related to the provision of residual revenue recovery. The combination of both these elements forms the TNUoS tariff.
- 14.15.2 For generation TNUoS tariffs the locational element itself is comprised of five separate components. Three wider components
 - o Wider Peak Security Component
 - Wider Year Round Not-shared component
 - Wider Year Round component

These components reflect the costs of the wider network under the different generation backgrounds set out in the Demand Security Criterion (for Peak Security component) and Economy Criterion (for both Year Round components) of the Security Standard. The two Year Round components reflect the unshared and shared costs of the wider network based on the diversity of generation plant types.

Two local components -

- o Local substation, and
- Local circuit

These components reflect the costs of the local network.

Accordingly, the wider tariff represents the combined effect of the three wider locational tariff components and the residual element; and the local tariff represents the combination of the two local locational tariff components.

14.15.3 The process for calculating the TNUoS tariff is described below.

The Transport Model

Model Inputs

14.15.4 The DCLF ICRP transport model calculates the marginal costs of investment in the transmission system which would be required as a consequence of an increase in demand or generation at each connection point or node on the transmission system, based on a study of peak demand conditions using both Peak Security and Year Round generation backgrounds on the transmission system. One measure of the investment costs is in terms of MWkm. This is the concept that ICRP uses to calculate marginal costs of investment. Hence, marginal costs are estimated initially in terms of increases or decreases in units of kilometres (km) of the transmission system for a 1 MW injection to the system.

- 14.15.5 The transport model requires a set of inputs representative of the Demand Security and Economy Criterion set out in the Security Standards. These conditions on the transmission system are represented in the Peak Security and Year Round background respectively as follows:
- Nodal generation information per node (TEC, plant type and SQSS scaling factors)
- Nodal <u>net</u> demand information
- Transmission circuits between these nodes
- The associated lengths of these routes, the proportion of which is overhead line or cable and the respective voltage level
- The cost ratio of each of 132kV overhead line, 132kV underground cable, 275kV overhead line, 275kV underground cable and 400kV underground cable to 400kV overhead line to give circuit expansion factors
- The cost ratio of each separate sub-sea AC circuit and HVDC circuit to 400kV overhead line to give circuit expansion factors
- 132kV overhead circuit capacity and single/double route construction information is used in the calculation of a generator's local charge.
- Offshore transmission cost and circuit/substation data
- 14.15.6 For a given charging year "t", the nodal generation TEC figure and generation plant types at each node will be based on the Applicable Value for year "t" in the NETS Seven Year Statement in year "t-1" plus updates to the October of year "t-1". The contracted TECs and generation plant types in the NETS Seven Year Statement include all plant belonging to generators who have a Bilateral Agreement with the TOs. For example, for 2010/11 charges, the nodal generation data is based on the forecast for 2010/11 in the 2009 NETS Seven Year Statement plus any data included in the quarterly updates in October 2009.
- 14.15.7 Scaling factors for different generation plant types are applied on their aggregated capacity for both Peak Security and Year Round backgrounds. The scaling is either Fixed or Variable (depending on the total demand level) in line with the factors used in the Security Standard, for example as shown in the table below.

Generation Plant Type	Peak Security Background	Year Round Background
Intermittent	Fixed (0%)	Fixed (70%)
Nuclear & CCS	Variable	Fixed (85%)
Interconnectors	Fixed (0%)	Fixed (100%)
Hydro	Variable	Variable
Pumped Storage	Variable	Fixed (50%)
Peaking	Variable	Fixed (0%)
Other (Conventional)	Variable	Variable

These scaling factors and generation plant types are set out in the Security Standard. These may be reviewed from time to time. The latest version will be used in the calculation of TNUoS tariffs and is published in the Statement of Use of System Charges

14.15.8 National Grid will categorise plant based on the categorisations described in the Security Standard. Peaking plant will include oil and OCGT technologies and Other (Conv.) represents all remaining conventional plant not explicitly stated elsewhere in the table In the event that a power station is made up of more than one technology type, the type of the higher Transmission Entry Capacity (TEC) would apply.

I

- 14.15.9 Nodal <u>net</u> demand data for the transport model will be based upon the GSP <u>net</u> demand that Users have forecast to occur at the time of National Grid Peak Average Cold Spell (ACS) Demand for year "t" in the April Seven Year Statement for year "t-1" plus updates to the October of year "t-1".
- 14.15.10 Subject to paragraphs 14.15.15 to 14.15.22, Transmission circuits for charging year "t" will be defined as those with existing wayleaves for the year "t" with the associated lengths based on the circuit lengths indicated for year "t" in the April NETS Seven Year Statement for year "t-1" plus updates to October of year "t-1". If certain circuit information is not explicitly contained in the NETS Seven Year Statement, The Company will use the best information available.
- 14.15.11 The circuit lengths included in the transport model are solely those, which relate to assets defined as 'Use of System' assets.
- 14.15.12 For HVDC circuits, the impedance will be calculated to provide flows based on a ratio of the capacity provided by the HVDC link relative to the capacities on all major transmission system boundaries that it parallels.
- 14.15.13 The transport model employs the use of circuit expansion factors to reflect the difference in cost between (i) AC Circuits and HVDC circuits. (ii) underground and sub-sea circuits, (iii) cabled circuits and overhead line circuits, (iv) 132kV and 275kV circuits, (v) 275kV circuits and 400kV circuits, and (vi) uses 400kV overhead line (i.e. the 400kV overhead line expansion factor is 1). As the transport model expresses cost as marginal km (irrespective of cables or overhead lines), some account needs to be made of the fact that investment in these other types of circuit (specifically HVDC and sub-sea cables of various voltages, 400kV underground cable, 275kV overhead line, 275kV underground cable, 132kV overhead line and 132kV underground cable) is more expensive than for 400kV overhead line. This is done by effectively 'expanding' these more expensive circuits by the relevant circuit expansion factor, thereby producing a larger marginal kilometre to reflect the additional cost of investing in these circuits compared to 400kV overhead line. When calculating the local circuit tariff for a generator, alternative 132kV and offshore expansion factors to those used in the remainder of the tariff calculation are applied to the generator's local circuits.
- 14.15.14 The circuit expansion factors for HVDC circuits and AC subsea cables are determined on a case by case basis using the costs which are specific to individual projects containing HVDC or AC subsea circuits.

Adjustments to Model Inputs associated with One-off Works

- 14.15.15 Where, following the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge that related to One-off Works carried out on an onshore circuit, and such One-off Works would affect the value of a TNUoS tariff paid by the User, the transport model inputs associated with the onshore circuit shall be adjusted by The Company to reflect the asset value that would have been modelled if the works had been undertaken on the basis of the original asset design rather than the One-off Works.
- 14.15.16 Subject to paragraphs 14.15.17 to 14.15.19, where, prior to the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge (or has paid a charge to the relevant TO prior to 1st April 2005 on the same principles as a

Page 3 of 63

One-Off Charge) that related to works equivalent to those described under paragraph 14.15.15, an adjustment equivalent to that under paragraph 14.15.15 shall be made to the transport model inputs as follows.

- 14.15.17 Such adjustment shall be made following a User's request, which must be received by The Company no later than the second occurrence of 31st December following the implementation of CUSC Modification CMP203.
- 14.15.18 The Company shall only make an adjustment to the transport model inputs, under paragraph 14.15.16 where the charge was paid to the relevant TO prior to 1st April 2005 where evidence has been provided by the User that satisfies The Company that works equivalent to those under paragraph 14.15.15 were funded by the User.
- 14.15.19 Where a User has sufficient reason to believe that adjustments under paragraph 14.15.18 should be made in relation to specific assets that affect a TNUoS tariff that applies to one of its sites and outlines its reasoning to The Company, The Company shall (upon the User's request and subject to the User's payment of reasonable costs incurred by The Company in doing so) use its reasonable endeavours to assist the User in obtaining any evidence The Company or a TO may have to support its position.
- 14.15.20 Where a request is made under paragraph 14.15.16 on or prior to 31st December in a charging year, and The Company is satisfied based on the accompanying evidence provided to The Company under paragraph 14.15.17 that it is a valid request, the transport model inputs shall be adjusted accordingly and taken into account in the calculation of TNUoS tariffs effective from the year commencing on the 1st April following this and otherwise from the next subsequent 1st April.
- 14.15.21 The following table provides examples of works for which adjustments to transport model inputs would typically apply:

Ref	Description of works	Adjustments
1	Undergrounding - A User requests to underground an overhead line at a greater cost.	As the cable cost will be more expensive than the overhead line (OHL) equivalent, the circuit will be modelled as an OHL.
2	Substation Siting Decision - A User requests to move the existing or a planned substation location to a place that means that the works cannot be justified as economic by the TO.	As the revised substation location may result in circuits being extended. If this is the case, the originally designed circuit lengths (as per the originally designed substation location) would be used in the transport model.
3	Circuit Routing Decision - A User asks to move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	As any circuit route changes that extend circuits are likely to result in a greater TNUoS tariff, the originally designed circuit lengths would be used in the transport model.

Ref	Description of works	Adjustments
4	Building circuits at lower voltages - A User requests lower tower height and therefore a different voltage.	As lower voltage circuits result in a higher expansion factor being used, the circuits would be modelled at the originally designed higher voltage.

14.15.22 The following table provides examples of works for which adjustments to transport model typically would not apply:

Ref	Description of works	Reasoning
1	Undergrounding - A User chooses to have a cable installed via a tunnel rather than buried.	Cable expansion factors are applied in the transport model regardless of whether a cable is tunnelled and buried, so there is no increased TNUoS cost.
2	Additional circuit route works - A User asks for screening to be provided around a new or existing circuit route.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
3	Additional circuit route works - A User requests that a planned overhead line route is built using alternative transmission tower designs.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
4	Additional substation works - A User asks for screening to be provided around a new or existing substation.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
5	Additional substation works - Changes to connection assets (e.g. HV-LV transformers and associated switchgear), metering, additional LV supplies, additional protection equipment, additional building works, etc.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
6	Diversion - A User asks to temporarily move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	The temporary circuit changes will not be incorporated into the transport model.

7	Connection Entry Capacity (CEC) before Transmission Entry Capacity (TEC). A User asks for a connection in a year prior to the relating TEC; i.e. physical connection without capacity.	No additional works are being undertaken, works are simply being completed well in advance of the generator commissioning. The One-Off Charge reflects the depreciated value of the assets prior to commissioning (and any TNUOS being charged).
8	Early asset replacement - An asset is replaced prior to the end of its expected life.	As the asset is simply replaced, no data in the transport model is expected to change.
9	Additional Engineering/ Mobilisation costs - A User requests changes to the planned works, that results in additional operational costs.	The data in the transport model is unaffected.
10	Offshore (Generator Build) - Any of the works described above or under paragraph 14.15.18.	The value of the works will not form part of the asset transfer value therefore will not be used as part of the offshore tariff calculation.
11	Offshore (Offshore Transmission Owner (OFTO) Build) - Any of the works described above or under paragraph 14.15.18.	As part of determining the TNUoS revenue associated with each asset, the value of the One-Off Works would be excluded when pro-rating the OFTO's allowed revenue against assets by asset value.

14.15.23 The Company shall publish any adjusted transport model inputs that it intends to use in the calculation of TNUoS tariffs effective from the year commencing on the following 1st April in the NETS Seven Year Statement October Update. Any further adjustments that The Company makes shall be published by The Company upon the publication of the final TNUoS tariffs for the year concerned.

Model Outputs

- 14.15.24 The transport model takes the inputs described above and carries out the following steps individually for Peak Security and Year Round backgrounds.
- 14.15.25 Depending on the background, the TEC of the relevant generation plant types are scaled by a percentage as described in 14.15.7, above. The TEC of the remaining generation plant types in each background are uniformly scaled such that total national generation (scaled sum of contracted TECs) equals total national ACS Demand.
- 14.15.26 For each background, the model then uses a DCLF ICRP transport algorithm to derive the resultant pattern of flows based on the network impedance required to meet the nodal <u>net</u> demand using the scaled nodal generation, assuming every circuit has infinite capacity. Flows on individual transmission circuits are compared for both backgrounds and the background giving rise to

Page 6 of 63

the highest flow is considered as the triggering criterion for future investment of that circuit for the purposes of the charging methodology. Therefore all circuits will be tagged as Peak Security or Year Round depending upon the background resulting in the highest flow. In the event that both backgrounds result in the same flow, the circuit will be tagged as Peak Security. Then it calculates the resultant total network Peak Security MWkm and Year Round MWkm, using the relevant circuit expansion factors as appropriate.

- 14.15.27 Using these baseline networks for Peak Security and Year Round backgrounds, the model then calculates for a given injection of 1MW of generation at each node, with a corresponding 1MW offtake (<u>net_demand</u>) distributed across all demand nodes in the network, the increase or decrease in total MWkm of the whole Peak Security and Year Round networks. The proportion of the 1MW offtake allocated to any given demand node will be based on total background nodal <u>net</u> demand in the model. For example, with a total GB <u>net_demand of 60GW</u> in the model, a node with a <u>net_demand of 600MW</u> would contain 1% of the offtake i.e. 0.01MW.
- 14.15.28 Given the assumption of a 1MW injection, for simplicity the marginal costs are expressed solely in km. This gives a Peak Security marginal km cost and a Year Round marginal km cost for generation at each node (although not that used to calculate generation tariffs which considers local and wider cost components). The Peak Security and Year Round marginal km costs for demand at each node are equal and opposite to the Peak Security and Year Round nodal marginal km respectively for generation and this is used to calculate demand tariffs. Note the marginal km costs can be positive or negative depending on the impact the injection of 1MW of generation has on the total circuit km.
- 14.15.29 Using a similar methodology as described above in 14.15.27, the local and wider marginal km costs used to determine generation TNUoS tariffs are calculated by injecting 1MW of generation against the node(s) the generator is modelled at and increasing by 1MW the offtake across the distributed reference node. It should be noted that although the wider marginal km costs are calculated for both Peak Security and Year Round backgrounds, the local marginal km costs are calculated on the Year Round background.
- 14.15.30 In addition, any circuits in the model, identified as local assets to a node will have the local circuit expansion factors which are applied in calculating that particular node's marginal km. Any remaining circuits will have the TO specific wider circuit expansion factors applied.
- 14.15.31 An example is contained in 14.21 Transport Model Example.

Calculation of local nodal marginal km

14.15.32 In order to ensure assets local to generation are charged in a cost reflective manner, a generation local circuit tariff is calculated. The nodal specific charge provides a financial signal reflecting the security and construction of the infrastructure circuits that connect the node to the transmission system.

14.15.33 Main Interconnected Transmission System (MITS) nodes are defined as:

- Grid Supply Point connections with 2 or more transmission circuits connecting at the site; or
- connections with more than 4 transmission circuits connecting at the site.

Page 7 of 63

- 14.15.34 Where a Grid Supply Point is defined as a point of supply from the National Electricity Transmission System to network operators or non-embedded customers excluding generator or interconnector load alone. For the avoidance of doubt, generator or interconnector load would be subject to the circuit component of its Local Charge. A transmission circuit is part of the National Electricity Transmission System between two or more circuit-breakers which includes transformers, cables and overhead lines but excludes busbars and generation circuits.
- 14.15.35 Generators directly connected to a MITS node will have a zero local circuit tariff.
- 14.15.36 Generators not connected to a MITS node will have a local circuit tariff derived from the local nodal marginal km for the generation node i.e. the increase or decrease in marginal km along the transmission circuits connecting it to all adjacent MITS nodes (local assets).

Calculation of zonal marginal km

- 14.15.37 Given the requirement for relatively stable cost messages through the ICRP methodology and administrative simplicity, nodes are assigned to zones. Typically, generation zones will be reviewed at the beginning of each price control period with another review only undertaken in exceptional circumstances. Any rezoning required during a price control period will be undertaken with the intention of minimal disruption to the established zonal boundaries. The full criteria for determining generation zones are outlined in paragraph 14.15.42. The number of generation zones set for 2010/11 is 20.
- 14.15.38 Demand zone boundaries have been fixed and relate to the GSP Groups used for energy market settlement purposes.
- 14.15.39 The nodal marginal km are amalgamated into zones by weighting them by their relevant generation or demand capacity.
- 14.15.40 Generators will have zonal tariffs derived from both, the wider Peak Security nodal marginal km; and the wider Year Round nodal marginal km for the generation node calculated as the increase or decrease in marginal km along all transmission circuits except those classified as local assets.

The zonal Peak Security marginal km for generation is calculated as:

$$WNMkm_{j_{PS}} = \frac{NMkm_{j_{PS}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiPS} = \sum_{j \in Gi} WNMkm_{jPS}$$

Where

Gi	=	Generation zone
j	=	Node
NMkm _{PS}	=	Peak Security Wider nodal marginal km from transport model
WNMkm _{PS}	=	Peak Security Weighted nodal marginal km
ZMkm _{PS}	=	Peak Security Zonal Marginal km

Gen = Nodal Generation (scaled by the appropriate Peak Security Scaling factor) from the transport model Similarly, the zonal Year Round marginal km for generation is calculated as

$$WNMkm_{j_{YR}} = \frac{NMkm_{j_{YR}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiYR} = \sum_{j \in Gi} WNMkm_{jYR}$$

Where

NMkm _{YR}	=	Year Round Wider nodal marginal km from transport model
WNMkm _{YR}	=	Year Round Weighted nodal marginal km
ZMkm _{YR}	=	Year Round Zonal Marginal km
Gen	=	Nodal Generation (scaled by the appropriate Year Round Scaling
		factor) from the transport model

14.15.41 The zonal Peak Security marginal km for demand zones are calculated as follows:

$$WNMkm_{j_{PS}} = \frac{-1 * NMkm_{j_{PS}} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{Di_{PS}} = \sum_{j \in Di} WNMkm_{j_{PS}}$$

Where:

I

Di	=	Demand zone
Dem	=	Nodal <u>Net</u> Demand from transport model

Similarly, the zonal Year Round marginal km for demand zones are calculated as follows:

$$WNMkm_{jYR} = \frac{-1 * NMkm_{jYR} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{DiYR} = \sum_{j \in Di} WNMkm_{jYR}$$

- 14.15.42 A number of criteria are used to determine the definition of the generation zones. Whilst it is the intention of The Company that zones are fixed for the duration of a price control period, it may become necessary in exceptional circumstances to review the boundaries having been set. In both circumstances, the following criteria are used to determine the zonal boundaries:
- i.) Zoning is determined using the generation background with the most MWkm of circuits. Zones should contain relevant nodes whose total wider marginal costs

from the relevant generation background (as determined from the output from the transport model, the relevant expansion constant and the locational security factor, see below) are all within $+/-\pounds1.00/kW$ (nominal prices) across the zone. This means a maximum spread of $\pounds2.00/kW$ in nominal prices across the zone.

- ii.) The nodes within zones should be geographically and electrically proximate.
- iii.) Relevant nodes are considered to be those with generation connected to them as these are the only ones, which contribute to the calculation of the zonal generation tariff.
- 14.15.43 The process behind the criteria in 14.15.42 is driven by initially applying the nodal marginal costs from the relevant generation background within the DCLF Transport model onto the appropriate areas of a substation line diagram. Generation nodes are grouped into initial zones using the +/- £1.00/kW range. All nodes within each zone are then checked to ensure the geographically and electrically proximate criteria have been met using the substation line diagram. The established zones are inspected to ensure the least number of zones are used with minimal change from previously established zonal boundaries. The zonal boundaries are finally confirmed using the demand nodal costs from the relevant generation background for guidance.
- 14.15.44 The zoning criteria are applied to a reasonable range of DCLF ICRP transport model scenarios, the inputs to which are determined by The Company to create appropriate TNUoS generation zones. The minimum number of zones, which meet the stated criteria, are used. If there is more than one feasible zonal definition of a certain number of zones, The Company determines and uses the one that best reflects the physical system boundaries.
- 14.15.45 Zones will typically not be reviewed more frequently than once every price control period to provide some stability. However, in exceptional circumstances, it may be necessary to review zoning more frequently to maintain appropriate, cost reflective, locational cost signals. For example, if a new generator connecting to the transmission system would cause the creation of a new generation zone for that generator alone, it may not be appropriate from a cost reflective perspective to wait until the next price control period to undertake this rezoning. If any such rezoning is required, it will be undertaken against a background of minimal change to existing generation zones and in line with the notification process set out in the Transmission Licence and CUSC.

Accounting for Sharing of Transmission by Generators

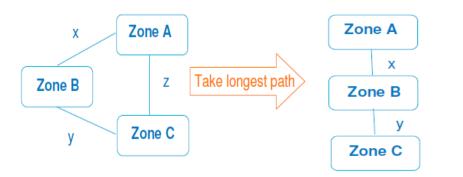
- 14.15.46 A proportion of the marginal km costs for generation are shared incremental km reflecting the ability of differing generation technologies to share transmission investment. This is reflected in charges through the splitting of Year Round marginal km costs for generation into Year Round Shared marginal km costs and Year Round Not-Shared marginal km which are then used in the calculation of the wider £/kW generation tariff.
- 14.15.47 The sharing between different generation types is accounted for by (a) using transmission network boundaries between generation zones set by connectivity between generation charging zones, and (b) the proportion of Low Carbon and Carbon generation behind these boundaries.

Page 10 of 63

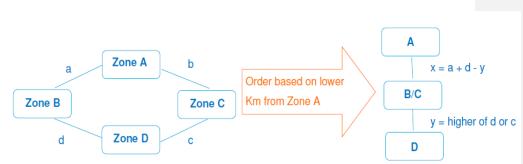
14.15.48 The zonal incremental km for each generation charging zone is split into each boundary component by considering the difference between it and the neighbouring generation charging zone using the formula below;

$$BIkm_{ab} = ZIkm_b - ZIkm_a$$

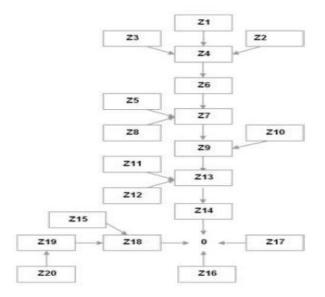
Where;


Blkm_{ab} = boundary incremental km between generation charging zone A and generation charging zone B Zlkm = generation charging zone incremental km.

14.15.49 The table below shows the categorisation of Low Carbon and Carbon generation. This table will be updated by National Grid in the Statement of Use of System Charges as new generation technologies are developed.


Carbon	Low Carbon
Coal	Wind
Gas	Hydro (excl. Pumped Storage)
Biomass	Nuclear
Oil	Marine
Pumped Storage	Tidal
Interconnectors	

Determination of Connectivity


- 14.15.50 Connectivity is based on the existence of electrical circuits between TNUoS generation charging zones that are represented in the Transport model. Where such paths exist, generation charging zones will be effectively linked via an incremental km transmission boundary length. These paths will be simplified through in the case of;
 - Parallel paths the longest path will be taken. An illustrative example is shown below with x, y and z representing the incremental km between zones.

 Parallel zones – parallel zones will be amalgamated with the incremental km immediately beyond the amalgamated zones being the greater of those existing prior to the amalgamation. An illustrative example is shown below with a, b, c, and d representing the the initial incremental km between zones, and x and y representing the final incremental km following zonal amalgamation.

14.15.51 An illustrative Connectivity diagram is shown below:

The arrows connecting generation charging zones and amalgamated generation charging zones represent the incremental km transmission boundary lengths towards the notional centre of the system. Generation located in charging zones behind arrows is considered to share based on the ratio of Low Carbon to Carbon cumulative generation TEC within those zones.

14.15.52 The Company will review Connectivity at the beginning of a new price control period, and under exceptional circumstances such as major system reconfigurations or generation rezoning. If any such reassessment is required, it will be undertaken against a background of minimal change to existing Connectivity and in line with the notification process set out in the Transmission Licence and the CUSC.

Calculation of Boundary Sharing Factors

14.15.53 Boundary sharing factors (BSFs) are derived from the comparison of the cumulative proportion of Low Carbon and Carbon generation TEC behind each of the incremental MWkm boundary lengths using the following formulae –

Page 12 of 63

If $\frac{LC}{LC+C} \le 0.5$, then all Year round marginal km costs are shared i.e. the BSF is 100%.

Where:

LC = Cumulative Low Carbon generation TEC behind the relevant transmission boundary C = Cumulative Carbon generation TEC behind the relevant transmission

C = Cumulative Carbon generation TEC behind the relevant transmission boundary

If
$$\frac{LC}{LC+C}$$
 > 0.5 then the BSF is calculated using the following formula: -

$$BSF = \left(-2 \times \left(\frac{LC}{LC+C}\right)\right) + 2$$

Where:

BSF = boundary sharing factor.

14.15.54 The shared incremental km for each boundary are derived from the multiplication of the boundary sharing factor by the incremental km for that boundary;

$$SBIkm_{ab} = BIIkm_{ab} \ x \ BSF_{ab}$$

Where;

 $SBIkm_{ab}$ = shared boundary incremental km between generation charging zone A and generation charging zone B

 BSF_{ab} = generation charging zone boundary sharing factor.

14.15.55 The shared incremental km is discounted from the incremental km for that boundary to establish the not-shared boundary incremental km. The not-shared boundary incremental km reflects the cost of transmission investment on that boundary accounting for the sharing of power stations behind that boundary.

$$NSBIkm_{ab} = BIkm_{ab} - SBIkm_{ab}$$

Where;

 $NSBIkm_{ab}$ = not shared boundary incremental km between generation charging zone A and generation charging zone B.

14.15.56 The shared incremental km for a generation charging zone is the sum of the appropriate shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRS}$$

Where;

 $ZMkm_{nYRS}$ = Year Round Shared Zonal Marginal km for generation charging zone n.

Page 13 of 63

14.15.57 The not-shared incremental km for a generation charging zone is the sum of the appropriate not-shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRNS}$$

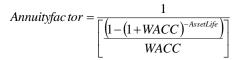
Where;

ZMkm_{nYRNS} = Year Round Not-Shared Zonal Marginal km for generation zone n.

Deriving the Final Local £/kW Tariff and the Wider £/kW Tariff

14.15.58 The zonal marginal km (ZMkm_{Gi}) are converted into costs and hence a tariff by multiplying by the Expansion Constant and the Locational Security Factor (see below). The nodal local marginal km (NLMkm^L) are converted into costs and hence a tariff by multiplying by the Expansion Constant and a Local Security Factor.

The Expansion Constant


- 14.15.59 The expansion constant, expressed in £/MWkm, represents the annuitised value of the transmission infrastructure capital investment required to transport 1 MW over 1 km. Its magnitude is derived from the projected cost of 400kV overhead line, including an estimate of the cost of capital, to provide for future system expansion.
- 14.15.60 In the methodology, the expansion constant is used to convert the marginal km figure derived from the transport model into a £/MW signal. The tariff model performs this calculation, in accordance with 14.15.95 14.15.117, and also then calculates the residual element of the overall tariff (to ensure correct revenue recovery in accordance with the price control), in accordance with 14.15.133.
- 14.15.61 The transmission infrastructure capital costs used in the calculation of the expansion constant are provided via an externally audited process. They also include information provided from all onshore Transmission Owners (TOs). They are based on historic costs and tender valuations adjusted by a number of indices (e.g. global price of steel, labour, inflation, etc.). The objective of these adjustments is to make the costs reflect current prices, making the tariffs as forward looking as possible. This cost data represents The Company's best view; however it is considered as commercially sensitive and is therefore treated as confidential. The calculation of the expansion constant also relies on a significant amount of transmission asset information, much of which is provided in the Seven Year Statement.
- 14.15.62 For each circuit type and voltage used onshore, an individual calculation is carried out to establish a £/MWkm figure, normalised against the 400KV overhead line (OHL) figure, these provide the basis of the onshore circuit expansion factors discussed in 14.15.70 14.15.77. In order to simplify the calculation a unity power factor is assumed, converting £/MVAkm to £/MWkm. This reflects that the fact tariffs and charges are based on real power.
- 14.15.63 The table below shows the first stage in calculating the onshore expansion constant. A range of overhead line types is used and the types are weighted by recent usage on the transmission system. This is a simplified calculation for 400kV OHL using example data:

Page 14 of 63

400kV	400kV OHL expansion constant calculation				
MW	Туре	£(000)/k	Circuit km*	£/MWkm	Weight
А	В	С	D	E = C/A	F=E*D
6500	La	700	500	107.69	53846
6500	Lb	780	0	120.00	0
3500	La/b	600	200	171.43	34286
3600	Lc	400	300	111.11	33333
4000	Lc/a	450	1100	112.50	123750
5000	Ld	500	300	100.00	30000
5400	Ld/a	550	100	101.85	10185
Sum			2500 (G)		285400 (H)
				Weighted Average (J= H/G):	114.160 (J)

*These are circuit km of types that have been provided in the previous 10 years. If no information is available for a particular category the best forecast will be used.

14.15.64 The weighted average £/MWkm (J in the example above) is then converted in to an annual figure by multiplying it by an annuity factor. The formula used to calculate of the annuity factor is shown below:

- 14.15.65 The Weighted Average Cost of Capital (WACC) and asset life are established at the start of a price control and remain constant throughout a price control period. The WACC used in the calculation of the annuity factor is the The Company regulated rate of return, this assumes that it will be reasonably representative of all licensees. The asset life used in the calculation is 50 years; the appropriateness of this is reviewed when the annuity factor is recalculated at the start of a price control period. These assumptions provide a current annuity factor of 0.066.
- 14.15.66 The final step in calculating the expansion constant is to add a share of the annual transmission overheads (maintenance, rates etc). This is done by multiplying the average weighted cost (J) by an 'overhead factor'. The 'overhead factor' represents the total business overhead in any year divided by the total Gross Asset Value (GAV) of the transmission system. This is recalculated at the start of each price control period. The overhead factor used in the calculation of the expansion constant for 2009/10 is 1.8%. The overhead and annuitised costs are then added to give the expansion constant.
- 14.15.67 Using the previous example, the final steps in establishing the expansion constant are demonstrated below:

400kV OHL expansion constant calculation	Ave £/MWkm
OHL	114.160

Page 15 of 63

Annuitised	7.535
Overhead	2.055
Final	9.589

- 14.15.68 This process is carried out for each voltage onshore, along with other adjustments to take account of upgrade options, see 14.15.73, and normalised against the 400KV overhead line cost (the expansion constant) the resulting ratios provide the basis of the onshore expansion factors. The process used to derive circuit expansion factors for Offshore Transmission Owner networks is described in 14.15.78.
- 14.15.69 This process of calculating the incremental cost of capacity for a 400kV OHL, along with calculating the onshore expansion factors is carried out for the first year of the price control and is increased by inflation, RPI, (May–October average increase, as defined in The Company's Transmission Licence) each subsequent year of the price control period. The expansion constant for 2010/11 is 10.633.

Onshore Wider Circuit Expansion Factors

- 14.15.70 Base onshore expansion factors are calculated by deriving individual expansion constants for the various types of circuit, following the same principles used to calculate the 400kV overhead line expansion constant. The factors are then derived by dividing the calculated expansion constant by the 400kV overhead line expansion constant. The factors will be fixed for each respective price control period.
- 14.15.71 In calculating the onshore underground cable factors, the forecast costs are weighted equally between urban and rural installation, and direct burial has been assumed. The operating costs for cable are aligned with those for overhead line. An allowance for overhead costs has also been included in the calculations.
- 14.15.72 The 132kV onshore circuit expansion factor is applied on a TO basis. This is to reflect the regional variation of plans to rebuild circuits at a lower voltage capacity to 400kV. The 132kV cable and line factor is calculated on the proportion of 132kV circuits likely to be uprated to 400kV. The 132kV expansion factor is then calculated by weighting the 132kV cable and overhead line costs with the relevant 400kV expansion factor, based on the proportion of 132kV circuitry to be uprated to 400kV. For example, in the TO areas of National Grid and Scottish Power where there are no plans to uprate any 132kV circuits, the full cable and overhead line costs of 132kV circuit are reflected in the 132kV expansion factor calculation.
- 14.15.73 The 275kV onshore circuit expansion factor is applied on a GB basis and includes a weighting of 83% of the relevant 400kV cable and overhead line factor. This is to reflect the averaged proportion of circuits across all three Transmission Licensees which are likely to be uprated from 275kV to 400kV across GB within a price control period.
- 14.15.74 The 400kV onshore circuit expansion factor is applied on a GB basis and reflects the full costs for 400kV cable and overhead lines.
- 14.15.75 AC sub-sea cable and HVDC circuit expansion factors are calculated on a case by case basis using actual project costs (Specific Circuit Expansion Factors).

Page 16 of 63

- 14.15.76 For HVDC circuit expansion factors both the cost of the converters and the cost of the cable are included in the calculation.
- 14.15.77 The TO specific onshore circuit expansion factors calculated for 2008/9 (and rounded to 2 decimal places) are:

Scottish Hydro Region

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	27.79
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.24	

Scottish Power & National Grid Regions

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	30.22
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.80	

Onshore Local Circuit Expansion Factors

- 14.15.78 The local onshore circuit tariff is calculated using local onshore circuit expansion factors. These expansion factors are calculated using the same methodology as the onshore wider expansion factor but without taking into account the proportion of circuit kms that are planned to be uprated.
- 14.15.79 In addition, the 132kV onshore overhead line circuit expansion factor is sub divided into four more specific expansion factors. This is based upon maximum (winter) circuit continuous rating (MVA) and route construction whether double or single circuit.

400kV underground cable factor:	22.39
275kV underground cable factor:	22.39
132kV underground cable factor:	30.22
400kV line factor:	1.00
275kV line factor:	1.14
132kV line factor (single; <200MVA):	10.00
132kV line factor (double; <200MVA):	8.32
132kV line factor (single; >=200MVA):	7.13
132kV line factor (double; >=200MVA):	4.42

Offshore Circuit Expansion Factors

14.15.80 Offshore expansion factors (£/MWkm) are derived from information provided by Offshore Transmission Owners for each offshore circuit. Offshore expansion factors are Offshore Transmission Owner and circuit specific. Each Offshore Transmission Owner will periodically provide, via the STC, information to derive an annual circuit revenue requirement. The offshore circuit revenue shall include revenues associated with the Offshore Transmission Owner's reactive compensation equipment, harmonic filtering equipment, asset spares and HVDC converter stations.

14.15.81 In the first year of connection, the offshore circuit expansion factor would be calculated as follows:

$\frac{CRevOFTO1}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$

Where:

CRevOFTO1	=	The offshore circuit revenue in £ for Year 1
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

14.15.82 In all subsequent years, the offshore circuit expansion factor would be calculated as follows:

$$\frac{AvCRevOFTO}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$$

Where:

AvCRevOFTO	=	The annual offshore circuit revenue averaged over the
		remaining years of the onshore National Electricity
		Transmission System Operator (NETSO) price control
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

- 14.15.83 For the avoidance of doubt, the offshore circuit revenue values, *CRevOFTO1* and *AvCRevOFTO* shall be determined using asset values after the removal of any One-Off Charges.
- 14.15.84 Prevailing OFFSHORE TRANSMISSION OWNER specific expansion factors will be published in this statement. These shall be recalculated at the start of each price control period using the formula in paragraph 14.15.71. For each subsequent year within the price control period, these expansion factors will be adjusted by the annual Offshore Transmission Owner specific indexation factor, *OFTOInd*, calculated as follows;

$$OFTOInd_{t,f} = \frac{OFTO \operatorname{Rev}Ind_{t,f}}{RPI_{t}}$$

where:

OFTOInd _{t,f}	=	the indexation factor for Offshore Transmission Owner <i>f</i> in respect of charging year <i>t</i> ,
OFTORevInd _t f	=	the indexation rate applied to the revenue of Offshore Transmission Owner f under the terms of its Transmission Licence in respect of charging year t , and
<i>RPI</i> _t	=	the indexation rate applied to the expansion constant in respect of charging year <i>t</i> .

Offshore Interlinks

14.15.85 The revenue associated with an Offshore Interlink shall be divided entirely between those generators benefiting from the installation of that Offshore Interlink. Each of these Users will be responsible for their charge from their charging date, meaning that a proportion of the Offshore Interlink revenue may be socialised prior to all relevant Users being chargeable. The proportion associated with each User will be based on the Measure of Capacity to the MITS using the Offshore Interlink(s) in the event of a single circuit fault on the User's circuit from their offshore substation towards the shore, compared to the Measure of Capacity of the other Users.

Where:

An *Offshore Interlink* is a circuit which connects two offshore substations that are connected to a Single Common Substation. It is held in open standby until there is a transmission fault that limits the User's ability to export power to the Single Common Substation. In the Transport Model, they are to be modelled in open standby.

A Single Common Substation is a substation where:

- i. each substation that is connected by an Offshore Interlink is connected via at least one circuit without passing through another substation; and
- ii. all routes connecting each substation that is connected by an Offshore Interlink to the MITS pass through.

The Measure of Capacity to the MITS for each Offshore substation is the result of the following formula or zero whichever is larger. For the situation with only one interlink, all terms relating to C should be set to zero:

```
For Substation A:
min { Cap_{IAB}, ILF_A \times TEC_A - RCap_A, Cap_B - ILF_B \times TEC_B + min (Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation B:

min { ILF_B \times TEC_B - RCap_B, min (Cap_{IAB}, Cap_A - ILF_A \times TEC_A)

+ min ( Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation C:

min { Cap_{IBC}, ILF_{C} \times TEC_{C} - RCap_{C}, Cap_{B} - ILF_{B} \times TEC_{B} + min (Cap_{IAB}, Cap_{A} - ILF_{A} \times TEC_{A}) }

and
```

Cap _{IAB} = B	total capacity of the Offshore Interlink between substations A and
Cap _{IBC} = C	total capacity of the Offshore Interlink between substations B and
Cap _X =	total capacity of the circuit between offshore substation X and the Single Common Substation, where X is A, B or C.
RCap _x =	remaining capacity of the circuit between offshore substation X and the Single Common Substation in the event of a single cable fault, where X is A, B or C.
TEC _x =	the sum of the TEC for the Users connected, or contracted to connect, to offshore substation X, where X is A, B or C, where the value of TEC will be the maximum TEC that each User has held since the initial charging date, or is contracted to hold if prior to the initial charging date.

- ILF_x = Offshore Interlink Load Factor, where X is A, B or C. The Offshore Interlink Load Factor (ILF) is based on the Annual Load Factor (ALF). Until all the Users connected to a Single Common Substation have a station specific Annual Load Factor based on five years of data, the generic ALF for the fuel type will be used as the ILF for all stations. When all Users have a station specific ALF, the value of the ALF in the first such year will be used as the ILF in the calculation for all subsequent charging years.
- 14.15.86 The apportionment of revenue associated with Offshore Interlink(s) in 14.15.85 applies in situations where the Offshore Interlink was included in the design phase, or if one or more User(s) has already financially committed or been commissioned then only where that User(s) agrees to the Offshore Interlink.
- 14.15.87 Alternatively to the formula specified in 14.15.85 the proportion of the OFTO revenue associated with the Offshore Interlink allocated to each generator benefiting from the installation of an Offshore Interlink may be agreed between these Users. In this event:
- a. All relevant Users shall notify The Company of its respective proportions three months prior the OTSDUW asset transfer in the case of a generator build, or the charging date of the first generator, in the case of an OFTO build.
- b. All relevant Users may agree to vary the proportions notified under (a) by each writing to The Company three months prior to the charges being set for a given charging year.
- c. Once a set of proportions of the OFTO revenue associated with the Offshore Interlink has been provided to The Company, these will apply for the next and future charging years unless and until The Company is informed otherwise in accordance with (b) by all of the relevant Users.
- d. If all relevant Users are unable to reach agreement on the proportioning of the OFTO revenue associated with the Offshore Interlink they can raise a dispute. Any dispute between two or more Users as to the proportioning of such revenue shall be managed in accordance with CUSC Section 7 Paragraph 7.4.1 but the reference to the 'Electricity Arbitration Association' shall instead be to the 'Authority' and the Authority's determination of such dispute shall, without prejudice to apply for judicial review of any determination, be final and binding on the Users.

The Locational Onshore Security Factor

14.15.88 The locational onshore security factor is derived by running a secure DCLF ICRP transport study based on the same market background as used for Zoning in the DCLF ICRP transport model. This calculates the nodal marginal costs where peak <u>net</u> demand can be met despite the Security and Quality of Supply Standard contingencies (simulating single and double circuit faults) on the network. Essentially the calculation of secured nodal marginal costs is identical to the process outlined above except that the secure DCLF study additionally calculates a nodal marginal cost taking into account the requirement to be secure against a set of worse case contingencies in terms of maximum flow for each circuit.

- 14.15.89 The secured nodal cost differential is compared to that produced by the DCLF ICRP transport model and the resultant ratio of the two determines the locational security factor using the Least Squares Fit method. Further information may be obtained from the charging website¹.
- 14.15.90 The locational onshore security factor derived for 2010/11 is 1.8 and is based on an average from a number of studies conducted by The Company to account for future network developments. The security factor is reviewed for each price control period and fixed for the duration.

Local Security Factors

- 14.15.91 Local onshore security factors are generator specific and are applied to a generator's local onshore circuits. If the loss of any one of the local circuits prevents the export of power from the generator to the MITS then a local security factor of 1.0 is applied. For generation with circuit redundancy, a local security factor is applied that is equal to the locational security factor, currently 1.8.
- 14.15.92 Where a Transmission Owner has designed a local onshore circuit (or otherwise that circuit once built) to a capacity lower than the aggregated TEC of the generation using that circuit, then the local security factor of 1.0 will be multiplied by a Counter Correlation Factor (CCF) as described in the formula below;

$$CCF = \frac{D_{\min} + T_{cap}}{G_{cap}}$$

Where; D_{min} = minimum annual net demand (MW) supplied via that circuit in the absence of that generation using the circuit

 T_{cap} = transmission capacity built (MVA)

 G_{cap} = aggregated TEC of generation using that circuit

CCF cannot be greater than 1.0.

14.15.93 A specific offshore local security factor (LocalSF) will be calculated for each offshore connection using the following methodology:

$$LocalSF = \frac{NetworkExportCapacity}{\sum_{k} Gen_{k}}$$

Where:

 NetworkExportCapacity =
 the total export capacity of the network disregarding any Offshore Interlinks

 k
 =
 the generation connected to the offshore network

1 http://www.nationalgrid.com/uk/Electricity/Charges/

Page 21 of 63

- 14.15.94 The offshore security factor for single circuits with a single cable will be 1.0 and for multiple circuit connections will be capped at the locational onshore security factor, derived as 1.8 for 2010/11.
- 14.15.95 The offshore local security factor for configurations with one or more Offshore Interlinks is updated so that the offshore circuit tariff will include the proportion of revenue associated with the Offshore Interlink(s). The specific offshore local security factor for configurations involving an Offshore Interlink, which may be greater than 1.8, will be calculated for each offshore connection using the following methodology:

LocalSF =	$\frac{\text{IRevOFTO} \times \text{NetworkExportCapacity}}{\text{OP} \times \text{OFTO} \times \sum_{i} C_{i}} + LocalSF_{initial}$
	$CRevOFTO \times \sum Gen_k$
	k

Where:

IRevOFTO =	The appropriate proportion of the Offshore Interlink(s) revenue in £
	associated with the offshore connection calculated in 14.15.85
CRevOFTO =	The offshore circuit revenue in £ associated with the circuit(s) from the
	offshore substation to the Single Common Substation.
<u>LocalSF_{initial} =</u>	Initial Local Security Factor calculated in 14.15.80 and 14.15.81
	And other definitions as in 14.15.80.

Initial Transport Tariff

14.15.96 First an Initial Transport Tariff (ITT) must be calculated for both Peak Security and Year Round backgrounds. For Generation, the Peak Security zonal marginal km (ZMkm_{PS}), Year Round Not-Shared zonal marginal km (ZMkm_{YRNS}) and Year Round Shared zonal marginal km (ZMkm_{YRS}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT, Year Round Not-Shared ITT and Year Round Shared ITT respectively:

 $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$

Where ZMkm _{GiPS} ZMkm _{GiYRNS} charging zone	= = e	Peak Security Zonal Marginal km for each generation zone Year Round Not-Shared Zonal Marginal km for each generation	
ZMkm _{GiYRS}	=	Year Round Shared Zonal Marginal km for each generation	
charging zon	е		
EC	=	Expansion Constant	
LSF	=	Locational Security Factor	
	=	Peak Security Initial Transport Tariff (£/MW) for each generation	
zone			
ITT _{GiYRNS}	=	Year Round Not-Shared Initial Transport Tariff (£/MW) for each	
generation charging zone			
ITT _{GiYRS}	=	Year Round Shared Initial Transport Tariff (£/MW) for each	
generation charging zone.			

- CUSC v1.12
 - 14.15.97 Similarly, for demand the Peak Security zonal marginal km (ZMkm_{PS}) and Year Round zonal marginal km (ZMkm_{YR}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT and Year Round ITT respectively:

		$ZMkm_{DiPS} \times EC \times LSF = ITT_{DiPS}$	
		$ZMkm_{DiYR} \times EC \times LSF = ITT_{DiYR}$	
Where ZMkm _{DiP} ZMkm _{DiY}	0	Peak Security Zonal Marginal km for each demand zone Year Round Zonal Marginal km for each demand zone	
ITT _{DiPS} ITT _{DiYR}	= =	Peak Security Initial Transport Tariff (\pounds /MW) for each demand one Year Round Initial Transport Tariff (\pounds /MW) for each demand zone	
14.15.98	14.15.98 The next step is to multiply these ITTs by the expected metered triad gross <u>GSP group</u> demand and generation capacity to gain an estimate of the initial revenue recovery for both Peak Security and Year Round backgrounds. The metered triad gross <u>GSP group</u> demand and generation capacity are based on <u>analysis of</u> forecasts provided by Users and are confidential.		
a.		ad gross GSP group demand is net demand for all GSP groups less exports for all GSP groups .	
Where			

ITRR _G =	Initial Transport Revenue Recovery for generation
G _{Gi} =	Total forecast Generation for each generation zone (based
	on <u>analysis of</u> confidential User forecasts)
ITRR _D =	Initial Transport Revenue Recovery for gross GSP group
	demand
D _{Di} =	Total forecast Metered Triad gross GSP group Demand for
each	
	demand zone (based on <u>analysis of</u> confidential User
	forecasts).

In addition, the initial tariffs for generation are also multiplied by the **Peak Security flag** when calculating the initial revenue recovery component for the Peak Security background. Similarly, when calculating the initial revenue recovery for the Shared component of the Year Round background, the initial tariffs are multiplied by the **Annual Load Factor** (see below).

Peak Security (PS) Flag

14.15.99 The revenue from a specific generator due to the Peak Security locational tariff needs to be multiplied by the appropriate Peak Security (PS) flag. The PS flags indicate the extent to which a generation plant type contributes to the need for transmission network investment at peak demand conditions. The PS

Page 23 of 63

flag is derived from the contribution of differing generation sources to the demand security criterion as described in the Security Standard. In the event of a significant change to the demand security assumptions in the Security Standard, National Grid will review the use of the PS flag.

Generation Plant Type	PS flag
Intermittent	0
Other	1

Annual Load Factor (ALF)

- 14.15.100 The ALF for each individual Power Station is calculated using the relevant TEC (MW) and corresponding output data. Where output data is not available for a Power Station, including for new Power Stations and emerging Power Station technologies, generic data for the appropriate generation plant type will be used.
- 14.15.101 For a given charging year "t" the Power Station ALF will be based on information from the previous five charging years, calculated for each charging year as set out below.

$$ALF = \frac{\sum_{p=1}^{17520} GMWh_p}{\sum_{p=1}^{17520} TECp \times 0.5}$$

Where:

 $\mathsf{GMWh}_{\mathsf{p}}$ is the maximum of FPN or actual metered output in a Settlement Period related to the power station TEC (MW); and

 TEC_{p} is the TEC (MW) applicable to that Power Station for that Settlement Period including any STTEC and LDTEC, accounting for any trading of TEC.

- 14.15.102 The appropriate output (FPN or actual metered) figure is derived from **BM Unit** data available to National Grid and relates to the total TEC of the Power Station.
- 14.15.103 Once all five charging year ALFs have been calculated for the individual Power Station they are compared, and the highest and lowest figures are discarded. The final ALF, to be used for transmission charging purposes, is calculated as the average of the remaining three ALFs.
- 14.15.104 In the event that only four charging years of complete output (FPN or actual metered) data are available for an individual Power Station then the higher three charging years ALF would be used in the calculation of the final ALF. In the event that only three charging years of complete output (FPN or actual metered) data are available then these three charging years would be used.
- 14.15.105 Due to the aggregation of output (FPN or actual metered) data for dispersed generation (e.g. cascade hydro schemes), where a single generator BMU consists of geographically separated power stations, the ALF would be calculated based on the total output of the BMU and the overall TEC of those Power Stations.

Page 24 of 63

1

- 14.15.106 In the event that there are not three full charging years of an individual power station's output available, missing output (FPN or actual metered) data would be replaced by generic data for that generation plant type to ensure three charging years of information are available for the Power Station. The derivation of the generic data is described in paragraphs 14.15.111-14.15.114.
- 14.15.107 Users will receive draft ALFs before 25th December of the charging year (t-1) for the charging year (t) and will have a period of 15 working days from date of publishing to notify the Company of any errors. Failure to agree changes relating to errors will be treated as a charging dispute under the CUSC.
- 14.15.108 The ALFs used in the setting of final tariffs will be published in the annual Statement of Use of System Charges. Changes to ALFs after this publication will not result in changes to published tariffs (e.g. following dispute resolution).

Derivation of Generic ALFs

14.15.109 The generic ALF is derived from the average annual output of the ten most recently commissioned GB generation of a particular generation plant type that have at least five charging years' data, using an identical methodology to that used for the Power Station specific calculation described above. Where less than ten GB generators of a particular generation plant type exist, then data from all existing generators of that particular generation plant type will be used. Example generation plant type categories are listed below;

Fuel Type
Biomass
Coal
Gas
Hydro
Nuclear (by reactor
type)
Oil & OCGTs
Pumped Storage
Onshore Wind
Offshore Wind
CHP

- 14.15.110 The Company will keep these categories under review and update as necessary. Where within a category there is a significant locational difference consideration will be given to zonal generic factors. The factors used will be published in the Statement of Use of System Charges and will be reviewed annually.
- 14.15.111 If a User can demonstrate that the generation plant type of a Power Station has changed, consideration will be given to the use of relevant generic ALF information in the calculation of their charges until sufficient specific data is available.
- 14.15.112 For new and emerging generation plant types, where insufficient data is available to allow a generic ALF to be developed, The Company will use the best information available e.g. from manufactuers and data from use of similar technologies outside GB. The factor will be agreed with the relevant Generator. In the event of a disagreement the standard provisions for dispute in the CUSC will apply.

<u>TNUoS Em</u> l	bedded Export Tariff
<u>14.15.113</u>	Embedded exports are exports measured on a half-hourly basis by Metering Systems, in accordance with the BSC, that are not subject to generation TNUoS.
<u>14.15.114</u>	The embedded export tariff will be applied to the metered Triad volumesof Embedded Exports for each demand zone as follows: $EET_{Di} = ITT_{DiPS} + ITT_{DiYR} + EX$
	Where
ITT _{DiPS} = ITT _{DiYR} = EX =	Peak Security Initial Transport Tariff for the demand zone; Year Round Initial Transport Tariff for the demand zone, and $RT_{c} \times -1$

Generation Residual Tariff with the inverse sign. For clarity, this means that if the Generation Residual is negative, the generation residual will be applied as a positive number for embedded exports.

<u>The Value of EET_{Di} will be floored at zero, so that EET_{Di} is always zero or positive.</u>

Initial Revenue Recovery

14.15,115 For the Peak Security background the initial tariff for generation is multiplied by the total forecast generation capacity and the PS flag to give the initial revenue recovery:

$$\sum_{Gi=1}^{n} (ITT_{GiPS} \times G_{Gi} \times F_{PS}) = ITRR_{GPS}$$

Where

 ITRR_{GPS}
 =
 Peak Security Initial Transport Revenue Recovery for generation

 G_{Gi}
 =
 Total forecast Generation for each generation zone (based on analysis of confidential User forecasts)

F _{PS}	=	Peak Security flag appropriate to that generator type
n	=	Number of generation zones

The initial revenue recovery for <u>gross GSP group</u> demand for the Peak Security background is calculated by multiplying the initial tariff by the total forecast metered triad <u>gross GSP group</u> demand:

$$\sum_{Di=1}^{14} (ITT_{DiPS} \times D_{Di}) = ITRR_{DPS}$$

Where:

Page 26 of 63

V1.12-01 April 2016

ITRRDPS = Peak Security Initial Transport Revenue Recovery for <u>gross GSP</u> <u>group</u> demand

$$\mathsf{D}_{\mathsf{Di}}$$

 Total forecast Metered Triad gross GSP group Demand for each demand zone (based on <u>analysis of confidential User forecasts</u>)

14.15,<u>116</u> For the Year Round background, the initial tariff for generation is multiplied by the total forecast generation capacity whilst calculating Initial Recovery for Not-Shared component whereas the initial tariff for Shared component is multiplied by both, the total forecast generation capacity and the ALF to give the initial revenue recovery:

$$\sum_{G_{i=1}}^{n} (ITT_{G_{iYRNS}} \times G_{G_{i}}) = ITRR_{GYRNS}$$
$$\sum_{G_{i=1}}^{n} (ITT_{G_{iYRS}} \times G_{G_{i}} \times ALF) = ITRR_{GYRS}$$

Where:

ITRR _{GYRNS} generation ITRR _{GYRS} generation ALF	=	Year Round Not-Shared Initial Transport Revenue Recovery for
	=	Year Round Shared Initial Transport Revenue Recovery for
	=	Annual Load Factor appropriate to that generator.

14.15,<u>117</u> Similar to the Peak Security background, the initial revenue recovery for gross <u>GSP group</u> demand for the Year Round background is calculated by multiplying the initial tariff by the total forecast metered triad<u>gross GSP group</u> demand:

$$\sum_{Di=1}^{14} \left(ITT_{DiYR} \times D_{Di} \right) = ITRR_{DYR}$$

Where:

ITRR

 Year Round Initial Transport Revenue Recovery for <u>gross GSP</u> group demand

<u>14.15.118The initial revenue recovery for Embedded Exports is the Embedded Export</u> Tariff multiplied by the total forecast volume of Embedded Export at triad:

$$ITRR_{EE} = \sum_{Di=1}^{14} (EET_{Di} \times EEV_{Di})$$

<u>Where</u>

For the avoidance of doubt, the initial revenue recovery for affected embedded exports can be positive or negative.

Page 27 of 63

V1.12-01 April 2016

Deleted: 115

Deriving the Final Local Tariff (£/kW)

Local Circuit Tariff

14.15,119 Generation with a local circuit tariff is calculated by multiplying the Year Round nodal marginal km along the local circuit by the expansion constant and the relevant local security factor (whether onshore or offshore) and summing across local circuits to give the local circuit tariff:

$$\sum_{k} \frac{NLMkm_{G_{i}}^{L} \times EC \times LocalSF_{k}}{1000} = CLT_{G_{i}}$$

Where

I

1

k	=	Local circuit k for generator
NLMkm _{Gj} L	=	Year Round Nodal marginal km along local circuit k using local
		circuit expansion factor.
EC	=	Expansion Constant
LocalSF _k	=	Local Security Factor for circuit k
CLT_{Gi}	=	Circuit Local Tariff (£/kW)

Onshore Local Substation Tariff

- 14.15,<u>120</u> All chargeable generation is subject to the local substation tariff component which is determined by assessing the generation substation type which is the substation at the connection charging boundary, against three cost determining factors:
 - HV connection voltage the voltage at the boundary between the User's connection assets and the transmission system;
 - (b) Sum of TEC at the generation substation the combined TEC of all generation at the connecting substation; and
 - (c) The level of redundancy at the generation substation single busbar / single switch mesh connections are examples of no redundancy connections, whereas examples of connections with redundancy include double busbar and mesh sub station designs.
- 14.15,121 Using the above factors, the corresponding £/kW tariffs (quoted to 3dp) that will be applied during 2010/11 are:

Substation	Connection	Substation Voltage (a)					
Rating (b)	Type (c)	132kV	275kV	400kV			
<1320MW	No redundancy	0.133	0.081	0.065			
<1320MW	Redundancy	0.301	0.192	0.155			
>=1320MW	No redundancy	n/a	0.257	0.208			
>=1320MW	Redundancy	n/a	0.417	0.336			

Deleted: 117

Deleted: 116

- 14.15,122 The process for calculating Local Substation Tariffs will be carried out for the first year of the price control and will subsequently be indexed by RPI for each subsequent year of the price control period.
- 14.15,123 The effective Local Tariff (£/kW) is calculated as the sum of the circuit and substation onshore and/or offshore components:

$$ELT_{Gi} = CLT_{Gi} + SLT_{Gi}$$

Where

ELT _{Gi}	=	Effective Local Tariff (£/kW)
SLT _{Gi}	=	Substation Local Tariff (£/kW)

14.15,124 Where tariffs do not change mid way through a charging year, final local tariffs will be the same as the effective tariffs:

ELT_{Gi} LT_{Gi} Where Final Local Tariff (£/kW) LT_{Gi} =

14.15,125 Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$LT_{Gi} = \frac{12 \times \left(ELT_{Gi} \times \sum_{Gi=1}^{21} G_{Gi} - FLL_{Gi}\right)}{b \times \sum_{Gi=1}^{21} G_{Gi}} \quad \text{and} \quad FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{21} D_{Di}}$$

Where:

b = number of months the revised tariff is applicable for FLL = Forecast local liability incurred over the period that the original tariff is applicable for

14.15,126 For the purposes of charge setting, the total local charge revenue is calculated by:

$$\text{LCRR}_{\text{G}} = \sum_{j=Gi} \text{LT}_{\text{Gi}} * G_j$$

Where

LCRR _G	=	Local Charge Revenue Recovery
Gj	=	Forecast chargeable Generation or Transmission Entry Capacity
		in kW (as applicable) for each generator (based on analysis of
		confidential information received from Users)

Offshore substation local tariff

- 14.15,127 All offshore chargeable generation is subject to an offshore substation tariff. The offshore substation tariff shall be the sum of transformer, switchgear and platform components.
- 14.15,128 Each tariff component, expressed in £/kW, shall be the ratio of the Offshore Transmission Owner revenue (£) and rating associated with the transformers, switchgear or platform (kW) at each offshore substation. The Offshore Transmission Owner revenue of each tariff component shall include that associated with asset spares. In the case of the platform component, the

Page 29 of 63

Deleted: 119

Deleted: 120

Deleted: 121

Deleted: 122

Deleted: 123

Deleted: 124

Deleted: 125

1

I

1

I

1

relevant rating shall be the lower of the transformer or switchgear ratings. As with the offshore circuit expansion factors, the Offshore Transmission Owner revenue associated with each tariff component shall be averaged over the remaining years of the NETSO price control.

- 14.15,129 Offshore Transmission Owner revenue associated with interest during construction and project development overheads will be attributed to the relevant asset category with which it is associated. If these or any other costs included in the Offshore Transmission Owner revenue are not readily attributable to a given asset category, they will be pro-rated across the various asset categories based on their relative cost.
 - 14.15,<u>130</u> For 2010/11 a discount of £0.345590/kW shall be provided to the offshore substation tariff to reflect the average cost of civil engineering for onshore substations. This will be inflated by RPI each year and reviewed every price control period.
 - 14.15,<u>131</u> Offshore substation tariffs shall be reviewed at the start of every onshore price control period. For each subsequent year within the price control period, these shall be inflated in the same manner as the associated Offshore Transmission Owner Revenue.
 - 14.15,<u>132</u> The revenue from the offshore substation local tariff is calculated by:

$$SLTR = \sum_{\substack{All offshore \\ substation}} \left(SLT_k \times \sum_k Gen_k \right)$$

Where:		
SLT _k	=	the offshore substation tariff for substation k
Gen _k	=	the generation connected to offshore substation k

The Residual Tariff

14.15,<u>133</u> The total revenue to be recovered through TNUoS charges is determined each year with reference to the Transmission Licensees' Price Control formulas less the costs expected to be recovered through Pre-Vesting connection charges. Hence in any given year t, a target revenue figure for TNUoS charges (TRR_t) is set after adjusting for any under or over recovery for and including, the small generators discount is as follows:

$$TRR_t = R_t - PVC_t - SG_{t-1}$$

Where

- TRR_t = TNUoS Revenue Recovery target for year t
- R_t = Forecast Revenue allowed under The Company's RPI-X Price Control Formula for year t (this term includes a number of adjustments, including for over/under recovery from the previous year). For further information, refer to Special Condition D2 of The Company's Transmission Licence.
 PVC_t = Forecast Revenue from Pre-Vesting connection charges for year t
- SG_{t-1} = The proportion of the under/over recovery included within R_t which relates to the operation of statement C13 of the The Company Transmission Licence. Should the operation of statement C13 result in an under recovery in year t 1, the SG figure will be positive and vice versa for an over recovery.
- 14.15,134 In normal circumstances, the revenue forecast to be recovered from the initial transport tariffs will not equate to the total revenue target. This is due to a

Page 30 of 63

Deleted: 126

Deleted: 127

Deleted: 128

Deleted: 129

number of factors. For example, the transport model assumes, for simplicity, smooth incremental transmission investments can be made. In reality, transmission investment can only be made in discrete 'lumps'. The transmission system has been planned and developed over a long period of time. Forecasts and assessments used for planning purposes will not have been borne out precisely by events and therefore some distinction between an optimal system for one year and the actual system can be expected.

14.15,135 As a result of the factors above, in order to ensure adequate revenue recovery, a constant non-locational **Residual Tariff** for generation and demand is calculated, which includes infrastructure substation asset costs. It is added to the initial transport tariffs for both Peak Security and Year Round backgrounds so that the correct generation / demand revenue split is maintained and the total revenue recovery is achieved.

$$RT_{D} = \frac{(p \times TRR) - ITRR_{DPS} - ITRR_{DYR} - ITRR_{EE}}{\sum_{Di=1}^{14} D_{Di}}$$

$$RT_{G} = \frac{\left[\left(1-p\right) \times TRR\right] - ITRR_{GPS} - ITRR_{GYRS} - ITRR_{GYRS} - LCRR_{G}}{\sum_{Gi=1}^{n} G_{Gi}}$$

Where RT

= Residual Tariff (£/MW)

Proportion of revenue to be recovered from demand

Final £/kW Tariff

р

14.15,136 The effective Transmission Network Use of System tariff (TNUoS) for generation and gross demand can now be calculated as the sum of the initial transport wider tariffs for Peak Security and Year Round backgrounds, the non-locational residual tariff and the local tariff:

$$ET_{Gi} = \frac{ITT_{GiPS} + ITT_{GiYRNS} + ITT_{GiYRS} + RT_{G}}{1000} + LT_{Gi}$$
$$ET_{Di} = \frac{ITT_{DiPS} + ITT_{DiYR} + RT_{D}}{1000}$$

Where

$$\label{eq:expectation} \begin{split} \mathsf{ET}_{\underline{\mathsf{Gi}}} &= _\mathsf{Effective} \ \underline{\mathsf{Generation}} \ \mathsf{TNUoS} \ \mathsf{Tariff} \ \mathsf{expressed} \ \mathsf{in} \ \underline{\mathsf{L}}/\mathsf{kW} \ (\mathsf{ET}_{\mathsf{Gi}} \ \mathsf{would} \ \mathsf{only} \ \mathsf{be} \\ & \mathsf{applicable} \ \mathsf{to} \ \mathsf{a} \ \mathsf{Power} \ \mathsf{Station} \ \mathsf{with} \ \mathsf{a} \ \mathsf{PS} \ \mathsf{flag} \ \mathsf{of} \ \mathsf{1} \ \mathsf{and} \ \mathsf{ALF} \ \mathsf{of} \ \mathsf{1}; \ \mathsf{in} \ \mathsf{all} \ \mathsf{other} \\ & \mathsf{circumstances} \ \mathsf{ITT}_{\mathsf{GiPS}}, \ \mathsf{ITT}_{\mathsf{GiPRS}} \ \mathsf{and} \ \mathsf{ITT}_{\mathsf{GiPRS}} \ \mathsf{will} \ \mathsf{be} \ \mathsf{applied} \ \mathsf{using} \ \mathsf{Power} \\ & \mathsf{Station} \ \mathsf{specific data}) \end{split}$$

ET_{Di} = Effective Gross Demand TNUoS Tariff expressed in £/kW

The effective Transmission Network Use of System tariff (TNUoS) for affected embedded exports and grandfathered embedded exports can now be calculated by expressing the embedded export tariff in £/kW values:

$$ET_{EEi} = \frac{EET_{Di}}{1000}$$

 $RT_{D} = \frac{(p \times TRR) - (p \times TRR)}{(p \times TRR)}$

Ĩ

Deleted: 132

 $\frac{Where}{ET_{EEi}} = Effective Embedded Export TNUoS Tariff expressed in £/kW$

For the purposes of the annual Statement of Use of System Charges ET_{Gi} will be published as ITT_{GiPS} ; ITT_{GiPRS} , ITT_{GiPRS} , RT_{G} and LT_{Gi}

14.15,137 Where tariffs do not change mid way through a charging year, final demand and generation tariffs will be the same as the effective tariffs.

$$FT_{Gi} = ET_{Gi}$$

$$FT_{Di} = ET_{Di}$$

$$FT_{EEAi} = ET_{EEi}$$

14.15,138 Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$FT_{Gi} = \frac{12 \times \left(ET_{Gi} \times \sum_{Gi=1}^{2} G_{Gi} - FL_{Gi}\right)}{b \times \sum_{Gi=1}^{27} G_{Gi}}$$

$$FT_{EEi} = \frac{12 \times (ET_{EEi} \times \sum_{Di=1}^{14} EET_{Di} - FL_{Di})}{b \times \sum_{Di=1}^{14} EET_{Di}} \text{ and } FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{14} EET_{Di}}$$

Where:

b = number of months the revised tariff is applicable for

FL = Forecast liability incurred over the period that the original tariff is applicable for

Note: The ET_{Gi} element used in the formula above will be based on an individual Power Stations PS flag and ALF for Power Station G_{Gi} , aggregated to ensure overall correct revenue recovery.

14.15.139 If the final <u>gross</u> demand TNUoS Tariff results in a negative number then this is collared to £0/kW with the resultant non-recovered revenue smeared over the remaining demand zones:

 $NRRT_{D} = \frac{\sum_{i=1}^{z} \left(FT_{Di} \times D_{Di} \right)}{\sum_{i=1}^{14} D_{Di}}$

If $FT_{Di} < 0$, then i = 1 to z

Therefore,

Therefore the revised Final Tariff for the <u>gross</u> demand zones with positive Final tariffs is given by:

= 0

For
$$i= 1$$
 to z: RFT_{Di}

V1.12-01 April 2016

Deleted: 40

Deleted: 134

	For $i=z+1$ to 14: $RFT_{Di} = FT_{Di} + NRRT_D$			
	Where $NRRT_D$ =Non Recovered Revenue Tariff (£/kW) RFT_{Di} =Revised Final Tariff (£/kW)			
I	14.15,140 The tariffs applicable for any particular year are detailed in The Compa Statement of Use of System Charges, which is available from the Char website. Archived tariff information may also be obtained from the Cha website.	rging	Deleted: 137	
I	14.15,141 The zonal maps referenced in The Company's Statement of Use of Systematic Charges and available on the Charging website contain detailed inform for the charging year in question of which Grid Supply Points fall into v TNUoS zones.	ation	Deleted: 138	
I	14.15,142 New Grid Supply Points will be classified into zones on the following basis:		 Deleted: 139	
	 For demand zones, according to the GSP Group to which the Grid Supply Po allocated for energy market settlement purposes. 	int is		
	 For generation zones, with reference to the geographic proximity to existing z and, where close to a boundary between existing zones, with reference to marginal costs arising from transport model studies. The GSP will then be allow to the zone, which contains the most similar marginal costs. 	the		
	14.15,143 The Company has available, upon request, the DCLF ICRP transport m tariff model template and data necessary to run the model, consisting of r values of generation and demand connection points to the NETS. The m and data will enable the basic nodal charges to be determined and will allow sensitivity analysis concerning alternative developments of gener and demand to be undertaken. The model is available from the Cha Team and whilst it is free of charge, it is provided under licence to restri distribution and commercial use.	nodal nodel also ration rging	Deleted: 140	
ļ	14.15,144 The Company will be pleased to run specific sensitivity studies for Users u a separate study contract in line with the fees set out in the Statement of of System Charges. Please contact the Charging Team.		Deleted: 141	
	14.15,145 The factors which will affect the level of TNUoS charges from year to include-;	year	Deleted: 142	
	 the forecast level of peak demand on the system the Price Control formula (including the effect of any under recovery from the previous year), the expansion constant, the locational security factor, the PS flag the ALF of a generator changes in the transmission network HVDC circuit impedance calculation changes in the pattern of generation capacity and demand. changes in the pattern of embedded exports 	/over		
	Page 33 of 63 V1.12– 01 Apri	1 2016		

I

14.15,146 In accordance with Standard Licence Condition C13, generation directly connected to the NETS 132kV transmission network which would normally be subject to generation TNUoS charges but would not, on the basis of generating capacity, be liable for charges if it were connected to a licensed distribution network qualifies for a reduction in transmission charges by a designated sum, determined by the Authority. Any shortfall in recovery will result in a unit amount increase in gross_demand charges to compensate for the deficit. Further information is provided in the Statement of the Use of System Charges.

Stability & Predictability of TNUoS tariffs

14.15,147 A number of provisions are included within the methodology to promote the stability and predictability of TNUoS tariffs. These are described in 14.29.

Deleted: 143

14.16 Derivation of the Transmission Network Use of System Energy Consumption Tariff and Short Term Capacity Tariffs

- 14.16.1 For the purposes of this section, Lead Parties of Balancing Mechanism (BM) Units that are liable for Transmission Network Use of System Demand Charges are termed Suppliers.
- 14.16.2 Following calculation of the Transmission Network Use of System £/kW Gross Demand Tariff (as outlined in Chapter 2: Derivation of the TNUoS Tariff) for each GSP Group is calculated as follows:

$$p/kWh Tariff = (NHHD_F * £/kW Tariff - FL_G) *100$$

NHHC_G

Where:

 \pounds/kW Tariff = The \pounds/kW Effective <u>Gross</u> Demand Tariff (\pounds/kW), as calculated previously, for the GSP Group concerned.

 \mathbf{NHHD}_{F} = The Company's forecast of Suppliers' non-half-hourly metered Triad Demand (kW) for the GSP Group concerned. The forecast is based on historical data.

 FL_{G} = Forecast Liability incurred for the GSP Group concerned.

 $\rm NHHC_{G}$ = The Company's forecast of GSP Group non-half-hourly metered total energy consumption (kWh) for the period 16:00 hrs to 19:00hrs inclusive (i.e. settlement periods 33 to 38) inclusive over the period the tariff is applicable for the GSP Group concerned.

Short Term Transmission Entry Capacity (STTEC) Tariff

14.16.3 The Short Term Transmission Entry Capacity (STTEC) tariff for positive zones is derived from the Effective Tariff (ET_{Gi}) annual TNUoS £/kW tariffs (14.15.112). If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the STTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (i.e. over the whole financial year, not just the period that the STTEC is applicable for). STTECs will not be reconciled following a mid year charge change. The premium associated with the flexible product is associated with the analysis that 90% of the annual charge is linked to the system peak. The system peak is likely to occur in the period of November to February inclusive (120 days, irrespective of leap years). The calculation for positive generation zones is as follows:

$$\frac{FT_{Gi} \times 0.9 \times STTEC \ Period}{120} = STTEC \ tariff \ (\pounds/kW/period)$$

Where:

FT	=	Final annual TNUoS Tariff expressed in £/kW
Gi	=	Generation zone
STTEC Period	=	A period applied for in days as defined in the CUSC

Page 35 of 63

- 14.16.4 For the avoidance of doubt, the charge calculated under 14.16.3 above will represent each single period application for STTEC. Requests for multiple /STTEC periods will result in each STTEC period being calculated and invoiced separately.
- 14.16.5 The STTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.

Limited Duration Transmission Entry Capacity (LDTEC) Tariffs

14.16.6 The Limited Duration Transmission Entry Capacity (LDTEC) tariff for positive zones is derived from the equivalent zonal STTEC tariff for up to the initial 17 weeks of LDTEC in a given charging year (whether consecutive or not). For the remaining weeks of the year, the LDTEC tariff is set to collect the balance of the annual TNUoS liability over the maximum duration of LDTEC that can be granted in a single application. If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the LDTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (ie over the whole financial year, not just the period that the STTEC is applicable for). LDTECs will not be reconciled following a mid year charge change:

Initial 17 weeks (high rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.9 \times 7}{120}$$

Remaining weeks (low rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.1075 \times 7}{316 - 120} \times (1 + P)$$

where FT is the final annual TNUoS tariff expressed in £/kW; G_i is the generation TNUoS zone; and P is the premium in % above the annual equivalent TNUoS charge as determined by The Company, which shall have the value 0.

- 14.16.7 The LDTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.
- 14.16.8 The tariffs applicable for any particular year are detailed in The Company's **Statement of Use of System Charges** which is available from the **Charging website**. Historical tariffs are also available on the **Charging website**.

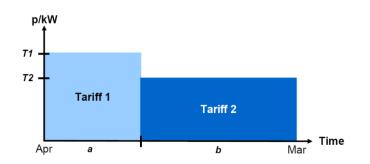
14.17 Demand Charges

Parties Liable for Demand Charges

- 14.17.1 Demand charges are subdivided into charges for gross demand, energy and embedded export. The following parties shall be liable for some or all of the categories of demand charges:
 - The Lead Party of a Supplier BM Unit;
 - Power Stations with a Bilateral Connection Agreement;
 - Parties with a Bilateral Embedded Generation Agreement
- 14.17.2 Classification of parties for charging purposes, section 14.26, provides an illustration of how a party is classified in the context of Use of System charging and refers to the paragraphs most pertinent to each party.

Basis of Gross Demand Charges

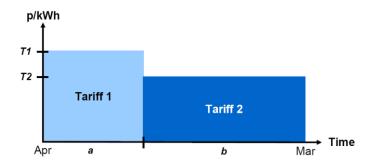
app


app

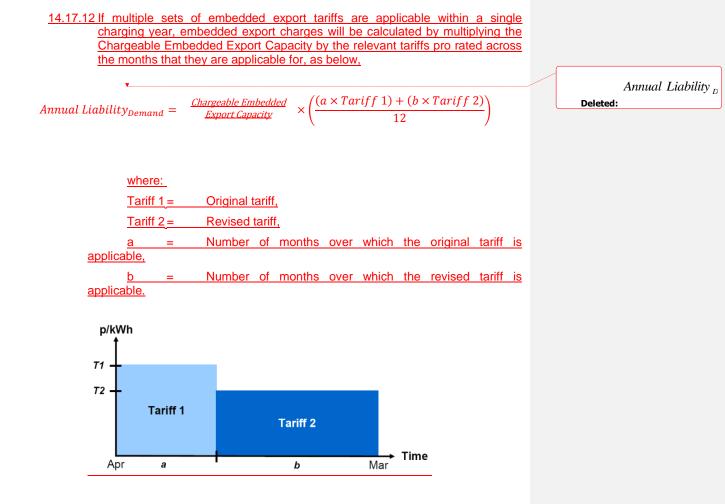
- 14.17.3 <u>Gross d</u>emand charges are based on a de-<u>minimis</u> £0/kW charge for Half Hourly and £0/kWh for Non Half Hourly metered demand.
 - 14.17.4 Chargeable <u>Gross</u> Demand Capacity is the value of Triad <u>gross</u> demand (kW). Chargeable Energy Capacity is the energy consumption (kWh). The definition of both these terms is set out below.
 - 14.17.5 If there is a single set of <u>gross</u> demand tariffs within a charging year, the Chargeable <u>Gross</u> Demand Capacity is multiplied by the relevant <u>gross</u> demand tariff, for the calculation of <u>gross</u> demand charges.
 - 14.17.6 If there is a single set of energy tariffs within a charging year, the Chargeable Energy Capacity is multiplied by the relevant energy consumption tariff for the calculation of energy charges..
 - 14.17.7 If multiple sets of <u>gross</u> demand tariffs are applicable within a single charging year, <u>gross</u> demand charges will be calculated by multiplying the Chargeable <u>Gross</u> Demand Capacity by the relevant tariffs pro rated across the months that they are applicable for, as below,

Annuc	ıl Liabilit <u>:</u>	y _{Demand} = <u>Cha</u>	nrge. man	<u>able Gross</u> <u>d Capacity</u>	$\times \left(\frac{(a)}{a}\right)$	< Tariff 2	$\frac{1}{12} + (b)$	×Tariff2	<u>!)</u>)	
whe	re:						_			
Tarif	ff 1 =	Original ta	ariff	,						
Tarif	ff 2 =	Revised ta	arif	f,						
a licable,	=	Number	of	months	over	which	the	original	tariff	is
b licable.	=	Number	of	months	over	which	the	revised	tariff	is

Deleted: minimus


Deleted: Annual Liability D

14.17.8 If multiple sets of energy tariffs are applicable within a single charging year, energy charges will be calculated by multiplying relevant Tariffs by the Chargeable Energy Capacity over the period that that the tariffs are applicable for and summing over the year.


Annual Liability $_{Energy} = Tariff \ 1 \times \sum_{TI_s}^{TI_E} Chargeable Energy Capacity + Tariff \ 2 \times \sum_{TZ_s}^{TI_E} Chargeable Energy Capacity$

Where: T1s Start date for the period for which the original tariff is = applicable, End date for the period for which the original tariff is T1_E applicable, Start date for the period for which the revised tariff is T2s _ applicable, End date for the period for which the revised tariff is T2_E = applicable.

Basis of Embedded Export Charges

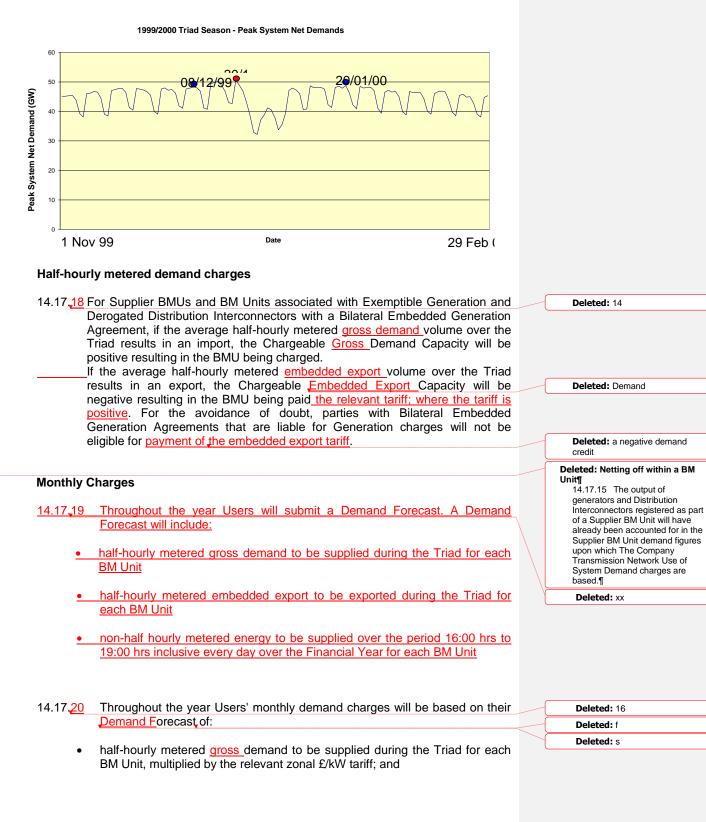
- 14.17.9 Embedded export charges are based on a £/kW charge for Half Hourly metered embedded export.
- <u>14.17.10 Chargeable Embedded Export Capacity is the value of Embedded Export at</u> <u>Triad (kW). The definition of this term is set out below.</u>
- 14.17.11 If there is a single set of embedded export tariffs within a charging year, the Chargeable Embedded Export Capacity is multiplied by the relevant embedded export tariff, for the calculation of embedded export charges.

Supplier BM Unit

14.17,<u>13</u> A Supplier BM Unit charges will be the sum of its energy, <u>gross_demand_and</u> <u>embedded export</u> liabilities where:

- The Chargeable <u>Gross</u> Demand Capacity will be the average of the Supplier BM Unit's half-hourly metered <u>gross</u> demand during the Triad (and the £/kW tariff),
- The Chargeable Embedded Export Capacity will be the average of the Supplier BM Unit's half-hourly metered embedded export during the Triad (and the £/kW tariff), and
- The Chargeable Energy Capacity will be the Supplier BM Unit's non halfhourly metered energy consumption over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year (and the p/kWh tariff).

Power Stations with a Bilateral Connection Agreement and Licensable Generation with a Bilateral Embedded Generation Agreement


Page 39 of 63

V1.12-01 April 2016

CUSC v1.12	
14.17,14 The Chargeable Gross Demand Capacity for a Power Station with a Bilateral	Deleted: 10
Connection Agreement or Licensable Generation with a Bilateral Embedded	
Generation Agreement will be based on the average of the gross import over	Deleted: net
each Triad leg of the BM Units associated with the Power Station (in Appendix C of its Bilateral Connection Agreement or Bilateral Embedded Generation Agreement, including metered additional load) during the Triad.	
Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement	
14.17,15,The demand charges for Exemptible Generation and Derogated Distribution	Deleted: 11
Interconnector with a Bilateral Embedded Generation Agreement will be the sum of its gross demand and embedded export liabilities where:	Deleted: An
sum of his gross demand and embedded export liabilities where.	
 The Chargeable Gross Demand Capacity for Exemptible Generation and Deve geted Distribution Intercomposition with a Dilatoral Each added Composition 	
Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement will be based on the average of the metered <u>gross demand</u> of	Deleted: volume
each BM Unit specified in Appendix C of the Bilateral Embedded Generation	Deleted: volume
Agreement during the Triad.	
The Chargeable Embedded Export Capacity for Exemptible Generation and	
 <u>The Chargeable Embedded Export Capacity for Exemptible Generation and</u> Derogated Distribution Interconnectors with a Bilateral Embedded Generation 	
Agreement will be based on the average of the metered embedded export of	
each BM Unit specified in Appendix C of the Bilateral Embedded Generation	
Agreement during the Triad.	
Small Generators Tariffs	
14.17.16 In accordance with Standard Licence Condition C13, any under recovery from	Deleted: 12
the MAR arising from the small generators discount will result in a unit amount	
of increase to all GB gross demand tariffs.	
The Triad	
The mau	
14.17,17 The Triad is used as a short hand way to describe the three settlement periods	Deleted: 13
of highest transmission system demand within a Financial Year, namely the	
half hour settlement period of system peak net demand and the two half hour	
settlement periods of next highest <u>net</u> demand, which are separated from the	
system peak <u>net</u> demand and from each other by at least 10 Clear Days,	
between November and February of the Financial Year inclusive. Exports on	
directly connected Interconnectors and Interconnectors capable of exporting more than 100MW to the Total System shall be excluded when determining the	
system peak net demand. An illustration is shown below.	
system peaking demand. An indenation is shown below.	

I

I

- half-hourly metered embedded export to be supplied during the Triad for each BM Unit, multiplied by the relevant zonal £/kW tariff; and
- non-half hourly metered energy to be supplied over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year for each BM Unit, multiplied by the relevant zonal p/kWh tariff

Users' annual TNUoS demand charges are based on these forecasts and are split evenly over the 12 months of the year. Users have the opportunity to vary their demand forecasts on a quarterly basis over the course of the year, with the demand forecast requested in February relating to the next Financial Year. Users will be notified of the timescales and process for each of the quarterly updates. The Company will revise the monthly Transmission Network Use of System demand charges by calculating the annual charge based on the new forecast, subtracting the amount paid to date, and splitting the remainder evenly over the remaining months. For the avoidance of doubt, only positive demand forecasts (i.e. representing <u>a net</u> import from the system) will be <u>used in the calculation of charges</u>.

Demand forecasts for a User will be considered positive where:

- The sum of the gross demand forecast and embedded export forecast is positive; and
- The non-half hourly metered energy forecast is positive.

14.17.21 Users should submit reasonable forecasts of gross demand, embedded export and energy in accordance with the CUSC. The Company shall use the following methodology to derive a forecast to be used in determining whether a User's forecast is reasonable, in accordance with the CUSC, and this will be used as a replacement forecast if the User's total forecast is deemed unreasonable. The Company will, at all times, use the latest available Settlement data.

For existing Users:

- i) The User's Triad <u>gross</u> demand<u>and embedded export</u> for the preceding Financial Year will be used where User settlement data is available and where The Company calculates its forecast before the Financial Year. Otherwise, the User's average weekday settlement period 35 half-hourly metered (HH) <u>gross</u> demand <u>and embedded export</u> in the Financial Year to date is compared to the equivalent average <u>gross</u> demand<u>and</u> <u>embedded export</u> for the corresponding days in the preceding year. The percentage difference is then applied to the User's HH <u>gross</u> demand<u>and</u> <u>embedded export</u> at Triad in the preceding Financial Year to derive a forecast of the User's HH <u>gross</u> demand <u>and embedded export</u> at Triad for this Financial Year.
- ii) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day in the Financial Year to date is compared to the equivalent energy consumption over the corresponding days in the preceding year. The percentage difference is then applied to the User's total NHH energy consumption in the preceding Financial Year to derive a forecast of the User's NHH energy consumption for this Financial Year.

For new Users who have completed a Use of System Supply Confirmation Notice in the current Financial Year:

Page 42 of 63

V1.12-01 April 2016

Deleted: accepted

1

iii) The User's average weekday settlement period 35 half-hourly metered (HH) gross demand and embedded export over the last complete month for which The Company has settlement data is calculated. Total system average HH gross demand and embedded export for weekday settlement period 35 for the corresponding month in the previous year is compared to total system HH_gross demand and embedded export at Triad in that year and a percentage difference is calculated. This percentage is then applied to the User's average HH gross demand and embedded export for weekday settlement period 35 over the last month to derive a forecast of the User's HH gross demand and embedded export at Triad for this Financial Year.

- iv) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day over the last complete month for which The Company has settlement data is noted. Total system NHH energy consumption over the corresponding month in the previous year is compared to total system NHH energy consumption over the remaining months of that Financial Year and a percentage difference is calculated. This percentage is then applied to the User's NHH energy consumption over the month described above, and all NHH energy consumption in previous months is added, in order to derive a forecast of the User's NHH metered energy consumption for this Financial Year.
- 14.17.22 14.28 Determination of The Company's Forecast for Demand Charge Purposes illustrates how the demand forecast will be calculated by The Company.

Reconciliation of Demand Charges

14.17,23 The reconciliation process is set out in the CUSC. The demand reconciliation process compares the monthly charges paid by Users against actual outturn charges. Due to the Settlements process, reconciliation of demand charges is carried out in two stages; initial reconciliation and final reconciliation.

Initial Reconciliation of demand charges

14.17,24 The initial reconciliation process compares Users' demand forecasts and corresponding monthly charges paid over the year against actual outturn data (using latest Settlement data available at the time) and corresponding charges. Initial reconciliation is carried out in two parts; Initial Reconciliation Part 1 deals with the reconciliation of half-hourly metered demand charges and Initial Reconciliation Part 2 deals with the reconciliation of non-half-hourly metered demand charges.

Initial Reconciliation Part 1– Half-hourly metered demand

- 14.17.25 The Company will identify the periods forming the Triad once it has received Central Volume Allocation data from the Settlement Administration Agent for all days up to and including the last day of February. Once The Company has notified Users of the periods forming the Triad they will not be changed even if disputes are subsequently resolved which would change the periods forming the Triad.
- 14.17,<u>26</u> Initial outturn charges for half-hourly metered <u>gross</u> demand will be determined using the latest available data of actual average Triad <u>gross</u> demand (kW) multiplied by the zonal <u>gross</u> demand tariff(s) (£/kW) applicable to the months

Page 43 of 63

Deleted: 18

Deleted: 19

Deleted: 20

Deleted: 1

Сι

l

I

I

l

I

SC v1.12			
	concerned for each zone for that Financial Year. These acture reconciled against the monthly charges paid in respect of demand.		
<u>14.17,2</u>	7 Initial outturn charges for half-hourly metered embedded determined using the latest available data of actual average export (kW) multiplied by the zonal embedded export tariff(s) to the months concerned for each zone for that Financial Yo values are then reconciled against the monthly charges paid hourly embedded exports.	e Triad embedded (£/kW) applicable ear. These actual	Deleted: xx
Initial F	econciliation Part 2 – Non-half-hourly metered demand		
14.17	8 Actual payments for non-half-hourly metered demand will be the latest available actual energy consumption data (kWh) for hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 3 multiplied by the energy consumption tariff(s) (p/kWh) applica concerned for each zone. These actual values are then reco- monthly charges paid in respect of non-half-hourly energy con-	r the period 16:00 38) over the year able to the months onciled against the	Deleted: 23
Final R	econciliation of demand charges		
14.17.2	9 The final reconciliation process compares Users' charges (as the initial reconciliation process using the latest available outturn demand charges (based on final settlement data of demand, embedded exports and non-half-hourly energy cons	data) against final half-hourly gross	Deleted: 24
14.17	<u>Pinal actual charges will be determined using the final dem data taken from the Final Reconciliation Settlement Reconciliation Volume Allocation Run.</u>		Deleted: 25
Recon	iliation of manifest errors		
14.17	1 In the event that a manifest error, or multiple errors in the cal tariffs results in a material discrepancy in aUsers T reconciliation process for all Users qualifying under Section accordance with Sections 14.17,24 to 14.17,30. The reconciliation is not practicable, a post-year reconciliation will the form of a one-off payment.	NUoS tariff, the 14.17. <u>33</u> will be in onciliation process 5. Where such	Deleted: 26 Deleted: 28 Deleted: 20 Deleted: 25
14.17	2 A manifest error shall be defined as any of the following:		Deleted: 27
	 a) an error in the transfer of relevant data between Licensees or Distribution Network Operators; b) an error in the population of the Transport Model with c) an error in the function of the Transport Model; or d) an error in the inputs or function of the Tariff Model. 		
14.17	<u>3</u> A manifest error shall be considered material in the event that the net effect of multiple errors, has an impact of the lesser of the l		Deleted: 28
	a) an error in a User's TNUoS tariff of at least +/-£0.50/		
	Page 44 of 63	V1.12– 01 April 2016	

b) an error in a User's TNUoS tariff which results in an error in the annual TNUoS charge of a User in excess of +/-£250,000.

14.17,<u>34</u> A manifest error shall only be reconciled if it has been identified within the charging year for which the error has an effect. Errors identified outside of this period will not be eligible for reconciliation retrospectively.

Implementation of P272

- 14.17,<u>35</u>.1 BSC modification P272 requires Suppliers to move Profile Classes 5-8 to Measurement Class E - G (i.e. moving from NHH to HH settlement) by April 2016. The majority of these meters are expected to transfer during the preceding Charging Years up until the implementation date of P272 and some meters will have been transferred before the start of 1ST April 2015. A change from NHH to HH within a Charging Year would normally result in Suppliers being liable for TNUoS for part of the year as NHH and also being subject to HH charging. This section describes how the Company will treat this situation in the transition to P272 implementation for the purposes of TNUoS charging; and the forecasts that Suppliers should provide to the Company.
- 14.17,<u>35.2</u> Notwithstanding 14.17,<u>13</u>, for each Charging Year which begins after 31 March 2015 and prior to implementation of BSC Modification P272, all demand associated with meters that are in NHH Profile Classes 5 to 8 at the start of that charging year as well as all meters in Measurement Classes E G will be treated as Chargeable Energy Capacity (NHH) for the purposes of TNUoS charging for the full Charging Year unless 14.17,<u>35.3</u> applies.
 - 14.17,35.3 Where prior to 1st April 2015 a Profile Class meter has already transferred to Measurement Class settlement (HH) the associated Supplier may opt to treat the demand volume as Chargeable Demand Capacity (HH) for the purposes of TNUoS charging up until implementation of P272, subject to meeting conditions in 14.17,35.6. If the associated Supplier does not opt to treat the demand volume as Demand Capacity (HH) it will be treated by default as Chargeable Energy Capacity (NHH) for each full Charging Year up until implementation of P272.
 - 14.17,35.4 The Company will calculate the Chargeable Energy Capacity associated with meters that have transferred to HH settlement but are still treated as NHH for the purposes of TNUoS charging from Settlement data provided directly from Elexon i.e. Suppliers need not Supply any additional information if they accept this default position.
- 14.17,35.5 The forecasts that Suppliers submit to the Company under CUSC 3.10, 3.11 and 3.12 for the purpose of TNUoS monthly billing referred to in 14.17,20 and 14.17,21 for both Chargeable Demand Capacity and Chargeable Energy Capacity should reflect this position i.e. volumes associated those Metering Systems that have transferred from a Profile Class to a Measurement Class in the BSC (NHH to HH settlement) but are to be treated as NHH for the purposes of TNUoS charging should be included in the forecast of Chargeable Energy Capacity and not Chargeable Demand Capacity, unless 14.17,35.3 applies.
 - 14.17,<u>35</u>.6 Where a Supplier wishes for Metering Systems that have transferred from Profile Class to Measurement Class in the BSC (NHH to HH settlement) prior to 1st April 2015, to be treated as Chargeable Demand Capacity (HH/

Page 45 of 63

V1.12-01 April 2016

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 9

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 16

Deleted: 17

Deleted: 29

Deleted: 29

I

Measurement Class settled) it must inform the Company prior to October 2015. The Company will treat these as Chargeable Demand Capacity (HH / Measurement Class settled) for the purposes of calculating the actual annual liability for the Charging Years up until implementation of P272. For these cases only, the Supplier should notify the Company of the Meter Point Administration Number(s) (MPAN). For these notified meters the Supplier shall provide the Company with verified metered demand data for the hours between 4pm and 7pm of each day of each Charging Year up to implementation of P272 and for each Triad half hour as notified by the Company prior to May of the following Charging Year up until two years after the implementation of P272 to allow reconciliation (e.g. Mav 2017 and May 2018 for the Charging Year 2016/17). Where the Supplier fails to provide the data or the data is incomplete for a Charging Year TNUoS charges for that MPAN will be reconciled as part of the Supplier's NHH BMU (Chargeable Energy Capacity). Where a Supplier opts, if eligible, for TNUoS liability to be calculated on Chargeable Demand Capacity it shall submit the forecasts referred to in 14.17,35.5 taking account of this.

14.17,35.7 The Company will maintain a list of all MPANs that Suppliers have elected to be treated as HH. This list will be updated monthly and will be provided to registered Suppliers upon request.

Further Information

- 14.17,<u>36</u> 14.25 Reconciliation of Demand Related Transmission Network Use of System Charges of this statement illustrates how the monthly charges are reconciled against the actual values for <u>gross</u> demand, <u>embedded export</u> and consumption for half-hourly <u>gross demand</u>, <u>embedded export</u> and non-halfhourly metered demand respectively.
- 14.17,<u>37</u> **The Statement of Use of System Charges** contains the £/kW zonal gross demand tariffs, <u>the £/kW zonal embedded export tariffs</u>, and the p/kWh energy consumption tariffs for the current Financial Year.
- 14.17.<u>38</u> 14.27 Transmission Network Use of System Charging Flowcharts of this statement contains flowcharts demonstrating the calculation of these charges for those parties liable.

Deleted: 29 Deleted: 30

Deleted: 29

Deleted: 31

Deleted: 32

....

14.24 Example: Calculation of Zonal Gross Demand Tariff

Let us consider all nodes in a demand zone in this example

The table below shows a sample output of the transport model comprising the node, the Peak Security and Year Round marginal km of an injection at the node with a consequent withdrawal at the distributed reference node, the generation sited at the node, scaled to ensure total national generation = total national <u>net</u> demand and the <u>net</u> demand sited at the node.

Demand Zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	<u>Net</u> Demand (MW)
14	ABHA4A	-77.25	-230.25	127
14	ABHA4B	-77.27	-230.12	127
14	ALVE4A	-82.28	-197.18	100
14	ALVE4B	-82.28	-197.15	100
14	AXMI40_SWEB	-125.58	-176.19	97
14	BRWA2A	-46.55	-182.68	96
14	BRWA2B	-46.55	-181.12	96
14	EXET40	-87.69	-164.42	340
14	HINP20	-46.55	-147.14	0
14	HINP40	-46.55	-147.14	0
14	INDQ40	-102.02	-262.50	444
14	IROA20_SWEB	-109.05	-141.92	462
14	LAND40	-62.54	-246.16	262
14	MELK40_SWEB	18.67	-140.75	83
14	SEAB40	65.33	-140.97	304
14	TAUN4A	-66.65	-149.11	55
14	TAUN4B	-66.66	-149.11	55
		Totals		2748

In order to calculate the <u>gross</u> demand tariff we would carry out the following steps:

(i) calculate the demand weighted nodal shadow costs

For this example zone this would be as follows:

Demand zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	Net Demand (MW)	Peak Security Demand Weighted Nodal Marginal km	Year Round Demand Weighted Nodal Marginal km
14	ABHA4A	-77.25	-230.25	127	-3.57	-10.64
14	ABHA4B	-77.27	-230.12	127	-3.57	-10.64
14	ALVE4A	-82.28	-197.18	100	-2.99	-7.17
14	ALVE4B	-82.28	-197.15	100	-2.99	-7.17
14	AXMI40_SWEB	-125.58	-176.19	97	-4.43	-6.22
14	BRWA2A	-46.55	-182.68	96	-1.63	-6.38
14	BRWA2B	-46.55	-181.12	96	-1.63	-6.33
14	EXET40	-87.69	-164.42	340	-10.85	-20.34
14	INDQ40	-102.02	-262.50	444	-16.48	-42.41
14	IROA20_SWEB	-109.05	-141.92	462	-18.33	-23.86
14	LAND40	-62.54	-246.16	262	-5.96	-23.47
14	MELK40_SWEB	18.67	-140.75	83	0.56	-4.25
14	SEAB40	65.33	-140.97	304	7.23	-15.59
14	TAUN4A	-66.65	-149.11	55	-1.33	-2.98
14	TAUN4B	-66.66	-149.11	55	-1.33	-2.98
		Totals		2748	-49.19	-190.43

(ii) sum the Peak Security and Year Round demand weighted nodal shadow costs to give zonal figures. For this example zone this is shown in the above table and is 49.19km for Peak Security background and 190.43km for Year Round background.

(iii) calculate the transport tariffs by multiplying the figures in (ii) above by the expansion constant (& dividing by 1000 to put into units of £/kW):

For this example zone, assuming an expansion constant of $\pm 10.07/MWkm$ and a locational security factor of 1.80:

a) Peak Security tariff – 49.19km <u>* £10.07/MWkm * 1.8</u> = <u>£0.89/kW</u> 1000

Page 49 of 63

b) Year Round tariff -<u>190.43km * £10.07/MWkm * 1.8</u> = <u>£3.45/kW</u> 1000

(iv) We now need to calculate the residual tariff. This is calculated by taking the total revenue to be recovered from demand (calculated as c.73% of total The Company_ TNUoS target revenue for the year), less the revenue which would be recovered through the demand transport tariffs and revenue recovery through embedded export tariffs, divided by total expected gross GSP group demand.

Assuming the total revenue to be recovered from TNUoS is £1067m, the total recovery from <u>gross GSP group</u> demand would be $(73\% \times £1067m) = £779m$. Assuming the total recovery from <u>gross GSP group</u> demand transport tariffs is £140m, total recovery from <u>embedded export tariffs is -£10m</u> and total forecast chargeable <u>gross GSP group</u> demand capacity is 50000MW, the demand residual tariff would be as follows:

 $\frac{\pounds779m - \pounds140m - -\pounds10m}{50,000MW} = \pounds12.98/kW$

 (v) to get to the final tariff, we simply add on the demand residual tariff calculated in (v) to the zonal transport tariffs calculated in (iii(a)) and (iii(b))

For zone 14:

 $\pounds 0.89/kW + \pounds 3.45/kW + \pounds 12.98/kW =$ $\pounds 17.32/kW$

- To summarise, in order to calculate the <u>gross</u> demand tariffs, we evaluate a <u>net</u> demand weighted zonal marginal km cost multiply by the expansion constant and locational security factor then we add a constant (termed the residual cost) to give the overall tariff.
- (vii) The final demand tariff is subject to further adjustment to allow for the minimum £0/kW gross_demand charge. The application of a discount for small generators pursuant to Licence Condition C13 will also affect the final gross_demand tariff.

Deleted: gross

Deleted: 130m

Deleted:	$\pounds779m - \pounds130m$	_
	50000MW	_

14.25 Reconciliation of <u>Gross</u> Demand Related Transmission Network Use of System Charges

This appendix illustrates the methodology used by The Company in the reconciliation of Transmission Network Use of System charges for <u>gross</u> demand. The example highlights the different stages of the calculations from the monthly invoiced amounts, right through to Final Reconciliation.

Monthly Charges

Suppliers provide half-hourly (HH) gross demand and embedded export forecasts and non-halfhourly (NHH) demand forecasts by BM Unit every quarter. An example of such forecasts and the corresponding monthly invoiced amounts, based on tariffs of £10.00/kW for gross demand, £5.00/kW for embedded export and 1.20p/kWh for energy consumption, is as follows:

	Forecast HH Triad <u>Gross</u> Demand <u>HHD_E (</u> kW)	HH <u>Gross</u> <u>Demand</u> Monthly Invoiced Amount (£)	Forecast HH Triad Embedded Export HHEE _E (kW)	<u>HH</u> <u>Embedded</u> <u>Generation</u> <u>Monthly</u> <u>Invoiced</u> <u>Amount (£)</u>	Forecast NHH Energy Consumpti on NHHC _F (kW h)	NHH Monthly Invoiced Amount (£)	Net Monthly Invoiced Amount (£)
Apr	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
May	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jun	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jul	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Aug	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Sep	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Oct	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Nov	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Dec	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Jan	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Feb	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Mar	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Total		72,000		<u>(3,000)</u>		216,000	<u>297</u> ,000

As shown, for the first nine months the Supplier provided a 12,000kW HH triad <u>gross</u> demand forecast, and hence paid HH <u>gross demand</u> monthly charges of £10,000 ((12,000kW x £10.00/kW)/12) for that BM Unit. In January the Supplier provided a revised forecast of 7,200kW, implying a forecast annual charge reduced to £72,000 (7,200kW x £10.00/kW). The Supplier had already paid £90,000, so the excess of £18,000 was credited back to the supplier in three £6,000 instalments over the last three months of the year.

The Supplier provided an embedded export triad forecast of -600kW and hence was paid an embedded export credit of £250 ((600kW x £5.00/kW)/12) for that BM Unit (For the avoidance of doubt, if the embedded export tariff is negative this will result in a debit).

The Supplier also initially provided a 15,000,000kWh NHH energy consumption forecast, and hence paid NHH monthly charges of £15,000 ((15,000,000kWh x 1.2p/kWh)/12) for that BM Unit. In July the Supplier provided a revised forecast of 18,000,000kWh, implying a forecast annual charge increased to £216,000 (18,000,000kWh x 1.2p/kWh). The Supplier had already

paid £45,000, so the remaining £171,000 was split into payments of £19,000 for the last nine months of the year.

The right hand column shows the net monthly charges for the BM Unit.

Initial Reconciliation (Part 1a)

The Supplier's outturn HH triad <u>gross</u> demand, based on <u>initial</u> settlement data (and therefore subject to change in subsequent settlement runs), was 9,000kW. The HH triad <u>gross</u> demand reconciliation charge is therefore calculated as follows:

HHD Reconciliation Charge = $(HHD_A - HHD_F) \times \pounds/kW$ Tariff

= (9,000kW - 7,200kW) x £10.00/kW

= 1,800kW x £10.00/kW

= £18,000

To calculate monthly interest charges, the outturn HHD charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHD charge less the HH <u>gross demand</u> monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 1b)

The Supplier's outturn HH triad embedded export, based on initial settlement data (and therefore subject to change in subsequent settlement runs), was 700kW. The HH triad embedded export reconciliation charge is therefore calculated as follows:

HHEE Reconciliation Charge = (HHEE_A – HHEE_E) x £/kW Tariff

 $= (-500 \text{kW} - -600 \text{kW}) \times \text{\pounds}5.00/\text{kW}$

 $= 100 \text{kW} \times \text{\pounds}5.00/\text{kW}$

= **£500**

To calculate monthly interest charges, the outturn HHEE charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHEE charge less the HH embedded generation monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 2)

The Supplier's outturn NHH energy consumption, based on initial settlement data, was 17,000,000kWh. The NHH energy consumption reconciliation charge is therefore calculated as follows:

Deleted: Please note that payments made to BM Units with a net export over the Triad, based on initial settlement data, will also be reconciled at this stage.¶ As monthly payments will not be made on the basis of a negative forecast, the HHD Reconciliation Charge for an exporting BM Unit will represent the full actual payment owed to that BM Unit (subject to adjustment by subsequent settlement runs). Interest will be calculated as described above.¶

NHHC Reconciliation Charge = $(NHHC_A - NHHC_F) \times p/kWh$ Tariff

100

= <u>(17,000,000kWh - 18,000,000kWh) x 1.20p/kWh</u>

100

= <u>-1,000,000kWh x 1.20p/kWh</u> 100 = **-£12,000**

worked example 4.xls - Initial!J104

The monthly reconciliation amount is equal to the outturn energy consumption charge for that month less the NHH monthly invoiced amount. Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

The net initial TNUoS demand reconciliation charge is therefore $\pounds 6,500$ (£18,000 + $\pounds 500$ - $\pounds 12,000$).

Final Reconciliation

Finally, let us now suppose that after all <u>final</u> Settlement data has been received (up to 14 months after the relevant dates), the outturn HH triad <u>gross</u> demand, <u>HH triad embedded export</u> and NHH energy consumption values were 9,500kW, <u>-550kW</u> and 16,500,000kWh, respectively.

Final HH <u>Gross Demand</u>	= (9,500kW - 9,000kW) x £10.00/kW
<u>Reconciliation Charge</u>	= £5,000
Final HH Embedded Export	= (-550kW500kW) x £5.00/kW
Reconciliation Charge	= -£250

Final NHH Reconciliation Charge = $(16,700,000kWh - 17,000,000kWh) \times 1.20p/kWh$ 100 = -£3,600

Consequently, the net final TNUoS demand reconciliation charge will be $\pounds 1, \underline{150} (\pounds 5,000 + -\pounds 250 + -\pounds 3,600)$.

Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

Outturn data for BM Units with a net export over the Triad will be received at this stage and final reconciliation will be carried out, as required. Interest will be calculated as described above.

Terminology:

 HHD_A = The Supplier's outturn half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

Page 53 of 63

Deleted: 000

I

 HHD_F = The Supplier's forecast half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

<u>HHEE_A = The Supplier's outturn half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

<u>HHEE_E = The Supplier's forecast half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

NHHC_A = The Supplier's outturn non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1^{st} to March 31^{st} , for the demand zone concerned.

NHHC_F = The Supplier's forecast non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1st to March 31st, for the demand zone concerned.

£/kW Tariff = The £/kW <u>Gross</u> Demand <u>or Embedded Export</u> Tariff as shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

p/kWh Tariff = The Energy Consumption Tariff shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

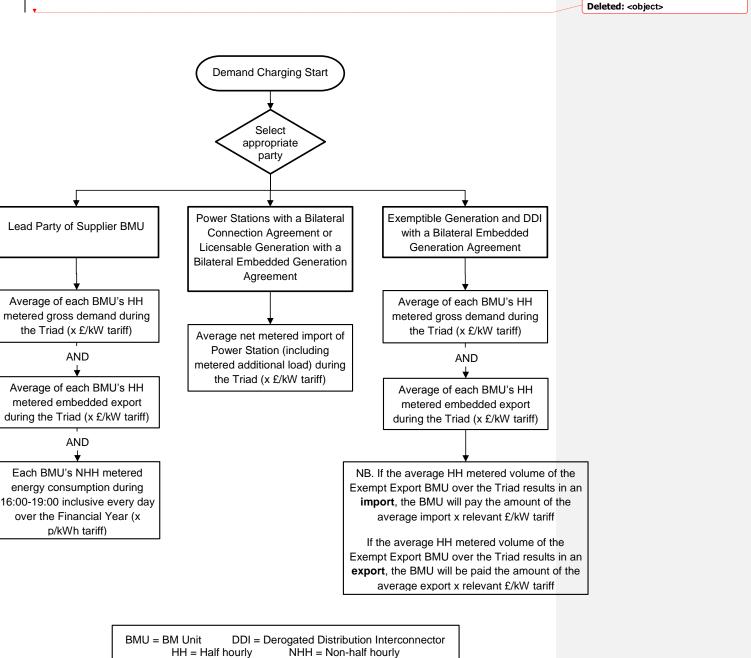
14.26 Classification of parties for charging purposes

In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precendence.

In the following diagrams, the parties liable for Transmission Network Use of System charges are outlined in red.

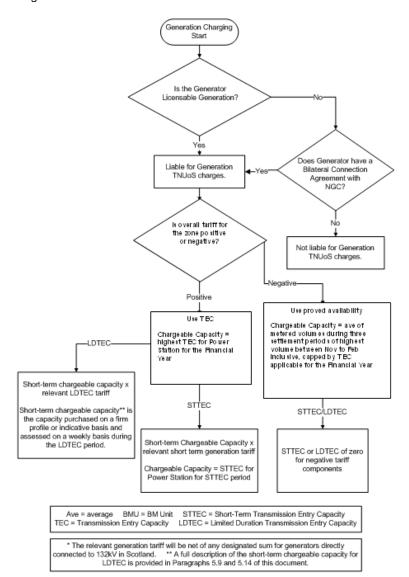
SUPPLIER		
Supplier Use of System Agreen	nent	
Supplier BMU1 BMUn		
Demand Charges	Generation Charges	
See 14.17, <mark>13</mark> and 14.17, <mark>18</mark> .	None.	Deleted: 9
		Deleted: 14
Gen Unit Gen Unit BMU1 BMUn	Station Additional Load BMU Load BMU	
Demand Charges	Generation Charges	
Demand Charges See 14.17.<u>18</u>.	See 14.18.1 i) and 14.18.3 to 14.18.9 and	Deleted: 10
· ·	J. J	Deleted: 10

Bilateral Embedded Generation Agreement Appendix C					
Gen Unit BMU1	Gen Unit BMUn	Station Load BMU	Additional Load BMU		
Demand Charges	7. <u>15</u> and 14.17. <u>18</u> .	Generation Cl See 14.18.1 ii	0		
Jee 14.17. <u>14</u> , 14.17	<u>, 10</u> and 14.17, <u>10</u> .	For generator 14.18.12 and	s in positive zone 14.18.18.	es, see 14.18.3 to es, see 14.18.3 to	


-{	Deleted: 10
-	Deleted: 11
Y	Deleted: 14

14.27 Transmission Network Use of System Charging Flowcharts

The following flowcharts illustrate the parties liable for Demand and Generation TNUoS charges and the calculation of those charges.


In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precedence.

Page 57 of 63

Generation Charges

14.28 Example: Determination of The Company's Forecast for Demand Charge Purposes

The Company will use the latest available settlement data for calculation of HH demand and NHH energy consumption forecasts for the Financial Year.

The Financial Year runs from 1st April to 31st March inclusive and for the purpose of these examples the year April 2005 to March 2006 is used.

Where the preceding year's settlement data is not available at the time that The Company needs to calculate its forecast, The Company will use settlement data from the corresponding period in Financial Year minus two unless indicated otherwise.

All values used with the examples are purely for illustrative purposes only.

i) Half-Hourly (HH) Metered Demand Forecast – Existing User

At the time of calculation of a HH demand forecast before the relevant Financial Year (approximately 10th March), The Company will be aware at a system level which dates will be used for the determination of Triad. However, The Company may not have settlement data at a User level if the Triad dates were to span a period that includes the latter half of February.

When undertaking forecasting before the relevant Financial Year, The Company will use the User's Triad demand for the previous year for its forecast providing it holds User settlement data for this period, thus:

F = T

where:

F = Forecast of User's HH demand at Triad for the Financial Year

T = User's HH gross_demand and embedded export_at Triad in Financial Year minus one

Where The Company determines its forecast within a Financial Year:

F = T * D/P

where:

- F = Forecast of User's HH demand at Triad for the Financial Year
- T = User's HH gross demand and embedded export at Triad in the preceding Financial Year
- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the preceding Financial Year

Where The Company determines its forecast before the relevant Financial Year and User settlement data for the Triad period is not available, The Company shall apply the formula immediately above (within year forecast) but substitute the following definitions for the values T, D, and P:

T = User's HH gross demand and embedded export at Triad in the Financial Year minus two

Page 59 of 63

- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year minus one, to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the Financial Year minus two

Example (where User settlement data is not yet available for the Triad period):

The Company calculates a HH demand forecast on the above methodology at 10th March 2005 for the period 1st April 2005 to 31st March 2006.

Gross demand:

F = 10,000 * 13,200 / 12,000

F = 11,000 kW,Deleted: hwhere:T = 10,000 kW, (period November 2003 to February 2004)Deleted: hD = 13,200 kW, (period 1st April 2004 to 15th February 2005#)Deleted: hP = 12,000 kW, (period 1st April 2003 to 15th February 2004)Deleted: h

Latest date for which settlement data is available.

Embedded export:

F = -280 * -300 / -350

<u>F = -240 kW</u>

where:

T = -280 kW (period November 2003 to February 2004)

D = -300 kW (period 1st April 2004 to 15th February 2005#)

P = -350 kW (period 1st April 2003 to 15th February 2004)

<u># Latest date for which settlement data is available.</u>

ii) Non Half-Hourly (NHH) Metered Energy Consumption Forecast – Existing User

F = E * D/P

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- E = User's summed NHH energy consumption over the hours 16:00 to 19:00 for each day in the preceding Financial Year

Page 60 of 63

- D = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the Financial Year to date
- P = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the period corresponding to D in the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th June 2005 for the period 1st April 2005 to 31st March 2006.

- F = 50,000,000 * 4,400,000 / 4,000,000
- F = 55,000,000 kWh

where:

- E = 50,000,000 kWh (period 1st April 2004 to 31st March 2005)
- D = 4,400,000 kWh (period 1st April 2005 to 15th May 2005#)
- P = 4,000,000 kWh (period 1st April 2004 to 15th May 2004)
- # Latest date for which settlement data is available

Where forecasting before the relevant Financial Year concerned, The Company would in the above example use values for E and P from Financial Year 2003/04 and D from Financial Year 2004/05.

iii) Half-Hourly (HH) Metered Demand Forecast – New User

F = M * T/W

where:

- F = Forecast of User's HH metered <u>gross</u> demand <u>and embedded export</u> at Triad for the Financial Year
 - M = User's HH average weekday period 35 demand for the last complete month for which settlement data is available
- T = Total system HH <u>gross</u> demand <u>and embedded export</u> at Triad in the preceding Financial Year
 - W = Total system HH average weekday settlement period 35 metered demand for the corresponding period to M for the preceding year

Example:

The Company calculates a HH demand forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2004 to 31st March 2006.

Gross demand:

F = 1,000 * 17,000,000 / 18,888,888

0030	, vi. 12	
F =	900 kW,	 Deleted: h
wher	e:	
M =	1,000 kW _v (period 1 st July 2005 to 31 st July 2005)	Deleted: h
T =	17,000,000 kW, (period November 2004 to February 2005)	 Deleted: h
W =	18,888,888 kW _e (period 1 st July 2004 to 31 st July 2004)	Deleted: h
<u>Emb</u>	edded export:	
<u>F =</u>	150 * 7,200,000 / 6,000,000	
<u>F =</u>	<u>180 kW</u>	
wher	<u>e:</u>	

- M = 150 kW (period 1st July 2005 to 31st July 2005)
- T = 7,200,000 kW (period November 2004 to February 2005)
- <u>W = 6,000,000 kW (period 1^{st} July 2004 to 31^{st} July 2004)</u>

iv) Non Half Hourly (NHH) Metered Energy Consumption Forecast – <u>New User</u>

F = J + (M * R/W)

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- J = Residual part month summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day where new User registration takes place other than on the first of a month
- M = User's summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the last complete month for which settlement data is available
- R = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period from the start of that defined under M but for the preceding year and until the end of that preceding Financial Year
- W = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period identified in M but for the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2005 to 31st March 2006.

- F = 500 + (1,000 * 20,000,000,000 / 2,000,000,000)
- F = 10,500 kWh

where:

- J = 500 kWh (period 10th June 2005 to 30th June 2005)
- M = 1,000 kWh (period 1st July 2005 to 31st July 2005)
- R = 20,000,000,000 kWh (period 1st July 2004 to 31st March 2005)
- W = 2,000,000,000 kWh (period 1st July 2004 to 31st July 2004)

CMP265 WACM2

14.15 Derivation of the Transmission Network Use of System Tariff

- 14.15.1 The Transmission Network Use of System (TNUoS) Tariff comprises two separate elements. Firstly, a locationally varying element derived from the DCLF ICRP transport model to reflect the costs of capital investment in, and the maintenance and operation of, a transmission system to provide bulk transport of power to and from different locations. Secondly, a non-locationally varying element related to the provision of residual revenue recovery. The combination of both these elements forms the TNUoS tariff.
- 14.15.2 For generation TNUoS tariffs the locational element itself is comprised of five separate components. Three wider components
 - o Wider Peak Security Component
 - Wider Year Round Not-shared component
 - Wider Year Round component

These components reflect the costs of the wider network under the different generation backgrounds set out in the Demand Security Criterion (for Peak Security component) and Economy Criterion (for both Year Round components) of the Security Standard. The two Year Round components reflect the unshared and shared costs of the wider network based on the diversity of generation plant types.

Two local components -

- o Local substation, and
- Local circuit

These components reflect the costs of the local network.

Accordingly, the wider tariff represents the combined effect of the three wider locational tariff components and the residual element; and the local tariff represents the combination of the two local locational tariff components.

14.15.3 The process for calculating the TNUoS tariff is described below.

The Transport Model

Model Inputs

14.15.4 The DCLF ICRP transport model calculates the marginal costs of investment in the transmission system which would be required as a consequence of an increase in demand or generation at each connection point or node on the transmission system, based on a study of peak demand conditions using both Peak Security and Year Round generation backgrounds on the transmission system. One measure of the investment costs is in terms of MWkm. This is the concept that ICRP uses to calculate marginal costs of investment. Hence, marginal costs are estimated initially in terms of increases or decreases in units of kilometres (km) of the transmission system for a 1 MW injection to the system.

- 14.15.5 The transport model requires a set of inputs representative of the Demand Security and Economy Criterion set out in the Security Standards. These conditions on the transmission system are represented in the Peak Security and Year Round background respectively as follows:
- Nodal generation information per node (TEC, plant type and SQSS scaling factors)
- Nodal <u>net</u> demand information
- Transmission circuits between these nodes
- The associated lengths of these routes, the proportion of which is overhead line or cable and the respective voltage level
- The cost ratio of each of 132kV overhead line, 132kV underground cable, 275kV overhead line, 275kV underground cable and 400kV underground cable to 400kV overhead line to give circuit expansion factors
- The cost ratio of each separate sub-sea AC circuit and HVDC circuit to 400kV overhead line to give circuit expansion factors
- 132kV overhead circuit capacity and single/double route construction information is used in the calculation of a generator's local charge.
- Offshore transmission cost and circuit/substation data
- 14.15.6 For a given charging year "t", the nodal generation TEC figure and generation plant types at each node will be based on the Applicable Value for year "t" in the NETS Seven Year Statement in year "t-1" plus updates to the October of year "t-1". The contracted TECs and generation plant types in the NETS Seven Year Statement include all plant belonging to generators who have a Bilateral Agreement with the TOs. For example, for 2010/11 charges, the nodal generation data is based on the forecast for 2010/11 in the 2009 NETS Seven Year Statement plus any data included in the quarterly updates in October 2009.
- 14.15.7 Scaling factors for different generation plant types are applied on their aggregated capacity for both Peak Security and Year Round backgrounds. The scaling is either Fixed or Variable (depending on the total demand level) in line with the factors used in the Security Standard, for example as shown in the table below.

Generation Plant Type	Peak Security Background	Year Round Background
Intermittent	Fixed (0%)	Fixed (70%)
Nuclear & CCS	Variable	Fixed (85%)
Interconnectors	Fixed (0%)	Fixed (100%)
Hydro	Variable	Variable
Pumped Storage	Variable	Fixed (50%)
Peaking	Variable	Fixed (0%)
Other (Conventional)	Variable	Variable

These scaling factors and generation plant types are set out in the Security Standard. These may be reviewed from time to time. The latest version will be used in the calculation of TNUoS tariffs and is published in the Statement of Use of System Charges

14.15.8 National Grid will categorise plant based on the categorisations described in the Security Standard. Peaking plant will include oil and OCGT technologies and Other (Conv.) represents all remaining conventional plant not explicitly stated elsewhere in the table In the event that a power station is made up of more than one technology type, the type of the higher Transmission Entry Capacity (TEC) would apply.

I

- 14.15.9 Nodal <u>net</u> demand data for the transport model will be based upon the GSP <u>net</u> demand that Users have forecast to occur at the time of National Grid Peak Average Cold Spell (ACS) Demand for year "t" in the April Seven Year Statement for year "t-1" plus updates to the October of year "t-1".
- 14.15.10 Subject to paragraphs 14.15.15 to 14.15.22, Transmission circuits for charging year "t" will be defined as those with existing wayleaves for the year "t" with the associated lengths based on the circuit lengths indicated for year "t" in the April NETS Seven Year Statement for year "t-1" plus updates to October of year "t-1". If certain circuit information is not explicitly contained in the NETS Seven Year Statement, The Company will use the best information available.
- 14.15.11 The circuit lengths included in the transport model are solely those, which relate to assets defined as 'Use of System' assets.
- 14.15.12 For HVDC circuits, the impedance will be calculated to provide flows based on a ratio of the capacity provided by the HVDC link relative to the capacities on all major transmission system boundaries that it parallels.
- 14.15.13 The transport model employs the use of circuit expansion factors to reflect the difference in cost between (i) AC Circuits and HVDC circuits. (ii) underground and sub-sea circuits, (iii) cabled circuits and overhead line circuits, (iv) 132kV and 275kV circuits, (v) 275kV circuits and 400kV circuits, and (vi) uses 400kV overhead line (i.e. the 400kV overhead line expansion factor is 1). As the transport model expresses cost as marginal km (irrespective of cables or overhead lines), some account needs to be made of the fact that investment in these other types of circuit (specifically HVDC and sub-sea cables of various voltages, 400kV underground cable, 275kV overhead line, 275kV underground cable, 132kV overhead line and 132kV underground cable) is more expensive than for 400kV overhead line. This is done by effectively 'expanding' these more expensive circuits by the relevant circuit expansion factor, thereby producing a larger marginal kilometre to reflect the additional cost of investing in these circuits compared to 400kV overhead line. When calculating the local circuit tariff for a generator, alternative 132kV and offshore expansion factors to those used in the remainder of the tariff calculation are applied to the generator's local circuits.
- 14.15.14 The circuit expansion factors for HVDC circuits and AC subsea cables are determined on a case by case basis using the costs which are specific to individual projects containing HVDC or AC subsea circuits.

Adjustments to Model Inputs associated with One-off Works

- 14.15.15 Where, following the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge that related to One-off Works carried out on an onshore circuit, and such One-off Works would affect the value of a TNUoS tariff paid by the User, the transport model inputs associated with the onshore circuit shall be adjusted by The Company to reflect the asset value that would have been modelled if the works had been undertaken on the basis of the original asset design rather than the One-off Works.
- 14.15.16 Subject to paragraphs 14.15.17 to 14.15.19, where, prior to the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge (or has paid a charge to the relevant TO prior to 1st April 2005 on the same principles as a

Page 3 of 63

One-Off Charge) that related to works equivalent to those described under paragraph 14.15.15, an adjustment equivalent to that under paragraph 14.15.15 shall be made to the transport model inputs as follows.

- 14.15.17 Such adjustment shall be made following a User's request, which must be received by The Company no later than the second occurrence of 31st December following the implementation of CUSC Modification CMP203.
- 14.15.18 The Company shall only make an adjustment to the transport model inputs, under paragraph 14.15.16 where the charge was paid to the relevant TO prior to 1st April 2005 where evidence has been provided by the User that satisfies The Company that works equivalent to those under paragraph 14.15.15 were funded by the User.
- 14.15.19 Where a User has sufficient reason to believe that adjustments under paragraph 14.15.18 should be made in relation to specific assets that affect a TNUoS tariff that applies to one of its sites and outlines its reasoning to The Company, The Company shall (upon the User's request and subject to the User's payment of reasonable costs incurred by The Company in doing so) use its reasonable endeavours to assist the User in obtaining any evidence The Company or a TO may have to support its position.
- 14.15.20 Where a request is made under paragraph 14.15.16 on or prior to 31st December in a charging year, and The Company is satisfied based on the accompanying evidence provided to The Company under paragraph 14.15.17 that it is a valid request, the transport model inputs shall be adjusted accordingly and taken into account in the calculation of TNUoS tariffs effective from the year commencing on the 1st April following this and otherwise from the next subsequent 1st April.
- 14.15.21 The following table provides examples of works for which adjustments to transport model inputs would typically apply:

Ref	Description of works	Adjustments
1	Undergrounding - A User requests to underground an overhead line at a greater cost.	As the cable cost will be more expensive than the overhead line (OHL) equivalent, the circuit will be modelled as an OHL.
2	Substation Siting Decision - A User requests to move the existing or a planned substation location to a place that means that the works cannot be justified as economic by the TO.	As the revised substation location may result in circuits being extended. If this is the case, the originally designed circuit lengths (as per the originally designed substation location) would be used in the transport model.
3	Circuit Routing Decision - A User asks to move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	As any circuit route changes that extend circuits are likely to result in a greater TNUoS tariff, the originally designed circuit lengths would be used in the transport model.

Ref	Description of works	Adjustments
4	Building circuits at lower voltages - A User requests lower tower height and therefore a different voltage.	As lower voltage circuits result in a higher expansion factor being used, the circuits would be modelled at the originally designed higher voltage.

14.15.22 The following table provides examples of works for which adjustments to transport model typically would not apply:

Ref	Description of works	Reasoning
1	Undergrounding - A User chooses to have a cable installed via a tunnel rather than buried.	Cable expansion factors are applied in the transport model regardless of whether a cable is tunnelled and buried, so there is no increased TNUoS cost.
2	Additional circuit route works - A User asks for screening to be provided around a new or existing circuit route.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
3	Additional circuit route works - A User requests that a planned overhead line route is built using alternative transmission tower designs.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
4	Additional substation works - A User asks for screening to be provided around a new or existing substation.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
5	Additional substation works - Changes to connection assets (e.g. HV-LV transformers and associated switchgear), metering, additional LV supplies, additional protection equipment, additional building works, etc.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
6	Diversion - A User asks to temporarily move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	The temporary circuit changes will not be incorporated into the transport model.

7	Connection Entry Capacity (CEC) before Transmission Entry Capacity (TEC). A User asks for a connection in a year prior to the relating TEC; i.e. physical connection without capacity.	No additional works are being undertaken, works are simply being completed well in advance of the generator commissioning. The One-Off Charge reflects the depreciated value of the assets prior to commissioning (and any TNUOS being charged).
8	Early asset replacement - An asset is replaced prior to the end of its expected life.	As the asset is simply replaced, no data in the transport model is expected to change.
9	Additional Engineering/ Mobilisation costs - A User requests changes to the planned works, that results in additional operational costs.	The data in the transport model is unaffected.
10	Offshore (Generator Build) - Any of the works described above or under paragraph 14.15.18.	The value of the works will not form part of the asset transfer value therefore will not be used as part of the offshore tariff calculation.
11	Offshore (Offshore Transmission Owner (OFTO) Build) - Any of the works described above or under paragraph 14.15.18.	As part of determining the TNUoS revenue associated with each asset, the value of the One-Off Works would be excluded when pro-rating the OFTO's allowed revenue against assets by asset value.

14.15.23 The Company shall publish any adjusted transport model inputs that it intends to use in the calculation of TNUoS tariffs effective from the year commencing on the following 1st April in the NETS Seven Year Statement October Update. Any further adjustments that The Company makes shall be published by The Company upon the publication of the final TNUoS tariffs for the year concerned.

Model Outputs

- 14.15.24 The transport model takes the inputs described above and carries out the following steps individually for Peak Security and Year Round backgrounds.
- 14.15.25 Depending on the background, the TEC of the relevant generation plant types are scaled by a percentage as described in 14.15.7, above. The TEC of the remaining generation plant types in each background are uniformly scaled such that total national generation (scaled sum of contracted TECs) equals total national ACS Demand.
- 14.15.26 For each background, the model then uses a DCLF ICRP transport algorithm to derive the resultant pattern of flows based on the network impedance required to meet the nodal <u>net</u> demand using the scaled nodal generation, assuming every circuit has infinite capacity. Flows on individual transmission circuits are compared for both backgrounds and the background giving rise to

Page 6 of 63

the highest flow is considered as the triggering criterion for future investment of that circuit for the purposes of the charging methodology. Therefore all circuits will be tagged as Peak Security or Year Round depending upon the background resulting in the highest flow. In the event that both backgrounds result in the same flow, the circuit will be tagged as Peak Security. Then it calculates the resultant total network Peak Security MWkm and Year Round MWkm, using the relevant circuit expansion factors as appropriate.

- 14.15.27 Using these baseline networks for Peak Security and Year Round backgrounds, the model then calculates for a given injection of 1MW of generation at each node, with a corresponding 1MW offtake (<u>net_demand</u>) distributed across all demand nodes in the network, the increase or decrease in total MWkm of the whole Peak Security and Year Round networks. The proportion of the 1MW offtake allocated to any given demand node will be based on total background nodal <u>net</u> demand in the model. For example, with a total GB <u>net_demand</u> of 60GW in the model, a node with a <u>net_demand</u> of 600MW would contain 1% of the offtake i.e. 0.01MW.
- 14.15.28 Given the assumption of a 1MW injection, for simplicity the marginal costs are expressed solely in km. This gives a Peak Security marginal km cost and a Year Round marginal km cost for generation at each node (although not that used to calculate generation tariffs which considers local and wider cost components). The Peak Security and Year Round marginal km costs for demand at each node are equal and opposite to the Peak Security and Year Round nodal marginal km respectively for generation and this is used to calculate demand tariffs. Note the marginal km costs can be positive or negative depending on the impact the injection of 1MW of generation has on the total circuit km.
- 14.15.29 Using a similar methodology as described above in 14.15.27, the local and wider marginal km costs used to determine generation TNUoS tariffs are calculated by injecting 1MW of generation against the node(s) the generator is modelled at and increasing by 1MW the offtake across the distributed reference node. It should be noted that although the wider marginal km costs are calculated for both Peak Security and Year Round backgrounds, the local marginal km costs are calculated on the Year Round background.
- 14.15.30 In addition, any circuits in the model, identified as local assets to a node will have the local circuit expansion factors which are applied in calculating that particular node's marginal km. Any remaining circuits will have the TO specific wider circuit expansion factors applied.
- 14.15.31 An example is contained in 14.21 Transport Model Example.

Calculation of local nodal marginal km

14.15.32 In order to ensure assets local to generation are charged in a cost reflective manner, a generation local circuit tariff is calculated. The nodal specific charge provides a financial signal reflecting the security and construction of the infrastructure circuits that connect the node to the transmission system.

14.15.33 Main Interconnected Transmission System (MITS) nodes are defined as:

- Grid Supply Point connections with 2 or more transmission circuits connecting at the site; or
- connections with more than 4 transmission circuits connecting at the site.

Page 7 of 63

- 14.15.34 Where a Grid Supply Point is defined as a point of supply from the National Electricity Transmission System to network operators or non-embedded customers excluding generator or interconnector load alone. For the avoidance of doubt, generator or interconnector load would be subject to the circuit component of its Local Charge. A transmission circuit is part of the National Electricity Transmission System between two or more circuit-breakers which includes transformers, cables and overhead lines but excludes busbars and generation circuits.
- 14.15.35 Generators directly connected to a MITS node will have a zero local circuit tariff.
- 14.15.36 Generators not connected to a MITS node will have a local circuit tariff derived from the local nodal marginal km for the generation node i.e. the increase or decrease in marginal km along the transmission circuits connecting it to all adjacent MITS nodes (local assets).

Calculation of zonal marginal km

- 14.15.37 Given the requirement for relatively stable cost messages through the ICRP methodology and administrative simplicity, nodes are assigned to zones. Typically, generation zones will be reviewed at the beginning of each price control period with another review only undertaken in exceptional circumstances. Any rezoning required during a price control period will be undertaken with the intention of minimal disruption to the established zonal boundaries. The full criteria for determining generation zones are outlined in paragraph 14.15.42. The number of generation zones set for 2010/11 is 20.
- 14.15.38 Demand zone boundaries have been fixed and relate to the GSP Groups used for energy market settlement purposes.
- 14.15.39 The nodal marginal km are amalgamated into zones by weighting them by their relevant generation or demand capacity.
- 14.15.40 Generators will have zonal tariffs derived from both, the wider Peak Security nodal marginal km; and the wider Year Round nodal marginal km for the generation node calculated as the increase or decrease in marginal km along all transmission circuits except those classified as local assets.

The zonal Peak Security marginal km for generation is calculated as:

$$WNMkm_{j_{PS}} = \frac{NMkm_{j_{PS}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiPS} = \sum_{j \in Gi} WNMkm_{jPS}$$

Where

Gi	=	Generation zone
j	=	Node
NMkm _{PS}	=	Peak Security Wider nodal marginal km from transport model
WNMkm _{PS}	=	Peak Security Weighted nodal marginal km
ZMkm _{PS}	=	Peak Security Zonal Marginal km

Gen = Nodal Generation (scaled by the appropriate Peak Security Scaling factor) from the transport model Similarly, the zonal Year Round marginal km for generation is calculated as

$$WNMkm_{j_{YR}} = \frac{NMkm_{j_{YR}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiYR} = \sum_{j \in Gi} WNMkm_{jYR}$$

Where

NMkm _{YR}	=	Year Round Wider nodal marginal km from transport model
WNMkm _{YR}	=	Year Round Weighted nodal marginal km
ZMkm _{YR}	=	Year Round Zonal Marginal km
Gen	=	Nodal Generation (scaled by the appropriate Year Round Scaling
		factor) from the transport model

14.15.41 The zonal Peak Security marginal km for demand zones are calculated as follows:

$$WNMkm_{j_{PS}} = \frac{-1 * NMkm_{j_{PS}} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{Di_{PS}} = \sum_{j \in Di} WNMkm_{j_{PS}}$$

Where:

I

Di	=	Demand zone
Dem	=	Nodal <u>Net</u> Demand from transport model

Similarly, the zonal Year Round marginal km for demand zones are calculated as follows:

$$WNMkm_{jYR} = \frac{-1 * NMkm_{jYR} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{DiYR} = \sum_{j \in Di} WNMkm_{jYR}$$

- 14.15.42 A number of criteria are used to determine the definition of the generation zones. Whilst it is the intention of The Company that zones are fixed for the duration of a price control period, it may become necessary in exceptional circumstances to review the boundaries having been set. In both circumstances, the following criteria are used to determine the zonal boundaries:
- i.) Zoning is determined using the generation background with the most MWkm of circuits. Zones should contain relevant nodes whose total wider marginal costs

from the relevant generation background (as determined from the output from the transport model, the relevant expansion constant and the locational security factor, see below) are all within +/-£1.00/kW (nominal prices) across the zone. This means a maximum spread of £2.00/kW in nominal prices across the zone.

- ii.) The nodes within zones should be geographically and electrically proximate.
- iii.) Relevant nodes are considered to be those with generation connected to them as these are the only ones, which contribute to the calculation of the zonal generation tariff.
- 14.15.43 The process behind the criteria in 14.15.42 is driven by initially applying the nodal marginal costs from the relevant generation background within the DCLF Transport model onto the appropriate areas of a substation line diagram. Generation nodes are grouped into initial zones using the +/- £1.00/kW range. All nodes within each zone are then checked to ensure the geographically and electrically proximate criteria have been met using the substation line diagram. The established zones are inspected to ensure the least number of zones are used with minimal change from previously established zonal boundaries. The zonal boundaries are finally confirmed using the demand nodal costs from the relevant generation background for guidance.
- 14.15.44 The zoning criteria are applied to a reasonable range of DCLF ICRP transport model scenarios, the inputs to which are determined by The Company to create appropriate TNUoS generation zones. The minimum number of zones, which meet the stated criteria, are used. If there is more than one feasible zonal definition of a certain number of zones, The Company determines and uses the one that best reflects the physical system boundaries.
- 14.15.45 Zones will typically not be reviewed more frequently than once every price control period to provide some stability. However, in exceptional circumstances, it may be necessary to review zoning more frequently to maintain appropriate, cost reflective, locational cost signals. For example, if a new generator connecting to the transmission system would cause the creation of a new generation zone for that generator alone, it may not be appropriate from a cost reflective perspective to wait until the next price control period to undertake this rezoning. If any such rezoning is required, it will be undertaken against a background of minimal change to existing generation zones and in line with the notification process set out in the Transmission Licence and CUSC.

Accounting for Sharing of Transmission by Generators

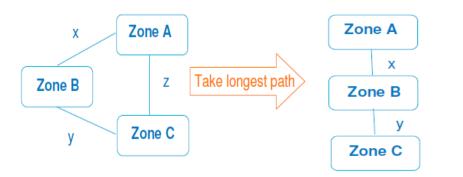
- 14.15.46 A proportion of the marginal km costs for generation are shared incremental km reflecting the ability of differing generation technologies to share transmission investment. This is reflected in charges through the splitting of Year Round marginal km costs for generation into Year Round Shared marginal km costs and Year Round Not-Shared marginal km which are then used in the calculation of the wider £/kW generation tariff.
- 14.15.47 The sharing between different generation types is accounted for by (a) using transmission network boundaries between generation zones set by connectivity between generation charging zones, and (b) the proportion of Low Carbon and Carbon generation behind these boundaries.

Page 10 of 63

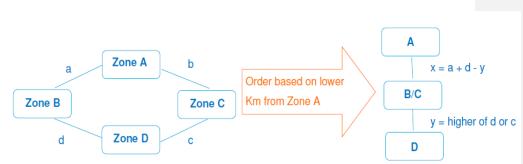
14.15.48 The zonal incremental km for each generation charging zone is split into each boundary component by considering the difference between it and the neighbouring generation charging zone using the formula below;

$$BIkm_{ab} = ZIkm_b - ZIkm_a$$

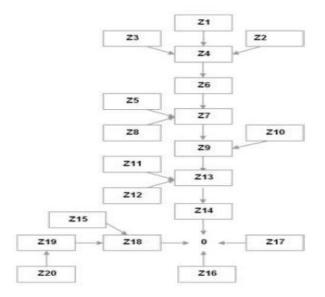
Where;


Blkm_{ab} = boundary incremental km between generation charging zone A and generation charging zone B Zlkm = generation charging zone incremental km.

14.15.49 The table below shows the categorisation of Low Carbon and Carbon generation. This table will be updated by National Grid in the Statement of Use of System Charges as new generation technologies are developed.


Carbon	Low Carbon
Coal	Wind
Gas	Hydro (excl. Pumped Storage)
Biomass	Nuclear
Oil	Marine
Pumped Storage	Tidal
Interconnectors	

Determination of Connectivity


- 14.15.50 Connectivity is based on the existence of electrical circuits between TNUoS generation charging zones that are represented in the Transport model. Where such paths exist, generation charging zones will be effectively linked via an incremental km transmission boundary length. These paths will be simplified through in the case of;
 - Parallel paths the longest path will be taken. An illustrative example is shown below with x, y and z representing the incremental km between zones.

 Parallel zones – parallel zones will be amalgamated with the incremental km immediately beyond the amalgamated zones being the greater of those existing prior to the amalgamation. An illustrative example is shown below with a, b, c, and d representing the the initial incremental km between zones, and x and y representing the final incremental km following zonal amalgamation.

14.15.51 An illustrative Connectivity diagram is shown below:

The arrows connecting generation charging zones and amalgamated generation charging zones represent the incremental km transmission boundary lengths towards the notional centre of the system. Generation located in charging zones behind arrows is considered to share based on the ratio of Low Carbon to Carbon cumulative generation TEC within those zones.

14.15.52 The Company will review Connectivity at the beginning of a new price control period, and under exceptional circumstances such as major system reconfigurations or generation rezoning. If any such reassessment is required, it will be undertaken against a background of minimal change to existing Connectivity and in line with the notification process set out in the Transmission Licence and the CUSC.

Calculation of Boundary Sharing Factors

14.15.53 Boundary sharing factors (BSFs) are derived from the comparison of the cumulative proportion of Low Carbon and Carbon generation TEC behind each of the incremental MWkm boundary lengths using the following formulae –

Page 12 of 63

If $\frac{LC}{LC+C} \le 0.5$, then all Year round marginal km costs are shared i.e. the BSF is 100%.

Where:

LC = Cumulative Low Carbon generation TEC behind the relevant transmission boundary C = Cumulative Carbon generation TEC behind the relevant transmission

C = Cumulative Carbon generation TEC behind the relevant transmission boundary

If
$$\frac{LC}{LC+C}$$
 > 0.5 then the BSF is calculated using the following formula: -

$$BSF = \left(-2 \times \left(\frac{LC}{LC+C}\right)\right) + 2$$

Where:

BSF = boundary sharing factor.

14.15.54 The shared incremental km for each boundary are derived from the multiplication of the boundary sharing factor by the incremental km for that boundary;

$$SBIkm_{ab} = BIIkm_{ab} \ x \ BSF_{ab}$$

Where;

 $SBIkm_{ab}$ = shared boundary incremental km between generation charging zone A and generation charging zone B

 BSF_{ab} = generation charging zone boundary sharing factor.

14.15.55 The shared incremental km is discounted from the incremental km for that boundary to establish the not-shared boundary incremental km. The not-shared boundary incremental km reflects the cost of transmission investment on that boundary accounting for the sharing of power stations behind that boundary.

$$NSBIkm_{ab} = BIkm_{ab} - SBIkm_{ab}$$

Where;

 $NSBIkm_{ab}$ = not shared boundary incremental km between generation charging zone A and generation charging zone B.

14.15.56 The shared incremental km for a generation charging zone is the sum of the appropriate shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRS}$$

Where;

 $ZMkm_{nYRS}$ = Year Round Shared Zonal Marginal km for generation charging zone n.

Page 13 of 63

14.15.57 The not-shared incremental km for a generation charging zone is the sum of the appropriate not-shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRNS}$$

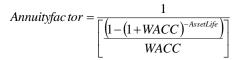
Where;

ZMkm_{nYRNS} = Year Round Not-Shared Zonal Marginal km for generation zone n.

Deriving the Final Local £/kW Tariff and the Wider £/kW Tariff

14.15.58 The zonal marginal km (ZMkm_{Gi}) are converted into costs and hence a tariff by multiplying by the Expansion Constant and the Locational Security Factor (see below). The nodal local marginal km (NLMkm^L) are converted into costs and hence a tariff by multiplying by the Expansion Constant and a Local Security Factor.

The Expansion Constant


- 14.15.59 The expansion constant, expressed in £/MWkm, represents the annuitised value of the transmission infrastructure capital investment required to transport 1 MW over 1 km. Its magnitude is derived from the projected cost of 400kV overhead line, including an estimate of the cost of capital, to provide for future system expansion.
- 14.15.60 In the methodology, the expansion constant is used to convert the marginal km figure derived from the transport model into a £/MW signal. The tariff model performs this calculation, in accordance with 14.15.95 14.15.117, and also then calculates the residual element of the overall tariff (to ensure correct revenue recovery in accordance with the price control), in accordance with 14.15.133.
- 14.15.61 The transmission infrastructure capital costs used in the calculation of the expansion constant are provided via an externally audited process. They also include information provided from all onshore Transmission Owners (TOs). They are based on historic costs and tender valuations adjusted by a number of indices (e.g. global price of steel, labour, inflation, etc.). The objective of these adjustments is to make the costs reflect current prices, making the tariffs as forward looking as possible. This cost data represents The Company's best view; however it is considered as commercially sensitive and is therefore treated as confidential. The calculation of the expansion constant also relies on a significant amount of transmission asset information, much of which is provided in the Seven Year Statement.
- 14.15.62 For each circuit type and voltage used onshore, an individual calculation is carried out to establish a £/MWkm figure, normalised against the 400KV overhead line (OHL) figure, these provide the basis of the onshore circuit expansion factors discussed in 14.15.70 14.15.77. In order to simplify the calculation a unity power factor is assumed, converting £/MVAkm to £/MWkm. This reflects that the fact tariffs and charges are based on real power.
- 14.15.63 The table below shows the first stage in calculating the onshore expansion constant. A range of overhead line types is used and the types are weighted by recent usage on the transmission system. This is a simplified calculation for 400kV OHL using example data:

Page 14 of 63

400kV	400kV OHL expansion constant calculation				
MW	Туре	£(000)/k	Circuit km*	£/MWkm	Weight
А	В	С	D	E = C/A	F=E*D
6500	La	700	500	107.69	53846
6500	Lb	780	0	120.00	0
3500	La/b	600	200	171.43	34286
3600	Lc	400	300	111.11	33333
4000	Lc/a	450	1100	112.50	123750
5000	Ld	500	300	100.00	30000
5400	Ld/a	550	100	101.85	10185
Sum			2500 (G)		285400 (H)
				Weighted Average (J= H/G):	114.160 (J)

*These are circuit km of types that have been provided in the previous 10 years. If no information is available for a particular category the best forecast will be used.

14.15.64 The weighted average £/MWkm (J in the example above) is then converted in to an annual figure by multiplying it by an annuity factor. The formula used to calculate of the annuity factor is shown below:

- 14.15.65 The Weighted Average Cost of Capital (WACC) and asset life are established at the start of a price control and remain constant throughout a price control period. The WACC used in the calculation of the annuity factor is the The Company regulated rate of return, this assumes that it will be reasonably representative of all licensees. The asset life used in the calculation is 50 years; the appropriateness of this is reviewed when the annuity factor is recalculated at the start of a price control period. These assumptions provide a current annuity factor of 0.066.
- 14.15.66 The final step in calculating the expansion constant is to add a share of the annual transmission overheads (maintenance, rates etc). This is done by multiplying the average weighted cost (J) by an 'overhead factor'. The 'overhead factor' represents the total business overhead in any year divided by the total Gross Asset Value (GAV) of the transmission system. This is recalculated at the start of each price control period. The overhead factor used in the calculation of the expansion constant for 2009/10 is 1.8%. The overhead and annuitised costs are then added to give the expansion constant.
- 14.15.67 Using the previous example, the final steps in establishing the expansion constant are demonstrated below:

400kV OHL expansion constant calculation	Ave £/MWkm
OHL	114.160

Page 15 of 63

Annuitised	7.535
Overhead	2.055
Final	9.589

- 14.15.68 This process is carried out for each voltage onshore, along with other adjustments to take account of upgrade options, see 14.15.73, and normalised against the 400KV overhead line cost (the expansion constant) the resulting ratios provide the basis of the onshore expansion factors. The process used to derive circuit expansion factors for Offshore Transmission Owner networks is described in 14.15.78.
- 14.15.69 This process of calculating the incremental cost of capacity for a 400kV OHL, along with calculating the onshore expansion factors is carried out for the first year of the price control and is increased by inflation, RPI, (May–October average increase, as defined in The Company's Transmission Licence) each subsequent year of the price control period. The expansion constant for 2010/11 is 10.633.

Onshore Wider Circuit Expansion Factors

- 14.15.70 Base onshore expansion factors are calculated by deriving individual expansion constants for the various types of circuit, following the same principles used to calculate the 400kV overhead line expansion constant. The factors are then derived by dividing the calculated expansion constant by the 400kV overhead line expansion constant. The factors will be fixed for each respective price control period.
- 14.15.71 In calculating the onshore underground cable factors, the forecast costs are weighted equally between urban and rural installation, and direct burial has been assumed. The operating costs for cable are aligned with those for overhead line. An allowance for overhead costs has also been included in the calculations.
- 14.15.72 The 132kV onshore circuit expansion factor is applied on a TO basis. This is to reflect the regional variation of plans to rebuild circuits at a lower voltage capacity to 400kV. The 132kV cable and line factor is calculated on the proportion of 132kV circuits likely to be uprated to 400kV. The 132kV expansion factor is then calculated by weighting the 132kV cable and overhead line costs with the relevant 400kV expansion factor, based on the proportion of 132kV circuitry to be uprated to 400kV. For example, in the TO areas of National Grid and Scottish Power where there are no plans to uprate any 132kV circuits, the full cable and overhead line costs of 132kV circuit are reflected in the 132kV expansion factor calculation.
- 14.15.73 The 275kV onshore circuit expansion factor is applied on a GB basis and includes a weighting of 83% of the relevant 400kV cable and overhead line factor. This is to reflect the averaged proportion of circuits across all three Transmission Licensees which are likely to be uprated from 275kV to 400kV across GB within a price control period.
- 14.15.74 The 400kV onshore circuit expansion factor is applied on a GB basis and reflects the full costs for 400kV cable and overhead lines.
- 14.15.75 AC sub-sea cable and HVDC circuit expansion factors are calculated on a case by case basis using actual project costs (Specific Circuit Expansion Factors).

Page 16 of 63

- 14.15.76 For HVDC circuit expansion factors both the cost of the converters and the cost of the cable are included in the calculation.
- 14.15.77 The TO specific onshore circuit expansion factors calculated for 2008/9 (and rounded to 2 decimal places) are:

Scottish Hydro Region

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	27.79
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.24	

Scottish Power & National Grid Regions

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	30.22
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.80	

Onshore Local Circuit Expansion Factors

- 14.15.78 The local onshore circuit tariff is calculated using local onshore circuit expansion factors. These expansion factors are calculated using the same methodology as the onshore wider expansion factor but without taking into account the proportion of circuit kms that are planned to be uprated.
- 14.15.79 In addition, the 132kV onshore overhead line circuit expansion factor is sub divided into four more specific expansion factors. This is based upon maximum (winter) circuit continuous rating (MVA) and route construction whether double or single circuit.

400kV underground cable factor:	22.39
275kV underground cable factor:	22.39
132kV underground cable factor:	30.22
400kV line factor:	1.00
275kV line factor:	1.14
132kV line factor (single; <200MVA):	10.00
132kV line factor (double; <200MVA):	8.32
132kV line factor (single; >=200MVA):	7.13
132kV line factor (double; >=200MVA):	4.42

Offshore Circuit Expansion Factors

14.15.80 Offshore expansion factors (£/MWkm) are derived from information provided by Offshore Transmission Owners for each offshore circuit. Offshore expansion factors are Offshore Transmission Owner and circuit specific. Each Offshore Transmission Owner will periodically provide, via the STC, information to derive an annual circuit revenue requirement. The offshore circuit revenue shall include revenues associated with the Offshore Transmission Owner's reactive compensation equipment, harmonic filtering equipment, asset spares and HVDC converter stations.

14.15.81 In the first year of connection, the offshore circuit expansion factor would be calculated as follows:

$\frac{CRevOFTO1}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$

Where:

CRevOFTO1	=	The offshore circuit revenue in £ for Year 1
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

14.15.82 In all subsequent years, the offshore circuit expansion factor would be calculated as follows:

$$\frac{AvCRevOFTO}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$$

Where:

AvCRevOFTO	=	The annual offshore circuit revenue averaged over the
		remaining years of the onshore National Electricity
		Transmission System Operator (NETSO) price control
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

- 14.15.83 For the avoidance of doubt, the offshore circuit revenue values, *CRevOFTO1* and *AvCRevOFTO* shall be determined using asset values after the removal of any One-Off Charges.
- 14.15.84 Prevailing OFFSHORE TRANSMISSION OWNER specific expansion factors will be published in this statement. These shall be recalculated at the start of each price control period using the formula in paragraph 14.15.71. For each subsequent year within the price control period, these expansion factors will be adjusted by the annual Offshore Transmission Owner specific indexation factor, *OFTOInd*, calculated as follows;

$$OFTOInd_{t,f} = \frac{OFTO \operatorname{Rev}Ind_{t,f}}{RPI_{t}}$$

where:

OFTOInd _{t,f}	=	the indexation factor for Offshore Transmission Owner <i>f</i> in respect of charging year <i>t</i> ,
OFTORevInd _t f	=	the indexation rate applied to the revenue of Offshore Transmission Owner f under the terms of its Transmission Licence in respect of charging year t , and
<i>RPI</i> _t	=	the indexation rate applied to the expansion constant in respect of charging year <i>t</i> .

Offshore Interlinks

14.15.85 The revenue associated with an Offshore Interlink shall be divided entirely between those generators benefiting from the installation of that Offshore Interlink. Each of these Users will be responsible for their charge from their charging date, meaning that a proportion of the Offshore Interlink revenue may be socialised prior to all relevant Users being chargeable. The proportion associated with each User will be based on the Measure of Capacity to the MITS using the Offshore Interlink(s) in the event of a single circuit fault on the User's circuit from their offshore substation towards the shore, compared to the Measure of Capacity of the other Users.

Where:

An *Offshore Interlink* is a circuit which connects two offshore substations that are connected to a Single Common Substation. It is held in open standby until there is a transmission fault that limits the User's ability to export power to the Single Common Substation. In the Transport Model, they are to be modelled in open standby.

A Single Common Substation is a substation where:

- i. each substation that is connected by an Offshore Interlink is connected via at least one circuit without passing through another substation; and
- ii. all routes connecting each substation that is connected by an Offshore Interlink to the MITS pass through.

The Measure of Capacity to the MITS for each Offshore substation is the result of the following formula or zero whichever is larger. For the situation with only one interlink, all terms relating to C should be set to zero:

```
For Substation A:
min { Cap_{IAB}, ILF_A \times TEC_A - RCap_A, Cap_B - ILF_B \times TEC_B + min (Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation B:

min { ILF_B \times TEC_B - RCap_B, min (Cap_{IAB}, Cap_A - ILF_A \times TEC_A)

+ min ( Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation C:

min { Cap_{IBC}, ILF_{C} \times TEC_{C} - RCap_{C}, Cap_{B} - ILF_{B} \times TEC_{B} + min (Cap_{IAB}, Cap_{A} - ILF_{A} \times TEC_{A}) }

and
```

Cap _{IAB} = B	total capacity of the Offshore Interlink between substations A and
Cap _{IBC} = C	total capacity of the Offshore Interlink between substations B and
Cap _X =	total capacity of the circuit between offshore substation X and the Single Common Substation, where X is A, B or C.
RCap _x =	remaining capacity of the circuit between offshore substation X and the Single Common Substation in the event of a single cable fault, where X is A, B or C.
TEC _x =	the sum of the TEC for the Users connected, or contracted to connect, to offshore substation X, where X is A, B or C, where the value of TEC will be the maximum TEC that each User has held since the initial charging date, or is contracted to hold if prior to the initial charging date.

- ILF_x = Offshore Interlink Load Factor, where X is A, B or C. The Offshore Interlink Load Factor (ILF) is based on the Annual Load Factor (ALF). Until all the Users connected to a Single Common Substation have a station specific Annual Load Factor based on five years of data, the generic ALF for the fuel type will be used as the ILF for all stations. When all Users have a station specific ALF, the value of the ALF in the first such year will be used as the ILF in the calculation for all subsequent charging years.
- 14.15.86 The apportionment of revenue associated with Offshore Interlink(s) in 14.15.85 applies in situations where the Offshore Interlink was included in the design phase, or if one or more User(s) has already financially committed or been commissioned then only where that User(s) agrees to the Offshore Interlink.
- 14.15.87 Alternatively to the formula specified in 14.15.85 the proportion of the OFTO revenue associated with the Offshore Interlink allocated to each generator benefiting from the installation of an Offshore Interlink may be agreed between these Users. In this event:
- a. All relevant Users shall notify The Company of its respective proportions three months prior the OTSDUW asset transfer in the case of a generator build, or the charging date of the first generator, in the case of an OFTO build.
- b. All relevant Users may agree to vary the proportions notified under (a) by each writing to The Company three months prior to the charges being set for a given charging year.
- c. Once a set of proportions of the OFTO revenue associated with the Offshore Interlink has been provided to The Company, these will apply for the next and future charging years unless and until The Company is informed otherwise in accordance with (b) by all of the relevant Users.
- d. If all relevant Users are unable to reach agreement on the proportioning of the OFTO revenue associated with the Offshore Interlink they can raise a dispute. Any dispute between two or more Users as to the proportioning of such revenue shall be managed in accordance with CUSC Section 7 Paragraph 7.4.1 but the reference to the 'Electricity Arbitration Association' shall instead be to the 'Authority' and the Authority's determination of such dispute shall, without prejudice to apply for judicial review of any determination, be final and binding on the Users.

The Locational Onshore Security Factor

14.15.88 The locational onshore security factor is derived by running a secure DCLF ICRP transport study based on the same market background as used for Zoning in the DCLF ICRP transport model. This calculates the nodal marginal costs where peak <u>net</u> demand can be met despite the Security and Quality of Supply Standard contingencies (simulating single and double circuit faults) on the network. Essentially the calculation of secured nodal marginal costs is identical to the process outlined above except that the secure DCLF study additionally calculates a nodal marginal cost taking into account the requirement to be secure against a set of worse case contingencies in terms of maximum flow for each circuit.

- 14.15.89 The secured nodal cost differential is compared to that produced by the DCLF ICRP transport model and the resultant ratio of the two determines the locational security factor using the Least Squares Fit method. Further information may be obtained from the charging website¹.
- 14.15.90 The locational onshore security factor derived for 2010/11 is 1.8 and is based on an average from a number of studies conducted by The Company to account for future network developments. The security factor is reviewed for each price control period and fixed for the duration.

Local Security Factors

- 14.15.91 Local onshore security factors are generator specific and are applied to a generator's local onshore circuits. If the loss of any one of the local circuits prevents the export of power from the generator to the MITS then a local security factor of 1.0 is applied. For generation with circuit redundancy, a local security factor is applied that is equal to the locational security factor, currently 1.8.
- 14.15.92 Where a Transmission Owner has designed a local onshore circuit (or otherwise that circuit once built) to a capacity lower than the aggregated TEC of the generation using that circuit, then the local security factor of 1.0 will be multiplied by a Counter Correlation Factor (CCF) as described in the formula below;

$$CCF = \frac{D_{\min} + T_{cap}}{G_{cap}}$$

Where; D_{min} = minimum annual net demand (MW) supplied via that circuit in the absence of that generation using the circuit

 T_{cap} = transmission capacity built (MVA)

 G_{cap} = aggregated TEC of generation using that circuit

CCF cannot be greater than 1.0.

14.15.93 A specific offshore local security factor (LocalSF) will be calculated for each offshore connection using the following methodology:

$$LocalSF = \frac{NetworkExportCapacity}{\sum_{k} Gen_{k}}$$

Where:

 NetworkExportCapacity =
 the total export capacity of the network disregarding any Offshore Interlinks

 k
 =
 the generation connected to the offshore network

1 http://www.nationalgrid.com/uk/Electricity/Charges/

Page 21 of 63

- 14.15.94 The offshore security factor for single circuits with a single cable will be 1.0 and for multiple circuit connections will be capped at the locational onshore security factor, derived as 1.8 for 2010/11.
- 14.15.95 The offshore local security factor for configurations with one or more Offshore Interlinks is updated so that the offshore circuit tariff will include the proportion of revenue associated with the Offshore Interlink(s). The specific offshore local security factor for configurations involving an Offshore Interlink, which may be greater than 1.8, will be calculated for each offshore connection using the following methodology:

LocalSE =	$\frac{\text{IRevOFTO} \times \text{NetworkExportCapacity}}{\text{OP} \times \text{OFTO} \times \sum_{i} C_{i}} + LocalSF_{initial}$
Locust -	$CRevOFTO \times \sum Gen_k$
	k

Where:

IRevOFTO =	The appropriate proportion of the Offshore Interlink(s) revenue in £
	associated with the offshore connection calculated in 14.15.85
CRevOFTO =	The offshore circuit revenue in £ associated with the circuit(s) from the
	offshore substation to the Single Common Substation.
<u>LocalSF_{initial} =</u>	Initial Local Security Factor calculated in 14.15.80 and 14.15.81
	And other definitions as in 14.15.80.

Initial Transport Tariff

14.15.96 First an Initial Transport Tariff (ITT) must be calculated for both Peak Security and Year Round backgrounds. For Generation, the Peak Security zonal marginal km (ZMkm_{PS}), Year Round Not-Shared zonal marginal km (ZMkm_{YRNS}) and Year Round Shared zonal marginal km (ZMkm_{YRS}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT, Year Round Not-Shared ITT and Year Round Shared ITT respectively:

 $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$

Where ZMkm _{GiPS} ZMkm _{GiYRNS} charging zone	= = e	Peak Security Zonal Marginal km for each generation zone Year Round Not-Shared Zonal Marginal km for each generation
ZMkm _{GiYRS}	=	Year Round Shared Zonal Marginal km for each generation
charging zon	е	
EC	=	Expansion Constant
LSF	=	Locational Security Factor
	=	Peak Security Initial Transport Tariff (£/MW) for each generation
zone		
ITT _{GiYRNS}	=	Year Round Not-Shared Initial Transport Tariff (£/MW) for each
generation charging zone		
ITT _{GiYRS}	=	Year Round Shared Initial Transport Tariff (£/MW) for each
generation ch	narging	zone.

- CUSC v1.12
 - 14.15.97 Similarly, for demand the Peak Security zonal marginal km (ZMkm_{PS}) and Year Round zonal marginal km (ZMkm_{YR}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT and Year Round ITT respectively:

		$ZMkm_{DiPS} \times EC \times LSF = ITT_{DiPS}$
		$ZMkm_{DiYR} \times EC \times LSF = ITT_{DiYR}$
Where ZMkm _{DiP} ZMkm _{DiY}	0	Peak Security Zonal Marginal km for each demand zone Year Round Zonal Marginal km for each demand zone
ITT _{DiPS} ITT _{DiYR}	= =	Peak Security Initial Transport Tariff (\pounds /MW) for each demand one Year Round Initial Transport Tariff (\pounds /MW) for each demand zone
14.15.98	GSP group revenue ree metered tria	tep is to multiply these ITTs by the expected metered triad <u>gross</u> demand and generation capacity to gain an estimate of the initial covery for both Peak Security and Year Round backgrounds. The ad <u>gross GSP group</u> demand and generation capacity are based on forecasts provided by Users and are confidential.
a.		ad gross GSP group demand is net demand for all GSP groups less exports for all GSP groups .
Where		

ITRR _G =	Initial Transport Revenue Recovery for generation
G _{Gi} =	Total forecast Generation for each generation zone (based
	on <u>analysis of</u> confidential User forecasts)
ITRR _D =	Initial Transport Revenue Recovery for gross GSP group
	demand
D _{Di} =	Total forecast Metered Triad gross GSP group Demand for
each	
	demand zone (based on <u>analysis of</u> confidential User
	forecasts).

In addition, the initial tariffs for generation are also multiplied by the **Peak Security flag** when calculating the initial revenue recovery component for the Peak Security background. Similarly, when calculating the initial revenue recovery for the Shared component of the Year Round background, the initial tariffs are multiplied by the **Annual Load Factor** (see below).

Peak Security (PS) Flag

14.15.99 The revenue from a specific generator due to the Peak Security locational tariff needs to be multiplied by the appropriate Peak Security (PS) flag. The PS flags indicate the extent to which a generation plant type contributes to the need for transmission network investment at peak demand conditions. The PS

Page 23 of 63

flag is derived from the contribution of differing generation sources to the demand security criterion as described in the Security Standard. In the event of a significant change to the demand security assumptions in the Security Standard, National Grid will review the use of the PS flag.

Generation Plant Type	PS flag
Intermittent	0
Other	1

Annual Load Factor (ALF)

- 14.15.100 The ALF for each individual Power Station is calculated using the relevant TEC (MW) and corresponding output data. Where output data is not available for a Power Station, including for new Power Stations and emerging Power Station technologies, generic data for the appropriate generation plant type will be used.
- 14.15.101 For a given charging year "t" the Power Station ALF will be based on information from the previous five charging years, calculated for each charging year as set out below.

$$ALF = \frac{\sum_{p=1}^{17520} GMWh_p}{\sum_{p=1}^{17520} TECp \times 0.5}$$

Where:

 $\mathsf{GMWh}_{\mathsf{p}}$ is the maximum of FPN or actual metered output in a Settlement Period related to the power station TEC (MW); and

 TEC_{p} is the TEC (MW) applicable to that Power Station for that Settlement Period including any STTEC and LDTEC, accounting for any trading of TEC.

- 14.15.102 The appropriate output (FPN or actual metered) figure is derived from **BM Unit** data available to National Grid and relates to the total TEC of the Power Station.
- 14.15.103 Once all five charging year ALFs have been calculated for the individual Power Station they are compared, and the highest and lowest figures are discarded. The final ALF, to be used for transmission charging purposes, is calculated as the average of the remaining three ALFs.
- 14.15.104 In the event that only four charging years of complete output (FPN or actual metered) data are available for an individual Power Station then the higher three charging years ALF would be used in the calculation of the final ALF. In the event that only three charging years of complete output (FPN or actual metered) data are available then these three charging years would be used.
- 14.15.105 Due to the aggregation of output (FPN or actual metered) data for dispersed generation (e.g. cascade hydro schemes), where a single generator BMU consists of geographically separated power stations, the ALF would be calculated based on the total output of the BMU and the overall TEC of those Power Stations.

Page 24 of 63

1

- 14.15.106 In the event that there are not three full charging years of an individual power station's output available, missing output (FPN or actual metered) data would be replaced by generic data for that generation plant type to ensure three charging years of information are available for the Power Station. The derivation of the generic data is described in paragraphs 14.15.111-14.15.114.
- 14.15.107 Users will receive draft ALFs before 25th December of the charging year (t-1) for the charging year (t) and will have a period of 15 working days from date of publishing to notify the Company of any errors. Failure to agree changes relating to errors will be treated as a charging dispute under the CUSC.
- 14.15.108 The ALFs used in the setting of final tariffs will be published in the annual Statement of Use of System Charges. Changes to ALFs after this publication will not result in changes to published tariffs (e.g. following dispute resolution).

Derivation of Generic ALFs

14.15.109 The generic ALF is derived from the average annual output of the ten most recently commissioned GB generation of a particular generation plant type that have at least five charging years' data, using an identical methodology to that used for the Power Station specific calculation described above. Where less than ten GB generators of a particular generation plant type exist, then data from all existing generators of that particular generation plant type will be used. Example generation plant type categories are listed below;

Fuel Type
Biomass
Coal
Gas
Hydro
Nuclear (by reactor
type)
Oil & OCGTs
Pumped Storage
Onshore Wind
Offshore Wind
CHP

- 14.15.110 The Company will keep these categories under review and update as necessary. Where within a category there is a significant locational difference consideration will be given to zonal generic factors. The factors used will be published in the Statement of Use of System Charges and will be reviewed annually.
- 14.15.111 If a User can demonstrate that the generation plant type of a Power Station has changed, consideration will be given to the use of relevant generic ALF information in the calculation of their charges until sufficient specific data is available.
- 14.15.112 For new and emerging generation plant types, where insufficient data is available to allow a generic ALF to be developed, The Company will use the best information available e.g. from manufactuers and data from use of similar technologies outside GB. The factor will be agreed with the relevant Generator. In the event of a disagreement the standard provisions for dispute in the CUSC will apply.

TNUoS Embedded Export Tariff					
14.15.113 Embedded exports are exports measured on a half-hourly basis by Metering Systems, in accordance with the BSC, that are not subject to generation TNUOS.					
14.15.114 The embedded export tariff will be applied to the metered Triad volumes of Embedded Exports for each demand zone as follows:					
$EET_{Di} = ITT_{DiPS} + ITT_{DiYR} + EX$					
Where					
ITT _{DIPS} = Peak Security Initial Transport Tariff for the demand zone; ITT _{DIYR} = Year Round Initial Transport Tariff for the demand zone, and EX:					
EX: First Charging year following the implementation date of CMP 264/265:					
$\underline{EX} = \frac{2}{3}(XP - (RT_G \times -1)) + (RT_G \times -1)$					
Second charging year following the implementation date of CMP 264/265:					
$\underline{EX} = \frac{2}{3}(\underline{XP} - (\underline{RT}_G \times -1)) + (\underline{RT}_G \times -1)$					
Third charging year following the implementation date of CMP 264/265 and every subsequent charging year:					
$\underline{EX} = (RT_G \times -1)$					
<u>Where</u> <u>XP</u> = Value of demand residual in charging year prior to implementation					
$(RT_G \times -1)$ = Generation Residual Tariff with the inverse sign. For clarity, this means					
that if the Generation Residual is negative, the generation residual will be applied as a					
positive number for embedded exports.					

<u>The Value of EET_{Di} will be floored at zero, so that EET_{Di} is always zero or positive.</u>

Initial Revenue Recovery

14.15,<u>115</u> For the Peak Security background the initial tariff for generation is multiplied by the total forecast generation capacity and the PS flag to give the initial revenue recovery:

$$\sum_{Gi=1}^{n} (ITT_{GiPS} \times G_{Gi} \times F_{PS}) = ITRR_{GPS}$$

Where
ITRRGPS=Peak Security Initial Transport Revenue Recovery for generation
Total forecast Generation for each generation zone (based on
analysis of confidential User forecasts)FPS
n=Peak Security flag appropriate to that generator type
Number of generation zones

Deleted: 113

Page 26 of 63

The initial revenue recovery for <u>gross GSP group</u> demand for the Peak Security background is calculated by multiplying the initial tariff by the total forecast metered triad <u>gross GSP group</u> demand:

$$\sum_{Di=1}^{14} (ITT_{DiPS} \times D_{Di}) = ITRR_{DPS}$$

Where:

- ITRRDPS = Peak Security Initial Transport Revenue Recovery for <u>gross GSP</u> <u>group</u> demand D_{Di} = Total forecast Metered Triad <u>gross GSP group</u> Demand for each
 - Total forecast Metered Triad<u>gross GSP group</u> Demand for each demand zone (based on <u>analysis of</u> confidential User forecasts)
- 14.15,<u>116</u> For the Year Round background, the initial tariff for generation is multiplied by the total forecast generation capacity whilst calculating Initial Recovery for Not-Shared component whereas the initial tariff for Shared component is multiplied by both, the total forecast generation capacity and the ALF to give the initial revenue recovery:

$$\sum_{G_{i}=1}^{n} (ITT_{G_{i}YRNS} \times G_{G_{i}}) = ITRR_{GYRNS}$$
$$\sum_{G_{i}=1}^{n} (ITT_{G_{i}YRS} \times G_{G_{i}} \times ALF) = ITRR_{GYRS}$$

Where:

ITRR _{GYRNS} generation	=	Year Round Not-Shared Initial Transport Revenue Recovery for
ITRR _{GYRS} generation	=	Year Round Shared Initial Transport Revenue Recovery for
ALF	=	Annual Load Factor appropriate to that generator.

14.15,<u>117</u> Similar to the Peak Security background, the initial revenue recovery for gross <u>GSP group</u> demand for the Year Round background is calculated by multiplying the initial tariff by the total forecast metered triad<u>gross GSP group</u> demand:

$$\sum_{Di=1}^{14} \left(ITT_{DiYR} \times D_{Di} \right) = ITRR_{DYR}$$

=

Where:

 $\mathsf{ITRR}_{\mathsf{DYR}}$

Year Round Initial Transport Revenue Recovery for <u>gross GSP</u> <u>group</u> demand

14.15.118The initial revenue recovery for Embedded Exports is the Embedded Export Tariff multiplied by the total forecast volume of Embedded Export at triad:

Page 27 of 63

Deleted: 114

$$ITRR_{EE} = \sum_{Di=1}^{14} (EET_{Di} \times EEV_{Di})$$

<u>Where</u>

ITTR _{EE}	= Initial Revenue impact for Embedded Exports
EEV _{Di}	= Forecast Embedded Export metered volume at Triad
(MW)	
<u></u>	
For the	idance of doubt, the initial revenue recovery for affected embedded
For the	idance of doubt, the initial revenue recovery for affected embedde

Deriving the Final Local Tariff (£/kW)

exports can be positive or negative.

Local Circuit Tariff

14.15,<u>119</u> Generation with a local circuit tariff is calculated by multiplying the Year Round nodal marginal km along the local circuit by the expansion constant and the relevant local security factor (whether onshore or offshore) and summing across local circuits to give the local circuit tariff:

$$\sum_{k} \frac{NLMkm_{Gj}^{L} \times EC \times LocalSF_{k}}{1000} = CLT_{Gi}$$

Where

=	Local circuit k for generator
=	Year Round Nodal marginal km along local circuit k using local
	circuit expansion factor.
=	Expansion Constant
=	Local Security Factor for circuit k
=	Circuit Local Tariff (£/kW)
	= =

Onshore Local Substation Tariff

- 14.15,120 All chargeable generation is subject to the local substation tariff component which is determined by assessing the generation substation type which is the substation at the connection charging boundary, against three cost determining factors:
 - (a) HV connection voltage the voltage at the boundary between the User's connection assets and the transmission system;
 - (b) Sum of TEC at the generation substation the combined TEC of all generation at the connecting substation; and
 - (c) The level of redundancy at the generation substation single busbar / single switch mesh connections are examples of no redundancy connections, whereas examples of connections with redundancy include double busbar and mesh sub station designs.

Page 28 of 63

V1.12-01 April 2016

Deleted: 116

CUSC v1.12 14.15,121 Using the above factors, the corresponding £/kW tariffs (quoted to 3dp) that will Deleted: 118 be applied during 2010/11 are: Substation Voltage (a) Substation Connection Rating (b) Type (c) 132kV 275kV 400kV <1320MW No redundancy 0.133 0.081 0.065 0.301 0.192 0.155 <1320MW Redundancy 0.257 0.208 >=1320MW No redundancy n/a 0.417 >=1320MW Redundancy n/a 0.336 I 14.15,122 The process for calculating Local Substation Tariffs will be carried out for the Deleted: 119 first year of the price control and will subsequently be indexed by RPI for each subsequent year of the price control period. 14.15,123 The effective Local Tariff (£/kW) is calculated as the sum of the circuit and l Deleted: 120 substation onshore and/or offshore components: $ELT_{Ci} = CLT_{Ci} + SLT_{Ci}$ Where ELT_{Gi} Effective Local Tariff (£/kW) = Substation Local Tariff (£/kW) SLT_{Gi} = I 14.15,124 Where tariffs do not change mid way through a charging year, final local tariffs Deleted: 121 will be the same as the effective tariffs: **ELT**_{Gi} LT_{Gi} = Where Final Local Tariff (£/kW) LT_{Gi} _ 14.15,125 Where tariffs are changed part way through the year, the final tariffs will be Deleted: 122 calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS $LT_{Gi} = \frac{12 \times \left(ELT_{Gi} \times \sum_{Gi=1}^{21} G_{Gi} - FLL_{Gi}\right)}{b \times \sum_{i=1}^{21} G_{Gi}} \quad \text{and} \quad FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{i=1}^{21} D_{Di}}$ Where: b = number of months the revised tariff is applicable for FLL = Forecast local liability incurred over the period that the original tariff is applicable for 14.15,126 For the purposes of charge setting, the total local charge revenue is calculated Deleted: 123 by: $\text{LCRR}_{\text{G}} = \sum_{j=Gi} \text{LT}_{\text{Gi}} * G_j$ Where **LCRR**_G Local Charge Revenue Recovery = Forecast chargeable Generation or Transmission Entry Capacity Gi in kW (as applicable) for each generator (based on analysis of confidential information received from Users) Offshore substation local tariff V1.12-01 April 2016 Page 29 of 63

- 14.15,<u>127</u> All offshore chargeable generation is subject to an offshore substation tariff. The offshore substation tariff shall be the sum of transformer, switchgear and platform components.
- 14.15,128 Each tariff component, expressed in £/kW, shall be the ratio of the Offshore Transmission Owner revenue (£) and rating associated with the transformers, switchgear or platform (kW) at each offshore substation. The Offshore Transmission Owner revenue of each tariff component shall include that associated with asset spares. In the case of the platform component, the relevant rating shall be the lower of the transformer or switchgear ratings. As with the offshore circuit expansion factors, the Offshore Transmission Owner revenue associated with each tariff component shall be averaged over the remaining years of the NETSO price control.
- 14.15,129 Offshore Transmission Owner revenue associated with interest during construction and project development overheads will be attributed to the relevant asset category with which it is associated. If these or any other costs included in the Offshore Transmission Owner revenue are not readily attributable to a given asset category, they will be pro-rated across the various asset categories based on their relative cost.
 - 14.15,130 For 2010/11 a discount of £0.345590/kW shall be provided to the offshore substation tariff to reflect the average cost of civil engineering for onshore substations. This will be inflated by RPI each year and reviewed every price control period.
- 14.15,131 Offshore substation tariffs shall be reviewed at the start of every onshore price control period. For each subsequent year within the price control period, these shall be inflated in the same manner as the associated Offshore Transmission Owner Revenue.
- 14.15,<u>132</u> The revenue from the offshore substation local tariff is calculated by:

$$SLTR = \sum_{\substack{All offshore \\ substatios}} \left(SLT_k \times \sum_k Gen_k \right)$$

Where:

SLT _k	=	the offshore substation tariff for substation k
Gen _k	=	the generation connected to offshore substation k

The Residual Tariff

14.15,133 The total revenue to be recovered through TNUoS charges is determined each year with reference to the Transmission Licensees' Price Control formulas less the costs expected to be recovered through Pre-Vesting connection charges. Hence in any given year t, a target revenue figure for TNUoS charges (TRR_t) is set after adjusting for any under or over recovery for and including, the small generators discount is as follows:

$$TRR_t = R_t - PVC_t - SG_{t-1}$$

Where

TRR_t = TNUoS Revenue Recovery target for year t
 R_t = Forecast Revenue allowed under The Company's RPI-X Price Control Formula for year t (this term includes a number of adjustments, including for over/under recovery from the previous year). For further information, refer to Special Condition D2 of The Company's Transmission Licence.

Page 30 of 63

Deleted: 130

Deleted: 126

Deleted: 124

Deleted: 125

Deleted: 127

Deleted: 128

- PVC_t = Forecast Revenue from Pre-Vesting connection charges for year t
- SG_{t-1} = The proportion of the under/over recovery included within R_t which relates to the operation of statement C13 of the The Company Transmission Licence. Should the operation of statement C13 result in an under recovery in year t 1, the SG figure will be positive and vice versa for an over recovery.
- 14.15,134 In normal circumstances, the revenue forecast to be recovered from the initial transport tariffs will not equate to the total revenue target. This is due to a number of factors. For example, the transport model assumes, for simplicity, smooth incremental transmission investments can be made. In reality, transmission investment can only be made in discrete 'lumps'. The transmission system has been planned and developed over a long period of time. Forecasts and assessments used for planning purposes will not have been borne out precisely by events and therefore some distinction between an optimal system for one year and the actual system can be expected.
 - 14.15,135 As a result of the factors above, in order to ensure adequate revenue recovery, a constant non-locational **Residual Tariff** for generation and demand is calculated, which includes infrastructure substation asset costs. It is added to the initial transport tariffs for both Peak Security and Year Round backgrounds so that the correct generation / demand revenue split is maintained and the total revenue recovery is achieved.

$$RT_{D} = \frac{(p \times TRR) - ITRR_{DPS} - ITRR_{DYR} - ITRR_{EE}}{\sum_{Di=1}^{14} D_{Di}}$$

$$RT_{G} = \frac{\left[(1-p) \times TRR\right] - ITRR_{GPS} - ITRR_{GYRS} - ITRR_{GYRS} - LCRR_{G}}{\sum_{Gi=1}^{n} G_{Gi}}$$

Where RT

Residual Tariff (£/MW)

р

Proportion of revenue to be recovered from demand

Final £/kW Tariff

14.15,<u>136</u> The effective Transmission Network Use of System tariff (TNUoS) for generation and gross demand can now be calculated as the sum of the initial transport wider tariffs for Peak Security and Year Round backgrounds, the non-locational residual tariff and the local tariff:

$$ET_{Gi} = \frac{ITT_{GiPS} + ITT_{GiYRNS} + ITT_{GiYRS} + RT_{G}}{1000} + LT_{Gi}$$
$$= ET_{Di} = \frac{ITT_{DiPS} + ITT_{DiYR} + RT_{D}}{1000}$$

Where

ET_{Gi} = Effective Generation TNUoS Tariff expressed in £/kW (ET_{Gi} would only be applicable to a Power Station with a PS flag of 1 and ALF of 1; in all other circumstances ITT_{GiPS}, ITT_{GiPRS} and ITT_{GiPRS} will be applied using Power Station specific data)

Page 31 of 63

V1.12-01 April 2016

Deleted: ¶ $RT_{D} = \frac{(p \times TRR) - I}{I}$

Deleted: 131

Deleted: 132

ET_{Di} = Effective Gross Demand TNUoS Tariff expressed in £/kW
 The effective Transmission Network Use of System tariff (TNUoS) for affected embedded exports and grandfathered embedded exports can now be calculated by expressing the embedded export tariff in £/kW values:
 ET_{EEi} = EFF_{Di}/1000
 Where ET_{EEi} = Effective Embedded Export TNUoS Tariff expressed in £/kW
 For the purposes of the annual Statement of Use of System Charges ET_{Gi} will be published as ITT_{GiPS}; ITT_{GiYRNS}, ITT_{GiYRS}, RT_G and LT_{Gi}
 14.15,137 Where tariffs do not change mid way through a charging year, final demand and generation tariffs will be the same as the effective tariffs.

$$FT_{Di} = ET_{Di}$$

$$FT_{EEAi} = ET_{EEi}$$

14.15,<u>138</u> Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$FT_{Gi} = \frac{12 \times \left(ET_{Gi} \times \sum_{Gi=1}^{20} G_{Gi} - FL_{Gi}\right)}{b \times \sum_{Gi=1}^{27} G_{Gi}}$$

$$FT_{EEi} = \frac{12 \times (ET_{EEi} \times \sum_{Di=1}^{14} EET_{Di} - FL_{Di})}{b \times \sum_{Di=1}^{14} EET_{Di}} \text{ and } FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{14} EET_{Di}}$$

Where:

b = number of months the revised tariff is applicable for FL = Forecast liability incurred over the period that the original tariff is applicable for

Note: The ET_{Gi} element used in the formula above will be based on an individual Power Stations PS flag and ALF for Power Station G_{Gi} , aggregated to ensure overall correct revenue recovery.

14.15.139 If the final <u>gross</u> demand TNUoS Tariff results in a negative number then this is collared to £0/kW with the resultant non-recovered revenue smeared over the remaining demand zones:

If $FT_{Di} < 0$, then i = 1 to z

Page 32 of 63

Deleted: 134

Deleted: 135

$$NRRT_{D} = \frac{\sum_{i=1}^{z} (FT_{Di} \times D_{Di})}{\sum_{i=z+1}^{14} D_{Di}}$$

Therefore,

Therefore the revised Final Tariff for the <u>gross</u> demand zones with positive Final tariffs is given by:

For i= 1 to z: $RFT_{Di} = 0$

For *i*=z+1 to 14:

 $RFT_{Di} = FT_{Di} + NRRT_{D}$

Where

I

1

I

 $NRRT_D = Non Recovered Revenue Tariff (£/kW)$ $RFT_{Di} = Revised Final Tariff (£/kW)$

- 14.15,140 The tariffs applicable for any particular year are detailed in The Company's Statement of Use of System Charges, which is available from the Charging website. Archived tariff information may also be obtained from the Charging website.
- 14.15,<u>141</u> The zonal maps referenced in The Company's **Statement of Use of System Charges** and available on the **Charging website** contain detailed information for the charging year in question of which Grid Supply Points fall into which TNUoS zones.

14.15,142 New Grid Supply Points will be classified into zones on the following basis:

- For demand zones, according to the GSP Group to which the Grid Supply Point is allocated for energy market settlement purposes.
- For generation zones, with reference to the geographic proximity to existing zones and, where close to a boundary between existing zones, with reference to the marginal costs arising from transport model studies. The GSP will then be allocated to the zone, which contains the most similar marginal costs.
- 14.15,143 The Company has available, upon request, the DCLF ICRP transport model, tariff model template and data necessary to run the model, consisting of nodal values of generation and demand connection points to the NETS. The model and data will enable the basic nodal charges to be determined and will also allow sensitivity analysis concerning alternative developments of generation and demand to be undertaken. The model is available from the Charging Team and whilst it is free of charge, it is provided under licence to restrict its distribution and commercial use.
 - 14.15,144 The Company will be pleased to run specific sensitivity studies for Users under a separate study contract in line with the fees set out in the **Statement of Use** of **System Charges**. Please contact the **Charging Team**.
 - 14.15,145 The factors which will affect the level of TNUoS charges from year to year include-;

V1.12-

V1.12-01 April 2016

Page 33 of 63

Deleted: 137

Deleted: 138

Deleted: 139

Deleted: 140

Deleted: 141

- the forecast level of peak demand on the system
- the Price Control formula (including the effect of any under/over recovery from the previous year),
- the expansion constant,
- the locational security factor,
- the PS flag
- the ALF of a generator
- changes in the transmission network
- HVDC circuit impedance calculation
- changes in the pattern of generation capacity and demand.
- changes in the pattern of embedded exports

14.15,146 In accordance with Standard Licence Condition C13, generation directly connected to the NETS 132kV transmission network which would normally be subject to generation TNUoS charges but would not, on the basis of generating capacity, be liable for charges if it were connected to a licensed distribution network qualifies for a reduction in transmission charges by a designated sum, determined by the Authority. Any shortfall in recovery will result in a unit amount increase in gross demand charges to compensate for the deficit. Further information is provided in the Statement of the Use of System Charges.

Stability & Predictability of TNUoS tariffs

14.15,147 A number of provisions are included within the methodology to promote the stability and predictability of TNUoS tariffs. These are described in 14.29.

Deleted: 143

14.16 Derivation of the Transmission Network Use of System Energy Consumption Tariff and Short Term Capacity Tariffs

- 14.16.1 For the purposes of this section, Lead Parties of Balancing Mechanism (BM) Units that are liable for Transmission Network Use of System Demand Charges are termed Suppliers.
- 14.16.2 Following calculation of the Transmission Network Use of System £/kW Gross Demand Tariff (as outlined in Chapter 2: Derivation of the TNUoS Tariff) for each GSP Group is calculated as follows:

$$p/kWh Tariff = (NHHD_F * £/kW Tariff - FL_G) *100$$

NHHC_G

Where:

 \pounds/kW Tariff = The \pounds/kW Effective <u>Gross</u> Demand Tariff (\pounds/kW), as calculated previously, for the GSP Group concerned.

 \mathbf{NHHD}_{F} = The Company's forecast of Suppliers' non-half-hourly metered Triad Demand (kW) for the GSP Group concerned. The forecast is based on historical data.

 FL_{G} = Forecast Liability incurred for the GSP Group concerned.

 $\rm NHHC_{G}$ = The Company's forecast of GSP Group non-half-hourly metered total energy consumption (kWh) for the period 16:00 hrs to 19:00hrs inclusive (i.e. settlement periods 33 to 38) inclusive over the period the tariff is applicable for the GSP Group concerned.

Short Term Transmission Entry Capacity (STTEC) Tariff

14.16.3 The Short Term Transmission Entry Capacity (STTEC) tariff for positive zones is derived from the Effective Tariff (ET_{Gi}) annual TNUoS £/kW tariffs (14.15.112). If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the STTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (i.e. over the whole financial year, not just the period that the STTEC is applicable for). STTECs will not be reconciled following a mid year charge change. The premium associated with the flexible product is associated with the analysis that 90% of the annual charge is linked to the system peak. The system peak is likely to occur in the period of November to February inclusive (120 days, irrespective of leap years). The calculation for positive generation zones is as follows:

$$\frac{FT_{Gi} \times 0.9 \times STTEC \ Period}{120} = STTEC \ tariff \ (\pounds/kW/period)$$

Where:

FT	=	Final annual TNUoS Tariff expressed in £/kW
Gi	=	Generation zone
STTEC Period	=	A period applied for in days as defined in the CUSC

Page 35 of 63

- 14.16.4 For the avoidance of doubt, the charge calculated under 14.16.3 above will represent each single period application for STTEC. Requests for multiple /STTEC periods will result in each STTEC period being calculated and invoiced separately.
- 14.16.5 The STTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.

Limited Duration Transmission Entry Capacity (LDTEC) Tariffs

14.16.6 The Limited Duration Transmission Entry Capacity (LDTEC) tariff for positive zones is derived from the equivalent zonal STTEC tariff for up to the initial 17 weeks of LDTEC in a given charging year (whether consecutive or not). For the remaining weeks of the year, the LDTEC tariff is set to collect the balance of the annual TNUoS liability over the maximum duration of LDTEC that can be granted in a single application. If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the LDTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (ie over the whole financial year, not just the period that the STTEC is applicable for). LDTECs will not be reconciled following a mid year charge change:

Initial 17 weeks (high rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.9 \times 7}{120}$$

Remaining weeks (low rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.1075 \times 7}{316 - 120} \times (1 + P)$$

where FT is the final annual TNUoS tariff expressed in £/kW; G_i is the generation TNUoS zone; and P is the premium in % above the annual equivalent TNUoS charge as determined by The Company, which shall have the value 0.

- 14.16.7 The LDTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.
- 14.16.8 The tariffs applicable for any particular year are detailed in The Company's **Statement of Use of System Charges** which is available from the **Charging website**. Historical tariffs are also available on the **Charging website**.

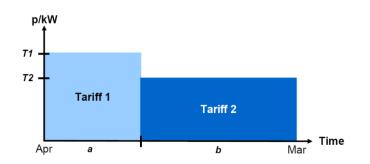
14.17 Demand Charges

Parties Liable for Demand Charges

- 14.17.1 Demand charges are subdivided into charges for gross demand, energy and embedded export. The following parties shall be liable for some or all of the categories of demand charges:
 - The Lead Party of a Supplier BM Unit;
 - Power Stations with a Bilateral Connection Agreement;
 - Parties with a Bilateral Embedded Generation Agreement
- 14.17.2 Classification of parties for charging purposes, section 14.26, provides an illustration of how a party is classified in the context of Use of System charging and refers to the paragraphs most pertinent to each party.

Basis of Gross Demand Charges

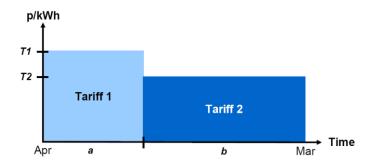
app


app

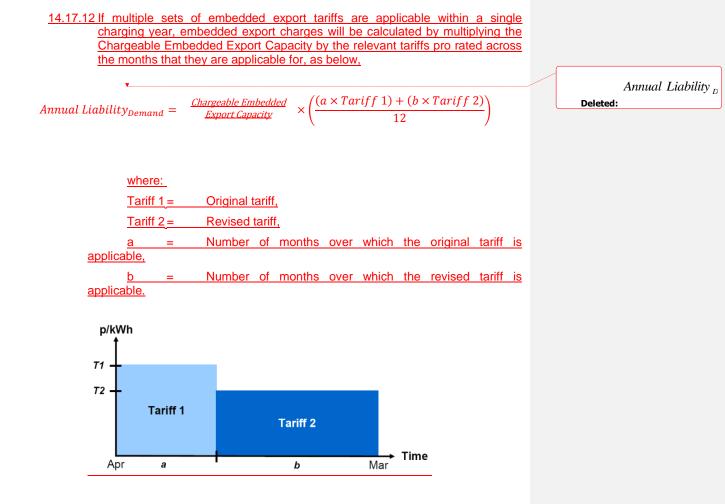
- 14.17.3 <u>Gross d</u>emand charges are based on a de-<u>minimis</u> £0/kW charge for Half Hourly and £0/kWh for Non Half Hourly metered demand.
 - 14.17.4 Chargeable <u>Gross</u> Demand Capacity is the value of Triad <u>gross</u> demand (kW). Chargeable Energy Capacity is the energy consumption (kWh). The definition of both these terms is set out below.
 - 14.17.5 If there is a single set of <u>gross</u> demand tariffs within a charging year, the Chargeable <u>Gross</u> Demand Capacity is multiplied by the relevant <u>gross</u> demand tariff, for the calculation of <u>gross</u> demand charges.
 - 14.17.6 If there is a single set of energy tariffs within a charging year, the Chargeable Energy Capacity is multiplied by the relevant energy consumption tariff for the calculation of energy charges..
 - 14.17.7 If multiple sets of <u>gross</u> demand tariffs are applicable within a single charging year, <u>gross</u> demand charges will be calculated by multiplying the Chargeable <u>Gross</u> Demand Capacity by the relevant tariffs pro rated across the months that they are applicable for, as below,

Annuc	ıl Liabilit <u>;</u>	y _{Demand} = <u>Cha</u> <u>Der</u>	nrge. man	<u>able Gross</u> <u>d Capacity</u>	$\times \left(\frac{(a)}{a}\right)$	< Tariff 2	$\frac{1}{12} + (b)$	×Tariff2	<u>!)</u>)	
whe	re:						_			
Tarif	ff 1 =	Original ta	ariff	,						
Tarif	ff 2 =	Revised ta	arif	f,						
a licable,	=	Number	of	months	over	which	the	original	tariff	is
b licable.	=	Number	of	months	over	which	the	revised	tariff	is

Deleted: minimus


Deleted: Annual Liability D

14.17.8 If multiple sets of energy tariffs are applicable within a single charging year, energy charges will be calculated by multiplying relevant Tariffs by the Chargeable Energy Capacity over the period that that the tariffs are applicable for and summing over the year.


Annual Liability $_{Energy} = Tariff \ 1 \times \sum_{TI_s}^{TI_E} Chargeable Energy Capacity + Tariff \ 2 \times \sum_{TZ_s}^{TI_E} Chargeable Energy Capacity$

Where: T1s Start date for the period for which the original tariff is = applicable, End date for the period for which the original tariff is T1_E applicable, Start date for the period for which the revised tariff is T2s _ applicable, End date for the period for which the revised tariff is T2_E = applicable.

Basis of Embedded Export Charges

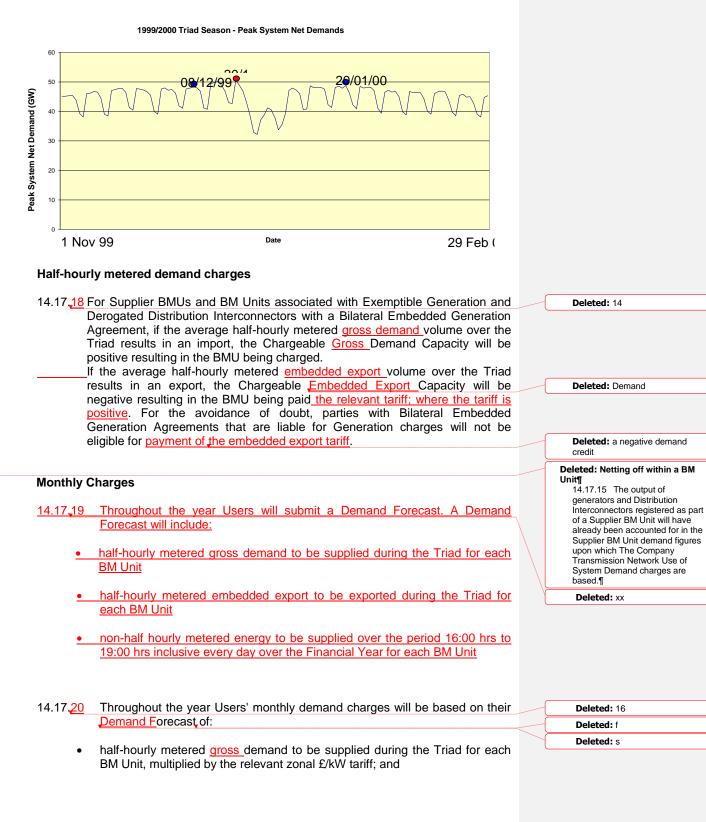
- 14.17.9 Embedded export charges are based on a £/kW charge for Half Hourly metered embedded export.
- <u>14.17.10 Chargeable Embedded Export Capacity is the value of Embedded Export at</u> <u>Triad (kW). The definition of this term is set out below.</u>
- 14.17.11 If there is a single set of embedded export tariffs within a charging year, the Chargeable Embedded Export Capacity is multiplied by the relevant embedded export tariff, for the calculation of embedded export charges.

Supplier BM Unit

14.17,<u>13</u> A Supplier BM Unit charges will be the sum of its energy, <u>gross_demand_and</u> <u>embedded export</u> liabilities where:

- The Chargeable <u>Gross</u> Demand Capacity will be the average of the Supplier BM Unit's half-hourly metered <u>gross</u> demand during the Triad (and the £/kW tariff),
- The Chargeable Embedded Export Capacity will be the average of the Supplier BM Unit's half-hourly metered embedded export during the Triad (and the £/kW tariff), and
- The Chargeable Energy Capacity will be the Supplier BM Unit's non halfhourly metered energy consumption over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year (and the p/kWh tariff).

Power Stations with a Bilateral Connection Agreement and Licensable Generation with a Bilateral Embedded Generation Agreement


Page 39 of 63

V1.12-01 April 2016

CUSC v1.12	
14.17,14 The Chargeable Gross Demand Capacity for a Power Station with a Bilateral	Deleted: 10
Connection Agreement or Licensable Generation with a Bilateral Embedded	
Generation Agreement will be based on the average of the gross import over	Deleted: net
each Triad leg of the BM Units associated with the Power Station (in Appendix C of its Bilateral Connection Agreement or Bilateral Embedded Generation Agreement, including metered additional load) during the Triad.	
Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement	
14.17,15,The demand charges for Exemptible Generation and Derogated Distribution	Deleted: 11
Interconnector with a Bilateral Embedded Generation Agreement will be the sum of its gross demand and embedded export liabilities where:	Deleted: An
sum of his gross demand and embedded export liabilities where.	
 The Chargeable Gross Demand Capacity for Exemptible Generation and Deve geted Distribution Intercomposition with a Dilatoral Each added Composition 	
Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement will be based on the average of the metered <u>gross demand</u> of	Deleted: volume
each BM Unit specified in Appendix C of the Bilateral Embedded Generation	Deleted: volume
Agreement during the Triad.	
The Chargeable Embedded Export Capacity for Exemptible Generation and	
 <u>The Chargeable Embedded Export Capacity for Exemptible Generation and</u> Derogated Distribution Interconnectors with a Bilateral Embedded Generation 	
Agreement will be based on the average of the metered embedded export of	
each BM Unit specified in Appendix C of the Bilateral Embedded Generation	
Agreement during the Triad.	
Small Generators Tariffs	
14.17.16 In accordance with Standard Licence Condition C13, any under recovery from	Deleted: 12
the MAR arising from the small generators discount will result in a unit amount	
of increase to all GB gross demand tariffs.	
The Triad	
The mau	
14.17,17 The Triad is used as a short hand way to describe the three settlement periods	Deleted: 13
of highest transmission system demand within a Financial Year, namely the	
half hour settlement period of system peak net demand and the two half hour	
settlement periods of next highest <u>net</u> demand, which are separated from the	
system peak <u>net</u> demand and from each other by at least 10 Clear Days, between November and February of the Financial Year inclusive. Exports on	
directly connected Interconnectors and Interconnectors capable of exporting	
more than 100MW to the Total System shall be excluded when determining the	
system peak net demand. An illustration is shown below.	

I

I

- half-hourly metered embedded export to be supplied during the Triad for each BM Unit, multiplied by the relevant zonal £/kW tariff; and
- non-half hourly metered energy to be supplied over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year for each BM Unit, multiplied by the relevant zonal p/kWh tariff

Users' annual TNUoS demand charges are based on these forecasts and are split evenly over the 12 months of the year. Users have the opportunity to vary their demand forecasts on a quarterly basis over the course of the year, with the demand forecast requested in February relating to the next Financial Year. Users will be notified of the timescales and process for each of the quarterly updates. The Company will revise the monthly Transmission Network Use of System demand charges by calculating the annual charge based on the new forecast, subtracting the amount paid to date, and splitting the remainder evenly over the remaining months. For the avoidance of doubt, only positive demand forecasts (i.e. representing <u>a net</u> import from the system) will be <u>used in the calculation of charges</u>.

Demand forecasts for a User will be considered positive where:

- The sum of the gross demand forecast and embedded export forecast is positive; and
- The non-half hourly metered energy forecast is positive.

14.17.21 Users should submit reasonable forecasts of gross demand, embedded export and energy in accordance with the CUSC. The Company shall use the following methodology to derive a forecast to be used in determining whether a User's forecast is reasonable, in accordance with the CUSC, and this will be used as a replacement forecast if the User's total forecast is deemed unreasonable. The Company will, at all times, use the latest available Settlement data.

For existing Users:

- i) The User's Triad <u>gross</u> demand<u>and embedded export</u> for the preceding Financial Year will be used where User settlement data is available and where The Company calculates its forecast before the Financial Year. Otherwise, the User's average weekday settlement period 35 half-hourly metered (HH) <u>gross</u> demand <u>and embedded export</u> in the Financial Year to date is compared to the equivalent average <u>gross</u> demand<u>and</u> <u>embedded export</u> for the corresponding days in the preceding year. The percentage difference is then applied to the User's HH <u>gross</u> demand<u>and</u> <u>embedded export</u> at Triad in the preceding Financial Year to derive a forecast of the User's HH <u>gross</u> demand <u>and embedded export</u> at Triad for this Financial Year.
- ii) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day in the Financial Year to date is compared to the equivalent energy consumption over the corresponding days in the preceding year. The percentage difference is then applied to the User's total NHH energy consumption in the preceding Financial Year to derive a forecast of the User's NHH energy consumption for this Financial Year.

For new Users who have completed a Use of System Supply Confirmation Notice in the current Financial Year:

Page 42 of 63

V1.12-01 April 2016

Deleted: accepted

1

iii) The User's average weekday settlement period 35 half-hourly metered (HH) gross demand and embedded export over the last complete month for which The Company has settlement data is calculated. Total system average HH gross demand and embedded export for weekday settlement period 35 for the corresponding month in the previous year is compared to total system HH_gross demand and embedded export at Triad in that year and a percentage difference is calculated. This percentage is then applied to the User's average HH gross demand and embedded export for weekday settlement period 35 over the last month to derive a forecast of the User's HH gross demand and embedded export at Triad for this Financial Year.

- iv) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day over the last complete month for which The Company has settlement data is noted. Total system NHH energy consumption over the corresponding month in the previous year is compared to total system NHH energy consumption over the remaining months of that Financial Year and a percentage difference is calculated. This percentage is then applied to the User's NHH energy consumption over the month described above, and all NHH energy consumption in previous months is added, in order to derive a forecast of the User's NHH metered energy consumption for this Financial Year.
- 14.17.22 14.28 Determination of The Company's Forecast for Demand Charge Purposes illustrates how the demand forecast will be calculated by The Company.

Reconciliation of Demand Charges

14.17,23 The reconciliation process is set out in the CUSC. The demand reconciliation process compares the monthly charges paid by Users against actual outturn charges. Due to the Settlements process, reconciliation of demand charges is carried out in two stages; initial reconciliation and final reconciliation.

Initial Reconciliation of demand charges

14.17,24 The initial reconciliation process compares Users' demand forecasts and corresponding monthly charges paid over the year against actual outturn data (using latest Settlement data available at the time) and corresponding charges. Initial reconciliation is carried out in two parts; Initial Reconciliation Part 1 deals with the reconciliation of half-hourly metered demand charges and Initial Reconciliation Part 2 deals with the reconciliation of non-half-hourly metered demand charges.

Initial Reconciliation Part 1– Half-hourly metered demand

- 14.17.25 The Company will identify the periods forming the Triad once it has received Central Volume Allocation data from the Settlement Administration Agent for all days up to and including the last day of February. Once The Company has notified Users of the periods forming the Triad they will not be changed even if disputes are subsequently resolved which would change the periods forming the Triad.
- 14.17,<u>26</u> Initial outturn charges for half-hourly metered <u>gross</u> demand will be determined using the latest available data of actual average Triad <u>gross</u> demand (kW) multiplied by the zonal <u>gross</u> demand tariff(s) (£/kW) applicable to the months

Page 43 of 63

Deleted: 18

Deleted: 19

Deleted: 20

Deleted: 1

Сι

l

I

I

l

I

SC v1.12			
	concerned for each zone for that Financial Year. These acture reconciled against the monthly charges paid in respect of demand.		
<u>14.17,2</u>	7 Initial outturn charges for half-hourly metered embedded determined using the latest available data of actual average export (kW) multiplied by the zonal embedded export tariff(s) to the months concerned for each zone for that Financial Yo values are then reconciled against the monthly charges paid hourly embedded exports.	e Triad embedded (£/kW) applicable ear. These actual	Deleted: xx
Initial F	econciliation Part 2 – Non-half-hourly metered demand		
14.17	8 Actual payments for non-half-hourly metered demand will be the latest available actual energy consumption data (kWh) for hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 3 multiplied by the energy consumption tariff(s) (p/kWh) applica concerned for each zone. These actual values are then reco- monthly charges paid in respect of non-half-hourly energy con-	r the period 16:00 38) over the year able to the months onciled against the	Deleted: 23
Final R	econciliation of demand charges		
14.17.2	<u>9</u> The final reconciliation process compares Users' charges (as the initial reconciliation process using the latest available outturn demand charges (based on final settlement data of demand, embedded exports and non-half-hourly energy const	data) against final half-hourly gross	Deleted: 24
14.17	<u>Pinal actual charges will be determined using the final dem data taken from the Final Reconciliation Settlement Reconciliation Volume Allocation Run.</u>		Deleted: 25
Recon	iliation of manifest errors		
14.17	1 In the event that a manifest error, or multiple errors in the cal tariffs results in a material discrepancy in aUsers T reconciliation process for all Users qualifying under Section accordance with Sections 14.17,24 to 14.17,30. The reconciliation is not practicable, a post-year reconciliation will the form of a one-off payment.	NUoS tariff, the 14.17. <u>33</u> will be in onciliation process 5. Where such	Deleted: 26 Deleted: 28 Deleted: 20 Deleted: 25
14.17	2 A manifest error shall be defined as any of the following:		Deleted: 27
	 a) an error in the transfer of relevant data between Licensees or Distribution Network Operators; b) an error in the population of the Transport Model with c) an error in the function of the Transport Model; or d) an error in the inputs or function of the Tariff Model. 		
14.17	<u>3</u> A manifest error shall be considered material in the event that the net effect of multiple errors, has an impact of the lesser of the l		Deleted: 28
	a) an error in a User's TNUoS tariff of at least +/-£0.50/		
	Page 44 of 63	V1.12– 01 April 2016	

b) an error in a User's TNUoS tariff which results in an error in the annual TNUoS charge of a User in excess of +/-£250,000.

14.17,<u>34</u> A manifest error shall only be reconciled if it has been identified within the charging year for which the error has an effect. Errors identified outside of this period will not be eligible for reconciliation retrospectively.

Implementation of P272

- 14.17,<u>35</u>.1 BSC modification P272 requires Suppliers to move Profile Classes 5-8 to Measurement Class E - G (i.e. moving from NHH to HH settlement) by April 2016. The majority of these meters are expected to transfer during the preceding Charging Years up until the implementation date of P272 and some meters will have been transferred before the start of 1ST April 2015. A change from NHH to HH within a Charging Year would normally result in Suppliers being liable for TNUoS for part of the year as NHH and also being subject to HH charging. This section describes how the Company will treat this situation in the transition to P272 implementation for the purposes of TNUoS charging; and the forecasts that Suppliers should provide to the Company.
- 14.17,<u>35.2</u> Notwithstanding 14.17,<u>13</u>, for each Charging Year which begins after 31 March 2015 and prior to implementation of BSC Modification P272, all demand associated with meters that are in NHH Profile Classes 5 to 8 at the start of that charging year as well as all meters in Measurement Classes E G will be treated as Chargeable Energy Capacity (NHH) for the purposes of TNUoS charging for the full Charging Year unless 14.17,<u>35.3</u> applies.
 - 14.17,35.3 Where prior to 1st April 2015 a Profile Class meter has already transferred to Measurement Class settlement (HH) the associated Supplier may opt to treat the demand volume as Chargeable Demand Capacity (HH) for the purposes of TNUoS charging up until implementation of P272, subject to meeting conditions in 14.17,35.6. If the associated Supplier does not opt to treat the demand volume as Demand Capacity (HH) it will be treated by default as Chargeable Energy Capacity (NHH) for each full Charging Year up until implementation of P272.
 - 14.17,35.4 The Company will calculate the Chargeable Energy Capacity associated with meters that have transferred to HH settlement but are still treated as NHH for the purposes of TNUoS charging from Settlement data provided directly from Elexon i.e. Suppliers need not Supply any additional information if they accept this default position.
- 14.17,35.5 The forecasts that Suppliers submit to the Company under CUSC 3.10, 3.11 and 3.12 for the purpose of TNUoS monthly billing referred to in 14.17,20 and 14.17,21 for both Chargeable Demand Capacity and Chargeable Energy Capacity should reflect this position i.e. volumes associated those Metering Systems that have transferred from a Profile Class to a Measurement Class in the BSC (NHH to HH settlement) but are to be treated as NHH for the purposes of TNUoS charging should be included in the forecast of Chargeable Energy Capacity and not Chargeable Demand Capacity, unless 14.17,35.3 applies.
 - 14.17,<u>35</u>.6 Where a Supplier wishes for Metering Systems that have transferred from Profile Class to Measurement Class in the BSC (NHH to HH settlement) prior to 1st April 2015, to be treated as Chargeable Demand Capacity (HH/

Page 45 of 63

V1.12-01 April 2016

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 9

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 16

Deleted: 17

Deleted: 29

I

Measurement Class settled) it must inform the Company prior to October 2015. The Company will treat these as Chargeable Demand Capacity (HH / Measurement Class settled) for the purposes of calculating the actual annual liability for the Charging Years up until implementation of P272. For these cases only, the Supplier should notify the Company of the Meter Point Administration Number(s) (MPAN). For these notified meters the Supplier shall provide the Company with verified metered demand data for the hours between 4pm and 7pm of each day of each Charging Year up to implementation of P272 and for each Triad half hour as notified by the Company prior to May of the following Charging Year up until two years after the implementation of P272 to allow reconciliation (e.g. Mav 2017 and May 2018 for the Charging Year 2016/17). Where the Supplier fails to provide the data or the data is incomplete for a Charging Year TNUoS charges for that MPAN will be reconciled as part of the Supplier's NHH BMU (Chargeable Energy Capacity). Where a Supplier opts, if eligible, for TNUoS liability to be calculated on Chargeable Demand Capacity it shall submit the forecasts referred to in 14.17,35.5 taking account of this.

14.17,35.7 The Company will maintain a list of all MPANs that Suppliers have elected to be treated as HH. This list will be updated monthly and will be provided to registered Suppliers upon request.

Further Information

- 14.17,<u>36</u> 14.25 Reconciliation of Demand Related Transmission Network Use of System Charges of this statement illustrates how the monthly charges are reconciled against the actual values for <u>gross</u> demand, <u>embedded export</u> and consumption for half-hourly <u>gross demand</u>, <u>embedded export</u> and non-halfhourly metered demand respectively.
- 14.17,<u>37</u> **The Statement of Use of System Charges** contains the £/kW zonal gross demand tariffs, <u>the £/kW zonal embedded export tariffs</u>, and the p/kWh energy consumption tariffs for the current Financial Year.
- 14.17,<u>38</u> 14.27 Transmission Network Use of System Charging Flowcharts of this statement contains flowcharts demonstrating the calculation of these charges for those parties liable.

Deleted: 29 Deleted: 30

Deleted: 29

Deleted: 31

....

14.24 Example: Calculation of Zonal Gross Demand Tariff

Let us consider all nodes in a demand zone in this example

The table below shows a sample output of the transport model comprising the node, the Peak Security and Year Round marginal km of an injection at the node with a consequent withdrawal at the distributed reference node, the generation sited at the node, scaled to ensure total national generation = total national <u>net</u> demand and the <u>net</u> demand sited at the node.

Demand Zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	<u>Net</u> Demand (MW)
14	ABHA4A	-77.25	-230.25	127
14	ABHA4B	-77.27	-230.12	127
14	ALVE4A	-82.28	-197.18	100
14	ALVE4B	-82.28	-197.15	100
14	AXMI40_SWEB	-125.58	-176.19	97
14	BRWA2A	-46.55	-182.68	96
14	BRWA2B	-46.55	-181.12	96
14	EXET40	-87.69	-164.42	340
14	HINP20	-46.55	-147.14	0
14	HINP40	-46.55	-147.14	0
14	INDQ40	-102.02	-262.50	444
14	IROA20_SWEB	-109.05	-141.92	462
14	LAND40	-62.54	-246.16	262
14	MELK40_SWEB	18.67	-140.75	83
14	SEAB40	65.33	-140.97	304
14	TAUN4A	-66.65	-149.11	55
14	TAUN4B	-66.66	-149.11	55
		Totals		2748

In order to calculate the <u>gross</u> demand tariff we would carry out the following steps:

(i) calculate the demand weighted nodal shadow costs

For this example zone this would be as follows:

Demand zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	Net Demand (MW)	Peak Security Demand Weighted Nodal Marginal km	Year Round Demand Weighted Nodal Marginal km
14	ABHA4A	-77.25	-230.25	127	-3.57	-10.64
14	ABHA4B	-77.27	-230.12	127	-3.57	-10.64
14	ALVE4A	-82.28	-197.18	100	-2.99	-7.17
14	ALVE4B	-82.28	-197.15	100	-2.99	-7.17
14	AXMI40_SWEB	-125.58	-176.19	97	-4.43	-6.22
14	BRWA2A	-46.55	-182.68	96	-1.63	-6.38
14	BRWA2B	-46.55	-181.12	96	-1.63	-6.33
14	EXET40	-87.69	-164.42	340	-10.85	-20.34
14	INDQ40	-102.02	-262.50	444	-16.48	-42.41
14	IROA20_SWEB	-109.05	-141.92	462	-18.33	-23.86
14	LAND40	-62.54	-246.16	262	-5.96	-23.47
14	MELK40_SWEB	18.67	-140.75	83	0.56	-4.25
14	SEAB40	65.33	-140.97	304	7.23	-15.59
14	TAUN4A	-66.65	-149.11	55	-1.33	-2.98
14	TAUN4B	-66.66	-149.11	55	-1.33	-2.98
		Totals		2748	-49.19	-190.43

(ii) sum the Peak Security and Year Round demand weighted nodal shadow costs to give zonal figures. For this example zone this is shown in the above table and is 49.19km for Peak Security background and 190.43km for Year Round background.

(iii) calculate the transport tariffs by multiplying the figures in (ii) above by the expansion constant (& dividing by 1000 to put into units of £/kW):

For this example zone, assuming an expansion constant of $\pm 10.07/MWkm$ and a locational security factor of 1.80:

a) Peak Security tariff – 49.19km <u>* £10.07/MWkm * 1.8</u> = <u>£0.89/kW</u> 1000

Page 49 of 63

b) Year Round tariff -<u>190.43km * £10.07/MWkm * 1.8</u> = <u>£3.45/kW</u> 1000

(iv) We now need to calculate the residual tariff. This is calculated by taking the total revenue to be recovered from demand (calculated as c.73% of total The Company_ TNUoS target revenue for the year), less the revenue which would be recovered through the demand transport tariffs and revenue recovery through embedded export tariffs, divided by total expected gross GSP group demand.

Assuming the total revenue to be recovered from TNUoS is £1067m, the total recovery from <u>gross GSP group</u> demand would be $(73\% \times £1067m) = £779m$. Assuming the total recovery from <u>gross GSP group</u> demand transport tariffs is £140m, total recovery from <u>embedded export tariffs is -£10m</u> and total forecast chargeable <u>gross GSP group</u> demand capacity is 50000MW, the demand residual tariff would be as follows:

 $\frac{\pounds779m - \pounds140m - -\pounds10m}{50,000MW} = \pounds12.98/kW$

 (v) to get to the final tariff, we simply add on the demand residual tariff calculated in (v) to the zonal transport tariffs calculated in (iii(a)) and (iii(b))

For zone 14:

 $\pounds 0.89/kW + \pounds 3.45/kW + \pounds 12.98/kW =$ $\pounds 17.32/kW$

- To summarise, in order to calculate the <u>gross</u> demand tariffs, we evaluate a <u>net</u> demand weighted zonal marginal km cost multiply by the expansion constant and locational security factor then we add a constant (termed the residual cost) to give the overall tariff.
- (vii) The final demand tariff is subject to further adjustment to allow for the minimum £0/kW gross_demand charge. The application of a discount for small generators pursuant to Licence Condition C13 will also affect the final gross_demand tariff.

Deleted: gross

Deleted: 130m

Deleted:	$\pounds779m - \pounds130m$	_
Deleteu:	50000MW	_

14.25 Reconciliation of <u>Gross</u> Demand Related Transmission Network Use of System Charges

This appendix illustrates the methodology used by The Company in the reconciliation of Transmission Network Use of System charges for <u>gross</u> demand. The example highlights the different stages of the calculations from the monthly invoiced amounts, right through to Final Reconciliation.

Monthly Charges

Suppliers provide half-hourly (HH) gross demand and embedded export forecasts and non-halfhourly (NHH) demand forecasts by BM Unit every quarter. An example of such forecasts and the corresponding monthly invoiced amounts, based on tariffs of £10.00/kW for gross demand, £5.00/kW for embedded export and 1.20p/kWh for energy consumption, is as follows:

	Forecast HH Triad <u>Gross</u> Demand <u>HHD_E (</u> kW)	HH <u>Gross</u> <u>Demand</u> Monthly Invoiced Amount (£)	Forecast HH Triad Embedded Export HHEE _E (kW)	<u>HH</u> <u>Embedded</u> <u>Generation</u> <u>Monthly</u> <u>Invoiced</u> <u>Amount (£)</u>	Forecast NHH Energy Consumpti on NHHC _F (kW h)	NHH Monthly Invoiced Amount (£)	Net Monthly Invoiced Amount (£)
Apr	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
May	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jun	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jul	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Aug	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Sep	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Oct	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Nov	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Dec	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Jan	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Feb	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Mar	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Total		72,000		<u>(3,000)</u>		216,000	<u>297</u> ,000

As shown, for the first nine months the Supplier provided a 12,000kW HH triad <u>gross</u> demand forecast, and hence paid HH <u>gross demand</u> monthly charges of £10,000 ((12,000kW x £10.00/kW)/12) for that BM Unit. In January the Supplier provided a revised forecast of 7,200kW, implying a forecast annual charge reduced to £72,000 (7,200kW x £10.00/kW). The Supplier had already paid £90,000, so the excess of £18,000 was credited back to the supplier in three £6,000 instalments over the last three months of the year.

The Supplier provided an embedded export triad forecast of -600kW and hence was paid an embedded export credit of £250 ((600kW x £5.00/kW)/12) for that BM Unit (For the avoidance of doubt, if the embedded export tariff is negative this will result in a debit).

The Supplier also initially provided a 15,000,000kWh NHH energy consumption forecast, and hence paid NHH monthly charges of £15,000 ((15,000,000kWh x 1.2p/kWh)/12) for that BM Unit. In July the Supplier provided a revised forecast of 18,000,000kWh, implying a forecast annual charge increased to £216,000 (18,000,000kWh x 1.2p/kWh). The Supplier had already

paid £45,000, so the remaining £171,000 was split into payments of £19,000 for the last nine months of the year.

The right hand column shows the net monthly charges for the BM Unit.

Initial Reconciliation (Part 1a)

The Supplier's outturn HH triad <u>gross</u> demand, based on <u>initial</u> settlement data (and therefore subject to change in subsequent settlement runs), was 9,000kW. The HH triad <u>gross</u> demand reconciliation charge is therefore calculated as follows:

HHD Reconciliation Charge = $(HHD_A - HHD_F) \times \pounds/kW$ Tariff

= (9,000kW - 7,200kW) x £10.00/kW

= 1,800kW x £10.00/kW

= £18,000

To calculate monthly interest charges, the outturn HHD charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHD charge less the HH <u>gross demand</u> monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 1b)

The Supplier's outturn HH triad embedded export, based on initial settlement data (and therefore subject to change in subsequent settlement runs), was 700kW. The HH triad embedded export reconciliation charge is therefore calculated as follows:

HHEE Reconciliation Charge = (HHEE_A – HHEE_E) x £/kW Tariff

 $= (-500 \text{kW} - -600 \text{kW}) \times \text{\pounds}5.00/\text{kW}$

 $= 100 \text{kW} \times \text{\pounds}5.00/\text{kW}$

= **£500**

To calculate monthly interest charges, the outturn HHEE charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHEE charge less the HH embedded generation monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 2)

The Supplier's outturn NHH energy consumption, based on initial settlement data, was 17,000,000kWh. The NHH energy consumption reconciliation charge is therefore calculated as follows:

Deleted: Please note that payments made to BM Units with a net export over the Triad, based on initial settlement data, will also be reconciled at this stage.¶ As monthly payments will not be made on the basis of a negative forecast, the HHD Reconciliation Charge for an exporting BM Unit will represent the full actual payment owed to that BM Unit (subject to adjustment by subsequent settlement runs). Interest will be calculated as described above.¶

NHHC Reconciliation Charge = $(NHHC_A - NHHC_F) \times p/kWh$ Tariff

100

= <u>(17,000,000kWh - 18,000,000kWh) x 1.20p/kWh</u>

100

= <u>-1,000,000kWh x 1.20p/kWh</u> 100 = **-£12,000**

worked example 4.xls - Initial!J104

The monthly reconciliation amount is equal to the outturn energy consumption charge for that month less the NHH monthly invoiced amount. Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

The net initial TNUoS demand reconciliation charge is therefore $\pounds 6,500$ (£18,000 + $\pounds 500$ - $\pounds 12,000$).

Final Reconciliation

Finally, let us now suppose that after all <u>final</u> Settlement data has been received (up to 14 months after the relevant dates), the outturn HH triad <u>gross</u> demand, <u>HH triad embedded export</u> and NHH energy consumption values were 9,500kW, <u>-550kW</u> and 16,500,000kWh, respectively.

Final HH <u>Gross Demand</u>	= (9,500kW - 9,000kW) x £10.00/kW
<u>Reconciliation Charge</u>	= £5,000
Final HH Embedded Export	= (-550kW500kW) x £5.00/kW
Reconciliation Charge	= -£250

Final NHH Reconciliation Charge = $(16,700,000kWh - 17,000,000kWh) \times 1.20p/kWh$ 100 = -£3,600

Consequently, the net final TNUoS demand reconciliation charge will be $\pounds 1, \underline{150} (\pounds 5,000 + -\pounds 250 + -\pounds 3,600)$.

Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

Outturn data for BM Units with a net export over the Triad will be received at this stage and final reconciliation will be carried out, as required. Interest will be calculated as described above.

Terminology:

 HHD_A = The Supplier's outturn half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

Page 53 of 63

Deleted: 000

I

 HHD_F = The Supplier's forecast half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

<u>HHEE_A = The Supplier's outturn half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

<u>HHEE_E = The Supplier's forecast half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

NHHC_A = The Supplier's outturn non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1^{st} to March 31^{st} , for the demand zone concerned.

NHHC_F = The Supplier's forecast non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1st to March 31st, for the demand zone concerned.

£/kW Tariff = The £/kW <u>Gross</u> Demand <u>or Embedded Export</u> Tariff as shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

p/kWh Tariff = The Energy Consumption Tariff shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

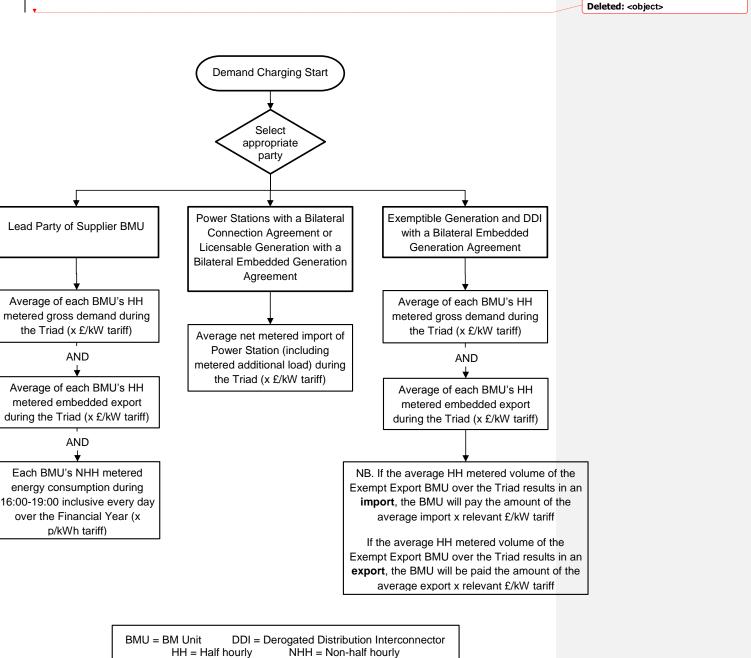
14.26 Classification of parties for charging purposes

In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precendence.

In the following diagrams, the parties liable for Transmission Network Use of System charges are outlined in red.

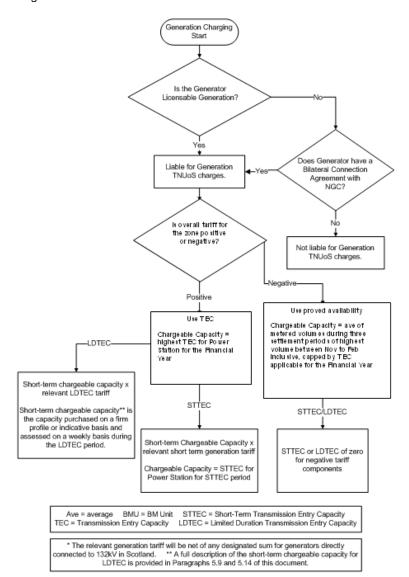
SUPPLIER		
Supplier Use of System Agreen	nent	
Supplier BMU1 BMUn		
Demand Charges	Generation Charges	
See 14.17, <mark>13</mark> and 14.17, <mark>18</mark> .	None.	Deleted: 9
		Deleted: 14
Gen Unit Gen Unit BMU1 BMUn	Station Additional Load BMU Load BMU	
Demand Charges	Generation Charges	
Demand Charges See 14.17.<u>18</u>.	See 14.18.1 i) and 14.18.3 to 14.18.9 and	Deleted: 10
· ·	J. J	Deleted: 10

Bilateral Emb	edded Generation	Agreement Ap	pendix C	7
Gen Unit BMU1	Gen Unit BMUn	Station Load BMU	Additional Load BMU	
Demand Charges	7. <u>15</u> and 14.17. <u>18</u> .	Generation Cl See 14.18.1 ii	0	
Jee 14.17. <u>14</u> , 14.17	<u>, 10</u> and 14.17, <u>10</u> .	For generator 14.18.12 and	s in positive zone 14.18.18.	es, see 14.18.3 to es, see 14.18.3 to


-{	Deleted: 10
-	Deleted: 11
Y	Deleted: 14

14.27 Transmission Network Use of System Charging Flowcharts

The following flowcharts illustrate the parties liable for Demand and Generation TNUoS charges and the calculation of those charges.


In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precedence.

Page 57 of 63

Generation Charges

14.28 Example: Determination of The Company's Forecast for Demand Charge Purposes

The Company will use the latest available settlement data for calculation of HH demand and NHH energy consumption forecasts for the Financial Year.

The Financial Year runs from 1st April to 31st March inclusive and for the purpose of these examples the year April 2005 to March 2006 is used.

Where the preceding year's settlement data is not available at the time that The Company needs to calculate its forecast, The Company will use settlement data from the corresponding period in Financial Year minus two unless indicated otherwise.

All values used with the examples are purely for illustrative purposes only.

i) Half-Hourly (HH) Metered Demand Forecast – Existing User

At the time of calculation of a HH demand forecast before the relevant Financial Year (approximately 10th March), The Company will be aware at a system level which dates will be used for the determination of Triad. However, The Company may not have settlement data at a User level if the Triad dates were to span a period that includes the latter half of February.

When undertaking forecasting before the relevant Financial Year, The Company will use the User's Triad demand for the previous year for its forecast providing it holds User settlement data for this period, thus:

F = T

where:

F = Forecast of User's HH demand at Triad for the Financial Year

T = User's HH gross_demand and embedded export_at Triad in Financial Year minus one

Where The Company determines its forecast within a Financial Year:

F = T * D/P

where:

- F = Forecast of User's HH demand at Triad for the Financial Year
- T = User's HH gross demand and embedded export at Triad in the preceding Financial Year
- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the preceding Financial Year

Where The Company determines its forecast before the relevant Financial Year and User settlement data for the Triad period is not available, The Company shall apply the formula immediately above (within year forecast) but substitute the following definitions for the values T, D, and P:

T = User's HH gross demand and embedded export at Triad in the Financial Year minus two

Page 59 of 63

- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year minus one, to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the Financial Year minus two

Example (where User settlement data is not yet available for the Triad period):

The Company calculates a HH demand forecast on the above methodology at 10th March 2005 for the period 1st April 2005 to 31st March 2006.

Gross demand:

F = 10,000 * 13,200 / 12,000

F = 11,000 kW,Deleted: hwhere:T = 10,000 kW, (period November 2003 to February 2004)Deleted: hD = 13,200 kW, (period 1st April 2004 to 15th February 2005#)Deleted: hP = 12,000 kW, (period 1st April 2003 to 15th February 2004)Deleted: h

Latest date for which settlement data is available.

Embedded export:

F = -280 * -300 / -350

<u>F = -240 kW</u>

where:

T = -280 kW (period November 2003 to February 2004)

D = -300 kW (period 1st April 2004 to 15th February 2005#)

P = -350 kW (period 1st April 2003 to 15th February 2004)

<u># Latest date for which settlement data is available.</u>

ii) Non Half-Hourly (NHH) Metered Energy Consumption Forecast – Existing User

F = E * D/P

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- E = User's summed NHH energy consumption over the hours 16:00 to 19:00 for each day in the preceding Financial Year

Page 60 of 63

- D = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the Financial Year to date
- P = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the period corresponding to D in the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th June 2005 for the period 1st April 2005 to 31st March 2006.

- F = 50,000,000 * 4,400,000 / 4,000,000
- F = 55,000,000 kWh

where:

- E = 50,000,000 kWh (period 1st April 2004 to 31st March 2005)
- D = 4,400,000 kWh (period 1st April 2005 to 15th May 2005#)
- P = 4,000,000 kWh (period 1st April 2004 to 15th May 2004)
- # Latest date for which settlement data is available

Where forecasting before the relevant Financial Year concerned, The Company would in the above example use values for E and P from Financial Year 2003/04 and D from Financial Year 2004/05.

iii) Half-Hourly (HH) Metered Demand Forecast – New User

F = M * T/W

where:

- F = Forecast of User's HH metered <u>gross</u> demand <u>and embedded export</u> at Triad for the Financial Year
 - M = User's HH average weekday period 35 demand for the last complete month for which settlement data is available
- T = Total system HH <u>gross</u> demand <u>and embedded export</u> at Triad in the preceding Financial Year
 - W = Total system HH average weekday settlement period 35 metered demand for the corresponding period to M for the preceding year

Example:

The Company calculates a HH demand forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2004 to 31st March 2006.

Gross demand:

F = 1,000 * 17,000,000 / 18,888,888

0030	, vi. 12		
F =	900 kW,		Deleted: h
wher	e:		
M =	1,000 kW _v (period 1 st July 2005 to 31 st July 2005)		Deleted: h
T =	17,000,000 kW, (period November 2004 to February 2005)		Deleted: h
W =	18,888,888 kW _e (period 1 st July 2004 to 31 st July 2004)		Deleted: h
Embedded export:			
<u>F =</u>	150 * 7,200,000 / 6,000,000		
<u>F =</u>	<u>180 kW</u>		
wher	<u>e:</u>		

- M = 150 kW (period 1st July 2005 to 31st July 2005)
- T = 7,200,000 kW (period November 2004 to February 2005)
- <u>W = 6,000,000 kW (period 1^{st} July 2004 to 31^{st} July 2004)</u>

iv) Non Half Hourly (NHH) Metered Energy Consumption Forecast – <u>New User</u>

F = J + (M * R/W)

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- J = Residual part month summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day where new User registration takes place other than on the first of a month
- M = User's summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the last complete month for which settlement data is available
- R = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period from the start of that defined under M but for the preceding year and until the end of that preceding Financial Year
- W = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period identified in M but for the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2005 to 31st March 2006.

- F = 500 + (1,000 * 20,000,000,000 / 2,000,000,000)
- F = 10,500 kWh

where:

- J = 500 kWh (period 10th June 2005 to 30th June 2005)
- M = 1,000 kWh (period 1st July 2005 to 31st July 2005)
- R = 20,000,000,000 kWh (period 1st July 2004 to 31st March 2005)
- W = 2,000,000,000 kWh (period 1st July 2004 to 31st July 2004)

CMP265 WACM3

14.15 Derivation of the Transmission Network Use of System Tariff

- 14.15.1 The Transmission Network Use of System (TNUoS) Tariff comprises two separate elements. Firstly, a locationally varying element derived from the DCLF ICRP transport model to reflect the costs of capital investment in, and the maintenance and operation of, a transmission system to provide bulk transport of power to and from different locations. Secondly, a non-locationally varying element related to the provision of residual revenue recovery. The combination of both these elements forms the TNUoS tariff.
- 14.15.2 For generation TNUoS tariffs the locational element itself is comprised of five separate components. Three wider components
 - o Wider Peak Security Component
 - Wider Year Round Not-shared component
 - Wider Year Round component

These components reflect the costs of the wider network under the different generation backgrounds set out in the Demand Security Criterion (for Peak Security component) and Economy Criterion (for both Year Round components) of the Security Standard. The two Year Round components reflect the unshared and shared costs of the wider network based on the diversity of generation plant types.

Two local components -

- o Local substation, and
- Local circuit

These components reflect the costs of the local network.

Accordingly, the wider tariff represents the combined effect of the three wider locational tariff components and the residual element; and the local tariff represents the combination of the two local locational tariff components.

14.15.3 The process for calculating the TNUoS tariff is described below.

The Transport Model

Model Inputs

14.15.4 The DCLF ICRP transport model calculates the marginal costs of investment in the transmission system which would be required as a consequence of an increase in demand or generation at each connection point or node on the transmission system, based on a study of peak demand conditions using both Peak Security and Year Round generation backgrounds on the transmission system. One measure of the investment costs is in terms of MWkm. This is the concept that ICRP uses to calculate marginal costs of investment. Hence, marginal costs are estimated initially in terms of increases or decreases in units of kilometres (km) of the transmission system for a 1 MW injection to the system.

- 14.15.5 The transport model requires a set of inputs representative of the Demand Security and Economy Criterion set out in the Security Standards. These conditions on the transmission system are represented in the Peak Security and Year Round background respectively as follows:
- Nodal generation information per node (TEC, plant type and SQSS scaling factors)
- Nodal <u>net</u> demand information
- Transmission circuits between these nodes
- The associated lengths of these routes, the proportion of which is overhead line or cable and the respective voltage level
- The cost ratio of each of 132kV overhead line, 132kV underground cable, 275kV overhead line, 275kV underground cable and 400kV underground cable to 400kV overhead line to give circuit expansion factors
- The cost ratio of each separate sub-sea AC circuit and HVDC circuit to 400kV overhead line to give circuit expansion factors
- 132kV overhead circuit capacity and single/double route construction information is used in the calculation of a generator's local charge.
- Offshore transmission cost and circuit/substation data
- 14.15.6 For a given charging year "t", the nodal generation TEC figure and generation plant types at each node will be based on the Applicable Value for year "t" in the NETS Seven Year Statement in year "t-1" plus updates to the October of year "t-1". The contracted TECs and generation plant types in the NETS Seven Year Statement include all plant belonging to generators who have a Bilateral Agreement with the TOs. For example, for 2010/11 charges, the nodal generation data is based on the forecast for 2010/11 in the 2009 NETS Seven Year Statement plus any data included in the quarterly updates in October 2009.
- 14.15.7 Scaling factors for different generation plant types are applied on their aggregated capacity for both Peak Security and Year Round backgrounds. The scaling is either Fixed or Variable (depending on the total demand level) in line with the factors used in the Security Standard, for example as shown in the table below.

Generation Plant Type	Peak Security Background	Year Round Background
Intermittent	Fixed (0%)	Fixed (70%)
Nuclear & CCS	Variable	Fixed (85%)
Interconnectors	Fixed (0%)	Fixed (100%)
Hydro	Variable	Variable
Pumped Storage	Variable	Fixed (50%)
Peaking	Variable	Fixed (0%)
Other (Conventional)	Variable	Variable

These scaling factors and generation plant types are set out in the Security Standard. These may be reviewed from time to time. The latest version will be used in the calculation of TNUoS tariffs and is published in the Statement of Use of System Charges

14.15.8 National Grid will categorise plant based on the categorisations described in the Security Standard. Peaking plant will include oil and OCGT technologies and Other (Conv.) represents all remaining conventional plant not explicitly stated elsewhere in the table In the event that a power station is made up of more than one technology type, the type of the higher Transmission Entry Capacity (TEC) would apply.

I

- 14.15.9 Nodal <u>net</u> demand data for the transport model will be based upon the GSP <u>net</u> demand that Users have forecast to occur at the time of National Grid Peak Average Cold Spell (ACS) Demand for year "t" in the April Seven Year Statement for year "t-1" plus updates to the October of year "t-1".
- 14.15.10 Subject to paragraphs 14.15.15 to 14.15.22, Transmission circuits for charging year "t" will be defined as those with existing wayleaves for the year "t" with the associated lengths based on the circuit lengths indicated for year "t" in the April NETS Seven Year Statement for year "t-1" plus updates to October of year "t-1". If certain circuit information is not explicitly contained in the NETS Seven Year Statement, The Company will use the best information available.
- 14.15.11 The circuit lengths included in the transport model are solely those, which relate to assets defined as 'Use of System' assets.
- 14.15.12 For HVDC circuits, the impedance will be calculated to provide flows based on a ratio of the capacity provided by the HVDC link relative to the capacities on all major transmission system boundaries that it parallels.
- 14.15.13 The transport model employs the use of circuit expansion factors to reflect the difference in cost between (i) AC Circuits and HVDC circuits. (ii) underground and sub-sea circuits, (iii) cabled circuits and overhead line circuits, (iv) 132kV and 275kV circuits, (v) 275kV circuits and 400kV circuits, and (vi) uses 400kV overhead line (i.e. the 400kV overhead line expansion factor is 1). As the transport model expresses cost as marginal km (irrespective of cables or overhead lines), some account needs to be made of the fact that investment in these other types of circuit (specifically HVDC and sub-sea cables of various voltages, 400kV underground cable, 275kV overhead line, 275kV underground cable, 132kV overhead line and 132kV underground cable) is more expensive than for 400kV overhead line. This is done by effectively 'expanding' these more expensive circuits by the relevant circuit expansion factor, thereby producing a larger marginal kilometre to reflect the additional cost of investing in these circuits compared to 400kV overhead line. When calculating the local circuit tariff for a generator, alternative 132kV and offshore expansion factors to those used in the remainder of the tariff calculation are applied to the generator's local circuits.
- 14.15.14 The circuit expansion factors for HVDC circuits and AC subsea cables are determined on a case by case basis using the costs which are specific to individual projects containing HVDC or AC subsea circuits.

Adjustments to Model Inputs associated with One-off Works

- 14.15.15 Where, following the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge that related to One-off Works carried out on an onshore circuit, and such One-off Works would affect the value of a TNUoS tariff paid by the User, the transport model inputs associated with the onshore circuit shall be adjusted by The Company to reflect the asset value that would have been modelled if the works had been undertaken on the basis of the original asset design rather than the One-off Works.
- 14.15.16 Subject to paragraphs 14.15.17 to 14.15.19, where, prior to the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge (or has paid a charge to the relevant TO prior to 1st April 2005 on the same principles as a

Page 3 of 63

One-Off Charge) that related to works equivalent to those described under paragraph 14.15.15, an adjustment equivalent to that under paragraph 14.15.15 shall be made to the transport model inputs as follows.

- 14.15.17 Such adjustment shall be made following a User's request, which must be received by The Company no later than the second occurrence of 31st December following the implementation of CUSC Modification CMP203.
- 14.15.18 The Company shall only make an adjustment to the transport model inputs, under paragraph 14.15.16 where the charge was paid to the relevant TO prior to 1st April 2005 where evidence has been provided by the User that satisfies The Company that works equivalent to those under paragraph 14.15.15 were funded by the User.
- 14.15.19 Where a User has sufficient reason to believe that adjustments under paragraph 14.15.18 should be made in relation to specific assets that affect a TNUoS tariff that applies to one of its sites and outlines its reasoning to The Company, The Company shall (upon the User's request and subject to the User's payment of reasonable costs incurred by The Company in doing so) use its reasonable endeavours to assist the User in obtaining any evidence The Company or a TO may have to support its position.
- 14.15.20 Where a request is made under paragraph 14.15.16 on or prior to 31st December in a charging year, and The Company is satisfied based on the accompanying evidence provided to The Company under paragraph 14.15.17 that it is a valid request, the transport model inputs shall be adjusted accordingly and taken into account in the calculation of TNUoS tariffs effective from the year commencing on the 1st April following this and otherwise from the next subsequent 1st April.
- 14.15.21 The following table provides examples of works for which adjustments to transport model inputs would typically apply:

Ref	Description of works	Adjustments
1	Undergrounding - A User requests to underground an overhead line at a greater cost.	As the cable cost will be more expensive than the overhead line (OHL) equivalent, the circuit will be modelled as an OHL.
2	Substation Siting Decision - A User requests to move the existing or a planned substation location to a place that means that the works cannot be justified as economic by the TO.	As the revised substation location may result in circuits being extended. If this is the case, the originally designed circuit lengths (as per the originally designed substation location) would be used in the transport model.
3	Circuit Routing Decision - A User asks to move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	As any circuit route changes that extend circuits are likely to result in a greater TNUoS tariff, the originally designed circuit lengths would be used in the transport model.

Ref	Description of works	Adjustments
4	Building circuits at lower voltages - A User requests lower tower height and therefore a different voltage.	As lower voltage circuits result in a higher expansion factor being used, the circuits would be modelled at the originally designed higher voltage.

14.15.22 The following table provides examples of works for which adjustments to transport model typically would not apply:

Ref	Description of works	Reasoning
1	Undergrounding - A User chooses to have a cable installed via a tunnel rather than buried.	Cable expansion factors are applied in the transport model regardless of whether a cable is tunnelled and buried, so there is no increased TNUoS cost.
2	Additional circuit route works - A User asks for screening to be provided around a new or existing circuit route.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
3	Additional circuit route works - A User requests that a planned overhead line route is built using alternative transmission tower designs.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
4	Additional substation works - A User asks for screening to be provided around a new or existing substation.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
5	Additional substation works - Changes to connection assets (e.g. HV-LV transformers and associated switchgear), metering, additional LV supplies, additional protection equipment, additional building works, etc.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
6	Diversion - A User asks to temporarily move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	The temporary circuit changes will not be incorporated into the transport model.

7	Connection Entry Capacity (CEC) before Transmission Entry Capacity (TEC). A User asks for a connection in a year prior to the relating TEC; i.e. physical connection without capacity.	No additional works are being undertaken, works are simply being completed well in advance of the generator commissioning. The One-Off Charge reflects the depreciated value of the assets prior to commissioning (and any TNUOS being charged).
8	Early asset replacement - An asset is replaced prior to the end of its expected life.	As the asset is simply replaced, no data in the transport model is expected to change.
9	Additional Engineering/ Mobilisation costs - A User requests changes to the planned works, that results in additional operational costs.	The data in the transport model is unaffected.
10	Offshore (Generator Build) - Any of the works described above or under paragraph 14.15.18.	The value of the works will not form part of the asset transfer value therefore will not be used as part of the offshore tariff calculation.
11	Offshore (Offshore Transmission Owner (OFTO) Build) - Any of the works described above or under paragraph 14.15.18.	As part of determining the TNUoS revenue associated with each asset, the value of the One-Off Works would be excluded when pro-rating the OFTO's allowed revenue against assets by asset value.

14.15.23 The Company shall publish any adjusted transport model inputs that it intends to use in the calculation of TNUoS tariffs effective from the year commencing on the following 1st April in the NETS Seven Year Statement October Update. Any further adjustments that The Company makes shall be published by The Company upon the publication of the final TNUoS tariffs for the year concerned.

Model Outputs

- 14.15.24 The transport model takes the inputs described above and carries out the following steps individually for Peak Security and Year Round backgrounds.
- 14.15.25 Depending on the background, the TEC of the relevant generation plant types are scaled by a percentage as described in 14.15.7, above. The TEC of the remaining generation plant types in each background are uniformly scaled such that total national generation (scaled sum of contracted TECs) equals total national ACS Demand.
- 14.15.26 For each background, the model then uses a DCLF ICRP transport algorithm to derive the resultant pattern of flows based on the network impedance required to meet the nodal <u>net</u> demand using the scaled nodal generation, assuming every circuit has infinite capacity. Flows on individual transmission circuits are compared for both backgrounds and the background giving rise to

Page 6 of 63

the highest flow is considered as the triggering criterion for future investment of that circuit for the purposes of the charging methodology. Therefore all circuits will be tagged as Peak Security or Year Round depending upon the background resulting in the highest flow. In the event that both backgrounds result in the same flow, the circuit will be tagged as Peak Security. Then it calculates the resultant total network Peak Security MWkm and Year Round MWkm, using the relevant circuit expansion factors as appropriate.

- 14.15.27 Using these baseline networks for Peak Security and Year Round backgrounds, the model then calculates for a given injection of 1MW of generation at each node, with a corresponding 1MW offtake (<u>net_demand</u>) distributed across all demand nodes in the network, the increase or decrease in total MWkm of the whole Peak Security and Year Round networks. The proportion of the 1MW offtake allocated to any given demand node will be based on total background nodal <u>net</u> demand in the model. For example, with a total GB <u>net_demand</u> of 60GW in the model, a node with a <u>net_demand</u> of 600MW would contain 1% of the offtake i.e. 0.01MW.
- 14.15.28 Given the assumption of a 1MW injection, for simplicity the marginal costs are expressed solely in km. This gives a Peak Security marginal km cost and a Year Round marginal km cost for generation at each node (although not that used to calculate generation tariffs which considers local and wider cost components). The Peak Security and Year Round marginal km costs for demand at each node are equal and opposite to the Peak Security and Year Round nodal marginal km respectively for generation and this is used to calculate demand tariffs. Note the marginal km costs can be positive or negative depending on the impact the injection of 1MW of generation has on the total circuit km.
- 14.15.29 Using a similar methodology as described above in 14.15.27, the local and wider marginal km costs used to determine generation TNUoS tariffs are calculated by injecting 1MW of generation against the node(s) the generator is modelled at and increasing by 1MW the offtake across the distributed reference node. It should be noted that although the wider marginal km costs are calculated for both Peak Security and Year Round backgrounds, the local marginal km costs are calculated on the Year Round background.
- 14.15.30 In addition, any circuits in the model, identified as local assets to a node will have the local circuit expansion factors which are applied in calculating that particular node's marginal km. Any remaining circuits will have the TO specific wider circuit expansion factors applied.
- 14.15.31 An example is contained in 14.21 Transport Model Example.

Calculation of local nodal marginal km

14.15.32 In order to ensure assets local to generation are charged in a cost reflective manner, a generation local circuit tariff is calculated. The nodal specific charge provides a financial signal reflecting the security and construction of the infrastructure circuits that connect the node to the transmission system.

14.15.33 Main Interconnected Transmission System (MITS) nodes are defined as:

- Grid Supply Point connections with 2 or more transmission circuits connecting at the site; or
- connections with more than 4 transmission circuits connecting at the site.

Page 7 of 63

- 14.15.34 Where a Grid Supply Point is defined as a point of supply from the National Electricity Transmission System to network operators or non-embedded customers excluding generator or interconnector load alone. For the avoidance of doubt, generator or interconnector load would be subject to the circuit component of its Local Charge. A transmission circuit is part of the National Electricity Transmission System between two or more circuit-breakers which includes transformers, cables and overhead lines but excludes busbars and generation circuits.
- 14.15.35 Generators directly connected to a MITS node will have a zero local circuit tariff.
- 14.15.36 Generators not connected to a MITS node will have a local circuit tariff derived from the local nodal marginal km for the generation node i.e. the increase or decrease in marginal km along the transmission circuits connecting it to all adjacent MITS nodes (local assets).

Calculation of zonal marginal km

- 14.15.37 Given the requirement for relatively stable cost messages through the ICRP methodology and administrative simplicity, nodes are assigned to zones. Typically, generation zones will be reviewed at the beginning of each price control period with another review only undertaken in exceptional circumstances. Any rezoning required during a price control period will be undertaken with the intention of minimal disruption to the established zonal boundaries. The full criteria for determining generation zones are outlined in paragraph 14.15.42. The number of generation zones set for 2010/11 is 20.
- 14.15.38 Demand zone boundaries have been fixed and relate to the GSP Groups used for energy market settlement purposes.
- 14.15.39 The nodal marginal km are amalgamated into zones by weighting them by their relevant generation or demand capacity.
- 14.15.40 Generators will have zonal tariffs derived from both, the wider Peak Security nodal marginal km; and the wider Year Round nodal marginal km for the generation node calculated as the increase or decrease in marginal km along all transmission circuits except those classified as local assets.

The zonal Peak Security marginal km for generation is calculated as:

$$WNMkm_{j_{PS}} = \frac{NMkm_{j_{PS}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiPS} = \sum_{j \in Gi} WNMkm_{jPS}$$

Where

Gi	=	Generation zone
j	=	Node
NMkm _{PS}	=	Peak Security Wider nodal marginal km from transport model
WNMkm _{PS}	=	Peak Security Weighted nodal marginal km
ZMkm _{PS}	=	Peak Security Zonal Marginal km

Gen = Nodal Generation (scaled by the appropriate Peak Security Scaling factor) from the transport model Similarly, the zonal Year Round marginal km for generation is calculated as

$$WNMkm_{j_{YR}} = \frac{NMkm_{j_{YR}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiYR} = \sum_{j \in Gi} WNMkm_{jYR}$$

Where

NMkm _{YR}	=	Year Round Wider nodal marginal km from transport model
WNMkm _{YR}	=	Year Round Weighted nodal marginal km
ZMkm _{YR}	=	Year Round Zonal Marginal km
Gen	=	Nodal Generation (scaled by the appropriate Year Round Scaling
		factor) from the transport model

14.15.41 The zonal Peak Security marginal km for demand zones are calculated as follows:

$$WNMkm_{j_{PS}} = \frac{-1 * NMkm_{j_{PS}} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{Di_{PS}} = \sum_{j \in Di} WNMkm_{j_{PS}}$$

Where:

I

Di	=	Demand zone
Dem	=	Nodal <u>Net</u> Demand from transport model

Similarly, the zonal Year Round marginal km for demand zones are calculated as follows:

$$WNMkm_{jYR} = \frac{-1 * NMkm_{jYR} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{DiYR} = \sum_{j \in Di} WNMkm_{jYR}$$

- 14.15.42 A number of criteria are used to determine the definition of the generation zones. Whilst it is the intention of The Company that zones are fixed for the duration of a price control period, it may become necessary in exceptional circumstances to review the boundaries having been set. In both circumstances, the following criteria are used to determine the zonal boundaries:
- i.) Zoning is determined using the generation background with the most MWkm of circuits. Zones should contain relevant nodes whose total wider marginal costs

from the relevant generation background (as determined from the output from the transport model, the relevant expansion constant and the locational security factor, see below) are all within $+/-\pounds1.00/kW$ (nominal prices) across the zone. This means a maximum spread of $\pounds2.00/kW$ in nominal prices across the zone.

- ii.) The nodes within zones should be geographically and electrically proximate.
- iii.) Relevant nodes are considered to be those with generation connected to them as these are the only ones, which contribute to the calculation of the zonal generation tariff.
- 14.15.43 The process behind the criteria in 14.15.42 is driven by initially applying the nodal marginal costs from the relevant generation background within the DCLF Transport model onto the appropriate areas of a substation line diagram. Generation nodes are grouped into initial zones using the +/- £1.00/kW range. All nodes within each zone are then checked to ensure the geographically and electrically proximate criteria have been met using the substation line diagram. The established zones are inspected to ensure the least number of zones are used with minimal change from previously established zonal boundaries. The zonal boundaries are finally confirmed using the demand nodal costs from the relevant generation background for guidance.
- 14.15.44 The zoning criteria are applied to a reasonable range of DCLF ICRP transport model scenarios, the inputs to which are determined by The Company to create appropriate TNUoS generation zones. The minimum number of zones, which meet the stated criteria, are used. If there is more than one feasible zonal definition of a certain number of zones, The Company determines and uses the one that best reflects the physical system boundaries.
- 14.15.45 Zones will typically not be reviewed more frequently than once every price control period to provide some stability. However, in exceptional circumstances, it may be necessary to review zoning more frequently to maintain appropriate, cost reflective, locational cost signals. For example, if a new generator connecting to the transmission system would cause the creation of a new generation zone for that generator alone, it may not be appropriate from a cost reflective perspective to wait until the next price control period to undertake this rezoning. If any such rezoning is required, it will be undertaken against a background of minimal change to existing generation zones and in line with the notification process set out in the Transmission Licence and CUSC.

Accounting for Sharing of Transmission by Generators

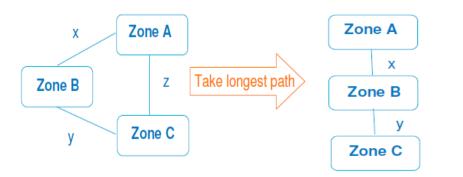
- 14.15.46 A proportion of the marginal km costs for generation are shared incremental km reflecting the ability of differing generation technologies to share transmission investment. This is reflected in charges through the splitting of Year Round marginal km costs for generation into Year Round Shared marginal km costs and Year Round Not-Shared marginal km which are then used in the calculation of the wider £/kW generation tariff.
- 14.15.47 The sharing between different generation types is accounted for by (a) using transmission network boundaries between generation zones set by connectivity between generation charging zones, and (b) the proportion of Low Carbon and Carbon generation behind these boundaries.

Page 10 of 63

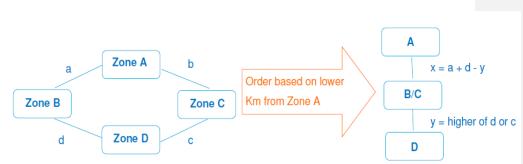
14.15.48 The zonal incremental km for each generation charging zone is split into each boundary component by considering the difference between it and the neighbouring generation charging zone using the formula below;

$$BIkm_{ab} = ZIkm_b - ZIkm_a$$

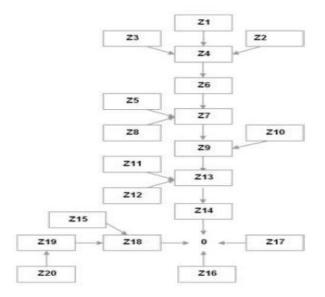
Where;


Blkm_{ab} = boundary incremental km between generation charging zone A and generation charging zone B Zlkm = generation charging zone incremental km.

14.15.49 The table below shows the categorisation of Low Carbon and Carbon generation. This table will be updated by National Grid in the Statement of Use of System Charges as new generation technologies are developed.


Carbon	Low Carbon
Coal	Wind
Gas	Hydro (excl. Pumped Storage)
Biomass	Nuclear
Oil	Marine
Pumped Storage	Tidal
Interconnectors	

Determination of Connectivity


- 14.15.50 Connectivity is based on the existence of electrical circuits between TNUoS generation charging zones that are represented in the Transport model. Where such paths exist, generation charging zones will be effectively linked via an incremental km transmission boundary length. These paths will be simplified through in the case of;
 - Parallel paths the longest path will be taken. An illustrative example is shown below with x, y and z representing the incremental km between zones.

 Parallel zones – parallel zones will be amalgamated with the incremental km immediately beyond the amalgamated zones being the greater of those existing prior to the amalgamation. An illustrative example is shown below with a, b, c, and d representing the the initial incremental km between zones, and x and y representing the final incremental km following zonal amalgamation.

14.15.51 An illustrative Connectivity diagram is shown below:

The arrows connecting generation charging zones and amalgamated generation charging zones represent the incremental km transmission boundary lengths towards the notional centre of the system. Generation located in charging zones behind arrows is considered to share based on the ratio of Low Carbon to Carbon cumulative generation TEC within those zones.

14.15.52 The Company will review Connectivity at the beginning of a new price control period, and under exceptional circumstances such as major system reconfigurations or generation rezoning. If any such reassessment is required, it will be undertaken against a background of minimal change to existing Connectivity and in line with the notification process set out in the Transmission Licence and the CUSC.

Calculation of Boundary Sharing Factors

14.15.53 Boundary sharing factors (BSFs) are derived from the comparison of the cumulative proportion of Low Carbon and Carbon generation TEC behind each of the incremental MWkm boundary lengths using the following formulae –

Page 12 of 63

If $\frac{LC}{LC+C} \le 0.5$, then all Year round marginal km costs are shared i.e. the BSF is 100%.

Where:

LC = Cumulative Low Carbon generation TEC behind the relevant transmission boundary C = Cumulative Carbon generation TEC behind the relevant transmission

C = Cumulative Carbon generation TEC behind the relevant transmission boundary

If
$$\frac{LC}{LC+C}$$
 > 0.5 then the BSF is calculated using the following formula: -

$$BSF = \left(-2 \times \left(\frac{LC}{LC+C}\right)\right) + 2$$

Where:

BSF = boundary sharing factor.

14.15.54 The shared incremental km for each boundary are derived from the multiplication of the boundary sharing factor by the incremental km for that boundary;

$$SBIkm_{ab} = BIIkm_{ab} \ x \ BSF_{ab}$$

Where;

 $SBIkm_{ab}$ = shared boundary incremental km between generation charging zone A and generation charging zone B

 BSF_{ab} = generation charging zone boundary sharing factor.

14.15.55 The shared incremental km is discounted from the incremental km for that boundary to establish the not-shared boundary incremental km. The not-shared boundary incremental km reflects the cost of transmission investment on that boundary accounting for the sharing of power stations behind that boundary.

$$NSBIkm_{ab} = BIkm_{ab} - SBIkm_{ab}$$

Where;

 $NSBIkm_{ab}$ = not shared boundary incremental km between generation charging zone A and generation charging zone B.

14.15.56 The shared incremental km for a generation charging zone is the sum of the appropriate shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRS}$$

Where;

 $ZMkm_{nYRS}$ = Year Round Shared Zonal Marginal km for generation charging zone n.

Page 13 of 63

14.15.57 The not-shared incremental km for a generation charging zone is the sum of the appropriate not-shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRNS}$$

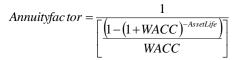
Where;

ZMkm_{nYRNS} = Year Round Not-Shared Zonal Marginal km for generation zone n.

Deriving the Final Local £/kW Tariff and the Wider £/kW Tariff

14.15.58 The zonal marginal km (ZMkm_{Gi}) are converted into costs and hence a tariff by multiplying by the Expansion Constant and the Locational Security Factor (see below). The nodal local marginal km (NLMkm^L) are converted into costs and hence a tariff by multiplying by the Expansion Constant and a Local Security Factor.

The Expansion Constant


- 14.15.59 The expansion constant, expressed in £/MWkm, represents the annuitised value of the transmission infrastructure capital investment required to transport 1 MW over 1 km. Its magnitude is derived from the projected cost of 400kV overhead line, including an estimate of the cost of capital, to provide for future system expansion.
- 14.15.60 In the methodology, the expansion constant is used to convert the marginal km figure derived from the transport model into a £/MW signal. The tariff model performs this calculation, in accordance with 14.15.95 14.15.117, and also then calculates the residual element of the overall tariff (to ensure correct revenue recovery in accordance with the price control), in accordance with 14.15.133.
- 14.15.61 The transmission infrastructure capital costs used in the calculation of the expansion constant are provided via an externally audited process. They also include information provided from all onshore Transmission Owners (TOs). They are based on historic costs and tender valuations adjusted by a number of indices (e.g. global price of steel, labour, inflation, etc.). The objective of these adjustments is to make the costs reflect current prices, making the tariffs as forward looking as possible. This cost data represents The Company's best view; however it is considered as commercially sensitive and is therefore treated as confidential. The calculation of the expansion constant also relies on a significant amount of transmission asset information, much of which is provided in the Seven Year Statement.
- 14.15.62 For each circuit type and voltage used onshore, an individual calculation is carried out to establish a £/MWkm figure, normalised against the 400KV overhead line (OHL) figure, these provide the basis of the onshore circuit expansion factors discussed in 14.15.70 14.15.77. In order to simplify the calculation a unity power factor is assumed, converting £/MVAkm to £/MWkm. This reflects that the fact tariffs and charges are based on real power.
- 14.15.63 The table below shows the first stage in calculating the onshore expansion constant. A range of overhead line types is used and the types are weighted by recent usage on the transmission system. This is a simplified calculation for 400kV OHL using example data:

Page 14 of 63

400kV	' OHL e	xpansion o	constant calcu	llation	
MW	Туре	£(000)/k	Circuit km*	£/MWkm	Weight
А	В	С	D	E = C/A	F=E*D
6500	La	700	500	107.69	53846
6500	Lb	780	0	120.00	0
3500	La/b	600	200	171.43	34286
3600	Lc	400	300	111.11	33333
4000	Lc/a	450	1100	112.50	123750
5000	Ld	500	300	100.00	30000
5400	Ld/a	550	100	101.85	10185
Sum			2500 (G)		285400 (H)
				Weighted Average (J= H/G):	114.160 (J)

*These are circuit km of types that have been provided in the previous 10 years. If no information is available for a particular category the best forecast will be used.

14.15.64 The weighted average £/MWkm (J in the example above) is then converted in to an annual figure by multiplying it by an annuity factor. The formula used to calculate of the annuity factor is shown below:

- 14.15.65 The Weighted Average Cost of Capital (WACC) and asset life are established at the start of a price control and remain constant throughout a price control period. The WACC used in the calculation of the annuity factor is the The Company regulated rate of return, this assumes that it will be reasonably representative of all licensees. The asset life used in the calculation is 50 years; the appropriateness of this is reviewed when the annuity factor is recalculated at the start of a price control period. These assumptions provide a current annuity factor of 0.066.
- 14.15.66 The final step in calculating the expansion constant is to add a share of the annual transmission overheads (maintenance, rates etc). This is done by multiplying the average weighted cost (J) by an 'overhead factor'. The 'overhead factor' represents the total business overhead in any year divided by the total Gross Asset Value (GAV) of the transmission system. This is recalculated at the start of each price control period. The overhead factor used in the calculation of the expansion constant for 2009/10 is 1.8%. The overhead and annuitised costs are then added to give the expansion constant.
- 14.15.67 Using the previous example, the final steps in establishing the expansion constant are demonstrated below:

400kV OHL expansion constant calculation	Ave £/MWkm
OHL	114.160

Page 15 of 63

Annuitised	7.535
Overhead	2.055
Final	9.589

- 14.15.68 This process is carried out for each voltage onshore, along with other adjustments to take account of upgrade options, see 14.15.73, and normalised against the 400KV overhead line cost (the expansion constant) the resulting ratios provide the basis of the onshore expansion factors. The process used to derive circuit expansion factors for Offshore Transmission Owner networks is described in 14.15.78.
- 14.15.69 This process of calculating the incremental cost of capacity for a 400kV OHL, along with calculating the onshore expansion factors is carried out for the first year of the price control and is increased by inflation, RPI, (May–October average increase, as defined in The Company's Transmission Licence) each subsequent year of the price control period. The expansion constant for 2010/11 is 10.633.

Onshore Wider Circuit Expansion Factors

- 14.15.70 Base onshore expansion factors are calculated by deriving individual expansion constants for the various types of circuit, following the same principles used to calculate the 400kV overhead line expansion constant. The factors are then derived by dividing the calculated expansion constant by the 400kV overhead line expansion constant. The factors will be fixed for each respective price control period.
- 14.15.71 In calculating the onshore underground cable factors, the forecast costs are weighted equally between urban and rural installation, and direct burial has been assumed. The operating costs for cable are aligned with those for overhead line. An allowance for overhead costs has also been included in the calculations.
- 14.15.72 The 132kV onshore circuit expansion factor is applied on a TO basis. This is to reflect the regional variation of plans to rebuild circuits at a lower voltage capacity to 400kV. The 132kV cable and line factor is calculated on the proportion of 132kV circuits likely to be uprated to 400kV. The 132kV expansion factor is then calculated by weighting the 132kV cable and overhead line costs with the relevant 400kV expansion factor, based on the proportion of 132kV circuitry to be uprated to 400kV. For example, in the TO areas of National Grid and Scottish Power where there are no plans to uprate any 132kV circuits, the full cable and overhead line costs of 132kV circuit are reflected in the 132kV expansion factor calculation.
- 14.15.73 The 275kV onshore circuit expansion factor is applied on a GB basis and includes a weighting of 83% of the relevant 400kV cable and overhead line factor. This is to reflect the averaged proportion of circuits across all three Transmission Licensees which are likely to be uprated from 275kV to 400kV across GB within a price control period.
- 14.15.74 The 400kV onshore circuit expansion factor is applied on a GB basis and reflects the full costs for 400kV cable and overhead lines.
- 14.15.75 AC sub-sea cable and HVDC circuit expansion factors are calculated on a case by case basis using actual project costs (Specific Circuit Expansion Factors).

Page 16 of 63

- 14.15.76 For HVDC circuit expansion factors both the cost of the converters and the cost of the cable are included in the calculation.
- 14.15.77 The TO specific onshore circuit expansion factors calculated for 2008/9 (and rounded to 2 decimal places) are:

Scottish Hydro Region

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	27.79
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.24	

Scottish Power & National Grid Regions

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	30.22
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.80	

Onshore Local Circuit Expansion Factors

- 14.15.78 The local onshore circuit tariff is calculated using local onshore circuit expansion factors. These expansion factors are calculated using the same methodology as the onshore wider expansion factor but without taking into account the proportion of circuit kms that are planned to be uprated.
- 14.15.79 In addition, the 132kV onshore overhead line circuit expansion factor is sub divided into four more specific expansion factors. This is based upon maximum (winter) circuit continuous rating (MVA) and route construction whether double or single circuit.

400kV underground cable factor:	22.39
275kV underground cable factor:	22.39
132kV underground cable factor:	30.22
400kV line factor:	1.00
275kV line factor:	1.14
132kV line factor (single; <200MVA):	10.00
132kV line factor (double; <200MVA):	8.32
132kV line factor (single; >=200MVA):	7.13
132kV line factor (double; >=200MVA):	4.42

Offshore Circuit Expansion Factors

14.15.80 Offshore expansion factors (£/MWkm) are derived from information provided by Offshore Transmission Owners for each offshore circuit. Offshore expansion factors are Offshore Transmission Owner and circuit specific. Each Offshore Transmission Owner will periodically provide, via the STC, information to derive an annual circuit revenue requirement. The offshore circuit revenue shall include revenues associated with the Offshore Transmission Owner's reactive compensation equipment, harmonic filtering equipment, asset spares and HVDC converter stations.

14.15.81 In the first year of connection, the offshore circuit expansion factor would be calculated as follows:

$\frac{CRevOFTO1}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$

Where:

CRevOFTO1	=	The offshore circuit revenue in £ for Year 1
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

14.15.82 In all subsequent years, the offshore circuit expansion factor would be calculated as follows:

$$\frac{AvCRevOFTO}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$$

Where:

AvCRevOFTO	=	The annual offshore circuit revenue averaged over the
		remaining years of the onshore National Electricity
		Transmission System Operator (NETSO) price control
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

- 14.15.83 For the avoidance of doubt, the offshore circuit revenue values, *CRevOFTO1* and *AvCRevOFTO* shall be determined using asset values after the removal of any One-Off Charges.
- 14.15.84 Prevailing OFFSHORE TRANSMISSION OWNER specific expansion factors will be published in this statement. These shall be recalculated at the start of each price control period using the formula in paragraph 14.15.71. For each subsequent year within the price control period, these expansion factors will be adjusted by the annual Offshore Transmission Owner specific indexation factor, *OFTOInd*, calculated as follows;

$$OFTOInd_{t,f} = \frac{OFTO \operatorname{Rev}Ind_{t,f}}{RPI_{t}}$$

where:

OFTOInd _{t,f}	=	the indexation factor for Offshore Transmission Owner <i>f</i> in respect of charging year <i>t</i> ;
OFTORevInd _t f	=	the indexation rate applied to the revenue of Offshore Transmission Owner f under the terms of its Transmission Licence in respect of charging year t ; and
<i>RPI</i> _t	=	the indexation rate applied to the expansion constant in respect of charging year <i>t</i> .

Offshore Interlinks

14.15.85 The revenue associated with an Offshore Interlink shall be divided entirely between those generators benefiting from the installation of that Offshore Interlink. Each of these Users will be responsible for their charge from their charging date, meaning that a proportion of the Offshore Interlink revenue may be socialised prior to all relevant Users being chargeable. The proportion associated with each User will be based on the Measure of Capacity to the MITS using the Offshore Interlink(s) in the event of a single circuit fault on the User's circuit from their offshore substation towards the shore, compared to the Measure of Capacity of the other Users.

Where:

An *Offshore Interlink* is a circuit which connects two offshore substations that are connected to a Single Common Substation. It is held in open standby until there is a transmission fault that limits the User's ability to export power to the Single Common Substation. In the Transport Model, they are to be modelled in open standby.

A Single Common Substation is a substation where:

- i. each substation that is connected by an Offshore Interlink is connected via at least one circuit without passing through another substation; and
- ii. all routes connecting each substation that is connected by an Offshore Interlink to the MITS pass through.

The Measure of Capacity to the MITS for each Offshore substation is the result of the following formula or zero whichever is larger. For the situation with only one interlink, all terms relating to C should be set to zero:

```
For Substation A:
min { Cap_{IAB}, ILF_A \times TEC_A - RCap_A, Cap_B - ILF_B \times TEC_B + min (Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation B:

min { ILF_B \times TEC_B - RCap_B, min (Cap_{IAB}, Cap_A - ILF_A \times TEC_A)

+ min ( Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation C:

min { Cap_{IBC}, ILF_{C} \times TEC_{C} - RCap_{C}, Cap_{B} - ILF_{B} \times TEC_{B} + min (Cap_{IAB}, Cap_{A} - ILF_{A} \times TEC_{A}) }

and
```

Cap _{IAB} = B	total capacity of the Offshore Interlink between substations A and
Cap _{IBC} = C	total capacity of the Offshore Interlink between substations B and
Cap _X =	total capacity of the circuit between offshore substation X and the Single Common Substation, where X is A, B or C.
RCap _x =	remaining capacity of the circuit between offshore substation X and the Single Common Substation in the event of a single cable fault, where X is A, B or C.
TEC _x =	the sum of the TEC for the Users connected, or contracted to connect, to offshore substation X, where X is A, B or C, where the value of TEC will be the maximum TEC that each User has held since the initial charging date, or is contracted to hold if prior to the initial charging date.

- ILF_x = Offshore Interlink Load Factor, where X is A, B or C. The Offshore Interlink Load Factor (ILF) is based on the Annual Load Factor (ALF). Until all the Users connected to a Single Common Substation have a station specific Annual Load Factor based on five years of data, the generic ALF for the fuel type will be used as the ILF for all stations. When all Users have a station specific ALF, the value of the ALF in the first such year will be used as the ILF in the calculation for all subsequent charging years.
- 14.15.86 The apportionment of revenue associated with Offshore Interlink(s) in 14.15.85 applies in situations where the Offshore Interlink was included in the design phase, or if one or more User(s) has already financially committed or been commissioned then only where that User(s) agrees to the Offshore Interlink.
- 14.15.87 Alternatively to the formula specified in 14.15.85 the proportion of the OFTO revenue associated with the Offshore Interlink allocated to each generator benefiting from the installation of an Offshore Interlink may be agreed between these Users. In this event:
- a. All relevant Users shall notify The Company of its respective proportions three months prior the OTSDUW asset transfer in the case of a generator build, or the charging date of the first generator, in the case of an OFTO build.
- b. All relevant Users may agree to vary the proportions notified under (a) by each writing to The Company three months prior to the charges being set for a given charging year.
- c. Once a set of proportions of the OFTO revenue associated with the Offshore Interlink has been provided to The Company, these will apply for the next and future charging years unless and until The Company is informed otherwise in accordance with (b) by all of the relevant Users.
- d. If all relevant Users are unable to reach agreement on the proportioning of the OFTO revenue associated with the Offshore Interlink they can raise a dispute. Any dispute between two or more Users as to the proportioning of such revenue shall be managed in accordance with CUSC Section 7 Paragraph 7.4.1 but the reference to the 'Electricity Arbitration Association' shall instead be to the 'Authority' and the Authority's determination of such dispute shall, without prejudice to apply for judicial review of any determination, be final and binding on the Users.

The Locational Onshore Security Factor

14.15.88 The locational onshore security factor is derived by running a secure DCLF ICRP transport study based on the same market background as used for Zoning in the DCLF ICRP transport model. This calculates the nodal marginal costs where peak <u>net</u> demand can be met despite the Security and Quality of Supply Standard contingencies (simulating single and double circuit faults) on the network. Essentially the calculation of secured nodal marginal costs is identical to the process outlined above except that the secure DCLF study additionally calculates a nodal marginal cost taking into account the requirement to be secure against a set of worse case contingencies in terms of maximum flow for each circuit.

- 14.15.89 The secured nodal cost differential is compared to that produced by the DCLF ICRP transport model and the resultant ratio of the two determines the locational security factor using the Least Squares Fit method. Further information may be obtained from the charging website¹.
- 14.15.90 The locational onshore security factor derived for 2010/11 is 1.8 and is based on an average from a number of studies conducted by The Company to account for future network developments. The security factor is reviewed for each price control period and fixed for the duration.

Local Security Factors

- 14.15.91 Local onshore security factors are generator specific and are applied to a generator's local onshore circuits. If the loss of any one of the local circuits prevents the export of power from the generator to the MITS then a local security factor of 1.0 is applied. For generation with circuit redundancy, a local security factor is applied that is equal to the locational security factor, currently 1.8.
- 14.15.92 Where a Transmission Owner has designed a local onshore circuit (or otherwise that circuit once built) to a capacity lower than the aggregated TEC of the generation using that circuit, then the local security factor of 1.0 will be multiplied by a Counter Correlation Factor (CCF) as described in the formula below;

$$CCF = \frac{D_{\min} + T_{cap}}{G_{cap}}$$

Where; D_{min} = minimum annual net demand (MW) supplied via that circuit in the absence of that generation using the circuit

 T_{cap} = transmission capacity built (MVA)

 G_{cap} = aggregated TEC of generation using that circuit

CCF cannot be greater than 1.0.

14.15.93 A specific offshore local security factor (LocalSF) will be calculated for each offshore connection using the following methodology:

$$LocalSF = \frac{NetworkExportCapacity}{\sum_{k} Gen_{k}}$$

Where:

 NetworkExportCapacity =
 the total export capacity of the network disregarding any Offshore Interlinks

 k
 =
 the generation connected to the offshore network

1 http://www.nationalgrid.com/uk/Electricity/Charges/

Page 21 of 63

- 14.15.94 The offshore security factor for single circuits with a single cable will be 1.0 and for multiple circuit connections will be capped at the locational onshore security factor, derived as 1.8 for 2010/11.
- 14.15.95 The offshore local security factor for configurations with one or more Offshore Interlinks is updated so that the offshore circuit tariff will include the proportion of revenue associated with the Offshore Interlink(s). The specific offshore local security factor for configurations involving an Offshore Interlink, which may be greater than 1.8, will be calculated for each offshore connection using the following methodology:

 $LocalSF = \frac{IRevOFTO \times NetworkExportCapacity}{CRevOFTO \times \sum_{k}Gen_{k}} + LocalSF_{initial}$

Where:

The appropriate proportion of the Offshore Interlink(s) revenue in £
associated with the offshore connection calculated in 14.15.85
The offshore circuit revenue in £ associated with the circuit(s) from the
offshore substation to the Single Common Substation.
Initial Local Security Factor calculated in 14.15.80 and 14.15.81
And other definitions as in 14.15.80.

Initial Transport Tariff

14.15.96 First an Initial Transport Tariff (ITT) must be calculated for both Peak Security and Year Round backgrounds. For Generation, the Peak Security zonal marginal km (ZMkm_{PS}), Year Round Not-Shared zonal marginal km (ZMkm_{YRNS}) and Year Round Shared zonal marginal km (ZMkm_{YRS}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT, Year Round Not-Shared ITT and Year Round Shared ITT respectively:

 $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$

Where ZMkm _{GiPS} ZMkm _{GiYRNS} charging zone	= = e	Peak Security Zonal Marginal km for each generation zone Year Round Not-Shared Zonal Marginal km for each generation
ZMkm _{GiYRS}	=	Year Round Shared Zonal Marginal km for each generation
charging zon	е	
EC	=	Expansion Constant
LSF	=	Locational Security Factor
	=	Peak Security Initial Transport Tariff (£/MW) for each generation
zone		
ITT _{GiYRNS}	=	Year Round Not-Shared Initial Transport Tariff (£/MW) for each
generation ch	narging	zone
ITT _{GiYRS}	=	Year Round Shared Initial Transport Tariff (£/MW) for each
generation ch	narging	zone.

- CUSC v1.12
 - 14.15.97 Similarly, for demand the Peak Security zonal marginal km (ZMkm_{PS}) and Year Round zonal marginal km (ZMkm_{YR}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT and Year Round ITT respectively:

		$ZMkm_{DiPS} \times EC \times LSF = ITT_{DiPS}$	
		$ZMkm_{DiYR} \times EC \times LSF = ITT_{DiYR}$	
Where ZMkm _{DiF} ZMkm _{DiY}	0	Peak Security Zonal Marginal km for each demand zone Year Round Zonal Marginal km for each demand zone	
ITT _{DiPS} ITT _{DiYR}	= =	Peak Security Initial Transport Tariff (\pounds /MW) for each demand one Year Round Initial Transport Tariff (\pounds /MW) for each demand zone	
14.15.98 The next step is to multiply these ITTs by the expected metered triad gross <u>GSP group</u> demand and generation capacity to gain an estimate of the initial revenue recovery for both Peak Security and Year Round backgrounds. The metered triad gross <u>GSP group</u> demand and generation capacity are based on <u>analysis of</u> forecasts provided by Users and are confidential.			
a.		ad gross GSP group demand is net demand for all GSP groups less exports for all GSP groups .	
Where			

ITRR _G =	Initial Transport Revenue Recovery for generation		
G _{Gi} =	Total forecast Generation for each generation zone (based		
	on analysis of confidential User forecasts)		
ITRR _D =	Initial Transport Revenue Recovery for gross GSP group		
	demand		
D _{Di} =	Total forecast Metered Triad gross GSP group Demand for		
each			
	demand zone (based on analysis of confidential User		
	forecasts).		

In addition, the initial tariffs for generation are also multiplied by the **Peak Security flag** when calculating the initial revenue recovery component for the Peak Security background. Similarly, when calculating the initial revenue recovery for the Shared component of the Year Round background, the initial tariffs are multiplied by the **Annual Load Factor** (see below).

Peak Security (PS) Flag

14.15.99 The revenue from a specific generator due to the Peak Security locational tariff needs to be multiplied by the appropriate Peak Security (PS) flag. The PS flags indicate the extent to which a generation plant type contributes to the need for transmission network investment at peak demand conditions. The PS

Page 23 of 63

flag is derived from the contribution of differing generation sources to the demand security criterion as described in the Security Standard. In the event of a significant change to the demand security assumptions in the Security Standard, National Grid will review the use of the PS flag.

Generation Plant Type	PS flag
Intermittent	0
Other	1

Annual Load Factor (ALF)

- 14.15.100 The ALF for each individual Power Station is calculated using the relevant TEC (MW) and corresponding output data. Where output data is not available for a Power Station, including for new Power Stations and emerging Power Station technologies, generic data for the appropriate generation plant type will be used.
- 14.15.101 For a given charging year "t" the Power Station ALF will be based on information from the previous five charging years, calculated for each charging year as set out below.

$$ALF = \frac{\sum_{p=1}^{17520} GMWh_p}{\sum_{p=1}^{17520} TECp \times 0.5}$$

Where:

 $\mathsf{GMWh}_{\mathsf{p}}$ is the maximum of FPN or actual metered output in a Settlement Period related to the power station TEC (MW); and

 TEC_{p} is the TEC (MW) applicable to that Power Station for that Settlement Period including any STTEC and LDTEC, accounting for any trading of TEC.

- 14.15.102 The appropriate output (FPN or actual metered) figure is derived from **BM Unit** data available to National Grid and relates to the total TEC of the Power Station.
- 14.15.103 Once all five charging year ALFs have been calculated for the individual Power Station they are compared, and the highest and lowest figures are discarded. The final ALF, to be used for transmission charging purposes, is calculated as the average of the remaining three ALFs.
- 14.15.104 In the event that only four charging years of complete output (FPN or actual metered) data are available for an individual Power Station then the higher three charging years ALF would be used in the calculation of the final ALF. In the event that only three charging years of complete output (FPN or actual metered) data are available then these three charging years would be used.
- 14.15.105 Due to the aggregation of output (FPN or actual metered) data for dispersed generation (e.g. cascade hydro schemes), where a single generator BMU consists of geographically separated power stations, the ALF would be calculated based on the total output of the BMU and the overall TEC of those Power Stations.

Page 24 of 63

1

- 14.15.106 In the event that there are not three full charging years of an individual power station's output available, missing output (FPN or actual metered) data would be replaced by generic data for that generation plant type to ensure three charging years of information are available for the Power Station. The derivation of the generic data is described in paragraphs 14.15.111-14.15.114.
- 14.15.107 Users will receive draft ALFs before 25th December of the charging year (t-1) for the charging year (t) and will have a period of 15 working days from date of publishing to notify the Company of any errors. Failure to agree changes relating to errors will be treated as a charging dispute under the CUSC.
- 14.15.108 The ALFs used in the setting of final tariffs will be published in the annual Statement of Use of System Charges. Changes to ALFs after this publication will not result in changes to published tariffs (e.g. following dispute resolution).

Derivation of Generic ALFs

14.15.109 The generic ALF is derived from the average annual output of the ten most recently commissioned GB generation of a particular generation plant type that have at least five charging years' data, using an identical methodology to that used for the Power Station specific calculation described above. Where less than ten GB generators of a particular generation plant type exist, then data from all existing generators of that particular generation plant type will be used. Example generation plant type categories are listed below;

Fuel Type
Biomass
Coal
Gas
Hydro
Nuclear (by reactor
type)
Oil & OCGTs
Pumped Storage
Onshore Wind
Offshore Wind
CHP

- 14.15.110 The Company will keep these categories under review and update as necessary. Where within a category there is a significant locational difference consideration will be given to zonal generic factors. The factors used will be published in the Statement of Use of System Charges and will be reviewed annually.
- 14.15.111 If a User can demonstrate that the generation plant type of a Power Station has changed, consideration will be given to the use of relevant generic ALF information in the calculation of their charges until sufficient specific data is available.
- 14.15.112 For new and emerging generation plant types, where insufficient data is available to allow a generic ALF to be developed, The Company will use the best information available e.g. from manufactuers and data from use of similar technologies outside GB. The factor will be agreed with the relevant Generator. In the event of a disagreement the standard provisions for dispute in the CUSC will apply.

TNUoS Embedded Export Tariff Embedded exports are exports measured on a half-hourly basis by 14.15.113 Metering Systems, in accordance with the BSC, that are not subject to generation TNUoS. The embedded export tariff will be applied to the metered Triad volumes 14.15.114 of Embedded Exports for each demand zone as follows: $EET_{Di} = ITT_{DiPS} + ITT_{DiYR} + EX$ Where $ITT_{DiPS} =$ Peak Security Initial Transport Tariff for the demand zone; ITT_{DiYR} = Year Round Initial Transport Tariff for the demand zone, and The Avoided GSP Infrastructure Credit (AGIC) which represents EX the unit cost of infrastructure reinforcement at GSPs which is avoided as a consequence of embedded generation connected to the distribution networks served by those GSPs. It is calculated from the average annuitised cost of that infrastructure reinforcement divided by the average capacity delivered by a supergrid transformer. The Avoided GSP Infrastructure Credit is calculated at the beginning of each price control period and in the first applicable charging year following the implementation date of CMP264/265 using data submitted by onshore TSOs as part of the price control process. The data used is from the most recent [20] schemes submitted under the price control process and indexed each year by the RPI formula set out in 14.3.6 until the end of the price control. For the avoidance of doubt, this approach does not include the cost of the supergrid transformers or any other connection assets as they are paid for by the relevant DNOs thorough their connection charges. The Value of EET_{Di} will be floored at zero, so that EET_{Di} is always zero or positive. **Initial Revenue Recovery**

14.15,115 For the Peak Security background the initial tariff for generation is multiplied by the total forecast generation capacity and the PS flag to give the initial revenue recovery:

$$\sum_{Gi=1}^{n} (ITT_{GiPS} \times G_{Gi} \times F_{PS}) = ITRR_{GPS}$$

Where

ITRR _{GPS} G _{Gi}	= =	Peak Security Initial Transport Revenue Recovery for generation Total forecast Generation for each generation zone (based on <u>analysis of</u> confidential User forecasts)
F _{PS}	=	Peak Security flag appropriate to that generator type
n	=	Number of generation zones

The initial revenue recovery for <u>gross GSP group</u> demand for the Peak Security background is calculated by multiplying the initial tariff by the total forecast metered triad <u>gross GSP group</u> demand:

Page 26 of 63

$$\sum_{Di=1}^{14} (ITT_{DiPS} \times D_{Di}) = ITRR_{DPS}$$

Where:

ITRRDPS	=	Peak Security Initial Transport Revenue Recovery for gross GSP
		group_demand
D _{Di}	=	Total forecast Metered Triad gross GSP group Demand for each

- demand zone (based on <u>analysis of</u> confidential User forecasts) 14.15,116 For the Year Round background, the initial tariff for generation is multiplied by
 - the total forecast generation capacity whilst calculating Initial Recovery for Not-Shared component whereas the initial tariff for Shared component is multiplied by both, the total forecast generation capacity and the ALF to give the initial revenue recovery:

$$\sum_{G_{i=1}}^{n} (ITT_{G_{i}YRNS} \times G_{G_{i}}) = ITRR_{G_{YRNS}}$$
$$\sum_{G_{i=1}}^{n} (ITT_{G_{i}YRS} \times G_{G_{i}} \times ALF) = ITRR_{G_{YRS}}$$

Where:

ITRRGYRNS
generation=Year Round Not-Shared Initial Transport Revenue Recovery for
Year Round Shared Initial Transport Revenue Recovery for
generation
ALFALF=Annual Load Factor appropriate to that generator.

14.15,117 Similar to the Peak Security background, the initial revenue recovery for gross <u>GSP group</u> demand for the Year Round background is calculated by multiplying the initial tariff by the total forecast metered triad gross GSP group demand:

$$\sum_{Di=1}^{14} \left(ITT_{DiYR} \times D_{Di} \right) = ITRR_{DYR}$$

Where:

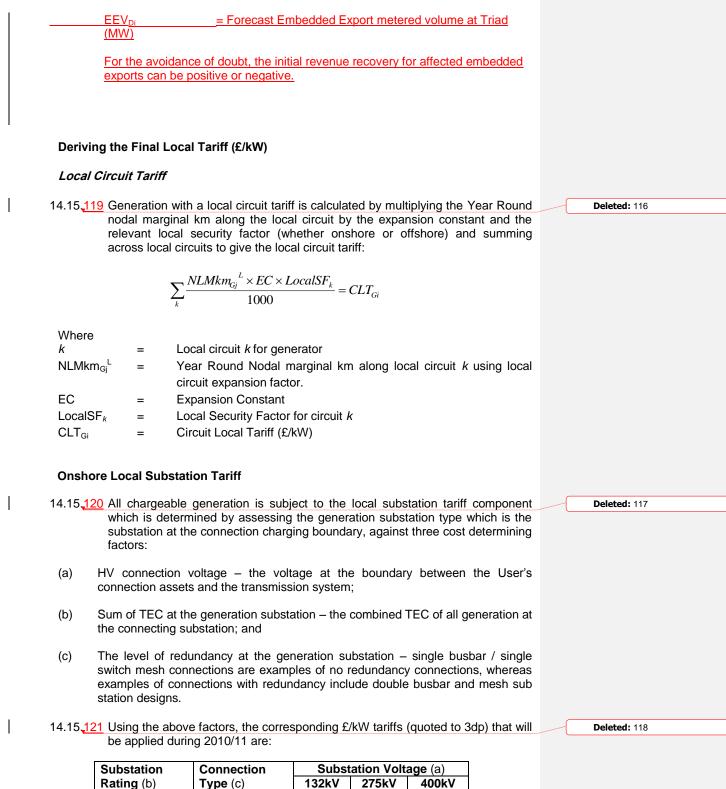
 $ITRR_{DYR}$

 Year Round Initial Transport Revenue Recovery for <u>gross GSP</u> group demand

14.15.118The initial revenue recovery for Embedded Exports is the Embedded Export Tariff multiplied by the total forecast volume of Embedded Export at triad:

$$ITRR_{EE} = \sum_{Di=1}^{14} (EET_{Di} \times EEV_{Di})$$

<u>Where</u>


ITTREE

= Initial Revenue impact for Embedded Exports

Page 27 of 63

V1.12-01 April 2016

Deleted: 114

Page 28 of 63

No redundancy

<1320MW

0.133

0.081

V1.12-01 April 2016

0.065

I

1

I

1

<1320MW	Redundancy	0.301	0.192	0.155
>=1320MW	No redundancy	n/a	0.257	0.208
>=1320MW	Redundancy	n/a	0.417	0.336

- 14.15,122 The process for calculating Local Substation Tariffs will be carried out for the first year of the price control and will subsequently be indexed by RPI for each subsequent year of the price control period.
- 14.15,123 The effective Local Tariff (£/kW) is calculated as the sum of the circuit and substation onshore and/or offshore components:

$$ELT_{Gi} = CLT_{Gi} + SLT_{Gi}$$

Where

ELT _{Gi}	=	Effective Local Tariff (£/kW)
SLT_{Gi}	=	Substation Local Tariff (£/kW)

14.15,124 Where tariffs do not change mid way through a charging year, final local tariffs will be the same as the effective tariffs: T_{Gi}

ELT _{Gi}	=	Ľ
Where		
LT _{Gi}	=	F

Final Local Tariff (£/kW) =

14.15,125 Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$LT_{Gi} = \frac{12 \times \left(ELT_{Gi} \times \sum_{Gi=1}^{21} G_{Gi} - FLL_{Gi}\right)}{b \times \sum_{Gi=1}^{21} G_{Gi}} \quad \text{and} \quad FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{21} D_{Di}}$$

Where:

b = number of months the revised tariff is applicable for

FLL = Forecast local liability incurred over the period that the original tariff is applicable for

14.15,126 For the purposes of charge setting, the total local charge revenue is calculated by:

$$LCRR_{G} = \sum_{j=Gi} LT_{Gi} * G_{j}$$
Where
$$LCRR_{G} = Local Charge Revenue Recording G_{i} = Forecast chargeable General$$

Gi

Where

very ation or Transmission Entry Capacity in kW (as applicable) for each generator (based on analysis of confidential information received from Users)

Offshore substation local tariff

14.15,127 All offshore chargeable generation is subject to an offshore substation tariff. The offshore substation tariff shall be the sum of transformer, switchgear and platform components.

Deleted: 124

Deleted: 119

Deleted: 120

Deleted: 121

Deleted: 122

Deleted: 123

Page 29 of 63

I

I

- 14.15,128 Each tariff component, expressed in £/kW, shall be the ratio of the Offshore Transmission Owner revenue (£) and rating associated with the transformers, switchgear or platform (kW) at each offshore substation. The Offshore Transmission Owner revenue of each tariff component shall include that associated with asset spares. In the case of the platform component, the relevant rating shall be the lower of the transformer or switchgear ratings. As with the offshore circuit expansion factors, the Offshore Transmission Owner revenue associated with each tariff component shall be averaged over the remaining years of the NETSO price control.
- 14.15,129 Offshore Transmission Owner revenue associated with interest during construction and project development overheads will be attributed to the relevant asset category with which it is associated. If these or any other costs included in the Offshore Transmission Owner revenue are not readily attributable to a given asset category, they will be pro-rated across the various asset categories based on their relative cost.
 - 14.15,130 For 2010/11 a discount of £0.345590/kW shall be provided to the offshore substation tariff to reflect the average cost of civil engineering for onshore substations. This will be inflated by RPI each year and reviewed every price control period.
 - 14.15,131 Offshore substation tariffs shall be reviewed at the start of every onshore price control period. For each subsequent year within the price control period, these shall be inflated in the same manner as the associated Offshore Transmission Owner Revenue.
- 14.15,132 The revenue from the offshore substation local tariff is calculated by:

$$SLTR = \sum_{\substack{All \text{ offshore}\\ \text{substatios}}} \left(SLT_k \times \sum_k Gen_k \right)$$

Where:

SLT _k	=	the offshore substation tariff for substation k
Gen _k	=	the generation connected to offshore substation k

The Residual Tariff

14.15,133 The total revenue to be recovered through TNUoS charges is determined each year with reference to the Transmission Licensees' Price Control formulas less the costs expected to be recovered through Pre-Vesting connection charges. Hence in any given year t, a target revenue figure for TNUoS charges (TRR_t) is set after adjusting for any under or over recovery for and including, the small generators discount is as follows:

$$TRR_t = R_t - PVC_t - SG_{t-1}$$

Where

- TRRt = TNUoS Revenue Recovery target for year t
 Rt = Forecast Revenue allowed under The Company's RPI-X Price Control Formula for year t (this term includes a number of adjustments, including for over/under recovery from the previous year). For further information, refer to Special Condition D2 of The Company's Transmission Licence.
 PVCt = Forecast Revenue from Pre-Vesting connection charges for year t
- SG_{t-1} = The proportion of the under/over recovery included within R_t which relates to the operation of statement C13 of the The Company Transmission Licence. Should the operation of statement C13 result in an under

Page 30 of 63

Deleted: 125

Deleted: 126

Deleted: 127

Deleted: 128

Deleted: 129

recovery in year t – 1, the SG figure will be positive and vice versa for an over recovery.

14.15,134 In normal circumstances, the revenue forecast to be recovered from the initial transport tariffs will not equate to the total revenue target. This is due to a number of factors. For example, the transport model assumes, for simplicity, smooth incremental transmission investments can be made. In reality, transmission investment can only be made in discrete 'lumps'. The transmission system has been planned and developed over a long period of time. Forecasts and assessments used for planning purposes will not have been borne out precisely by events and therefore some distinction between an optimal system for one year and the actual system can be expected.

14.15,135 As a result of the factors above, in order to ensure adequate revenue recovery, a constant non-locational **Residual Tariff** for generation and demand is calculated, which includes infrastructure substation asset costs. It is added to the initial transport tariffs for both Peak Security and Year Round backgrounds so that the correct generation / demand revenue split is maintained and the total revenue recovery is achieved.

$$RT_{D} = \frac{(p \times TRR) - ITRR_{DPS} - ITRR_{DYR} - ITRR_{EE}}{\sum_{Di=1}^{14} D_{Di}}$$
$$RT_{G} = \frac{\left[(1-p) \times TRR\right] - ITRR_{GPS} - ITRR_{GYRNS} - ITRR_{GYRS} - LCRR_{G}}{\sum_{Gi=1}^{n} G_{Gi}}$$

Where

Residual Tariff (£/MW)

= Proportion of revenue to be recovered from demand

Final £/kW Tariff

RT

р

14.15,<u>136</u> The effective Transmission Network Use of System tariff (TNUoS) for generation and gross demand can now be calculated as the sum of the initial transport wider tariffs for Peak Security and Year Round backgrounds, the non-locational residual tariff and the local tariff:

$$ET_{Gi} = \frac{ITT_{GiPS} + ITT_{GiYRNS} + ITT_{GiYRS} + RT_{G}}{1000} + LT_{Gi}$$
$$= ET_{Di} = \frac{ITT_{DiPS} + ITT_{DiYR} + RT_{D}}{1000}$$

Where

ET_{Gi} = Effective Generation TNUoS Tariff expressed in £/kW (ET_{Gi} would only be applicable to a Power Station with a PS flag of 1 and ALF of 1; in all other circumstances ITT_{GiPS}, ITT_{GiYRNS} and ITT_{GiYRS} will be applied using Power Station specific data)

ET_{Di} = Effective Gross Demand TNUoS Tariff expressed in £/kW

Page 31 of 63

Deleted: 131

Deleted: 132

 $RT_D = \frac{(p \times TRR)}{(p \times TRR)}$

Deleted: 133

Ĩ

Deleted: ¶

The effective Transmission Network Use of System tariff (TNUoS) for affected embedded exports and grandfathered embedded exports can now be calculated by expressing the embedded export tariff in £/kW values:

$$ET_{EEi} = \frac{EET_{Di}}{1000}$$

Where **Where**

ET_{EEi} = Effective Embedded Export TNUoS Tariff expressed in £/kW

For the purposes of the annual Statement of Use of System Charges ET_{Gi} will be published as ITT_{GIPS} ; ITT_{GIYRS} , ITT_{GIYRS} , RT_G and LT_{Gi}

14.15,<u>137</u> Where tariffs do not change mid way through a charging year, final demand and generation tariffs will be the same as the effective tariffs.

$$FT_{Gi} = ET_{Gi}$$

$$FT_{Di} = ET_{Di}$$

$$FT_{EEAi} = ET_{EEi}$$

14.15.<u>138</u> Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$FT_{Gi} = \frac{12 \times \left(ET_{Gi} \times \sum_{Gi=1}^{20} G_{Gi} - FL_{Gi}\right)}{b \times \sum_{Gi=1}^{27} G_{Gi}}$$

$$FT_{EEi} = \frac{12 \times (ET_{EEi} \times \sum_{Di=1}^{14} EET_{Di} - FL_{Di})}{b \times \sum_{Di=1}^{14} EET_{Di}} \text{ and } FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{14} EET_{Di}}$$

Where:

1

b = number of months the revised tariff is applicable for FL = Forecast liability incurred over the period that the original tariff is applicable for

Note: The ET_{Gi} element used in the formula above will be based on an individual Power Stations PS flag and ALF for Power Station G_{Gi}, aggregated to ensure overall correct revenue recovery.

14.15.139 If the final gross demand TNUoS Tariff results in a negative number then this is collared to £0/kW with the resultant non-recovered revenue smeared over the remaining demand zones:

 $NRRT_{D} = \frac{\sum_{i=1}^{2} \left(FT_{Di} \times D_{Di} \right)}{\sum_{i=\tau+1}^{14} D_{Di}}$

If
$$FT_{Di} < 0$$
, then $i = 1$ to z

Therefore,

Page 32 of 63

V1.12-01 April 2016

Deleted: 134

Deleted: 135

|

ļ

Therefore the revised Final Tariff for the <u>gross</u> demand zones with positive Final tariffs is given by:

	For <i>i</i> = 1 to z:	$RFT_{Di} = 0$			
	For <i>i</i> =z+1 to 14:	$RFT_{Di} = FT_{Di} + NRRT_{D}$			
Where NRRT _D RFT _{Di}	 Non Recovered Reve Revised Final Tariff (£ 				
	The tariffs applicable for a Statement of Use of Syst website. Archived tariff in website.	em Charges, which is av	ailable from the Charging	Deleted: 137	
•	The zonal maps reference Charges and available on for the charging year in q TNUoS zones.	the Charging website co	ontain detailed information	Deleted: 138	
14.15 <mark>,142</mark>	New Grid Supply Points wil	l be classified into zones o	on the following basis:	Deleted: 139	
	demand zones, according t ated for energy market settl		h the Grid Supply Point is		
and, marg	generation zones, with refe where close to a bounda ginal costs arising from trans e zone, which contains the r	ary between existing zon sport model studies. The	es, with reference to the GSP will then be allocated		
	The Company has availab			Deleted: 140	
	tariff model template and c values of generation and c and data will enable the b allow sensitivity analysis o and demand to be under Team and whilst it is free distribution and commercia	demand connection points asic nodal charges to be concerning alternative de aken. The model is av of charge, it is provided u	to the NETS. The model determined and will also velopments of generation ailable from the Charging		
14.15 <mark>,144</mark>	The Company will be pleas			Deleted: 141	
	a separate study contract i of System Charges. Pleas				
	The factors which will affer include-;	ect the level of TNUoS c	harges from year to year	Deleted: 142	
		revious year), stant,	tem effect of any under/over		
	Pa	ge 33 of 63	V1.12– 01 April 2016		

- the ALF of a generator
- changes in the transmission network
- HVDC circuit impedance calculation
- changes in the pattern of generation capacity and demand.
- changes in the pattern of embedded exports

14.15,146 In accordance with Standard Licence Condition C13, generation directly connected to the NETS 132kV transmission network which would normally be subject to generation TNUoS charges but would not, on the basis of generating capacity, be liable for charges if it were connected to a licensed distribution network qualifies for a reduction in transmission charges by a designated sum, determined by the Authority. Any shortfall in recovery will result in a unit amount increase in gross demand charges to compensate for the deficit. Further information is provided in the Statement of the Use of System Charges.

Stability & Predictability of TNUoS tariffs

14.15,<u>147</u> A number of provisions are included within the methodology to promote the stability and predictability of TNUoS tariffs. These are described in 14.29.

Deleted: 143

Deleted: 144

14.16 Derivation of the Transmission Network Use of System Energy Consumption Tariff and Short Term Capacity Tariffs

- 14.16.1 For the purposes of this section, Lead Parties of Balancing Mechanism (BM) Units that are liable for Transmission Network Use of System Demand Charges are termed Suppliers.
- 14.16.2 Following calculation of the Transmission Network Use of System £/kW Gross Demand Tariff (as outlined in Chapter 2: Derivation of the TNUoS Tariff) for each GSP Group is calculated as follows:

$$p/kWh Tariff = (NHHD_F * £/kW Tariff - FL_G) *100$$

NHHC_G

Where:

 \pounds/kW Tariff = The \pounds/kW Effective <u>Gross</u> Demand Tariff (\pounds/kW), as calculated previously, for the GSP Group concerned.

 \mathbf{NHHD}_{F} = The Company's forecast of Suppliers' non-half-hourly metered Triad Demand (kW) for the GSP Group concerned. The forecast is based on historical data.

 FL_{G} = Forecast Liability incurred for the GSP Group concerned.

 $\rm NHHC_{G}$ = The Company's forecast of GSP Group non-half-hourly metered total energy consumption (kWh) for the period 16:00 hrs to 19:00hrs inclusive (i.e. settlement periods 33 to 38) inclusive over the period the tariff is applicable for the GSP Group concerned.

Short Term Transmission Entry Capacity (STTEC) Tariff

14.16.3 The Short Term Transmission Entry Capacity (STTEC) tariff for positive zones is derived from the Effective Tariff (ET_{Gi}) annual TNUoS £/kW tariffs (14.15.112). If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the STTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (i.e. over the whole financial year, not just the period that the STTEC is applicable for). STTECs will not be reconciled following a mid year charge change. The premium associated with the flexible product is associated with the analysis that 90% of the annual charge is linked to the system peak. The system peak is likely to occur in the period of November to February inclusive (120 days, irrespective of leap years). The calculation for positive generation zones is as follows:

$$\frac{FT_{Gi} \times 0.9 \times STTEC \ Period}{120} = STTEC \ tariff \ (\pounds/kW/period)$$

Where:

FT	=	Final annual TNUoS Tariff expressed in £/kW
Gi	=	Generation zone
STTEC Period	=	A period applied for in days as defined in the CUSC

Page 35 of 63

- 14.16.4 For the avoidance of doubt, the charge calculated under 14.16.3 above will represent each single period application for STTEC. Requests for multiple /STTEC periods will result in each STTEC period being calculated and invoiced separately.
- 14.16.5 The STTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.

Limited Duration Transmission Entry Capacity (LDTEC) Tariffs

14.16.6 The Limited Duration Transmission Entry Capacity (LDTEC) tariff for positive zones is derived from the equivalent zonal STTEC tariff for up to the initial 17 weeks of LDTEC in a given charging year (whether consecutive or not). For the remaining weeks of the year, the LDTEC tariff is set to collect the balance of the annual TNUoS liability over the maximum duration of LDTEC that can be granted in a single application. If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the LDTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (ie over the whole financial year, not just the period that the STTEC is applicable for). LDTECs will not be reconciled following a mid year charge change:

Initial 17 weeks (high rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.9 \times 7}{120}$$

Remaining weeks (low rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.1075 \times 7}{316 - 120} \times (1 + P)$$

where FT is the final annual TNUoS tariff expressed in £/kW; G_i is the generation TNUoS zone; and P is the premium in % above the annual equivalent TNUoS charge as determined by The Company, which shall have the value 0.

- 14.16.7 The LDTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.
- 14.16.8 The tariffs applicable for any particular year are detailed in The Company's **Statement of Use of System Charges** which is available from the **Charging website**. Historical tariffs are also available on the **Charging website**.

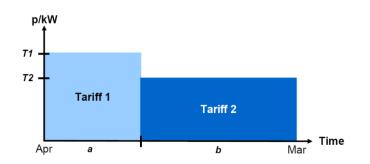
14.17 Demand Charges

Parties Liable for Demand Charges

- 14.17.1 Demand charges are subdivided into charges for gross demand, energy and embedded export. The following parties shall be liable for some or all of the categories of demand charges:
 - The Lead Party of a Supplier BM Unit;
 - Power Stations with a Bilateral Connection Agreement;
 - Parties with a Bilateral Embedded Generation Agreement
- 14.17.2 Classification of parties for charging purposes, section 14.26, provides an illustration of how a party is classified in the context of Use of System charging and refers to the paragraphs most pertinent to each party.

Basis of Gross Demand Charges

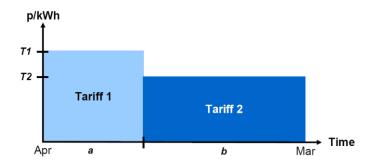
app


app

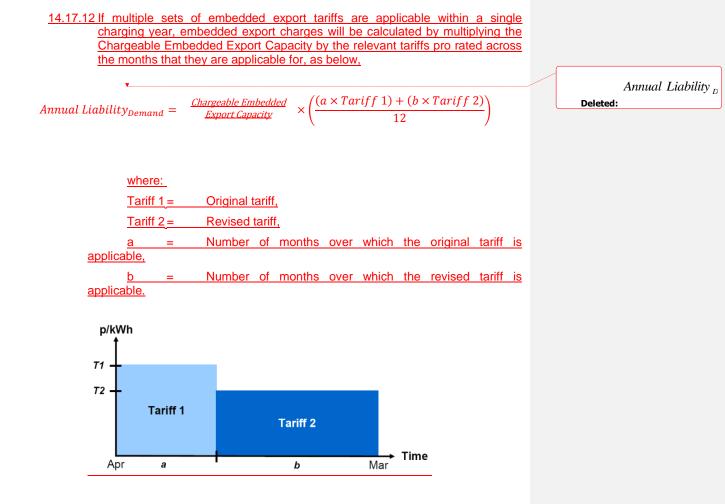
- 14.17.3 <u>Gross d</u>emand charges are based on a de-<u>minimis</u> £0/kW charge for Half Hourly and £0/kWh for Non Half Hourly metered demand.
 - 14.17.4 Chargeable <u>Gross</u> Demand Capacity is the value of Triad <u>gross</u> demand (kW). Chargeable Energy Capacity is the energy consumption (kWh). The definition of both these terms is set out below.
 - 14.17.5 If there is a single set of <u>gross</u> demand tariffs within a charging year, the Chargeable <u>Gross</u> Demand Capacity is multiplied by the relevant <u>gross</u> demand tariff, for the calculation of <u>gross</u> demand charges.
 - 14.17.6 If there is a single set of energy tariffs within a charging year, the Chargeable Energy Capacity is multiplied by the relevant energy consumption tariff for the calculation of energy charges..
 - 14.17.7 If multiple sets of <u>gross</u> demand tariffs are applicable within a single charging year, <u>gross</u> demand charges will be calculated by multiplying the Chargeable <u>Gross</u> Demand Capacity by the relevant tariffs pro rated across the months that they are applicable for, as below,

Annı	ual Liabi	$lity_{Demand} = \frac{Ch}{De}$	e <u>arge</u> eman	able Gross d Capacity	$\times \left(\frac{(a)}{a}\right)$	<tariff< th=""><th>$\frac{1) + (b)}{12}$</th><th>×Tariff2</th><th><u>2)</u>)</th><th></th></tariff<>	$\frac{1) + (b)}{12}$	×Tariff2	<u>2)</u>)	
wh	ere:						_			
Tai	riff 1 =	Original t	ariff	,						
Tai	riff 2 =	Revised	tarif	f,						
a licable	,	Number	of	months	over	which	the	original	tariff	is
b licable.	=	Number	of	months	over	which	the	revised	tariff	is

Deleted: minimus


Deleted: Annual Liability _D

14.17.8 If multiple sets of energy tariffs are applicable within a single charging year, energy charges will be calculated by multiplying relevant Tariffs by the Chargeable Energy Capacity over the period that that the tariffs are applicable for and summing over the year.


Annual Liability $_{Energy} = Tariff \ 1 \times \sum_{TI_s}^{TI_E} Chargeable Energy Capacity + Tariff \ 2 \times \sum_{TZ_s}^{TI_E} Chargeable Energy Capacity$

Where: T1s Start date for the period for which the original tariff is = applicable, End date for the period for which the original tariff is T1_E applicable, Start date for the period for which the revised tariff is T2s _ applicable, End date for the period for which the revised tariff is T2_E = applicable.

Basis of Embedded Export Charges

- 14.17.9 Embedded export charges are based on a £/kW charge for Half Hourly metered embedded export.
- <u>14.17.10 Chargeable Embedded Export Capacity is the value of Embedded Export at</u> <u>Triad (kW). The definition of this term is set out below.</u>
- 14.17.11 If there is a single set of embedded export tariffs within a charging year, the Chargeable Embedded Export Capacity is multiplied by the relevant embedded export tariff, for the calculation of embedded export charges.

Supplier BM Unit

14.17,<u>13</u> A Supplier BM Unit charges will be the sum of its energy, <u>gross_demand_and</u> <u>embedded export</u> liabilities where:

- The Chargeable <u>Gross</u> Demand Capacity will be the average of the Supplier BM Unit's half-hourly metered <u>gross</u> demand during the Triad (and the £/kW tariff),
- The Chargeable Embedded Export Capacity will be the average of the Supplier BM Unit's half-hourly metered embedded export during the Triad (and the £/kW tariff), and
- The Chargeable Energy Capacity will be the Supplier BM Unit's non halfhourly metered energy consumption over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year (and the p/kWh tariff).

Power Stations with a Bilateral Connection Agreement and Licensable Generation with a Bilateral Embedded Generation Agreement

Page 39 of 63

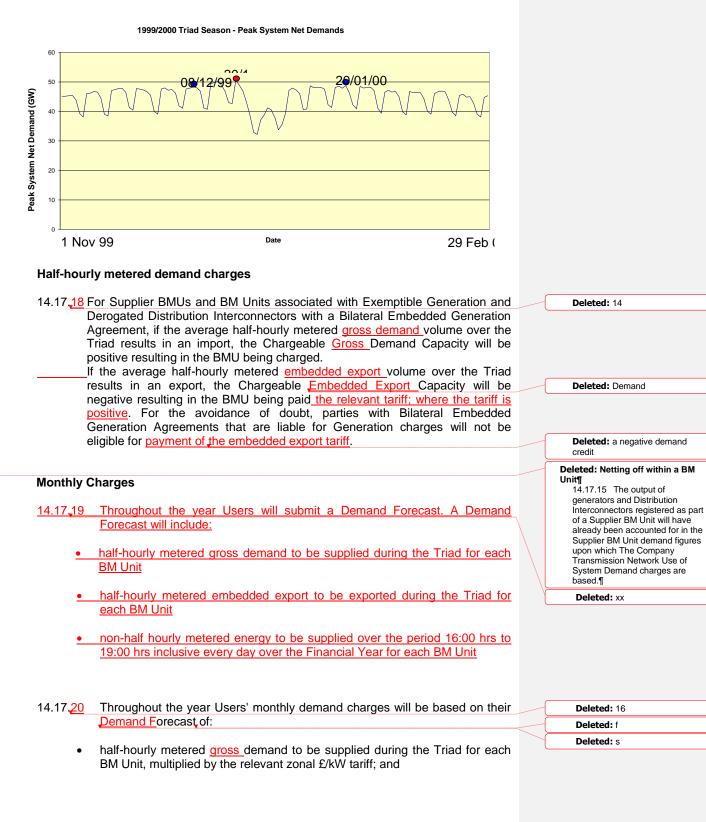
V1.12-01 April 2016

USC v1.12	
14.17, <u>14</u> The Chargeable <u>Gross</u> Demand Capacity for a Power Station with a Bilateral Connection Agreement or Licensable Generation with a Bilateral Embedded Generation Agreement will be based on the average of the <u>gross</u> import over each Triad leg of the BM Units associated with the Power Station (in Appendix C of its Bilateral Connection Agreement or Bilateral Embedded Generation Agreement, including metered additional load) during the Triad.	1
Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement	
14.17, <u>15,The demand charges for Exemptible Generation and Derogated Distribution</u> Interconnector with a Bilateral Embedded Generation Agreement will be the sum of its gross demand and embedded export liabilities where:	
 The Chargeable <u>Gross</u> Demand Capacity for Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement will be based on the average of the metered <u>gross demand</u> of 	_
each BM Unit specified in Appendix C of the Bilateral Embedded Generation Agreement during the Triad.	
 The Chargeable Embedded Export Capacity for Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement will be based on the average of the metered embedded export of each BM Unit specified in Appendix C of the Bilateral Embedded Generation Agreement during the Triad. 	
mall Generators Tariffs	
14.17, <u>16</u> In accordance with Standard Licence Condition C13, any under recovery from the MAR arising from the small generators discount will result in a unit amount of increase to all GB gross_demand tariffs.	
he Triad	
14.17,17 The Triad is used as a short hand way to describe the three settlement periods of highest transmission system demand within a Financial Year, namely the half hour settlement period of system peak <u>net</u> demand and the two half hour settlement periods of next highest <u>net</u> demand, which are separated from the	

system peak<u>net</u> demand and from each other by at least 10 Clear Days, between November and February of the Financial Year inclusive. Exports on directly connected Interconnectors and Interconnectors capable of exporting more than 100MW to the Total System shall be excluded when determining the

system peak net demand. An illustration is shown below.

I


Deleted: 10

Deleted: net

Deleted: 11 Deleted: An

Deleted: volume

Deleted: 12

- half-hourly metered embedded export to be supplied during the Triad for each BM Unit, multiplied by the relevant zonal £/kW tariff; and
- non-half hourly metered energy to be supplied over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year for each BM Unit, multiplied by the relevant zonal p/kWh tariff

Users' annual TNUoS demand charges are based on these forecasts and are split evenly over the 12 months of the year. Users have the opportunity to vary their demand forecasts on a quarterly basis over the course of the year, with the demand forecast requested in February relating to the next Financial Year. Users will be notified of the timescales and process for each of the quarterly updates. The Company will revise the monthly Transmission Network Use of System demand charges by calculating the annual charge based on the new forecast, subtracting the amount paid to date, and splitting the remainder evenly over the remaining months. For the avoidance of doubt, only positive demand forecasts (i.e. representing <u>a net</u> import from the system) will be <u>used in the calculation of charges</u>.

Demand forecasts for a User will be considered positive where:

- The sum of the gross demand forecast and embedded export forecast is positive; and
- The non-half hourly metered energy forecast is positive.

14.17.21 Users should submit reasonable forecasts of gross demand, embedded export and energy in accordance with the CUSC. The Company shall use the following methodology to derive a forecast to be used in determining whether a User's forecast is reasonable, in accordance with the CUSC, and this will be used as a replacement forecast if the User's total forecast is deemed unreasonable. The Company will, at all times, use the latest available Settlement data.

For existing Users:

- i) The User's Triad <u>gross</u> demand<u>and embedded export</u> for the preceding Financial Year will be used where User settlement data is available and where The Company calculates its forecast before the Financial Year. Otherwise, the User's average weekday settlement period 35 half-hourly metered (HH) <u>gross</u> demand <u>and embedded export</u> in the Financial Year to date is compared to the equivalent average <u>gross</u> demand<u>and</u> <u>embedded export</u> for the corresponding days in the preceding year. The percentage difference is then applied to the User's HH <u>gross</u> demand<u>and</u> <u>embedded export</u> at Triad in the preceding Financial Year to derive a forecast of the User's HH <u>gross</u> demand <u>and embedded export</u> at Triad for this Financial Year.
- ii) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day in the Financial Year to date is compared to the equivalent energy consumption over the corresponding days in the preceding year. The percentage difference is then applied to the User's total NHH energy consumption in the preceding Financial Year to derive a forecast of the User's NHH energy consumption for this Financial Year.

For new Users who have completed a Use of System Supply Confirmation Notice in the current Financial Year:

Page 42 of 63

V1.12-01 April 2016

Deleted: accepted

1

iii) The User's average weekday settlement period 35 half-hourly metered (HH) gross demand and embedded export over the last complete month for which The Company has settlement data is calculated. Total system average HH gross demand and embedded export for weekday settlement period 35 for the corresponding month in the previous year is compared to total system HH_gross demand and embedded export at Triad in that year and a percentage difference is calculated. This percentage is then applied to the User's average HH gross demand and embedded export for weekday settlement period 35 over the last month to derive a forecast of the User's HH gross demand and embedded export at Triad for this Financial Year.

- iv) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day over the last complete month for which The Company has settlement data is noted. Total system NHH energy consumption over the corresponding month in the previous year is compared to total system NHH energy consumption over the remaining months of that Financial Year and a percentage difference is calculated. This percentage is then applied to the User's NHH energy consumption over the month described above, and all NHH energy consumption in previous months is added, in order to derive a forecast of the User's NHH metered energy consumption for this Financial Year.
- 14.17.22 14.28 Determination of The Company's Forecast for Demand Charge Purposes illustrates how the demand forecast will be calculated by The Company.

Reconciliation of Demand Charges

14.17,23 The reconciliation process is set out in the CUSC. The demand reconciliation process compares the monthly charges paid by Users against actual outturn charges. Due to the Settlements process, reconciliation of demand charges is carried out in two stages; initial reconciliation and final reconciliation.

Initial Reconciliation of demand charges

14.17,24 The initial reconciliation process compares Users' demand forecasts and corresponding monthly charges paid over the year against actual outturn data (using latest Settlement data available at the time) and corresponding charges. Initial reconciliation is carried out in two parts; Initial Reconciliation Part 1 deals with the reconciliation of half-hourly metered demand charges and Initial Reconciliation Part 2 deals with the reconciliation of non-half-hourly metered demand charges.

Initial Reconciliation Part 1– Half-hourly metered demand

- 14.17.25 The Company will identify the periods forming the Triad once it has received Central Volume Allocation data from the Settlement Administration Agent for all days up to and including the last day of February. Once The Company has notified Users of the periods forming the Triad they will not be changed even if disputes are subsequently resolved which would change the periods forming the Triad.
- 14.17,<u>26</u> Initial outturn charges for half-hourly metered <u>gross</u> demand will be determined using the latest available data of actual average Triad <u>gross</u> demand (kW) multiplied by the zonal <u>gross</u> demand tariff(s) (£/kW) applicable to the months

Page 43 of 63

V1.12-01 April 2016

Deleted: 18

Deleted: 19

Deleted: 20

Deleted: 1

Сι

l

I

I

l

I

SC v1.12			
r	concerned for each zone for that Financial Year. These actual values econciled against the monthly charges paid in respect of half-hold demand.		
<u>c</u> <u>e</u> <u>t</u> <u>\</u>	nitial outturn charges for half-hourly metered embedded expon determined using the latest available data of actual average Triad export (kW) multiplied by the zonal embedded export tariff(s) (£/kW) o the months concerned for each zone for that Financial Year. The values are then reconciled against the monthly charges paid in respe- nourly embedded exports.	embedded applicable ese actual	Deleted: xx
Initial Red	conciliation Part 2 – Non-half-hourly metered demand		
t ł r	Actual payments for non-half-hourly metered demand will be determine the latest available actual energy consumption data (kWh) for the per- bins to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) over multiplied by the energy consumption tariff(s) (p/kWh) applicable to the concerned for each zone. These actual values are then reconciled a monthly charges paid in respect of non-half-hourly energy consumption	riod 16:00 the year ne months ligainst the	Deleted: 23
Final Rec	onciliation of demand charges		
t	The final reconciliation process compares Users' charges (as calculation he initial reconciliation process using the latest available data) ago tutturn demand charges (based on final settlement data <u>of half-ho</u> demand, embedded exports and non-half-hourly energy consumption	ainst final urly gross	Deleted: 24
	Final actual charges will be determined using the final demand rec data taken from the Final Reconciliation Settlement Run or Reconciliation Volume Allocation Run.		Deleted: 25
Reconcili	ation of manifest errors		
t	n the event that a manifest error, or multiple errors in the calculation ariffs results in a material discrepancy in aUsers TNUoS econciliation process for all Users qualifying under Section 14.17	tariff, the	 Deleted: 26
a	accordance with Sections 14.17.24 to 14.17.30. The reconciliation	n process	Deleted: 20
r	shall be carried out using recalculated TNUoS tariffs. Wh econciliation is not practicable, a post-year reconciliation will be und he form of a one-off payment.	ere such ertaken in	Deleted: 25
14.17. <mark>32</mark> /	A manifest error shall be defined as any of the following:		Deleted: 27
	 a) an error in the transfer of relevant data between the Tra Licensees or Distribution Network Operators; b) an error in the population of the Transport Model with relevant c) an error in the function of the Transport Model; or d) an error in the inputs or function of the Tariff Model. 		
	A manifest error shall be considered material in the event that such a he net effect of multiple errors, has an impact of the lesser of either:	n error or,	Deleted: 28
	a) an error in a User's TNUoS tariff of at least +/-£0.50/kW; or		
	Page 44 of 63 V1.12-0	01 April 2016	

b) an error in a User's TNUoS tariff which results in an error in the annual TNUoS charge of a User in excess of +/-£250,000.

14.17,<u>34</u> A manifest error shall only be reconciled if it has been identified within the charging year for which the error has an effect. Errors identified outside of this period will not be eligible for reconciliation retrospectively.

Implementation of P272

- 14.17,<u>35</u>.1 BSC modification P272 requires Suppliers to move Profile Classes 5-8 to Measurement Class E - G (i.e. moving from NHH to HH settlement) by April 2016. The majority of these meters are expected to transfer during the preceding Charging Years up until the implementation date of P272 and some meters will have been transferred before the start of 1ST April 2015. A change from NHH to HH within a Charging Year would normally result in Suppliers being liable for TNUoS for part of the year as NHH and also being subject to HH charging. This section describes how the Company will treat this situation in the transition to P272 implementation for the purposes of TNUoS charging; and the forecasts that Suppliers should provide to the Company.
- 14.17,35.2 Notwithstanding 14.17,13, for each Charging Year which begins after 31 March 2015 and prior to implementation of BSC Modification P272, all demand associated with meters that are in NHH Profile Classes 5 to 8 at the start of that charging year as well as all meters in Measurement Classes E G will be treated as Chargeable Energy Capacity (NHH) for the purposes of TNUoS charging for the full Charging Year unless 14.17,35.3 applies.
 - 14.17,35.3 Where prior to 1st April 2015 a Profile Class meter has already transferred to Measurement Class settlement (HH) the associated Supplier may opt to treat the demand volume as Chargeable Demand Capacity (HH) for the purposes of TNUoS charging up until implementation of P272, subject to meeting conditions in 14.17,35.6. If the associated Supplier does not opt to treat the demand volume as Demand Capacity (HH) it will be treated by default as Chargeable Energy Capacity (NHH) for each full Charging Year up until implementation of P272.
 - 14.17,35.4 The Company will calculate the Chargeable Energy Capacity associated with meters that have transferred to HH settlement but are still treated as NHH for the purposes of TNUoS charging from Settlement data provided directly from Elexon i.e. Suppliers need not Supply any additional information if they accept this default position.
- 14.17,35.5 The forecasts that Suppliers submit to the Company under CUSC 3.10, 3.11 and 3.12 for the purpose of TNUoS monthly billing referred to in 14.17,20 and 14.17,21 for both Chargeable Demand Capacity and Chargeable Energy Capacity should reflect this position i.e. volumes associated those Metering Systems that have transferred from a Profile Class to a Measurement Class in the BSC (NHH to HH settlement) but are to be treated as NHH for the purposes of TNUoS charging should be included in the forecast of Chargeable Energy Capacity and not Chargeable Demand Capacity, unless 14.17,35.3 applies.
 - 14.17,<u>35</u>.6 Where a Supplier wishes for Metering Systems that have transferred from Profile Class to Measurement Class in the BSC (NHH to HH settlement) prior to 1st April 2015, to be treated as Chargeable Demand Capacity (HH/

Page 45 of 63

V1.12-01 April 2016

Deleted: 29 Deleted: 9 Deleted: 29 Deleted: 29 Deleted: 29 Deleted: 29 Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 16 **Deleted:** 17

Deleted: 29

I

Measurement Class settled) it must inform the Company prior to October 2015. The Company will treat these as Chargeable Demand Capacity (HH / Measurement Class settled) for the purposes of calculating the actual annual liability for the Charging Years up until implementation of P272. For these cases only, the Supplier should notify the Company of the Meter Point Administration Number(s) (MPAN). For these notified meters the Supplier shall provide the Company with verified metered demand data for the hours between 4pm and 7pm of each day of each Charging Year up to implementation of P272 and for each Triad half hour as notified by the Company prior to May of the following Charging Year up until two years after the implementation of P272 to allow reconciliation (e.g. Mav 2017 and May 2018 for the Charging Year 2016/17). Where the Supplier fails to provide the data or the data is incomplete for a Charging Year TNUoS charges for that MPAN will be reconciled as part of the Supplier's NHH BMU (Chargeable Energy Capacity). Where a Supplier opts, if eligible, for TNUoS liability to be calculated on Chargeable Demand Capacity it shall submit the forecasts referred to in 14.17,35.5 taking account of this.

14.17,35.7 The Company will maintain a list of all MPANs that Suppliers have elected to be treated as HH. This list will be updated monthly and will be provided to registered Suppliers upon request.

Further Information

- 14.17,<u>36</u> 14.25 Reconciliation of Demand Related Transmission Network Use of System Charges of this statement illustrates how the monthly charges are reconciled against the actual values for <u>gross</u> demand, <u>embedded export</u> and consumption for half-hourly <u>gross demand</u>, <u>embedded export</u> and non-halfhourly metered demand respectively.
- 14.17,<u>37</u> **The Statement of Use of System Charges** contains the £/kW zonal gross demand tariffs, <u>the £/kW zonal embedded export tariffs</u>, and the p/kWh energy consumption tariffs for the current Financial Year.
- 14.17,<u>38</u>14.27 Transmission Network Use of System Charging Flowcharts of this statement contains flowcharts demonstrating the calculation of these charges for those parties liable.

Deleted: 29 Deleted: 30

Deleted: 29

Deleted: 31

....

14.24 Example: Calculation of Zonal Gross Demand Tariff

Let us consider all nodes in a demand zone in this example

The table below shows a sample output of the transport model comprising the node, the Peak Security and Year Round marginal km of an injection at the node with a consequent withdrawal at the distributed reference node, the generation sited at the node, scaled to ensure total national generation = total national <u>net</u> demand and the <u>net</u> demand sited at the node.

Demand Zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	<u>Net</u> Demand (MW)
14	ABHA4A	-77.25	-230.25	127
14	ABHA4B	-77.27	-230.12	127
14	ALVE4A	-82.28	-197.18	100
14	ALVE4B	-82.28	-197.15	100
14	AXMI40_SWEB	-125.58	-176.19	97
14	BRWA2A	-46.55	-182.68	96
14	BRWA2B	-46.55	-181.12	96
14	EXET40	-87.69	-164.42	340
14	HINP20	-46.55	-147.14	0
14	HINP40	-46.55	-147.14	0
14	INDQ40	-102.02	-262.50	444
14	IROA20_SWEB	-109.05	-141.92	462
14	LAND40	-62.54	-246.16	262
14	MELK40_SWEB	18.67	-140.75	83
14	SEAB40	65.33	-140.97	304
14	TAUN4A	-66.65	-149.11	55
14	TAUN4B	-66.66	-149.11	55
		Totals		2748

In order to calculate the <u>gross</u> demand tariff we would carry out the following steps:

(i) calculate the demand weighted nodal shadow costs

For this example zone this would be as follows:

Demand zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	Net Demand (MW)	Peak Security Demand Weighted Nodal Marginal km	Year Round Demand Weighted Nodal Marginal km
14	ABHA4A	-77.25	-230.25	127	-3.57	-10.64
14	ABHA4B	-77.27	-230.12	127	-3.57	-10.64
14	ALVE4A	-82.28	-197.18	100	-2.99	-7.17
14	ALVE4B	-82.28	-197.15	100	-2.99	-7.17
14	AXMI40_SWEB	-125.58	-176.19	97	-4.43	-6.22
14	BRWA2A	-46.55	-182.68	96	-1.63	-6.38
14	BRWA2B	-46.55	-181.12	96	-1.63	-6.33
14	EXET40	-87.69	-164.42	340	-10.85	-20.34
14	INDQ40	-102.02	-262.50	444	-16.48	-42.41
14	IROA20_SWEB	-109.05	-141.92	462	-18.33	-23.86
14	LAND40	-62.54	-246.16	262	-5.96	-23.47
14	MELK40_SWEB	18.67	-140.75	83	0.56	-4.25
14	SEAB40	65.33	-140.97	304	7.23	-15.59
14	TAUN4A	-66.65	-149.11	55	-1.33	-2.98
14	TAUN4B	-66.66	-149.11	55	-1.33	-2.98
		Totals		2748	-49.19	-190.43

(ii) sum the Peak Security and Year Round demand weighted nodal shadow costs to give zonal figures. For this example zone this is shown in the above table and is 49.19km for Peak Security background and 190.43km for Year Round background.

(iii) calculate the transport tariffs by multiplying the figures in (ii) above by the expansion constant (& dividing by 1000 to put into units of £/kW):

For this example zone, assuming an expansion constant of $\pm 10.07/MWkm$ and a locational security factor of 1.80:

a) Peak Security tariff – 49.19km <u>* £10.07/MWkm * 1.8</u> = <u>£0.89/kW</u> 1000

Page 49 of 63

b) Year Round tariff -<u>190.43km * £10.07/MWkm * 1.8</u> = <u>£3.45/kW</u> 1000

(iv) We now need to calculate the residual tariff. This is calculated by taking the total revenue to be recovered from demand (calculated as c.73% of total The Company_ TNUoS target revenue for the year), less the revenue which would be recovered through the demand transport tariffs and revenue recovery through embedded export tariffs, divided by total expected gross GSP group demand.

Assuming the total revenue to be recovered from TNUoS is £1067m, the total recovery from <u>gross GSP group</u> demand would be $(73\% \times £1067m) = £779m$. Assuming the total recovery from <u>gross GSP group</u> demand transport tariffs is £140m, total recovery from <u>embedded export tariffs is -£10m</u> and total forecast chargeable <u>gross GSP group</u> demand capacity is 50000MW, the demand residual tariff would be as follows:

 $\frac{\pounds779m - \pounds140m - -\pounds10m}{50,000MW} = \pounds12.98/kW$

 (v) to get to the final tariff, we simply add on the demand residual tariff calculated in (v) to the zonal transport tariffs calculated in (iii(a)) and (iii(b))

For zone 14:

 $\pounds 0.89/kW + \pounds 3.45/kW + \pounds 12.98/kW =$ $\pounds 17.32/kW$

- To summarise, in order to calculate the <u>gross</u> demand tariffs, we evaluate a <u>net</u> demand weighted zonal marginal km cost multiply by the expansion constant and locational security factor then we add a constant (termed the residual cost) to give the overall tariff.
- (vii) The final demand tariff is subject to further adjustment to allow for the minimum £0/kW gross_demand charge. The application of a discount for small generators pursuant to Licence Condition C13 will also affect the final gross_demand tariff.

Deleted: gross

Deleted: 130m

Deleted:	$\pounds779m - \pounds130m$	_
	50000MW	_

14.25 Reconciliation of <u>Gross</u> Demand Related Transmission Network Use of System Charges

This appendix illustrates the methodology used by The Company in the reconciliation of Transmission Network Use of System charges for <u>gross</u> demand. The example highlights the different stages of the calculations from the monthly invoiced amounts, right through to Final Reconciliation.

Monthly Charges

Suppliers provide half-hourly (HH) gross demand and embedded export forecasts and non-halfhourly (NHH) demand forecasts by BM Unit every quarter. An example of such forecasts and the corresponding monthly invoiced amounts, based on tariffs of £10.00/kW for gross demand, £5.00/kW for embedded export and 1.20p/kWh for energy consumption, is as follows:

	Forecast HH Triad <u>Gross</u> Demand <u>HHD_E (</u> kW)	HH <u>Gross</u> <u>Demand</u> Monthly Invoiced Amount (£)	Forecast HH Triad Embedded Export HHEE _E (kW)	<u>HH</u> <u>Embedded</u> <u>Generation</u> <u>Monthly</u> <u>Invoiced</u> <u>Amount (£)</u>	Forecast NHH Energy Consumpti on NHHC _F (kW h)	NHH Monthly Invoiced Amount (£)	Net Monthly Invoiced Amount (£)
Apr	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
May	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jun	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jul	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Aug	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Sep	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Oct	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Nov	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Dec	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Jan	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Feb	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Mar	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Total		72,000		<u>(3,000)</u>		216,000	<u>297</u> ,000

As shown, for the first nine months the Supplier provided a 12,000kW HH triad <u>gross</u> demand forecast, and hence paid HH <u>gross demand</u> monthly charges of £10,000 ((12,000kW x £10.00/kW)/12) for that BM Unit. In January the Supplier provided a revised forecast of 7,200kW, implying a forecast annual charge reduced to £72,000 (7,200kW x £10.00/kW). The Supplier had already paid £90,000, so the excess of £18,000 was credited back to the supplier in three £6,000 instalments over the last three months of the year.

The Supplier provided an embedded export triad forecast of -600kW and hence was paid an embedded export credit of £250 ((600kW x £5.00/kW)/12) for that BM Unit (For the avoidance of doubt, if the embedded export tariff is negative this will result in a debit).

The Supplier also initially provided a 15,000,000kWh NHH energy consumption forecast, and hence paid NHH monthly charges of £15,000 ((15,000,000kWh x 1.2p/kWh)/12) for that BM Unit. In July the Supplier provided a revised forecast of 18,000,000kWh, implying a forecast annual charge increased to £216,000 (18,000,000kWh x 1.2p/kWh). The Supplier had already

paid £45,000, so the remaining £171,000 was split into payments of £19,000 for the last nine months of the year.

The right hand column shows the net monthly charges for the BM Unit.

Initial Reconciliation (Part 1a)

The Supplier's outturn HH triad <u>gross</u> demand, based on <u>initial</u> settlement data (and therefore subject to change in subsequent settlement runs), was 9,000kW. The HH triad <u>gross</u> demand reconciliation charge is therefore calculated as follows:

HHD Reconciliation Charge = $(HHD_A - HHD_F) \times \pounds/kW$ Tariff

= (9,000kW - 7,200kW) x £10.00/kW

= 1,800kW x £10.00/kW

= £18,000

To calculate monthly interest charges, the outturn HHD charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHD charge less the HH <u>gross demand</u> monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 1b)

The Supplier's outturn HH triad embedded export, based on initial settlement data (and therefore subject to change in subsequent settlement runs), was 700kW. The HH triad embedded export reconciliation charge is therefore calculated as follows:

HHEE Reconciliation Charge = (HHEE_A – HHEE_E) x £/kW Tariff

 $= (-500 \text{kW} - -600 \text{kW}) \times \text{\pounds}5.00/\text{kW}$

 $= 100 \text{kW} \times \text{\pounds}5.00/\text{kW}$

= **£500**

To calculate monthly interest charges, the outturn HHEE charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHEE charge less the HH embedded generation monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 2)

The Supplier's outturn NHH energy consumption, based on initial settlement data, was 17,000,000kWh. The NHH energy consumption reconciliation charge is therefore calculated as follows:

Deleted: Please note that payments made to BM Units with a net export over the Triad, based on initial settlement data, will also be reconciled at this stage.¶ As monthly payments will not be made on the basis of a negative forecast, the HHD Reconciliation Charge for an exporting BM Unit will represent the full actual payment owed to that BM Unit (subject to adjustment by subsequent settlement runs). Interest will be calculated as described above.¶

NHHC Reconciliation Charge = $(NHHC_A - NHHC_F) \times p/kWh$ Tariff

100

= (17,000,000kWh - 18,000,000kWh) x 1.20p/kWh

100

= <u>-1,000,000kWh x 1.20p/kWh</u> 100 = **-£12,000**

worked example 4.xls - Initial!J104

The monthly reconciliation amount is equal to the outturn energy consumption charge for that month less the NHH monthly invoiced amount. Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

The net initial TNUoS demand reconciliation charge is therefore $\pounds 6,500$ (£18,000 + $\pounds 500$ - $\pounds 12,000$).

Final Reconciliation

Finally, let us now suppose that after all <u>final</u> Settlement data has been received (up to 14 months after the relevant dates), the outturn HH triad <u>gross</u> demand, <u>HH triad embedded export</u> and NHH energy consumption values were 9,500kW, <u>-550kW</u> and 16,500,000kWh, respectively.

Final HH <u>Gross Demand</u>	= (9,500kW - 9,000kW) x £10.00/kW
<u>Reconciliation Charge</u>	= £5,000
Final HH Embedded Export	= (-550kW500kW) x £5.00/kW
Reconciliation Charge	= -£250

Final NHH Reconciliation Charge = $(16,700,000kWh - 17,000,000kWh) \times 1.20p/kWh$ 100 = -£3,600

Consequently, the net final TNUoS demand reconciliation charge will be $\pounds 1, \underline{150} (\pounds 5,000 + -\pounds 250 + -\pounds 3,600)$.

Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

Outturn data for BM Units with a net export over the Triad will be received at this stage and final reconciliation will be carried out, as required. Interest will be calculated as described above.

Terminology:

 HHD_A = The Supplier's outturn half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

Page 53 of 63

I

 HHD_F = The Supplier's forecast half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

<u>HHEE_A = The Supplier's outturn half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

<u>HHEE_E = The Supplier's forecast half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

NHHC_A = The Supplier's outturn non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1^{st} to March 31^{st} , for the demand zone concerned.

NHHC_F = The Supplier's forecast non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1st to March 31st, for the demand zone concerned.

£/kW Tariff = The £/kW <u>Gross</u> Demand <u>or Embedded Export</u> Tariff as shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

p/kWh Tariff = The Energy Consumption Tariff shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

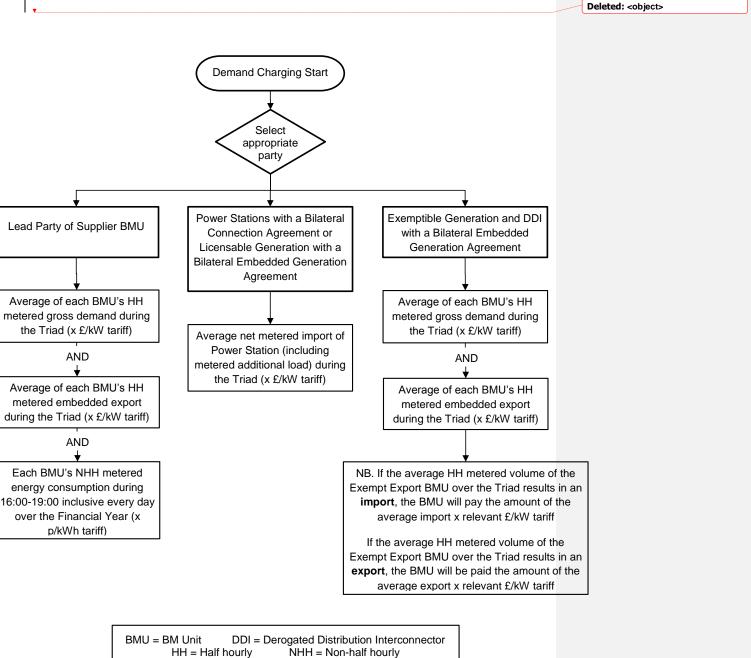
14.26 Classification of parties for charging purposes

In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precendence.

In the following diagrams, the parties liable for Transmission Network Use of System charges are outlined in red.

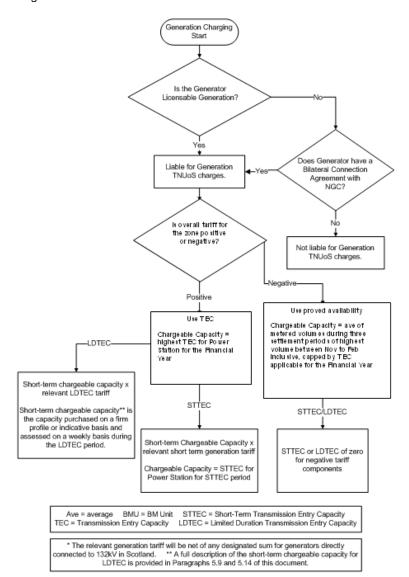
SUPPLIER		
Supplier Use of System Agreem	ent	
Supplier Supplier BMU1 BMUn		
Demand Charges	Generation Charges	
See 14.17, <mark>13</mark> and 14.17, <mark>18</mark> .	None.	Deleted: 9 Deleted: 14
POWER STATION WITH A BILATERA Bilateral Connection Agreement Gen Unit Gen Unit BMU1 BMUn		
Demand Charges	Generation Charges	
See 14.17. <u>18</u> .	See 14.18.1 i) and 14.18.3 to 14.18.9 and	Deleted: 10
	14.18.18.	
	For generators in positive zones, see 14.18.10 to 14.18.12 .	
	For generators in negative zones, see 14.18.13 to 14.18.17 .	
L	1	

Bilateral Emb	bedded Generation	Agreement App	pendix C
Gen Unit BMU1	Gen Unit BMUn	Station Load BMU	Additional Load BMU
Demand Charges See 14.17,<u>14</u>, 14.1 7	7, <u>15</u> and 14.17, <u>18</u> .	Generation Cl See 14.18.1 ii	5
		For generators	s in positive zones, see 14.18.3 t 14.18.18.


-{	Deleted: 10
-	Deleted: 11
Y	Deleted: 14

14.27 Transmission Network Use of System Charging Flowcharts

The following flowcharts illustrate the parties liable for Demand and Generation TNUoS charges and the calculation of those charges.


In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precedence.

Page 57 of 63

Generation Charges

14.28 Example: Determination of The Company's Forecast for Demand Charge Purposes

The Company will use the latest available settlement data for calculation of HH demand and NHH energy consumption forecasts for the Financial Year.

The Financial Year runs from 1st April to 31st March inclusive and for the purpose of these examples the year April 2005 to March 2006 is used.

Where the preceding year's settlement data is not available at the time that The Company needs to calculate its forecast, The Company will use settlement data from the corresponding period in Financial Year minus two unless indicated otherwise.

All values used with the examples are purely for illustrative purposes only.

i) Half-Hourly (HH) Metered Demand Forecast – Existing User

At the time of calculation of a HH demand forecast before the relevant Financial Year (approximately 10th March), The Company will be aware at a system level which dates will be used for the determination of Triad. However, The Company may not have settlement data at a User level if the Triad dates were to span a period that includes the latter half of February.

When undertaking forecasting before the relevant Financial Year, The Company will use the User's Triad demand for the previous year for its forecast providing it holds User settlement data for this period, thus:

F = T

where:

F = Forecast of User's HH demand at Triad for the Financial Year

T = User's HH gross_demand and embedded export_at Triad in Financial Year minus one

Where The Company determines its forecast within a Financial Year:

F = T * D/P

where:

- F = Forecast of User's HH demand at Triad for the Financial Year
- T = User's HH gross demand and embedded export at Triad in the preceding Financial Year
- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the preceding Financial Year

Where The Company determines its forecast before the relevant Financial Year and User settlement data for the Triad period is not available, The Company shall apply the formula immediately above (within year forecast) but substitute the following definitions for the values T, D, and P:

T = User's HH gross demand and embedded export at Triad in the Financial Year minus two

Page 59 of 63

- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year minus one, to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the Financial Year minus two

Example (where User settlement data is not yet available for the Triad period):

The Company calculates a HH demand forecast on the above methodology at 10th March 2005 for the period 1st April 2005 to 31st March 2006.

Gross demand:

F = 10,000 * 13,200 / 12,000

F = 11,000 kW,Deleted: hwhere:T = 10,000 kW, (period November 2003 to February 2004)Deleted: hD = 13,200 kW, (period 1st April 2004 to 15th February 2005#)Deleted: hP = 12,000 kW, (period 1st April 2003 to 15th February 2004)Deleted: h

Latest date for which settlement data is available.

Embedded export:

F = -280 * -300 / -350

<u>F = -240 kW</u>

where:

T = -280 kW (period November 2003 to February 2004)

D = -300 kW (period 1st April 2004 to 15th February 2005#)

P = -350 kW (period 1st April 2003 to 15th February 2004)

<u># Latest date for which settlement data is available.</u>

ii) Non Half-Hourly (NHH) Metered Energy Consumption Forecast – Existing User

F = E * D/P

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- E = User's summed NHH energy consumption over the hours 16:00 to 19:00 for each day in the preceding Financial Year

Page 60 of 63

- D = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the Financial Year to date
- P = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the period corresponding to D in the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th June 2005 for the period 1st April 2005 to 31st March 2006.

- F = 50,000,000 * 4,400,000 / 4,000,000
- F = 55,000,000 kWh

where:

- E = 50,000,000 kWh (period 1st April 2004 to 31st March 2005)
- D = 4,400,000 kWh (period 1st April 2005 to 15th May 2005#)
- P = 4,000,000 kWh (period 1st April 2004 to 15th May 2004)
- # Latest date for which settlement data is available

Where forecasting before the relevant Financial Year concerned, The Company would in the above example use values for E and P from Financial Year 2003/04 and D from Financial Year 2004/05.

iii) Half-Hourly (HH) Metered Demand Forecast – New User

F = M * T/W

where:

- F = Forecast of User's HH metered <u>gross</u> demand <u>and embedded export</u> at Triad for the Financial Year
 - M = User's HH average weekday period 35 demand for the last complete month for which settlement data is available
- T = Total system HH <u>gross</u> demand <u>and embedded export</u> at Triad in the preceding Financial Year
 - W = Total system HH average weekday settlement period 35 metered demand for the corresponding period to M for the preceding year

Example:

The Company calculates a HH demand forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2004 to 31st March 2006.

Gross demand:

F = 1,000 * 17,000,000 / 18,888,888

0030	, vi. 12	
F =	900 kW,	 Deleted: h
wher	e:	
M =	1,000 kW _v (period 1 st July 2005 to 31 st July 2005)	Deleted: h
T =	17,000,000 kW, (period November 2004 to February 2005)	 Deleted: h
W =	18,888,888 kW _e (period 1 st July 2004 to 31 st July 2004)	Deleted: h
<u>Emb</u>	edded export:	
<u>F =</u>	150 * 7,200,000 / 6,000,000	
<u>F =</u>	<u>180 kW</u>	
wher	<u>e:</u>	

- M = 150 kW (period 1st July 2005 to 31st July 2005)
- T = 7,200,000 kW (period November 2004 to February 2005)
- <u>W = 6,000,000 kW (period 1^{st} July 2004 to 31^{st} July 2004)</u>

iv) Non Half Hourly (NHH) Metered Energy Consumption Forecast – <u>New User</u>

 $\mathsf{F} = \mathsf{J} + (\mathsf{M} * \mathsf{R}/\mathsf{W})$

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- J = Residual part month summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day where new User registration takes place other than on the first of a month
- M = User's summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the last complete month for which settlement data is available
- R = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period from the start of that defined under M but for the preceding year and until the end of that preceding Financial Year
- W = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period identified in M but for the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2005 to 31st March 2006.

- F = 500 + (1,000 * 20,000,000,000 / 2,000,000,000)
- F = 10,500 kWh

where:

- J = 500 kWh (period 10th June 2005 to 30th June 2005)
- M = 1,000 kWh (period 1st July 2005 to 31st July 2005)
- R = 20,000,000,000 kWh (period 1st July 2004 to 31st March 2005)
- W = 2,000,000,000 kWh (period 1st July 2004 to 31st July 2004)

CMP265 WACM4

14.15 Derivation of the Transmission Network Use of System Tariff

- 14.15.1 The Transmission Network Use of System (TNUoS) Tariff comprises two separate elements. Firstly, a locationally varying element derived from the DCLF ICRP transport model to reflect the costs of capital investment in, and the maintenance and operation of, a transmission system to provide bulk transport of power to and from different locations. Secondly, a non-locationally varying element related to the provision of residual revenue recovery. The combination of both these elements forms the TNUoS tariff.
- 14.15.2 For generation TNUoS tariffs the locational element itself is comprised of five separate components. Three wider components
 - o Wider Peak Security Component
 - Wider Year Round Not-shared component
 - Wider Year Round component

These components reflect the costs of the wider network under the different generation backgrounds set out in the Demand Security Criterion (for Peak Security component) and Economy Criterion (for both Year Round components) of the Security Standard. The two Year Round components reflect the unshared and shared costs of the wider network based on the diversity of generation plant types.

Two local components -

- o Local substation, and
- Local circuit

These components reflect the costs of the local network.

Accordingly, the wider tariff represents the combined effect of the three wider locational tariff components and the residual element; and the local tariff represents the combination of the two local locational tariff components.

14.15.3 The process for calculating the TNUoS tariff is described below.

The Transport Model

Model Inputs

14.15.4 The DCLF ICRP transport model calculates the marginal costs of investment in the transmission system which would be required as a consequence of an increase in demand or generation at each connection point or node on the transmission system, based on a study of peak demand conditions using both Peak Security and Year Round generation backgrounds on the transmission system. One measure of the investment costs is in terms of MWkm. This is the concept that ICRP uses to calculate marginal costs of investment. Hence, marginal costs are estimated initially in terms of increases or decreases in units of kilometres (km) of the transmission system for a 1 MW injection to the system.

- 14.15.5 The transport model requires a set of inputs representative of the Demand Security and Economy Criterion set out in the Security Standards. These conditions on the transmission system are represented in the Peak Security and Year Round background respectively as follows:
- Nodal generation information per node (TEC, plant type and SQSS scaling factors)
- Nodal <u>net</u> demand information
- Transmission circuits between these nodes
- The associated lengths of these routes, the proportion of which is overhead line or cable and the respective voltage level
- The cost ratio of each of 132kV overhead line, 132kV underground cable, 275kV overhead line, 275kV underground cable and 400kV underground cable to 400kV overhead line to give circuit expansion factors
- The cost ratio of each separate sub-sea AC circuit and HVDC circuit to 400kV overhead line to give circuit expansion factors
- 132kV overhead circuit capacity and single/double route construction information is used in the calculation of a generator's local charge.
- Offshore transmission cost and circuit/substation data
- 14.15.6 For a given charging year "t", the nodal generation TEC figure and generation plant types at each node will be based on the Applicable Value for year "t" in the NETS Seven Year Statement in year "t-1" plus updates to the October of year "t-1". The contracted TECs and generation plant types in the NETS Seven Year Statement include all plant belonging to generators who have a Bilateral Agreement with the TOs. For example, for 2010/11 charges, the nodal generation data is based on the forecast for 2010/11 in the 2009 NETS Seven Year Statement plus any data included in the quarterly updates in October 2009.
- 14.15.7 Scaling factors for different generation plant types are applied on their aggregated capacity for both Peak Security and Year Round backgrounds. The scaling is either Fixed or Variable (depending on the total demand level) in line with the factors used in the Security Standard, for example as shown in the table below.

Generation Plant Type	Peak Security Background	Year Round Background
Intermittent	Fixed (0%)	Fixed (70%)
Nuclear & CCS	Variable	Fixed (85%)
Interconnectors	Fixed (0%)	Fixed (100%)
Hydro	Variable	Variable
Pumped Storage	Variable	Fixed (50%)
Peaking	Variable	Fixed (0%)
Other (Conventional)	Variable	Variable

These scaling factors and generation plant types are set out in the Security Standard. These may be reviewed from time to time. The latest version will be used in the calculation of TNUoS tariffs and is published in the Statement of Use of System Charges

14.15.8 National Grid will categorise plant based on the categorisations described in the Security Standard. Peaking plant will include oil and OCGT technologies and Other (Conv.) represents all remaining conventional plant not explicitly stated elsewhere in the table In the event that a power station is made up of more than one technology type, the type of the higher Transmission Entry Capacity (TEC) would apply.

I

- 14.15.9 Nodal <u>net</u> demand data for the transport model will be based upon the GSP <u>net</u> demand that Users have forecast to occur at the time of National Grid Peak Average Cold Spell (ACS) Demand for year "t" in the April Seven Year Statement for year "t-1" plus updates to the October of year "t-1".
- 14.15.10 Subject to paragraphs 14.15.15 to 14.15.22, Transmission circuits for charging year "t" will be defined as those with existing wayleaves for the year "t" with the associated lengths based on the circuit lengths indicated for year "t" in the April NETS Seven Year Statement for year "t-1" plus updates to October of year "t-1". If certain circuit information is not explicitly contained in the NETS Seven Year Statement, The Company will use the best information available.
- 14.15.11 The circuit lengths included in the transport model are solely those, which relate to assets defined as 'Use of System' assets.
- 14.15.12 For HVDC circuits, the impedance will be calculated to provide flows based on a ratio of the capacity provided by the HVDC link relative to the capacities on all major transmission system boundaries that it parallels.
- 14.15.13 The transport model employs the use of circuit expansion factors to reflect the difference in cost between (i) AC Circuits and HVDC circuits. (ii) underground and sub-sea circuits, (iii) cabled circuits and overhead line circuits, (iv) 132kV and 275kV circuits, (v) 275kV circuits and 400kV circuits, and (vi) uses 400kV overhead line (i.e. the 400kV overhead line expansion factor is 1). As the transport model expresses cost as marginal km (irrespective of cables or overhead lines), some account needs to be made of the fact that investment in these other types of circuit (specifically HVDC and sub-sea cables of various voltages, 400kV underground cable, 275kV overhead line, 275kV underground cable, 132kV overhead line and 132kV underground cable) is more expensive than for 400kV overhead line. This is done by effectively 'expanding' these more expensive circuits by the relevant circuit expansion factor, thereby producing a larger marginal kilometre to reflect the additional cost of investing in these circuits compared to 400kV overhead line. When calculating the local circuit tariff for a generator, alternative 132kV and offshore expansion factors to those used in the remainder of the tariff calculation are applied to the generator's local circuits.
- 14.15.14 The circuit expansion factors for HVDC circuits and AC subsea cables are determined on a case by case basis using the costs which are specific to individual projects containing HVDC or AC subsea circuits.

Adjustments to Model Inputs associated with One-off Works

- 14.15.15 Where, following the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge that related to One-off Works carried out on an onshore circuit, and such One-off Works would affect the value of a TNUoS tariff paid by the User, the transport model inputs associated with the onshore circuit shall be adjusted by The Company to reflect the asset value that would have been modelled if the works had been undertaken on the basis of the original asset design rather than the One-off Works.
- 14.15.16 Subject to paragraphs 14.15.17 to 14.15.19, where, prior to the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge (or has paid a charge to the relevant TO prior to 1st April 2005 on the same principles as a

Page 3 of 63

One-Off Charge) that related to works equivalent to those described under paragraph 14.15.15, an adjustment equivalent to that under paragraph 14.15.15 shall be made to the transport model inputs as follows.

- 14.15.17 Such adjustment shall be made following a User's request, which must be received by The Company no later than the second occurrence of 31st December following the implementation of CUSC Modification CMP203.
- 14.15.18 The Company shall only make an adjustment to the transport model inputs, under paragraph 14.15.16 where the charge was paid to the relevant TO prior to 1st April 2005 where evidence has been provided by the User that satisfies The Company that works equivalent to those under paragraph 14.15.15 were funded by the User.
- 14.15.19 Where a User has sufficient reason to believe that adjustments under paragraph 14.15.18 should be made in relation to specific assets that affect a TNUoS tariff that applies to one of its sites and outlines its reasoning to The Company, The Company shall (upon the User's request and subject to the User's payment of reasonable costs incurred by The Company in doing so) use its reasonable endeavours to assist the User in obtaining any evidence The Company or a TO may have to support its position.
- 14.15.20 Where a request is made under paragraph 14.15.16 on or prior to 31st December in a charging year, and The Company is satisfied based on the accompanying evidence provided to The Company under paragraph 14.15.17 that it is a valid request, the transport model inputs shall be adjusted accordingly and taken into account in the calculation of TNUoS tariffs effective from the year commencing on the 1st April following this and otherwise from the next subsequent 1st April.
- 14.15.21 The following table provides examples of works for which adjustments to transport model inputs would typically apply:

Ref	Description of works	Adjustments
1	Undergrounding - A User requests to underground an overhead line at a greater cost.	As the cable cost will be more expensive than the overhead line (OHL) equivalent, the circuit will be modelled as an OHL.
2	Substation Siting Decision - A User requests to move the existing or a planned substation location to a place that means that the works cannot be justified as economic by the TO.	As the revised substation location may result in circuits being extended. If this is the case, the originally designed circuit lengths (as per the originally designed substation location) would be used in the transport model.
3	Circuit Routing Decision - A User asks to move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	As any circuit route changes that extend circuits are likely to result in a greater TNUoS tariff, the originally designed circuit lengths would be used in the transport model.

Ref	Description of works	Adjustments
4	Building circuits at lower voltages - A User requests lower tower height and therefore a different voltage.	As lower voltage circuits result in a higher expansion factor being used, the circuits would be modelled at the originally designed higher voltage.

14.15.22 The following table provides examples of works for which adjustments to transport model typically would not apply:

Ref	Description of works	Reasoning
1	Undergrounding - A User chooses to have a cable installed via a tunnel rather than buried.	Cable expansion factors are applied in the transport model regardless of whether a cable is tunnelled and buried, so there is no increased TNUoS cost.
2	Additional circuit route works - A User asks for screening to be provided around a new or existing circuit route.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
3	Additional circuit route works - A User requests that a planned overhead line route is built using alternative transmission tower designs.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
4	Additional substation works - A User asks for screening to be provided around a new or existing substation.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
5	Additional substation works - Changes to connection assets (e.g. HV-LV transformers and associated switchgear), metering, additional LV supplies, additional protection equipment, additional building works, etc.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
6	Diversion - A User asks to temporarily move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	The temporary circuit changes will not be incorporated into the transport model.

7	Connection Entry Capacity (CEC) before Transmission Entry Capacity (TEC). A User asks for a connection in a year prior to the relating TEC; i.e. physical connection without capacity.	No additional works are being undertaken, works are simply being completed well in advance of the generator commissioning. The One-Off Charge reflects the depreciated value of the assets prior to commissioning (and any TNUOS being charged).
8	Early asset replacement - An asset is replaced prior to the end of its expected life.	As the asset is simply replaced, no data in the transport model is expected to change.
9	Additional Engineering/ Mobilisation costs - A User requests changes to the planned works, that results in additional operational costs.	The data in the transport model is unaffected.
10	Offshore (Generator Build) - Any of the works described above or under paragraph 14.15.18.	The value of the works will not form part of the asset transfer value therefore will not be used as part of the offshore tariff calculation.
11	Offshore (Offshore Transmission Owner (OFTO) Build) - Any of the works described above or under paragraph 14.15.18.	As part of determining the TNUoS revenue associated with each asset, the value of the One-Off Works would be excluded when pro-rating the OFTO's allowed revenue against assets by asset value.

14.15.23 The Company shall publish any adjusted transport model inputs that it intends to use in the calculation of TNUoS tariffs effective from the year commencing on the following 1st April in the NETS Seven Year Statement October Update. Any further adjustments that The Company makes shall be published by The Company upon the publication of the final TNUoS tariffs for the year concerned.

Model Outputs

- 14.15.24 The transport model takes the inputs described above and carries out the following steps individually for Peak Security and Year Round backgrounds.
- 14.15.25 Depending on the background, the TEC of the relevant generation plant types are scaled by a percentage as described in 14.15.7, above. The TEC of the remaining generation plant types in each background are uniformly scaled such that total national generation (scaled sum of contracted TECs) equals total national ACS Demand.
- 14.15.26 For each background, the model then uses a DCLF ICRP transport algorithm to derive the resultant pattern of flows based on the network impedance required to meet the nodal <u>net</u> demand using the scaled nodal generation, assuming every circuit has infinite capacity. Flows on individual transmission circuits are compared for both backgrounds and the background giving rise to

Page 6 of 63

the highest flow is considered as the triggering criterion for future investment of that circuit for the purposes of the charging methodology. Therefore all circuits will be tagged as Peak Security or Year Round depending upon the background resulting in the highest flow. In the event that both backgrounds result in the same flow, the circuit will be tagged as Peak Security. Then it calculates the resultant total network Peak Security MWkm and Year Round MWkm, using the relevant circuit expansion factors as appropriate.

- 14.15.27 Using these baseline networks for Peak Security and Year Round backgrounds, the model then calculates for a given injection of 1MW of generation at each node, with a corresponding 1MW offtake (<u>net_demand</u>) distributed across all demand nodes in the network, the increase or decrease in total MWkm of the whole Peak Security and Year Round networks. The proportion of the 1MW offtake allocated to any given demand node will be based on total background nodal <u>net</u> demand in the model. For example, with a total GB <u>net_demand</u> of 60GW in the model, a node with a <u>net_demand</u> of 600MW would contain 1% of the offtake i.e. 0.01MW.
- 14.15.28 Given the assumption of a 1MW injection, for simplicity the marginal costs are expressed solely in km. This gives a Peak Security marginal km cost and a Year Round marginal km cost for generation at each node (although not that used to calculate generation tariffs which considers local and wider cost components). The Peak Security and Year Round marginal km costs for demand at each node are equal and opposite to the Peak Security and Year Round nodal marginal km respectively for generation and this is used to calculate demand tariffs. Note the marginal km costs can be positive or negative depending on the impact the injection of 1MW of generation has on the total circuit km.
- 14.15.29 Using a similar methodology as described above in 14.15.27, the local and wider marginal km costs used to determine generation TNUoS tariffs are calculated by injecting 1MW of generation against the node(s) the generator is modelled at and increasing by 1MW the offtake across the distributed reference node. It should be noted that although the wider marginal km costs are calculated for both Peak Security and Year Round backgrounds, the local marginal km costs are calculated on the Year Round background.
- 14.15.30 In addition, any circuits in the model, identified as local assets to a node will have the local circuit expansion factors which are applied in calculating that particular node's marginal km. Any remaining circuits will have the TO specific wider circuit expansion factors applied.
- 14.15.31 An example is contained in 14.21 Transport Model Example.

Calculation of local nodal marginal km

14.15.32 In order to ensure assets local to generation are charged in a cost reflective manner, a generation local circuit tariff is calculated. The nodal specific charge provides a financial signal reflecting the security and construction of the infrastructure circuits that connect the node to the transmission system.

14.15.33 Main Interconnected Transmission System (MITS) nodes are defined as:

- Grid Supply Point connections with 2 or more transmission circuits connecting at the site; or
- connections with more than 4 transmission circuits connecting at the site.

Page 7 of 63

- 14.15.34 Where a Grid Supply Point is defined as a point of supply from the National Electricity Transmission System to network operators or non-embedded customers excluding generator or interconnector load alone. For the avoidance of doubt, generator or interconnector load would be subject to the circuit component of its Local Charge. A transmission circuit is part of the National Electricity Transmission System between two or more circuit-breakers which includes transformers, cables and overhead lines but excludes busbars and generation circuits.
- 14.15.35 Generators directly connected to a MITS node will have a zero local circuit tariff.
- 14.15.36 Generators not connected to a MITS node will have a local circuit tariff derived from the local nodal marginal km for the generation node i.e. the increase or decrease in marginal km along the transmission circuits connecting it to all adjacent MITS nodes (local assets).

Calculation of zonal marginal km

- 14.15.37 Given the requirement for relatively stable cost messages through the ICRP methodology and administrative simplicity, nodes are assigned to zones. Typically, generation zones will be reviewed at the beginning of each price control period with another review only undertaken in exceptional circumstances. Any rezoning required during a price control period will be undertaken with the intention of minimal disruption to the established zonal boundaries. The full criteria for determining generation zones are outlined in paragraph 14.15.42. The number of generation zones set for 2010/11 is 20.
- 14.15.38 Demand zone boundaries have been fixed and relate to the GSP Groups used for energy market settlement purposes.
- 14.15.39 The nodal marginal km are amalgamated into zones by weighting them by their relevant generation or demand capacity.
- 14.15.40 Generators will have zonal tariffs derived from both, the wider Peak Security nodal marginal km; and the wider Year Round nodal marginal km for the generation node calculated as the increase or decrease in marginal km along all transmission circuits except those classified as local assets.

The zonal Peak Security marginal km for generation is calculated as:

$$WNMkm_{j_{PS}} = \frac{NMkm_{j_{PS}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiPS} = \sum_{j \in Gi} WNMkm_{jPS}$$

Where

Gi	=	Generation zone
j	=	Node
NMkm _{PS}	=	Peak Security Wider nodal marginal km from transport model
WNMkm _{PS}	=	Peak Security Weighted nodal marginal km
ZMkm _{PS}	=	Peak Security Zonal Marginal km

Gen = Nodal Generation (scaled by the appropriate Peak Security Scaling factor) from the transport model Similarly, the zonal Year Round marginal km for generation is calculated as

$$WNMkm_{j_{YR}} = \frac{NMkm_{j_{YR}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiYR} = \sum_{j \in Gi} WNMkm_{jYR}$$

Where

NMkm _{YR}	=	Year Round Wider nodal marginal km from transport model
WNMkm _{YR}	=	Year Round Weighted nodal marginal km
ZMkm _{YR}	=	Year Round Zonal Marginal km
Gen	=	Nodal Generation (scaled by the appropriate Year Round Scaling
		factor) from the transport model

14.15.41 The zonal Peak Security marginal km for demand zones are calculated as follows:

$$WNMkm_{j_{PS}} = \frac{-1 * NMkm_{j_{PS}} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{Di_{PS}} = \sum_{j \in Di} WNMkm_{j_{PS}}$$

Where:

I

Di	=	Demand zone
Dem	=	Nodal <u>Net</u> Demand from transport model

Similarly, the zonal Year Round marginal km for demand zones are calculated as follows:

$$WNMkm_{jYR} = \frac{-1 * NMkm_{jYR} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{DiYR} = \sum_{j \in Di} WNMkm_{jYR}$$

- 14.15.42 A number of criteria are used to determine the definition of the generation zones. Whilst it is the intention of The Company that zones are fixed for the duration of a price control period, it may become necessary in exceptional circumstances to review the boundaries having been set. In both circumstances, the following criteria are used to determine the zonal boundaries:
- i.) Zoning is determined using the generation background with the most MWkm of circuits. Zones should contain relevant nodes whose total wider marginal costs

from the relevant generation background (as determined from the output from the transport model, the relevant expansion constant and the locational security factor, see below) are all within +/-£1.00/kW (nominal prices) across the zone. This means a maximum spread of £2.00/kW in nominal prices across the zone.

- ii.) The nodes within zones should be geographically and electrically proximate.
- iii.) Relevant nodes are considered to be those with generation connected to them as these are the only ones, which contribute to the calculation of the zonal generation tariff.
- 14.15.43 The process behind the criteria in 14.15.42 is driven by initially applying the nodal marginal costs from the relevant generation background within the DCLF Transport model onto the appropriate areas of a substation line diagram. Generation nodes are grouped into initial zones using the +/- £1.00/kW range. All nodes within each zone are then checked to ensure the geographically and electrically proximate criteria have been met using the substation line diagram. The established zones are inspected to ensure the least number of zones are used with minimal change from previously established zonal boundaries. The zonal boundaries are finally confirmed using the demand nodal costs from the relevant generation background for guidance.
- 14.15.44 The zoning criteria are applied to a reasonable range of DCLF ICRP transport model scenarios, the inputs to which are determined by The Company to create appropriate TNUoS generation zones. The minimum number of zones, which meet the stated criteria, are used. If there is more than one feasible zonal definition of a certain number of zones, The Company determines and uses the one that best reflects the physical system boundaries.
- 14.15.45 Zones will typically not be reviewed more frequently than once every price control period to provide some stability. However, in exceptional circumstances, it may be necessary to review zoning more frequently to maintain appropriate, cost reflective, locational cost signals. For example, if a new generator connecting to the transmission system would cause the creation of a new generation zone for that generator alone, it may not be appropriate from a cost reflective perspective to wait until the next price control period to undertake this rezoning. If any such rezoning is required, it will be undertaken against a background of minimal change to existing generation zones and in line with the notification process set out in the Transmission Licence and CUSC.

Accounting for Sharing of Transmission by Generators

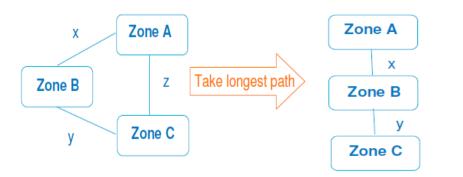
- 14.15.46 A proportion of the marginal km costs for generation are shared incremental km reflecting the ability of differing generation technologies to share transmission investment. This is reflected in charges through the splitting of Year Round marginal km costs for generation into Year Round Shared marginal km costs and Year Round Not-Shared marginal km which are then used in the calculation of the wider £/kW generation tariff.
- 14.15.47 The sharing between different generation types is accounted for by (a) using transmission network boundaries between generation zones set by connectivity between generation charging zones, and (b) the proportion of Low Carbon and Carbon generation behind these boundaries.

Page 10 of 63

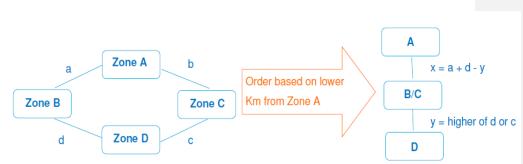
14.15.48 The zonal incremental km for each generation charging zone is split into each boundary component by considering the difference between it and the neighbouring generation charging zone using the formula below;

$$BIkm_{ab} = ZIkm_b - ZIkm_a$$

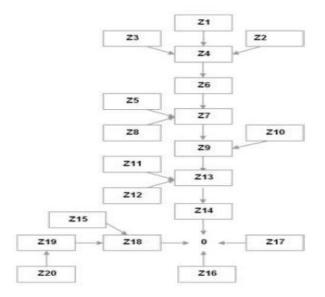
Where;


Blkm_{ab} = boundary incremental km between generation charging zone A and generation charging zone B Zlkm = generation charging zone incremental km.

14.15.49 The table below shows the categorisation of Low Carbon and Carbon generation. This table will be updated by National Grid in the Statement of Use of System Charges as new generation technologies are developed.


Carbon	Low Carbon
Coal	Wind
Gas	Hydro (excl. Pumped Storage)
Biomass	Nuclear
Oil	Marine
Pumped Storage	Tidal
Interconnectors	

Determination of Connectivity


- 14.15.50 Connectivity is based on the existence of electrical circuits between TNUoS generation charging zones that are represented in the Transport model. Where such paths exist, generation charging zones will be effectively linked via an incremental km transmission boundary length. These paths will be simplified through in the case of;
 - Parallel paths the longest path will be taken. An illustrative example is shown below with x, y and z representing the incremental km between zones.

 Parallel zones – parallel zones will be amalgamated with the incremental km immediately beyond the amalgamated zones being the greater of those existing prior to the amalgamation. An illustrative example is shown below with a, b, c, and d representing the the initial incremental km between zones, and x and y representing the final incremental km following zonal amalgamation.

14.15.51 An illustrative Connectivity diagram is shown below:

The arrows connecting generation charging zones and amalgamated generation charging zones represent the incremental km transmission boundary lengths towards the notional centre of the system. Generation located in charging zones behind arrows is considered to share based on the ratio of Low Carbon to Carbon cumulative generation TEC within those zones.

14.15.52 The Company will review Connectivity at the beginning of a new price control period, and under exceptional circumstances such as major system reconfigurations or generation rezoning. If any such reassessment is required, it will be undertaken against a background of minimal change to existing Connectivity and in line with the notification process set out in the Transmission Licence and the CUSC.

Calculation of Boundary Sharing Factors

14.15.53 Boundary sharing factors (BSFs) are derived from the comparison of the cumulative proportion of Low Carbon and Carbon generation TEC behind each of the incremental MWkm boundary lengths using the following formulae –

Page 12 of 63

If $\frac{LC}{LC+C} \le 0.5$, then all Year round marginal km costs are shared i.e. the BSF is 100%.

Where:

LC = Cumulative Low Carbon generation TEC behind the relevant transmission boundary C = Cumulative Carbon generation TEC behind the relevant transmission

C = Cumulative Carbon generation TEC behind the relevant transmission boundary

If
$$\frac{LC}{LC+C}$$
 > 0.5 then the BSF is calculated using the following formula: -

$$BSF = \left(-2 \times \left(\frac{LC}{LC+C}\right)\right) + 2$$

Where:

BSF = boundary sharing factor.

14.15.54 The shared incremental km for each boundary are derived from the multiplication of the boundary sharing factor by the incremental km for that boundary;

$$SBIkm_{ab} = BIIkm_{ab} \ x \ BSF_{ab}$$

Where;

 $SBIkm_{ab}$ = shared boundary incremental km between generation charging zone A and generation charging zone B

 BSF_{ab} = generation charging zone boundary sharing factor.

14.15.55 The shared incremental km is discounted from the incremental km for that boundary to establish the not-shared boundary incremental km. The not-shared boundary incremental km reflects the cost of transmission investment on that boundary accounting for the sharing of power stations behind that boundary.

$$NSBIkm_{ab} = BIkm_{ab} - SBIkm_{ab}$$

Where;

 $NSBIkm_{ab}$ = not shared boundary incremental km between generation charging zone A and generation charging zone B.

14.15.56 The shared incremental km for a generation charging zone is the sum of the appropriate shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRS}$$

Where;

 $ZMkm_{nYRS}$ = Year Round Shared Zonal Marginal km for generation charging zone n.

Page 13 of 63

14.15.57 The not-shared incremental km for a generation charging zone is the sum of the appropriate not-shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRNS}$$

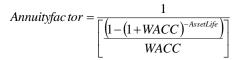
Where;

ZMkm_{nYRNS} = Year Round Not-Shared Zonal Marginal km for generation zone n.

Deriving the Final Local £/kW Tariff and the Wider £/kW Tariff

14.15.58 The zonal marginal km (ZMkm_{Gi}) are converted into costs and hence a tariff by multiplying by the Expansion Constant and the Locational Security Factor (see below). The nodal local marginal km (NLMkm^L) are converted into costs and hence a tariff by multiplying by the Expansion Constant and a Local Security Factor.

The Expansion Constant


- 14.15.59 The expansion constant, expressed in £/MWkm, represents the annuitised value of the transmission infrastructure capital investment required to transport 1 MW over 1 km. Its magnitude is derived from the projected cost of 400kV overhead line, including an estimate of the cost of capital, to provide for future system expansion.
- 14.15.60 In the methodology, the expansion constant is used to convert the marginal km figure derived from the transport model into a £/MW signal. The tariff model performs this calculation, in accordance with 14.15.95 14.15.117, and also then calculates the residual element of the overall tariff (to ensure correct revenue recovery in accordance with the price control), in accordance with 14.15.133.
- 14.15.61 The transmission infrastructure capital costs used in the calculation of the expansion constant are provided via an externally audited process. They also include information provided from all onshore Transmission Owners (TOs). They are based on historic costs and tender valuations adjusted by a number of indices (e.g. global price of steel, labour, inflation, etc.). The objective of these adjustments is to make the costs reflect current prices, making the tariffs as forward looking as possible. This cost data represents The Company's best view; however it is considered as commercially sensitive and is therefore treated as confidential. The calculation of the expansion constant also relies on a significant amount of transmission asset information, much of which is provided in the Seven Year Statement.
- 14.15.62 For each circuit type and voltage used onshore, an individual calculation is carried out to establish a £/MWkm figure, normalised against the 400KV overhead line (OHL) figure, these provide the basis of the onshore circuit expansion factors discussed in 14.15.70 14.15.77. In order to simplify the calculation a unity power factor is assumed, converting £/MVAkm to £/MWkm. This reflects that the fact tariffs and charges are based on real power.
- 14.15.63 The table below shows the first stage in calculating the onshore expansion constant. A range of overhead line types is used and the types are weighted by recent usage on the transmission system. This is a simplified calculation for 400kV OHL using example data:

Page 14 of 63

400kV	400kV OHL expansion constant calculation				
MW	Туре	£(000)/k	Circuit km*	£/MWkm	Weight
А	В	С	D	E = C/A	F=E*D
6500	La	700	500	107.69	53846
6500	Lb	780	0	120.00	0
3500	La/b	600	200	171.43	34286
3600	Lc	400	300	111.11	33333
4000	Lc/a	450	1100	112.50	123750
5000	Ld	500	300	100.00	30000
5400	Ld/a	550	100	101.85	10185
Sum			2500 (G)		285400 (H)
				Weighted Average (J= H/G):	114.160 (J)

*These are circuit km of types that have been provided in the previous 10 years. If no information is available for a particular category the best forecast will be used.

14.15.64 The weighted average £/MWkm (J in the example above) is then converted in to an annual figure by multiplying it by an annuity factor. The formula used to calculate of the annuity factor is shown below:

- 14.15.65 The Weighted Average Cost of Capital (WACC) and asset life are established at the start of a price control and remain constant throughout a price control period. The WACC used in the calculation of the annuity factor is the The Company regulated rate of return, this assumes that it will be reasonably representative of all licensees. The asset life used in the calculation is 50 years; the appropriateness of this is reviewed when the annuity factor is recalculated at the start of a price control period. These assumptions provide a current annuity factor of 0.066.
- 14.15.66 The final step in calculating the expansion constant is to add a share of the annual transmission overheads (maintenance, rates etc). This is done by multiplying the average weighted cost (J) by an 'overhead factor'. The 'overhead factor' represents the total business overhead in any year divided by the total Gross Asset Value (GAV) of the transmission system. This is recalculated at the start of each price control period. The overhead factor used in the calculation of the expansion constant for 2009/10 is 1.8%. The overhead and annuitised costs are then added to give the expansion constant.
- 14.15.67 Using the previous example, the final steps in establishing the expansion constant are demonstrated below:

400kV OHL expansion constant calculation	Ave £/MWkm
OHL	114.160

Page 15 of 63

Annuitised	7.535
Overhead	2.055
Final	9.589

- 14.15.68 This process is carried out for each voltage onshore, along with other adjustments to take account of upgrade options, see 14.15.73, and normalised against the 400KV overhead line cost (the expansion constant) the resulting ratios provide the basis of the onshore expansion factors. The process used to derive circuit expansion factors for Offshore Transmission Owner networks is described in 14.15.78.
- 14.15.69 This process of calculating the incremental cost of capacity for a 400kV OHL, along with calculating the onshore expansion factors is carried out for the first year of the price control and is increased by inflation, RPI, (May–October average increase, as defined in The Company's Transmission Licence) each subsequent year of the price control period. The expansion constant for 2010/11 is 10.633.

Onshore Wider Circuit Expansion Factors

- 14.15.70 Base onshore expansion factors are calculated by deriving individual expansion constants for the various types of circuit, following the same principles used to calculate the 400kV overhead line expansion constant. The factors are then derived by dividing the calculated expansion constant by the 400kV overhead line expansion constant. The factors will be fixed for each respective price control period.
- 14.15.71 In calculating the onshore underground cable factors, the forecast costs are weighted equally between urban and rural installation, and direct burial has been assumed. The operating costs for cable are aligned with those for overhead line. An allowance for overhead costs has also been included in the calculations.
- 14.15.72 The 132kV onshore circuit expansion factor is applied on a TO basis. This is to reflect the regional variation of plans to rebuild circuits at a lower voltage capacity to 400kV. The 132kV cable and line factor is calculated on the proportion of 132kV circuits likely to be uprated to 400kV. The 132kV expansion factor is then calculated by weighting the 132kV cable and overhead line costs with the relevant 400kV expansion factor, based on the proportion of 132kV circuitry to be uprated to 400kV. For example, in the TO areas of National Grid and Scottish Power where there are no plans to uprate any 132kV circuits, the full cable and overhead line costs of 132kV circuit are reflected in the 132kV expansion factor calculation.
- 14.15.73 The 275kV onshore circuit expansion factor is applied on a GB basis and includes a weighting of 83% of the relevant 400kV cable and overhead line factor. This is to reflect the averaged proportion of circuits across all three Transmission Licensees which are likely to be uprated from 275kV to 400kV across GB within a price control period.
- 14.15.74 The 400kV onshore circuit expansion factor is applied on a GB basis and reflects the full costs for 400kV cable and overhead lines.
- 14.15.75 AC sub-sea cable and HVDC circuit expansion factors are calculated on a case by case basis using actual project costs (Specific Circuit Expansion Factors).

Page 16 of 63

- 14.15.76 For HVDC circuit expansion factors both the cost of the converters and the cost of the cable are included in the calculation.
- 14.15.77 The TO specific onshore circuit expansion factors calculated for 2008/9 (and rounded to 2 decimal places) are:

Scottish Hydro Region

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	27.79
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.24	

Scottish Power & National Grid Regions

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	30.22
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.80	

Onshore Local Circuit Expansion Factors

- 14.15.78 The local onshore circuit tariff is calculated using local onshore circuit expansion factors. These expansion factors are calculated using the same methodology as the onshore wider expansion factor but without taking into account the proportion of circuit kms that are planned to be uprated.
- 14.15.79 In addition, the 132kV onshore overhead line circuit expansion factor is sub divided into four more specific expansion factors. This is based upon maximum (winter) circuit continuous rating (MVA) and route construction whether double or single circuit.

400kV underground cable factor:	22.39
275kV underground cable factor:	22.39
132kV underground cable factor:	30.22
400kV line factor:	1.00
275kV line factor:	1.14
132kV line factor (single; <200MVA):	10.00
132kV line factor (double; <200MVA):	8.32
132kV line factor (single; >=200MVA):	7.13
132kV line factor (double; >=200MVA):	4.42

Offshore Circuit Expansion Factors

14.15.80 Offshore expansion factors (£/MWkm) are derived from information provided by Offshore Transmission Owners for each offshore circuit. Offshore expansion factors are Offshore Transmission Owner and circuit specific. Each Offshore Transmission Owner will periodically provide, via the STC, information to derive an annual circuit revenue requirement. The offshore circuit revenue shall include revenues associated with the Offshore Transmission Owner's reactive compensation equipment, harmonic filtering equipment, asset spares and HVDC converter stations.

14.15.81 In the first year of connection, the offshore circuit expansion factor would be calculated as follows:

$\frac{CRevOFTO1}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$

Where:

CRevOFTO1	=	The offshore circuit revenue in £ for Year 1
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

14.15.82 In all subsequent years, the offshore circuit expansion factor would be calculated as follows:

$$\frac{AvCRevOFTO}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$$

Where:

AvCRevOFTO	=	The annual offshore circuit revenue averaged over the
		remaining years of the onshore National Electricity
		Transmission System Operator (NETSO) price control
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

- 14.15.83 For the avoidance of doubt, the offshore circuit revenue values, *CRevOFTO1* and *AvCRevOFTO* shall be determined using asset values after the removal of any One-Off Charges.
- 14.15.84 Prevailing OFFSHORE TRANSMISSION OWNER specific expansion factors will be published in this statement. These shall be recalculated at the start of each price control period using the formula in paragraph 14.15.71. For each subsequent year within the price control period, these expansion factors will be adjusted by the annual Offshore Transmission Owner specific indexation factor, *OFTOInd*, calculated as follows;

$$OFTOInd_{t,f} = \frac{OFTO \operatorname{Rev}Ind_{t,f}}{RPI_{t}}$$

where:

OFTOInd _{t,f}	=	the indexation factor for Offshore Transmission Owner <i>f</i> in respect of charging year <i>t</i> ,
OFTORevInd _t f	=	the indexation rate applied to the revenue of Offshore Transmission Owner f under the terms of its Transmission Licence in respect of charging year t , and
<i>RPI</i> _t	=	the indexation rate applied to the expansion constant in respect of charging year <i>t</i> .

Offshore Interlinks

14.15.85 The revenue associated with an Offshore Interlink shall be divided entirely between those generators benefiting from the installation of that Offshore Interlink. Each of these Users will be responsible for their charge from their charging date, meaning that a proportion of the Offshore Interlink revenue may be socialised prior to all relevant Users being chargeable. The proportion associated with each User will be based on the Measure of Capacity to the MITS using the Offshore Interlink(s) in the event of a single circuit fault on the User's circuit from their offshore substation towards the shore, compared to the Measure of Capacity of the other Users.

Where:

An *Offshore Interlink* is a circuit which connects two offshore substations that are connected to a Single Common Substation. It is held in open standby until there is a transmission fault that limits the User's ability to export power to the Single Common Substation. In the Transport Model, they are to be modelled in open standby.

A Single Common Substation is a substation where:

- i. each substation that is connected by an Offshore Interlink is connected via at least one circuit without passing through another substation; and
- ii. all routes connecting each substation that is connected by an Offshore Interlink to the MITS pass through.

The Measure of Capacity to the MITS for each Offshore substation is the result of the following formula or zero whichever is larger. For the situation with only one interlink, all terms relating to C should be set to zero:

```
For Substation A:
min { Cap_{IAB}, ILF_A \times TEC_A - RCap_A, Cap_B - ILF_B \times TEC_B + min (Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation B:

min { ILF_B \times TEC_B - RCap_B, min (Cap_{IAB}, Cap_A - ILF_A \times TEC_A)

+ min ( Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation C:

min { Cap_{IBC}, ILF_{C} \times TEC_{C} - RCap_{C}, Cap_{B} - ILF_{B} \times TEC_{B} + min (Cap_{IAB}, Cap_{A} - ILF_{A} \times TEC_{A}) }

and
```

Cap _{IAB} = B	total capacity of the Offshore Interlink between substations A and
Cap _{IBC} = C	total capacity of the Offshore Interlink between substations B and
Cap _X =	total capacity of the circuit between offshore substation X and the Single Common Substation, where X is A, B or C.
RCap _x =	remaining capacity of the circuit between offshore substation X and the Single Common Substation in the event of a single cable fault, where X is A, B or C.
TEC _x =	the sum of the TEC for the Users connected, or contracted to connect, to offshore substation X, where X is A, B or C, where the value of TEC will be the maximum TEC that each User has held since the initial charging date, or is contracted to hold if prior to the initial charging date.

- ILF_x = Offshore Interlink Load Factor, where X is A, B or C. The Offshore Interlink Load Factor (ILF) is based on the Annual Load Factor (ALF). Until all the Users connected to a Single Common Substation have a station specific Annual Load Factor based on five years of data, the generic ALF for the fuel type will be used as the ILF for all stations. When all Users have a station specific ALF, the value of the ALF in the first such year will be used as the ILF in the calculation for all subsequent charging years.
- 14.15.86 The apportionment of revenue associated with Offshore Interlink(s) in 14.15.85 applies in situations where the Offshore Interlink was included in the design phase, or if one or more User(s) has already financially committed or been commissioned then only where that User(s) agrees to the Offshore Interlink.
- 14.15.87 Alternatively to the formula specified in 14.15.85 the proportion of the OFTO revenue associated with the Offshore Interlink allocated to each generator benefiting from the installation of an Offshore Interlink may be agreed between these Users. In this event:
- a. All relevant Users shall notify The Company of its respective proportions three months prior the OTSDUW asset transfer in the case of a generator build, or the charging date of the first generator, in the case of an OFTO build.
- b. All relevant Users may agree to vary the proportions notified under (a) by each writing to The Company three months prior to the charges being set for a given charging year.
- c. Once a set of proportions of the OFTO revenue associated with the Offshore Interlink has been provided to The Company, these will apply for the next and future charging years unless and until The Company is informed otherwise in accordance with (b) by all of the relevant Users.
- d. If all relevant Users are unable to reach agreement on the proportioning of the OFTO revenue associated with the Offshore Interlink they can raise a dispute. Any dispute between two or more Users as to the proportioning of such revenue shall be managed in accordance with CUSC Section 7 Paragraph 7.4.1 but the reference to the 'Electricity Arbitration Association' shall instead be to the 'Authority' and the Authority's determination of such dispute shall, without prejudice to apply for judicial review of any determination, be final and binding on the Users.

The Locational Onshore Security Factor

14.15.88 The locational onshore security factor is derived by running a secure DCLF ICRP transport study based on the same market background as used for Zoning in the DCLF ICRP transport model. This calculates the nodal marginal costs where peak <u>net</u> demand can be met despite the Security and Quality of Supply Standard contingencies (simulating single and double circuit faults) on the network. Essentially the calculation of secured nodal marginal costs is identical to the process outlined above except that the secure DCLF study additionally calculates a nodal marginal cost taking into account the requirement to be secure against a set of worse case contingencies in terms of maximum flow for each circuit.

- 14.15.89 The secured nodal cost differential is compared to that produced by the DCLF ICRP transport model and the resultant ratio of the two determines the locational security factor using the Least Squares Fit method. Further information may be obtained from the charging website¹.
- 14.15.90 The locational onshore security factor derived for 2010/11 is 1.8 and is based on an average from a number of studies conducted by The Company to account for future network developments. The security factor is reviewed for each price control period and fixed for the duration.

Local Security Factors

- 14.15.91 Local onshore security factors are generator specific and are applied to a generator's local onshore circuits. If the loss of any one of the local circuits prevents the export of power from the generator to the MITS then a local security factor of 1.0 is applied. For generation with circuit redundancy, a local security factor is applied that is equal to the locational security factor, currently 1.8.
- 14.15.92 Where a Transmission Owner has designed a local onshore circuit (or otherwise that circuit once built) to a capacity lower than the aggregated TEC of the generation using that circuit, then the local security factor of 1.0 will be multiplied by a Counter Correlation Factor (CCF) as described in the formula below;

$$CCF = \frac{D_{\min} + T_{cap}}{G_{cap}}$$

Where; D_{min} = minimum annual net demand (MW) supplied via that circuit in the absence of that generation using the circuit

 T_{cap} = transmission capacity built (MVA)

 G_{cap} = aggregated TEC of generation using that circuit

CCF cannot be greater than 1.0.

14.15.93 A specific offshore local security factor (LocalSF) will be calculated for each offshore connection using the following methodology:

$$LocalSF = \frac{NetworkExportCapacity}{\sum_{k} Gen_{k}}$$

Where:

 NetworkExportCapacity =
 the total export capacity of the network disregarding any Offshore Interlinks

 k
 =
 the generation connected to the offshore network

1 http://www.nationalgrid.com/uk/Electricity/Charges/

Page 21 of 63

- 14.15.94 The offshore security factor for single circuits with a single cable will be 1.0 and for multiple circuit connections will be capped at the locational onshore security factor, derived as 1.8 for 2010/11.
- 14.15.95 The offshore local security factor for configurations with one or more Offshore Interlinks is updated so that the offshore circuit tariff will include the proportion of revenue associated with the Offshore Interlink(s). The specific offshore local security factor for configurations involving an Offshore Interlink, which may be greater than 1.8, will be calculated for each offshore connection using the following methodology:

LocalSF =	$\frac{\text{IRevOFTO} \times \text{NetworkExportCapacity}}{\text{OP} \times \text{OFTO} \times \sum_{i} C_{i}} + LocalSF_{initial}$
	$CRevOFTO \times \sum Gen_k$
	k

Where:

IRevOFTO =	The appropriate proportion of the Offshore Interlink(s) revenue in £
	associated with the offshore connection calculated in 14.15.85
CRevOFTO =	The offshore circuit revenue in £ associated with the circuit(s) from the
	offshore substation to the Single Common Substation.
<u>LocalSF_{initial} =</u>	Initial Local Security Factor calculated in 14.15.80 and 14.15.81
	And other definitions as in 14.15.80.

Initial Transport Tariff

14.15.96 First an Initial Transport Tariff (ITT) must be calculated for both Peak Security and Year Round backgrounds. For Generation, the Peak Security zonal marginal km (ZMkm_{PS}), Year Round Not-Shared zonal marginal km (ZMkm_{YRNS}) and Year Round Shared zonal marginal km (ZMkm_{YRS}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT, Year Round Not-Shared ITT and Year Round Shared ITT respectively:

 $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$

Where ZMkm _{GiPS} ZMkm _{GiYRNS} charging zone	= = e	Peak Security Zonal Marginal km for each generation zone Year Round Not-Shared Zonal Marginal km for each generation
ZMkm _{GiYRS}	=	Year Round Shared Zonal Marginal km for each generation
charging zon	е	
EC	=	Expansion Constant
LSF	=	Locational Security Factor
	=	Peak Security Initial Transport Tariff (£/MW) for each generation
zone		
ITT _{GiYRNS}	=	Year Round Not-Shared Initial Transport Tariff (£/MW) for each
generation ch	narging	zone
ITT _{GiYRS}	=	Year Round Shared Initial Transport Tariff (£/MW) for each
generation ch	narging	zone.

- CUSC v1.12
 - 14.15.97 Similarly, for demand the Peak Security zonal marginal km (ZMkm_{PS}) and Year Round zonal marginal km (ZMkm_{YR}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT and Year Round ITT respectively:

		$ZMkm_{DiPS} \times EC \times LSF = ITT_{DiPS}$
		$ZMkm_{DiYR} \times EC \times LSF = ITT_{DiYR}$
Where ZMkm _{DiP} ZMkm _{DiY}	0	Peak Security Zonal Marginal km for each demand zone Year Round Zonal Marginal km for each demand zone
ITT _{DiPS} ITT _{DiYR}	= =	Peak Security Initial Transport Tariff (\pounds /MW) for each demand one Year Round Initial Transport Tariff (\pounds /MW) for each demand zone
14.15.98	GSP group revenue ree metered tria	tep is to multiply these ITTs by the expected metered triad <u>gross</u> demand and generation capacity to gain an estimate of the initial covery for both Peak Security and Year Round backgrounds. The ad <u>gross GSP group</u> demand and generation capacity are based on forecasts provided by Users and are confidential.
a.		ad gross GSP group demand is net demand for all GSP groups less exports for all GSP groups .
Where		

ITRR _G =	Initial Transport Revenue Recovery for generation
G _{Gi} =	Total forecast Generation for each generation zone (based
	on <u>analysis of</u> confidential User forecasts)
ITRR _D =	Initial Transport Revenue Recovery for gross GSP group
	demand
D _{Di} =	Total forecast Metered Triad gross GSP group Demand for
each	
	demand zone (based on <u>analysis of</u> confidential User
	forecasts).

In addition, the initial tariffs for generation are also multiplied by the **Peak Security flag** when calculating the initial revenue recovery component for the Peak Security background. Similarly, when calculating the initial revenue recovery for the Shared component of the Year Round background, the initial tariffs are multiplied by the **Annual Load Factor** (see below).

Peak Security (PS) Flag

14.15.99 The revenue from a specific generator due to the Peak Security locational tariff needs to be multiplied by the appropriate Peak Security (PS) flag. The PS flags indicate the extent to which a generation plant type contributes to the need for transmission network investment at peak demand conditions. The PS

Page 23 of 63

flag is derived from the contribution of differing generation sources to the demand security criterion as described in the Security Standard. In the event of a significant change to the demand security assumptions in the Security Standard, National Grid will review the use of the PS flag.

Generation Plant Type	PS flag
Intermittent	0
Other	1

Annual Load Factor (ALF)

- 14.15.100 The ALF for each individual Power Station is calculated using the relevant TEC (MW) and corresponding output data. Where output data is not available for a Power Station, including for new Power Stations and emerging Power Station technologies, generic data for the appropriate generation plant type will be used.
- 14.15.101 For a given charging year "t" the Power Station ALF will be based on information from the previous five charging years, calculated for each charging year as set out below.

$$ALF = \frac{\sum_{p=1}^{17520} GMWh_p}{\sum_{p=1}^{17520} TECp \times 0.5}$$

Where:

 $\mathsf{GMWh}_{\mathsf{p}}$ is the maximum of FPN or actual metered output in a Settlement Period related to the power station TEC (MW); and

 TEC_{p} is the TEC (MW) applicable to that Power Station for that Settlement Period including any STTEC and LDTEC, accounting for any trading of TEC.

- 14.15.102 The appropriate output (FPN or actual metered) figure is derived from **BM Unit** data available to National Grid and relates to the total TEC of the Power Station.
- 14.15.103 Once all five charging year ALFs have been calculated for the individual Power Station they are compared, and the highest and lowest figures are discarded. The final ALF, to be used for transmission charging purposes, is calculated as the average of the remaining three ALFs.
- 14.15.104 In the event that only four charging years of complete output (FPN or actual metered) data are available for an individual Power Station then the higher three charging years ALF would be used in the calculation of the final ALF. In the event that only three charging years of complete output (FPN or actual metered) data are available then these three charging years would be used.
- 14.15.105 Due to the aggregation of output (FPN or actual metered) data for dispersed generation (e.g. cascade hydro schemes), where a single generator BMU consists of geographically separated power stations, the ALF would be calculated based on the total output of the BMU and the overall TEC of those Power Stations.

Page 24 of 63

1

- 14.15.106 In the event that there are not three full charging years of an individual power station's output available, missing output (FPN or actual metered) data would be replaced by generic data for that generation plant type to ensure three charging years of information are available for the Power Station. The derivation of the generic data is described in paragraphs 14.15.111-14.15.114.
- 14.15.107 Users will receive draft ALFs before 25th December of the charging year (t-1) for the charging year (t) and will have a period of 15 working days from date of publishing to notify the Company of any errors. Failure to agree changes relating to errors will be treated as a charging dispute under the CUSC.
- 14.15.108 The ALFs used in the setting of final tariffs will be published in the annual Statement of Use of System Charges. Changes to ALFs after this publication will not result in changes to published tariffs (e.g. following dispute resolution).

Derivation of Generic ALFs

14.15.109 The generic ALF is derived from the average annual output of the ten most recently commissioned GB generation of a particular generation plant type that have at least five charging years' data, using an identical methodology to that used for the Power Station specific calculation described above. Where less than ten GB generators of a particular generation plant type exist, then data from all existing generators of that particular generation plant type will be used. Example generation plant type categories are listed below;

Fuel Type
Biomass
Coal
Gas
Hydro
Nuclear (by reactor
type)
Oil & OCGTs
Pumped Storage
Onshore Wind
Offshore Wind
CHP

- 14.15.110 The Company will keep these categories under review and update as necessary. Where within a category there is a significant locational difference consideration will be given to zonal generic factors. The factors used will be published in the Statement of Use of System Charges and will be reviewed annually.
- 14.15.111 If a User can demonstrate that the generation plant type of a Power Station has changed, consideration will be given to the use of relevant generic ALF information in the calculation of their charges until sufficient specific data is available.
- 14.15.112 For new and emerging generation plant types, where insufficient data is available to allow a generic ALF to be developed, The Company will use the best information available e.g. from manufactuers and data from use of similar technologies outside GB. The factor will be agreed with the relevant Generator. In the event of a disagreement the standard provisions for dispute in the CUSC will apply.

TNUoS Embedded Export Tariff		
<u>14.15.113</u>	Embedded exports are exports measured on a half-hourly basis by Metering Systems, in accordance with the BSC, that are not subject to generation TNUoS.	
<u>14.15.114</u>	The embedded export tariff will be applied to the metered Triad volumes of Embedded Exports for each demand zone as follows:	
	$EET_{Di} = ITT_{DiPS} + ITT_{DiYR} + EX$	
	Where	
ITT _{DIPS} = ITT _{DIYR} = EX:	<u>Peak Security Initial Transport Tariff for the demand zone;</u> Year Round Initial Transport Tariff for the demand zone, and	
First Charging	g year following the implementation date of CMP 264/265:	
	$=\frac{2}{3}(XP - AGIC) + AGIC$	
Second charg	ging year following the implementation date of CMP 264/265:	
	$=\frac{2}{3}(XP - AGIC) + AGIC$	
Third chargin	ng year following the implementation date of CMP 264/265 and every	
subsequent c		
	= AGIC	
<u>Where</u> XP =	Value of demand residual in charging year prior to implementation	
	Value of demand residual in charging year prior to implementation The Avoided GSP Infrastructure Credit (AGIC) which represents the unit	
	structure reinforcement at GSPs which is avoided as a consequence of	
	eneration connected to the distribution networks served by those GSPs. It	
	from the average annuitised cost of that infrastructure reinforcement	
	e average capacity delivered by a supergrid transformer.	
	GSP Infrastructure Credit is calculated at the beginning of each price	
	I and in the first applicable charging year following the implementation date	
	165 using data submitted by onshore TSOs as part of the price control	
	e data used is from the most recent [20] schemes submitted under the price	
	ss and indexed each year by the RPI formula set out in 14.3.6 until the end	
	ontrol. For the avoidance of doubt, this approach does not include the cost rid transformers or any other connection assets as they are paid for by the	
	is thorough their connection charges.	
	<u></u>	
	The Value of EET _{Di} will be floored at zero, so that EET _{Di} is always zero or	
	positive.	

Initial Revenue Recovery

14.15,115 For the Peak Security background the initial tariff for generation is multiplied by the total forecast generation capacity and the PS flag to give the initial revenue recovery:

$$\sum_{Gi=1}^{n} (ITT_{GiPS} \times G_{Gi} \times F_{PS}) = ITRR_{GPS}$$

Where

Page 26 of 63

V1.12-01 April 2016

	=	Peak Security Initial Transport Revenue Recovery for generation	
G_{Gi}	=	Total forecast Generation for each generation zone (based on <u>analysis of</u> confidential User forecasts)	

F_{PS} n Peak Security flag appropriate to that generator type

Number of generation zones

The initial revenue recovery for <u>gross GSP group</u> demand for the Peak Security background is calculated by multiplying the initial tariff by the total forecast metered triad <u>gross GSP group</u> demand:

$$\sum_{Di=1}^{14} (ITT_{DiPS} \times D_{Di}) = ITRR_{DPS}$$

Where:

ITRRDPS	=	Peak Security Initial Transport Revenue Recovery for gross GSP
		group_demand
D _{Di}	=	Total forecast Metered Triad gross GSP group Demand for each
		demand zone (based on analysis of confidential User forecasts)

14.15,116 For the Year Round background, the initial tariff for generation is multiplied by the total forecast generation capacity whilst calculating Initial Recovery for Not-Shared component whereas the initial tariff for Shared component is multiplied by both, the total forecast generation capacity and the ALF to give the initial revenue recovery:

$$\sum_{G_{i}=1}^{n} (ITT_{G_{i}YRNS} \times G_{G_{i}}) = ITRR_{GYRNS}$$
$$\sum_{G_{i}=1}^{n} (ITT_{G_{i}YRS} \times G_{G_{i}} \times ALF) = ITRR_{GYRS}$$

Where:

ITRR
GYRNS
generation=Year Round Not-Shared Initial Transport Revenue Recovery for
ITRR
GYRS
generationITRR
GYRS
generation
ALF=Year Round Shared Initial Transport Revenue Recovery for
transport Revenue Recovery for
deneration

14.15,117 Similar to the Peak Security background, the initial revenue recovery for gross <u>GSP group</u> demand for the Year Round background is calculated by multiplying the initial tariff by the total forecast metered triad gross GSP group demand:

$$\sum_{Di=1}^{14} \left(ITT_{DiYR} \times D_{Di} \right) = ITRR_{DYR}$$

Where: ITRR_{DYR}

 Year Round Initial Transport Revenue Recovery for <u>gross GSP</u> group demand

Page 27 of 63

V1.12-01 April 2016

Deleted: 114

14.15.118The initial revenue recovery for Embedded Exports is the Embedded Export Tariff multiplied by the total forecast volume of Embedded Export at triad:

$$ITRR_{EE} = \sum_{Di=1}^{14} (EET_{Di} \times EEV_{Di})$$

<u>Where</u>

 ITTR_{EE}
 = Initial Revenue impact for Embedded Exports

 EEV_{Di}
 = Forecast Embedded Export metered volume at Triad

 (MW)
 (MW)

For the avoidance of doubt, the initial revenue recovery for affected embedded exports can be positive or negative.

Deriving the Final Local Tariff (£/kW)

Local Circuit Tariff

14.15,119 Generation with a local circuit tariff is calculated by multiplying the Year Round nodal marginal km along the local circuit by the expansion constant and the relevant local security factor (whether onshore or offshore) and summing across local circuits to give the local circuit tariff:

$$\sum_{k} \frac{NLMkm_{G_{i}}^{L} \times EC \times LocalSF_{k}}{1000} = CLT_{G_{i}}$$

Where

k	=	Local circuit k for generator
NLMkm _{Gj} ^L	=	Year Round Nodal marginal km along local circuit k using local
		circuit expansion factor.
EC	=	Expansion Constant
LocalSF _k	=	Local Security Factor for circuit k
CLT _{Gi}	=	Circuit Local Tariff (£/kW)

Onshore Local Substation Tariff

14.15,120 All chargeable generation is subject to the local substation tariff component which is determined by assessing the generation substation type which is the substation at the connection charging boundary, against three cost determining factors:

Deleted: 117

Page 28 of 63

- (a) HV connection voltage the voltage at the boundary between the User's connection assets and the transmission system;
- (b) Sum of TEC at the generation substation the combined TEC of all generation at the connecting substation; and
- (c) The level of redundancy at the generation substation single busbar / single switch mesh connections are examples of no redundancy connections, whereas examples of connections with redundancy include double busbar and mesh sub station designs.
- 14.15,<u>121</u> Using the above factors, the corresponding £/kW tariffs (quoted to 3dp) that will be applied during 2010/11 are:

Substation	Connection	Substation Voltage (a)		
Rating (b)	Type (c)	132kV	275kV	400kV
<1320MW	No redundancy	0.133	0.081	0.065
<1320MW	Redundancy	0.301	0.192	0.155
>=1320MW	No redundancy	n/a	0.257	0.208
>=1320MW	Redundancy	n/a	0.417	0.336

- 14.15,122 The process for calculating Local Substation Tariffs will be carried out for the first year of the price control and will subsequently be indexed by RPI for each subsequent year of the price control period.
- 14.15,<u>123</u> The effective Local Tariff (£/kW) is calculated as the sum of the circuit and substation onshore and/or offshore components:

$$ELT_{Gi} = CLT_{Gi} + SLT_{Gi}$$

Where

I

 ELT_{Gi} = Effective Local Tariff (£/kW) SLT_{Gi} = Substation Local Tariff (£/kW)

14.15,<u>124</u> Where tariffs do not change mid way through a charging year, final local tariffs will be the same as the effective tariffs:

ELT_{Gi}	=	LT _{Gi}
Where		
LT _{Gi}	=	Final Local Tariff (£/kW)

14.15,125 Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$LT_{Gi} = \frac{12 \times \left(ELT_{Gi} \times \sum_{Gi=1}^{21} G_{Gi} - FLL_{Gi}\right)}{b \times \sum_{Gi=1}^{21} G_{Gi}} \quad \text{and} \quad FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{21} D_{Di}}$$

Where:

b = number of months the revised tariff is applicable for

FLL = Forecast local liability incurred over the period that the original tariff is applicable for

Page 29 of 63

V1.12-01 April 2016

Deleted: 119

Deleted: 118

Deleted: 120

Deleted: 121

CUSC v1.12 14.15,126 For the purposes of charge setting, the total local charge revenue is calculated Deleted: 123 by: $\mathrm{LCRR}_{\mathrm{G}} = \sum_{i=Gi} \mathrm{LT}_{\mathrm{Gi}} * G_{i}$ Where LCRR_G Local Charge Revenue Recovery = Gi = Forecast chargeable Generation or Transmission Entry Capacity in kW (as applicable) for each generator (based on analysis of confidential information received from Users) Offshore substation local tariff 14.15,127 All offshore chargeable generation is subject to an offshore substation tariff. Deleted: 124 The offshore substation tariff shall be the sum of transformer, switchgear and platform components. 14.15,128 Each tariff component, expressed in £/kW, shall be the ratio of the Offshore Deleted: 125 Transmission Owner revenue (£) and rating associated with the transformers, switchgear or platform (kW) at each offshore substation. The Offshore Transmission Owner revenue of each tariff component shall include that associated with asset spares. In the case of the platform component, the relevant rating shall be the lower of the transformer or switchgear ratings. As with the offshore circuit expansion factors, the Offshore Transmission Owner revenue associated with each tariff component shall be averaged over the remaining years of the NETSO price control. 14.15,129 Offshore Transmission Owner revenue associated with interest during Deleted: 126 construction and project development overheads will be attributed to the relevant asset category with which it is associated. If these or any other costs included in the Offshore Transmission Owner revenue are not readily attributable to a given asset category, they will be pro-rated across the various asset categories based on their relative cost. 14.15,130 For 2010/11 a discount of £0.345590/kW shall be provided to the offshore Deleted: 127 substation tariff to reflect the average cost of civil engineering for onshore substations. This will be inflated by RPI each year and reviewed every price control period. 14.15,131 Offshore substation tariffs shall be reviewed at the start of every onshore price Deleted: 128 control period. For each subsequent year within the price control period, these shall be inflated in the same manner as the associated Offshore Transmission Owner Revenue. 14.15,132 The revenue from the offshore substation local tariff is calculated by: Deleted: 129 $SLTR = \sum_{All offshore} \left(SLT_k \times \sum_k Gen_k \right)$ Where: the offshore substation tariff for substation k SLT_k = Gen₄ the generation connected to offshore substation k = Page 30 of 63 V1.12-01 April 2016

The Residual Tariff

14.15,133 The total revenue to be recovered through TNUoS charges is determined each year with reference to the Transmission Licensees' Price Control formulas less the costs expected to be recovered through Pre-Vesting connection charges. Hence in any given year t, a target revenue figure for TNUoS charges (TRR_t) is set after adjusting for any under or over recovery for and including, the small generators discount is as follows:

$$TRR_t = R_t - PVC_t - SG_{t-1}$$

Where

1

- TRRt = TNUoS Revenue Recovery target for year t
 Rt = Forecast Revenue allowed under The Company's RPI-X Price Control Formula for year t (this term includes a number of adjustments, including for over/under recovery from the previous year). For further information, refer to Special Condition D2 of The Company's Transmission Licence.
- PVC_t = Forecast Revenue from Pre-Vesting connection charges for year t
- SG_{t-1} = The proportion of the under/over recovery included within R_t which relates to the operation of statement C13 of the The Company Transmission Licence. Should the operation of statement C13 result in an under recovery in year t 1, the SG figure will be positive and vice versa for an over recovery.
- 14.15,134 In normal circumstances, the revenue forecast to be recovered from the initial transport tariffs will not equate to the total revenue target. This is due to a number of factors. For example, the transport model assumes, for simplicity, smooth incremental transmission investments can be made. In reality, transmission investment can only be made in discrete 'lumps'. The transmission system has been planned and developed over a long period of time. Forecasts and assessments used for planning purposes will not have been borne out precisely by events and therefore some distinction between an optimal system for one year and the actual system can be expected.
- 14.15,135 As a result of the factors above, in order to ensure adequate revenue recovery, a constant non-locational **Residual Tariff** for generation and demand is calculated, which includes infrastructure substation asset costs. It is added to the initial transport tariffs for both Peak Security and Year Round backgrounds so that the correct generation / demand revenue split is maintained and the total revenue recovery is achieved.

$$RT_{D} = \frac{(p \times TRR) - ITRR_{DPS} - ITRR_{DYR} - ITRR_{EE}}{\sum_{Di=1}^{14} D_{Di}}$$

$$RT_{G} = \frac{\left[(1-p) \times TRR\right] - ITRR_{GPS} - ITRR_{GYRNS} - ITRR_{GYRS} - LCRR_{G}}{\sum_{Gi=1}^{n} G_{Gi}}$$

Page 31 of 63

Where RT

= Residual Tariff (£/MW)

р

Proportion of revenue to be recovered from demand

V1.12-01 April 2016

Deleted: 130

Deleted: 131

Deleted: ¶	
DT _	$(p \times TRR) - I$
$RT_D =$	·
	4

Final £/kW Tariff

14.15,136 The effective Transmission Network Use of System tariff (TNUoS) for generation and gross demand can now be calculated as the sum of the initial transport wider tariffs for Peak Security and Year Round backgrounds, the non-locational residual tariff and the local tariff:

$$ET_{Gi} = \frac{ITT_{GiPS} + ITT_{GiYRNS} + ITT_{GiYRS} + RT_{G}}{1000} + LT_{Gi}$$
$$ET_{Di} = \frac{ITT_{DiPS} + ITT_{DiYR} + RT_{D}}{1000}$$

Where

- $$\label{eq:expectation} \begin{split} \mathsf{ET}_{\underline{\mathsf{Gi}}} &= _\mathsf{Effective} \ \underline{\mathsf{Generation}} \ \mathsf{TNUoS} \ \mathsf{Tariff} \ \mathsf{expressed} \ \mathsf{in} \ \underline{\mathsf{L}}/\mathsf{kW} \ (\mathsf{ET}_{\mathsf{Gi}} \ \mathsf{would} \ \mathsf{only} \ \mathsf{be} \\ & \mathsf{applicable} \ \mathsf{to} \ \mathsf{a} \ \mathsf{Power} \ \mathsf{Station} \ \mathsf{with} \ \mathsf{a} \ \mathsf{PS} \ \mathsf{flag} \ \mathsf{of} \ \mathsf{1} \ \mathsf{and} \ \mathsf{ALF} \ \mathsf{of} \ \mathsf{1}; \ \mathsf{in} \ \mathsf{all} \ \mathsf{other} \\ & \mathsf{circumstances} \ \mathsf{ITT}_{\mathsf{GiPS}}, \ \mathsf{ITT}_{\mathsf{GiPRNS}} \ \mathsf{and} \ \mathsf{ITT}_{\mathsf{GiPRS}} \ \mathsf{will} \ \mathsf{be} \ \mathsf{applied} \ \mathsf{using} \ \mathsf{Power} \\ & \mathsf{Station} \ \mathsf{specific data}) \end{split}$$
- ET_{Di} = Effective Gross Demand TNUoS Tariff expressed in £/kW

The effective Transmission Network Use of System tariff (TNUoS) for affected embedded exports and grandfathered embedded exports can now be calculated by expressing the embedded export tariff in £/kW values:

$$ET_{EEi} = \frac{EET_{Di}}{1000}$$

<u>Where</u>

ET_{EEI} = Effective Embedded Export TNUoS Tariff expressed in £/kW

For the purposes of the annual Statement of Use of System Charges ET_{Gi} will be published as ITT_{GiPS} ; ITT_{GiPRS} , ITT_{GiPRS} , RT_G and LT_{Gi}

14.15,<u>137</u> Where tariffs do not change mid way through a charging year, final demand and generation tariffs will be the same as the effective tariffs.

$$FT_{Gi} = ET_{Gi}$$

$$FT_{Di} = ET_{Di}$$

$$FT_{EEAi} = ET_{EEi}$$

14.15,<u>138</u> Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$FT_{Gi} = \frac{12 \times \left(ET_{Gi} \times \sum_{Gi=1}^{20} G_{Gi} - FL_{Gi}\right)}{b \times \sum_{Gi=1}^{27} G_{Gi}}$$

Page 32 of 63

V1.12-01 April 2016

Deleted: 133

Deleted: 134

$$FT_{EEi} = \frac{12 \times (ET_{EEi} \times \sum_{Di=1}^{14} EET_{Di} - FL_{Di})}{b \times \sum_{Di=1}^{14} EET_{Di}} \text{ and } FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{14} D_{Di}}$$

Where:

b = number of months the revised tariff is applicable for FL = Forecast liability incurred over the period that the original tariff is applicable for

Note: The ET_{Gi} element used in the formula above will be based on an individual Power Stations PS flag and ALF for Power Station G_{Gi} , aggregated to ensure overall correct revenue recovery.

14.15.1,39 If the final gross demand TNUoS Tariff results in a negative number then this is collared to £0/kW with the resultant non-recovered revenue smeared over the remaining demand zones:

 $NRRT_{D} = \frac{\sum_{i=1}^{z} \left(FT_{Di} \times D_{Di} \right)}{\sum_{i=1}^{14} D_{Di}}$

If $FT_{Di} < 0$, then i = 1 to z

Therefore,

Therefore the revised Final Tariff for the <u>gross</u> demand zones with positive Final tariffs is given by:

For i=1 to z: $RFT_{Di} = 0$

For *i*=z+1 to 14:

 $RFT_{Di} = FT_{Di} + NRRT_{D}$

Where

 $NRRT_D = Non Recovered Revenue Tariff (£/kW)$ RFT_{Di} = Revised Final Tariff (£/kW)

- 14.15,140 The tariffs applicable for any particular year are detailed in The Company's Statement of Use of System Charges, which is available from the Charging website. Archived tariff information may also be obtained from the Charging website.
- 14.15,141 The zonal maps referenced in The Company's **Statement of Use of System Charges** and available on the **Charging website** contain detailed information for the charging year in question of which Grid Supply Points fall into which TNUoS zones.

14.15,142 New Grid Supply Points will be classified into zones on the following basis:

- For demand zones, according to the GSP Group to which the Grid Supply Point is allocated for energy market settlement purposes.
- For generation zones, with reference to the geographic proximity to existing zones and, where close to a boundary between existing zones, with reference to the

Page 33 of 63

V1.12– 01 April 2016

Deleted: 40

Deleted: 137

Deleted: 138

marginal costs arising from transport model studies. The GSP will then be allocated to the zone, which contains the most similar marginal costs.

14.15,143 The Company has available, upon request, the DCLF ICRP transport model, tariff model template and data necessary to run the model, consisting of nodal values of generation and demand connection points to the NETS. The model and data will enable the basic nodal charges to be determined and will also allow sensitivity analysis concerning alternative developments of generation and demand to be undertaken. The model is available from the Charging Team and whilst it is free of charge, it is provided under licence to restrict its distribution and commercial use.

- 14.15,144 The Company will be pleased to run specific sensitivity studies for Users under a separate study contract in line with the fees set out in the Statement of Use of System Charges. Please contact the Charging Team.
 - 14.15,145 The factors which will affect the level of TNUoS charges from year to year include-;
 - the forecast level of peak demand on the system
 - the Price Control formula (including the effect of any under/over recovery from the previous year),
 - the expansion constant,
 - the locational security factor,
 - the PS flag
 - the ALF of a generator
 - changes in the transmission network
 - HVDC circuit impedance calculation
 - changes in the pattern of generation capacity and demand.
 - changes in the pattern of embedded exports

14.15,146 In accordance with Standard Licence Condition C13, generation directly connected to the NETS 132kV transmission network which would normally be subject to generation TNUoS charges but would not, on the basis of generating capacity, be liable for charges if it were connected to a licensed distribution network qualifies for a reduction in transmission charges by a designated sum, determined by the Authority. Any shortfall in recovery will result in a unit amount increase in gross_demand charges to compensate for the deficit. Further information is provided in the Statement of the Use of System Charges.

Stability & Predictability of TNUoS tariffs

14.15,<u>147</u> A number of provisions are included within the methodology to promote the stability and predictability of TNUoS tariffs. These are described in 14.29.

Deleted: 143

Deleted: 140

Deleted: 141

Deleted: 142

Deleted: 144

Page 34 of 63

14.16 Derivation of the Transmission Network Use of System Energy Consumption Tariff and Short Term Capacity Tariffs

- 14.16.1 For the purposes of this section, Lead Parties of Balancing Mechanism (BM) Units that are liable for Transmission Network Use of System Demand Charges are termed Suppliers.
- 14.16.2 Following calculation of the Transmission Network Use of System £/kW Gross Demand Tariff (as outlined in Chapter 2: Derivation of the TNUoS Tariff) for each GSP Group is calculated as follows:

$$p/kWh Tariff = (NHHD_F * £/kW Tariff - FL_G) *100$$

NHHC_G

Where:

 \pounds/kW Tariff = The \pounds/kW Effective <u>Gross</u> Demand Tariff (\pounds/kW), as calculated previously, for the GSP Group concerned.

 \mathbf{NHHD}_{F} = The Company's forecast of Suppliers' non-half-hourly metered Triad Demand (kW) for the GSP Group concerned. The forecast is based on historical data.

 FL_{G} = Forecast Liability incurred for the GSP Group concerned.

 $\rm NHHC_{G}$ = The Company's forecast of GSP Group non-half-hourly metered total energy consumption (kWh) for the period 16:00 hrs to 19:00hrs inclusive (i.e. settlement periods 33 to 38) inclusive over the period the tariff is applicable for the GSP Group concerned.

Short Term Transmission Entry Capacity (STTEC) Tariff

14.16.3 The Short Term Transmission Entry Capacity (STTEC) tariff for positive zones is derived from the Effective Tariff (ET_{Gi}) annual TNUoS £/kW tariffs (14.15.112). If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the STTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (i.e. over the whole financial year, not just the period that the STTEC is applicable for). STTECs will not be reconciled following a mid year charge change. The premium associated with the flexible product is associated with the analysis that 90% of the annual charge is linked to the system peak. The system peak is likely to occur in the period of November to February inclusive (120 days, irrespective of leap years). The calculation for positive generation zones is as follows:

$$\frac{FT_{Gi} \times 0.9 \times STTEC \ Period}{120} = STTEC \ tariff \ (\pounds/kW/period)$$

Where:

FT	=	Final annual TNUoS Tariff expressed in £/kW
Gi	=	Generation zone
STTEC Period	=	A period applied for in days as defined in the CUSC

Page 35 of 63

- 14.16.4 For the avoidance of doubt, the charge calculated under 14.16.3 above will represent each single period application for STTEC. Requests for multiple /STTEC periods will result in each STTEC period being calculated and invoiced separately.
- 14.16.5 The STTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.

Limited Duration Transmission Entry Capacity (LDTEC) Tariffs

14.16.6 The Limited Duration Transmission Entry Capacity (LDTEC) tariff for positive zones is derived from the equivalent zonal STTEC tariff for up to the initial 17 weeks of LDTEC in a given charging year (whether consecutive or not). For the remaining weeks of the year, the LDTEC tariff is set to collect the balance of the annual TNUoS liability over the maximum duration of LDTEC that can be granted in a single application. If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the LDTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (ie over the whole financial year, not just the period that the STTEC is applicable for). LDTECs will not be reconciled following a mid year charge change:

Initial 17 weeks (high rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.9 \times 7}{120}$$

Remaining weeks (low rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.1075 \times 7}{316 - 120} \times (1 + P)$$

where FT is the final annual TNUoS tariff expressed in £/kW; G_i is the generation TNUoS zone; and P is the premium in % above the annual equivalent TNUoS charge as determined by The Company, which shall have the value 0.

- 14.16.7 The LDTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.
- 14.16.8 The tariffs applicable for any particular year are detailed in The Company's **Statement of Use of System Charges** which is available from the **Charging website**. Historical tariffs are also available on the **Charging website**.

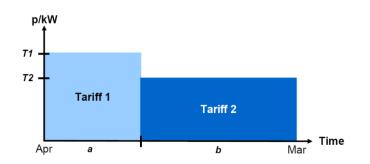
14.17 Demand Charges

Parties Liable for Demand Charges

- 14.17.1 Demand charges are subdivided into charges for gross demand, energy and embedded export. The following parties shall be liable for some or all of the categories of demand charges:
 - The Lead Party of a Supplier BM Unit;
 - Power Stations with a Bilateral Connection Agreement;
 - Parties with a Bilateral Embedded Generation Agreement
- 14.17.2 Classification of parties for charging purposes, section 14.26, provides an illustration of how a party is classified in the context of Use of System charging and refers to the paragraphs most pertinent to each party.

Basis of Gross Demand Charges

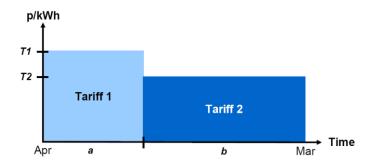
app


app

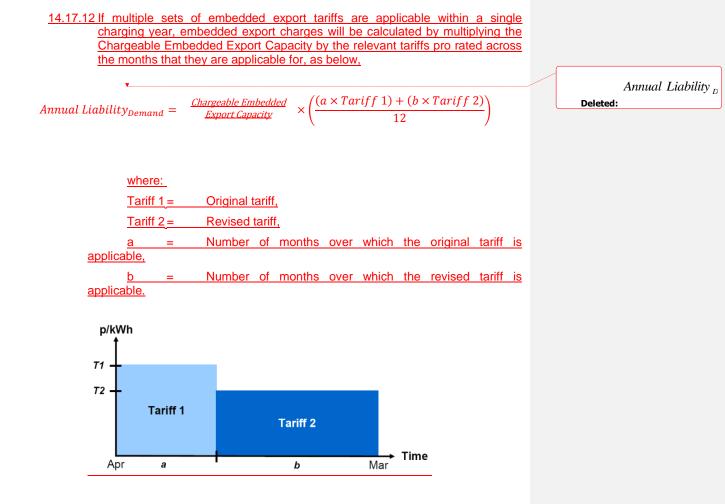
- 14.17.3 <u>Gross d</u>emand charges are based on a de-<u>minimis</u> £0/kW charge for Half Hourly and £0/kWh for Non Half Hourly metered demand.
 - 14.17.4 Chargeable <u>Gross</u> Demand Capacity is the value of Triad <u>gross</u> demand (kW). Chargeable Energy Capacity is the energy consumption (kWh). The definition of both these terms is set out below.
 - 14.17.5 If there is a single set of <u>gross</u> demand tariffs within a charging year, the Chargeable <u>Gross</u> Demand Capacity is multiplied by the relevant <u>gross</u> demand tariff, for the calculation of <u>gross</u> demand charges.
 - 14.17.6 If there is a single set of energy tariffs within a charging year, the Chargeable Energy Capacity is multiplied by the relevant energy consumption tariff for the calculation of energy charges..
 - 14.17.7 If multiple sets of <u>gross</u> demand tariffs are applicable within a single charging year, <u>gross</u> demand charges will be calculated by multiplying the Chargeable <u>Gross</u> Demand Capacity by the relevant tariffs pro rated across the months that they are applicable for, as below,

Annuc	ıl Liabilit <u>;</u>	y _{Demand} = <u>Cha</u>	nrge. man	<u>able Gross</u> <u>d Capacity</u>	$\times \left(\frac{(a)}{a}\right)$	< Tariff 2	$\frac{1}{12} + (b)$	×Tariff 2	<u>!)</u>)	
whe	re:						_			
Tarif	ff 1 =	Original ta	ariff	,						
Tarif	ff 2 =	Revised ta	arif	f,						
a licable,	=	Number	of	months	over	which	the	original	tariff	is
b licable.	=	Number	of	months	over	which	the	revised	tariff	is

Deleted: minimus


Deleted: Annual Liability D

14.17.8 If multiple sets of energy tariffs are applicable within a single charging year, energy charges will be calculated by multiplying relevant Tariffs by the Chargeable Energy Capacity over the period that that the tariffs are applicable for and summing over the year.


Annual Liability $_{Energy} = Tariff \ 1 \times \sum_{TI_s}^{TI_E} Chargeable Energy Capacity + Tariff \ 2 \times \sum_{TZ_s}^{TI_E} Chargeable Energy Capacity$

Where: T1s Start date for the period for which the original tariff is = applicable, End date for the period for which the original tariff is T1_E applicable, Start date for the period for which the revised tariff is T2s _ applicable, End date for the period for which the revised tariff is T2_E = applicable.

Basis of Embedded Export Charges

- 14.17.9 Embedded export charges are based on a £/kW charge for Half Hourly metered embedded export.
- <u>14.17.10 Chargeable Embedded Export Capacity is the value of Embedded Export at</u> <u>Triad (kW). The definition of this term is set out below.</u>
- 14.17.11 If there is a single set of embedded export tariffs within a charging year, the Chargeable Embedded Export Capacity is multiplied by the relevant embedded export tariff, for the calculation of embedded export charges.

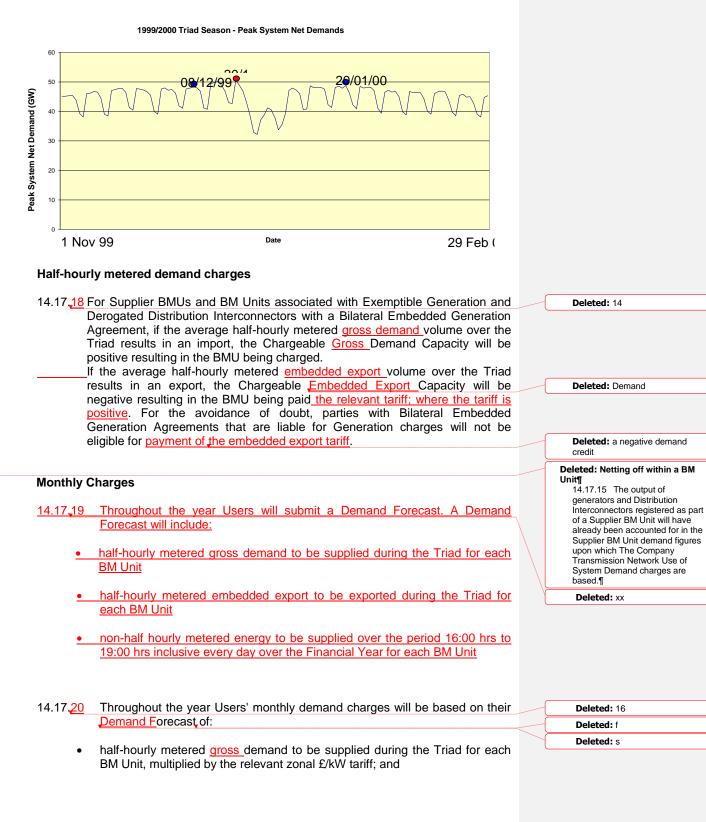
Supplier BM Unit

14.17,<u>13</u> A Supplier BM Unit charges will be the sum of its energy, <u>gross_demand_and</u> <u>embedded export</u> liabilities where:

- The Chargeable <u>Gross</u> Demand Capacity will be the average of the Supplier BM Unit's half-hourly metered <u>gross</u> demand during the Triad (and the £/kW tariff),
- The Chargeable Embedded Export Capacity will be the average of the Supplier BM Unit's half-hourly metered embedded export during the Triad (and the £/kW tariff), and
- The Chargeable Energy Capacity will be the Supplier BM Unit's non halfhourly metered energy consumption over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year (and the p/kWh tariff).

Power Stations with a Bilateral Connection Agreement and Licensable Generation with a Bilateral Embedded Generation Agreement

Page 39 of 63


V1.12-01 April 2016

Deleted: 9

CUSC v1.12	
14.17,14 The Chargeable Gross Demand Capacity for a Power Station with a Bilateral	Deleted: 10
Connection Agreement or Licensable Generation with a Bilateral Embedded	
Generation Agreement will be based on the average of the gross import over	Deleted: net
each Triad leg of the BM Units associated with the Power Station (in Appendix C of its Bilateral Connection Agreement or Bilateral Embedded Generation Agreement, including metered additional load) during the Triad.	
Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement	
14.17,15,The demand charges for Exemptible Generation and Derogated Distribution	Deleted: 11
Interconnector with a Bilateral Embedded Generation Agreement will be the sum of its gross demand and embedded export liabilities where:	Deleted: An
sum of his gross demand and embedded export liabilities where.	
 The Chargeable Gross Demand Capacity for Exemptible Generation and Deve geted Distribution Intercomposition with a Dilatoral Each added Composition 	
Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement will be based on the average of the metered <u>gross demand</u> of	Deleted: volume
each BM Unit specified in Appendix C of the Bilateral Embedded Generation	Deleted: volume
Agreement during the Triad.	
The Chargeable Embedded Export Capacity for Exemptible Generation and	
 <u>The Chargeable Embedded Export Capacity for Exemptible Generation and</u> Derogated Distribution Interconnectors with a Bilateral Embedded Generation 	
Agreement will be based on the average of the metered embedded export of	
each BM Unit specified in Appendix C of the Bilateral Embedded Generation	
Agreement during the Triad.	
Small Generators Tariffs	
14.17.16 In accordance with Standard Licence Condition C13, any under recovery from	Deleted: 12
the MAR arising from the small generators discount will result in a unit amount	
of increase to all GB gross demand tariffs.	
The Triad	
The mau	
14.17,17 The Triad is used as a short hand way to describe the three settlement periods	Deleted: 13
of highest transmission system demand within a Financial Year, namely the	
half hour settlement period of system peak net demand and the two half hour	
settlement periods of next highest <u>net</u> demand, which are separated from the	
system peak <u>net</u> demand and from each other by at least 10 Clear Days, between November and February of the Financial Year inclusive. Exports on	
directly connected Interconnectors and Interconnectors capable of exporting	
more than 100MW to the Total System shall be excluded when determining the	
system peak net demand. An illustration is shown below.	

I

I

- half-hourly metered embedded export to be supplied during the Triad for each BM Unit, multiplied by the relevant zonal £/kW tariff; and
- non-half hourly metered energy to be supplied over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year for each BM Unit, multiplied by the relevant zonal p/kWh tariff

Users' annual TNUoS demand charges are based on these forecasts and are split evenly over the 12 months of the year. Users have the opportunity to vary their demand forecasts on a quarterly basis over the course of the year, with the demand forecast requested in February relating to the next Financial Year. Users will be notified of the timescales and process for each of the quarterly updates. The Company will revise the monthly Transmission Network Use of System demand charges by calculating the annual charge based on the new forecast, subtracting the amount paid to date, and splitting the remainder evenly over the remaining months. For the avoidance of doubt, only positive demand forecasts (i.e. representing <u>a net</u> import from the system) will be <u>used in the calculation of charges</u>.

Demand forecasts for a User will be considered positive where:

- The sum of the gross demand forecast and embedded export forecast is positive; and
- The non-half hourly metered energy forecast is positive.

14.17.21 Users should submit reasonable forecasts of gross demand, embedded export and energy in accordance with the CUSC. The Company shall use the following methodology to derive a forecast to be used in determining whether a User's forecast is reasonable, in accordance with the CUSC, and this will be used as a replacement forecast if the User's total forecast is deemed unreasonable. The Company will, at all times, use the latest available Settlement data.

For existing Users:

- i) The User's Triad <u>gross</u> demand<u>and embedded export</u> for the preceding Financial Year will be used where User settlement data is available and where The Company calculates its forecast before the Financial Year. Otherwise, the User's average weekday settlement period 35 half-hourly metered (HH) <u>gross</u> demand <u>and embedded export</u> in the Financial Year to date is compared to the equivalent average <u>gross</u> demand<u>and</u> <u>embedded export</u> for the corresponding days in the preceding year. The percentage difference is then applied to the User's HH <u>gross</u> demand<u>and</u> <u>embedded export</u> at Triad in the preceding Financial Year to derive a forecast of the User's HH <u>gross</u> demand <u>and embedded export</u> at Triad for this Financial Year.
- ii) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day in the Financial Year to date is compared to the equivalent energy consumption over the corresponding days in the preceding year. The percentage difference is then applied to the User's total NHH energy consumption in the preceding Financial Year to derive a forecast of the User's NHH energy consumption for this Financial Year.

For new Users who have completed a Use of System Supply Confirmation Notice in the current Financial Year:

Page 42 of 63

V1.12-01 April 2016

Deleted: accepted

Deleted: 17

1

iii) The User's average weekday settlement period 35 half-hourly metered (HH) gross demand and embedded export over the last complete month for which The Company has settlement data is calculated. Total system average HH gross demand and embedded export for weekday settlement period 35 for the corresponding month in the previous year is compared to total system HH_gross demand and embedded export at Triad in that year and a percentage difference is calculated. This percentage is then applied to the User's average HH gross demand and embedded export for weekday settlement period 35 over the last month to derive a forecast of the User's HH gross demand and embedded export at Triad for this Financial Year.

- iv) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day over the last complete month for which The Company has settlement data is noted. Total system NHH energy consumption over the corresponding month in the previous year is compared to total system NHH energy consumption over the remaining months of that Financial Year and a percentage difference is calculated. This percentage is then applied to the User's NHH energy consumption over the month described above, and all NHH energy consumption in previous months is added, in order to derive a forecast of the User's NHH metered energy consumption for this Financial Year.
- 14.17.22 14.28 Determination of The Company's Forecast for Demand Charge Purposes illustrates how the demand forecast will be calculated by The Company.

Reconciliation of Demand Charges

14.17,23 The reconciliation process is set out in the CUSC. The demand reconciliation process compares the monthly charges paid by Users against actual outturn charges. Due to the Settlements process, reconciliation of demand charges is carried out in two stages; initial reconciliation and final reconciliation.

Initial Reconciliation of demand charges

14.17,24 The initial reconciliation process compares Users' demand forecasts and corresponding monthly charges paid over the year against actual outturn data (using latest Settlement data available at the time) and corresponding charges. Initial reconciliation is carried out in two parts; Initial Reconciliation Part 1 deals with the reconciliation of half-hourly metered demand charges and Initial Reconciliation Part 2 deals with the reconciliation of non-half-hourly metered demand charges.

Initial Reconciliation Part 1– Half-hourly metered demand

- 14.17.25 The Company will identify the periods forming the Triad once it has received Central Volume Allocation data from the Settlement Administration Agent for all days up to and including the last day of February. Once The Company has notified Users of the periods forming the Triad they will not be changed even if disputes are subsequently resolved which would change the periods forming the Triad.
- 14.17,<u>26</u> Initial outturn charges for half-hourly metered <u>gross</u> demand will be determined using the latest available data of actual average Triad <u>gross</u> demand (kW) multiplied by the zonal <u>gross</u> demand tariff(s) (£/kW) applicable to the months

Page 43 of 63

Deleted: 18

Deleted: 19

Deleted: 20

Deleted: 1

Deleted: 22

Сι

l

I

I

l

I

SC v1.12			
	concerned for each zone for that Financial Year. These acture reconciled against the monthly charges paid in respect of demand.		
<u>14.17,2</u>	7 Initial outturn charges for half-hourly metered embedded determined using the latest available data of actual average export (kW) multiplied by the zonal embedded export tariff(s) to the months concerned for each zone for that Financial Yo values are then reconciled against the monthly charges paid hourly embedded exports.	e Triad embedded (£/kW) applicable ear. These actual	Deleted: xx
Initial F	econciliation Part 2 – Non-half-hourly metered demand		
14.17	8 Actual payments for non-half-hourly metered demand will be the latest available actual energy consumption data (kWh) for hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 3 multiplied by the energy consumption tariff(s) (p/kWh) applica concerned for each zone. These actual values are then reco- monthly charges paid in respect of non-half-hourly energy con-	r the period 16:00 38) over the year able to the months onciled against the	Deleted: 23
Final R	econciliation of demand charges		
14.17.2	<u>9</u> The final reconciliation process compares Users' charges (as the initial reconciliation process using the latest available outturn demand charges (based on final settlement data of demand, embedded exports and non-half-hourly energy const	data) against final half-hourly gross	Deleted: 24
14.17	<u>Pinal actual charges will be determined using the final dem data taken from the Final Reconciliation Settlement Reconciliation Volume Allocation Run.</u>		Deleted: 25
Recon	iliation of manifest errors		
14.17	1 In the event that a manifest error, or multiple errors in the cal tariffs results in a material discrepancy in aUsers T reconciliation process for all Users qualifying under Section accordance with Sections 14.17,24 to 14.17,30. The reconciliation is not practicable, a post-year reconciliation will the form of a one-off payment.	NUoS tariff, the 14.17. <u>33</u> will be in onciliation process 5. Where such	Deleted: 26 Deleted: 28 Deleted: 20 Deleted: 25
14.17	2 A manifest error shall be defined as any of the following:		Deleted: 27
	 a) an error in the transfer of relevant data between Licensees or Distribution Network Operators; b) an error in the population of the Transport Model with c) an error in the function of the Transport Model; or d) an error in the inputs or function of the Tariff Model. 		
14.17	<u>3</u> A manifest error shall be considered material in the event that the net effect of multiple errors, has an impact of the lesser of the l		Deleted: 28
	a) an error in a User's TNUoS tariff of at least +/-£0.50/		
	Page 44 of 63	V1.12– 01 April 2016	

b) an error in a User's TNUoS tariff which results in an error in the annual TNUoS charge of a User in excess of +/-£250,000.

14.17,<u>34</u> A manifest error shall only be reconciled if it has been identified within the charging year for which the error has an effect. Errors identified outside of this period will not be eligible for reconciliation retrospectively.

Implementation of P272

- 14.17,<u>35</u>.1 BSC modification P272 requires Suppliers to move Profile Classes 5-8 to Measurement Class E - G (i.e. moving from NHH to HH settlement) by April 2016. The majority of these meters are expected to transfer during the preceding Charging Years up until the implementation date of P272 and some meters will have been transferred before the start of 1ST April 2015. A change from NHH to HH within a Charging Year would normally result in Suppliers being liable for TNUoS for part of the year as NHH and also being subject to HH charging. This section describes how the Company will treat this situation in the transition to P272 implementation for the purposes of TNUoS charging; and the forecasts that Suppliers should provide to the Company.
- 14.17,<u>35.2</u> Notwithstanding 14.17,<u>13</u>, for each Charging Year which begins after 31 March 2015 and prior to implementation of BSC Modification P272, all demand associated with meters that are in NHH Profile Classes 5 to 8 at the start of that charging year as well as all meters in Measurement Classes E G will be treated as Chargeable Energy Capacity (NHH) for the purposes of TNUoS charging for the full Charging Year unless 14.17,<u>35.3</u> applies.
 - 14.17,35.3 Where prior to 1st April 2015 a Profile Class meter has already transferred to Measurement Class settlement (HH) the associated Supplier may opt to treat the demand volume as Chargeable Demand Capacity (HH) for the purposes of TNUoS charging up until implementation of P272, subject to meeting conditions in 14.17,35.6. If the associated Supplier does not opt to treat the demand volume as Demand Capacity (HH) it will be treated by default as Chargeable Energy Capacity (NHH) for each full Charging Year up until implementation of P272.
 - 14.17,35.4 The Company will calculate the Chargeable Energy Capacity associated with meters that have transferred to HH settlement but are still treated as NHH for the purposes of TNUoS charging from Settlement data provided directly from Elexon i.e. Suppliers need not Supply any additional information if they accept this default position.
- 14.17,35.5 The forecasts that Suppliers submit to the Company under CUSC 3.10, 3.11 and 3.12 for the purpose of TNUoS monthly billing referred to in 14.17,20 and 14.17,21 for both Chargeable Demand Capacity and Chargeable Energy Capacity should reflect this position i.e. volumes associated those Metering Systems that have transferred from a Profile Class to a Measurement Class in the BSC (NHH to HH settlement) but are to be treated as NHH for the purposes of TNUoS charging should be included in the forecast of Chargeable Energy Capacity and not Chargeable Demand Capacity, unless 14.17,35.3 applies.
 - 14.17,<u>35</u>.6 Where a Supplier wishes for Metering Systems that have transferred from Profile Class to Measurement Class in the BSC (NHH to HH settlement) prior to 1st April 2015, to be treated as Chargeable Demand Capacity (HH/

Page 45 of 63

V1.12-01 April 2016

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 9

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 16

Deleted: 17

Deleted: 29

Deleted: 29

I

Measurement Class settled) it must inform the Company prior to October 2015. The Company will treat these as Chargeable Demand Capacity (HH / Measurement Class settled) for the purposes of calculating the actual annual liability for the Charging Years up until implementation of P272. For these cases only, the Supplier should notify the Company of the Meter Point Administration Number(s) (MPAN). For these notified meters the Supplier shall provide the Company with verified metered demand data for the hours between 4pm and 7pm of each day of each Charging Year up to implementation of P272 and for each Triad half hour as notified by the Company prior to May of the following Charging Year up until two years after the implementation of P272 to allow reconciliation (e.g. Mav 2017 and May 2018 for the Charging Year 2016/17). Where the Supplier fails to provide the data or the data is incomplete for a Charging Year TNUoS charges for that MPAN will be reconciled as part of the Supplier's NHH BMU (Chargeable Energy Capacity). Where a Supplier opts, if eligible, for TNUoS liability to be calculated on Chargeable Demand Capacity it shall submit the forecasts referred to in 14.17,35.5 taking account of this.

14.17,35.7 The Company will maintain a list of all MPANs that Suppliers have elected to be treated as HH. This list will be updated monthly and will be provided to registered Suppliers upon request.

Further Information

- 14.17,<u>36</u> 14.25 Reconciliation of Demand Related Transmission Network Use of System Charges of this statement illustrates how the monthly charges are reconciled against the actual values for <u>gross</u> demand, <u>embedded export</u> and consumption for half-hourly <u>gross demand</u>, <u>embedded export</u> and non-halfhourly metered demand respectively.
- 14.17,<u>37</u> **The Statement of Use of System Charges** contains the £/kW zonal gross demand tariffs, <u>the £/kW zonal embedded export tariffs</u>, and the p/kWh energy consumption tariffs for the current Financial Year.
- 14.17,<u>38</u> 14.27 Transmission Network Use of System Charging Flowcharts of this statement contains flowcharts demonstrating the calculation of these charges for those parties liable.

Deleted: 29 Deleted: 30

Deleted: 29

Deleted: 31

Deleted: 32

....

14.24 Example: Calculation of Zonal Gross Demand Tariff

Let us consider all nodes in a demand zone in this example

The table below shows a sample output of the transport model comprising the node, the Peak Security and Year Round marginal km of an injection at the node with a consequent withdrawal at the distributed reference node, the generation sited at the node, scaled to ensure total national generation = total national <u>net</u> demand and the <u>net</u> demand sited at the node.

Demand Zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	<u>Net</u> Demand (MW)
14	ABHA4A	-77.25	-230.25	127
14	ABHA4B	-77.27	-230.12	127
14	ALVE4A	-82.28	-197.18	100
14	ALVE4B	-82.28	-197.15	100
14	AXMI40_SWEB	-125.58	-176.19	97
14	BRWA2A	-46.55	-182.68	96
14	BRWA2B	-46.55	-181.12	96
14	EXET40	-87.69	-164.42	340
14	HINP20	-46.55	-147.14	0
14	HINP40	-46.55	-147.14	0
14	INDQ40	-102.02	-262.50	444
14	IROA20_SWEB	-109.05	-141.92	462
14	LAND40	-62.54	-246.16	262
14	MELK40_SWEB	18.67	-140.75	83
14	SEAB40	65.33	-140.97	304
14	TAUN4A	-66.65	-149.11	55
14	TAUN4B	-66.66	-149.11	55
		Totals		2748

In order to calculate the <u>gross</u> demand tariff we would carry out the following steps:

(i) calculate the demand weighted nodal shadow costs

For this example zone this would be as follows:

Demand zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	Net Demand (MW)	Peak Security Demand Weighted Nodal Marginal km	Year Round Demand Weighted Nodal Marginal km
14	ABHA4A	-77.25	-230.25	127	-3.57	-10.64
14	ABHA4B	-77.27	-230.12	127	-3.57	-10.64
14	ALVE4A	-82.28	-197.18	100	-2.99	-7.17
14	ALVE4B	-82.28	-197.15	100	-2.99	-7.17
14	AXMI40_SWEB	-125.58	-176.19	97	-4.43	-6.22
14	BRWA2A	-46.55	-182.68	96	-1.63	-6.38
14	BRWA2B	-46.55	-181.12	96	-1.63	-6.33
14	EXET40	-87.69	-164.42	340	-10.85	-20.34
14	INDQ40	-102.02	-262.50	444	-16.48	-42.41
14	IROA20_SWEB	-109.05	-141.92	462	-18.33	-23.86
14	LAND40	-62.54	-246.16	262	-5.96	-23.47
14	MELK40_SWEB	18.67	-140.75	83	0.56	-4.25
14	SEAB40	65.33	-140.97	304	7.23	-15.59
14	TAUN4A	-66.65	-149.11	55	-1.33	-2.98
14	TAUN4B	-66.66	-149.11	55	-1.33	-2.98
		Totals		2748	-49.19	-190.43

(ii) sum the Peak Security and Year Round demand weighted nodal shadow costs to give zonal figures. For this example zone this is shown in the above table and is 49.19km for Peak Security background and 190.43km for Year Round background.

(iii) calculate the transport tariffs by multiplying the figures in (ii) above by the expansion constant (& dividing by 1000 to put into units of £/kW):

For this example zone, assuming an expansion constant of $\pm 10.07/MWkm$ and a locational security factor of 1.80:

a) Peak Security tariff – 49.19km <u>* £10.07/MWkm * 1.8</u> = <u>£0.89/kW</u> 1000

Page 49 of 63

b) Year Round tariff -<u>190.43km * £10.07/MWkm * 1.8</u> = <u>£3.45/kW</u> 1000

(iv) We now need to calculate the residual tariff. This is calculated by taking the total revenue to be recovered from demand (calculated as c.73% of total The Company_ TNUoS target revenue for the year), less the revenue which would be recovered through the demand transport tariffs and revenue recovery through embedded export tariffs, divided by total expected gross GSP group demand.

Assuming the total revenue to be recovered from TNUoS is £1067m, the total recovery from <u>gross GSP group</u> demand would be $(73\% \times £1067m) = £779m$. Assuming the total recovery from <u>gross GSP group</u> demand transport tariffs is £140m, total recovery from <u>embedded export tariffs is -£10m</u> and total forecast chargeable <u>gross GSP group</u> demand capacity is 50000MW, the demand residual tariff would be as follows:

 $\frac{\pounds779m - \pounds140m - -\pounds10m}{50,000MW} = \pounds12.98/kW$

 (v) to get to the final tariff, we simply add on the demand residual tariff calculated in (v) to the zonal transport tariffs calculated in (iii(a)) and (iii(b))

For zone 14:

 $\pounds 0.89/kW + \pounds 3.45/kW + \pounds 12.98/kW =$ $\pounds 17.32/kW$

- To summarise, in order to calculate the <u>gross</u> demand tariffs, we evaluate a <u>net</u> demand weighted zonal marginal km cost multiply by the expansion constant and locational security factor then we add a constant (termed the residual cost) to give the overall tariff.
- (vii) The final demand tariff is subject to further adjustment to allow for the minimum £0/kW gross_demand charge. The application of a discount for small generators pursuant to Licence Condition C13 will also affect the final gross_demand tariff.

Deleted: gross

Deleted: 130m

Deleted:	$\pounds779m - \pounds130m$	_
Deleteu:	50000MW	_

14.25 Reconciliation of <u>Gross</u> Demand Related Transmission Network Use of System Charges

This appendix illustrates the methodology used by The Company in the reconciliation of Transmission Network Use of System charges for <u>gross</u> demand. The example highlights the different stages of the calculations from the monthly invoiced amounts, right through to Final Reconciliation.

Monthly Charges

Suppliers provide half-hourly (HH) gross demand and embedded export forecasts and non-halfhourly (NHH) demand forecasts by BM Unit every quarter. An example of such forecasts and the corresponding monthly invoiced amounts, based on tariffs of £10.00/kW for gross demand, £5.00/kW for embedded export and 1.20p/kWh for energy consumption, is as follows:

	Forecast HH Triad <u>Gross</u> Demand <u>HHD_E (</u> kW)	HH <u>Gross</u> <u>Demand</u> Monthly Invoiced Amount (£)	Forecast HH Triad Embedded Export HHEE _E (kW)	<u>HH</u> <u>Embedded</u> <u>Generation</u> <u>Monthly</u> <u>Invoiced</u> <u>Amount (£)</u>	Forecast NHH Energy Consumpti on NHHC _F (kW h)	NHH Monthly Invoiced Amount (£)	Net Monthly Invoiced Amount (£)
Apr	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
May	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jun	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jul	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Aug	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Sep	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Oct	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Nov	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Dec	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Jan	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Feb	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Mar	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Total		72,000		<u>(3,000)</u>		216,000	<u>297</u> ,000

As shown, for the first nine months the Supplier provided a 12,000kW HH triad <u>gross</u> demand forecast, and hence paid HH <u>gross demand</u> monthly charges of £10,000 ((12,000kW x £10.00/kW)/12) for that BM Unit. In January the Supplier provided a revised forecast of 7,200kW, implying a forecast annual charge reduced to £72,000 (7,200kW x £10.00/kW). The Supplier had already paid £90,000, so the excess of £18,000 was credited back to the supplier in three £6,000 instalments over the last three months of the year.

The Supplier provided an embedded export triad forecast of -600kW and hence was paid an embedded export credit of £250 ((600kW x £5.00/kW)/12) for that BM Unit (For the avoidance of doubt, if the embedded export tariff is negative this will result in a debit).

The Supplier also initially provided a 15,000,000kWh NHH energy consumption forecast, and hence paid NHH monthly charges of £15,000 ((15,000,000kWh x 1.2p/kWh)/12) for that BM Unit. In July the Supplier provided a revised forecast of 18,000,000kWh, implying a forecast annual charge increased to £216,000 (18,000,000kWh x 1.2p/kWh). The Supplier had already

paid £45,000, so the remaining £171,000 was split into payments of £19,000 for the last nine months of the year.

The right hand column shows the net monthly charges for the BM Unit.

Initial Reconciliation (Part 1a)

The Supplier's outturn HH triad <u>gross</u> demand, based on <u>initial</u> settlement data (and therefore subject to change in subsequent settlement runs), was 9,000kW. The HH triad <u>gross</u> demand reconciliation charge is therefore calculated as follows:

HHD Reconciliation Charge = $(HHD_A - HHD_F) \times \pounds/kW$ Tariff

= (9,000kW - 7,200kW) x £10.00/kW

= 1,800kW x £10.00/kW

= £18,000

To calculate monthly interest charges, the outturn HHD charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHD charge less the HH <u>gross demand</u> monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 1b)

The Supplier's outturn HH triad embedded export, based on initial settlement data (and therefore subject to change in subsequent settlement runs), was 700kW. The HH triad embedded export reconciliation charge is therefore calculated as follows:

HHEE Reconciliation Charge = (HHEE_A – HHEE_E) x £/kW Tariff

 $= (-500 \text{kW} - -600 \text{kW}) \times \text{\pounds}5.00/\text{kW}$

 $= 100 \text{kW} \times \text{\pounds}5.00/\text{kW}$

= **£500**

To calculate monthly interest charges, the outturn HHEE charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHEE charge less the HH embedded generation monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 2)

The Supplier's outturn NHH energy consumption, based on initial settlement data, was 17,000,000kWh. The NHH energy consumption reconciliation charge is therefore calculated as follows:

Deleted: Please note that payments made to BM Units with a net export over the Triad, based on initial settlement data, will also be reconciled at this stage.¶ As monthly payments will not be made on the basis of a negative forecast, the HHD Reconciliation Charge for an exporting BM Unit will represent the full actual payment owed to that BM Unit (subject to adjustment by subsequent settlement runs). Interest will be calculated as described above.¶

NHHC Reconciliation Charge = $(NHHC_A - NHHC_F) \times p/kWh$ Tariff

100

= <u>(17,000,000kWh - 18,000,000kWh) x 1.20p/kWh</u>

100

= <u>-1,000,000kWh x 1.20p/kWh</u> 100 = **-£12,000**

worked example 4.xls - Initial!J104

The monthly reconciliation amount is equal to the outturn energy consumption charge for that month less the NHH monthly invoiced amount. Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

The net initial TNUoS demand reconciliation charge is therefore $\pounds 6,500$ (£18,000 + $\pounds 500$ - $\pounds 12,000$).

Final Reconciliation

Finally, let us now suppose that after all <u>final</u> Settlement data has been received (up to 14 months after the relevant dates), the outturn HH triad <u>gross</u> demand, <u>HH triad embedded export</u> and NHH energy consumption values were 9,500kW, <u>-550kW</u> and 16,500,000kWh, respectively.

Final HH <u>Gross Demand</u>	= (9,500kW - 9,000kW) x £10.00/kW
<u>Reconciliation Charge</u>	= £5,000
Final HH Embedded Export	= (-550kW500kW) x £5.00/kW
Reconciliation Charge	= -£250

Final NHH Reconciliation Charge = $(16,700,000kWh - 17,000,000kWh) \times 1.20p/kWh$ 100 = -£3,600

Consequently, the net final TNUoS demand reconciliation charge will be $\pounds 1, \underline{150} (\pounds 5,000 + -\pounds 250 + -\pounds 3,600)$.

Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

Outturn data for BM Units with a net export over the Triad will be received at this stage and final reconciliation will be carried out, as required. Interest will be calculated as described above.

Terminology:

 HHD_A = The Supplier's outturn half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

Page 53 of 63

Deleted: 000

I

 HHD_F = The Supplier's forecast half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

<u>HHEE_A = The Supplier's outturn half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

<u>HHEE_E = The Supplier's forecast half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

NHHC_A = The Supplier's outturn non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1^{st} to March 31^{st} , for the demand zone concerned.

NHHC_F = The Supplier's forecast non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1st to March 31st, for the demand zone concerned.

£/kW Tariff = The £/kW <u>Gross</u> Demand <u>or Embedded Export</u> Tariff as shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

p/kWh Tariff = The Energy Consumption Tariff shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

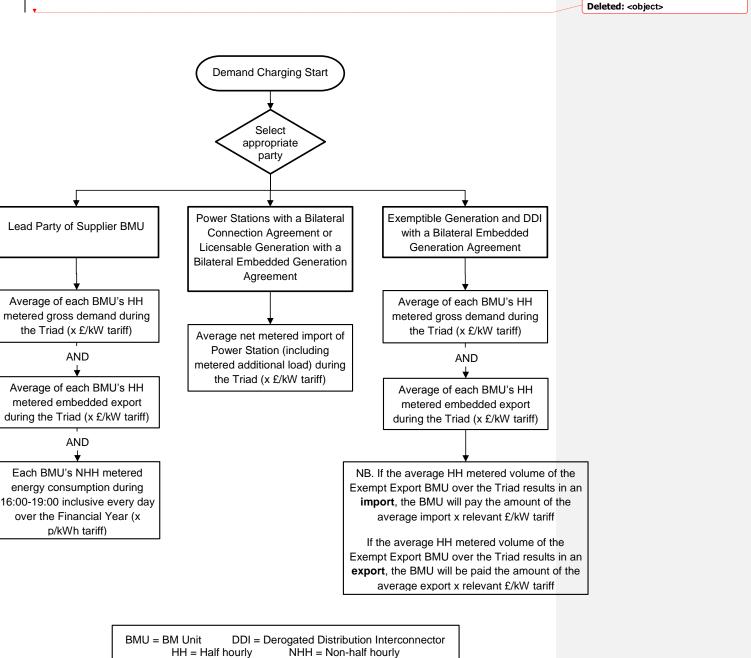
14.26 Classification of parties for charging purposes

In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precendence.

In the following diagrams, the parties liable for Transmission Network Use of System charges are outlined in red.

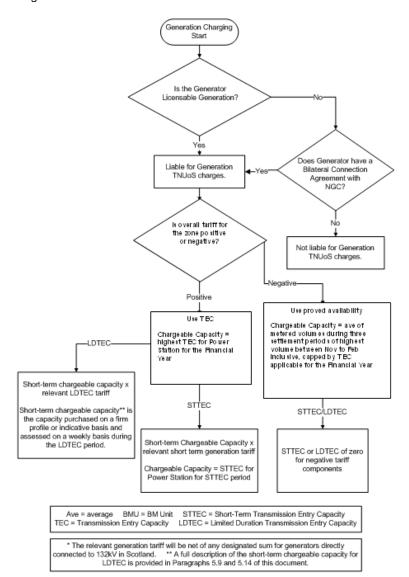
SUPPLIER		
Supplier Use of System Agreen	nent	
Supplier BMU1 BMUn		
Demand Charges	Generation Charges	
See 14.17, <mark>13</mark> and 14.17, <mark>18</mark> .	None.	Deleted: 9
		Deleted: 14
Gen Unit Gen Unit BMU1 BMUn	Station Additional Load BMU Load BMU	
Demand Charges	Generation Charges	
Demand Charges See 14.17.<u>18</u>.	See 14.18.1 i) and 14.18.3 to 14.18.9 and	Deleted: 10
· ·	J. J	Deleted: 10

Bilateral Emb	edded Generation	Agreement Ap	pendix C	7
Gen Unit BMU1	Gen Unit BMUn	Station Load BMU	Additional Load BMU	
Demand Charges	7. <u>15</u> and 14.17. <u>18</u> .	Generation Cl See 14.18.1 ii	U	
Jee 14.17. <u>14</u> , 14.17	<u>, 10</u> and 14.17, <u>10</u> .	For generator 14.18.12 and	s in positive zone 14.18.18.	es, see 14.18.3 to es, see 14.18.3 to


-{	Deleted: 10
-	Deleted: 11
Y	Deleted: 14

14.27 Transmission Network Use of System Charging Flowcharts

The following flowcharts illustrate the parties liable for Demand and Generation TNUoS charges and the calculation of those charges.


In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precedence.

Page 57 of 63

Generation Charges

14.28 Example: Determination of The Company's Forecast for Demand Charge Purposes

The Company will use the latest available settlement data for calculation of HH demand and NHH energy consumption forecasts for the Financial Year.

The Financial Year runs from 1st April to 31st March inclusive and for the purpose of these examples the year April 2005 to March 2006 is used.

Where the preceding year's settlement data is not available at the time that The Company needs to calculate its forecast, The Company will use settlement data from the corresponding period in Financial Year minus two unless indicated otherwise.

All values used with the examples are purely for illustrative purposes only.

i) Half-Hourly (HH) Metered Demand Forecast – Existing User

At the time of calculation of a HH demand forecast before the relevant Financial Year (approximately 10th March), The Company will be aware at a system level which dates will be used for the determination of Triad. However, The Company may not have settlement data at a User level if the Triad dates were to span a period that includes the latter half of February.

When undertaking forecasting before the relevant Financial Year, The Company will use the User's Triad demand for the previous year for its forecast providing it holds User settlement data for this period, thus:

F = T

where:

F = Forecast of User's HH demand at Triad for the Financial Year

T = User's HH gross_demand and embedded export_at Triad in Financial Year minus one

Where The Company determines its forecast within a Financial Year:

F = T * D/P

where:

- F = Forecast of User's HH demand at Triad for the Financial Year
- T = User's HH gross demand and embedded export at Triad in the preceding Financial Year
- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the preceding Financial Year

Where The Company determines its forecast before the relevant Financial Year and User settlement data for the Triad period is not available, The Company shall apply the formula immediately above (within year forecast) but substitute the following definitions for the values T, D, and P:

T = User's HH gross demand and embedded export at Triad in the Financial Year minus two

Page 59 of 63

- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year minus one, to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the Financial Year minus two

Example (where User settlement data is not yet available for the Triad period):

The Company calculates a HH demand forecast on the above methodology at 10th March 2005 for the period 1st April 2005 to 31st March 2006.

Gross demand:

F = 10,000 * 13,200 / 12,000

F = 11,000 kW,Deleted: hwhere:T = 10,000 kW, (period November 2003 to February 2004)Deleted: hD = 13,200 kW, (period 1st April 2004 to 15th February 2005#)Deleted: hP = 12,000 kW, (period 1st April 2003 to 15th February 2004)Deleted: h

Latest date for which settlement data is available.

Embedded export:

F = -280 * -300 / -350

<u>F = -240 kW</u>

where:

T = -280 kW (period November 2003 to February 2004)

D = -300 kW (period 1st April 2004 to 15th February 2005#)

P = -350 kW (period 1st April 2003 to 15th February 2004)

<u># Latest date for which settlement data is available.</u>

ii) Non Half-Hourly (NHH) Metered Energy Consumption Forecast – Existing User

F = E * D/P

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- E = User's summed NHH energy consumption over the hours 16:00 to 19:00 for each day in the preceding Financial Year

Page 60 of 63

- D = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the Financial Year to date
- P = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the period corresponding to D in the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th June 2005 for the period 1st April 2005 to 31st March 2006.

- F = 50,000,000 * 4,400,000 / 4,000,000
- F = 55,000,000 kWh

where:

- E = 50,000,000 kWh (period 1st April 2004 to 31st March 2005)
- D = 4,400,000 kWh (period 1st April 2005 to 15th May 2005#)
- P = 4,000,000 kWh (period 1st April 2004 to 15th May 2004)
- # Latest date for which settlement data is available

Where forecasting before the relevant Financial Year concerned, The Company would in the above example use values for E and P from Financial Year 2003/04 and D from Financial Year 2004/05.

iii) Half-Hourly (HH) Metered Demand Forecast – New User

F = M * T/W

where:

- F = Forecast of User's HH metered <u>gross</u> demand <u>and embedded export</u> at Triad for the Financial Year
 - M = User's HH average weekday period 35 demand for the last complete month for which settlement data is available
- T = Total system HH <u>gross</u> demand <u>and embedded export</u> at Triad in the preceding Financial Year
 - W = Total system HH average weekday settlement period 35 metered demand for the corresponding period to M for the preceding year

Example:

The Company calculates a HH demand forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2004 to 31st March 2006.

Gross demand:

F = 1,000 * 17,000,000 / 18,888,888

6056 11.12				
l	F =	900 kW _e	(Deleted: h
	where			
l	M =	1,000 kW _* (period 1 st July 2005 to 31 st July 2005)		Deleted: h
l	T =	17,000,000 kW, (period November 2004 to February 2005)	(Deleted: h
1	W =	18,888,888 kW _v (period 1 st July 2004 to 31 st July 2004)		Deleted: h
	Embed	ded export:		
	<u>F =</u>	<u>150 * 7,200,000 / 6,000,000</u>		
	<u>F =</u>	<u>180 kW</u>		
	where:			

- M = 150 kW (period 1st July 2005 to 31st July 2005)
- T = 7,200,000 kW (period November 2004 to February 2005)
- <u>W = 6,000,000 kW (period 1^{st} July 2004 to 31^{st} July 2004)</u>

iv) Non Half Hourly (NHH) Metered Energy Consumption Forecast – <u>New User</u>

F = J + (M * R/W)

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- J = Residual part month summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day where new User registration takes place other than on the first of a month
- M = User's summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the last complete month for which settlement data is available
- R = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period from the start of that defined under M but for the preceding year and until the end of that preceding Financial Year
- W = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period identified in M but for the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2005 to 31st March 2006.

- F = 500 + (1,000 * 20,000,000,000 / 2,000,000,000)
- F = 10,500 kWh

where:

- J = 500 kWh (period 10th June 2005 to 30th June 2005)
- M = 1,000 kWh (period 1st July 2005 to 31st July 2005)
- R = 20,000,000,000 kWh (period 1st July 2004 to 31st March 2005)
- W = 2,000,000,000 kWh (period 1st July 2004 to 31st July 2004)

CMP265 WACM5

14.15 Derivation of the Transmission Network Use of System Tariff

- 14.15.1 The Transmission Network Use of System (TNUoS) Tariff comprises two separate elements. Firstly, a locationally varying element derived from the DCLF ICRP transport model to reflect the costs of capital investment in, and the maintenance and operation of, a transmission system to provide bulk transport of power to and from different locations. Secondly, a non-locationally varying element related to the provision of residual revenue recovery. The combination of both these elements forms the TNUoS tariff.
- 14.15.2 For generation TNUoS tariffs the locational element itself is comprised of five separate components. Three wider components
 - o Wider Peak Security Component
 - Wider Year Round Not-shared component
 - Wider Year Round component

These components reflect the costs of the wider network under the different generation backgrounds set out in the Demand Security Criterion (for Peak Security component) and Economy Criterion (for both Year Round components) of the Security Standard. The two Year Round components reflect the unshared and shared costs of the wider network based on the diversity of generation plant types.

Two local components -

- o Local substation, and
- Local circuit

These components reflect the costs of the local network.

Accordingly, the wider tariff represents the combined effect of the three wider locational tariff components and the residual element; and the local tariff represents the combination of the two local locational tariff components.

14.15.3 The process for calculating the TNUoS tariff is described below.

The Transport Model

Model Inputs

14.15.4 The DCLF ICRP transport model calculates the marginal costs of investment in the transmission system which would be required as a consequence of an increase in demand or generation at each connection point or node on the transmission system, based on a study of peak demand conditions using both Peak Security and Year Round generation backgrounds on the transmission system. One measure of the investment costs is in terms of MWkm. This is the concept that ICRP uses to calculate marginal costs of investment. Hence, marginal costs are estimated initially in terms of increases or decreases in units of kilometres (km) of the transmission system for a 1 MW injection to the system.

- 14.15.5 The transport model requires a set of inputs representative of the Demand Security and Economy Criterion set out in the Security Standards. These conditions on the transmission system are represented in the Peak Security and Year Round background respectively as follows:
- Nodal generation information per node (TEC, plant type and SQSS scaling factors)
- Nodal <u>net</u> demand information
- Transmission circuits between these nodes
- The associated lengths of these routes, the proportion of which is overhead line or cable and the respective voltage level
- The cost ratio of each of 132kV overhead line, 132kV underground cable, 275kV overhead line, 275kV underground cable and 400kV underground cable to 400kV overhead line to give circuit expansion factors
- The cost ratio of each separate sub-sea AC circuit and HVDC circuit to 400kV overhead line to give circuit expansion factors
- 132kV overhead circuit capacity and single/double route construction information is used in the calculation of a generator's local charge.
- Offshore transmission cost and circuit/substation data
- 14.15.6 For a given charging year "t", the nodal generation TEC figure and generation plant types at each node will be based on the Applicable Value for year "t" in the NETS Seven Year Statement in year "t-1" plus updates to the October of year "t-1". The contracted TECs and generation plant types in the NETS Seven Year Statement include all plant belonging to generators who have a Bilateral Agreement with the TOs. For example, for 2010/11 charges, the nodal generation data is based on the forecast for 2010/11 in the 2009 NETS Seven Year Statement plus any data included in the quarterly updates in October 2009.
- 14.15.7 Scaling factors for different generation plant types are applied on their aggregated capacity for both Peak Security and Year Round backgrounds. The scaling is either Fixed or Variable (depending on the total demand level) in line with the factors used in the Security Standard, for example as shown in the table below.

Generation Plant Type	Peak Security Background	Year Round Background
Intermittent	Fixed (0%)	Fixed (70%)
Nuclear & CCS	Variable	Fixed (85%)
Interconnectors	Fixed (0%)	Fixed (100%)
Hydro	Variable	Variable
Pumped Storage	Variable	Fixed (50%)
Peaking	Variable	Fixed (0%)
Other (Conventional)	Variable	Variable

These scaling factors and generation plant types are set out in the Security Standard. These may be reviewed from time to time. The latest version will be used in the calculation of TNUoS tariffs and is published in the Statement of Use of System Charges

14.15.8 National Grid will categorise plant based on the categorisations described in the Security Standard. Peaking plant will include oil and OCGT technologies and Other (Conv.) represents all remaining conventional plant not explicitly stated elsewhere in the table In the event that a power station is made up of more than one technology type, the type of the higher Transmission Entry Capacity (TEC) would apply.

I

- 14.15.9 Nodal <u>net</u> demand data for the transport model will be based upon the GSP <u>net</u> demand that Users have forecast to occur at the time of National Grid Peak Average Cold Spell (ACS) Demand for year "t" in the April Seven Year Statement for year "t-1" plus updates to the October of year "t-1".
- 14.15.10 Subject to paragraphs 14.15.15 to 14.15.22, Transmission circuits for charging year "t" will be defined as those with existing wayleaves for the year "t" with the associated lengths based on the circuit lengths indicated for year "t" in the April NETS Seven Year Statement for year "t-1" plus updates to October of year "t-1". If certain circuit information is not explicitly contained in the NETS Seven Year Statement, The Company will use the best information available.
- 14.15.11 The circuit lengths included in the transport model are solely those, which relate to assets defined as 'Use of System' assets.
- 14.15.12 For HVDC circuits, the impedance will be calculated to provide flows based on a ratio of the capacity provided by the HVDC link relative to the capacities on all major transmission system boundaries that it parallels.
- 14.15.13 The transport model employs the use of circuit expansion factors to reflect the difference in cost between (i) AC Circuits and HVDC circuits. (ii) underground and sub-sea circuits, (iii) cabled circuits and overhead line circuits, (iv) 132kV and 275kV circuits, (v) 275kV circuits and 400kV circuits, and (vi) uses 400kV overhead line (i.e. the 400kV overhead line expansion factor is 1). As the transport model expresses cost as marginal km (irrespective of cables or overhead lines), some account needs to be made of the fact that investment in these other types of circuit (specifically HVDC and sub-sea cables of various voltages, 400kV underground cable, 275kV overhead line, 275kV underground cable, 132kV overhead line and 132kV underground cable) is more expensive than for 400kV overhead line. This is done by effectively 'expanding' these more expensive circuits by the relevant circuit expansion factor, thereby producing a larger marginal kilometre to reflect the additional cost of investing in these circuits compared to 400kV overhead line. When calculating the local circuit tariff for a generator, alternative 132kV and offshore expansion factors to those used in the remainder of the tariff calculation are applied to the generator's local circuits.
- 14.15.14 The circuit expansion factors for HVDC circuits and AC subsea cables are determined on a case by case basis using the costs which are specific to individual projects containing HVDC or AC subsea circuits.

Adjustments to Model Inputs associated with One-off Works

- 14.15.15 Where, following the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge that related to One-off Works carried out on an onshore circuit, and such One-off Works would affect the value of a TNUoS tariff paid by the User, the transport model inputs associated with the onshore circuit shall be adjusted by The Company to reflect the asset value that would have been modelled if the works had been undertaken on the basis of the original asset design rather than the One-off Works.
- 14.15.16 Subject to paragraphs 14.15.17 to 14.15.19, where, prior to the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge (or has paid a charge to the relevant TO prior to 1st April 2005 on the same principles as a

Page 3 of 63

One-Off Charge) that related to works equivalent to those described under paragraph 14.15.15, an adjustment equivalent to that under paragraph 14.15.15 shall be made to the transport model inputs as follows.

- 14.15.17 Such adjustment shall be made following a User's request, which must be received by The Company no later than the second occurrence of 31st December following the implementation of CUSC Modification CMP203.
- 14.15.18 The Company shall only make an adjustment to the transport model inputs, under paragraph 14.15.16 where the charge was paid to the relevant TO prior to 1st April 2005 where evidence has been provided by the User that satisfies The Company that works equivalent to those under paragraph 14.15.15 were funded by the User.
- 14.15.19 Where a User has sufficient reason to believe that adjustments under paragraph 14.15.18 should be made in relation to specific assets that affect a TNUoS tariff that applies to one of its sites and outlines its reasoning to The Company, The Company shall (upon the User's request and subject to the User's payment of reasonable costs incurred by The Company in doing so) use its reasonable endeavours to assist the User in obtaining any evidence The Company or a TO may have to support its position.
- 14.15.20 Where a request is made under paragraph 14.15.16 on or prior to 31st December in a charging year, and The Company is satisfied based on the accompanying evidence provided to The Company under paragraph 14.15.17 that it is a valid request, the transport model inputs shall be adjusted accordingly and taken into account in the calculation of TNUoS tariffs effective from the year commencing on the 1st April following this and otherwise from the next subsequent 1st April.
- 14.15.21 The following table provides examples of works for which adjustments to transport model inputs would typically apply:

Ref	Description of works	Adjustments
1	Undergrounding - A User requests to underground an overhead line at a greater cost.	As the cable cost will be more expensive than the overhead line (OHL) equivalent, the circuit will be modelled as an OHL.
2	Substation Siting Decision - A User requests to move the existing or a planned substation location to a place that means that the works cannot be justified as economic by the TO.	As the revised substation location may result in circuits being extended. If this is the case, the originally designed circuit lengths (as per the originally designed substation location) would be used in the transport model.
3	Circuit Routing Decision - A User asks to move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	As any circuit route changes that extend circuits are likely to result in a greater TNUoS tariff, the originally designed circuit lengths would be used in the transport model.

Ref	Description of works	Adjustments
4	Building circuits at lower voltages - A User requests lower tower height and therefore a different voltage.	As lower voltage circuits result in a higher expansion factor being used, the circuits would be modelled at the originally designed higher voltage.

14.15.22 The following table provides examples of works for which adjustments to transport model typically would not apply:

Ref	Description of works	Reasoning
1	Undergrounding - A User chooses to have a cable installed via a tunnel rather than buried.	Cable expansion factors are applied in the transport model regardless of whether a cable is tunnelled and buried, so there is no increased TNUoS cost.
2	Additional circuit route works - A User asks for screening to be provided around a new or existing circuit route.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
3	Additional circuit route works - A User requests that a planned overhead line route is built using alternative transmission tower designs.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
4	Additional substation works - A User asks for screening to be provided around a new or existing substation.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
5	Additional substation works - Changes to connection assets (e.g. HV-LV transformers and associated switchgear), metering, additional LV supplies, additional protection equipment, additional building works, etc.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
6	Diversion - A User asks to temporarily move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	The temporary circuit changes will not be incorporated into the transport model.

7	Connection Entry Capacity (CEC) before Transmission Entry Capacity (TEC). A User asks for a connection in a year prior to the relating TEC; i.e. physical connection without capacity.	No additional works are being undertaken, works are simply being completed well in advance of the generator commissioning. The One-Off Charge reflects the depreciated value of the assets prior to commissioning (and any TNUOS being charged).
8	Early asset replacement - An asset is replaced prior to the end of its expected life.	As the asset is simply replaced, no data in the transport model is expected to change.
9	Additional Engineering/ Mobilisation costs - A User requests changes to the planned works, that results in additional operational costs.	The data in the transport model is unaffected.
10	Offshore (Generator Build) - Any of the works described above or under paragraph 14.15.18.	The value of the works will not form part of the asset transfer value therefore will not be used as part of the offshore tariff calculation.
11	Offshore (Offshore Transmission Owner (OFTO) Build) - Any of the works described above or under paragraph 14.15.18.	As part of determining the TNUoS revenue associated with each asset, the value of the One-Off Works would be excluded when pro-rating the OFTO's allowed revenue against assets by asset value.

14.15.23 The Company shall publish any adjusted transport model inputs that it intends to use in the calculation of TNUoS tariffs effective from the year commencing on the following 1st April in the NETS Seven Year Statement October Update. Any further adjustments that The Company makes shall be published by The Company upon the publication of the final TNUoS tariffs for the year concerned.

Model Outputs

- 14.15.24 The transport model takes the inputs described above and carries out the following steps individually for Peak Security and Year Round backgrounds.
- 14.15.25 Depending on the background, the TEC of the relevant generation plant types are scaled by a percentage as described in 14.15.7, above. The TEC of the remaining generation plant types in each background are uniformly scaled such that total national generation (scaled sum of contracted TECs) equals total national ACS Demand.
- 14.15.26 For each background, the model then uses a DCLF ICRP transport algorithm to derive the resultant pattern of flows based on the network impedance required to meet the nodal <u>net</u> demand using the scaled nodal generation, assuming every circuit has infinite capacity. Flows on individual transmission circuits are compared for both backgrounds and the background giving rise to

Page 6 of 63

the highest flow is considered as the triggering criterion for future investment of that circuit for the purposes of the charging methodology. Therefore all circuits will be tagged as Peak Security or Year Round depending upon the background resulting in the highest flow. In the event that both backgrounds result in the same flow, the circuit will be tagged as Peak Security. Then it calculates the resultant total network Peak Security MWkm and Year Round MWkm, using the relevant circuit expansion factors as appropriate.

- 14.15.27 Using these baseline networks for Peak Security and Year Round backgrounds, the model then calculates for a given injection of 1MW of generation at each node, with a corresponding 1MW offtake (<u>net_demand</u>) distributed across all demand nodes in the network, the increase or decrease in total MWkm of the whole Peak Security and Year Round networks. The proportion of the 1MW offtake allocated to any given demand node will be based on total background nodal <u>net</u> demand in the model. For example, with a total GB <u>net_demand of 60GW</u> in the model, a node with a <u>net_demand of 600MW</u> would contain 1% of the offtake i.e. 0.01MW.
- 14.15.28 Given the assumption of a 1MW injection, for simplicity the marginal costs are expressed solely in km. This gives a Peak Security marginal km cost and a Year Round marginal km cost for generation at each node (although not that used to calculate generation tariffs which considers local and wider cost components). The Peak Security and Year Round marginal km costs for demand at each node are equal and opposite to the Peak Security and Year Round nodal marginal km respectively for generation and this is used to calculate demand tariffs. Note the marginal km costs can be positive or negative depending on the impact the injection of 1MW of generation has on the total circuit km.
- 14.15.29 Using a similar methodology as described above in 14.15.27, the local and wider marginal km costs used to determine generation TNUoS tariffs are calculated by injecting 1MW of generation against the node(s) the generator is modelled at and increasing by 1MW the offtake across the distributed reference node. It should be noted that although the wider marginal km costs are calculated for both Peak Security and Year Round backgrounds, the local marginal km costs are calculated on the Year Round background.
- 14.15.30 In addition, any circuits in the model, identified as local assets to a node will have the local circuit expansion factors which are applied in calculating that particular node's marginal km. Any remaining circuits will have the TO specific wider circuit expansion factors applied.
- 14.15.31 An example is contained in 14.21 Transport Model Example.

Calculation of local nodal marginal km

14.15.32 In order to ensure assets local to generation are charged in a cost reflective manner, a generation local circuit tariff is calculated. The nodal specific charge provides a financial signal reflecting the security and construction of the infrastructure circuits that connect the node to the transmission system.

14.15.33 Main Interconnected Transmission System (MITS) nodes are defined as:

- Grid Supply Point connections with 2 or more transmission circuits connecting at the site; or
- connections with more than 4 transmission circuits connecting at the site.

Page 7 of 63

- 14.15.34 Where a Grid Supply Point is defined as a point of supply from the National Electricity Transmission System to network operators or non-embedded customers excluding generator or interconnector load alone. For the avoidance of doubt, generator or interconnector load would be subject to the circuit component of its Local Charge. A transmission circuit is part of the National Electricity Transmission System between two or more circuit-breakers which includes transformers, cables and overhead lines but excludes busbars and generation circuits.
- 14.15.35 Generators directly connected to a MITS node will have a zero local circuit tariff.
- 14.15.36 Generators not connected to a MITS node will have a local circuit tariff derived from the local nodal marginal km for the generation node i.e. the increase or decrease in marginal km along the transmission circuits connecting it to all adjacent MITS nodes (local assets).

Calculation of zonal marginal km

- 14.15.37 Given the requirement for relatively stable cost messages through the ICRP methodology and administrative simplicity, nodes are assigned to zones. Typically, generation zones will be reviewed at the beginning of each price control period with another review only undertaken in exceptional circumstances. Any rezoning required during a price control period will be undertaken with the intention of minimal disruption to the established zonal boundaries. The full criteria for determining generation zones are outlined in paragraph 14.15.42. The number of generation zones set for 2010/11 is 20.
- 14.15.38 Demand zone boundaries have been fixed and relate to the GSP Groups used for energy market settlement purposes.
- 14.15.39 The nodal marginal km are amalgamated into zones by weighting them by their relevant generation or demand capacity.
- 14.15.40 Generators will have zonal tariffs derived from both, the wider Peak Security nodal marginal km; and the wider Year Round nodal marginal km for the generation node calculated as the increase or decrease in marginal km along all transmission circuits except those classified as local assets.

The zonal Peak Security marginal km for generation is calculated as:

$$WNMkm_{j_{PS}} = \frac{NMkm_{j_{PS}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiPS} = \sum_{j \in Gi} WNMkm_{jPS}$$

Where

Gi	=	Generation zone
j	=	Node
NMkm _{PS}	=	Peak Security Wider nodal marginal km from transport model
WNMkm _{PS}	=	Peak Security Weighted nodal marginal km
ZMkm _{PS}	=	Peak Security Zonal Marginal km

Gen = Nodal Generation (scaled by the appropriate Peak Security Scaling factor) from the transport model Similarly, the zonal Year Round marginal km for generation is calculated as

$$WNMkm_{j_{YR}} = \frac{NMkm_{j_{YR}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiYR} = \sum_{j \in Gi} WNMkm_{jYR}$$

Where

NMkm _{YR}	=	Year Round Wider nodal marginal km from transport model
WNMkm _{YR}	=	Year Round Weighted nodal marginal km
ZMkm _{YR}	=	Year Round Zonal Marginal km
Gen	=	Nodal Generation (scaled by the appropriate Year Round Scaling
		factor) from the transport model

14.15.41 The zonal Peak Security marginal km for demand zones are calculated as follows:

$$WNMkm_{j_{PS}} = \frac{-1 * NMkm_{j_{PS}} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{Di_{PS}} = \sum_{j \in Di} WNMkm_{j_{PS}}$$

Where:

I

Di	=	Demand zone
Dem	=	Nodal <u>Net</u> Demand from transport model

Similarly, the zonal Year Round marginal km for demand zones are calculated as follows:

$$WNMkm_{jYR} = \frac{-1 * NMkm_{jYR} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{DiYR} = \sum_{j \in Di} WNMkm_{jYR}$$

- 14.15.42 A number of criteria are used to determine the definition of the generation zones. Whilst it is the intention of The Company that zones are fixed for the duration of a price control period, it may become necessary in exceptional circumstances to review the boundaries having been set. In both circumstances, the following criteria are used to determine the zonal boundaries:
- i.) Zoning is determined using the generation background with the most MWkm of circuits. Zones should contain relevant nodes whose total wider marginal costs

from the relevant generation background (as determined from the output from the transport model, the relevant expansion constant and the locational security factor, see below) are all within +/-£1.00/kW (nominal prices) across the zone. This means a maximum spread of £2.00/kW in nominal prices across the zone.

- ii.) The nodes within zones should be geographically and electrically proximate.
- iii.) Relevant nodes are considered to be those with generation connected to them as these are the only ones, which contribute to the calculation of the zonal generation tariff.
- 14.15.43 The process behind the criteria in 14.15.42 is driven by initially applying the nodal marginal costs from the relevant generation background within the DCLF Transport model onto the appropriate areas of a substation line diagram. Generation nodes are grouped into initial zones using the +/- £1.00/kW range. All nodes within each zone are then checked to ensure the geographically and electrically proximate criteria have been met using the substation line diagram. The established zones are inspected to ensure the least number of zones are used with minimal change from previously established zonal boundaries. The zonal boundaries are finally confirmed using the demand nodal costs from the relevant generation background for guidance.
- 14.15.44 The zoning criteria are applied to a reasonable range of DCLF ICRP transport model scenarios, the inputs to which are determined by The Company to create appropriate TNUoS generation zones. The minimum number of zones, which meet the stated criteria, are used. If there is more than one feasible zonal definition of a certain number of zones, The Company determines and uses the one that best reflects the physical system boundaries.
- 14.15.45 Zones will typically not be reviewed more frequently than once every price control period to provide some stability. However, in exceptional circumstances, it may be necessary to review zoning more frequently to maintain appropriate, cost reflective, locational cost signals. For example, if a new generator connecting to the transmission system would cause the creation of a new generation zone for that generator alone, it may not be appropriate from a cost reflective perspective to wait until the next price control period to undertake this rezoning. If any such rezoning is required, it will be undertaken against a background of minimal change to existing generation zones and in line with the notification process set out in the Transmission Licence and CUSC.

Accounting for Sharing of Transmission by Generators

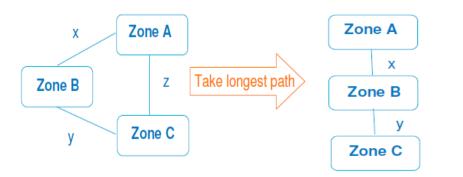
- 14.15.46 A proportion of the marginal km costs for generation are shared incremental km reflecting the ability of differing generation technologies to share transmission investment. This is reflected in charges through the splitting of Year Round marginal km costs for generation into Year Round Shared marginal km costs and Year Round Not-Shared marginal km which are then used in the calculation of the wider £/kW generation tariff.
- 14.15.47 The sharing between different generation types is accounted for by (a) using transmission network boundaries between generation zones set by connectivity between generation charging zones, and (b) the proportion of Low Carbon and Carbon generation behind these boundaries.

Page 10 of 63

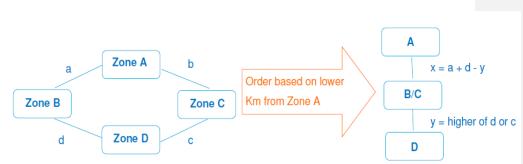
14.15.48 The zonal incremental km for each generation charging zone is split into each boundary component by considering the difference between it and the neighbouring generation charging zone using the formula below;

$$BIkm_{ab} = ZIkm_b - ZIkm_a$$

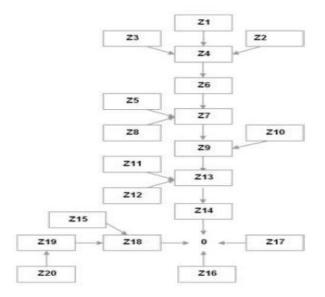
Where;


Blkm_{ab} = boundary incremental km between generation charging zone A and generation charging zone B Zlkm = generation charging zone incremental km.

14.15.49 The table below shows the categorisation of Low Carbon and Carbon generation. This table will be updated by National Grid in the Statement of Use of System Charges as new generation technologies are developed.


Carbon	Low Carbon
Coal	Wind
Gas	Hydro (excl. Pumped Storage)
Biomass	Nuclear
Oil	Marine
Pumped Storage	Tidal
Interconnectors	

Determination of Connectivity


- 14.15.50 Connectivity is based on the existence of electrical circuits between TNUoS generation charging zones that are represented in the Transport model. Where such paths exist, generation charging zones will be effectively linked via an incremental km transmission boundary length. These paths will be simplified through in the case of;
 - Parallel paths the longest path will be taken. An illustrative example is shown below with x, y and z representing the incremental km between zones.

 Parallel zones – parallel zones will be amalgamated with the incremental km immediately beyond the amalgamated zones being the greater of those existing prior to the amalgamation. An illustrative example is shown below with a, b, c, and d representing the the initial incremental km between zones, and x and y representing the final incremental km following zonal amalgamation.

14.15.51 An illustrative Connectivity diagram is shown below:

The arrows connecting generation charging zones and amalgamated generation charging zones represent the incremental km transmission boundary lengths towards the notional centre of the system. Generation located in charging zones behind arrows is considered to share based on the ratio of Low Carbon to Carbon cumulative generation TEC within those zones.

14.15.52 The Company will review Connectivity at the beginning of a new price control period, and under exceptional circumstances such as major system reconfigurations or generation rezoning. If any such reassessment is required, it will be undertaken against a background of minimal change to existing Connectivity and in line with the notification process set out in the Transmission Licence and the CUSC.

Calculation of Boundary Sharing Factors

14.15.53 Boundary sharing factors (BSFs) are derived from the comparison of the cumulative proportion of Low Carbon and Carbon generation TEC behind each of the incremental MWkm boundary lengths using the following formulae –

Page 12 of 63

If $\frac{LC}{LC+C} \le 0.5$, then all Year round marginal km costs are shared i.e. the BSF is 100%.

Where:

LC = Cumulative Low Carbon generation TEC behind the relevant transmission boundary C = Cumulative Carbon generation TEC behind the relevant transmission

C = Cumulative Carbon generation TEC behind the relevant transmission boundary

If
$$\frac{LC}{LC+C}$$
 > 0.5 then the BSF is calculated using the following formula: -

$$BSF = \left(-2 \times \left(\frac{LC}{LC+C}\right)\right) + 2$$

Where:

BSF = boundary sharing factor.

14.15.54 The shared incremental km for each boundary are derived from the multiplication of the boundary sharing factor by the incremental km for that boundary;

$$SBIkm_{ab} = BIIkm_{ab} \times BSF_{ab}$$

Where;

 $SBIkm_{ab}$ = shared boundary incremental km between generation charging zone A and generation charging zone B

 BSF_{ab} = generation charging zone boundary sharing factor.

14.15.55 The shared incremental km is discounted from the incremental km for that boundary to establish the not-shared boundary incremental km. The not-shared boundary incremental km reflects the cost of transmission investment on that boundary accounting for the sharing of power stations behind that boundary.

$$NSBIkm_{ab} = BIkm_{ab} - SBIkm_{ab}$$

Where;

 $NSBIkm_{ab}$ = not shared boundary incremental km between generation charging zone A and generation charging zone B.

14.15.56 The shared incremental km for a generation charging zone is the sum of the appropriate shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRS}$$

Where;

 $ZMkm_{nYRS}$ = Year Round Shared Zonal Marginal km for generation charging zone n.

Page 13 of 63

14.15.57 The not-shared incremental km for a generation charging zone is the sum of the appropriate not-shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRNS}$$

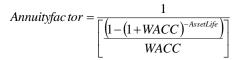
Where;

ZMkm_{nYRNS} = Year Round Not-Shared Zonal Marginal km for generation zone n.

Deriving the Final Local £/kW Tariff and the Wider £/kW Tariff

14.15.58 The zonal marginal km (ZMkm_{Gi}) are converted into costs and hence a tariff by multiplying by the Expansion Constant and the Locational Security Factor (see below). The nodal local marginal km (NLMkm^L) are converted into costs and hence a tariff by multiplying by the Expansion Constant and a Local Security Factor.

The Expansion Constant


- 14.15.59 The expansion constant, expressed in £/MWkm, represents the annuitised value of the transmission infrastructure capital investment required to transport 1 MW over 1 km. Its magnitude is derived from the projected cost of 400kV overhead line, including an estimate of the cost of capital, to provide for future system expansion.
- 14.15.60 In the methodology, the expansion constant is used to convert the marginal km figure derived from the transport model into a £/MW signal. The tariff model performs this calculation, in accordance with 14.15.95 14.15.117, and also then calculates the residual element of the overall tariff (to ensure correct revenue recovery in accordance with the price control), in accordance with 14.15.133.
- 14.15.61 The transmission infrastructure capital costs used in the calculation of the expansion constant are provided via an externally audited process. They also include information provided from all onshore Transmission Owners (TOs). They are based on historic costs and tender valuations adjusted by a number of indices (e.g. global price of steel, labour, inflation, etc.). The objective of these adjustments is to make the costs reflect current prices, making the tariffs as forward looking as possible. This cost data represents The Company's best view; however it is considered as commercially sensitive and is therefore treated as confidential. The calculation of the expansion constant also relies on a significant amount of transmission asset information, much of which is provided in the Seven Year Statement.
- 14.15.62 For each circuit type and voltage used onshore, an individual calculation is carried out to establish a £/MWkm figure, normalised against the 400KV overhead line (OHL) figure, these provide the basis of the onshore circuit expansion factors discussed in 14.15.70 14.15.77. In order to simplify the calculation a unity power factor is assumed, converting £/MVAkm to £/MWkm. This reflects that the fact tariffs and charges are based on real power.
- 14.15.63 The table below shows the first stage in calculating the onshore expansion constant. A range of overhead line types is used and the types are weighted by recent usage on the transmission system. This is a simplified calculation for 400kV OHL using example data:

Page 14 of 63

400kV	400kV OHL expansion constant calculation				
MW	Туре	£(000)/k	Circuit km*	£/MWkm	Weight
А	В	С	D	E = C/A	F=E*D
6500	La	700	500	107.69	53846
6500	Lb	780	0	120.00	0
3500	La/b	600	200	171.43	34286
3600	Lc	400	300	111.11	33333
4000	Lc/a	450	1100	112.50	123750
5000	Ld	500	300	100.00	30000
5400	Ld/a	550	100	101.85	10185
Sum			2500 (G)		285400 (H)
				Weighted Average (J= H/G):	114.160 (J)

*These are circuit km of types that have been provided in the previous 10 years. If no information is available for a particular category the best forecast will be used.

14.15.64 The weighted average £/MWkm (J in the example above) is then converted in to an annual figure by multiplying it by an annuity factor. The formula used to calculate of the annuity factor is shown below:

- 14.15.65 The Weighted Average Cost of Capital (WACC) and asset life are established at the start of a price control and remain constant throughout a price control period. The WACC used in the calculation of the annuity factor is the The Company regulated rate of return, this assumes that it will be reasonably representative of all licensees. The asset life used in the calculation is 50 years; the appropriateness of this is reviewed when the annuity factor is recalculated at the start of a price control period. These assumptions provide a current annuity factor of 0.066.
- 14.15.66 The final step in calculating the expansion constant is to add a share of the annual transmission overheads (maintenance, rates etc). This is done by multiplying the average weighted cost (J) by an 'overhead factor'. The 'overhead factor' represents the total business overhead in any year divided by the total Gross Asset Value (GAV) of the transmission system. This is recalculated at the start of each price control period. The overhead factor used in the calculation of the expansion constant for 2009/10 is 1.8%. The overhead and annuitised costs are then added to give the expansion constant.
- 14.15.67 Using the previous example, the final steps in establishing the expansion constant are demonstrated below:

400kV OHL expansion constant calculation	Ave £/MWkm
OHL	114.160

Page 15 of 63

Annuitised	7.535
Overhead	2.055
Final	9.589

- 14.15.68 This process is carried out for each voltage onshore, along with other adjustments to take account of upgrade options, see 14.15.73, and normalised against the 400KV overhead line cost (the expansion constant) the resulting ratios provide the basis of the onshore expansion factors. The process used to derive circuit expansion factors for Offshore Transmission Owner networks is described in 14.15.78.
- 14.15.69 This process of calculating the incremental cost of capacity for a 400kV OHL, along with calculating the onshore expansion factors is carried out for the first year of the price control and is increased by inflation, RPI, (May–October average increase, as defined in The Company's Transmission Licence) each subsequent year of the price control period. The expansion constant for 2010/11 is 10.633.

Onshore Wider Circuit Expansion Factors

- 14.15.70 Base onshore expansion factors are calculated by deriving individual expansion constants for the various types of circuit, following the same principles used to calculate the 400kV overhead line expansion constant. The factors are then derived by dividing the calculated expansion constant by the 400kV overhead line expansion constant. The factors will be fixed for each respective price control period.
- 14.15.71 In calculating the onshore underground cable factors, the forecast costs are weighted equally between urban and rural installation, and direct burial has been assumed. The operating costs for cable are aligned with those for overhead line. An allowance for overhead costs has also been included in the calculations.
- 14.15.72 The 132kV onshore circuit expansion factor is applied on a TO basis. This is to reflect the regional variation of plans to rebuild circuits at a lower voltage capacity to 400kV. The 132kV cable and line factor is calculated on the proportion of 132kV circuits likely to be uprated to 400kV. The 132kV expansion factor is then calculated by weighting the 132kV cable and overhead line costs with the relevant 400kV expansion factor, based on the proportion of 132kV circuitry to be uprated to 400kV. For example, in the TO areas of National Grid and Scottish Power where there are no plans to uprate any 132kV circuits, the full cable and overhead line costs of 132kV circuit are reflected in the 132kV expansion factor calculation.
- 14.15.73 The 275kV onshore circuit expansion factor is applied on a GB basis and includes a weighting of 83% of the relevant 400kV cable and overhead line factor. This is to reflect the averaged proportion of circuits across all three Transmission Licensees which are likely to be uprated from 275kV to 400kV across GB within a price control period.
- 14.15.74 The 400kV onshore circuit expansion factor is applied on a GB basis and reflects the full costs for 400kV cable and overhead lines.
- 14.15.75 AC sub-sea cable and HVDC circuit expansion factors are calculated on a case by case basis using actual project costs (Specific Circuit Expansion Factors).

Page 16 of 63

- 14.15.76 For HVDC circuit expansion factors both the cost of the converters and the cost of the cable are included in the calculation.
- 14.15.77 The TO specific onshore circuit expansion factors calculated for 2008/9 (and rounded to 2 decimal places) are:

Scottish Hydro Region

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	27.79
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.24	

Scottish Power & National Grid Regions

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	30.22
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.80	

Onshore Local Circuit Expansion Factors

- 14.15.78 The local onshore circuit tariff is calculated using local onshore circuit expansion factors. These expansion factors are calculated using the same methodology as the onshore wider expansion factor but without taking into account the proportion of circuit kms that are planned to be uprated.
- 14.15.79 In addition, the 132kV onshore overhead line circuit expansion factor is sub divided into four more specific expansion factors. This is based upon maximum (winter) circuit continuous rating (MVA) and route construction whether double or single circuit.

400kV underground cable factor:	22.39
275kV underground cable factor:	22.39
132kV underground cable factor:	30.22
400kV line factor:	1.00
275kV line factor:	1.14
132kV line factor (single; <200MVA):	10.00
132kV line factor (double; <200MVA):	8.32
132kV line factor (single; >=200MVA):	7.13
132kV line factor (double; >=200MVA):	4.42

Offshore Circuit Expansion Factors

14.15.80 Offshore expansion factors (£/MWkm) are derived from information provided by Offshore Transmission Owners for each offshore circuit. Offshore expansion factors are Offshore Transmission Owner and circuit specific. Each Offshore Transmission Owner will periodically provide, via the STC, information to derive an annual circuit revenue requirement. The offshore circuit revenue shall include revenues associated with the Offshore Transmission Owner's reactive compensation equipment, harmonic filtering equipment, asset spares and HVDC converter stations.

14.15.81 In the first year of connection, the offshore circuit expansion factor would be calculated as follows:

$\frac{CRevOFTO1}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$

Where:

CRevOFTO1	=	The offshore circuit revenue in £ for Year 1
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

14.15.82 In all subsequent years, the offshore circuit expansion factor would be calculated as follows:

$$\frac{AvCRevOFTO}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$$

Where:

AvCRevOFTO	=	The annual offshore circuit revenue averaged over the
		remaining years of the onshore National Electricity
		Transmission System Operator (NETSO) price control
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

- 14.15.83 For the avoidance of doubt, the offshore circuit revenue values, *CRevOFTO1* and *AvCRevOFTO* shall be determined using asset values after the removal of any One-Off Charges.
- 14.15.84 Prevailing OFFSHORE TRANSMISSION OWNER specific expansion factors will be published in this statement. These shall be recalculated at the start of each price control period using the formula in paragraph 14.15.71. For each subsequent year within the price control period, these expansion factors will be adjusted by the annual Offshore Transmission Owner specific indexation factor, *OFTOInd*, calculated as follows;

$$OFTOInd_{t,f} = \frac{OFTO \operatorname{Rev}Ind_{t,f}}{RPI_{t}}$$

where:

OFTOInd _{t,f}	=	the indexation factor for Offshore Transmission Owner <i>f</i> in respect of charging year <i>t</i> ,
OFTORevInd _t f	=	the indexation rate applied to the revenue of Offshore Transmission Owner f under the terms of its Transmission Licence in respect of charging year t , and
<i>RPI</i> _t	=	the indexation rate applied to the expansion constant in respect of charging year <i>t</i> .

Offshore Interlinks

14.15.85 The revenue associated with an Offshore Interlink shall be divided entirely between those generators benefiting from the installation of that Offshore Interlink. Each of these Users will be responsible for their charge from their charging date, meaning that a proportion of the Offshore Interlink revenue may be socialised prior to all relevant Users being chargeable. The proportion associated with each User will be based on the Measure of Capacity to the MITS using the Offshore Interlink(s) in the event of a single circuit fault on the User's circuit from their offshore substation towards the shore, compared to the Measure of Capacity of the other Users.

Where:

An *Offshore Interlink* is a circuit which connects two offshore substations that are connected to a Single Common Substation. It is held in open standby until there is a transmission fault that limits the User's ability to export power to the Single Common Substation. In the Transport Model, they are to be modelled in open standby.

A Single Common Substation is a substation where:

- i. each substation that is connected by an Offshore Interlink is connected via at least one circuit without passing through another substation; and
- ii. all routes connecting each substation that is connected by an Offshore Interlink to the MITS pass through.

The Measure of Capacity to the MITS for each Offshore substation is the result of the following formula or zero whichever is larger. For the situation with only one interlink, all terms relating to C should be set to zero:

```
For Substation A:
min { Cap_{IAB}, ILF_A \times TEC_A - RCap_A, Cap_B - ILF_B \times TEC_B + min (Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation B:

min { ILF_B \times TEC_B - RCap_B, min (Cap_{IAB}, Cap_A - ILF_A \times TEC_A)

+ min ( Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation C:

min { Cap_{IBC}, ILF_{C} \times TEC_{C} - RCap_{C}, Cap_{B} - ILF_{B} \times TEC_{B} + min (Cap_{IAB}, Cap_{A} - ILF_{A} \times TEC_{A}) }

and
```

Cap _{IAB} = B	total capacity of the Offshore Interlink between substations A and
Cap _{IBC} = C	total capacity of the Offshore Interlink between substations B and
Cap _X =	total capacity of the circuit between offshore substation X and the Single Common Substation, where X is A, B or C.
RCap _x =	remaining capacity of the circuit between offshore substation X and the Single Common Substation in the event of a single cable fault, where X is A, B or C.
TEC _x =	the sum of the TEC for the Users connected, or contracted to connect, to offshore substation X, where X is A, B or C, where the value of TEC will be the maximum TEC that each User has held since the initial charging date, or is contracted to hold if prior to the initial charging date.

- ILF_x = Offshore Interlink Load Factor, where X is A, B or C. The Offshore Interlink Load Factor (ILF) is based on the Annual Load Factor (ALF). Until all the Users connected to a Single Common Substation have a station specific Annual Load Factor based on five years of data, the generic ALF for the fuel type will be used as the ILF for all stations. When all Users have a station specific ALF, the value of the ALF in the first such year will be used as the ILF in the calculation for all subsequent charging years.
- 14.15.86 The apportionment of revenue associated with Offshore Interlink(s) in 14.15.85 applies in situations where the Offshore Interlink was included in the design phase, or if one or more User(s) has already financially committed or been commissioned then only where that User(s) agrees to the Offshore Interlink.
- 14.15.87 Alternatively to the formula specified in 14.15.85 the proportion of the OFTO revenue associated with the Offshore Interlink allocated to each generator benefiting from the installation of an Offshore Interlink may be agreed between these Users. In this event:
- a. All relevant Users shall notify The Company of its respective proportions three months prior the OTSDUW asset transfer in the case of a generator build, or the charging date of the first generator, in the case of an OFTO build.
- b. All relevant Users may agree to vary the proportions notified under (a) by each writing to The Company three months prior to the charges being set for a given charging year.
- c. Once a set of proportions of the OFTO revenue associated with the Offshore Interlink has been provided to The Company, these will apply for the next and future charging years unless and until The Company is informed otherwise in accordance with (b) by all of the relevant Users.
- d. If all relevant Users are unable to reach agreement on the proportioning of the OFTO revenue associated with the Offshore Interlink they can raise a dispute. Any dispute between two or more Users as to the proportioning of such revenue shall be managed in accordance with CUSC Section 7 Paragraph 7.4.1 but the reference to the 'Electricity Arbitration Association' shall instead be to the 'Authority' and the Authority's determination of such dispute shall, without prejudice to apply for judicial review of any determination, be final and binding on the Users.

The Locational Onshore Security Factor

14.15.88 The locational onshore security factor is derived by running a secure DCLF ICRP transport study based on the same market background as used for Zoning in the DCLF ICRP transport model. This calculates the nodal marginal costs where peak <u>net</u> demand can be met despite the Security and Quality of Supply Standard contingencies (simulating single and double circuit faults) on the network. Essentially the calculation of secured nodal marginal costs is identical to the process outlined above except that the secure DCLF study additionally calculates a nodal marginal cost taking into account the requirement to be secure against a set of worse case contingencies in terms of maximum flow for each circuit.

- 14.15.89 The secured nodal cost differential is compared to that produced by the DCLF ICRP transport model and the resultant ratio of the two determines the locational security factor using the Least Squares Fit method. Further information may be obtained from the charging website¹.
- 14.15.90 The locational onshore security factor derived for 2010/11 is 1.8 and is based on an average from a number of studies conducted by The Company to account for future network developments. The security factor is reviewed for each price control period and fixed for the duration.

Local Security Factors

- 14.15.91 Local onshore security factors are generator specific and are applied to a generator's local onshore circuits. If the loss of any one of the local circuits prevents the export of power from the generator to the MITS then a local security factor of 1.0 is applied. For generation with circuit redundancy, a local security factor is applied that is equal to the locational security factor, currently 1.8.
- 14.15.92 Where a Transmission Owner has designed a local onshore circuit (or otherwise that circuit once built) to a capacity lower than the aggregated TEC of the generation using that circuit, then the local security factor of 1.0 will be multiplied by a Counter Correlation Factor (CCF) as described in the formula below;

$$CCF = \frac{D_{\min} + T_{cap}}{G_{cap}}$$

Where; D_{min} = minimum annual net demand (MW) supplied via that circuit in the absence of that generation using the circuit

 T_{cap} = transmission capacity built (MVA)

 G_{cap} = aggregated TEC of generation using that circuit

CCF cannot be greater than 1.0.

14.15.93 A specific offshore local security factor (LocalSF) will be calculated for each offshore connection using the following methodology:

$$LocalSF = \frac{NetworkExportCapacity}{\sum_{k} Gen_{k}}$$

Where:

 NetworkExportCapacity =
 the total export capacity of the network disregarding any Offshore Interlinks

 k
 =
 the generation connected to the offshore network

1 http://www.nationalgrid.com/uk/Electricity/Charges/

Page 21 of 63

- 14.15.94 The offshore security factor for single circuits with a single cable will be 1.0 and for multiple circuit connections will be capped at the locational onshore security factor, derived as 1.8 for 2010/11.
- 14.15.95 The offshore local security factor for configurations with one or more Offshore Interlinks is updated so that the offshore circuit tariff will include the proportion of revenue associated with the Offshore Interlink(s). The specific offshore local security factor for configurations involving an Offshore Interlink, which may be greater than 1.8, will be calculated for each offshore connection using the following methodology:

LocalSF =	$\frac{\text{IRevOFTO} \times \text{NetworkExportCapacity}}{\text{OP} \times \text{OFTO} \times \sum_{i} C_{i}} + LocalSF_{initial}$
	$CRevOFTO \times \sum Gen_k$
	k

Where:

IRevOFTO =	The appropriate proportion of the Offshore Interlink(s) revenue in £
	associated with the offshore connection calculated in 14.15.85
CRevOFTO =	The offshore circuit revenue in £ associated with the circuit(s) from the
	offshore substation to the Single Common Substation.
<u>LocalSF_{initial} =</u>	Initial Local Security Factor calculated in 14.15.80 and 14.15.81
	And other definitions as in 14.15.80.

Initial Transport Tariff

14.15.96 First an Initial Transport Tariff (ITT) must be calculated for both Peak Security and Year Round backgrounds. For Generation, the Peak Security zonal marginal km (ZMkm_{PS}), Year Round Not-Shared zonal marginal km (ZMkm_{YRNS}) and Year Round Shared zonal marginal km (ZMkm_{YRS}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT, Year Round Not-Shared ITT and Year Round Shared ITT respectively:

 $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$

Where ZMkm _{GiPS} ZMkm _{GiYRNS} charging zone	= = e	Peak Security Zonal Marginal km for each generation zone Year Round Not-Shared Zonal Marginal km for each generation
ZMkm _{GiYRS}	=	Year Round Shared Zonal Marginal km for each generation
charging zon	е	
EC	=	Expansion Constant
LSF	=	Locational Security Factor
	=	Peak Security Initial Transport Tariff (£/MW) for each generation
zone		
ITT _{GiYRNS}	=	Year Round Not-Shared Initial Transport Tariff (£/MW) for each
generation charging zone		
ITT _{GiYRS}	=	Year Round Shared Initial Transport Tariff (£/MW) for each
generation charging zone.		

- CUSC v1.12
 - 14.15.97 Similarly, for demand the Peak Security zonal marginal km (ZMkm_{PS}) and Year Round zonal marginal km (ZMkm_{YR}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT and Year Round ITT respectively:

		$ZMkm_{DiPS} \times EC \times LSF = ITT_{DiPS}$
		$ZMkm_{DiYR} \times EC \times LSF = ITT_{DiYR}$
Where ZMkm _{DiP} ZMkm _{DiY}	0	Peak Security Zonal Marginal km for each demand zone Year Round Zonal Marginal km for each demand zone
ITT _{DiPS} ITT _{DiYR}	= =	Peak Security Initial Transport Tariff (\pounds /MW) for each demand one Year Round Initial Transport Tariff (\pounds /MW) for each demand zone
14.15.98 The next step is to multiply these ITTs by the expected metered triad_gross <u>GSP group</u> demand and generation capacity to gain an estimate of the initial revenue recovery for both Peak Security and Year Round backgrounds. The metered triad_gross <u>GSP group</u> demand and generation capacity are based on <u>analysis of</u> forecasts provided by Users and are confidential.		
a.		ad gross GSP group demand is net demand for all GSP groups less exports for all GSP groups .
Where		

ITRR _G =	Initial Transport Revenue Recovery for generation
G _{Gi} =	Total forecast Generation for each generation zone (based
	on <u>analysis of</u> confidential User forecasts)
ITRR _D =	Initial Transport Revenue Recovery for gross GSP group
	demand
D _{Di} =	Total forecast Metered Triad gross GSP group Demand for
each	
	demand zone (based on <u>analysis of</u> confidential User
	forecasts).

In addition, the initial tariffs for generation are also multiplied by the **Peak Security flag** when calculating the initial revenue recovery component for the Peak Security background. Similarly, when calculating the initial revenue recovery for the Shared component of the Year Round background, the initial tariffs are multiplied by the **Annual Load Factor** (see below).

Peak Security (PS) Flag

14.15.99 The revenue from a specific generator due to the Peak Security locational tariff needs to be multiplied by the appropriate Peak Security (PS) flag. The PS flags indicate the extent to which a generation plant type contributes to the need for transmission network investment at peak demand conditions. The PS

Page 23 of 63

flag is derived from the contribution of differing generation sources to the demand security criterion as described in the Security Standard. In the event of a significant change to the demand security assumptions in the Security Standard, National Grid will review the use of the PS flag.

Generation Plant Type	PS flag
Intermittent	0
Other	1

Annual Load Factor (ALF)

- 14.15.100 The ALF for each individual Power Station is calculated using the relevant TEC (MW) and corresponding output data. Where output data is not available for a Power Station, including for new Power Stations and emerging Power Station technologies, generic data for the appropriate generation plant type will be used.
- 14.15.101 For a given charging year "t" the Power Station ALF will be based on information from the previous five charging years, calculated for each charging year as set out below.

$$ALF = \frac{\sum_{p=1}^{17520} GMWh_p}{\sum_{p=1}^{17520} TECp \times 0.5}$$

Where:

 $\mathsf{GMWh}_{\mathsf{p}}$ is the maximum of FPN or actual metered output in a Settlement Period related to the power station TEC (MW); and

 TEC_{p} is the TEC (MW) applicable to that Power Station for that Settlement Period including any STTEC and LDTEC, accounting for any trading of TEC.

- 14.15.102 The appropriate output (FPN or actual metered) figure is derived from **BM Unit** data available to National Grid and relates to the total TEC of the Power Station.
- 14.15.103 Once all five charging year ALFs have been calculated for the individual Power Station they are compared, and the highest and lowest figures are discarded. The final ALF, to be used for transmission charging purposes, is calculated as the average of the remaining three ALFs.
- 14.15.104 In the event that only four charging years of complete output (FPN or actual metered) data are available for an individual Power Station then the higher three charging years ALF would be used in the calculation of the final ALF. In the event that only three charging years of complete output (FPN or actual metered) data are available then these three charging years would be used.
- 14.15.105 Due to the aggregation of output (FPN or actual metered) data for dispersed generation (e.g. cascade hydro schemes), where a single generator BMU consists of geographically separated power stations, the ALF would be calculated based on the total output of the BMU and the overall TEC of those Power Stations.

Page 24 of 63

1

- 14.15.106 In the event that there are not three full charging years of an individual power station's output available, missing output (FPN or actual metered) data would be replaced by generic data for that generation plant type to ensure three charging years of information are available for the Power Station. The derivation of the generic data is described in paragraphs 14.15.111-14.15.114.
- 14.15.107 Users will receive draft ALFs before 25th December of the charging year (t-1) for the charging year (t) and will have a period of 15 working days from date of publishing to notify the Company of any errors. Failure to agree changes relating to errors will be treated as a charging dispute under the CUSC.
- 14.15.108 The ALFs used in the setting of final tariffs will be published in the annual Statement of Use of System Charges. Changes to ALFs after this publication will not result in changes to published tariffs (e.g. following dispute resolution).

Derivation of Generic ALFs

14.15.109 The generic ALF is derived from the average annual output of the ten most recently commissioned GB generation of a particular generation plant type that have at least five charging years' data, using an identical methodology to that used for the Power Station specific calculation described above. Where less than ten GB generators of a particular generation plant type exist, then data from all existing generators of that particular generation plant type will be used. Example generation plant type categories are listed below;

Fuel Type
Biomass
Coal
Gas
Hydro
Nuclear (by reactor
type)
Oil & OCGTs
Pumped Storage
Onshore Wind
Offshore Wind
CHP

- 14.15.110 The Company will keep these categories under review and update as necessary. Where within a category there is a significant locational difference consideration will be given to zonal generic factors. The factors used will be published in the Statement of Use of System Charges and will be reviewed annually.
- 14.15.111 If a User can demonstrate that the generation plant type of a Power Station has changed, consideration will be given to the use of relevant generic ALF information in the calculation of their charges until sufficient specific data is available.
- 14.15.112 For new and emerging generation plant types, where insufficient data is available to allow a generic ALF to be developed, The Company will use the best information available e.g. from manufactuers and data from use of similar technologies outside GB. The factor will be agreed with the relevant Generator. In the event of a disagreement the standard provisions for dispute in the CUSC will apply.

TNUoS Embedded Export Tariff

14.15.113	Embedded exports are exports measured on a half-hourly basis by
	Metering Systems, in accordance with the BSC, that are not subject to
	generation TN

 14.15.114
 The embedded export tariff will be applied to the metered Triad volumes of Embedded Exports for each demand zone as follows:

 $EET_{Di} = ITT_{DiPS} + ITT_{DiYR} + EX$

Where

<u>ITT_{DiPS} =</u>	Peak Security Initial Transport Tariff for the demand zone;
ITT _{DiYR} =	Year Round Initial Transport Tariff for the demand zone, and
EX:	

First Charging year following the implementation date of CMP 264/265:

$$= \frac{2}{2} (XP - ((RT_G \times -1) + AGIC)) + ((RT_G \times -1) + AGIC))$$

Second charging year following the implementation date of CMP 264/265:

$$= \frac{2}{2} (XP - ((RT_G \times -1) + AGIC)) + ((RT_G \times -1) + AGIC))$$

Third charging year following the implementation date of CMP 264/265 and every subsequent charging year:

 $= (RT_G \times -1) + AGIC$

 $\frac{XP}{RT_G} = \frac{Value of demand residual in charging year prior to implementation}{Generation Residual Tariff with the inverse sign. For clarity, this means}$

that if the Generation Residual is negative, the generation residual will be applied as a positive number for embedded exports.

AGIC = The Avoided GSP Infrastructure Credit (AGIC) which represents the unit cost of infrastructure reinforcement at GSPs which is avoided as a consequence of embedded generation connected to the distribution networks served by those GSPs. It is calculated from the average annuitised cost of that infrastructure reinforcement divided by the average capacity delivered by a supergrid transformer.

The Avoided GSP Infrastructure Credit is calculated at the beginning of each price control period and in the first applicable charging year following the implementation date of CMP264/265 using data submitted by onshore TSOs as part of the price control process. The data used is from the most recent [20] schemes submitted under the price control process and indexed each year by the RPI formula set out in 14.3.6 until the end of the price control. For the avoidance of doubt, this approach does not include the cost of the supergrid transformers or any other connection assets as they are paid for by the relevant DNOs thorough their connection charges.

The Value of EET_{Di} will be floored at zero, so that EET_{Di} is always zero or positive.

Initial Revenue Recovery

14.15,<u>115</u> For the Peak Security background the initial tariff for generation is multiplied by the total forecast generation capacity and the PS flag to give the initial revenue recovery:

Deleted: 113

Page 26 of 63

$$\sum_{G_{i}=1}^{n} \left(ITT_{G_{i}PS} \times G_{G_{i}} \times F_{PS} \right) = ITRR_{GPS}$$

Where

ITRR_{GPS}

=

=

=

=

Peak Security Initial Transport Revenue Recovery for generation Total forecast Generation for each generation zone (based on <u>analysis of</u> confidential User forecasts)

F_{PS} n

 G_{Gi}

Peak Security flag appropriate to that generator type Number of generation zones

The initial revenue recovery for <u>gross GSP group</u> demand for the Peak Security background is calculated by multiplying the initial tariff by the total forecast metered triad <u>gross GSP group</u> demand:

$$\sum_{Di=1}^{14} \left(ITT_{DiPS} \times D_{Di} \right) = ITRR_{DPS}$$

Where:

ITRRDPS	=	Peak Security Initial Transport Revenue Recovery for gross GSP
		group demand
D _{Di}	=	Total forecast Metered Triad_gross GSP group Demand for each

 I otal forecast Metered Triad gross GSP group Demand for each demand zone (based on <u>analysis of</u> confidential User forecasts)

Deleted: 114

14.15,<u>116</u> For the Year Round background, the initial tariff for generation is multiplied by the total forecast generation capacity whilst calculating Initial Recovery for Not-Shared component whereas the initial tariff for Shared component is multiplied by both, the total forecast generation capacity and the ALF to give the initial revenue recovery:

$$\sum_{G_{i=1}}^{n} (ITT_{G_{iYRNS}} \times G_{G_{i}}) = ITRR_{G_{YRNS}}$$
$$\sum_{G_{i=1}}^{n} (ITT_{G_{iYRS}} \times G_{G_{i}} \times ALF) = ITRR_{G_{YRS}}$$

Where:

ITRR _{GYRNS} generation	=	Year Round Not-Shared Initial Transport Revenue Recovery for						
ITRR _{GYRS} generation	=	Year Round Shared Initial Transport Revenue Recovery for						
ALF	=	Annual Load Factor appropriate to that generator.						

14.15,117 Similar to the Peak Security background, the initial revenue recovery for gross <u>GSP group</u> demand for the Year Round background is calculated by multiplying the initial tariff by the total forecast metered triad gross GSP group demand: Deleted: 115

Page 27 of 63

$$\sum_{D_i=1}^{14} (ITT_{D_iYR} \times D_{D_i}) = ITRR_{DYR}$$

Where:

ITRR_{DYR} = Year Round Initial Transport Revenue Recovery for <u>gross GSP</u> <u>group</u> demand

14.15.118The initial revenue recovery for Embedded Exports is the Embedded Export Tariff multiplied by the total forecast volume of Embedded Export at triad:

$$ITRR_{EE} = \sum_{Di=1}^{14} (EET_{Di} \times EEV_{Di})$$

Where

For the avoidance of doubt, the initial revenue recovery for affected embedded exports can be positive or negative.

Deriving the Final Local Tariff (£/kW)

Local Circuit Tariff

14.15,119 Generation with a local circuit tariff is calculated by multiplying the Year Round nodal marginal km along the local circuit by the expansion constant and the relevant local security factor (whether onshore or offshore) and summing across local circuits to give the local circuit tariff:

$$\sum_{k} \frac{NLMkm_{G_{i}}^{L} \times EC \times LocalSF_{k}}{1000} = CLT_{G_{i}}$$

Where

k	=	Local circuit k for generator
NLMkm _{Gj} ^L	=	Year Round Nodal marginal km along local circuit k using local
		circuit expansion factor.
EC	=	Expansion Constant
LocalSF _k	=	Local Security Factor for circuit k
CLT _{Gi}	=	Circuit Local Tariff (£/kW)

Onshore Local Substation Tariff

14.15,120 All chargeable generation is subject to the local substation tariff component which is determined by assessing the generation substation type which is the substation at the connection charging boundary, against three cost determining factors:

Page 28 of 63

V1.12-01 April 2016

Deleted: 116

- (a) HV connection voltage the voltage at the boundary between the User's connection assets and the transmission system;
- (b) Sum of TEC at the generation substation the combined TEC of all generation at the connecting substation; and
- (c) The level of redundancy at the generation substation single busbar / single switch mesh connections are examples of no redundancy connections, whereas examples of connections with redundancy include double busbar and mesh sub station designs.
- 14.15,<u>121</u> Using the above factors, the corresponding £/kW tariffs (quoted to 3dp) that will be applied during 2010/11 are:

Substation Connection		Substation Voltage (a)					
Rating (b)	Type (c)	132kV	275kV	400kV			
<1320MW	No redundancy	0.133	0.081	0.065			
<1320MW	Redundancy	0.301	0.192	0.155			
>=1320MW	No redundancy	n/a	0.257	0.208			
>=1320MW	Redundancy	n/a	0.417	0.336			

- 14.15,122 The process for calculating Local Substation Tariffs will be carried out for the first year of the price control and will subsequently be indexed by RPI for each subsequent year of the price control period.
- 14.15,<u>123</u> The effective Local Tariff (£/kW) is calculated as the sum of the circuit and substation onshore and/or offshore components:

$$ELT_{Gi} = CLT_{Gi} + SLT_{Gi}$$

Where

I

 ELT_{Gi} = Effective Local Tariff (£/kW) SLT_{Gi} = Substation Local Tariff (£/kW)

14.15,<u>124</u> Where tariffs do not change mid way through a charging year, final local tariffs will be the same as the effective tariffs:

ELT_{Gi}	=	LT _{Gi}
Where		
LT _{Gi}	=	Final Local Tariff (£/kW)

14.15,125 Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$LT_{Gi} = \frac{12 \times \left(ELT_{Gi} \times \sum_{Gi=1}^{21} G_{Gi} - FLL_{Gi}\right)}{b \times \sum_{Gi=1}^{21} G_{Gi}} \quad \text{and} \quad FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{21} D_{Di}}$$

Where:

b = number of months the revised tariff is applicable for

FLL = Forecast local liability incurred over the period that the original tariff is applicable for

Page 29 of 63

V1.12-01 April 2016

Deleted: 119

Deleted: 118

Deleted: 120

Deleted: 121

CUSC v1.12 14.15,126 For the purposes of charge setting, the total local charge revenue is calculated Deleted: 123 by: $\mathrm{LCRR}_{\mathrm{G}} = \sum_{i=Gi} \mathrm{LT}_{\mathrm{Gi}} * G_{i}$ Where LCRR_G Local Charge Revenue Recovery = Gi = Forecast chargeable Generation or Transmission Entry Capacity in kW (as applicable) for each generator (based on analysis of confidential information received from Users) Offshore substation local tariff 14.15,127 All offshore chargeable generation is subject to an offshore substation tariff. Deleted: 124 The offshore substation tariff shall be the sum of transformer, switchgear and platform components. 14.15,128 Each tariff component, expressed in £/kW, shall be the ratio of the Offshore Deleted: 125 Transmission Owner revenue (£) and rating associated with the transformers, switchgear or platform (kW) at each offshore substation. The Offshore Transmission Owner revenue of each tariff component shall include that associated with asset spares. In the case of the platform component, the relevant rating shall be the lower of the transformer or switchgear ratings. As with the offshore circuit expansion factors, the Offshore Transmission Owner revenue associated with each tariff component shall be averaged over the remaining years of the NETSO price control. 14.15,129 Offshore Transmission Owner revenue associated with interest during Deleted: 126 construction and project development overheads will be attributed to the relevant asset category with which it is associated. If these or any other costs included in the Offshore Transmission Owner revenue are not readily attributable to a given asset category, they will be pro-rated across the various asset categories based on their relative cost. 14.15,130 For 2010/11 a discount of £0.345590/kW shall be provided to the offshore Deleted: 127 substation tariff to reflect the average cost of civil engineering for onshore substations. This will be inflated by RPI each year and reviewed every price control period. 14.15,131 Offshore substation tariffs shall be reviewed at the start of every onshore price Deleted: 128 control period. For each subsequent year within the price control period, these shall be inflated in the same manner as the associated Offshore Transmission Owner Revenue. 14.15,132 The revenue from the offshore substation local tariff is calculated by: Deleted: 129 $SLTR = \sum_{All offshore} \left(SLT_k \times \sum_k Gen_k \right)$ Where: the offshore substation tariff for substation k SLT_k = Gen₄ the generation connected to offshore substation k = Page 30 of 63 V1.12-01 April 2016

The Residual Tariff

14.15,133 The total revenue to be recovered through TNUoS charges is determined each year with reference to the Transmission Licensees' Price Control formulas less the costs expected to be recovered through Pre-Vesting connection charges. Hence in any given year t, a target revenue figure for TNUoS charges (TRR_t) is set after adjusting for any under or over recovery for and including, the small generators discount is as follows:

$$TRR_t = R_t - PVC_t - SG_{t-1}$$

Where

1

- TRRt = TNUoS Revenue Recovery target for year t
 Rt = Forecast Revenue allowed under The Company's RPI-X Price Control Formula for year t (this term includes a number of adjustments, including for over/under recovery from the previous year). For further information, refer to Special Condition D2 of The Company's Transmission Licence.
- PVC_t = Forecast Revenue from Pre-Vesting connection charges for year t
- SG_{t-1} = The proportion of the under/over recovery included within R_t which relates to the operation of statement C13 of the The Company Transmission Licence. Should the operation of statement C13 result in an under recovery in year t 1, the SG figure will be positive and vice versa for an over recovery.
- 14.15,134 In normal circumstances, the revenue forecast to be recovered from the initial transport tariffs will not equate to the total revenue target. This is due to a number of factors. For example, the transport model assumes, for simplicity, smooth incremental transmission investments can be made. In reality, transmission investment can only be made in discrete 'lumps'. The transmission system has been planned and developed over a long period of time. Forecasts and assessments used for planning purposes will not have been borne out precisely by events and therefore some distinction between an optimal system for one year and the actual system can be expected.
- 14.15,135 As a result of the factors above, in order to ensure adequate revenue recovery, a constant non-locational **Residual Tariff** for generation and demand is calculated, which includes infrastructure substation asset costs. It is added to the initial transport tariffs for both Peak Security and Year Round backgrounds so that the correct generation / demand revenue split is maintained and the total revenue recovery is achieved.

$$RT_{D} = \frac{(p \times TRR) - ITRR_{DPS} - ITRR_{DYR} - ITRR_{EE}}{\sum_{Di=1}^{14} D_{Di}}$$

$$RT_{G} = \frac{\left[(1-p) \times TRR\right] - ITRR_{GPS} - ITRR_{GYRNS} - ITRR_{GYRS} - LCRR_{G}}{\sum_{Gi=1}^{n} G_{Gi}}$$

Page 31 of 63

Where RT

= Residual Tariff (£/MW)

р

Proportion of revenue to be recovered from demand

V1.12-01 April 2016

Deleted: 130

Deleted: 131

Deleted: ¶	
DT _	$(p \times TRR) - I$
$RT_D =$	·
	4

Final £/kW Tariff

14.15,136 The effective Transmission Network Use of System tariff (TNUoS) for generation and gross demand can now be calculated as the sum of the initial transport wider tariffs for Peak Security and Year Round backgrounds, the non-locational residual tariff and the local tariff:

$$ET_{Gi} = \frac{ITT_{GiPS} + ITT_{GiYRNS} + ITT_{GiYRS} + RT_{G}}{1000} + LT_{Gi}$$
$$ET_{Di} = \frac{ITT_{DiPS} + ITT_{DiYR} + RT_{D}}{1000}$$

Where

- $$\label{eq:expectation} \begin{split} \mathsf{ET}_{\underline{\mathsf{Gi}}} &= _\mathsf{Effective} \ \underline{\mathsf{Generation}} \ \mathsf{TNUoS} \ \mathsf{Tariff} \ \mathsf{expressed} \ \mathsf{in} \ \underline{\mathsf{L}}/\mathsf{kW} \ (\mathsf{ET}_{\mathsf{Gi}} \ \mathsf{would} \ \mathsf{only} \ \mathsf{be} \\ & \mathsf{applicable} \ \mathsf{to} \ \mathsf{a} \ \mathsf{Power} \ \mathsf{Station} \ \mathsf{with} \ \mathsf{a} \ \mathsf{PS} \ \mathsf{flag} \ \mathsf{of} \ \mathsf{1} \ \mathsf{and} \ \mathsf{ALF} \ \mathsf{of} \ \mathsf{1}; \ \mathsf{in} \ \mathsf{all} \ \mathsf{other} \\ & \mathsf{circumstances} \ \mathsf{ITT}_{\mathsf{GiPS}}, \ \mathsf{ITT}_{\mathsf{GiPRNS}} \ \mathsf{and} \ \mathsf{ITT}_{\mathsf{GiPRS}} \ \mathsf{will} \ \mathsf{be} \ \mathsf{applied} \ \mathsf{using} \ \mathsf{Power} \\ & \mathsf{Station} \ \mathsf{specific data}) \end{split}$$
- ET_{Di} = Effective Gross Demand TNUoS Tariff expressed in £/kW

The effective Transmission Network Use of System tariff (TNUoS) for affected embedded exports and grandfathered embedded exports can now be calculated by expressing the embedded export tariff in £/kW values:

$$ET_{EEi} = \frac{EET_{Di}}{1000}$$

<u>Where</u>

ET_{EEI} = Effective Embedded Export TNUoS Tariff expressed in £/kW

For the purposes of the annual Statement of Use of System Charges ET_{Gi} will be published as ITT_{GiPS} ; ITT_{GiPRS} , ITT_{GiPRS} , RT_G and LT_{Gi}

14.15,<u>137</u> Where tariffs do not change mid way through a charging year, final demand and generation tariffs will be the same as the effective tariffs.

$$FT_{Gi} = ET_{Gi}$$

$$FT_{Di} = ET_{Di}$$

$$FT_{EEAi} = ET_{EEi}$$

14.15,<u>138</u> Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$FT_{Gi} = \frac{12 \times \left(ET_{Gi} \times \sum_{Gi=1}^{20} G_{Gi} - FL_{Gi}\right)}{b \times \sum_{Gi=1}^{27} G_{Gi}}$$

Page 32 of 63

V1.12-01 April 2016

Deleted: 133

Deleted: 134

$$FT_{EEi} = \frac{12 \times (ET_{EEi} \times \sum_{Di=1}^{14} EET_{Di} - FL_{Di})}{b \times \sum_{Di=1}^{14} EET_{Di}} \text{ and } FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{14} D_{Di}}$$

Where:

b = number of months the revised tariff is applicable for FL = Forecast liability incurred over the period that the original tariff is applicable for

Note: The ET_{Gi} element used in the formula above will be based on an individual Power Stations PS flag and ALF for Power Station G_{Gi} , aggregated to ensure overall correct revenue recovery.

14.15.1,39 If the final gross demand TNUoS Tariff results in a negative number then this is collared to £0/kW with the resultant non-recovered revenue smeared over the remaining demand zones:

 $NRRT_{D} = \frac{\sum_{i=1}^{z} \left(FT_{Di} \times D_{Di} \right)}{\sum_{i=1}^{14} D_{Di}}$

If $FT_{Di} < 0$, then i = 1 to z

Therefore,

Therefore the revised Final Tariff for the <u>gross</u> demand zones with positive Final tariffs is given by:

For i=1 to z: $RFT_{Di} = 0$

For *i*=z+1 to 14:

 $RFT_{Di} = FT_{Di} + NRRT_{D}$

Where

 $NRRT_D = Non Recovered Revenue Tariff (£/kW)$ RFT_{Di} = Revised Final Tariff (£/kW)

- 14.15,140 The tariffs applicable for any particular year are detailed in The Company's Statement of Use of System Charges, which is available from the Charging website. Archived tariff information may also be obtained from the Charging website.
- 14.15,141 The zonal maps referenced in The Company's **Statement of Use of System Charges** and available on the **Charging website** contain detailed information for the charging year in question of which Grid Supply Points fall into which TNUoS zones.

14.15,142 New Grid Supply Points will be classified into zones on the following basis:

- For demand zones, according to the GSP Group to which the Grid Supply Point is allocated for energy market settlement purposes.
- For generation zones, with reference to the geographic proximity to existing zones and, where close to a boundary between existing zones, with reference to the

Page 33 of 63

V1.12– 01 April 2016

Deleted: 40

Deleted: 137

Deleted: 138

marginal costs arising from transport model studies. The GSP will then be allocated to the zone, which contains the most similar marginal costs.

14.15,143 The Company has available, upon request, the DCLF ICRP transport model, tariff model template and data necessary to run the model, consisting of nodal values of generation and demand connection points to the NETS. The model and data will enable the basic nodal charges to be determined and will also allow sensitivity analysis concerning alternative developments of generation and demand to be undertaken. The model is available from the Charging Team and whilst it is free of charge, it is provided under licence to restrict its distribution and commercial use.

- 14.15,144 The Company will be pleased to run specific sensitivity studies for Users under a separate study contract in line with the fees set out in the Statement of Use of System Charges. Please contact the Charging Team.
 - 14.15,145 The factors which will affect the level of TNUoS charges from year to year include-;
 - the forecast level of peak demand on the system
 - the Price Control formula (including the effect of any under/over recovery from the previous year),
 - the expansion constant,
 - the locational security factor,
 - the PS flag
 - the ALF of a generator
 - changes in the transmission network
 - HVDC circuit impedance calculation
 - changes in the pattern of generation capacity and demand.
 - changes in the pattern of embedded exports

14.15,146 In accordance with Standard Licence Condition C13, generation directly connected to the NETS 132kV transmission network which would normally be subject to generation TNUoS charges but would not, on the basis of generating capacity, be liable for charges if it were connected to a licensed distribution network qualifies for a reduction in transmission charges by a designated sum, determined by the Authority. Any shortfall in recovery will result in a unit amount increase in gross_demand charges to compensate for the deficit. Further information is provided in the Statement of the Use of System Charges.

Stability & Predictability of TNUoS tariffs

14.15,<u>147</u> A number of provisions are included within the methodology to promote the stability and predictability of TNUoS tariffs. These are described in 14.29.

Deleted: 143

Deleted: 140

Deleted: 141

Deleted: 142

Deleted: 144

Page 34 of 63

14.16 Derivation of the Transmission Network Use of System Energy Consumption Tariff and Short Term Capacity Tariffs

- 14.16.1 For the purposes of this section, Lead Parties of Balancing Mechanism (BM) Units that are liable for Transmission Network Use of System Demand Charges are termed Suppliers.
- 14.16.2 Following calculation of the Transmission Network Use of System £/kW Gross Demand Tariff (as outlined in Chapter 2: Derivation of the TNUoS Tariff) for each GSP Group is calculated as follows:

$$p/kWh Tariff = (NHHD_F * £/kW Tariff - FL_G) *100$$

NHHC_G

Where:

 \pounds/kW Tariff = The \pounds/kW Effective <u>Gross</u> Demand Tariff (\pounds/kW), as calculated previously, for the GSP Group concerned.

 \mathbf{NHHD}_{F} = The Company's forecast of Suppliers' non-half-hourly metered Triad Demand (kW) for the GSP Group concerned. The forecast is based on historical data.

 FL_{G} = Forecast Liability incurred for the GSP Group concerned.

 $\rm NHHC_{G}$ = The Company's forecast of GSP Group non-half-hourly metered total energy consumption (kWh) for the period 16:00 hrs to 19:00hrs inclusive (i.e. settlement periods 33 to 38) inclusive over the period the tariff is applicable for the GSP Group concerned.

Short Term Transmission Entry Capacity (STTEC) Tariff

14.16.3 The Short Term Transmission Entry Capacity (STTEC) tariff for positive zones is derived from the Effective Tariff (ET_{Gi}) annual TNUoS £/kW tariffs (14.15.112). If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the STTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (i.e. over the whole financial year, not just the period that the STTEC is applicable for). STTECs will not be reconciled following a mid year charge change. The premium associated with the flexible product is associated with the analysis that 90% of the annual charge is linked to the system peak. The system peak is likely to occur in the period of November to February inclusive (120 days, irrespective of leap years). The calculation for positive generation zones is as follows:

$$\frac{FT_{Gi} \times 0.9 \times STTEC \ Period}{120} = STTEC \ tariff \ (\pounds/kW/period)$$

Where:

FT	=	Final annual TNUoS Tariff expressed in £/kW
Gi	=	Generation zone
STTEC Period	=	A period applied for in days as defined in the CUSC

Page 35 of 63

- 14.16.4 For the avoidance of doubt, the charge calculated under 14.16.3 above will represent each single period application for STTEC. Requests for multiple /STTEC periods will result in each STTEC period being calculated and invoiced separately.
- 14.16.5 The STTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.

Limited Duration Transmission Entry Capacity (LDTEC) Tariffs

14.16.6 The Limited Duration Transmission Entry Capacity (LDTEC) tariff for positive zones is derived from the equivalent zonal STTEC tariff for up to the initial 17 weeks of LDTEC in a given charging year (whether consecutive or not). For the remaining weeks of the year, the LDTEC tariff is set to collect the balance of the annual TNUoS liability over the maximum duration of LDTEC that can be granted in a single application. If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the LDTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (ie over the whole financial year, not just the period that the STTEC is applicable for). LDTECs will not be reconciled following a mid year charge change:

Initial 17 weeks (high rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.9 \times 7}{120}$$

Remaining weeks (low rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.1075 \times 7}{316 - 120} \times (1 + P)$$

where FT is the final annual TNUoS tariff expressed in £/kW; G_i is the generation TNUoS zone; and P is the premium in % above the annual equivalent TNUoS charge as determined by The Company, which shall have the value 0.

- 14.16.7 The LDTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.
- 14.16.8 The tariffs applicable for any particular year are detailed in The Company's **Statement of Use of System Charges** which is available from the **Charging website**. Historical tariffs are also available on the **Charging website**.

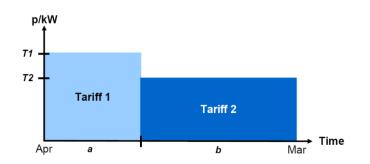
14.17 Demand Charges

Parties Liable for Demand Charges

- 14.17.1 Demand charges are subdivided into charges for gross demand, energy and embedded export. The following parties shall be liable for some or all of the categories of demand charges:
 - The Lead Party of a Supplier BM Unit;
 - Power Stations with a Bilateral Connection Agreement;
 - Parties with a Bilateral Embedded Generation Agreement
- 14.17.2 Classification of parties for charging purposes, section 14.26, provides an illustration of how a party is classified in the context of Use of System charging and refers to the paragraphs most pertinent to each party.

Basis of Gross Demand Charges

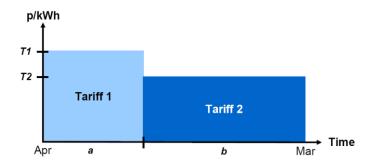
app


app

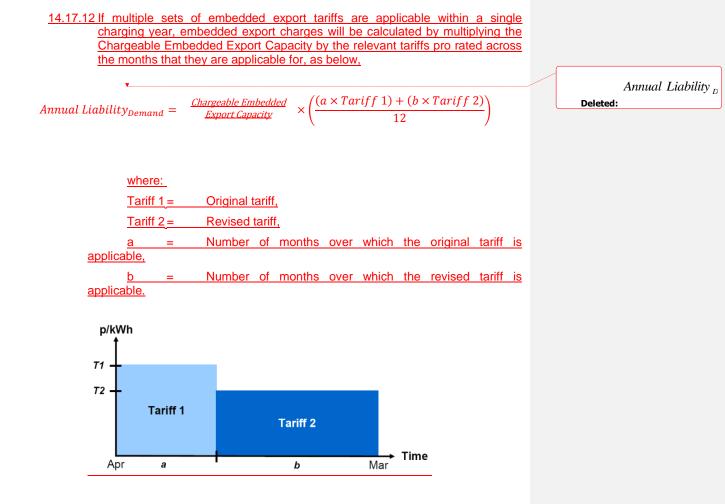
- 14.17.3 <u>Gross d</u>emand charges are based on a de-<u>minimis</u> £0/kW charge for Half Hourly and £0/kWh for Non Half Hourly metered demand.
 - 14.17.4 Chargeable <u>Gross</u> Demand Capacity is the value of Triad <u>gross</u> demand (kW). Chargeable Energy Capacity is the energy consumption (kWh). The definition of both these terms is set out below.
 - 14.17.5 If there is a single set of <u>gross</u> demand tariffs within a charging year, the Chargeable <u>Gross</u> Demand Capacity is multiplied by the relevant <u>gross</u> demand tariff, for the calculation of <u>gross</u> demand charges.
 - 14.17.6 If there is a single set of energy tariffs within a charging year, the Chargeable Energy Capacity is multiplied by the relevant energy consumption tariff for the calculation of energy charges..
 - 14.17.7 If multiple sets of <u>gross</u> demand tariffs are applicable within a single charging year, <u>gross</u> demand charges will be calculated by multiplying the Chargeable <u>Gross</u> Demand Capacity by the relevant tariffs pro rated across the months that they are applicable for, as below,

Annuc	ıl Liabilit <u>:</u>	y _{Demand} = <u>Cha</u>	nrge. man	<u>able Gross</u> <u>d Capacity</u>	$\times \left(\frac{(a)}{a}\right)$	< Tariff 2	$\frac{1}{12} + (b)$	×Tariff2	<u>!)</u>)	
whe	re:						_			
Tarif	ff 1 =	Original ta	ariff	,						
Tarif	ff 2 =	Revised ta	arif	f,						
a licable,	=	Number	of	months	over	which	the	original	tariff	is
b licable.	=	Number	of	months	over	which	the	revised	tariff	is

Deleted: minimus


Deleted: Annual Liability D

14.17.8 If multiple sets of energy tariffs are applicable within a single charging year, energy charges will be calculated by multiplying relevant Tariffs by the Chargeable Energy Capacity over the period that that the tariffs are applicable for and summing over the year.


Annual Liability $_{Energy} = Tariff \ 1 \times \sum_{TI_s}^{TI_E} Chargeable Energy Capacity + Tariff \ 2 \times \sum_{T2_s}^{TI_E} Chargeable Energy Capacity$

Where: T1s Start date for the period for which the original tariff is = applicable, End date for the period for which the original tariff is T1_E applicable, Start date for the period for which the revised tariff is T2s _ applicable, End date for the period for which the revised tariff is T2_E = applicable.

Basis of Embedded Export Charges

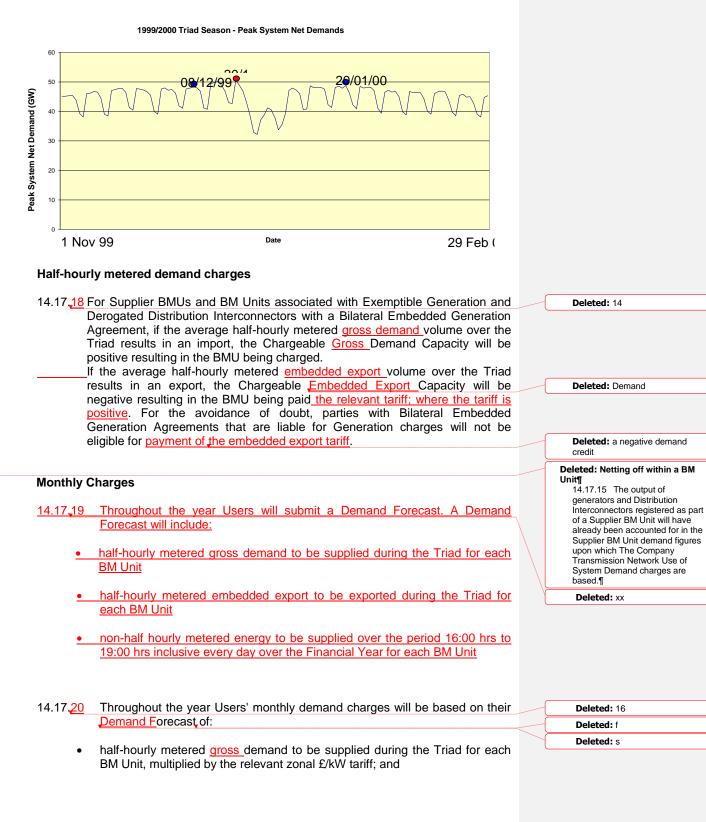
- 14.17.9 Embedded export charges are based on a £/kW charge for Half Hourly metered embedded export.
- <u>14.17.10 Chargeable Embedded Export Capacity is the value of Embedded Export at</u> <u>Triad (kW). The definition of this term is set out below.</u>
- 14.17.11 If there is a single set of embedded export tariffs within a charging year, the Chargeable Embedded Export Capacity is multiplied by the relevant embedded export tariff, for the calculation of embedded export charges.

Supplier BM Unit

14.17,<u>13</u> A Supplier BM Unit charges will be the sum of its energy, <u>gross_demand_and</u> <u>embedded export</u> liabilities where:

- The Chargeable <u>Gross</u> Demand Capacity will be the average of the Supplier BM Unit's half-hourly metered <u>gross</u> demand during the Triad (and the £/kW tariff),
- The Chargeable Embedded Export Capacity will be the average of the Supplier BM Unit's half-hourly metered embedded export during the Triad (and the £/kW tariff), and
- The Chargeable Energy Capacity will be the Supplier BM Unit's non halfhourly metered energy consumption over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year (and the p/kWh tariff).

Power Stations with a Bilateral Connection Agreement and Licensable Generation with a Bilateral Embedded Generation Agreement


Page 39 of 63

V1.12-01 April 2016

CUSC v1.12	
14.17,14 The Chargeable Gross Demand Capacity for a Power Station with a Bilateral	Deleted: 10
Connection Agreement or Licensable Generation with a Bilateral Embedded	
Generation Agreement will be based on the average of the gross import over	Deleted: net
each Triad leg of the BM Units associated with the Power Station (in Appendix C of its Bilateral Connection Agreement or Bilateral Embedded Generation Agreement, including metered additional load) during the Triad.	
Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement	
14.17,15,The demand charges for Exemptible Generation and Derogated Distribution	Deleted: 11
Interconnector with a Bilateral Embedded Generation Agreement will be the sum of its gross demand and embedded export liabilities where:	Deleted: An
sum of his gross demand and embedded export liabilities where.	
 The Chargeable Gross Demand Capacity for Exemptible Generation and Deve geted Distribution Intercomposition with a Dilatoral Each added Composition 	
Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement will be based on the average of the metered <u>gross demand</u> of	Deleted: volume
each BM Unit specified in Appendix C of the Bilateral Embedded Generation	Deleted: volume
Agreement during the Triad.	
The Chargeable Embedded Export Capacity for Exemptible Generation and	
 <u>The Chargeable Embedded Export Capacity for Exemptible Generation and</u> Derogated Distribution Interconnectors with a Bilateral Embedded Generation 	
Agreement will be based on the average of the metered embedded export of	
each BM Unit specified in Appendix C of the Bilateral Embedded Generation	
Agreement during the Triad.	
Small Generators Tariffs	
14.17.16 In accordance with Standard Licence Condition C13, any under recovery from	Deleted: 12
the MAR arising from the small generators discount will result in a unit amount	
of increase to all GB gross demand tariffs.	
The Triad	
The mau	
14.17,17 The Triad is used as a short hand way to describe the three settlement periods	Deleted: 13
of highest transmission system demand within a Financial Year, namely the	
half hour settlement period of system peak net demand and the two half hour	
settlement periods of next highest <u>net</u> demand, which are separated from the	
system peak <u>net</u> demand and from each other by at least 10 Clear Days,	
between November and February of the Financial Year inclusive. Exports on	
directly connected Interconnectors and Interconnectors capable of exporting more than 100MW to the Total System shall be excluded when determining the	
system peak net demand. An illustration is shown below.	
system peaking demand. An indenation is shown below.	

I

I

- half-hourly metered embedded export to be supplied during the Triad for each BM Unit, multiplied by the relevant zonal £/kW tariff; and
- non-half hourly metered energy to be supplied over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year for each BM Unit, multiplied by the relevant zonal p/kWh tariff

Users' annual TNUoS demand charges are based on these forecasts and are split evenly over the 12 months of the year. Users have the opportunity to vary their demand forecasts on a quarterly basis over the course of the year, with the demand forecast requested in February relating to the next Financial Year. Users will be notified of the timescales and process for each of the quarterly updates. The Company will revise the monthly Transmission Network Use of System demand charges by calculating the annual charge based on the new forecast, subtracting the amount paid to date, and splitting the remainder evenly over the remaining months. For the avoidance of doubt, only positive demand forecasts (i.e. representing <u>a net</u> import from the system) will be <u>used in the calculation of charges</u>.

Demand forecasts for a User will be considered positive where:

- The sum of the gross demand forecast and embedded export forecast is positive; and
- The non-half hourly metered energy forecast is positive.

14.17.21 Users should submit reasonable forecasts of gross demand, embedded export and energy in accordance with the CUSC. The Company shall use the following methodology to derive a forecast to be used in determining whether a User's forecast is reasonable, in accordance with the CUSC, and this will be used as a replacement forecast if the User's total forecast is deemed unreasonable. The Company will, at all times, use the latest available Settlement data.

For existing Users:

- i) The User's Triad <u>gross</u> demand<u>and embedded export</u> for the preceding Financial Year will be used where User settlement data is available and where The Company calculates its forecast before the Financial Year. Otherwise, the User's average weekday settlement period 35 half-hourly metered (HH) <u>gross</u> demand <u>and embedded export</u> in the Financial Year to date is compared to the equivalent average <u>gross</u> demand<u>and</u> <u>embedded export</u> for the corresponding days in the preceding year. The percentage difference is then applied to the User's HH <u>gross</u> demand<u>and</u> <u>embedded export</u> at Triad in the preceding Financial Year to derive a forecast of the User's HH <u>gross</u> demand <u>and embedded export</u> at Triad for this Financial Year.
- ii) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day in the Financial Year to date is compared to the equivalent energy consumption over the corresponding days in the preceding year. The percentage difference is then applied to the User's total NHH energy consumption in the preceding Financial Year to derive a forecast of the User's NHH energy consumption for this Financial Year.

For new Users who have completed a Use of System Supply Confirmation Notice in the current Financial Year:

Page 42 of 63

V1.12-01 April 2016

Deleted: accepted

1

iii) The User's average weekday settlement period 35 half-hourly metered (HH) gross demand and embedded export over the last complete month for which The Company has settlement data is calculated. Total system average HH gross demand and embedded export for weekday settlement period 35 for the corresponding month in the previous year is compared to total system HH_gross demand and embedded export at Triad in that year and a percentage difference is calculated. This percentage is then applied to the User's average HH gross demand and embedded export for weekday settlement period 35 over the last month to derive a forecast of the User's HH gross demand and embedded export at Triad for this Financial Year.

- iv) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day over the last complete month for which The Company has settlement data is noted. Total system NHH energy consumption over the corresponding month in the previous year is compared to total system NHH energy consumption over the remaining months of that Financial Year and a percentage difference is calculated. This percentage is then applied to the User's NHH energy consumption over the month described above, and all NHH energy consumption in previous months is added, in order to derive a forecast of the User's NHH metered energy consumption for this Financial Year.
- 14.17.22 14.28 Determination of The Company's Forecast for Demand Charge Purposes illustrates how the demand forecast will be calculated by The Company.

Reconciliation of Demand Charges

14.17,23 The reconciliation process is set out in the CUSC. The demand reconciliation process compares the monthly charges paid by Users against actual outturn charges. Due to the Settlements process, reconciliation of demand charges is carried out in two stages; initial reconciliation and final reconciliation.

Initial Reconciliation of demand charges

14.17,24 The initial reconciliation process compares Users' demand forecasts and corresponding monthly charges paid over the year against actual outturn data (using latest Settlement data available at the time) and corresponding charges. Initial reconciliation is carried out in two parts; Initial Reconciliation Part 1 deals with the reconciliation of half-hourly metered demand charges and Initial Reconciliation Part 2 deals with the reconciliation of non-half-hourly metered demand charges.

Initial Reconciliation Part 1– Half-hourly metered demand

- 14.17.25 The Company will identify the periods forming the Triad once it has received Central Volume Allocation data from the Settlement Administration Agent for all days up to and including the last day of February. Once The Company has notified Users of the periods forming the Triad they will not be changed even if disputes are subsequently resolved which would change the periods forming the Triad.
- 14.17,<u>26</u> Initial outturn charges for half-hourly metered <u>gross</u> demand will be determined using the latest available data of actual average Triad <u>gross</u> demand (kW) multiplied by the zonal <u>gross</u> demand tariff(s) (£/kW) applicable to the months

Page 43 of 63

Deleted: 18

Deleted: 19

Deleted: 20

Deleted: 1

Сι

l

I

I

l

I

SC v1.12			
	concerned for each zone for that Financial Year. These acture reconciled against the monthly charges paid in respect of demand.		
<u>14.17,2</u>	7 Initial outturn charges for half-hourly metered embedded determined using the latest available data of actual average export (kW) multiplied by the zonal embedded export tariff(s) to the months concerned for each zone for that Financial Yo values are then reconciled against the monthly charges paid hourly embedded exports.	e Triad embedded (£/kW) applicable ear. These actual	Deleted: xx
Initial F	econciliation Part 2 – Non-half-hourly metered demand		
14.17	8 Actual payments for non-half-hourly metered demand will be the latest available actual energy consumption data (kWh) for hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 3 multiplied by the energy consumption tariff(s) (p/kWh) applica concerned for each zone. These actual values are then reco- monthly charges paid in respect of non-half-hourly energy con-	r the period 16:00 38) over the year able to the months onciled against the	Deleted: 23
Final R	econciliation of demand charges		
14.17.2	9 The final reconciliation process compares Users' charges (as the initial reconciliation process using the latest available outturn demand charges (based on final settlement data of demand, embedded exports and non-half-hourly energy cons	data) against final half-hourly gross	Deleted: 24
14.17	<u>Pinal actual charges will be determined using the final dem data taken from the Final Reconciliation Settlement Reconciliation Volume Allocation Run.</u>		Deleted: 25
Recon	iliation of manifest errors		
14.17	1 In the event that a manifest error, or multiple errors in the cal tariffs results in a material discrepancy in aUsers T reconciliation process for all Users qualifying under Section accordance with Sections 14.17,24 to 14.17,30. The reconciliation is not practicable, a post-year reconciliation will the form of a one-off payment.	NUoS tariff, the 14.17. <u>33</u> will be in onciliation process 5. Where such	Deleted: 26 Deleted: 28 Deleted: 20 Deleted: 25
14.17	2 A manifest error shall be defined as any of the following:		Deleted: 27
	 a) an error in the transfer of relevant data between Licensees or Distribution Network Operators; b) an error in the population of the Transport Model with c) an error in the function of the Transport Model; or d) an error in the inputs or function of the Tariff Model. 		
14.17	<u>3</u> A manifest error shall be considered material in the event that the net effect of multiple errors, has an impact of the lesser of the l		Deleted: 28
	a) an error in a User's TNUoS tariff of at least +/-£0.50/		
	Page 44 of 63	V1.12– 01 April 2016	

b) an error in a User's TNUoS tariff which results in an error in the annual TNUoS charge of a User in excess of +/-£250,000.

14.17,<u>34</u> A manifest error shall only be reconciled if it has been identified within the charging year for which the error has an effect. Errors identified outside of this period will not be eligible for reconciliation retrospectively.

Implementation of P272

- 14.17,<u>35</u>.1 BSC modification P272 requires Suppliers to move Profile Classes 5-8 to Measurement Class E - G (i.e. moving from NHH to HH settlement) by April 2016. The majority of these meters are expected to transfer during the preceding Charging Years up until the implementation date of P272 and some meters will have been transferred before the start of 1ST April 2015. A change from NHH to HH within a Charging Year would normally result in Suppliers being liable for TNUoS for part of the year as NHH and also being subject to HH charging. This section describes how the Company will treat this situation in the transition to P272 implementation for the purposes of TNUoS charging; and the forecasts that Suppliers should provide to the Company.
- 14.17,<u>35.2</u> Notwithstanding 14.17,<u>13</u>, for each Charging Year which begins after 31 March 2015 and prior to implementation of BSC Modification P272, all demand associated with meters that are in NHH Profile Classes 5 to 8 at the start of that charging year as well as all meters in Measurement Classes E G will be treated as Chargeable Energy Capacity (NHH) for the purposes of TNUoS charging for the full Charging Year unless 14.17,<u>35.3</u> applies.
 - 14.17,35.3 Where prior to 1st April 2015 a Profile Class meter has already transferred to Measurement Class settlement (HH) the associated Supplier may opt to treat the demand volume as Chargeable Demand Capacity (HH) for the purposes of TNUoS charging up until implementation of P272, subject to meeting conditions in 14.17,35.6. If the associated Supplier does not opt to treat the demand volume as Demand Capacity (HH) it will be treated by default as Chargeable Energy Capacity (NHH) for each full Charging Year up until implementation of P272.
 - 14.17,35.4 The Company will calculate the Chargeable Energy Capacity associated with meters that have transferred to HH settlement but are still treated as NHH for the purposes of TNUoS charging from Settlement data provided directly from Elexon i.e. Suppliers need not Supply any additional information if they accept this default position.
- 14.17,35.5 The forecasts that Suppliers submit to the Company under CUSC 3.10, 3.11 and 3.12 for the purpose of TNUoS monthly billing referred to in 14.17,20 and 14.17,21 for both Chargeable Demand Capacity and Chargeable Energy Capacity should reflect this position i.e. volumes associated those Metering Systems that have transferred from a Profile Class to a Measurement Class in the BSC (NHH to HH settlement) but are to be treated as NHH for the purposes of TNUoS charging should be included in the forecast of Chargeable Energy Capacity and not Chargeable Demand Capacity, unless 14.17,35.3 applies.
 - 14.17,<u>35</u>.6 Where a Supplier wishes for Metering Systems that have transferred from Profile Class to Measurement Class in the BSC (NHH to HH settlement) prior to 1st April 2015, to be treated as Chargeable Demand Capacity (HH/

Page 45 of 63

V1.12-01 April 2016

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 9

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 16

Deleted: 17

Deleted: 29

Deleted: 29

I

Measurement Class settled) it must inform the Company prior to October 2015. The Company will treat these as Chargeable Demand Capacity (HH / Measurement Class settled) for the purposes of calculating the actual annual liability for the Charging Years up until implementation of P272. For these cases only, the Supplier should notify the Company of the Meter Point Administration Number(s) (MPAN). For these notified meters the Supplier shall provide the Company with verified metered demand data for the hours between 4pm and 7pm of each day of each Charging Year up to implementation of P272 and for each Triad half hour as notified by the Company prior to May of the following Charging Year up until two years after the implementation of P272 to allow reconciliation (e.g. Mav 2017 and May 2018 for the Charging Year 2016/17). Where the Supplier fails to provide the data or the data is incomplete for a Charging Year TNUoS charges for that MPAN will be reconciled as part of the Supplier's NHH BMU (Chargeable Energy Capacity). Where a Supplier opts, if eligible, for TNUoS liability to be calculated on Chargeable Demand Capacity it shall submit the forecasts referred to in 14.17,35.5 taking account of this.

14.17,35.7 The Company will maintain a list of all MPANs that Suppliers have elected to be treated as HH. This list will be updated monthly and will be provided to registered Suppliers upon request.

Further Information

- 14.17,<u>36</u> 14.25 Reconciliation of Demand Related Transmission Network Use of System Charges of this statement illustrates how the monthly charges are reconciled against the actual values for <u>gross</u> demand, <u>embedded export</u> and consumption for half-hourly <u>gross demand</u>, <u>embedded export</u> and non-halfhourly metered demand respectively.
- 14.17,<u>37</u> **The Statement of Use of System Charges** contains the £/kW zonal gross demand tariffs, <u>the £/kW zonal embedded export tariffs</u>, and the p/kWh energy consumption tariffs for the current Financial Year.
- 14.17.<u>38</u> 14.27 Transmission Network Use of System Charging Flowcharts of this statement contains flowcharts demonstrating the calculation of these charges for those parties liable.

Deleted: 29 Deleted: 30

Deleted: 29

Deleted: 31

Deleted: 32

....

14.24 Example: Calculation of Zonal Gross Demand Tariff

Let us consider all nodes in a demand zone in this example

The table below shows a sample output of the transport model comprising the node, the Peak Security and Year Round marginal km of an injection at the node with a consequent withdrawal at the distributed reference node, the generation sited at the node, scaled to ensure total national generation = total national <u>net</u> demand and the <u>net</u> demand sited at the node.

Demand Zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	<u>Net</u> Demand (MW)
14	ABHA4A	-77.25	-230.25	127
14	ABHA4B	-77.27	-230.12	127
14	ALVE4A	-82.28	-197.18	100
14	ALVE4B	-82.28	-197.15	100
14	AXMI40_SWEB	-125.58	-176.19	97
14	BRWA2A	-46.55	-182.68	96
14	BRWA2B	-46.55	-181.12	96
14	EXET40	-87.69	-164.42	340
14	HINP20	-46.55	-147.14	0
14	HINP40	-46.55	-147.14	0
14	INDQ40	-102.02	-262.50	444
14	IROA20_SWEB	-109.05	-141.92	462
14	LAND40	-62.54	-246.16	262
14	MELK40_SWEB	18.67	-140.75	83
14	SEAB40	65.33	-140.97	304
14	TAUN4A	-66.65	-149.11	55
14	TAUN4B	-66.66	-149.11	55
		Totals		2748

In order to calculate the <u>gross</u> demand tariff we would carry out the following steps:

(i) calculate the demand weighted nodal shadow costs

For this example zone this would be as follows:

Demand zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	Net Demand (MW)	Peak Security Demand Weighted Nodal Marginal km	Year Round Demand Weighted Nodal Marginal km
14	ABHA4A	-77.25	-230.25	127	-3.57	-10.64
14	ABHA4B	-77.27	-230.12	127	-3.57	-10.64
14	ALVE4A	-82.28	-197.18	100	-2.99	-7.17
14	ALVE4B	-82.28	-197.15	100	-2.99	-7.17
14	AXMI40_SWEB	-125.58	-176.19	97	-4.43	-6.22
14	BRWA2A	-46.55	-182.68	96	-1.63	-6.38
14	BRWA2B	-46.55	-181.12	96	-1.63	-6.33
14	EXET40	-87.69	-164.42	340	-10.85	-20.34
14	INDQ40	-102.02	-262.50	444	-16.48	-42.41
14	IROA20_SWEB	-109.05	-141.92	462	-18.33	-23.86
14	LAND40	-62.54	-246.16	262	-5.96	-23.47
14	MELK40_SWEB	18.67	-140.75	83	0.56	-4.25
14	SEAB40	65.33	-140.97	304	7.23	-15.59
14	TAUN4A	-66.65	-149.11	55	-1.33	-2.98
14	TAUN4B	-66.66	-149.11	55	-1.33	-2.98
		Totals		2748	-49.19	-190.43

(ii) sum the Peak Security and Year Round demand weighted nodal shadow costs to give zonal figures. For this example zone this is shown in the above table and is 49.19km for Peak Security background and 190.43km for Year Round background.

(iii) calculate the transport tariffs by multiplying the figures in (ii) above by the expansion constant (& dividing by 1000 to put into units of £/kW):

For this example zone, assuming an expansion constant of $\pm 10.07/MWkm$ and a locational security factor of 1.80:

a) Peak Security tariff – 49.19km <u>* £10.07/MWkm * 1.8</u> = <u>£0.89/kW</u> 1000

Page 49 of 63

b) Year Round tariff -<u>190.43km * £10.07/MWkm * 1.8</u> = <u>£3.45/kW</u> 1000

(iv) We now need to calculate the residual tariff. This is calculated by taking the total revenue to be recovered from demand (calculated as c.73% of total The Company_ TNUoS target revenue for the year), less the revenue which would be recovered through the demand transport tariffs and revenue recovery through embedded export tariffs, divided by total expected gross GSP group demand.

Assuming the total revenue to be recovered from TNUoS is £1067m, the total recovery from <u>gross GSP group</u> demand would be $(73\% \times £1067m) = £779m$. Assuming the total recovery from <u>gross GSP group</u> demand transport tariffs is £140m, total recovery from <u>embedded export tariffs is -£10m</u> and total forecast chargeable <u>gross GSP group</u> demand capacity is 50000MW, the demand residual tariff would be as follows:

 $\frac{\pounds779m - \pounds140m - -\pounds10m}{50,000MW} = \pounds12.98/kW$

 (v) to get to the final tariff, we simply add on the demand residual tariff calculated in (v) to the zonal transport tariffs calculated in (iii(a)) and (iii(b))

For zone 14:

 $\pounds 0.89/kW + \pounds 3.45/kW + \pounds 12.98/kW =$ $\pounds 17.32/kW$

- To summarise, in order to calculate the <u>gross</u> demand tariffs, we evaluate a <u>net</u> demand weighted zonal marginal km cost multiply by the expansion constant and locational security factor then we add a constant (termed the residual cost) to give the overall tariff.
- (vii) The final demand tariff is subject to further adjustment to allow for the minimum £0/kW gross_demand charge. The application of a discount for small generators pursuant to Licence Condition C13 will also affect the final gross_demand tariff.

Deleted: gross

Deleted: 130m

Deleted:	$\pounds779m - \pounds130m$	_
	50000MW	_

14.25 Reconciliation of <u>Gross</u> Demand Related Transmission Network Use of System Charges

This appendix illustrates the methodology used by The Company in the reconciliation of Transmission Network Use of System charges for <u>gross</u> demand. The example highlights the different stages of the calculations from the monthly invoiced amounts, right through to Final Reconciliation.

Monthly Charges

Suppliers provide half-hourly (HH) gross demand and embedded export forecasts and non-halfhourly (NHH) demand forecasts by BM Unit every quarter. An example of such forecasts and the corresponding monthly invoiced amounts, based on tariffs of £10.00/kW for gross demand, £5.00/kW for embedded export and 1.20p/kWh for energy consumption, is as follows:

	Forecast HH Triad <u>Gross</u> Demand <u>HHD_E (</u> kW)	HH <u>Gross</u> <u>Demand</u> Monthly Invoiced Amount (£)	Forecast HH Triad Embedded Export HHEE _E (kW)	<u>HH</u> <u>Embedded</u> <u>Generation</u> <u>Monthly</u> <u>Invoiced</u> <u>Amount (£)</u>	Forecast NHH Energy Consumpti on NHHC _F (kW h)	NHH Monthly Invoiced Amount (£)	Net Monthly Invoiced Amount (£)
Apr	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
May	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jun	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jul	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Aug	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Sep	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Oct	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Nov	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Dec	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Jan	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Feb	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Mar	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Total		72,000		<u>(3,000)</u>		216,000	<u>297</u> ,000

As shown, for the first nine months the Supplier provided a 12,000kW HH triad <u>gross</u> demand forecast, and hence paid HH <u>gross demand</u> monthly charges of £10,000 ((12,000kW x £10.00/kW)/12) for that BM Unit. In January the Supplier provided a revised forecast of 7,200kW, implying a forecast annual charge reduced to £72,000 (7,200kW x £10.00/kW). The Supplier had already paid £90,000, so the excess of £18,000 was credited back to the supplier in three £6,000 instalments over the last three months of the year.

The Supplier provided an embedded export triad forecast of -600kW and hence was paid an embedded export credit of £250 ((600kW x £5.00/kW)/12) for that BM Unit (For the avoidance of doubt, if the embedded export tariff is negative this will result in a debit).

The Supplier also initially provided a 15,000,000kWh NHH energy consumption forecast, and hence paid NHH monthly charges of £15,000 ((15,000,000kWh x 1.2p/kWh)/12) for that BM Unit. In July the Supplier provided a revised forecast of 18,000,000kWh, implying a forecast annual charge increased to £216,000 (18,000,000kWh x 1.2p/kWh). The Supplier had already

paid £45,000, so the remaining £171,000 was split into payments of £19,000 for the last nine months of the year.

The right hand column shows the net monthly charges for the BM Unit.

Initial Reconciliation (Part 1a)

The Supplier's outturn HH triad <u>gross</u> demand, based on <u>initial</u> settlement data (and therefore subject to change in subsequent settlement runs), was 9,000kW. The HH triad <u>gross</u> demand reconciliation charge is therefore calculated as follows:

HHD Reconciliation Charge = $(HHD_A - HHD_F) \times \pounds/kW$ Tariff

= (9,000kW - 7,200kW) x £10.00/kW

= 1,800kW x £10.00/kW

= £18,000

To calculate monthly interest charges, the outturn HHD charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHD charge less the HH <u>gross demand</u> monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 1b)

The Supplier's outturn HH triad embedded export, based on initial settlement data (and therefore subject to change in subsequent settlement runs), was 700kW. The HH triad embedded export reconciliation charge is therefore calculated as follows:

HHEE Reconciliation Charge = (HHEE_A – HHEE_E) x £/kW Tariff

 $= (-500 \text{kW} - -600 \text{kW}) \times \text{\pounds}5.00/\text{kW}$

 $= 100 \text{kW} \times \text{\pounds}5.00/\text{kW}$

= **£500**

To calculate monthly interest charges, the outturn HHEE charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHEE charge less the HH embedded generation monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 2)

The Supplier's outturn NHH energy consumption, based on initial settlement data, was 17,000,000kWh. The NHH energy consumption reconciliation charge is therefore calculated as follows:

Deleted: Please note that payments made to BM Units with a net export over the Triad, based on initial settlement data, will also be reconciled at this stage.¶ As monthly payments will not be made on the basis of a negative forecast, the HHD Reconciliation Charge for an exporting BM Unit will represent the full actual payment owed to that BM Unit (subject to adjustment by subsequent settlement runs). Interest will be calculated as described above.¶

NHHC Reconciliation Charge = $(NHHC_A - NHHC_F) \times p/kWh$ Tariff

100

= <u>(17,000,000kWh - 18,000,000kWh) x 1.20p/kWh</u>

100

= <u>-1,000,000kWh x 1.20p/kWh</u> 100 = **-£12,000**

worked example 4.xls - Initial!J104

The monthly reconciliation amount is equal to the outturn energy consumption charge for that month less the NHH monthly invoiced amount. Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

The net initial TNUoS demand reconciliation charge is therefore $\pounds 6,500$ (£18,000 + $\pounds 500$ - $\pounds 12,000$).

Final Reconciliation

Finally, let us now suppose that after all <u>final</u> Settlement data has been received (up to 14 months after the relevant dates), the outturn HH triad <u>gross</u> demand, <u>HH triad embedded export</u> and NHH energy consumption values were 9,500kW, <u>-550kW</u> and 16,500,000kWh, respectively.

Final HH <u>Gross Demand</u>	= (9,500kW - 9,000kW) x £10.00/kW
<u>Reconciliation Charge</u>	= £5,000
Final HH Embedded Export	= (-550kW500kW) x £5.00/kW
Reconciliation Charge	= -£250

Final NHH Reconciliation Charge = $(16,700,000kWh - 17,000,000kWh) \times 1.20p/kWh$ 100 = -£3,600

Consequently, the net final TNUoS demand reconciliation charge will be $\pounds 1, \underline{150} (\pounds 5,000 + -\pounds 250 + -\pounds 3,600)$.

Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

Outturn data for BM Units with a net export over the Triad will be received at this stage and final reconciliation will be carried out, as required. Interest will be calculated as described above.

Terminology:

 HHD_A = The Supplier's outturn half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

Page 53 of 63

Deleted: 000

I

 HHD_F = The Supplier's forecast half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

<u>HHEE_A = The Supplier's outturn half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

<u>HHEE_E = The Supplier's forecast half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

NHHC_A = The Supplier's outturn non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1^{st} to March 31^{st} , for the demand zone concerned.

NHHC_F = The Supplier's forecast non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1st to March 31st, for the demand zone concerned.

£/kW Tariff = The £/kW <u>Gross</u> Demand <u>or Embedded Export</u> Tariff as shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

p/kWh Tariff = The Energy Consumption Tariff shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

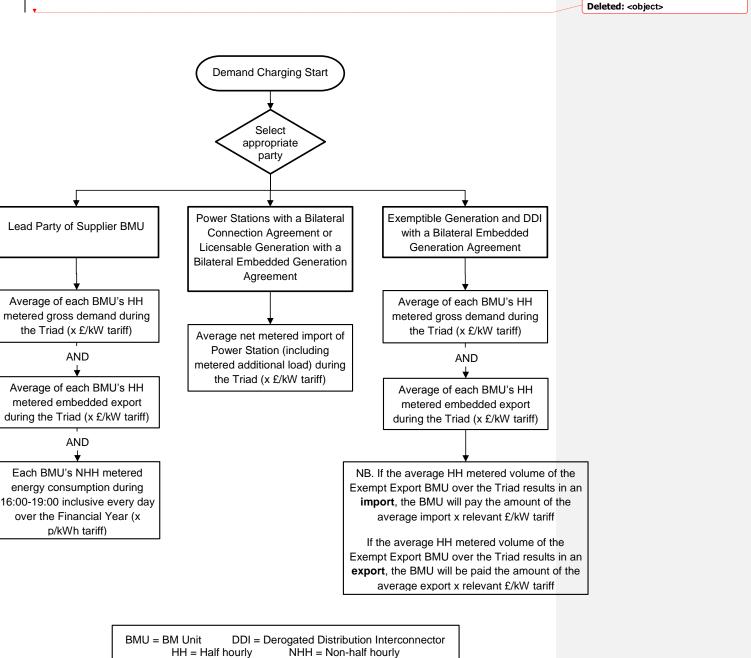
14.26 Classification of parties for charging purposes

In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precendence.

In the following diagrams, the parties liable for Transmission Network Use of System charges are outlined in red.

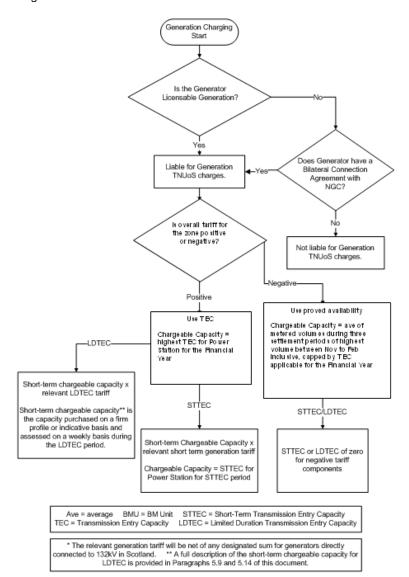
SUPPLIER		
Supplier Use of System Agreen	nent	
Supplier BMU1 BMUn		
Demand Charges	Generation Charges	
See 14.17, <mark>13</mark> and 14.17, <mark>18</mark> .	None.	Deleted: 9
		Deleted: 14
Gen Unit Gen Unit BMU1 BMUn	Station Additional Load BMU Load BMU	
Demand Charges	Generation Charges	
Demand Charges See 14.17.<u>18</u>.	See 14.18.1 i) and 14.18.3 to 14.18.9 and	Deleted: 10
· ·	J. J	Deleted: 10

Bilateral Embedded Generation Agreement Appendix C					
Gen Unit BMU1	Gen Unit BMUn	Station Load BMU	Additional Load BMU		
Demand Charges	7. <u>15</u> and 14.17. <u>18</u> .	Generation Cl See 14.18.1 ii	U		
Jee 14.17. <u>14</u> , 14.17	<u>, 10</u> and 14.17 <u>,10</u> .	For generator 14.18.12 and	s in positive zone 14.18.18.	es, see 14.18.3 to es, see 14.18.3 to	


-{	Deleted: 10
-	Deleted: 11
Y	Deleted: 14

14.27 Transmission Network Use of System Charging Flowcharts

The following flowcharts illustrate the parties liable for Demand and Generation TNUoS charges and the calculation of those charges.


In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precedence.

Page 57 of 63

Generation Charges

14.28 Example: Determination of The Company's Forecast for Demand Charge Purposes

The Company will use the latest available settlement data for calculation of HH demand and NHH energy consumption forecasts for the Financial Year.

The Financial Year runs from 1st April to 31st March inclusive and for the purpose of these examples the year April 2005 to March 2006 is used.

Where the preceding year's settlement data is not available at the time that The Company needs to calculate its forecast, The Company will use settlement data from the corresponding period in Financial Year minus two unless indicated otherwise.

All values used with the examples are purely for illustrative purposes only.

i) Half-Hourly (HH) Metered Demand Forecast – Existing User

At the time of calculation of a HH demand forecast before the relevant Financial Year (approximately 10th March), The Company will be aware at a system level which dates will be used for the determination of Triad. However, The Company may not have settlement data at a User level if the Triad dates were to span a period that includes the latter half of February.

When undertaking forecasting before the relevant Financial Year, The Company will use the User's Triad demand for the previous year for its forecast providing it holds User settlement data for this period, thus:

F = T

where:

F = Forecast of User's HH demand at Triad for the Financial Year

T = User's HH gross_demand and embedded export_at Triad in Financial Year minus one

Where The Company determines its forecast within a Financial Year:

F = T * D/P

where:

- F = Forecast of User's HH demand at Triad for the Financial Year
- T = User's HH gross demand and embedded export at Triad in the preceding Financial Year
- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the preceding Financial Year

Where The Company determines its forecast before the relevant Financial Year and User settlement data for the Triad period is not available, The Company shall apply the formula immediately above (within year forecast) but substitute the following definitions for the values T, D, and P:

T = User's HH gross demand and embedded export at Triad in the Financial Year minus two

Page 59 of 63

- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year minus one, to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the Financial Year minus two

Example (where User settlement data is not yet available for the Triad period):

The Company calculates a HH demand forecast on the above methodology at 10th March 2005 for the period 1st April 2005 to 31st March 2006.

Gross demand:

F = 10,000 * 13,200 / 12,000

F = 11,000 kW,Deleted: hwhere:T = 10,000 kW, (period November 2003 to February 2004)Deleted: hD = 13,200 kW, (period 1st April 2004 to 15th February 2005#)Deleted: hP = 12,000 kW, (period 1st April 2003 to 15th February 2004)Deleted: h

Latest date for which settlement data is available.

Embedded export:

F = -280 * -300 / -350

<u>F = -240 kW</u>

where:

T = -280 kW (period November 2003 to February 2004)

D = -300 kW (period 1st April 2004 to 15th February 2005#)

P = -350 kW (period 1st April 2003 to 15th February 2004)

<u># Latest date for which settlement data is available.</u>

ii) Non Half-Hourly (NHH) Metered Energy Consumption Forecast – Existing User

F = E * D/P

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- E = User's summed NHH energy consumption over the hours 16:00 to 19:00 for each day in the preceding Financial Year

Page 60 of 63

- D = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the Financial Year to date
- P = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the period corresponding to D in the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th June 2005 for the period 1st April 2005 to 31st March 2006.

- F = 50,000,000 * 4,400,000 / 4,000,000
- F = 55,000,000 kWh

where:

- E = 50,000,000 kWh (period 1st April 2004 to 31st March 2005)
- D = 4,400,000 kWh (period 1st April 2005 to 15th May 2005#)
- P = 4,000,000 kWh (period 1st April 2004 to 15th May 2004)
- # Latest date for which settlement data is available

Where forecasting before the relevant Financial Year concerned, The Company would in the above example use values for E and P from Financial Year 2003/04 and D from Financial Year 2004/05.

iii) Half-Hourly (HH) Metered Demand Forecast – New User

F = M * T/W

where:

- F = Forecast of User's HH metered <u>gross</u> demand <u>and embedded export</u> at Triad for the Financial Year
 - M = User's HH average weekday period 35 demand for the last complete month for which settlement data is available
- T = Total system HH <u>gross</u> demand <u>and embedded export</u> at Triad in the preceding Financial Year
 - W = Total system HH average weekday settlement period 35 metered demand for the corresponding period to M for the preceding year

Example:

The Company calculates a HH demand forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2004 to 31st March 2006.

Gross demand:

F = 1,000 * 17,000,000 / 18,888,888

0030	, vi. 12	
F =	900 kW,	 Deleted: h
wher	e:	
M =	1,000 kW _v (period 1 st July 2005 to 31 st July 2005)	Deleted: h
T =	17,000,000 kW, (period November 2004 to February 2005)	 Deleted: h
W =	18,888,888 kW _e (period 1 st July 2004 to 31 st July 2004)	Deleted: h
<u>Emb</u>	edded export:	
<u>F =</u>	150 * 7,200,000 / 6,000,000	
<u>F =</u>	<u>180 kW</u>	
wher	<u>e:</u>	

- M = 150 kW (period 1st July 2005 to 31st July 2005)
- T = 7,200,000 kW (period November 2004 to February 2005)
- <u>W = 6,000,000 kW (period 1^{st} July 2004 to 31^{st} July 2004)</u>

iv) Non Half Hourly (NHH) Metered Energy Consumption Forecast – <u>New User</u>

F = J + (M * R/W)

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- J = Residual part month summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day where new User registration takes place other than on the first of a month
- M = User's summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the last complete month for which settlement data is available
- R = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period from the start of that defined under M but for the preceding year and until the end of that preceding Financial Year
- W = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period identified in M but for the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2005 to 31st March 2006.

- F = 500 + (1,000 * 20,000,000,000 / 2,000,000,000)
- F = 10,500 kWh

where:

- J = 500 kWh (period 10th June 2005 to 30th June 2005)
- M = 1,000 kWh (period 1st July 2005 to 31st July 2005)
- R = 20,000,000,000 kWh (period 1st July 2004 to 31st March 2005)
- W = 2,000,000,000 kWh (period 1st July 2004 to 31st July 2004)

CMP265 WACM6

14.15 Derivation of the Transmission Network Use of System Tariff

- 14.15.1 The Transmission Network Use of System (TNUoS) Tariff comprises two separate elements. Firstly, a locationally varying element derived from the DCLF ICRP transport model to reflect the costs of capital investment in, and the maintenance and operation of, a transmission system to provide bulk transport of power to and from different locations. Secondly, a non-locationally varying element related to the provision of residual revenue recovery. The combination of both these elements forms the TNUoS tariff.
- 14.15.2 For generation TNUoS tariffs the locational element itself is comprised of five separate components. Three wider components
 - o Wider Peak Security Component
 - Wider Year Round Not-shared component
 - Wider Year Round component

These components reflect the costs of the wider network under the different generation backgrounds set out in the Demand Security Criterion (for Peak Security component) and Economy Criterion (for both Year Round components) of the Security Standard. The two Year Round components reflect the unshared and shared costs of the wider network based on the diversity of generation plant types.

Two local components -

- o Local substation, and
- Local circuit

These components reflect the costs of the local network.

Accordingly, the wider tariff represents the combined effect of the three wider locational tariff components and the residual element; and the local tariff represents the combination of the two local locational tariff components.

14.15.3 The process for calculating the TNUoS tariff is described below.

The Transport Model

Model Inputs

14.15.4 The DCLF ICRP transport model calculates the marginal costs of investment in the transmission system which would be required as a consequence of an increase in demand or generation at each connection point or node on the transmission system, based on a study of peak demand conditions using both Peak Security and Year Round generation backgrounds on the transmission system. One measure of the investment costs is in terms of MWkm. This is the concept that ICRP uses to calculate marginal costs of investment. Hence, marginal costs are estimated initially in terms of increases or decreases in units of kilometres (km) of the transmission system for a 1 MW injection to the system.

- 14.15.5 The transport model requires a set of inputs representative of the Demand Security and Economy Criterion set out in the Security Standards. These conditions on the transmission system are represented in the Peak Security and Year Round background respectively as follows:
- Nodal generation information per node (TEC, plant type and SQSS scaling factors)
- Nodal <u>net</u> demand information
- Transmission circuits between these nodes
- The associated lengths of these routes, the proportion of which is overhead line or cable and the respective voltage level
- The cost ratio of each of 132kV overhead line, 132kV underground cable, 275kV overhead line, 275kV underground cable and 400kV underground cable to 400kV overhead line to give circuit expansion factors
- The cost ratio of each separate sub-sea AC circuit and HVDC circuit to 400kV overhead line to give circuit expansion factors
- 132kV overhead circuit capacity and single/double route construction information is used in the calculation of a generator's local charge.
- Offshore transmission cost and circuit/substation data
- 14.15.6 For a given charging year "t", the nodal generation TEC figure and generation plant types at each node will be based on the Applicable Value for year "t" in the NETS Seven Year Statement in year "t-1" plus updates to the October of year "t-1". The contracted TECs and generation plant types in the NETS Seven Year Statement include all plant belonging to generators who have a Bilateral Agreement with the TOs. For example, for 2010/11 charges, the nodal generation data is based on the forecast for 2010/11 in the 2009 NETS Seven Year Statement plus any data included in the quarterly updates in October 2009.
- 14.15.7 Scaling factors for different generation plant types are applied on their aggregated capacity for both Peak Security and Year Round backgrounds. The scaling is either Fixed or Variable (depending on the total demand level) in line with the factors used in the Security Standard, for example as shown in the table below.

Generation Plant Type	Peak Security Background	Year Round Background
Intermittent	Fixed (0%)	Fixed (70%)
Nuclear & CCS	Variable	Fixed (85%)
Interconnectors	Fixed (0%)	Fixed (100%)
Hydro	Variable	Variable
Pumped Storage	Variable	Fixed (50%)
Peaking	Variable	Fixed (0%)
Other (Conventional)	Variable	Variable

These scaling factors and generation plant types are set out in the Security Standard. These may be reviewed from time to time. The latest version will be used in the calculation of TNUoS tariffs and is published in the Statement of Use of System Charges

14.15.8 National Grid will categorise plant based on the categorisations described in the Security Standard. Peaking plant will include oil and OCGT technologies and Other (Conv.) represents all remaining conventional plant not explicitly stated elsewhere in the table In the event that a power station is made up of more than one technology type, the type of the higher Transmission Entry Capacity (TEC) would apply.

I

- 14.15.9 Nodal <u>net</u> demand data for the transport model will be based upon the GSP <u>net</u> demand that Users have forecast to occur at the time of National Grid Peak Average Cold Spell (ACS) Demand for year "t" in the April Seven Year Statement for year "t-1" plus updates to the October of year "t-1".
- 14.15.10 Subject to paragraphs 14.15.15 to 14.15.22, Transmission circuits for charging year "t" will be defined as those with existing wayleaves for the year "t" with the associated lengths based on the circuit lengths indicated for year "t" in the April NETS Seven Year Statement for year "t-1" plus updates to October of year "t-1". If certain circuit information is not explicitly contained in the NETS Seven Year Statement, The Company will use the best information available.
- 14.15.11 The circuit lengths included in the transport model are solely those, which relate to assets defined as 'Use of System' assets.
- 14.15.12 For HVDC circuits, the impedance will be calculated to provide flows based on a ratio of the capacity provided by the HVDC link relative to the capacities on all major transmission system boundaries that it parallels.
- 14.15.13 The transport model employs the use of circuit expansion factors to reflect the difference in cost between (i) AC Circuits and HVDC circuits. (ii) underground and sub-sea circuits, (iii) cabled circuits and overhead line circuits, (iv) 132kV and 275kV circuits, (v) 275kV circuits and 400kV circuits, and (vi) uses 400kV overhead line (i.e. the 400kV overhead line expansion factor is 1). As the transport model expresses cost as marginal km (irrespective of cables or overhead lines), some account needs to be made of the fact that investment in these other types of circuit (specifically HVDC and sub-sea cables of various voltages, 400kV underground cable, 275kV overhead line, 275kV underground cable, 132kV overhead line and 132kV underground cable) is more expensive than for 400kV overhead line. This is done by effectively 'expanding' these more expensive circuits by the relevant circuit expansion factor, thereby producing a larger marginal kilometre to reflect the additional cost of investing in these circuits compared to 400kV overhead line. When calculating the local circuit tariff for a generator, alternative 132kV and offshore expansion factors to those used in the remainder of the tariff calculation are applied to the generator's local circuits.
- 14.15.14 The circuit expansion factors for HVDC circuits and AC subsea cables are determined on a case by case basis using the costs which are specific to individual projects containing HVDC or AC subsea circuits.

Adjustments to Model Inputs associated with One-off Works

- 14.15.15 Where, following the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge that related to One-off Works carried out on an onshore circuit, and such One-off Works would affect the value of a TNUoS tariff paid by the User, the transport model inputs associated with the onshore circuit shall be adjusted by The Company to reflect the asset value that would have been modelled if the works had been undertaken on the basis of the original asset design rather than the One-off Works.
- 14.15.16 Subject to paragraphs 14.15.17 to 14.15.19, where, prior to the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge (or has paid a charge to the relevant TO prior to 1st April 2005 on the same principles as a

Page 3 of 63

One-Off Charge) that related to works equivalent to those described under paragraph 14.15.15, an adjustment equivalent to that under paragraph 14.15.15 shall be made to the transport model inputs as follows.

- 14.15.17 Such adjustment shall be made following a User's request, which must be received by The Company no later than the second occurrence of 31st December following the implementation of CUSC Modification CMP203.
- 14.15.18 The Company shall only make an adjustment to the transport model inputs, under paragraph 14.15.16 where the charge was paid to the relevant TO prior to 1st April 2005 where evidence has been provided by the User that satisfies The Company that works equivalent to those under paragraph 14.15.15 were funded by the User.
- 14.15.19 Where a User has sufficient reason to believe that adjustments under paragraph 14.15.18 should be made in relation to specific assets that affect a TNUoS tariff that applies to one of its sites and outlines its reasoning to The Company, The Company shall (upon the User's request and subject to the User's payment of reasonable costs incurred by The Company in doing so) use its reasonable endeavours to assist the User in obtaining any evidence The Company or a TO may have to support its position.
- 14.15.20 Where a request is made under paragraph 14.15.16 on or prior to 31st December in a charging year, and The Company is satisfied based on the accompanying evidence provided to The Company under paragraph 14.15.17 that it is a valid request, the transport model inputs shall be adjusted accordingly and taken into account in the calculation of TNUoS tariffs effective from the year commencing on the 1st April following this and otherwise from the next subsequent 1st April.
- 14.15.21 The following table provides examples of works for which adjustments to transport model inputs would typically apply:

Ref	Description of works	Adjustments
1	Undergrounding - A User requests to underground an overhead line at a greater cost.	As the cable cost will be more expensive than the overhead line (OHL) equivalent, the circuit will be modelled as an OHL.
2	Substation Siting Decision - A User requests to move the existing or a planned substation location to a place that means that the works cannot be justified as economic by the TO.	As the revised substation location may result in circuits being extended. If this is the case, the originally designed circuit lengths (as per the originally designed substation location) would be used in the transport model.
3	Circuit Routing Decision - A User asks to move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	As any circuit route changes that extend circuits are likely to result in a greater TNUoS tariff, the originally designed circuit lengths would be used in the transport model.

Ref	Description of works	Adjustments
4	Building circuits at lower voltages - A User requests lower tower height and therefore a different voltage.	As lower voltage circuits result in a higher expansion factor being used, the circuits would be modelled at the originally designed higher voltage.

14.15.22 The following table provides examples of works for which adjustments to transport model typically would not apply:

Ref	Description of works	Reasoning
1	Undergrounding - A User chooses to have a cable installed via a tunnel rather than buried.	Cable expansion factors are applied in the transport model regardless of whether a cable is tunnelled and buried, so there is no increased TNUoS cost.
2	Additional circuit route works - A User asks for screening to be provided around a new or existing circuit route.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
3	Additional circuit route works - A User requests that a planned overhead line route is built using alternative transmission tower designs.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
4	Additional substation works - A User asks for screening to be provided around a new or existing substation.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
5	Additional substation works - Changes to connection assets (e.g. HV-LV transformers and associated switchgear), metering, additional LV supplies, additional protection equipment, additional building works, etc.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
6	Diversion - A User asks to temporarily move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	The temporary circuit changes will not be incorporated into the transport model.

7	Connection Entry Capacity (CEC) before Transmission Entry Capacity (TEC). A User asks for a connection in a year prior to the relating TEC; i.e. physical connection without capacity.	No additional works are being undertaken, works are simply being completed well in advance of the generator commissioning. The One-Off Charge reflects the depreciated value of the assets prior to commissioning (and any TNUOS being charged).
8	Early asset replacement - An asset is replaced prior to the end of its expected life.	As the asset is simply replaced, no data in the transport model is expected to change.
9	Additional Engineering/ Mobilisation costs - A User requests changes to the planned works, that results in additional operational costs.	The data in the transport model is unaffected.
10	Offshore (Generator Build) - Any of the works described above or under paragraph 14.15.18.	The value of the works will not form part of the asset transfer value therefore will not be used as part of the offshore tariff calculation.
11	Offshore (Offshore Transmission Owner (OFTO) Build) - Any of the works described above or under paragraph 14.15.18.	As part of determining the TNUoS revenue associated with each asset, the value of the One-Off Works would be excluded when pro-rating the OFTO's allowed revenue against assets by asset value.

14.15.23 The Company shall publish any adjusted transport model inputs that it intends to use in the calculation of TNUoS tariffs effective from the year commencing on the following 1st April in the NETS Seven Year Statement October Update. Any further adjustments that The Company makes shall be published by The Company upon the publication of the final TNUoS tariffs for the year concerned.

Model Outputs

- 14.15.24 The transport model takes the inputs described above and carries out the following steps individually for Peak Security and Year Round backgrounds.
- 14.15.25 Depending on the background, the TEC of the relevant generation plant types are scaled by a percentage as described in 14.15.7, above. The TEC of the remaining generation plant types in each background are uniformly scaled such that total national generation (scaled sum of contracted TECs) equals total national ACS Demand.
- 14.15.26 For each background, the model then uses a DCLF ICRP transport algorithm to derive the resultant pattern of flows based on the network impedance required to meet the nodal <u>net</u> demand using the scaled nodal generation, assuming every circuit has infinite capacity. Flows on individual transmission circuits are compared for both backgrounds and the background giving rise to

Page 6 of 63

the highest flow is considered as the triggering criterion for future investment of that circuit for the purposes of the charging methodology. Therefore all circuits will be tagged as Peak Security or Year Round depending upon the background resulting in the highest flow. In the event that both backgrounds result in the same flow, the circuit will be tagged as Peak Security. Then it calculates the resultant total network Peak Security MWkm and Year Round MWkm, using the relevant circuit expansion factors as appropriate.

- 14.15.27 Using these baseline networks for Peak Security and Year Round backgrounds, the model then calculates for a given injection of 1MW of generation at each node, with a corresponding 1MW offtake (<u>net_demand</u>) distributed across all demand nodes in the network, the increase or decrease in total MWkm of the whole Peak Security and Year Round networks. The proportion of the 1MW offtake allocated to any given demand node will be based on total background nodal <u>net</u> demand in the model. For example, with a total GB <u>net_demand</u> of 60GW in the model, a node with a <u>net_demand</u> of 600MW would contain 1% of the offtake i.e. 0.01MW.
- 14.15.28 Given the assumption of a 1MW injection, for simplicity the marginal costs are expressed solely in km. This gives a Peak Security marginal km cost and a Year Round marginal km cost for generation at each node (although not that used to calculate generation tariffs which considers local and wider cost components). The Peak Security and Year Round marginal km costs for demand at each node are equal and opposite to the Peak Security and Year Round nodal marginal km respectively for generation and this is used to calculate demand tariffs. Note the marginal km costs can be positive or negative depending on the impact the injection of 1MW of generation has on the total circuit km.
- 14.15.29 Using a similar methodology as described above in 14.15.27, the local and wider marginal km costs used to determine generation TNUoS tariffs are calculated by injecting 1MW of generation against the node(s) the generator is modelled at and increasing by 1MW the offtake across the distributed reference node. It should be noted that although the wider marginal km costs are calculated for both Peak Security and Year Round backgrounds, the local marginal km costs are calculated on the Year Round background.
- 14.15.30 In addition, any circuits in the model, identified as local assets to a node will have the local circuit expansion factors which are applied in calculating that particular node's marginal km. Any remaining circuits will have the TO specific wider circuit expansion factors applied.
- 14.15.31 An example is contained in 14.21 Transport Model Example.

Calculation of local nodal marginal km

14.15.32 In order to ensure assets local to generation are charged in a cost reflective manner, a generation local circuit tariff is calculated. The nodal specific charge provides a financial signal reflecting the security and construction of the infrastructure circuits that connect the node to the transmission system.

14.15.33 Main Interconnected Transmission System (MITS) nodes are defined as:

- Grid Supply Point connections with 2 or more transmission circuits connecting at the site; or
- connections with more than 4 transmission circuits connecting at the site.

Page 7 of 63

- 14.15.34 Where a Grid Supply Point is defined as a point of supply from the National Electricity Transmission System to network operators or non-embedded customers excluding generator or interconnector load alone. For the avoidance of doubt, generator or interconnector load would be subject to the circuit component of its Local Charge. A transmission circuit is part of the National Electricity Transmission System between two or more circuit-breakers which includes transformers, cables and overhead lines but excludes busbars and generation circuits.
- 14.15.35 Generators directly connected to a MITS node will have a zero local circuit tariff.
- 14.15.36 Generators not connected to a MITS node will have a local circuit tariff derived from the local nodal marginal km for the generation node i.e. the increase or decrease in marginal km along the transmission circuits connecting it to all adjacent MITS nodes (local assets).

Calculation of zonal marginal km

- 14.15.37 Given the requirement for relatively stable cost messages through the ICRP methodology and administrative simplicity, nodes are assigned to zones. Typically, generation zones will be reviewed at the beginning of each price control period with another review only undertaken in exceptional circumstances. Any rezoning required during a price control period will be undertaken with the intention of minimal disruption to the established zonal boundaries. The full criteria for determining generation zones are outlined in paragraph 14.15.42. The number of generation zones set for 2010/11 is 20.
- 14.15.38 Demand zone boundaries have been fixed and relate to the GSP Groups used for energy market settlement purposes.
- 14.15.39 The nodal marginal km are amalgamated into zones by weighting them by their relevant generation or demand capacity.
- 14.15.40 Generators will have zonal tariffs derived from both, the wider Peak Security nodal marginal km; and the wider Year Round nodal marginal km for the generation node calculated as the increase or decrease in marginal km along all transmission circuits except those classified as local assets.

The zonal Peak Security marginal km for generation is calculated as:

$$WNMkm_{j_{PS}} = \frac{NMkm_{j_{PS}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiPS} = \sum_{j \in Gi} WNMkm_{jPS}$$

Where

Gi	=	Generation zone
j	=	Node
NMkm _{PS}	=	Peak Security Wider nodal marginal km from transport model
WNMkm _{PS}	=	Peak Security Weighted nodal marginal km
ZMkm _{PS}	=	Peak Security Zonal Marginal km

Gen = Nodal Generation (scaled by the appropriate Peak Security Scaling factor) from the transport model Similarly, the zonal Year Round marginal km for generation is calculated as

$$WNMkm_{j_{YR}} = \frac{NMkm_{j_{YR}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiYR} = \sum_{j \in Gi} WNMkm_{jYR}$$

Where

NMkm _{YR}	=	Year Round Wider nodal marginal km from transport model
WNMkm _{YR}	=	Year Round Weighted nodal marginal km
ZMkm _{YR}	=	Year Round Zonal Marginal km
Gen	=	Nodal Generation (scaled by the appropriate Year Round Scaling
		factor) from the transport model

14.15.41 The zonal Peak Security marginal km for demand zones are calculated as follows:

$$WNMkm_{j_{PS}} = \frac{-1 * NMkm_{j_{PS}} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{Di_{PS}} = \sum_{j \in Di} WNMkm_{j_{PS}}$$

Where:

I

Di	=	Demand zone
Dem	=	Nodal <u>Net</u> Demand from transport model

Similarly, the zonal Year Round marginal km for demand zones are calculated as follows:

$$WNMkm_{jYR} = \frac{-1 * NMkm_{jYR} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{DiYR} = \sum_{j \in Di} WNMkm_{jYR}$$

- 14.15.42 A number of criteria are used to determine the definition of the generation zones. Whilst it is the intention of The Company that zones are fixed for the duration of a price control period, it may become necessary in exceptional circumstances to review the boundaries having been set. In both circumstances, the following criteria are used to determine the zonal boundaries:
- i.) Zoning is determined using the generation background with the most MWkm of circuits. Zones should contain relevant nodes whose total wider marginal costs

from the relevant generation background (as determined from the output from the transport model, the relevant expansion constant and the locational security factor, see below) are all within +/-£1.00/kW (nominal prices) across the zone. This means a maximum spread of £2.00/kW in nominal prices across the zone.

- ii.) The nodes within zones should be geographically and electrically proximate.
- iii.) Relevant nodes are considered to be those with generation connected to them as these are the only ones, which contribute to the calculation of the zonal generation tariff.
- 14.15.43 The process behind the criteria in 14.15.42 is driven by initially applying the nodal marginal costs from the relevant generation background within the DCLF Transport model onto the appropriate areas of a substation line diagram. Generation nodes are grouped into initial zones using the +/- £1.00/kW range. All nodes within each zone are then checked to ensure the geographically and electrically proximate criteria have been met using the substation line diagram. The established zones are inspected to ensure the least number of zones are used with minimal change from previously established zonal boundaries. The zonal boundaries are finally confirmed using the demand nodal costs from the relevant generation background for guidance.
- 14.15.44 The zoning criteria are applied to a reasonable range of DCLF ICRP transport model scenarios, the inputs to which are determined by The Company to create appropriate TNUoS generation zones. The minimum number of zones, which meet the stated criteria, are used. If there is more than one feasible zonal definition of a certain number of zones, The Company determines and uses the one that best reflects the physical system boundaries.
- 14.15.45 Zones will typically not be reviewed more frequently than once every price control period to provide some stability. However, in exceptional circumstances, it may be necessary to review zoning more frequently to maintain appropriate, cost reflective, locational cost signals. For example, if a new generator connecting to the transmission system would cause the creation of a new generation zone for that generator alone, it may not be appropriate from a cost reflective perspective to wait until the next price control period to undertake this rezoning. If any such rezoning is required, it will be undertaken against a background of minimal change to existing generation zones and in line with the notification process set out in the Transmission Licence and CUSC.

Accounting for Sharing of Transmission by Generators

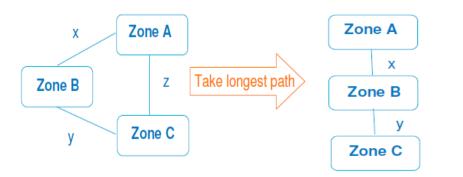
- 14.15.46 A proportion of the marginal km costs for generation are shared incremental km reflecting the ability of differing generation technologies to share transmission investment. This is reflected in charges through the splitting of Year Round marginal km costs for generation into Year Round Shared marginal km costs and Year Round Not-Shared marginal km which are then used in the calculation of the wider £/kW generation tariff.
- 14.15.47 The sharing between different generation types is accounted for by (a) using transmission network boundaries between generation zones set by connectivity between generation charging zones, and (b) the proportion of Low Carbon and Carbon generation behind these boundaries.

Page 10 of 63

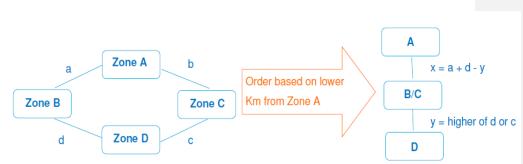
14.15.48 The zonal incremental km for each generation charging zone is split into each boundary component by considering the difference between it and the neighbouring generation charging zone using the formula below;

$$BIkm_{ab} = ZIkm_b - ZIkm_a$$

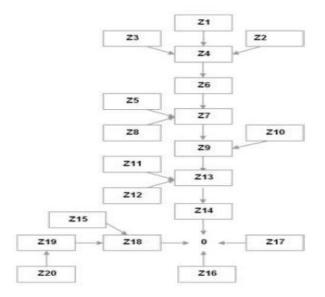
Where;


Blkm_{ab} = boundary incremental km between generation charging zone A and generation charging zone B Zlkm = generation charging zone incremental km.

14.15.49 The table below shows the categorisation of Low Carbon and Carbon generation. This table will be updated by National Grid in the Statement of Use of System Charges as new generation technologies are developed.


Carbon	Low Carbon
Coal	Wind
Gas	Hydro (excl. Pumped Storage)
Biomass	Nuclear
Oil	Marine
Pumped Storage	Tidal
Interconnectors	

Determination of Connectivity


- 14.15.50 Connectivity is based on the existence of electrical circuits between TNUoS generation charging zones that are represented in the Transport model. Where such paths exist, generation charging zones will be effectively linked via an incremental km transmission boundary length. These paths will be simplified through in the case of;
 - Parallel paths the longest path will be taken. An illustrative example is shown below with x, y and z representing the incremental km between zones.

 Parallel zones – parallel zones will be amalgamated with the incremental km immediately beyond the amalgamated zones being the greater of those existing prior to the amalgamation. An illustrative example is shown below with a, b, c, and d representing the the initial incremental km between zones, and x and y representing the final incremental km following zonal amalgamation.

14.15.51 An illustrative Connectivity diagram is shown below:

The arrows connecting generation charging zones and amalgamated generation charging zones represent the incremental km transmission boundary lengths towards the notional centre of the system. Generation located in charging zones behind arrows is considered to share based on the ratio of Low Carbon to Carbon cumulative generation TEC within those zones.

14.15.52 The Company will review Connectivity at the beginning of a new price control period, and under exceptional circumstances such as major system reconfigurations or generation rezoning. If any such reassessment is required, it will be undertaken against a background of minimal change to existing Connectivity and in line with the notification process set out in the Transmission Licence and the CUSC.

Calculation of Boundary Sharing Factors

14.15.53 Boundary sharing factors (BSFs) are derived from the comparison of the cumulative proportion of Low Carbon and Carbon generation TEC behind each of the incremental MWkm boundary lengths using the following formulae –

Page 12 of 63

If $\frac{LC}{LC+C} \le 0.5$, then all Year round marginal km costs are shared i.e. the BSF is 100%.

Where:

LC = Cumulative Low Carbon generation TEC behind the relevant transmission boundary C = Cumulative Carbon generation TEC behind the relevant transmission

C = Cumulative Carbon generation TEC behind the relevant transmission boundary

If
$$\frac{LC}{LC+C}$$
 > 0.5 then the BSF is calculated using the following formula: -

$$BSF = \left(-2 \times \left(\frac{LC}{LC+C}\right)\right) + 2$$

Where:

BSF = boundary sharing factor.

14.15.54 The shared incremental km for each boundary are derived from the multiplication of the boundary sharing factor by the incremental km for that boundary;

$$SBIkm_{ab} = BIIkm_{ab} \ x \ BSF_{ab}$$

Where;

 $SBIkm_{ab}$ = shared boundary incremental km between generation charging zone A and generation charging zone B

 BSF_{ab} = generation charging zone boundary sharing factor.

14.15.55 The shared incremental km is discounted from the incremental km for that boundary to establish the not-shared boundary incremental km. The not-shared boundary incremental km reflects the cost of transmission investment on that boundary accounting for the sharing of power stations behind that boundary.

$$NSBIkm_{ab} = BIkm_{ab} - SBIkm_{ab}$$

Where;

 $NSBIkm_{ab}$ = not shared boundary incremental km between generation charging zone A and generation charging zone B.

14.15.56 The shared incremental km for a generation charging zone is the sum of the appropriate shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRS}$$

Where;

 $ZMkm_{nYRS}$ = Year Round Shared Zonal Marginal km for generation charging zone n.

Page 13 of 63

14.15.57 The not-shared incremental km for a generation charging zone is the sum of the appropriate not-shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRNS}$$

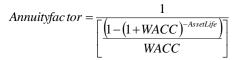
Where;

ZMkm_{nYRNS} = Year Round Not-Shared Zonal Marginal km for generation zone n.

Deriving the Final Local £/kW Tariff and the Wider £/kW Tariff

14.15.58 The zonal marginal km (ZMkm_{Gi}) are converted into costs and hence a tariff by multiplying by the Expansion Constant and the Locational Security Factor (see below). The nodal local marginal km (NLMkm^L) are converted into costs and hence a tariff by multiplying by the Expansion Constant and a Local Security Factor.

The Expansion Constant


- 14.15.59 The expansion constant, expressed in £/MWkm, represents the annuitised value of the transmission infrastructure capital investment required to transport 1 MW over 1 km. Its magnitude is derived from the projected cost of 400kV overhead line, including an estimate of the cost of capital, to provide for future system expansion.
- 14.15.60 In the methodology, the expansion constant is used to convert the marginal km figure derived from the transport model into a £/MW signal. The tariff model performs this calculation, in accordance with 14.15.95 14.15.117, and also then calculates the residual element of the overall tariff (to ensure correct revenue recovery in accordance with the price control), in accordance with 14.15.133.
- 14.15.61 The transmission infrastructure capital costs used in the calculation of the expansion constant are provided via an externally audited process. They also include information provided from all onshore Transmission Owners (TOs). They are based on historic costs and tender valuations adjusted by a number of indices (e.g. global price of steel, labour, inflation, etc.). The objective of these adjustments is to make the costs reflect current prices, making the tariffs as forward looking as possible. This cost data represents The Company's best view; however it is considered as commercially sensitive and is therefore treated as confidential. The calculation of the expansion constant also relies on a significant amount of transmission asset information, much of which is provided in the Seven Year Statement.
- 14.15.62 For each circuit type and voltage used onshore, an individual calculation is carried out to establish a £/MWkm figure, normalised against the 400KV overhead line (OHL) figure, these provide the basis of the onshore circuit expansion factors discussed in 14.15.70 14.15.77. In order to simplify the calculation a unity power factor is assumed, converting £/MVAkm to £/MWkm. This reflects that the fact tariffs and charges are based on real power.
- 14.15.63 The table below shows the first stage in calculating the onshore expansion constant. A range of overhead line types is used and the types are weighted by recent usage on the transmission system. This is a simplified calculation for 400kV OHL using example data:

Page 14 of 63

400kV	400kV OHL expansion constant calculation				
MW	Туре	£(000)/k	Circuit km*	£/MWkm	Weight
А	В	С	D	E = C/A	F=E*D
6500	La	700	500	107.69	53846
6500	Lb	780	0	120.00	0
3500	La/b	600	200	171.43	34286
3600	Lc	400	300	111.11	33333
4000	Lc/a	450	1100	112.50	123750
5000	Ld	500	300	100.00	30000
5400	Ld/a	550	100	101.85	10185
Sum			2500 (G)		285400 (H)
				Weighted Average (J= H/G):	114.160 (J)

*These are circuit km of types that have been provided in the previous 10 years. If no information is available for a particular category the best forecast will be used.

14.15.64 The weighted average £/MWkm (J in the example above) is then converted in to an annual figure by multiplying it by an annuity factor. The formula used to calculate of the annuity factor is shown below:

- 14.15.65 The Weighted Average Cost of Capital (WACC) and asset life are established at the start of a price control and remain constant throughout a price control period. The WACC used in the calculation of the annuity factor is the The Company regulated rate of return, this assumes that it will be reasonably representative of all licensees. The asset life used in the calculation is 50 years; the appropriateness of this is reviewed when the annuity factor is recalculated at the start of a price control period. These assumptions provide a current annuity factor of 0.066.
- 14.15.66 The final step in calculating the expansion constant is to add a share of the annual transmission overheads (maintenance, rates etc). This is done by multiplying the average weighted cost (J) by an 'overhead factor'. The 'overhead factor' represents the total business overhead in any year divided by the total Gross Asset Value (GAV) of the transmission system. This is recalculated at the start of each price control period. The overhead factor used in the calculation of the expansion constant for 2009/10 is 1.8%. The overhead and annuitised costs are then added to give the expansion constant.
- 14.15.67 Using the previous example, the final steps in establishing the expansion constant are demonstrated below:

400kV OHL expansion constant calculation	Ave £/MWkm
OHL	114.160

Page 15 of 63

Annuitised	7.535
Overhead	2.055
Final	9.589

- 14.15.68 This process is carried out for each voltage onshore, along with other adjustments to take account of upgrade options, see 14.15.73, and normalised against the 400KV overhead line cost (the expansion constant) the resulting ratios provide the basis of the onshore expansion factors. The process used to derive circuit expansion factors for Offshore Transmission Owner networks is described in 14.15.78.
- 14.15.69 This process of calculating the incremental cost of capacity for a 400kV OHL, along with calculating the onshore expansion factors is carried out for the first year of the price control and is increased by inflation, RPI, (May–October average increase, as defined in The Company's Transmission Licence) each subsequent year of the price control period. The expansion constant for 2010/11 is 10.633.

Onshore Wider Circuit Expansion Factors

- 14.15.70 Base onshore expansion factors are calculated by deriving individual expansion constants for the various types of circuit, following the same principles used to calculate the 400kV overhead line expansion constant. The factors are then derived by dividing the calculated expansion constant by the 400kV overhead line expansion constant. The factors will be fixed for each respective price control period.
- 14.15.71 In calculating the onshore underground cable factors, the forecast costs are weighted equally between urban and rural installation, and direct burial has been assumed. The operating costs for cable are aligned with those for overhead line. An allowance for overhead costs has also been included in the calculations.
- 14.15.72 The 132kV onshore circuit expansion factor is applied on a TO basis. This is to reflect the regional variation of plans to rebuild circuits at a lower voltage capacity to 400kV. The 132kV cable and line factor is calculated on the proportion of 132kV circuits likely to be uprated to 400kV. The 132kV expansion factor is then calculated by weighting the 132kV cable and overhead line costs with the relevant 400kV expansion factor, based on the proportion of 132kV circuitry to be uprated to 400kV. For example, in the TO areas of National Grid and Scottish Power where there are no plans to uprate any 132kV circuits, the full cable and overhead line costs of 132kV circuit are reflected in the 132kV expansion factor calculation.
- 14.15.73 The 275kV onshore circuit expansion factor is applied on a GB basis and includes a weighting of 83% of the relevant 400kV cable and overhead line factor. This is to reflect the averaged proportion of circuits across all three Transmission Licensees which are likely to be uprated from 275kV to 400kV across GB within a price control period.
- 14.15.74 The 400kV onshore circuit expansion factor is applied on a GB basis and reflects the full costs for 400kV cable and overhead lines.
- 14.15.75 AC sub-sea cable and HVDC circuit expansion factors are calculated on a case by case basis using actual project costs (Specific Circuit Expansion Factors).

Page 16 of 63

- 14.15.76 For HVDC circuit expansion factors both the cost of the converters and the cost of the cable are included in the calculation.
- 14.15.77 The TO specific onshore circuit expansion factors calculated for 2008/9 (and rounded to 2 decimal places) are:

Scottish Hydro Region

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	27.79
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.24	

Scottish Power & National Grid Regions

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	30.22
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.80	

Onshore Local Circuit Expansion Factors

- 14.15.78 The local onshore circuit tariff is calculated using local onshore circuit expansion factors. These expansion factors are calculated using the same methodology as the onshore wider expansion factor but without taking into account the proportion of circuit kms that are planned to be uprated.
- 14.15.79 In addition, the 132kV onshore overhead line circuit expansion factor is sub divided into four more specific expansion factors. This is based upon maximum (winter) circuit continuous rating (MVA) and route construction whether double or single circuit.

400kV underground cable factor:	22.39
275kV underground cable factor:	22.39
132kV underground cable factor:	30.22
400kV line factor:	1.00
275kV line factor:	1.14
132kV line factor (single; <200MVA):	10.00
132kV line factor (double; <200MVA):	8.32
132kV line factor (single; >=200MVA):	7.13
132kV line factor (double; >=200MVA):	4.42

Offshore Circuit Expansion Factors

14.15.80 Offshore expansion factors (£/MWkm) are derived from information provided by Offshore Transmission Owners for each offshore circuit. Offshore expansion factors are Offshore Transmission Owner and circuit specific. Each Offshore Transmission Owner will periodically provide, via the STC, information to derive an annual circuit revenue requirement. The offshore circuit revenue shall include revenues associated with the Offshore Transmission Owner's reactive compensation equipment, harmonic filtering equipment, asset spares and HVDC converter stations.

14.15.81 In the first year of connection, the offshore circuit expansion factor would be calculated as follows:

$\frac{CRevOFTO1}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$

Where:

CRevOFTO1	=	The offshore circuit revenue in £ for Year 1
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

14.15.82 In all subsequent years, the offshore circuit expansion factor would be calculated as follows:

$$\frac{AvCRevOFTO}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$$

Where:

AvCRevOFTO	=	The annual offshore circuit revenue averaged over the
		remaining years of the onshore National Electricity
		Transmission System Operator (NETSO) price control
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

- 14.15.83 For the avoidance of doubt, the offshore circuit revenue values, *CRevOFTO1* and *AvCRevOFTO* shall be determined using asset values after the removal of any One-Off Charges.
- 14.15.84 Prevailing OFFSHORE TRANSMISSION OWNER specific expansion factors will be published in this statement. These shall be recalculated at the start of each price control period using the formula in paragraph 14.15.71. For each subsequent year within the price control period, these expansion factors will be adjusted by the annual Offshore Transmission Owner specific indexation factor, *OFTOInd*, calculated as follows;

$$OFTOInd_{t,f} = \frac{OFTO \operatorname{Rev}Ind_{t,f}}{RPI_{t}}$$

where:

OFTOInd _{t,f}	=	the indexation factor for Offshore Transmission Owner <i>f</i> in respect of charging year <i>t</i> ;
OFTORevInd _t f	=	the indexation rate applied to the revenue of Offshore Transmission Owner f under the terms of its Transmission Licence in respect of charging year t ; and
<i>RPI</i> _t	=	the indexation rate applied to the expansion constant in respect of charging year <i>t</i> .

Offshore Interlinks

14.15.85 The revenue associated with an Offshore Interlink shall be divided entirely between those generators benefiting from the installation of that Offshore Interlink. Each of these Users will be responsible for their charge from their charging date, meaning that a proportion of the Offshore Interlink revenue may be socialised prior to all relevant Users being chargeable. The proportion associated with each User will be based on the Measure of Capacity to the MITS using the Offshore Interlink(s) in the event of a single circuit fault on the User's circuit from their offshore substation towards the shore, compared to the Measure of Capacity of the other Users.

Where:

An *Offshore Interlink* is a circuit which connects two offshore substations that are connected to a Single Common Substation. It is held in open standby until there is a transmission fault that limits the User's ability to export power to the Single Common Substation. In the Transport Model, they are to be modelled in open standby.

A Single Common Substation is a substation where:

- i. each substation that is connected by an Offshore Interlink is connected via at least one circuit without passing through another substation; and
- ii. all routes connecting each substation that is connected by an Offshore Interlink to the MITS pass through.

The Measure of Capacity to the MITS for each Offshore substation is the result of the following formula or zero whichever is larger. For the situation with only one interlink, all terms relating to C should be set to zero:

```
For Substation A:
min { Cap_{IAB}, ILF_A \times TEC_A - RCap_A, Cap_B - ILF_B \times TEC_B + min (Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation B:

min { ILF_B \times TEC_B - RCap_B, min (Cap_{IAB}, Cap_A - ILF_A \times TEC_A)

+ min ( Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation C:

min { Cap_{IBC}, ILF_{C} \times TEC_{C} - RCap_{C}, Cap_{B} - ILF_{B} \times TEC_{B} + min (Cap_{IAB}, Cap_{A} - ILF_{A} \times TEC_{A}) }

and
```

Cap _{IAB} = B	total capacity of the Offshore Interlink between substations A and
Cap _{IBC} = C	total capacity of the Offshore Interlink between substations B and
Cap _X =	total capacity of the circuit between offshore substation X and the Single Common Substation, where X is A, B or C.
RCap _x =	remaining capacity of the circuit between offshore substation X and the Single Common Substation in the event of a single cable fault, where X is A, B or C.
TEC _x =	the sum of the TEC for the Users connected, or contracted to connect, to offshore substation X, where X is A, B or C, where the value of TEC will be the maximum TEC that each User has held since the initial charging date, or is contracted to hold if prior to the initial charging date.

- ILF_x = Offshore Interlink Load Factor, where X is A, B or C. The Offshore Interlink Load Factor (ILF) is based on the Annual Load Factor (ALF). Until all the Users connected to a Single Common Substation have a station specific Annual Load Factor based on five years of data, the generic ALF for the fuel type will be used as the ILF for all stations. When all Users have a station specific ALF, the value of the ALF in the first such year will be used as the ILF in the calculation for all subsequent charging years.
- 14.15.86 The apportionment of revenue associated with Offshore Interlink(s) in 14.15.85 applies in situations where the Offshore Interlink was included in the design phase, or if one or more User(s) has already financially committed or been commissioned then only where that User(s) agrees to the Offshore Interlink.
- 14.15.87 Alternatively to the formula specified in 14.15.85 the proportion of the OFTO revenue associated with the Offshore Interlink allocated to each generator benefiting from the installation of an Offshore Interlink may be agreed between these Users. In this event:
- a. All relevant Users shall notify The Company of its respective proportions three months prior the OTSDUW asset transfer in the case of a generator build, or the charging date of the first generator, in the case of an OFTO build.
- b. All relevant Users may agree to vary the proportions notified under (a) by each writing to The Company three months prior to the charges being set for a given charging year.
- c. Once a set of proportions of the OFTO revenue associated with the Offshore Interlink has been provided to The Company, these will apply for the next and future charging years unless and until The Company is informed otherwise in accordance with (b) by all of the relevant Users.
- d. If all relevant Users are unable to reach agreement on the proportioning of the OFTO revenue associated with the Offshore Interlink they can raise a dispute. Any dispute between two or more Users as to the proportioning of such revenue shall be managed in accordance with CUSC Section 7 Paragraph 7.4.1 but the reference to the 'Electricity Arbitration Association' shall instead be to the 'Authority' and the Authority's determination of such dispute shall, without prejudice to apply for judicial review of any determination, be final and binding on the Users.

The Locational Onshore Security Factor

14.15.88 The locational onshore security factor is derived by running a secure DCLF ICRP transport study based on the same market background as used for Zoning in the DCLF ICRP transport model. This calculates the nodal marginal costs where peak <u>net</u> demand can be met despite the Security and Quality of Supply Standard contingencies (simulating single and double circuit faults) on the network. Essentially the calculation of secured nodal marginal costs is identical to the process outlined above except that the secure DCLF study additionally calculates a nodal marginal cost taking into account the requirement to be secure against a set of worse case contingencies in terms of maximum flow for each circuit.

- 14.15.89 The secured nodal cost differential is compared to that produced by the DCLF ICRP transport model and the resultant ratio of the two determines the locational security factor using the Least Squares Fit method. Further information may be obtained from the charging website¹.
- 14.15.90 The locational onshore security factor derived for 2010/11 is 1.8 and is based on an average from a number of studies conducted by The Company to account for future network developments. The security factor is reviewed for each price control period and fixed for the duration.

Local Security Factors

- 14.15.91 Local onshore security factors are generator specific and are applied to a generator's local onshore circuits. If the loss of any one of the local circuits prevents the export of power from the generator to the MITS then a local security factor of 1.0 is applied. For generation with circuit redundancy, a local security factor is applied that is equal to the locational security factor, currently 1.8.
- 14.15.92 Where a Transmission Owner has designed a local onshore circuit (or otherwise that circuit once built) to a capacity lower than the aggregated TEC of the generation using that circuit, then the local security factor of 1.0 will be multiplied by a Counter Correlation Factor (CCF) as described in the formula below;

$$CCF = \frac{D_{\min} + T_{cap}}{G_{cap}}$$

Where; D_{min} = minimum annual net demand (MW) supplied via that circuit in the absence of that generation using the circuit

 T_{cap} = transmission capacity built (MVA)

 G_{cap} = aggregated TEC of generation using that circuit

CCF cannot be greater than 1.0.

14.15.93 A specific offshore local security factor (LocalSF) will be calculated for each offshore connection using the following methodology:

$$LocalSF = \frac{NetworkExportCapacity}{\sum_{k} Gen_{k}}$$

Where:

 NetworkExportCapacity =
 the total export capacity of the network disregarding any Offshore Interlinks

 k
 =
 the generation connected to the offshore network

1 http://www.nationalgrid.com/uk/Electricity/Charges/

Page 21 of 63

- 14.15.94 The offshore security factor for single circuits with a single cable will be 1.0 and for multiple circuit connections will be capped at the locational onshore security factor, derived as 1.8 for 2010/11.
- 14.15.95 The offshore local security factor for configurations with one or more Offshore Interlinks is updated so that the offshore circuit tariff will include the proportion of revenue associated with the Offshore Interlink(s). The specific offshore local security factor for configurations involving an Offshore Interlink, which may be greater than 1.8, will be calculated for each offshore connection using the following methodology:

 $LocalSF = \frac{IRevOFTO \times NetworkExportCapacity}{CRevOFTO \times \sum_{k}Gen_{k}} + LocalSF_{initial}$

Where:

The appropriate proportion of the Offshore Interlink(s) revenue in £
associated with the offshore connection calculated in 14.15.85
The offshore circuit revenue in £ associated with the circuit(s) from the
offshore substation to the Single Common Substation.
Initial Local Security Factor calculated in 14.15.80 and 14.15.81
And other definitions as in 14.15.80.

Initial Transport Tariff

14.15.96 First an Initial Transport Tariff (ITT) must be calculated for both Peak Security and Year Round backgrounds. For Generation, the Peak Security zonal marginal km (ZMkm_{PS}), Year Round Not-Shared zonal marginal km (ZMkm_{YRNS}) and Year Round Shared zonal marginal km (ZMkm_{YRS}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT, Year Round Not-Shared ITT and Year Round Shared ITT respectively:

 $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$

Where ZMkm _{GiPS} ZMkm _{GiYRNS} charging zone	= = e	Peak Security Zonal Marginal km for each generation zone Year Round Not-Shared Zonal Marginal km for each generation	
ZMkm _{GiYRS}	=	Year Round Shared Zonal Marginal km for each generation	
charging zon	е		
EC	=	Expansion Constant	
LSF	=	Locational Security Factor	
	=	Peak Security Initial Transport Tariff (£/MW) for each generation	
zone			
ITT _{GiYRNS}	=	Year Round Not-Shared Initial Transport Tariff (£/MW) for each	
generation charging zone			
ITT _{GiYRS}	=	Year Round Shared Initial Transport Tariff (£/MW) for each	
generation ch	narging	zone.	

- CUSC v1.12
 - 14.15.97 Similarly, for demand the Peak Security zonal marginal km (ZMkm_{PS}) and Year Round zonal marginal km (ZMkm_{YR}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT and Year Round ITT respectively:

		$ZMkm_{DiPS} \times EC \times LSF = ITT_{DiPS}$
		$ZMkm_{DiYR} \times EC \times LSF = ITT_{DiYR}$
Where ZMkm _{DiF} ZMkm _{DiY}	0	Peak Security Zonal Marginal km for each demand zone Year Round Zonal Marginal km for each demand zone
ITT _{DiPS} ITT _{DiYR}	= =	Peak Security Initial Transport Tariff (\pounds /MW) for each demand one Year Round Initial Transport Tariff (\pounds /MW) for each demand zone
14.15.98	GSP group revenue re metered tria	tep is to multiply these ITTs by the expected metered triad <u>gross</u> demand and generation capacity to gain an estimate of the initial covery for both Peak Security and Year Round backgrounds. The ad <u>gross GSP group</u> demand and generation capacity are based on forecasts provided by Users and are confidential.
a.		ad gross GSP group demand is net demand for all GSP groups less exports for all GSP groups .
Where		

ITRR _G =	Initial Transport Revenue Recovery for generation
G _{Gi} =	Total forecast Generation for each generation zone (based
	on analysis of confidential User forecasts)
ITRR _D =	Initial Transport Revenue Recovery for gross GSP group
	demand
D _{Di} =	Total forecast Metered Triad gross GSP group Demand for
each	
	demand zone (based on analysis of confidential User
	forecasts).

In addition, the initial tariffs for generation are also multiplied by the **Peak Security flag** when calculating the initial revenue recovery component for the Peak Security background. Similarly, when calculating the initial revenue recovery for the Shared component of the Year Round background, the initial tariffs are multiplied by the **Annual Load Factor** (see below).

Peak Security (PS) Flag

14.15.99 The revenue from a specific generator due to the Peak Security locational tariff needs to be multiplied by the appropriate Peak Security (PS) flag. The PS flags indicate the extent to which a generation plant type contributes to the need for transmission network investment at peak demand conditions. The PS

Page 23 of 63

flag is derived from the contribution of differing generation sources to the demand security criterion as described in the Security Standard. In the event of a significant change to the demand security assumptions in the Security Standard, National Grid will review the use of the PS flag.

Generation Plant Type	PS flag
Intermittent	0
Other	1

Annual Load Factor (ALF)

- 14.15.100 The ALF for each individual Power Station is calculated using the relevant TEC (MW) and corresponding output data. Where output data is not available for a Power Station, including for new Power Stations and emerging Power Station technologies, generic data for the appropriate generation plant type will be used.
- 14.15.101 For a given charging year "t" the Power Station ALF will be based on information from the previous five charging years, calculated for each charging year as set out below.

$$ALF = \frac{\sum_{p=1}^{17520} GMWh_p}{\sum_{p=1}^{17520} TECp \times 0.5}$$

Where:

 $\mathsf{GMWh}_{\mathsf{p}}$ is the maximum of FPN or actual metered output in a Settlement Period related to the power station TEC (MW); and

 TEC_{p} is the TEC (MW) applicable to that Power Station for that Settlement Period including any STTEC and LDTEC, accounting for any trading of TEC.

- 14.15.102 The appropriate output (FPN or actual metered) figure is derived from **BM Unit** data available to National Grid and relates to the total TEC of the Power Station.
- 14.15.103 Once all five charging year ALFs have been calculated for the individual Power Station they are compared, and the highest and lowest figures are discarded. The final ALF, to be used for transmission charging purposes, is calculated as the average of the remaining three ALFs.
- 14.15.104 In the event that only four charging years of complete output (FPN or actual metered) data are available for an individual Power Station then the higher three charging years ALF would be used in the calculation of the final ALF. In the event that only three charging years of complete output (FPN or actual metered) data are available then these three charging years would be used.
- 14.15.105 Due to the aggregation of output (FPN or actual metered) data for dispersed generation (e.g. cascade hydro schemes), where a single generator BMU consists of geographically separated power stations, the ALF would be calculated based on the total output of the BMU and the overall TEC of those Power Stations.

Page 24 of 63

1

- 14.15.106 In the event that there are not three full charging years of an individual power station's output available, missing output (FPN or actual metered) data would be replaced by generic data for that generation plant type to ensure three charging years of information are available for the Power Station. The derivation of the generic data is described in paragraphs 14.15.111-14.15.114.
- 14.15.107 Users will receive draft ALFs before 25th December of the charging year (t-1) for the charging year (t) and will have a period of 15 working days from date of publishing to notify the Company of any errors. Failure to agree changes relating to errors will be treated as a charging dispute under the CUSC.
- 14.15.108 The ALFs used in the setting of final tariffs will be published in the annual Statement of Use of System Charges. Changes to ALFs after this publication will not result in changes to published tariffs (e.g. following dispute resolution).

Derivation of Generic ALFs

14.15.109 The generic ALF is derived from the average annual output of the ten most recently commissioned GB generation of a particular generation plant type that have at least five charging years' data, using an identical methodology to that used for the Power Station specific calculation described above. Where less than ten GB generators of a particular generation plant type exist, then data from all existing generators of that particular generation plant type will be used. Example generation plant type categories are listed below;

Fuel Type	
Biomass	
Coal	
Gas	
Hydro	
Nuclear (by reactor	
type)	
Oil & OCGTs	
Pumped Storage	
Onshore Wind	
Offshore Wind	
CHP	

- 14.15.110 The Company will keep these categories under review and update as necessary. Where within a category there is a significant locational difference consideration will be given to zonal generic factors. The factors used will be published in the Statement of Use of System Charges and will be reviewed annually.
- 14.15.111 If a User can demonstrate that the generation plant type of a Power Station has changed, consideration will be given to the use of relevant generic ALF information in the calculation of their charges until sufficient specific data is available.
- 14.15.112 For new and emerging generation plant types, where insufficient data is available to allow a generic ALF to be developed, The Company will use the best information available e.g. from manufactuers and data from use of similar technologies outside GB. The factor will be agreed with the relevant Generator. In the event of a disagreement the standard provisions for dispute in the CUSC will apply.

I

<u>TNUoS Em</u>	bedded	Export Tariff
14.15.113		edded exports are exports measured on a half-hourly basis by
		ring Systems, in accordance with the BSC, that are not subject to ration TNUoS.
	gene	
<u>14.15.114</u>		embedded export tariff will be applied to the metered Triad volumes nbedded Exports for each demand zone as follows:
		$EET_{Di} = ITT_{DiPS} + ITT_{DiYR} + EX$
	Whe	<u>re</u>
ITT _D	iPS <u>=</u>	Peak Security Initial Transport Tariff for the demand zone;
<u>ITT_D FX</u>		Year Round Initial Transport Tariff for the demand zone, and
	=	$ABs \left(Min_{Di}(ITT_{DiPS} + ITT_{DiYR})\right)$
	<u>The</u> posit	Value of EET_{D_i} will be floored at zero, so that EET_{D_i} is always zero or ive.
Initial Reve	nue Re	covery
14.15 <mark>,115</mark> Fo	r the Pe	eak Security background the initial tariff for generation is multiplied by
	e total fo covery:	precast generation capacity and the PS flag to give the initial revenue
	•	
		$\sum_{Gi=1}^{n} (ITT_{GiPS} \times G_{Gi} \times F_{PS}) = ITRR_{GPS}$
Where		
ITRR _{GPS}	=	Peak Security Initial Transport Revenue Recovery for generation
G_{Gi}	=	Total forecast Generation for each generation zone (based on <u>analysis of</u> confidential User forecasts)
F _{PS}	=	Peak Security flag appropriate to that generator type
n	=	Number of generation zones
back	ground	evenue recovery for <u>gross GSP group</u> demand for the Peak Security is calculated by multiplying the initial tariff by the total forecast d <u>gross GSP group</u> demand:
\sum^{14}		(D) = ITPP
$\sum_{Di=1}^{N}$	DiPS	$\times D_{Di} = ITRR_{DPS}$
Where:		
ITRRDPS	=	Peak Security Initial Transport Revenue Recovery for gross GSP
		<u>group</u> demand

D_{Di} = Total forecast Metered Triad<u>gross GSP group</u> Demand for each demand zone (based on <u>analysis of</u> confidential User forecasts)

Page 26 of 63

V1.12-01 April 2016

14.15,116 For the Year Round background, the initial tariff for generation is multiplied by the total forecast generation capacity whilst calculating Initial Recovery for Not-Shared component whereas the initial tariff for Shared component is multiplied by both, the total forecast generation capacity and the ALF to give the initial revenue recovery:

$$\sum_{G_{i=1}}^{n} (ITT_{G_{iYRNS}} \times G_{G_{i}}) = ITRR_{G_{YRNS}}$$
$$\sum_{G_{i=1}}^{n} (ITT_{G_{iYRS}} \times G_{G_{i}} \times ALF) = ITRR_{G_{YRS}}$$

Where:

ITRRGYRNS
generation=Year Round Not-Shared Initial Transport Revenue Recovery forITRRGYRS
generation=Year Round Shared Initial Transport Revenue Recovery forALF=Annual Load Factor appropriate to that generator.

14.15,117 Similar to the Peak Security background, the initial revenue recovery for gross <u>GSP group</u> demand for the Year Round background is calculated by multiplying the initial tariff by the total forecast metered triad gross GSP group demand:

$$\sum_{Di=1}^{14} \left(ITT_{DiYR} \times D_{Di} \right) = ITRR_{DYR}$$

=

Where:

ITRR_{DYR}

Year Round Initial Transport Revenue Recovery for <u>gross GSP</u> group demand

14.15.118The initial revenue recovery for Embedded Exports is the Embedded Export Tariff multiplied by the total forecast volume of Embedded Export at triad:

$$ITRR_{EE} = \sum_{Di=1}^{14} (EET_{Di} \times EEV_{Di})$$

<u>Where</u>

ITTR _{EE}	= Initial Revenue impact for Embedded Exports
EEV _{Di}	= Forecast Embedded Export metered volume at Triad
<u>(MW)</u>	

For the avoidance of doubt, the initial revenue recovery for affected embedded exports can be positive or negative.

Deriving the Final Local Tariff (£/kW)

Page 27 of 63

Deleted: 114

Local Circuit Tariff

14.15,<u>119</u> Generation with a local circuit tariff is calculated by multiplying the Year Round nodal marginal km along the local circuit by the expansion constant and the relevant local security factor (whether onshore or offshore) and summing across local circuits to give the local circuit tariff:

$$\sum_{k} \frac{NLMkm_{Gi}^{L} \times EC \times LocalSF_{k}}{1000} = CLT_{Gi}$$

Where

I

1

vvnere			
k	=	Local circuit k for generator	
NLMkm _{Gj} L	=	Year Round Nodal marginal km along local circuit k using local	
		circuit expansion factor.	
EC	=	Expansion Constant	
LocalSF _k	=	Local Security Factor for circuit k	
CLT_{Gi}	=	Circuit Local Tariff (£/kW)	

Onshore Local Substation Tariff

- 14.15,120 All chargeable generation is subject to the local substation tariff component which is determined by assessing the generation substation type which is the substation at the connection charging boundary, against three cost determining factors:
 - (a) HV connection voltage the voltage at the boundary between the User's connection assets and the transmission system;
 - (b) Sum of TEC at the generation substation the combined TEC of all generation at the connecting substation; and
 - (c) The level of redundancy at the generation substation single busbar / single switch mesh connections are examples of no redundancy connections, whereas examples of connections with redundancy include double busbar and mesh sub station designs.
- 14.15,<u>121</u> Using the above factors, the corresponding £/kW tariffs (quoted to 3dp) that will be applied during 2010/11 are:

Substation	Connection	Substation Voltage (a)		
Rating (b)	Type (c)	132kV	275kV	400kV
<1320MW	No redundancy	0.133	0.081	0.065
<1320MW	Redundancy	0.301	0.192	0.155
>=1320MW	No redundancy	n/a	0.257	0.208
>=1320MW	Redundancy	n/a	0.417	0.336

- 14.15,122 The process for calculating Local Substation Tariffs will be carried out for the first year of the price control and will subsequently be indexed by RPI for each subsequent year of the price control period.
- 14.15,<u>123</u> The effective Local Tariff (£/kW) is calculated as the sum of the circuit and substation onshore and/or offshore components:

Page 28 of 63

V1.12-01 April 2016

Deleted: 116

Deleted: 117

Deleted: 118

Deleted: 119

1

$$ELT_{Gi} = CLT_{Gi} + SLT_{Gi}$$

Where

ELT _{Gi}	=	Effective Local Tariff (£/kW)
SLT_{Gi}	=	Substation Local Tariff (£/kW)

14.15,<u>124</u> Where tariffs do not change mid way through a charging year, final local tariffs will be the same as the effective tariffs:

 $ELT_{Gi} = LT_{Gi}$

Where

 LT_{Gi} = Final Local Tariff (£/kW)

14.15,125 Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$LT_{Gi} = \frac{12 \times \left(ELT_{Gi} \times \sum_{Gi=1}^{21} G_{Gi} - FLL_{Gi}\right)}{b \times \sum_{Gi=1}^{21} G_{Gi}} \quad \text{and} \quad FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{21} D_{Di}}$$

Where:

b = number of months the revised tariff is applicable for

FLL = Forecast local liability incurred over the period that the original tariff is applicable for

14.15,<u>126</u> For the purposes of charge setting, the total local charge revenue is calculated by:

$$\text{LCRR}_{\text{G}} = \sum_{j=Gi} \text{LT}_{\text{Gi}} * G_j$$

Where LCRR_G

G_j

Local Charge Revenue Recovery
 Forecast chargeable Generation or Transmission Entry Capacity
 in kW (as applicable) for each generator (based on <u>analysis of</u> confidential information received from Users)

Offshore substation local tariff

- 14.15,127 All offshore chargeable generation is subject to an offshore substation tariff. The offshore substation tariff shall be the sum of transformer, switchgear and platform components.
- 14.15,128 Each tariff component, expressed in £/kW, shall be the ratio of the Offshore Transmission Owner revenue (£) and rating associated with the transformers, switchgear or platform (kW) at each offshore substation. The Offshore Transmission Owner revenue of each tariff component shall include that associated with asset spares. In the case of the platform component, the relevant rating shall be the lower of the transformer or switchgear ratings. As with the offshore circuit expansion factors, the Offshore Transmission Owner revenue associated with each tariff component shall be averaged over the remaining years of the NETSO price control.
- 14.15,129 Offshore Transmission Owner revenue associated with interest during construction and project development overheads will be attributed to the

Page 29 of 63

V1.12-01 April 2016

Deleted: 122

Deleted: 121

Deleted: 123

Deleted: 124

Deleted: 125

l

relevant asset category with which it is associated. If these or any other costs included in the Offshore Transmission Owner revenue are not readily attributable to a given asset category, they will be pro-rated across the various asset categories based on their relative cost.

- 14.15,130 For 2010/11 a discount of £0.345590/kW shall be provided to the offshore substation tariff to reflect the average cost of civil engineering for onshore substations. This will be inflated by RPI each year and reviewed every price control period.
 - 14.15,131 Offshore substation tariffs shall be reviewed at the start of every onshore price control period. For each subsequent year within the price control period, these shall be inflated in the same manner as the associated Offshore Transmission Owner Revenue.
 - 14.15,<u>132</u> The revenue from the offshore substation local tariff is calculated by:

$$SLTR = \sum_{\substack{\text{All offshore}\\ \text{substation}}} \left(SLT_k \times \sum_k Gen_k \right)$$

Where:

SLT _k	=	the offshore substation tariff for substation k
Gen _k	=	the generation connected to offshore substation k

The Residual Tariff

14.15,133 The total revenue to be recovered through TNUoS charges is determined each year with reference to the Transmission Licensees' Price Control formulas less the costs expected to be recovered through Pre-Vesting connection charges. Hence in any given year t, a target revenue figure for TNUoS charges (TRR_t) is set after adjusting for any under or over recovery for and including, the small generators discount is as follows:

$$TRR_t = R_t - PVC_t - SG_{t-1}$$

Where

TRR_t = TNUoS Revenue Recovery target for year t R_t = Forecast Revenue allowed under The Company's RPI-X Price Control

- Formula for year t (this term includes a number of adjustments, including for over/under recovery from the previous year). For further information, refer to Special Condition D2 of The Company's Transmission Licence. $PVC_t = Forecast Revenue from Pre-Vesting connection charges for year t$
- SG_{t-1} = The proportion of the under/over recovery included within R_t which relates to the operation of statement C13 of the The Company Transmission Licence. Should the operation of statement C13 result in an under recovery in year t 1, the SG figure will be positive and vice versa for an over recovery.
- 14.15,134 In normal circumstances, the revenue forecast to be recovered from the initial transport tariffs will not equate to the total revenue target. This is due to a number of factors. For example, the transport model assumes, for simplicity, smooth incremental transmission investments can be made. In reality, transmission investment can only be made in discrete 'lumps'. The transmission system has been planned and developed over a long period of time. Forecasts and assessments used for planning purposes will not have been borne out precisely by events and therefore some distinction between an optimal system for one year and the actual system can be expected.

Page 30 of 63

V1.12-01 April 2016

Deleted: 130

Deleted: 131

Deleted: 128

- - - -

Deleted: 127

I

14.15,135 As a result of the factors above, in order to ensure adequate revenue recovery, a constant non-locational **Residual Tariff** for generation and demand is calculated, which includes infrastructure substation asset costs. It is added to the initial transport tariffs for both Peak Security and Year Round backgrounds so that the correct generation / demand revenue split is maintained and the total revenue recovery is achieved.

 $RT_{D} = \frac{(p \times TRR) - ITRR_{DPS} - ITRR_{DYR} - ITRR_{EE}}{\sum_{Di=1}^{14} D_{Di}}$

$$RT_{G} = \frac{\left[(1-p) \times TRR \right] - ITRR_{GPS} - ITRR_{GYRNS} - ITRR_{GYRNS} - LCRR_{G}}{\sum_{G_{i}=1}^{n} G_{G_{i}}}$$

Where RT p

Residual Tariff (£/MW) Proportion of revenue to be recovered from demand

Final £/kW Tariff

14.15,136 The effective Transmission Network Use of System tariff (TNUoS) for generation and gross demand can now be calculated as the sum of the initial transport wider tariffs for Peak Security and Year Round backgrounds, the nonlocational residual tariff and the local tariff:

$$ET_{Gi} = \frac{ITT_{GiPS} + ITT_{GiYRNS} + ITT_{GiYRNS} + RT_{G}}{1000} + LT_{Gi}$$
$$ET_{Di} = \frac{ITT_{DiPS} + ITT_{DiYR} + RT_{D}}{1000}$$

Where

ET_{Gi} = Effective Generation TNUoS Tariff expressed in £/kW (ET_{Gi} would only be applicable to a Power Station with a PS flag of 1 and ALF of 1; in all other circumstances ITT_{GiPS}, ITT_{GiPRNS} and ITT_{GiPRS} will be applied using Power Station specific data)

ET_{Di} = Effective Gross Demand TNUoS Tariff expressed in £/kW

The effective Transmission Network Use of System tariff (TNUoS) for affected embedded exports and grandfathered embedded exports can now be calculated by expressing the embedded export tariff in £/kW values:

$$ET_{EEi} = \frac{EET_{Di}}{1000}$$

Where **Where**

ET_{EEi} = Effective Embedded Export TNUoS Tariff expressed in £/kW

For the purposes of the annual Statement of Use of System Charges ET_{Gi} will be published as ITT_{GIPS} ; ITT_{GIYRS} , ITT_{GIYRS} , RT_G and LT_{Gi}

Deleted: ¶ $RT_{D} = \frac{(p \times TRR) - I}{I}$

Deleted: 132

14.15,137 Where tariffs do not change mid way through a charging year, final demand and generation tariffs will be the same as the effective tariffs.

$$FT_{Gi} = ET_{Gi}$$

$$FT_{Di} = ET_{Di}$$

$$FT_{EEAi} = ET_{EEi}$$

14.15,138 Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$FT_{Gi} = \frac{12 \times \left(ET_{Gi} \times \sum_{Gi=1}^{20} G_{Gi} - FL_{Gi} \right)}{b \times \sum_{Gi=1}^{27} G_{Gi}}$$

$$FT_{EEi} = \frac{12 \times (ET_{EEi} \times \sum_{Di=1}^{14} EET_{Di} - FL_{Di})}{b \times \sum_{Di=1}^{14} EET_{Di}} \text{ and } FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di} \right)}{b \times \sum_{Di=1}^{14} EET_{Di}}$$

Where:

l

b = number of months the revised tariff is applicable for FL = Forecast liability incurred over the period that the original tariff is applicable for

Note: The ET_{Gi} element used in the formula above will be based on an individual Power Stations PS flag and ALF for Power Station G_{Gi} , aggregated to ensure overall correct revenue recovery.

14.15.1,39 If the final gross demand TNUoS Tariff results in a negative number then this is collared to £0/kW with the resultant non-recovered revenue smeared over the remaining demand zones:

 $NRRT_{D} = \frac{\sum_{i=1}^{z} \left(FT_{Di} \times D_{Di}\right)}{\sum_{i=z+1}^{14} D_{Di}}$

 $FT_{Di} < 0$, then i = 1 to z

Therefore,

lf

Therefore the revised Final Tariff for the <u>gross</u> demand zones with positive Final tariffs is given by:

For i= 1 to z: $RFT_{Di} = 0$

For *i*=z+1 to 14:

 $RFT_{Di} = FT_{Di} + NRRT_{D}$

Where

 $NRRT_{D} = Non Recovered Revenue Tariff (\pounds/kW)$ RFT_{Di} = Revised Final Tariff (\pounds/kW)

Page 32 of 63

Deleted: 134

Deleted: 135

	14.15,140 The tariffs applicable for any particular year are detailed in The Company's Statement of Use of System Charges, which is available from the Charging website. Archived tariff information may also be obtained from the Charging website.	Deleted: 137	
	14.15,141 The zonal maps referenced in The Company's Statement of Use of System Charges and available on the Charging website contain detailed information for the charging year in question of which Grid Supply Points fall into which TNUoS zones.	Deleted: 138	
	14.15,142 New Grid Supply Points will be classified into zones on the following basis:	 Deleted: 139	
	• For demand zones, according to the GSP Group to which the Grid Supply Point is allocated for energy market settlement purposes.		
	• For generation zones, with reference to the geographic proximity to existing zones and, where close to a boundary between existing zones, with reference to the marginal costs arising from transport model studies. The GSP will then be allocated to the zone, which contains the most similar marginal costs.		
	14.15,143 The Company has available, upon request, the DCLF ICRP transport model, tariff model template and data necessary to run the model, consisting of nodal values of generation and demand connection points to the NETS. The model and data will enable the basic nodal charges to be determined and will also allow sensitivity analysis concerning alternative developments of generation and demand to be undertaken. The model is available from the Charging Team and whilst it is free of charge, it is provided under licence to restrict its distribution and commercial use.	Deleted: 140	
	14.15, <u>144</u> The Company will be pleased to run specific sensitivity studies for Users under a separate study contract in line with the fees set out in the Statement of Use	Deleted: 141	
	of System Charges. Please contact the Charging Team.		
	14.15, <u>145</u> The factors which will affect the level of TNUoS charges from year to year include-;	Deleted: 142	
	 the forecast level of peak demand on the system the Price Control formula (including the effect of any under/over recovery from the previous year), the expansion constant, the locational security factor, the PS flag the ALF of a generator changes in the transmission network HVDC circuit impedance calculation changes in the pattern of generation capacity and demand. changes in the pattern of embedded exports 		
l	14.15,146 In accordance with Standard Licence Condition C13, generation directly connected to the NETS 132kV transmission network which would normally be subject to generation TNUoS charges but would not, on the basis of generating capacity, be liable for charges if it were connected to a licensed distribution network qualifies for a reduction in transmission charges by a designated sum, determined by the Authority. Any shortfall in recovery will result in a unit	Deleted: 143	

I

amount increase in <u>gross</u>demand charges to compensate for the deficit. Further information is provided in the Statement of the Use of System Charges.

Stability & Predictability of TNUoS tariffs

14.15,147 A number of provisions are included within the methodology to promote the stability and predictability of TNUoS tariffs. These are described in 14.29.

14.16 Derivation of the Transmission Network Use of System Energy Consumption Tariff and Short Term Capacity Tariffs

- 14.16.1 For the purposes of this section, Lead Parties of Balancing Mechanism (BM) Units that are liable for Transmission Network Use of System Demand Charges are termed Suppliers.
- 14.16.2 Following calculation of the Transmission Network Use of System £/kW Gross Demand Tariff (as outlined in Chapter 2: Derivation of the TNUoS Tariff) for each GSP Group is calculated as follows:

$$p/kWh Tariff = (NHHD_F * £/kW Tariff - FL_G) *100$$

NHHC_G

Where:

 \pounds/kW Tariff = The \pounds/kW Effective <u>Gross</u> Demand Tariff (\pounds/kW), as calculated previously, for the GSP Group concerned.

 \mathbf{NHHD}_{F} = The Company's forecast of Suppliers' non-half-hourly metered Triad Demand (kW) for the GSP Group concerned. The forecast is based on historical data.

 FL_{G} = Forecast Liability incurred for the GSP Group concerned.

 $\rm NHHC_{G}$ = The Company's forecast of GSP Group non-half-hourly metered total energy consumption (kWh) for the period 16:00 hrs to 19:00hrs inclusive (i.e. settlement periods 33 to 38) inclusive over the period the tariff is applicable for the GSP Group concerned.

Short Term Transmission Entry Capacity (STTEC) Tariff

14.16.3 The Short Term Transmission Entry Capacity (STTEC) tariff for positive zones is derived from the Effective Tariff (ET_{Gi}) annual TNUoS £/kW tariffs (14.15.112). If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the STTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (i.e. over the whole financial year, not just the period that the STTEC is applicable for). STTECs will not be reconciled following a mid year charge change. The premium associated with the flexible product is associated with the analysis that 90% of the annual charge is linked to the system peak. The system peak is likely to occur in the period of November to February inclusive (120 days, irrespective of leap years). The calculation for positive generation zones is as follows:

$$\frac{FT_{Gi} \times 0.9 \times STTEC \ Period}{120} = STTEC \ tariff \ (\pounds/kW/period)$$

Where:

FT	=	Final annual TNUoS Tariff expressed in £/kW
Gi	=	Generation zone
STTEC Period	=	A period applied for in days as defined in the CUSC

Page 35 of 63

- 14.16.4 For the avoidance of doubt, the charge calculated under 14.16.3 above will represent each single period application for STTEC. Requests for multiple /STTEC periods will result in each STTEC period being calculated and invoiced separately.
- 14.16.5 The STTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.

Limited Duration Transmission Entry Capacity (LDTEC) Tariffs

14.16.6 The Limited Duration Transmission Entry Capacity (LDTEC) tariff for positive zones is derived from the equivalent zonal STTEC tariff for up to the initial 17 weeks of LDTEC in a given charging year (whether consecutive or not). For the remaining weeks of the year, the LDTEC tariff is set to collect the balance of the annual TNUoS liability over the maximum duration of LDTEC that can be granted in a single application. If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the LDTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (ie over the whole financial year, not just the period that the STTEC is applicable for). LDTECs will not be reconciled following a mid year charge change:

Initial 17 weeks (high rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.9 \times 7}{120}$$

Remaining weeks (low rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.1075 \times 7}{316 - 120} \times (1 + P)$$

where FT is the final annual TNUoS tariff expressed in £/kW; G_i is the generation TNUoS zone; and P is the premium in % above the annual equivalent TNUoS charge as determined by The Company, which shall have the value 0.

- 14.16.7 The LDTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.
- 14.16.8 The tariffs applicable for any particular year are detailed in The Company's **Statement of Use of System Charges** which is available from the **Charging website**. Historical tariffs are also available on the **Charging website**.

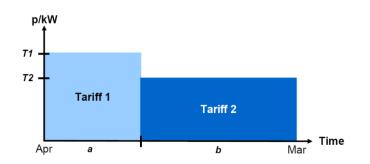
14.17 Demand Charges

Parties Liable for Demand Charges

- 14.17.1 Demand charges are subdivided into charges for gross demand, energy and embedded export. The following parties shall be liable for some or all of the categories of demand charges:
 - The Lead Party of a Supplier BM Unit;
 - Power Stations with a Bilateral Connection Agreement;
 - Parties with a Bilateral Embedded Generation Agreement
- 14.17.2 Classification of parties for charging purposes, section 14.26, provides an illustration of how a party is classified in the context of Use of System charging and refers to the paragraphs most pertinent to each party.

Basis of Gross Demand Charges

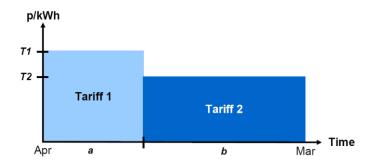
app


app

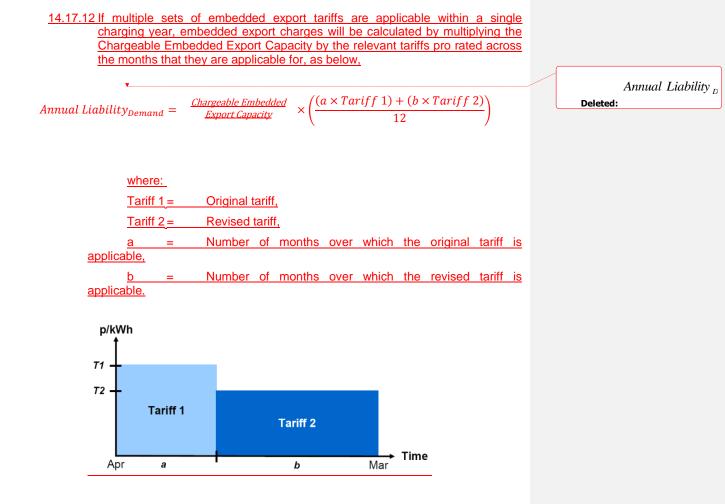
- 14.17.3 <u>Gross d</u>emand charges are based on a de-<u>minimis</u> £0/kW charge for Half Hourly and £0/kWh for Non Half Hourly metered demand.
 - 14.17.4 Chargeable <u>Gross</u> Demand Capacity is the value of Triad <u>gross</u> demand (kW). Chargeable Energy Capacity is the energy consumption (kWh). The definition of both these terms is set out below.
 - 14.17.5 If there is a single set of <u>gross</u> demand tariffs within a charging year, the Chargeable <u>Gross</u> Demand Capacity is multiplied by the relevant <u>gross</u> demand tariff, for the calculation of <u>gross</u> demand charges.
 - 14.17.6 If there is a single set of energy tariffs within a charging year, the Chargeable Energy Capacity is multiplied by the relevant energy consumption tariff for the calculation of energy charges..
 - 14.17.7 If multiple sets of <u>gross</u> demand tariffs are applicable within a single charging year, <u>gross</u> demand charges will be calculated by multiplying the Chargeable <u>Gross</u> Demand Capacity by the relevant tariffs pro rated across the months that they are applicable for, as below,

Annı	ual Liabi	$lity_{Demand} = \frac{Ch}{De}$	e <u>arge</u> eman	able Gross d Capacity	$\times \left(\frac{(a)}{a}\right)$	<tariff< th=""><th>$\frac{1) + (b)}{12}$</th><th>×Tariff2</th><th><u>2)</u>)</th><th></th></tariff<>	$\frac{1) + (b)}{12}$	×Tariff2	<u>2)</u>)	
wh	ere:						_			
Tai	riff 1 =	Original t	ariff	,						
Tai	riff 2 =	Revised	tarif	f,						
a licable	,	Number	of	months	over	which	the	original	tariff	is
b licable.	=	Number	of	months	over	which	the	revised	tariff	is

Deleted: minimus


Deleted: Annual Liability D

14.17.8 If multiple sets of energy tariffs are applicable within a single charging year, energy charges will be calculated by multiplying relevant Tariffs by the Chargeable Energy Capacity over the period that that the tariffs are applicable for and summing over the year.


Annual Liability $_{Energy} = Tariff \ 1 \times \sum_{TI_s}^{TI_E} Chargeable Energy Capacity + Tariff \ 2 \times \sum_{TZ_s}^{TI_E} Chargeable Energy Capacity$

Where: T1s Start date for the period for which the original tariff is = applicable, End date for the period for which the original tariff is T1_E applicable, Start date for the period for which the revised tariff is T2s _ applicable, End date for the period for which the revised tariff is T2_E = applicable.

Basis of Embedded Export Charges

- 14.17.9 Embedded export charges are based on a £/kW charge for Half Hourly metered embedded export.
- <u>14.17.10 Chargeable Embedded Export Capacity is the value of Embedded Export at</u> <u>Triad (kW). The definition of this term is set out below.</u>
- 14.17.11 If there is a single set of embedded export tariffs within a charging year, the Chargeable Embedded Export Capacity is multiplied by the relevant embedded export tariff, for the calculation of embedded export charges.

Supplier BM Unit

14.17,<u>13</u> A Supplier BM Unit charges will be the sum of its energy, <u>gross_demand_and</u> <u>embedded export</u> liabilities where:

- The Chargeable <u>Gross</u> Demand Capacity will be the average of the Supplier BM Unit's half-hourly metered <u>gross</u> demand during the Triad (and the £/kW tariff),
- The Chargeable Embedded Export Capacity will be the average of the Supplier BM Unit's half-hourly metered embedded export during the Triad (and the £/kW tariff), and
- The Chargeable Energy Capacity will be the Supplier BM Unit's non halfhourly metered energy consumption over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year (and the p/kWh tariff).

Power Stations with a Bilateral Connection Agreement and Licensable Generation with a Bilateral Embedded Generation Agreement

Page 39 of 63

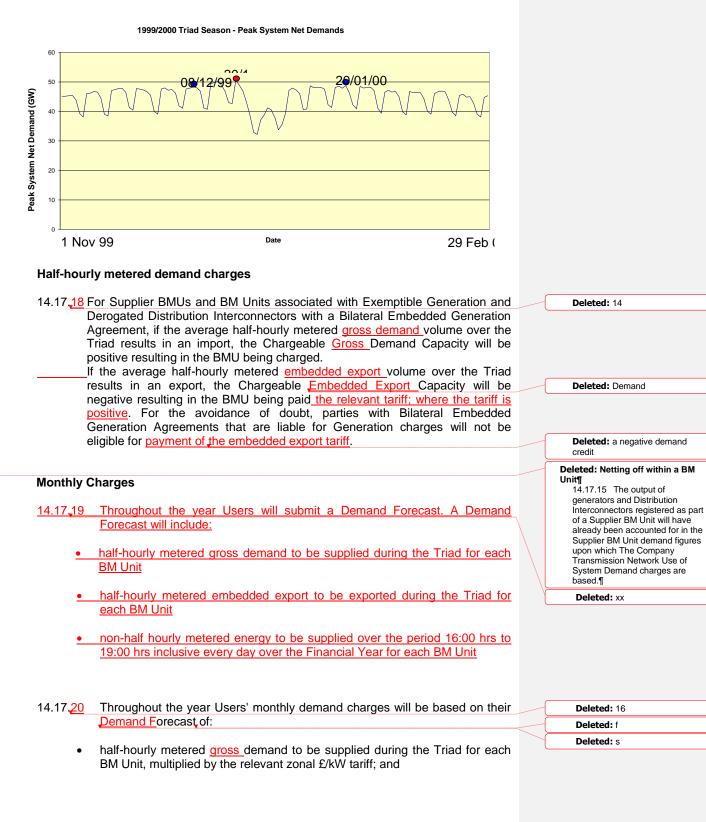
V1.12-01 April 2016

USC v1.12	
14.17, <u>14</u> The Chargeable <u>Gross</u> Demand Capacity for a Power Station with a Bilateral Connection Agreement or Licensable Generation with a Bilateral Embedded Generation Agreement will be based on the average of the <u>gross</u> import over each Triad leg of the BM Units associated with the Power Station (in Appendix C of its Bilateral Connection Agreement or Bilateral Embedded Generation Agreement, including metered additional load) during the Triad.	1
Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement	
14.17, <u>15,The demand charges for Exemptible Generation and Derogated Distribution</u> Interconnector with a Bilateral Embedded Generation Agreement will be the sum of its gross demand and embedded export liabilities where:	
 The Chargeable <u>Gross</u> Demand Capacity for Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement will be based on the average of the metered <u>gross demand</u> of 	
each BM Unit specified in Appendix C of the Bilateral Embedded Generation Agreement during the Triad.	
 The Chargeable Embedded Export Capacity for Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement will be based on the average of the metered embedded export of each BM Unit specified in Appendix C of the Bilateral Embedded Generation Agreement during the Triad. 	
mall Generators Tariffs	
14.17, <u>16</u> In accordance with Standard Licence Condition C13, any under recovery from the MAR arising from the small generators discount will result in a unit amount of increase to all GB gross_demand tariffs.	
he Triad	
14.17,17 The Triad is used as a short hand way to describe the three settlement periods of highest transmission system demand within a Financial Year, namely the half hour settlement period of system peak <u>net</u> demand and the two half hour settlement periods of next highest <u>net</u> demand, which are separated from the	

system peak<u>net</u> demand and from each other by at least 10 Clear Days, between November and February of the Financial Year inclusive. Exports on directly connected Interconnectors and Interconnectors capable of exporting more than 100MW to the Total System shall be excluded when determining the

system peak net demand. An illustration is shown below.

I


Deleted: 10

Deleted: net

Deleted: 11 Deleted: An

Deleted: volume

Deleted: 12

- half-hourly metered embedded export to be supplied during the Triad for each BM Unit, multiplied by the relevant zonal £/kW tariff; and
- non-half hourly metered energy to be supplied over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year for each BM Unit, multiplied by the relevant zonal p/kWh tariff

Users' annual TNUoS demand charges are based on these forecasts and are split evenly over the 12 months of the year. Users have the opportunity to vary their demand forecasts on a quarterly basis over the course of the year, with the demand forecast requested in February relating to the next Financial Year. Users will be notified of the timescales and process for each of the quarterly updates. The Company will revise the monthly Transmission Network Use of System demand charges by calculating the annual charge based on the new forecast, subtracting the amount paid to date, and splitting the remainder evenly over the remaining months. For the avoidance of doubt, only positive demand forecasts (i.e. representing <u>a net</u> import from the system) will be <u>used in the calculation of charges</u>.

Demand forecasts for a User will be considered positive where:

- The sum of the gross demand forecast and embedded export forecast is positive; and
- The non-half hourly metered energy forecast is positive.

14.17.21 Users should submit reasonable forecasts of gross demand, embedded export and energy in accordance with the CUSC. The Company shall use the following methodology to derive a forecast to be used in determining whether a User's forecast is reasonable, in accordance with the CUSC, and this will be used as a replacement forecast if the User's total forecast is deemed unreasonable. The Company will, at all times, use the latest available Settlement data.

For existing Users:

- i) The User's Triad <u>gross</u> demand<u>and embedded export</u> for the preceding Financial Year will be used where User settlement data is available and where The Company calculates its forecast before the Financial Year. Otherwise, the User's average weekday settlement period 35 half-hourly metered (HH) <u>gross</u> demand <u>and embedded export</u> in the Financial Year to date is compared to the equivalent average <u>gross</u> demand<u>and</u> <u>embedded export</u> for the corresponding days in the preceding year. The percentage difference is then applied to the User's HH <u>gross</u> demand<u>and</u> <u>embedded export</u> at Triad in the preceding Financial Year to derive a forecast of the User's HH <u>gross</u> demand <u>and embedded export</u> at Triad for this Financial Year.
- ii) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day in the Financial Year to date is compared to the equivalent energy consumption over the corresponding days in the preceding year. The percentage difference is then applied to the User's total NHH energy consumption in the preceding Financial Year to derive a forecast of the User's NHH energy consumption for this Financial Year.

For new Users who have completed a Use of System Supply Confirmation Notice in the current Financial Year:

Page 42 of 63

V1.12-01 April 2016

Deleted: accepted

1

iii) The User's average weekday settlement period 35 half-hourly metered (HH) gross demand and embedded export over the last complete month for which The Company has settlement data is calculated. Total system average HH gross demand and embedded export for weekday settlement period 35 for the corresponding month in the previous year is compared to total system HH_gross demand and embedded export at Triad in that year and a percentage difference is calculated. This percentage is then applied to the User's average HH gross demand and embedded export for weekday settlement period 35 over the last month to derive a forecast of the User's HH gross demand and embedded export at Triad for this Financial Year.

- iv) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day over the last complete month for which The Company has settlement data is noted. Total system NHH energy consumption over the corresponding month in the previous year is compared to total system NHH energy consumption over the remaining months of that Financial Year and a percentage difference is calculated. This percentage is then applied to the User's NHH energy consumption over the month described above, and all NHH energy consumption in previous months is added, in order to derive a forecast of the User's NHH metered energy consumption for this Financial Year.
- 14.17.22 14.28 Determination of The Company's Forecast for Demand Charge Purposes illustrates how the demand forecast will be calculated by The Company.

Reconciliation of Demand Charges

14.17,23 The reconciliation process is set out in the CUSC. The demand reconciliation process compares the monthly charges paid by Users against actual outturn charges. Due to the Settlements process, reconciliation of demand charges is carried out in two stages; initial reconciliation and final reconciliation.

Initial Reconciliation of demand charges

14.17,24 The initial reconciliation process compares Users' demand forecasts and corresponding monthly charges paid over the year against actual outturn data (using latest Settlement data available at the time) and corresponding charges. Initial reconciliation is carried out in two parts; Initial Reconciliation Part 1 deals with the reconciliation of half-hourly metered demand charges and Initial Reconciliation Part 2 deals with the reconciliation of non-half-hourly metered demand charges.

Initial Reconciliation Part 1– Half-hourly metered demand

- 14.17.25 The Company will identify the periods forming the Triad once it has received Central Volume Allocation data from the Settlement Administration Agent for all days up to and including the last day of February. Once The Company has notified Users of the periods forming the Triad they will not be changed even if disputes are subsequently resolved which would change the periods forming the Triad.
- 14.17,<u>26</u> Initial outturn charges for half-hourly metered <u>gross</u> demand will be determined using the latest available data of actual average Triad <u>gross</u> demand (kW) multiplied by the zonal <u>gross</u> demand tariff(s) (£/kW) applicable to the months

Page 43 of 63

V1.12-01 April 2016

Deleted: 18

Deleted: 19

Deleted: 20

Deleted: 1

Сι

l

I

I

l

I

SC v1.12			
r	concerned for each zone for that Financial Year. These actual values econciled against the monthly charges paid in respect of half-hold demand.		
<u>c</u> <u>e</u> <u>t</u> <u>\</u>	nitial outturn charges for half-hourly metered embedded expon determined using the latest available data of actual average Triad export (kW) multiplied by the zonal embedded export tariff(s) (£/kW) o the months concerned for each zone for that Financial Year. The values are then reconciled against the monthly charges paid in respe- nourly embedded exports.	embedded applicable ese actual	Deleted: xx
Initial Red	conciliation Part 2 – Non-half-hourly metered demand		
t ł r	Actual payments for non-half-hourly metered demand will be determine the latest available actual energy consumption data (kWh) for the per- bins to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) over multiplied by the energy consumption tariff(s) (p/kWh) applicable to the concerned for each zone. These actual values are then reconciled a monthly charges paid in respect of non-half-hourly energy consumption	riod 16:00 the year ne months ligainst the	Deleted: 23
Final Rec	onciliation of demand charges		
t	The final reconciliation process compares Users' charges (as calculation he initial reconciliation process using the latest available data) ago tutturn demand charges (based on final settlement data <u>of half-ho</u> demand, embedded exports and non-half-hourly energy consumption	ainst final urly gross	Deleted: 24
	Final actual charges will be determined using the final demand rec data taken from the Final Reconciliation Settlement Run or Reconciliation Volume Allocation Run.		Deleted: 25
Reconcili	ation of manifest errors		
t	n the event that a manifest error, or multiple errors in the calculation ariffs results in a material discrepancy in aUsers TNUoS econciliation process for all Users qualifying under Section 14.17	tariff, the	 Deleted: 26
a	accordance with Sections 14.17.24 to 14.17.30. The reconciliation	n process	Deleted: 20
r	shall be carried out using recalculated TNUoS tariffs. Wh econciliation is not practicable, a post-year reconciliation will be und he form of a one-off payment.	ere such ertaken in	Deleted: 25
14.17. <mark>32</mark> /	A manifest error shall be defined as any of the following:		Deleted: 27
	 a) an error in the transfer of relevant data between the Tra Licensees or Distribution Network Operators; b) an error in the population of the Transport Model with relevant c) an error in the function of the Transport Model; or d) an error in the inputs or function of the Tariff Model. 		
	A manifest error shall be considered material in the event that such a he net effect of multiple errors, has an impact of the lesser of either:	n error or,	Deleted: 28
	a) an error in a User's TNUoS tariff of at least +/-£0.50/kW; or		
	Page 44 of 63 V1.12-0	01 April 2016	

b) an error in a User's TNUoS tariff which results in an error in the annual TNUoS charge of a User in excess of +/-£250,000.

14.17,<u>34</u> A manifest error shall only be reconciled if it has been identified within the charging year for which the error has an effect. Errors identified outside of this period will not be eligible for reconciliation retrospectively.

Implementation of P272

- 14.17,<u>35</u>.1 BSC modification P272 requires Suppliers to move Profile Classes 5-8 to Measurement Class E - G (i.e. moving from NHH to HH settlement) by April 2016. The majority of these meters are expected to transfer during the preceding Charging Years up until the implementation date of P272 and some meters will have been transferred before the start of 1ST April 2015. A change from NHH to HH within a Charging Year would normally result in Suppliers being liable for TNUoS for part of the year as NHH and also being subject to HH charging. This section describes how the Company will treat this situation in the transition to P272 implementation for the purposes of TNUoS charging; and the forecasts that Suppliers should provide to the Company.
- 14.17,35.2 Notwithstanding 14.17,13, for each Charging Year which begins after 31 March 2015 and prior to implementation of BSC Modification P272, all demand associated with meters that are in NHH Profile Classes 5 to 8 at the start of that charging year as well as all meters in Measurement Classes E G will be treated as Chargeable Energy Capacity (NHH) for the purposes of TNUoS charging for the full Charging Year unless 14.17,35.3 applies.
 - 14.17,35.3 Where prior to 1st April 2015 a Profile Class meter has already transferred to Measurement Class settlement (HH) the associated Supplier may opt to treat the demand volume as Chargeable Demand Capacity (HH) for the purposes of TNUoS charging up until implementation of P272, subject to meeting conditions in 14.17,35.6. If the associated Supplier does not opt to treat the demand volume as Demand Capacity (HH) it will be treated by default as Chargeable Energy Capacity (NHH) for each full Charging Year up until implementation of P272.
 - 14.17,35.4 The Company will calculate the Chargeable Energy Capacity associated with meters that have transferred to HH settlement but are still treated as NHH for the purposes of TNUoS charging from Settlement data provided directly from Elexon i.e. Suppliers need not Supply any additional information if they accept this default position.
- 14.17,35.5 The forecasts that Suppliers submit to the Company under CUSC 3.10, 3.11 and 3.12 for the purpose of TNUoS monthly billing referred to in 14.17,20 and 14.17,21 for both Chargeable Demand Capacity and Chargeable Energy Capacity should reflect this position i.e. volumes associated those Metering Systems that have transferred from a Profile Class to a Measurement Class in the BSC (NHH to HH settlement) but are to be treated as NHH for the purposes of TNUoS charging should be included in the forecast of Chargeable Energy Capacity and not Chargeable Demand Capacity, unless 14.17,35.3 applies.
 - 14.17,<u>35</u>.6 Where a Supplier wishes for Metering Systems that have transferred from Profile Class to Measurement Class in the BSC (NHH to HH settlement) prior to 1st April 2015, to be treated as Chargeable Demand Capacity (HH/

Page 45 of 63

V1.12-01 April 2016

Deleted: 29 Deleted: 9 Deleted: 29 Deleted: 29 Deleted: 29 Deleted: 29 Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 16 **Deleted:** 17

Deleted: 29

I

Measurement Class settled) it must inform the Company prior to October 2015. The Company will treat these as Chargeable Demand Capacity (HH / Measurement Class settled) for the purposes of calculating the actual annual liability for the Charging Years up until implementation of P272. For these cases only, the Supplier should notify the Company of the Meter Point Administration Number(s) (MPAN). For these notified meters the Supplier shall provide the Company with verified metered demand data for the hours between 4pm and 7pm of each day of each Charging Year up to implementation of P272 and for each Triad half hour as notified by the Company prior to May of the following Charging Year up until two years after the implementation of P272 to allow reconciliation (e.g. Mav 2017 and May 2018 for the Charging Year 2016/17). Where the Supplier fails to provide the data or the data is incomplete for a Charging Year TNUoS charges for that MPAN will be reconciled as part of the Supplier's NHH BMU (Chargeable Energy Capacity). Where a Supplier opts, if eligible, for TNUoS liability to be calculated on Chargeable Demand Capacity it shall submit the forecasts referred to in 14.17,35.5 taking account of this.

14.17,35.7 The Company will maintain a list of all MPANs that Suppliers have elected to be treated as HH. This list will be updated monthly and will be provided to registered Suppliers upon request.

Further Information

- 14.17,<u>36</u> 14.25 Reconciliation of Demand Related Transmission Network Use of System Charges of this statement illustrates how the monthly charges are reconciled against the actual values for <u>gross</u> demand, <u>embedded export</u> and consumption for half-hourly <u>gross demand</u>, <u>embedded export</u> and non-halfhourly metered demand respectively.
- 14.17,<u>37</u> **The Statement of Use of System Charges** contains the £/kW zonal gross demand tariffs, <u>the £/kW zonal embedded export tariffs</u>, and the p/kWh energy consumption tariffs for the current Financial Year.
- 14.17,<u>38</u> 14.27 Transmission Network Use of System Charging Flowcharts of this statement contains flowcharts demonstrating the calculation of these charges for those parties liable.

Deleted: 29 Deleted: 30

Deleted: 29

Deleted: 31

....

14.24 Example: Calculation of Zonal Gross Demand Tariff

Let us consider all nodes in a demand zone in this example

The table below shows a sample output of the transport model comprising the node, the Peak Security and Year Round marginal km of an injection at the node with a consequent withdrawal at the distributed reference node, the generation sited at the node, scaled to ensure total national generation = total national <u>net</u> demand and the <u>net</u> demand sited at the node.

Demand Zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	<u>Net</u> Demand (MW)
14	ABHA4A	-77.25	-230.25	127
14	ABHA4B	-77.27	-230.12	127
14	ALVE4A	-82.28	-197.18	100
14	ALVE4B	-82.28	-197.15	100
14	AXMI40_SWEB	-125.58	-176.19	97
14	BRWA2A	-46.55	-182.68	96
14	BRWA2B	-46.55	-181.12	96
14	EXET40	-87.69	-164.42	340
14	HINP20	-46.55	-147.14	0
14	HINP40	-46.55	-147.14	0
14	INDQ40	-102.02	-262.50	444
14	IROA20_SWEB	-109.05	-141.92	462
14	LAND40	-62.54	-246.16	262
14	MELK40_SWEB	18.67	-140.75	83
14	SEAB40	65.33	-140.97	304
14	TAUN4A	-66.65	-149.11	55
14	TAUN4B	-66.66	-149.11	55
		Totals		2748

In order to calculate the <u>gross</u> demand tariff we would carry out the following steps:

(i) calculate the demand weighted nodal shadow costs

For this example zone this would be as follows:

Demand zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	Net Demand (MW)	Peak Security Demand Weighted Nodal Marginal km	Year Round Demand Weighted Nodal Marginal km
14	ABHA4A	-77.25	-230.25	127	-3.57	-10.64
14	ABHA4B	-77.27	-230.12	127	-3.57	-10.64
14	ALVE4A	-82.28	-197.18	100	-2.99	-7.17
14	ALVE4B	-82.28	-197.15	100	-2.99	-7.17
14	AXMI40_SWEB	-125.58	-176.19	97	-4.43	-6.22
14	BRWA2A	-46.55	-182.68	96	-1.63	-6.38
14	BRWA2B	-46.55	-181.12	96	-1.63	-6.33
14	EXET40	-87.69	-164.42	340	-10.85	-20.34
14	INDQ40	-102.02	-262.50	444	-16.48	-42.41
14	IROA20_SWEB	-109.05	-141.92	462	-18.33	-23.86
14	LAND40	-62.54	-246.16	262	-5.96	-23.47
14	MELK40_SWEB	18.67	-140.75	83	0.56	-4.25
14	SEAB40	65.33	-140.97	304	7.23	-15.59
14	TAUN4A	-66.65	-149.11	55	-1.33	-2.98
14	TAUN4B	-66.66	-149.11	55	-1.33	-2.98
		Totals		2748	-49.19	-190.43

(ii) sum the Peak Security and Year Round demand weighted nodal shadow costs to give zonal figures. For this example zone this is shown in the above table and is 49.19km for Peak Security background and 190.43km for Year Round background.

(iii) calculate the transport tariffs by multiplying the figures in (ii) above by the expansion constant (& dividing by 1000 to put into units of £/kW):

For this example zone, assuming an expansion constant of $\pm 10.07/MWkm$ and a locational security factor of 1.80:

a) Peak Security tariff – 49.19km <u>* £10.07/MWkm * 1.8</u> = <u>£0.89/kW</u> 1000

Page 49 of 63

b) Year Round tariff -<u>190.43km * £10.07/MWkm * 1.8</u> = <u>£3.45/kW</u> 1000

(iv) We now need to calculate the residual tariff. This is calculated by taking the total revenue to be recovered from demand (calculated as c.73% of total The Company_ TNUoS target revenue for the year), less the revenue which would be recovered through the demand transport tariffs and revenue recovery through embedded export tariffs, divided by total expected gross GSP group demand.

Assuming the total revenue to be recovered from TNUoS is £1067m, the total recovery from <u>gross GSP group</u> demand would be $(73\% \times £1067m) = £779m$. Assuming the total recovery from <u>gross GSP group</u> demand transport tariffs is £140m, total recovery from <u>embedded export tariffs is -£10m</u> and total forecast chargeable <u>gross GSP group</u> demand capacity is 50000MW, the demand residual tariff would be as follows:

 $\frac{\pounds779m - \pounds140m - -\pounds10m}{50,000MW} = \pounds12.98/kW$

 (v) to get to the final tariff, we simply add on the demand residual tariff calculated in (v) to the zonal transport tariffs calculated in (iii(a)) and (iii(b))

For zone 14:

 $\pounds 0.89/kW + \pounds 3.45/kW + \pounds 12.98/kW =$ $\pounds 17.32/kW$

- To summarise, in order to calculate the <u>gross</u> demand tariffs, we evaluate a <u>net</u> demand weighted zonal marginal km cost multiply by the expansion constant and locational security factor then we add a constant (termed the residual cost) to give the overall tariff.
- (vii) The final demand tariff is subject to further adjustment to allow for the minimum £0/kW gross_demand charge. The application of a discount for small generators pursuant to Licence Condition C13 will also affect the final gross_demand tariff.

Deleted: gross

Deleted: 130m

Deleted:	$\pounds779m - \pounds130m$	_
Deleted:	50000MW	_

14.25 Reconciliation of <u>Gross</u> Demand Related Transmission Network Use of System Charges

This appendix illustrates the methodology used by The Company in the reconciliation of Transmission Network Use of System charges for <u>gross</u> demand. The example highlights the different stages of the calculations from the monthly invoiced amounts, right through to Final Reconciliation.

Monthly Charges

Suppliers provide half-hourly (HH) gross demand and embedded export forecasts and non-halfhourly (NHH) demand forecasts by BM Unit every quarter. An example of such forecasts and the corresponding monthly invoiced amounts, based on tariffs of £10.00/kW for gross demand, £5.00/kW for embedded export and 1.20p/kWh for energy consumption, is as follows:

	Forecast HH Triad <u>Gross</u> Demand <u>HHD_E (</u> kW)	HH <u>Gross</u> <u>Demand</u> Monthly Invoiced Amount (£)	Forecast HH Triad Embedded Export HHEE _E (kW)	<u>HH</u> <u>Embedded</u> <u>Generation</u> <u>Monthly</u> <u>Invoiced</u> <u>Amount (£)</u>	Forecast NHH Energy Consumpti on NHHC _F (kW h)	NHH Monthly Invoiced Amount (£)	Net Monthly Invoiced Amount (£)
Apr	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
May	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jun	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jul	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Aug	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Sep	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Oct	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Nov	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Dec	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Jan	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Feb	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Mar	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Total		72,000		<u>(3,000)</u>		216,000	<u>297</u> ,000

As shown, for the first nine months the Supplier provided a 12,000kW HH triad <u>gross</u> demand forecast, and hence paid HH <u>gross demand</u> monthly charges of £10,000 ((12,000kW x £10.00/kW)/12) for that BM Unit. In January the Supplier provided a revised forecast of 7,200kW, implying a forecast annual charge reduced to £72,000 (7,200kW x £10.00/kW). The Supplier had already paid £90,000, so the excess of £18,000 was credited back to the supplier in three £6,000 instalments over the last three months of the year.

The Supplier provided an embedded export triad forecast of -600kW and hence was paid an embedded export credit of £250 ((600kW x £5.00/kW)/12) for that BM Unit (For the avoidance of doubt, if the embedded export tariff is negative this will result in a debit).

The Supplier also initially provided a 15,000,000kWh NHH energy consumption forecast, and hence paid NHH monthly charges of £15,000 ((15,000,000kWh x 1.2p/kWh)/12) for that BM Unit. In July the Supplier provided a revised forecast of 18,000,000kWh, implying a forecast annual charge increased to £216,000 (18,000,000kWh x 1.2p/kWh). The Supplier had already

paid £45,000, so the remaining £171,000 was split into payments of £19,000 for the last nine months of the year.

The right hand column shows the net monthly charges for the BM Unit.

Initial Reconciliation (Part 1a)

The Supplier's outturn HH triad <u>gross</u> demand, based on <u>initial</u> settlement data (and therefore subject to change in subsequent settlement runs), was 9,000kW. The HH triad <u>gross</u> demand reconciliation charge is therefore calculated as follows:

HHD Reconciliation Charge = $(HHD_A - HHD_F) \times \pounds/kW$ Tariff

= (9,000kW - 7,200kW) x £10.00/kW

= 1,800kW x £10.00/kW

= £18,000

To calculate monthly interest charges, the outturn HHD charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHD charge less the HH <u>gross demand</u> monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 1b)

The Supplier's outturn HH triad embedded export, based on initial settlement data (and therefore subject to change in subsequent settlement runs), was 700kW. The HH triad embedded export reconciliation charge is therefore calculated as follows:

HHEE Reconciliation Charge = (HHEE_A – HHEE_E) x £/kW Tariff

 $= (-500 \text{kW} - -600 \text{kW}) \times \text{\pounds}5.00/\text{kW}$

 $= 100 \text{kW} \times \text{\pounds}5.00/\text{kW}$

= **£500**

To calculate monthly interest charges, the outturn HHEE charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHEE charge less the HH embedded generation monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 2)

The Supplier's outturn NHH energy consumption, based on initial settlement data, was 17,000,000kWh. The NHH energy consumption reconciliation charge is therefore calculated as follows:

Deleted: Please note that payments made to BM Units with a net export over the Triad, based on initial settlement data, will also be reconciled at this stage.¶ As monthly payments will not be made on the basis of a negative forecast, the HHD Reconciliation Charge for an exporting BM Unit will represent the full actual payment owed to that BM Unit (subject to adjustment by subsequent settlement runs). Interest will be calculated as described above.¶

NHHC Reconciliation Charge = $(NHHC_A - NHHC_F) \times p/kWh$ Tariff

100

= (17,000,000kWh - 18,000,000kWh) x 1.20p/kWh

100

= <u>-1,000,000kWh x 1.20p/kWh</u> 100 = **-£12,000**

worked example 4.xls - Initial!J104

The monthly reconciliation amount is equal to the outturn energy consumption charge for that month less the NHH monthly invoiced amount. Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

The net initial TNUoS demand reconciliation charge is therefore $\pounds 6,500$ (£18,000 + $\pounds 500$ - $\pounds 12,000$).

Final Reconciliation

Finally, let us now suppose that after all <u>final</u> Settlement data has been received (up to 14 months after the relevant dates), the outturn HH triad <u>gross</u> demand, <u>HH triad embedded export</u> and NHH energy consumption values were 9,500kW, <u>-550kW</u> and 16,500,000kWh, respectively.

Final HH <u>Gross Demand</u>	= (9,500kW - 9,000kW) x £10.00/kW
<u>Reconciliation Charge</u>	= £5,000
Final HH Embedded Export	= (-550kW500kW) x £5.00/kW
Reconciliation Charge	= -£250

Final NHH Reconciliation Charge = $(16,700,000kWh - 17,000,000kWh) \times 1.20p/kWh$ 100 = -£3,600

Consequently, the net final TNUoS demand reconciliation charge will be $\pounds 1, \underline{150} (\pounds 5,000 + -\pounds 250 + -\pounds 3,600)$.

Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

Outturn data for BM Units with a net export over the Triad will be received at this stage and final reconciliation will be carried out, as required. Interest will be calculated as described above.

Terminology:

 HHD_A = The Supplier's outturn half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

Page 53 of 63

Deleted: 000

I

 HHD_F = The Supplier's forecast half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

<u>HHEE_A = The Supplier's outturn half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

<u>HHEE_E = The Supplier's forecast half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

NHHC_A = The Supplier's outturn non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1^{st} to March 31^{st} , for the demand zone concerned.

NHHC_F = The Supplier's forecast non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1st to March 31st, for the demand zone concerned.

£/kW Tariff = The £/kW <u>Gross</u> Demand <u>or Embedded Export</u> Tariff as shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

p/kWh Tariff = The Energy Consumption Tariff shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

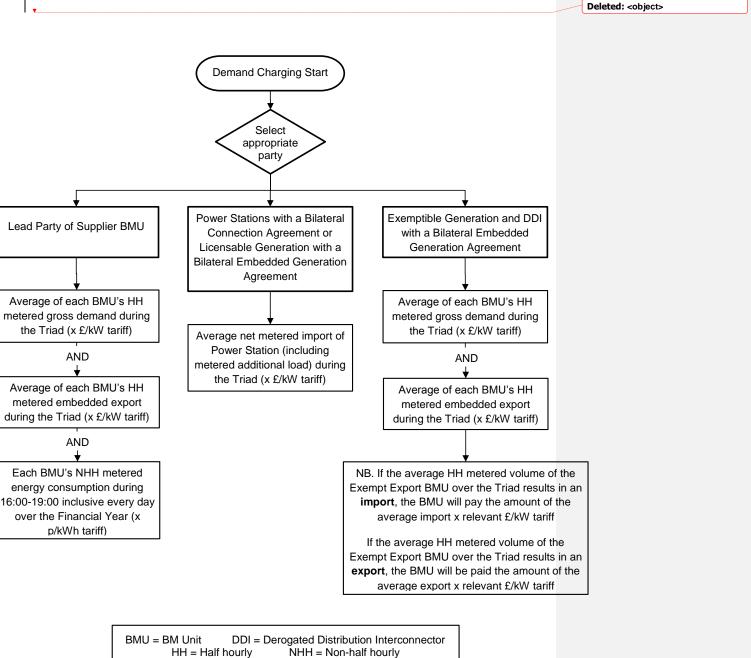
14.26 Classification of parties for charging purposes

In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precendence.

In the following diagrams, the parties liable for Transmission Network Use of System charges are outlined in red.

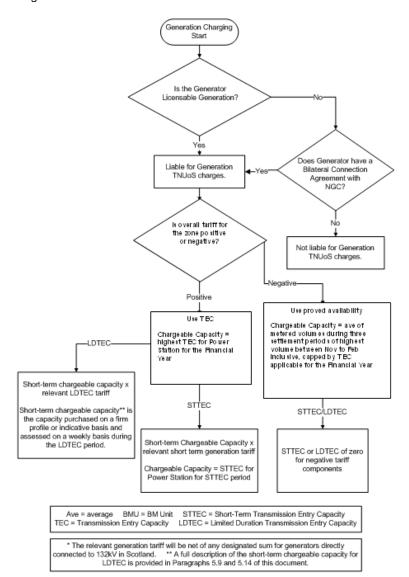
SUPPLIER		
Supplier Use of System Agreem	ent	
Supplier Supplier BMU1 BMUn		
Demand Charges	Generation Charges	
See 14.17. <mark>13 and 14.17.18</mark> .	None.	Deleted: 9 Deleted: 14
POWER STATION WITH A BILATERAL Bilateral Connection Agreement Gen Unit BMU1 Gen Unit BMU1		
Demand Charges	Generation Charges	
See 14.17. <mark>18</mark> .	See 14.18.1 i) and 14.18.3 to 14.18.9 and	Deleted: 10
	14.18.18.	
	For generators in positive zones, see 14.18.10 to 14.18.12.	
	For generators in negative zones, see 14.18.13 to 14.18.17 .	
L	1	J

Bilateral Emb	bedded Generation	Agreement App	pendix C
Gen Unit BMU1	Gen Unit BMUn	Station Load BMU	Additional Load BMU
Demand Charges See 14.17,<u>14</u>, 14.1 7	7, <u>15</u> and 14.17, <u>18</u> .	Generation Cl See 14.18.1 ii	0
		For generators	s in positive zones, see 14.18.3 t
		14.18.12 and	14.18.18.


-{	Deleted: 10
-	Deleted: 11
Y	Deleted: 14

14.27 Transmission Network Use of System Charging Flowcharts

The following flowcharts illustrate the parties liable for Demand and Generation TNUoS charges and the calculation of those charges.


In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precedence.

Page 57 of 63

Generation Charges

14.28 Example: Determination of The Company's Forecast for Demand Charge Purposes

The Company will use the latest available settlement data for calculation of HH demand and NHH energy consumption forecasts for the Financial Year.

The Financial Year runs from 1st April to 31st March inclusive and for the purpose of these examples the year April 2005 to March 2006 is used.

Where the preceding year's settlement data is not available at the time that The Company needs to calculate its forecast, The Company will use settlement data from the corresponding period in Financial Year minus two unless indicated otherwise.

All values used with the examples are purely for illustrative purposes only.

i) Half-Hourly (HH) Metered Demand Forecast – Existing User

At the time of calculation of a HH demand forecast before the relevant Financial Year (approximately 10th March), The Company will be aware at a system level which dates will be used for the determination of Triad. However, The Company may not have settlement data at a User level if the Triad dates were to span a period that includes the latter half of February.

When undertaking forecasting before the relevant Financial Year, The Company will use the User's Triad demand for the previous year for its forecast providing it holds User settlement data for this period, thus:

F = T

where:

F = Forecast of User's HH demand at Triad for the Financial Year

T = User's HH gross_demand and embedded export_at Triad in Financial Year minus one

Where The Company determines its forecast within a Financial Year:

F = T * D/P

where:

- F = Forecast of User's HH demand at Triad for the Financial Year
- T = User's HH gross demand and embedded export at Triad in the preceding Financial Year
- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the preceding Financial Year

Where The Company determines its forecast before the relevant Financial Year and User settlement data for the Triad period is not available, The Company shall apply the formula immediately above (within year forecast) but substitute the following definitions for the values T, D, and P:

T = User's HH gross demand and embedded export at Triad in the Financial Year minus two

Page 59 of 63

- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year minus one, to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the Financial Year minus two

Example (where User settlement data is not yet available for the Triad period):

The Company calculates a HH demand forecast on the above methodology at 10th March 2005 for the period 1st April 2005 to 31st March 2006.

Gross demand:

F = 10,000 * 13,200 / 12,000

F = 11,000 kW,Deleted: hwhere:T = 10,000 kW, (period November 2003 to February 2004)Deleted: hD = 13,200 kW, (period 1st April 2004 to 15th February 2005#)Deleted: hP = 12,000 kW, (period 1st April 2003 to 15th February 2004)Deleted: h

Latest date for which settlement data is available.

Embedded export:

F = -280 * -300 / -350

<u>F = -240 kW</u>

where:

T = -280 kW (period November 2003 to February 2004)

D = -300 kW (period 1st April 2004 to 15th February 2005#)

P = -350 kW (period 1st April 2003 to 15th February 2004)

<u># Latest date for which settlement data is available.</u>

ii) Non Half-Hourly (NHH) Metered Energy Consumption Forecast – Existing User

F = E * D/P

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- E = User's summed NHH energy consumption over the hours 16:00 to 19:00 for each day in the preceding Financial Year

Page 60 of 63

- D = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the Financial Year to date
- P = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the period corresponding to D in the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th June 2005 for the period 1st April 2005 to 31st March 2006.

- F = 50,000,000 * 4,400,000 / 4,000,000
- F = 55,000,000 kWh

where:

- E = 50,000,000 kWh (period 1st April 2004 to 31st March 2005)
- D = 4,400,000 kWh (period 1st April 2005 to 15th May 2005#)
- P = 4,000,000 kWh (period 1st April 2004 to 15th May 2004)
- # Latest date for which settlement data is available

Where forecasting before the relevant Financial Year concerned, The Company would in the above example use values for E and P from Financial Year 2003/04 and D from Financial Year 2004/05.

iii) Half-Hourly (HH) Metered Demand Forecast – New User

F = M * T/W

where:

- F = Forecast of User's HH metered <u>gross</u> demand <u>and embedded export</u> at Triad for the Financial Year
 - M = User's HH average weekday period 35 demand for the last complete month for which settlement data is available
- T = Total system HH <u>gross</u> demand <u>and embedded export</u> at Triad in the preceding Financial Year
 - W = Total system HH average weekday settlement period 35 metered demand for the corresponding period to M for the preceding year

Example:

The Company calculates a HH demand forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2004 to 31st March 2006.

Gross demand:

F = 1,000 * 17,000,000 / 18,888,888

0030	, vi. 12		
F =	900 kW,		Deleted: h
wher	e:		
M =	1,000 kW _v (period 1 st July 2005 to 31 st July 2005)		Deleted: h
T =	17,000,000 kW, (period November 2004 to February 2005)		Deleted: h
W =	18,888,888 kW _e (period 1 st July 2004 to 31 st July 2004)		Deleted: h
Embedded export:			
<u>F =</u>	150 * 7,200,000 / 6,000,000		
<u>F =</u>	<u>180 kW</u>		
wher	<u>e:</u>		

- M = 150 kW (period 1st July 2005 to 31st July 2005)
- T = 7,200,000 kW (period November 2004 to February 2005)
- <u>W = 6,000,000 kW (period 1^{st} July 2004 to 31^{st} July 2004)</u>

iv) Non Half Hourly (NHH) Metered Energy Consumption Forecast – <u>New User</u>

F = J + (M * R/W)

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- J = Residual part month summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day where new User registration takes place other than on the first of a month
- M = User's summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the last complete month for which settlement data is available
- R = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period from the start of that defined under M but for the preceding year and until the end of that preceding Financial Year
- W = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period identified in M but for the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2005 to 31st March 2006.

- F = 500 + (1,000 * 20,000,000,000 / 2,000,000,000)
- F = 10,500 kWh

where:

- J = 500 kWh (period 10th June 2005 to 30th June 2005)
- M = 1,000 kWh (period 1st July 2005 to 31st July 2005)
- R = 20,000,000,000 kWh (period 1st July 2004 to 31st March 2005)
- W = 2,000,000,000 kWh (period 1st July 2004 to 31st July 2004)

CMP265 WACM7

14.15 Derivation of the Transmission Network Use of System Tariff

- 14.15.1 The Transmission Network Use of System (TNUoS) Tariff comprises two separate elements. Firstly, a locationally varying element derived from the DCLF ICRP transport model to reflect the costs of capital investment in, and the maintenance and operation of, a transmission system to provide bulk transport of power to and from different locations. Secondly, a non-locationally varying element related to the provision of residual revenue recovery. The combination of both these elements forms the TNUoS tariff.
- 14.15.2 For generation TNUoS tariffs the locational element itself is comprised of five separate components. Three wider components
 - o Wider Peak Security Component
 - Wider Year Round Not-shared component
 - Wider Year Round component

These components reflect the costs of the wider network under the different generation backgrounds set out in the Demand Security Criterion (for Peak Security component) and Economy Criterion (for both Year Round components) of the Security Standard. The two Year Round components reflect the unshared and shared costs of the wider network based on the diversity of generation plant types.

Two local components -

- o Local substation, and
- Local circuit

These components reflect the costs of the local network.

Accordingly, the wider tariff represents the combined effect of the three wider locational tariff components and the residual element; and the local tariff represents the combination of the two local locational tariff components.

14.15.3 The process for calculating the TNUoS tariff is described below.

The Transport Model

Model Inputs

14.15.4 The DCLF ICRP transport model calculates the marginal costs of investment in the transmission system which would be required as a consequence of an increase in demand or generation at each connection point or node on the transmission system, based on a study of peak demand conditions using both Peak Security and Year Round generation backgrounds on the transmission system. One measure of the investment costs is in terms of MWkm. This is the concept that ICRP uses to calculate marginal costs of investment. Hence, marginal costs are estimated initially in terms of increases or decreases in units of kilometres (km) of the transmission system for a 1 MW injection to the system.

- 14.15.5 The transport model requires a set of inputs representative of the Demand Security and Economy Criterion set out in the Security Standards. These conditions on the transmission system are represented in the Peak Security and Year Round background respectively as follows:
- Nodal generation information per node (TEC, plant type and SQSS scaling factors)
- Nodal <u>net</u> demand information
- Transmission circuits between these nodes
- The associated lengths of these routes, the proportion of which is overhead line or cable and the respective voltage level
- The cost ratio of each of 132kV overhead line, 132kV underground cable, 275kV overhead line, 275kV underground cable and 400kV underground cable to 400kV overhead line to give circuit expansion factors
- The cost ratio of each separate sub-sea AC circuit and HVDC circuit to 400kV overhead line to give circuit expansion factors
- 132kV overhead circuit capacity and single/double route construction information is used in the calculation of a generator's local charge.
- Offshore transmission cost and circuit/substation data
- 14.15.6 For a given charging year "t", the nodal generation TEC figure and generation plant types at each node will be based on the Applicable Value for year "t" in the NETS Seven Year Statement in year "t-1" plus updates to the October of year "t-1". The contracted TECs and generation plant types in the NETS Seven Year Statement include all plant belonging to generators who have a Bilateral Agreement with the TOs. For example, for 2010/11 charges, the nodal generation data is based on the forecast for 2010/11 in the 2009 NETS Seven Year Statement plus any data included in the quarterly updates in October 2009.
- 14.15.7 Scaling factors for different generation plant types are applied on their aggregated capacity for both Peak Security and Year Round backgrounds. The scaling is either Fixed or Variable (depending on the total demand level) in line with the factors used in the Security Standard, for example as shown in the table below.

Generation Plant Type	Peak Security Background	Year Round Background
Intermittent	Fixed (0%)	Fixed (70%)
Nuclear & CCS	Variable	Fixed (85%)
Interconnectors	Fixed (0%)	Fixed (100%)
Hydro	Variable	Variable
Pumped Storage	Variable	Fixed (50%)
Peaking	Variable	Fixed (0%)
Other (Conventional)	Variable	Variable

These scaling factors and generation plant types are set out in the Security Standard. These may be reviewed from time to time. The latest version will be used in the calculation of TNUoS tariffs and is published in the Statement of Use of System Charges

14.15.8 National Grid will categorise plant based on the categorisations described in the Security Standard. Peaking plant will include oil and OCGT technologies and Other (Conv.) represents all remaining conventional plant not explicitly stated elsewhere in the table In the event that a power station is made up of more than one technology type, the type of the higher Transmission Entry Capacity (TEC) would apply.

I

- 14.15.9 Nodal <u>net</u> demand data for the transport model will be based upon the GSP <u>net</u> demand that Users have forecast to occur at the time of National Grid Peak Average Cold Spell (ACS) Demand for year "t" in the April Seven Year Statement for year "t-1" plus updates to the October of year "t-1".
- 14.15.10 Subject to paragraphs 14.15.15 to 14.15.22, Transmission circuits for charging year "t" will be defined as those with existing wayleaves for the year "t" with the associated lengths based on the circuit lengths indicated for year "t" in the April NETS Seven Year Statement for year "t-1" plus updates to October of year "t-1". If certain circuit information is not explicitly contained in the NETS Seven Year Statement, The Company will use the best information available.
- 14.15.11 The circuit lengths included in the transport model are solely those, which relate to assets defined as 'Use of System' assets.
- 14.15.12 For HVDC circuits, the impedance will be calculated to provide flows based on a ratio of the capacity provided by the HVDC link relative to the capacities on all major transmission system boundaries that it parallels.
- 14.15.13 The transport model employs the use of circuit expansion factors to reflect the difference in cost between (i) AC Circuits and HVDC circuits. (ii) underground and sub-sea circuits, (iii) cabled circuits and overhead line circuits, (iv) 132kV and 275kV circuits, (v) 275kV circuits and 400kV circuits, and (vi) uses 400kV overhead line (i.e. the 400kV overhead line expansion factor is 1). As the transport model expresses cost as marginal km (irrespective of cables or overhead lines), some account needs to be made of the fact that investment in these other types of circuit (specifically HVDC and sub-sea cables of various voltages, 400kV underground cable, 275kV overhead line, 275kV underground cable, 132kV overhead line and 132kV underground cable) is more expensive than for 400kV overhead line. This is done by effectively 'expanding' these more expensive circuits by the relevant circuit expansion factor, thereby producing a larger marginal kilometre to reflect the additional cost of investing in these circuits compared to 400kV overhead line. When calculating the local circuit tariff for a generator, alternative 132kV and offshore expansion factors to those used in the remainder of the tariff calculation are applied to the generator's local circuits.
- 14.15.14 The circuit expansion factors for HVDC circuits and AC subsea cables are determined on a case by case basis using the costs which are specific to individual projects containing HVDC or AC subsea circuits.

Adjustments to Model Inputs associated with One-off Works

- 14.15.15 Where, following the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge that related to One-off Works carried out on an onshore circuit, and such One-off Works would affect the value of a TNUoS tariff paid by the User, the transport model inputs associated with the onshore circuit shall be adjusted by The Company to reflect the asset value that would have been modelled if the works had been undertaken on the basis of the original asset design rather than the One-off Works.
- 14.15.16 Subject to paragraphs 14.15.17 to 14.15.19, where, prior to the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge (or has paid a charge to the relevant TO prior to 1st April 2005 on the same principles as a

Page 3 of 63

One-Off Charge) that related to works equivalent to those described under paragraph 14.15.15, an adjustment equivalent to that under paragraph 14.15.15 shall be made to the transport model inputs as follows.

- 14.15.17 Such adjustment shall be made following a User's request, which must be received by The Company no later than the second occurrence of 31st December following the implementation of CUSC Modification CMP203.
- 14.15.18 The Company shall only make an adjustment to the transport model inputs, under paragraph 14.15.16 where the charge was paid to the relevant TO prior to 1st April 2005 where evidence has been provided by the User that satisfies The Company that works equivalent to those under paragraph 14.15.15 were funded by the User.
- 14.15.19 Where a User has sufficient reason to believe that adjustments under paragraph 14.15.18 should be made in relation to specific assets that affect a TNUoS tariff that applies to one of its sites and outlines its reasoning to The Company, The Company shall (upon the User's request and subject to the User's payment of reasonable costs incurred by The Company in doing so) use its reasonable endeavours to assist the User in obtaining any evidence The Company or a TO may have to support its position.
- 14.15.20 Where a request is made under paragraph 14.15.16 on or prior to 31st December in a charging year, and The Company is satisfied based on the accompanying evidence provided to The Company under paragraph 14.15.17 that it is a valid request, the transport model inputs shall be adjusted accordingly and taken into account in the calculation of TNUoS tariffs effective from the year commencing on the 1st April following this and otherwise from the next subsequent 1st April.
- 14.15.21 The following table provides examples of works for which adjustments to transport model inputs would typically apply:

Ref	Description of works	Adjustments
1	Undergrounding - A User requests to underground an overhead line at a greater cost.	As the cable cost will be more expensive than the overhead line (OHL) equivalent, the circuit will be modelled as an OHL.
2	Substation Siting Decision - A User requests to move the existing or a planned substation location to a place that means that the works cannot be justified as economic by the TO.	As the revised substation location may result in circuits being extended. If this is the case, the originally designed circuit lengths (as per the originally designed substation location) would be used in the transport model.
3	Circuit Routing Decision - A User asks to move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	As any circuit route changes that extend circuits are likely to result in a greater TNUoS tariff, the originally designed circuit lengths would be used in the transport model.

Ref	Description of works	Adjustments
4	Building circuits at lower voltages - A User requests lower tower height and therefore a different voltage.	As lower voltage circuits result in a higher expansion factor being used, the circuits would be modelled at the originally designed higher voltage.

14.15.22 The following table provides examples of works for which adjustments to transport model typically would not apply:

Ref	Description of works	Reasoning
1	Undergrounding - A User chooses to have a cable installed via a tunnel rather than buried.	Cable expansion factors are applied in the transport model regardless of whether a cable is tunnelled and buried, so there is no increased TNUoS cost.
2	Additional circuit route works - A User asks for screening to be provided around a new or existing circuit route.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
3	Additional circuit route works - A User requests that a planned overhead line route is built using alternative transmission tower designs.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
4	Additional substation works - A User asks for screening to be provided around a new or existing substation.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
5	Additional substation works - Changes to connection assets (e.g. HV-LV transformers and associated switchgear), metering, additional LV supplies, additional protection equipment, additional building works, etc.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
6	Diversion - A User asks to temporarily move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	The temporary circuit changes will not be incorporated into the transport model.

7	Connection Entry Capacity (CEC) before Transmission Entry Capacity (TEC). A User asks for a connection in a year prior to the relating TEC; i.e. physical connection without capacity.	No additional works are being undertaken, works are simply being completed well in advance of the generator commissioning. The One-Off Charge reflects the depreciated value of the assets prior to commissioning (and any TNUOS being charged).
8	Early asset replacement - An asset is replaced prior to the end of its expected life.	As the asset is simply replaced, no data in the transport model is expected to change.
9	Additional Engineering/ Mobilisation costs - A User requests changes to the planned works, that results in additional operational costs.	The data in the transport model is unaffected.
10	Offshore (Generator Build) - Any of the works described above or under paragraph 14.15.18.	The value of the works will not form part of the asset transfer value therefore will not be used as part of the offshore tariff calculation.
11	Offshore (Offshore Transmission Owner (OFTO) Build) - Any of the works described above or under paragraph 14.15.18.	As part of determining the TNUoS revenue associated with each asset, the value of the One-Off Works would be excluded when pro-rating the OFTO's allowed revenue against assets by asset value.

14.15.23 The Company shall publish any adjusted transport model inputs that it intends to use in the calculation of TNUoS tariffs effective from the year commencing on the following 1st April in the NETS Seven Year Statement October Update. Any further adjustments that The Company makes shall be published by The Company upon the publication of the final TNUoS tariffs for the year concerned.

Model Outputs

- 14.15.24 The transport model takes the inputs described above and carries out the following steps individually for Peak Security and Year Round backgrounds.
- 14.15.25 Depending on the background, the TEC of the relevant generation plant types are scaled by a percentage as described in 14.15.7, above. The TEC of the remaining generation plant types in each background are uniformly scaled such that total national generation (scaled sum of contracted TECs) equals total national ACS Demand.
- 14.15.26 For each background, the model then uses a DCLF ICRP transport algorithm to derive the resultant pattern of flows based on the network impedance required to meet the nodal <u>net</u> demand using the scaled nodal generation, assuming every circuit has infinite capacity. Flows on individual transmission circuits are compared for both backgrounds and the background giving rise to

Page 6 of 63

the highest flow is considered as the triggering criterion for future investment of that circuit for the purposes of the charging methodology. Therefore all circuits will be tagged as Peak Security or Year Round depending upon the background resulting in the highest flow. In the event that both backgrounds result in the same flow, the circuit will be tagged as Peak Security. Then it calculates the resultant total network Peak Security MWkm and Year Round MWkm, using the relevant circuit expansion factors as appropriate.

- 14.15.27 Using these baseline networks for Peak Security and Year Round backgrounds, the model then calculates for a given injection of 1MW of generation at each node, with a corresponding 1MW offtake (<u>net_demand</u>) distributed across all demand nodes in the network, the increase or decrease in total MWkm of the whole Peak Security and Year Round networks. The proportion of the 1MW offtake allocated to any given demand node will be based on total background nodal <u>net</u> demand in the model. For example, with a total GB <u>net_demand</u> of 60GW in the model, a node with a <u>net_demand</u> of 600MW would contain 1% of the offtake i.e. 0.01MW.
- 14.15.28 Given the assumption of a 1MW injection, for simplicity the marginal costs are expressed solely in km. This gives a Peak Security marginal km cost and a Year Round marginal km cost for generation at each node (although not that used to calculate generation tariffs which considers local and wider cost components). The Peak Security and Year Round marginal km costs for demand at each node are equal and opposite to the Peak Security and Year Round nodal marginal km respectively for generation and this is used to calculate demand tariffs. Note the marginal km costs can be positive or negative depending on the impact the injection of 1MW of generation has on the total circuit km.
- 14.15.29 Using a similar methodology as described above in 14.15.27, the local and wider marginal km costs used to determine generation TNUoS tariffs are calculated by injecting 1MW of generation against the node(s) the generator is modelled at and increasing by 1MW the offtake across the distributed reference node. It should be noted that although the wider marginal km costs are calculated for both Peak Security and Year Round backgrounds, the local marginal km costs are calculated on the Year Round background.
- 14.15.30 In addition, any circuits in the model, identified as local assets to a node will have the local circuit expansion factors which are applied in calculating that particular node's marginal km. Any remaining circuits will have the TO specific wider circuit expansion factors applied.
- 14.15.31 An example is contained in 14.21 Transport Model Example.

Calculation of local nodal marginal km

14.15.32 In order to ensure assets local to generation are charged in a cost reflective manner, a generation local circuit tariff is calculated. The nodal specific charge provides a financial signal reflecting the security and construction of the infrastructure circuits that connect the node to the transmission system.

14.15.33 Main Interconnected Transmission System (MITS) nodes are defined as:

- Grid Supply Point connections with 2 or more transmission circuits connecting at the site; or
- connections with more than 4 transmission circuits connecting at the site.

Page 7 of 63

- 14.15.34 Where a Grid Supply Point is defined as a point of supply from the National Electricity Transmission System to network operators or non-embedded customers excluding generator or interconnector load alone. For the avoidance of doubt, generator or interconnector load would be subject to the circuit component of its Local Charge. A transmission circuit is part of the National Electricity Transmission System between two or more circuit-breakers which includes transformers, cables and overhead lines but excludes busbars and generation circuits.
- 14.15.35 Generators directly connected to a MITS node will have a zero local circuit tariff.
- 14.15.36 Generators not connected to a MITS node will have a local circuit tariff derived from the local nodal marginal km for the generation node i.e. the increase or decrease in marginal km along the transmission circuits connecting it to all adjacent MITS nodes (local assets).

Calculation of zonal marginal km

- 14.15.37 Given the requirement for relatively stable cost messages through the ICRP methodology and administrative simplicity, nodes are assigned to zones. Typically, generation zones will be reviewed at the beginning of each price control period with another review only undertaken in exceptional circumstances. Any rezoning required during a price control period will be undertaken with the intention of minimal disruption to the established zonal boundaries. The full criteria for determining generation zones are outlined in paragraph 14.15.42. The number of generation zones set for 2010/11 is 20.
- 14.15.38 Demand zone boundaries have been fixed and relate to the GSP Groups used for energy market settlement purposes.
- 14.15.39 The nodal marginal km are amalgamated into zones by weighting them by their relevant generation or demand capacity.
- 14.15.40 Generators will have zonal tariffs derived from both, the wider Peak Security nodal marginal km; and the wider Year Round nodal marginal km for the generation node calculated as the increase or decrease in marginal km along all transmission circuits except those classified as local assets.

The zonal Peak Security marginal km for generation is calculated as:

$$WNMkm_{j_{PS}} = \frac{NMkm_{j_{PS}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiPS} = \sum_{j \in Gi} WNMkm_{jPS}$$

Where

Gi	=	Generation zone
j	=	Node
NMkm _{PS}	=	Peak Security Wider nodal marginal km from transport model
WNMkm _{PS}	=	Peak Security Weighted nodal marginal km
ZMkm _{PS}	=	Peak Security Zonal Marginal km

Gen = Nodal Generation (scaled by the appropriate Peak Security Scaling factor) from the transport model Similarly, the zonal Year Round marginal km for generation is calculated as

$$WNMkm_{j_{YR}} = \frac{NMkm_{j_{YR}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiYR} = \sum_{j \in Gi} WNMkm_{jYR}$$

Where

NMkm _{YR}	=	Year Round Wider nodal marginal km from transport model
WNMkm _{YR}	=	Year Round Weighted nodal marginal km
ZMkm _{YR}	=	Year Round Zonal Marginal km
Gen	=	Nodal Generation (scaled by the appropriate Year Round Scaling
		factor) from the transport model

14.15.41 The zonal Peak Security marginal km for demand zones are calculated as follows:

$$WNMkm_{j_{PS}} = \frac{-1 * NMkm_{j_{PS}} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{Di_{PS}} = \sum_{j \in Di} WNMkm_{j_{PS}}$$

Where:

I

Di	=	Demand zone
Dem	=	Nodal <u>Net</u> Demand from transport model

Similarly, the zonal Year Round marginal km for demand zones are calculated as follows:

$$WNMkm_{jYR} = \frac{-1 * NMkm_{jYR} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{DiYR} = \sum_{j \in Di} WNMkm_{jYR}$$

- 14.15.42 A number of criteria are used to determine the definition of the generation zones. Whilst it is the intention of The Company that zones are fixed for the duration of a price control period, it may become necessary in exceptional circumstances to review the boundaries having been set. In both circumstances, the following criteria are used to determine the zonal boundaries:
- i.) Zoning is determined using the generation background with the most MWkm of circuits. Zones should contain relevant nodes whose total wider marginal costs

from the relevant generation background (as determined from the output from the transport model, the relevant expansion constant and the locational security factor, see below) are all within +/-£1.00/kW (nominal prices) across the zone. This means a maximum spread of £2.00/kW in nominal prices across the zone.

- ii.) The nodes within zones should be geographically and electrically proximate.
- iii.) Relevant nodes are considered to be those with generation connected to them as these are the only ones, which contribute to the calculation of the zonal generation tariff.
- 14.15.43 The process behind the criteria in 14.15.42 is driven by initially applying the nodal marginal costs from the relevant generation background within the DCLF Transport model onto the appropriate areas of a substation line diagram. Generation nodes are grouped into initial zones using the +/- £1.00/kW range. All nodes within each zone are then checked to ensure the geographically and electrically proximate criteria have been met using the substation line diagram. The established zones are inspected to ensure the least number of zones are used with minimal change from previously established zonal boundaries. The zonal boundaries are finally confirmed using the demand nodal costs from the relevant generation background for guidance.
- 14.15.44 The zoning criteria are applied to a reasonable range of DCLF ICRP transport model scenarios, the inputs to which are determined by The Company to create appropriate TNUoS generation zones. The minimum number of zones, which meet the stated criteria, are used. If there is more than one feasible zonal definition of a certain number of zones, The Company determines and uses the one that best reflects the physical system boundaries.
- 14.15.45 Zones will typically not be reviewed more frequently than once every price control period to provide some stability. However, in exceptional circumstances, it may be necessary to review zoning more frequently to maintain appropriate, cost reflective, locational cost signals. For example, if a new generator connecting to the transmission system would cause the creation of a new generation zone for that generator alone, it may not be appropriate from a cost reflective perspective to wait until the next price control period to undertake this rezoning. If any such rezoning is required, it will be undertaken against a background of minimal change to existing generation zones and in line with the notification process set out in the Transmission Licence and CUSC.

Accounting for Sharing of Transmission by Generators

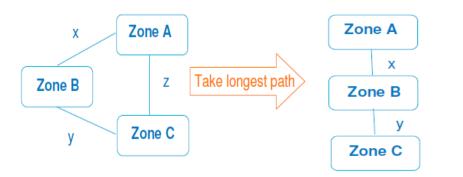
- 14.15.46 A proportion of the marginal km costs for generation are shared incremental km reflecting the ability of differing generation technologies to share transmission investment. This is reflected in charges through the splitting of Year Round marginal km costs for generation into Year Round Shared marginal km costs and Year Round Not-Shared marginal km which are then used in the calculation of the wider £/kW generation tariff.
- 14.15.47 The sharing between different generation types is accounted for by (a) using transmission network boundaries between generation zones set by connectivity between generation charging zones, and (b) the proportion of Low Carbon and Carbon generation behind these boundaries.

Page 10 of 63

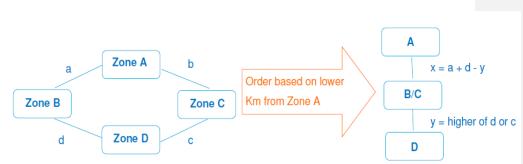
14.15.48 The zonal incremental km for each generation charging zone is split into each boundary component by considering the difference between it and the neighbouring generation charging zone using the formula below;

$$BIkm_{ab} = ZIkm_b - ZIkm_a$$

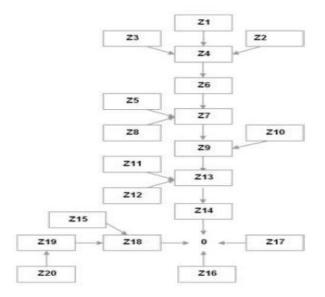
Where;


Blkm_{ab} = boundary incremental km between generation charging zone A and generation charging zone B Zlkm = generation charging zone incremental km.

14.15.49 The table below shows the categorisation of Low Carbon and Carbon generation. This table will be updated by National Grid in the Statement of Use of System Charges as new generation technologies are developed.


Carbon	Low Carbon
Coal	Wind
Gas	Hydro (excl. Pumped Storage)
Biomass	Nuclear
Oil	Marine
Pumped Storage	Tidal
Interconnectors	

Determination of Connectivity


- 14.15.50 Connectivity is based on the existence of electrical circuits between TNUoS generation charging zones that are represented in the Transport model. Where such paths exist, generation charging zones will be effectively linked via an incremental km transmission boundary length. These paths will be simplified through in the case of;
 - Parallel paths the longest path will be taken. An illustrative example is shown below with x, y and z representing the incremental km between zones.

 Parallel zones – parallel zones will be amalgamated with the incremental km immediately beyond the amalgamated zones being the greater of those existing prior to the amalgamation. An illustrative example is shown below with a, b, c, and d representing the the initial incremental km between zones, and x and y representing the final incremental km following zonal amalgamation.

14.15.51 An illustrative Connectivity diagram is shown below:

The arrows connecting generation charging zones and amalgamated generation charging zones represent the incremental km transmission boundary lengths towards the notional centre of the system. Generation located in charging zones behind arrows is considered to share based on the ratio of Low Carbon to Carbon cumulative generation TEC within those zones.

14.15.52 The Company will review Connectivity at the beginning of a new price control period, and under exceptional circumstances such as major system reconfigurations or generation rezoning. If any such reassessment is required, it will be undertaken against a background of minimal change to existing Connectivity and in line with the notification process set out in the Transmission Licence and the CUSC.

Calculation of Boundary Sharing Factors

14.15.53 Boundary sharing factors (BSFs) are derived from the comparison of the cumulative proportion of Low Carbon and Carbon generation TEC behind each of the incremental MWkm boundary lengths using the following formulae –

Page 12 of 63

If $\frac{LC}{LC+C} \le 0.5$, then all Year round marginal km costs are shared i.e. the BSF is 100%.

Where:

LC = Cumulative Low Carbon generation TEC behind the relevant transmission boundary C = Cumulative Carbon generation TEC behind the relevant transmission

C = Cumulative Carbon generation TEC behind the relevant transmission boundary

If
$$\frac{LC}{LC+C}$$
 > 0.5 then the BSF is calculated using the following formula: -

$$BSF = \left(-2 \times \left(\frac{LC}{LC+C}\right)\right) + 2$$

Where:

BSF = boundary sharing factor.

14.15.54 The shared incremental km for each boundary are derived from the multiplication of the boundary sharing factor by the incremental km for that boundary;

$$SBIkm_{ab} = BIIkm_{ab} \ x \ BSF_{ab}$$

Where;

 $SBIkm_{ab}$ = shared boundary incremental km between generation charging zone A and generation charging zone B

 BSF_{ab} = generation charging zone boundary sharing factor.

14.15.55 The shared incremental km is discounted from the incremental km for that boundary to establish the not-shared boundary incremental km. The not-shared boundary incremental km reflects the cost of transmission investment on that boundary accounting for the sharing of power stations behind that boundary.

$$NSBIkm_{ab} = BIkm_{ab} - SBIkm_{ab}$$

Where;

 $NSBIkm_{ab}$ = not shared boundary incremental km between generation charging zone A and generation charging zone B.

14.15.56 The shared incremental km for a generation charging zone is the sum of the appropriate shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRS}$$

Where;

 $ZMkm_{nYRS}$ = Year Round Shared Zonal Marginal km for generation charging zone n.

Page 13 of 63

14.15.57 The not-shared incremental km for a generation charging zone is the sum of the appropriate not-shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRNS}$$

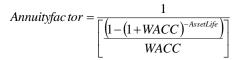
Where;

ZMkm_{nYRNS} = Year Round Not-Shared Zonal Marginal km for generation zone n.

Deriving the Final Local £/kW Tariff and the Wider £/kW Tariff

14.15.58 The zonal marginal km (ZMkm_{Gi}) are converted into costs and hence a tariff by multiplying by the Expansion Constant and the Locational Security Factor (see below). The nodal local marginal km (NLMkm^L) are converted into costs and hence a tariff by multiplying by the Expansion Constant and a Local Security Factor.

The Expansion Constant


- 14.15.59 The expansion constant, expressed in £/MWkm, represents the annuitised value of the transmission infrastructure capital investment required to transport 1 MW over 1 km. Its magnitude is derived from the projected cost of 400kV overhead line, including an estimate of the cost of capital, to provide for future system expansion.
- 14.15.60 In the methodology, the expansion constant is used to convert the marginal km figure derived from the transport model into a £/MW signal. The tariff model performs this calculation, in accordance with 14.15.95 14.15.117, and also then calculates the residual element of the overall tariff (to ensure correct revenue recovery in accordance with the price control), in accordance with 14.15.133.
- 14.15.61 The transmission infrastructure capital costs used in the calculation of the expansion constant are provided via an externally audited process. They also include information provided from all onshore Transmission Owners (TOs). They are based on historic costs and tender valuations adjusted by a number of indices (e.g. global price of steel, labour, inflation, etc.). The objective of these adjustments is to make the costs reflect current prices, making the tariffs as forward looking as possible. This cost data represents The Company's best view; however it is considered as commercially sensitive and is therefore treated as confidential. The calculation of the expansion constant also relies on a significant amount of transmission asset information, much of which is provided in the Seven Year Statement.
- 14.15.62 For each circuit type and voltage used onshore, an individual calculation is carried out to establish a £/MWkm figure, normalised against the 400KV overhead line (OHL) figure, these provide the basis of the onshore circuit expansion factors discussed in 14.15.70 14.15.77. In order to simplify the calculation a unity power factor is assumed, converting £/MVAkm to £/MWkm. This reflects that the fact tariffs and charges are based on real power.
- 14.15.63 The table below shows the first stage in calculating the onshore expansion constant. A range of overhead line types is used and the types are weighted by recent usage on the transmission system. This is a simplified calculation for 400kV OHL using example data:

Page 14 of 63

400kV	OHL e	xpansion o	onstant calcu	llation	
MW	Туре	£(000)/k	Circuit km*	£/MWkm	Weight
А	В	С	D	E = C/A	F=E*D
6500	La	700	500	107.69	53846
6500	Lb	780	0	120.00	0
3500	La/b	600	200	171.43	34286
3600	Lc	400	300	111.11	33333
4000	Lc/a	450	1100	112.50	123750
5000	Ld	500	300	100.00	30000
5400	Ld/a	550	100	101.85	10185
Sum			2500 (G)		285400 (H)
				Weighted Average (J= H/G):	114.160 (J)

*These are circuit km of types that have been provided in the previous 10 years. If no information is available for a particular category the best forecast will be used.

14.15.64 The weighted average £/MWkm (J in the example above) is then converted in to an annual figure by multiplying it by an annuity factor. The formula used to calculate of the annuity factor is shown below:

- 14.15.65 The Weighted Average Cost of Capital (WACC) and asset life are established at the start of a price control and remain constant throughout a price control period. The WACC used in the calculation of the annuity factor is the The Company regulated rate of return, this assumes that it will be reasonably representative of all licensees. The asset life used in the calculation is 50 years; the appropriateness of this is reviewed when the annuity factor is recalculated at the start of a price control period. These assumptions provide a current annuity factor of 0.066.
- 14.15.66 The final step in calculating the expansion constant is to add a share of the annual transmission overheads (maintenance, rates etc). This is done by multiplying the average weighted cost (J) by an 'overhead factor'. The 'overhead factor' represents the total business overhead in any year divided by the total Gross Asset Value (GAV) of the transmission system. This is recalculated at the start of each price control period. The overhead factor used in the calculation of the expansion constant for 2009/10 is 1.8%. The overhead and annuitised costs are then added to give the expansion constant.
- 14.15.67 Using the previous example, the final steps in establishing the expansion constant are demonstrated below:

400kV OHL expansion constant calculation	Ave £/MWkm
OHL	114.160

Page 15 of 63

Annuitised	7.535
Overhead	2.055
Final	9.589

- 14.15.68 This process is carried out for each voltage onshore, along with other adjustments to take account of upgrade options, see 14.15.73, and normalised against the 400KV overhead line cost (the expansion constant) the resulting ratios provide the basis of the onshore expansion factors. The process used to derive circuit expansion factors for Offshore Transmission Owner networks is described in 14.15.78.
- 14.15.69 This process of calculating the incremental cost of capacity for a 400kV OHL, along with calculating the onshore expansion factors is carried out for the first year of the price control and is increased by inflation, RPI, (May–October average increase, as defined in The Company's Transmission Licence) each subsequent year of the price control period. The expansion constant for 2010/11 is 10.633.

Onshore Wider Circuit Expansion Factors

- 14.15.70 Base onshore expansion factors are calculated by deriving individual expansion constants for the various types of circuit, following the same principles used to calculate the 400kV overhead line expansion constant. The factors are then derived by dividing the calculated expansion constant by the 400kV overhead line expansion constant. The factors will be fixed for each respective price control period.
- 14.15.71 In calculating the onshore underground cable factors, the forecast costs are weighted equally between urban and rural installation, and direct burial has been assumed. The operating costs for cable are aligned with those for overhead line. An allowance for overhead costs has also been included in the calculations.
- 14.15.72 The 132kV onshore circuit expansion factor is applied on a TO basis. This is to reflect the regional variation of plans to rebuild circuits at a lower voltage capacity to 400kV. The 132kV cable and line factor is calculated on the proportion of 132kV circuits likely to be uprated to 400kV. The 132kV expansion factor is then calculated by weighting the 132kV cable and overhead line costs with the relevant 400kV expansion factor, based on the proportion of 132kV circuitry to be uprated to 400kV. For example, in the TO areas of National Grid and Scottish Power where there are no plans to uprate any 132kV circuits, the full cable and overhead line costs of 132kV circuit are reflected in the 132kV expansion factor calculation.
- 14.15.73 The 275kV onshore circuit expansion factor is applied on a GB basis and includes a weighting of 83% of the relevant 400kV cable and overhead line factor. This is to reflect the averaged proportion of circuits across all three Transmission Licensees which are likely to be uprated from 275kV to 400kV across GB within a price control period.
- 14.15.74 The 400kV onshore circuit expansion factor is applied on a GB basis and reflects the full costs for 400kV cable and overhead lines.
- 14.15.75 AC sub-sea cable and HVDC circuit expansion factors are calculated on a case by case basis using actual project costs (Specific Circuit Expansion Factors).

Page 16 of 63

- 14.15.76 For HVDC circuit expansion factors both the cost of the converters and the cost of the cable are included in the calculation.
- 14.15.77 The TO specific onshore circuit expansion factors calculated for 2008/9 (and rounded to 2 decimal places) are:

Scottish Hydro Region

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	27.79
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.24	

Scottish Power & National Grid Regions

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	30.22
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.80	

Onshore Local Circuit Expansion Factors

- 14.15.78 The local onshore circuit tariff is calculated using local onshore circuit expansion factors. These expansion factors are calculated using the same methodology as the onshore wider expansion factor but without taking into account the proportion of circuit kms that are planned to be uprated.
- 14.15.79 In addition, the 132kV onshore overhead line circuit expansion factor is sub divided into four more specific expansion factors. This is based upon maximum (winter) circuit continuous rating (MVA) and route construction whether double or single circuit.

400kV underground cable factor:	22.39
275kV underground cable factor:	22.39
132kV underground cable factor:	30.22
400kV line factor:	1.00
275kV line factor:	1.14
132kV line factor (single; <200MVA):	10.00
132kV line factor (double; <200MVA):	8.32
132kV line factor (single; >=200MVA):	7.13
132kV line factor (double; >=200MVA):	4.42

Offshore Circuit Expansion Factors

14.15.80 Offshore expansion factors (£/MWkm) are derived from information provided by Offshore Transmission Owners for each offshore circuit. Offshore expansion factors are Offshore Transmission Owner and circuit specific. Each Offshore Transmission Owner will periodically provide, via the STC, information to derive an annual circuit revenue requirement. The offshore circuit revenue shall include revenues associated with the Offshore Transmission Owner's reactive compensation equipment, harmonic filtering equipment, asset spares and HVDC converter stations.

14.15.81 In the first year of connection, the offshore circuit expansion factor would be calculated as follows:

$\frac{CRevOFTO1}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$

Where:

CRevOFTO1	=	The offshore circuit revenue in £ for Year 1
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

14.15.82 In all subsequent years, the offshore circuit expansion factor would be calculated as follows:

$$\frac{AvCRevOFTO}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$$

Where:

AvCRevOFTO	=	The annual offshore circuit revenue averaged over the
		remaining years of the onshore National Electricity
		Transmission System Operator (NETSO) price control
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

- 14.15.83 For the avoidance of doubt, the offshore circuit revenue values, *CRevOFTO1* and *AvCRevOFTO* shall be determined using asset values after the removal of any One-Off Charges.
- 14.15.84 Prevailing OFFSHORE TRANSMISSION OWNER specific expansion factors will be published in this statement. These shall be recalculated at the start of each price control period using the formula in paragraph 14.15.71. For each subsequent year within the price control period, these expansion factors will be adjusted by the annual Offshore Transmission Owner specific indexation factor, *OFTOInd*, calculated as follows;

$$OFTOInd_{t,f} = \frac{OFTO \operatorname{Rev}Ind_{t,f}}{RPI_{t}}$$

where:

OFTOInd _{t,f}	=	the indexation factor for Offshore Transmission Owner <i>f</i> in respect of charging year <i>t</i> ,
OFTORevInd _t f	=	the indexation rate applied to the revenue of Offshore Transmission Owner f under the terms of its Transmission Licence in respect of charging year t , and
<i>RPI</i> _t	=	the indexation rate applied to the expansion constant in respect of charging year <i>t</i> .

Offshore Interlinks

14.15.85 The revenue associated with an Offshore Interlink shall be divided entirely between those generators benefiting from the installation of that Offshore Interlink. Each of these Users will be responsible for their charge from their charging date, meaning that a proportion of the Offshore Interlink revenue may be socialised prior to all relevant Users being chargeable. The proportion associated with each User will be based on the Measure of Capacity to the MITS using the Offshore Interlink(s) in the event of a single circuit fault on the User's circuit from their offshore substation towards the shore, compared to the Measure of Capacity of the other Users.

Where:

An *Offshore Interlink* is a circuit which connects two offshore substations that are connected to a Single Common Substation. It is held in open standby until there is a transmission fault that limits the User's ability to export power to the Single Common Substation. In the Transport Model, they are to be modelled in open standby.

A Single Common Substation is a substation where:

- i. each substation that is connected by an Offshore Interlink is connected via at least one circuit without passing through another substation; and
- ii. all routes connecting each substation that is connected by an Offshore Interlink to the MITS pass through.

The Measure of Capacity to the MITS for each Offshore substation is the result of the following formula or zero whichever is larger. For the situation with only one interlink, all terms relating to C should be set to zero:

```
For Substation A:
min { Cap_{IAB}, ILF_A \times TEC_A - RCap_A, Cap_B - ILF_B \times TEC_B + min (Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation B:

min { ILF_B \times TEC_B - RCap_B, min (Cap_{IAB}, Cap_A - ILF_A \times TEC_A)

+ min ( Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation C:

min { Cap_{IBC}, ILF_{C} \times TEC_{C} - RCap_{C}, Cap_{B} - ILF_{B} \times TEC_{B} + min (Cap_{IAB}, Cap_{A} - ILF_{A} \times TEC_{A}) }

and
```

Cap _{IAB} = B	total capacity of the Offshore Interlink between substations A and
Cap _{IBC} = C	total capacity of the Offshore Interlink between substations B and
Cap _X =	total capacity of the circuit between offshore substation X and the Single Common Substation, where X is A, B or C.
RCap _x =	remaining capacity of the circuit between offshore substation X and the Single Common Substation in the event of a single cable fault, where X is A, B or C.
TEC _x =	the sum of the TEC for the Users connected, or contracted to connect, to offshore substation X, where X is A, B or C, where the value of TEC will be the maximum TEC that each User has held since the initial charging date, or is contracted to hold if prior to the initial charging date.

- ILF_x = Offshore Interlink Load Factor, where X is A, B or C. The Offshore Interlink Load Factor (ILF) is based on the Annual Load Factor (ALF). Until all the Users connected to a Single Common Substation have a station specific Annual Load Factor based on five years of data, the generic ALF for the fuel type will be used as the ILF for all stations. When all Users have a station specific ALF, the value of the ALF in the first such year will be used as the ILF in the calculation for all subsequent charging years.
- 14.15.86 The apportionment of revenue associated with Offshore Interlink(s) in 14.15.85 applies in situations where the Offshore Interlink was included in the design phase, or if one or more User(s) has already financially committed or been commissioned then only where that User(s) agrees to the Offshore Interlink.
- 14.15.87 Alternatively to the formula specified in 14.15.85 the proportion of the OFTO revenue associated with the Offshore Interlink allocated to each generator benefiting from the installation of an Offshore Interlink may be agreed between these Users. In this event:
- a. All relevant Users shall notify The Company of its respective proportions three months prior the OTSDUW asset transfer in the case of a generator build, or the charging date of the first generator, in the case of an OFTO build.
- b. All relevant Users may agree to vary the proportions notified under (a) by each writing to The Company three months prior to the charges being set for a given charging year.
- c. Once a set of proportions of the OFTO revenue associated with the Offshore Interlink has been provided to The Company, these will apply for the next and future charging years unless and until The Company is informed otherwise in accordance with (b) by all of the relevant Users.
- d. If all relevant Users are unable to reach agreement on the proportioning of the OFTO revenue associated with the Offshore Interlink they can raise a dispute. Any dispute between two or more Users as to the proportioning of such revenue shall be managed in accordance with CUSC Section 7 Paragraph 7.4.1 but the reference to the 'Electricity Arbitration Association' shall instead be to the 'Authority' and the Authority's determination of such dispute shall, without prejudice to apply for judicial review of any determination, be final and binding on the Users.

The Locational Onshore Security Factor

14.15.88 The locational onshore security factor is derived by running a secure DCLF ICRP transport study based on the same market background as used for Zoning in the DCLF ICRP transport model. This calculates the nodal marginal costs where peak <u>net</u> demand can be met despite the Security and Quality of Supply Standard contingencies (simulating single and double circuit faults) on the network. Essentially the calculation of secured nodal marginal costs is identical to the process outlined above except that the secure DCLF study additionally calculates a nodal marginal cost taking into account the requirement to be secure against a set of worse case contingencies in terms of maximum flow for each circuit.

- 14.15.89 The secured nodal cost differential is compared to that produced by the DCLF ICRP transport model and the resultant ratio of the two determines the locational security factor using the Least Squares Fit method. Further information may be obtained from the charging website¹.
- 14.15.90 The locational onshore security factor derived for 2010/11 is 1.8 and is based on an average from a number of studies conducted by The Company to account for future network developments. The security factor is reviewed for each price control period and fixed for the duration.

Local Security Factors

- 14.15.91 Local onshore security factors are generator specific and are applied to a generator's local onshore circuits. If the loss of any one of the local circuits prevents the export of power from the generator to the MITS then a local security factor of 1.0 is applied. For generation with circuit redundancy, a local security factor is applied that is equal to the locational security factor, currently 1.8.
- 14.15.92 Where a Transmission Owner has designed a local onshore circuit (or otherwise that circuit once built) to a capacity lower than the aggregated TEC of the generation using that circuit, then the local security factor of 1.0 will be multiplied by a Counter Correlation Factor (CCF) as described in the formula below;

$$CCF = \frac{D_{\min} + T_{cap}}{G_{cap}}$$

Where; D_{min} = minimum annual net demand (MW) supplied via that circuit in the absence of that generation using the circuit

 T_{cap} = transmission capacity built (MVA)

 G_{cap} = aggregated TEC of generation using that circuit

CCF cannot be greater than 1.0.

14.15.93 A specific offshore local security factor (LocalSF) will be calculated for each offshore connection using the following methodology:

$$LocalSF = \frac{NetworkExportCapacity}{\sum_{k} Gen_{k}}$$

Where:

 NetworkExportCapacity =
 the total export capacity of the network disregarding any Offshore Interlinks

 k
 =
 the generation connected to the offshore network

1 http://www.nationalgrid.com/uk/Electricity/Charges/

Page 21 of 63

- 14.15.94 The offshore security factor for single circuits with a single cable will be 1.0 and for multiple circuit connections will be capped at the locational onshore security factor, derived as 1.8 for 2010/11.
- 14.15.95 The offshore local security factor for configurations with one or more Offshore Interlinks is updated so that the offshore circuit tariff will include the proportion of revenue associated with the Offshore Interlink(s). The specific offshore local security factor for configurations involving an Offshore Interlink, which may be greater than 1.8, will be calculated for each offshore connection using the following methodology:

LocalSE -	$\frac{\text{IRevOFTO} \times \text{NetworkExportCapacity}}{\text{CP} + \text{LocalSF}_{\text{initial}}} + LocalSF_{\text{initial}}$
Locust -	$CRevOFTO \times \sum Gen_k$
	k k

Where:

IRevOFTO =	The appropriate proportion of the Offshore Interlink(s) revenue in £
	associated with the offshore connection calculated in 14.15.85
CRevOFTO =	The offshore circuit revenue in £ associated with the circuit(s) from the
	offshore substation to the Single Common Substation.
LocalSF _{initial} =	Initial Local Security Factor calculated in 14.15.80 and 14.15.81
	And other definitions as in 14.15.80.

Initial Transport Tariff

14.15.96 First an Initial Transport Tariff (ITT) must be calculated for both Peak Security and Year Round backgrounds. For Generation, the Peak Security zonal marginal km (ZMkm_{PS}), Year Round Not-Shared zonal marginal km (ZMkm_{YRNS}) and Year Round Shared zonal marginal km (ZMkm_{YRS}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT, Year Round Not-Shared ITT and Year Round Shared ITT respectively:

 $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$

Where ZMkm _{GiPS} ZMkm _{GiYRNS} charging zone	= = e	Peak Security Zonal Marginal km for each generation zone Year Round Not-Shared Zonal Marginal km for each generation
ZMkm _{GiYRS}	=	Year Round Shared Zonal Marginal km for each generation
charging zon	е	
EC	=	Expansion Constant
LSF	=	Locational Security Factor
	=	Peak Security Initial Transport Tariff (£/MW) for each generation
zone		
ITT _{GiYRNS}	=	Year Round Not-Shared Initial Transport Tariff (£/MW) for each
generation ch	narging	zone
ITT _{GiYRS}	=	Year Round Shared Initial Transport Tariff (£/MW) for each
generation ch	narging	zone.

- CUSC v1.12
 - 14.15.97 Similarly, for demand the Peak Security zonal marginal km (ZMkm_{PS}) and Year Round zonal marginal km (ZMkm_{YR}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT and Year Round ITT respectively:

		$ZMkm_{DiPS} \times EC \times LSF = ITT_{DiPS}$
		$ZMkm_{DiYR} \times EC \times LSF = ITT_{DiYR}$
Where ZMkm _{DiP} ZMkm _{DiY}	0	Peak Security Zonal Marginal km for each demand zone Year Round Zonal Marginal km for each demand zone
ITT _{DiPS} ITT _{DiYR}	= =	Peak Security Initial Transport Tariff (£/MW) for each demand one Year Round Initial Transport Tariff (£/MW) for each demand zone
14.15.98	GSP group revenue ree metered tria	tep is to multiply these ITTs by the expected metered triad gross demand and generation capacity to gain an estimate of the initial covery for both Peak Security and Year Round backgrounds. The ad gross GSP group demand and generation capacity are based on forecasts provided by Users and are confidential.
a.		ad gross GSP group demand is net demand for all GSP groups less exports for all GSP groups .
Where		

ITRR _G =	Initial Transport Revenue Recovery for generation		
G _{Gi} =	Total forecast Generation for each generation zone (based		
	on analysis of confidential User forecasts)		
ITRR _D =	Initial Transport Revenue Recovery for gross GSP group		
	demand		
D _{Di} =	Total forecast Metered Triad gross GSP group Demand for		
each			
	demand zone (based on <u>analysis of</u> confidential User		
	forecasts).		

In addition, the initial tariffs for generation are also multiplied by the **Peak Security flag** when calculating the initial revenue recovery component for the Peak Security background. Similarly, when calculating the initial revenue recovery for the Shared component of the Year Round background, the initial tariffs are multiplied by the **Annual Load Factor** (see below).

Peak Security (PS) Flag

14.15.99 The revenue from a specific generator due to the Peak Security locational tariff needs to be multiplied by the appropriate Peak Security (PS) flag. The PS flags indicate the extent to which a generation plant type contributes to the need for transmission network investment at peak demand conditions. The PS

Page 23 of 63

flag is derived from the contribution of differing generation sources to the demand security criterion as described in the Security Standard. In the event of a significant change to the demand security assumptions in the Security Standard, National Grid will review the use of the PS flag.

Generation Plant Type	PS flag
Intermittent	0
Other	1

Annual Load Factor (ALF)

- 14.15.100 The ALF for each individual Power Station is calculated using the relevant TEC (MW) and corresponding output data. Where output data is not available for a Power Station, including for new Power Stations and emerging Power Station technologies, generic data for the appropriate generation plant type will be used.
- 14.15.101 For a given charging year "t" the Power Station ALF will be based on information from the previous five charging years, calculated for each charging year as set out below.

$$ALF = \frac{\sum_{p=1}^{17520} GMWh_p}{\sum_{p=1}^{17520} TECp \times 0.5}$$

Where:

 $\mathsf{GMWh}_{\mathsf{p}}$ is the maximum of FPN or actual metered output in a Settlement Period related to the power station TEC (MW); and

 TEC_{p} is the TEC (MW) applicable to that Power Station for that Settlement Period including any STTEC and LDTEC, accounting for any trading of TEC.

- 14.15.102 The appropriate output (FPN or actual metered) figure is derived from **BM Unit** data available to National Grid and relates to the total TEC of the Power Station.
- 14.15.103 Once all five charging year ALFs have been calculated for the individual Power Station they are compared, and the highest and lowest figures are discarded. The final ALF, to be used for transmission charging purposes, is calculated as the average of the remaining three ALFs.
- 14.15.104 In the event that only four charging years of complete output (FPN or actual metered) data are available for an individual Power Station then the higher three charging years ALF would be used in the calculation of the final ALF. In the event that only three charging years of complete output (FPN or actual metered) data are available then these three charging years would be used.
- 14.15.105 Due to the aggregation of output (FPN or actual metered) data for dispersed generation (e.g. cascade hydro schemes), where a single generator BMU consists of geographically separated power stations, the ALF would be calculated based on the total output of the BMU and the overall TEC of those Power Stations.

Page 24 of 63

1

- 14.15.106 In the event that there are not three full charging years of an individual power station's output available, missing output (FPN or actual metered) data would be replaced by generic data for that generation plant type to ensure three charging years of information are available for the Power Station. The derivation of the generic data is described in paragraphs 14.15.111-14.15.114.
- 14.15.107 Users will receive draft ALFs before 25th December of the charging year (t-1) for the charging year (t) and will have a period of 15 working days from date of publishing to notify the Company of any errors. Failure to agree changes relating to errors will be treated as a charging dispute under the CUSC.
- 14.15.108 The ALFs used in the setting of final tariffs will be published in the annual Statement of Use of System Charges. Changes to ALFs after this publication will not result in changes to published tariffs (e.g. following dispute resolution).

Derivation of Generic ALFs

14.15.109 The generic ALF is derived from the average annual output of the ten most recently commissioned GB generation of a particular generation plant type that have at least five charging years' data, using an identical methodology to that used for the Power Station specific calculation described above. Where less than ten GB generators of a particular generation plant type exist, then data from all existing generators of that particular generation plant type will be used. Example generation plant type categories are listed below;

Fuel Type
Biomass
Coal
Gas
Hydro
Nuclear (by reactor
type)
Oil & OCGTs
Pumped Storage
Onshore Wind
Offshore Wind
CHP

- 14.15.110 The Company will keep these categories under review and update as necessary. Where within a category there is a significant locational difference consideration will be given to zonal generic factors. The factors used will be published in the Statement of Use of System Charges and will be reviewed annually.
- 14.15.111 If a User can demonstrate that the generation plant type of a Power Station has changed, consideration will be given to the use of relevant generic ALF information in the calculation of their charges until sufficient specific data is available.
- 14.15.112 For new and emerging generation plant types, where insufficient data is available to allow a generic ALF to be developed, The Company will use the best information available e.g. from manufactuers and data from use of similar technologies outside GB. The factor will be agreed with the relevant Generator. In the event of a disagreement the standard provisions for dispute in the CUSC will apply.

TNUoS Embedded Export Tariff Embedded exports are exports measured on a half-hourly basis by 14.15.113 Metering Systems, in accordance with the BSC, that are not subject to generation TNUoS. The embedded export tariff will be applied to the metered Triad volumes 14.15.114 of Embedded Exports for each demand zone as follows: $EET_{Di} = ITT_{DiPS} + ITT_{DiYR} + EX$ Where ITT_{DiPS} = Peak Security Initial Transport Tariff for the demand zone; ITT_{DiYR} = Year Round Initial Transport Tariff for the demand zone, and EX: First Charging year following the implementation date of CMP 264/265: $(XP - ABs (Min_{Di}(ITT_{DiPS} + ITT_{DiVR}))) + ABs (Min_{Di}(ITT_{DiPS} + ITT_{DiVR}))$ Second charging year following the implementation date of CMP 264/265: <u>ABs $(Min_{Di}(ITT_{DiPS} + ITT_{DiVR}))) + ABs (Min_{Di}(ITT_{DiPS} + ITT_{DiVR}))$ </u> Third charging year following the implementation date of CMP 264/265 and every subsequent charging year: $= ABs (Min_{Di}(ITT_{DiPS} + ITT_{DiYR}))$ Where XP Value of demand residual in charging year prior to implementation The Value of EET_{Di} will be floored at zero, so that EET_{Di} is always zero or positive.

Initial Revenue Recovery

14.15,115 For the Peak Security background the initial tariff for generation is multiplied by the total forecast generation capacity and the PS flag to give the initial revenue recovery:

$$\sum_{Gi=1}^{n} \left(ITT_{GiPS} \times G_{Gi} \times F_{PS} \right) = ITRR_{GPS}$$

Where

	=	Peak Security Initial Transport Revenue Recovery for generation
G_{Gi}	=	Total forecast Generation for each generation zone (based on analysis of confidential User forecasts)
F _{PS}	=	Peak Security flag appropriate to that generator type
n	=	Number of generation zones

The initial revenue recovery for <u>gross GSP group</u> demand for the Peak Security background is calculated by multiplying the initial tariff by the total forecast metered triad <u>gross GSP group</u> demand:

Page 26 of 63

$$\sum_{Di=1}^{14} (ITT_{DiPS} \times D_{Di}) = ITRR_{DPS}$$

Where:

ITRRDPS	=	Peak Security Initial Transport Revenue Recovery for gross GSP
		group_demand
D _{Di}	=	Total forecast Metered Triad gross GSP group Demand for each

- demand zone (based on <u>analysis of</u> confidential User forecasts) 14.15,116 For the Year Round background, the initial tariff for generation is multiplied by
 - the total forecast generation capacity whilst calculating Initial Recovery for Not-Shared component whereas the initial tariff for Shared component is multiplied by both, the total forecast generation capacity and the ALF to give the initial revenue recovery:

$$\sum_{G_{i=1}}^{n} (ITT_{GiYRNS} \times G_{Gi}) = ITRR_{GYRNS}$$
$$\sum_{G_{i=1}}^{n} (ITT_{GiYRS} \times G_{Gi} \times ALF) = ITRR_{GYRS}$$

Where:

ITRR
generation=Year Round Not-Shared Initial Transport Revenue Recovery for
Year Round Shared Initial Transport Revenue Recovery for
generation
ALFALF=Annual Load Factor appropriate to that generator.

14.15,117 Similar to the Peak Security background, the initial revenue recovery for gross <u>GSP group</u> demand for the Year Round background is calculated by multiplying the initial tariff by the total forecast metered triad gross GSP group demand:

$$\sum_{Di=1}^{14} \left(ITT_{DiYR} \times D_{Di} \right) = ITRR_{DYR}$$

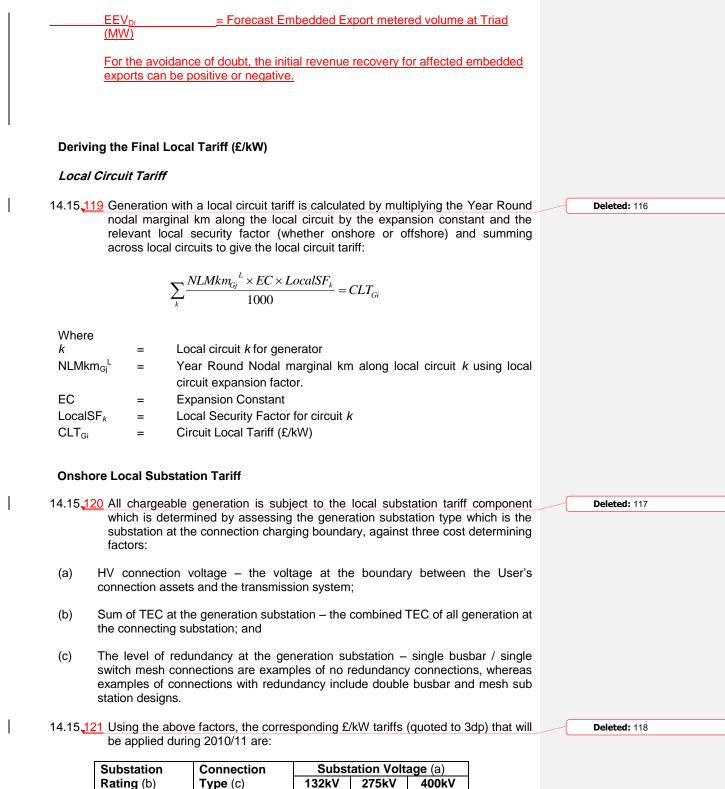
Where:

 Year Round Initial Transport Revenue Recovery for <u>gross GSP</u> group demand

14.15.118The initial revenue recovery for Embedded Exports is the Embedded Export Tariff multiplied by the total forecast volume of Embedded Export at triad:

$$ITRR_{EE} = \sum_{Di=1}^{14} (EET_{Di} \times EEV_{Di})$$

<u>Where</u>


ITTREE

= Initial Revenue impact for Embedded Exports

Page 27 of 63

V1.12-01 April 2016

Deleted: 114

Page 28 of 63

No redundancy

<1320MW

0.133

0.081

V1.12-01 April 2016

0.065

I

1

I

1

<1320MW	Redundancy	0.301	0.192	0.155
>=1320MW	No redundancy	n/a	0.257	0.208
>=1320MW	Redundancy	n/a	0.417	0.336

- 14.15,122 The process for calculating Local Substation Tariffs will be carried out for the first year of the price control and will subsequently be indexed by RPI for each subsequent year of the price control period.
- 14.15,123 The effective Local Tariff (£/kW) is calculated as the sum of the circuit and substation onshore and/or offshore components:

$$ELT_{Gi} = CLT_{Gi} + SLT_{Gi}$$

Where

ELT _{Gi}	=	Effective Local Tariff (£/kW)
SLT_{Gi}	=	Substation Local Tariff (£/kW)

14.15,124 Where tariffs do not change mid way through a charging year, final local tariffs will be the same as the effective tariffs: T_{Gi}

ELT _{Gi}	=	Ľ
Where		
LT _{Gi}	=	F

Final Local Tariff (£/kW) =

14.15,125 Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$LT_{Gi} = \frac{12 \times \left(ELT_{Gi} \times \sum_{Gi=1}^{21} G_{Gi} - FLL_{Gi}\right)}{b \times \sum_{Gi=1}^{21} G_{Gi}} \quad \text{and} \quad FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{21} D_{Di}}$$

Where:

Where

Gi

b = number of months the revised tariff is applicable for

FLL = Forecast local liability incurred over the period that the original tariff is applicable for

14.15,126 For the purposes of charge setting, the total local charge revenue is calculated by:

confidential information received from Users)

in kW (as applicable) for each generator (based on analysis of

$$\begin{aligned} & LCRR_{G} = \sum_{j=Gi} LT_{Gi} * G_{j} \\ & \text{Where} \\ & LCRR_{G} & = & \text{Local Charge Revenue Recovery} \\ & G_{i} & = & \text{Forecast chargeable Generation or Transmission Entry Capacity} \end{aligned}$$

Offshore substation local tariff

platform components.

14.15,127 All offshore chargeable generation is subject to an offshore substation tariff. The offshore substation tariff shall be the sum of transformer, switchgear and

Deleted: 124

Deleted: 119

Deleted: 120

Deleted: 121

Deleted: 122

Deleted: 123

Page 29 of 63

I

I

- 14.15,128 Each tariff component, expressed in £/kW, shall be the ratio of the Offshore Transmission Owner revenue (£) and rating associated with the transformers, switchgear or platform (kW) at each offshore substation. The Offshore Transmission Owner revenue of each tariff component shall include that associated with asset spares. In the case of the platform component, the relevant rating shall be the lower of the transformer or switchgear ratings. As with the offshore circuit expansion factors, the Offshore Transmission Owner revenue associated with each tariff component shall be averaged over the remaining years of the NETSO price control.
- 14.15,129 Offshore Transmission Owner revenue associated with interest during construction and project development overheads will be attributed to the relevant asset category with which it is associated. If these or any other costs included in the Offshore Transmission Owner revenue are not readily attributable to a given asset category, they will be pro-rated across the various asset categories based on their relative cost.
 - 14.15,130 For 2010/11 a discount of £0.345590/kW shall be provided to the offshore substation tariff to reflect the average cost of civil engineering for onshore substations. This will be inflated by RPI each year and reviewed every price control period.
 - 14.15,131 Offshore substation tariffs shall be reviewed at the start of every onshore price control period. For each subsequent year within the price control period, these shall be inflated in the same manner as the associated Offshore Transmission Owner Revenue.
- 14.15,132 The revenue from the offshore substation local tariff is calculated by:

$$SLTR = \sum_{\substack{All \text{ offshore}\\ \text{substatios}}} \left(SLT_k \times \sum_k Gen_k \right)$$

Where:

SLT _k	=	the offshore substation tariff for substation k
Gen _k	=	the generation connected to offshore substation k

The Residual Tariff

14.15,133 The total revenue to be recovered through TNUoS charges is determined each year with reference to the Transmission Licensees' Price Control formulas less the costs expected to be recovered through Pre-Vesting connection charges. Hence in any given year t, a target revenue figure for TNUoS charges (TRR_t) is set after adjusting for any under or over recovery for and including, the small generators discount is as follows:

$$TRR_t = R_t - PVC_t - SG_{t-1}$$

Where

- TRRt = TNUoS Revenue Recovery target for year t
 Rt = Forecast Revenue allowed under The Company's RPI-X Price Control Formula for year t (this term includes a number of adjustments, including for over/under recovery from the previous year). For further information, refer to Special Condition D2 of The Company's Transmission Licence.
 PVCt = Forecast Revenue from Pre-Vesting connection charges for year t
- SG_{t-1} = The proportion of the under/over recovery included within R_t which relates to the operation of statement C13 of the The Company Transmission Licence. Should the operation of statement C13 result in an under

Page 30 of 63

Deleted: 125

Deleted: 126

Deleted: 127

Deleted: 128

Deleted: 129

recovery in year t – 1, the SG figure will be positive and vice versa for an over recovery.

14.15,134 In normal circumstances, the revenue forecast to be recovered from the initial transport tariffs will not equate to the total revenue target. This is due to a number of factors. For example, the transport model assumes, for simplicity, smooth incremental transmission investments can be made. In reality, transmission investment can only be made in discrete 'lumps'. The transmission system has been planned and developed over a long period of time. Forecasts and assessments used for planning purposes will not have been borne out precisely by events and therefore some distinction between an optimal system for one year and the actual system can be expected.

14.15,135 As a result of the factors above, in order to ensure adequate revenue recovery, a constant non-locational **Residual Tariff** for generation and demand is calculated, which includes infrastructure substation asset costs. It is added to the initial transport tariffs for both Peak Security and Year Round backgrounds so that the correct generation / demand revenue split is maintained and the total revenue recovery is achieved.

$$RT_{G} = \frac{(p \times TRR) - ITRR_{DPS} - ITRR_{DYR} - ITRR_{EE}}{\sum_{Di=1}^{14} D_{Di}}$$
$$RT_{G} = \frac{\left[(1-p) \times TRR\right] - ITRR_{GPS} - ITRR_{GYRNS} - ITRR_{GYRS} - LCRR_{G}}{\sum_{Gi=1}^{n} G_{Gi}}$$

Where

Residual Tariff (£/MW)

= Proportion of revenue to be recovered from demand

Final £/kW Tariff

RT

р

14.15,136 The effective Transmission Network Use of System tariff (TNUoS) for generation and gross demand can now be calculated as the sum of the initial transport wider tariffs for Peak Security and Year Round backgrounds, the non-locational residual tariff and the local tariff:

$$ET_{Gi} = \frac{ITT_{GiPS} + ITT_{GiYRNS} + ITT_{GiYRS} + RT_{G}}{1000} + LT_{Gi}$$
$$_ET_{Di} = \frac{ITT_{DiPS} + ITT_{DiYR} + RT_{D}}{1000}$$

Where

ET_{Gi} = Effective Generation TNUoS Tariff expressed in £/kW (ET_{Gi} would only be applicable to a Power Station with a PS flag of 1 and ALF of 1; in all other circumstances ITT_{GiPS}, ITT_{GiYRNS} and ITT_{GiYRS} will be applied using Power Station specific data)

ET_{Di} = Effective Gross Demand TNUoS Tariff expressed in £/kW

Page 31 of 63

Deleted: 131

Deleted: 132

 $RT_D = \frac{(p \times TRR)}{(p \times TRR)}$

Deleted: 133

Ĩ

Deleted: ¶

The effective Transmission Network Use of System tariff (TNUoS) for affected embedded exports and grandfathered embedded exports can now be calculated by expressing the embedded export tariff in £/kW values:

$$ET_{EEi} = \frac{EET_{Di}}{1000}$$

Where **Where**

ET_{EEi} = Effective Embedded Export TNUoS Tariff expressed in £/kW

For the purposes of the annual Statement of Use of System Charges ET_{Gi} will be published as ITT_{GIPS} ; ITT_{GIYRS} , ITT_{GIYRS} , RT_G and LT_{Gi}

14.15,<u>137</u> Where tariffs do not change mid way through a charging year, final demand and generation tariffs will be the same as the effective tariffs.

$$FT_{Gi} = ET_{Gi}$$

$$FT_{Di} = ET_{Di}$$

$$FT_{EEAi} = ET_{EEi}$$

14.15.<u>138</u> Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$FT_{Gi} = \frac{12 \times \left(ET_{Gi} \times \sum_{Gi=1}^{20} G_{Gi} - FL_{Gi}\right)}{b \times \sum_{Gi=1}^{27} G_{Gi}}$$

$$FT_{EEi} = \frac{12 \times (ET_{EEi} \times \sum_{Di=1}^{14} EET_{Di} - FL_{Di})}{b \times \sum_{Di=1}^{14} EET_{Di}} \text{ and } FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{14} EET_{Di}}$$

Where:

1

b = number of months the revised tariff is applicable for FL = Forecast liability incurred over the period that the original tariff is applicable for

Note: The ET_{Gi} element used in the formula above will be based on an individual Power Stations PS flag and ALF for Power Station G_{Gi} , aggregated to ensure overall correct revenue recovery.

14.15.1.39 If the final gross demand TNUoS Tariff results in a negative number then this is collared to £0/kW with the resultant non-recovered revenue smeared over the remaining demand zones:

 $NRRT_{D} = \frac{\sum_{i=1}^{2} \left(FT_{Di} \times D_{Di} \right)}{\sum_{i=\tau+1}^{14} D_{Di}}$

If
$$FT_{Di} < 0$$
, then $i = 1$ to z

Therefore,

Page 32 of 63

V1.12-01 April 2016

Deleted: 134

Deleted: 135

|

ļ

Therefore the revised Final Tariff for the <u>gross</u> demand zones with positive Final tariffs is given by:

	For <i>i</i> = 1 to z:	$RFT_{Di} = 0$			
	For <i>i</i> =z+1 to 14:	$RFT_{Di} = FT_{Di} + NRRT_{D}$			
Where NRRT _D RFT _{Di}	 Non Recovered Reve Revised Final Tariff (£ 				
	The tariffs applicable for a Statement of Use of Syst website. Archived tariff in website.	em Charges, which is av	ailable from the Charging	Deleted: 137	
•	The zonal maps reference Charges and available on for the charging year in q TNUoS zones.	the Charging website co	ontain detailed information	Deleted: 138	
14.15 <mark>,142</mark>	New Grid Supply Points wil	l be classified into zones o	on the following basis:	Deleted: 139	
	demand zones, according t ated for energy market settl		h the Grid Supply Point is		
and, marg	generation zones, with refe where close to a bounda ginal costs arising from trans e zone, which contains the r	ary between existing zon sport model studies. The	es, with reference to the GSP will then be allocated		
	The Company has availab			Deleted: 140	
	tariff model template and c values of generation and c and data will enable the b allow sensitivity analysis o and demand to be under Team and whilst it is free distribution and commercia	demand connection points asic nodal charges to be concerning alternative de aken. The model is av of charge, it is provided u	to the NETS. The model determined and will also velopments of generation ailable from the Charging		
14.15 <mark>,144</mark>	The Company will be pleas			Deleted: 141	
	a separate study contract i of System Charges. Pleas				
	The factors which will affer include-;	ect the level of TNUoS c	harges from year to year	Deleted: 142	
		revious year), stant,	tem effect of any under/over		
	Pa	ge 33 of 63	V1.12– 01 April 2016		

- the ALF of a generator
- changes in the transmission network
- HVDC circuit impedance calculation
- changes in the pattern of generation capacity and demand.
- changes in the pattern of embedded exports

14.15,146 In accordance with Standard Licence Condition C13, generation directly connected to the NETS 132kV transmission network which would normally be subject to generation TNUoS charges but would not, on the basis of generating capacity, be liable for charges if it were connected to a licensed distribution network qualifies for a reduction in transmission charges by a designated sum, determined by the Authority. Any shortfall in recovery will result in a unit amount increase in gross demand charges to compensate for the deficit. Further information is provided in the Statement of the Use of System Charges.

Stability & Predictability of TNUoS tariffs

14.15,<u>147</u> A number of provisions are included within the methodology to promote the stability and predictability of TNUoS tariffs. These are described in 14.29.

Deleted: 143

Deleted: 144

14.16 Derivation of the Transmission Network Use of System Energy Consumption Tariff and Short Term Capacity Tariffs

- 14.16.1 For the purposes of this section, Lead Parties of Balancing Mechanism (BM) Units that are liable for Transmission Network Use of System Demand Charges are termed Suppliers.
- 14.16.2 Following calculation of the Transmission Network Use of System £/kW Gross Demand Tariff (as outlined in Chapter 2: Derivation of the TNUoS Tariff) for each GSP Group is calculated as follows:

$$p/kWh Tariff = (NHHD_F * £/kW Tariff - FL_G) *100$$

NHHC_G

Where:

 \pounds/kW Tariff = The \pounds/kW Effective <u>Gross</u> Demand Tariff (\pounds/kW), as calculated previously, for the GSP Group concerned.

 \mathbf{NHHD}_{F} = The Company's forecast of Suppliers' non-half-hourly metered Triad Demand (kW) for the GSP Group concerned. The forecast is based on historical data.

 FL_{G} = Forecast Liability incurred for the GSP Group concerned.

 $\rm NHHC_{G}$ = The Company's forecast of GSP Group non-half-hourly metered total energy consumption (kWh) for the period 16:00 hrs to 19:00hrs inclusive (i.e. settlement periods 33 to 38) inclusive over the period the tariff is applicable for the GSP Group concerned.

Short Term Transmission Entry Capacity (STTEC) Tariff

14.16.3 The Short Term Transmission Entry Capacity (STTEC) tariff for positive zones is derived from the Effective Tariff (ET_{Gi}) annual TNUoS £/kW tariffs (14.15.112). If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the STTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (i.e. over the whole financial year, not just the period that the STTEC is applicable for). STTECs will not be reconciled following a mid year charge change. The premium associated with the flexible product is associated with the analysis that 90% of the annual charge is linked to the system peak. The system peak is likely to occur in the period of November to February inclusive (120 days, irrespective of leap years). The calculation for positive generation zones is as follows:

$$\frac{FT_{Gi} \times 0.9 \times STTEC \ Period}{120} = STTEC \ tariff \ (\pounds/kW/period)$$

Where:

FT	=	Final annual TNUoS Tariff expressed in £/kW
Gi	=	Generation zone
STTEC Period	=	A period applied for in days as defined in the CUSC

Page 35 of 63

- 14.16.4 For the avoidance of doubt, the charge calculated under 14.16.3 above will represent each single period application for STTEC. Requests for multiple /STTEC periods will result in each STTEC period being calculated and invoiced separately.
- 14.16.5 The STTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.

Limited Duration Transmission Entry Capacity (LDTEC) Tariffs

14.16.6 The Limited Duration Transmission Entry Capacity (LDTEC) tariff for positive zones is derived from the equivalent zonal STTEC tariff for up to the initial 17 weeks of LDTEC in a given charging year (whether consecutive or not). For the remaining weeks of the year, the LDTEC tariff is set to collect the balance of the annual TNUoS liability over the maximum duration of LDTEC that can be granted in a single application. If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the LDTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (ie over the whole financial year, not just the period that the STTEC is applicable for). LDTECs will not be reconciled following a mid year charge change:

Initial 17 weeks (high rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.9 \times 7}{120}$$

Remaining weeks (low rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.1075 \times 7}{316 - 120} \times (1 + P)$$

where FT is the final annual TNUoS tariff expressed in £/kW; G_i is the generation TNUoS zone; and P is the premium in % above the annual equivalent TNUoS charge as determined by The Company, which shall have the value 0.

- 14.16.7 The LDTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.
- 14.16.8 The tariffs applicable for any particular year are detailed in The Company's **Statement of Use of System Charges** which is available from the **Charging website**. Historical tariffs are also available on the **Charging website**.

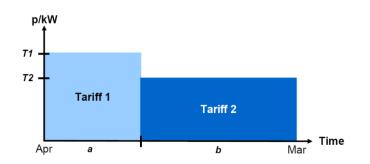
14.17 Demand Charges

Parties Liable for Demand Charges

- 14.17.1 Demand charges are subdivided into charges for gross demand, energy and embedded export. The following parties shall be liable for some or all of the categories of demand charges:
 - The Lead Party of a Supplier BM Unit;
 - Power Stations with a Bilateral Connection Agreement;
 - Parties with a Bilateral Embedded Generation Agreement
- 14.17.2 Classification of parties for charging purposes, section 14.26, provides an illustration of how a party is classified in the context of Use of System charging and refers to the paragraphs most pertinent to each party.

Basis of Gross Demand Charges

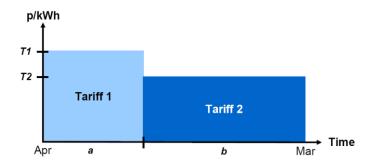
app


app

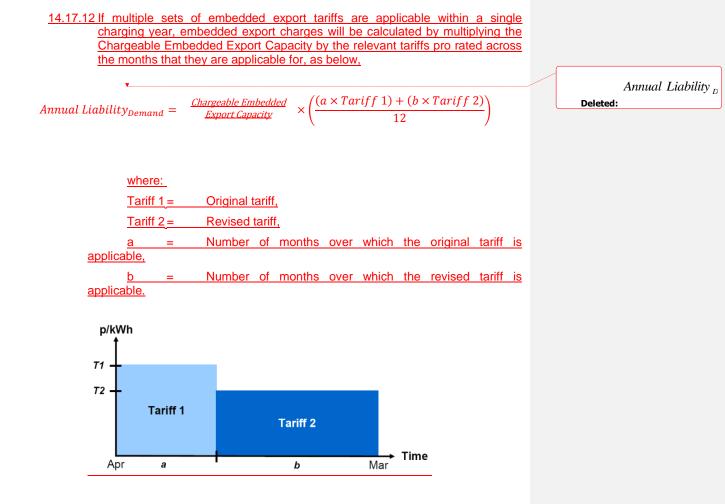
- 14.17.3 <u>Gross d</u>emand charges are based on a de-<u>minimis</u> £0/kW charge for Half Hourly and £0/kWh for Non Half Hourly metered demand.
 - 14.17.4 Chargeable <u>Gross</u> Demand Capacity is the value of Triad <u>gross</u> demand (kW). Chargeable Energy Capacity is the energy consumption (kWh). The definition of both these terms is set out below.
 - 14.17.5 If there is a single set of <u>gross</u> demand tariffs within a charging year, the Chargeable <u>Gross</u> Demand Capacity is multiplied by the relevant <u>gross</u> demand tariff, for the calculation of <u>gross</u> demand charges.
 - 14.17.6 If there is a single set of energy tariffs within a charging year, the Chargeable Energy Capacity is multiplied by the relevant energy consumption tariff for the calculation of energy charges..
 - 14.17.7 If multiple sets of <u>gross</u> demand tariffs are applicable within a single charging year, <u>gross</u> demand charges will be calculated by multiplying the Chargeable <u>Gross</u> Demand Capacity by the relevant tariffs pro rated across the months that they are applicable for, as below,

Annuc	ıl Liabilit <u>;</u>	y _{Demand} = <u>Cha</u> <u>Der</u>	nrge. man	<u>able Gross</u> <u>d Capacity</u>	$\times \left(\frac{(a)}{a}\right)$	< Tariff 2	$\frac{1}{12} + (b)$	×Tariff2	<u>!)</u>)	
whe	re:						_			
Tarif	ff 1 =	Original ta	ariff	,						
Tarif	ff 2 =	Revised ta	arif	f,						
a licable,	=	Number	of	months	over	which	the	original	tariff	is
b licable.	=	Number	of	months	over	which	the	revised	tariff	is

Deleted: minimus


Deleted: Annual Liability _D

14.17.8 If multiple sets of energy tariffs are applicable within a single charging year, energy charges will be calculated by multiplying relevant Tariffs by the Chargeable Energy Capacity over the period that that the tariffs are applicable for and summing over the year.


Annual Liability $_{Energy} = Tariff \ 1 \times \sum_{TI_s}^{TI_E} Chargeable Energy Capacity + Tariff \ 2 \times \sum_{TZ_s}^{TI_E} Chargeable Energy Capacity$

Where: T1s Start date for the period for which the original tariff is = applicable, End date for the period for which the original tariff is T1_E applicable, Start date for the period for which the revised tariff is T2s _ applicable, End date for the period for which the revised tariff is T2_E = applicable.

Basis of Embedded Export Charges

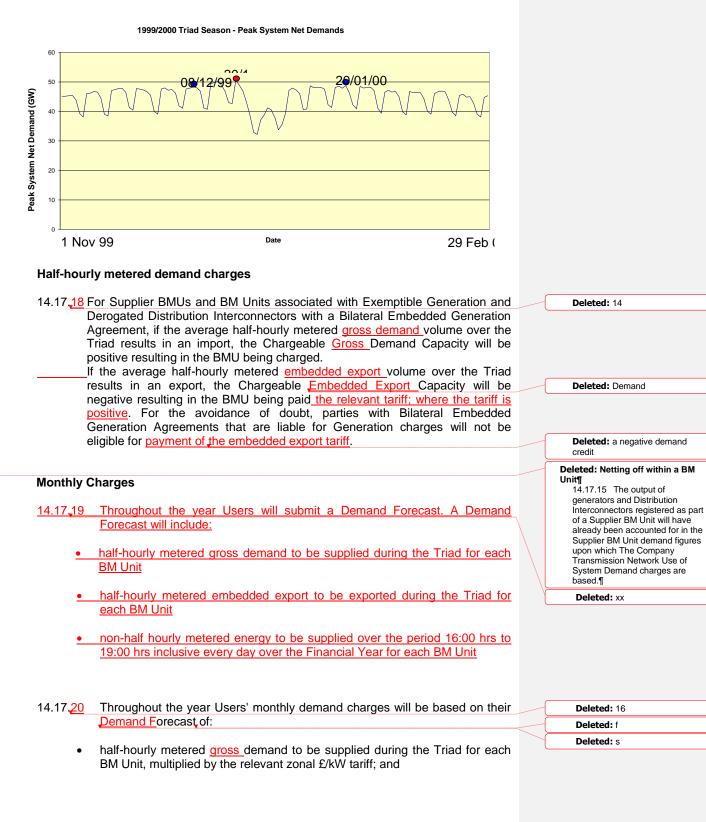
- 14.17.9 Embedded export charges are based on a £/kW charge for Half Hourly metered embedded export.
- <u>14.17.10 Chargeable Embedded Export Capacity is the value of Embedded Export at</u> <u>Triad (kW). The definition of this term is set out below.</u>
- 14.17.11 If there is a single set of embedded export tariffs within a charging year, the Chargeable Embedded Export Capacity is multiplied by the relevant embedded export tariff, for the calculation of embedded export charges.

Supplier BM Unit

14.17,<u>13</u> A Supplier BM Unit charges will be the sum of its energy, <u>gross_demand_and</u> <u>embedded export</u> liabilities where:

- The Chargeable <u>Gross</u> Demand Capacity will be the average of the Supplier BM Unit's half-hourly metered <u>gross</u> demand during the Triad (and the £/kW tariff),
- The Chargeable Embedded Export Capacity will be the average of the Supplier BM Unit's half-hourly metered embedded export during the Triad (and the £/kW tariff), and
- The Chargeable Energy Capacity will be the Supplier BM Unit's non halfhourly metered energy consumption over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year (and the p/kWh tariff).

Power Stations with a Bilateral Connection Agreement and Licensable Generation with a Bilateral Embedded Generation Agreement


Page 39 of 63

V1.12-01 April 2016

CUSC v1.12	
14.17,14 The Chargeable Gross Demand Capacity for a Power Station with a Bilateral	Deleted: 10
Connection Agreement or Licensable Generation with a Bilateral Embedded	
Generation Agreement will be based on the average of the gross import over	Deleted: net
each Triad leg of the BM Units associated with the Power Station (in Appendix C of its Bilateral Connection Agreement or Bilateral Embedded Generation Agreement, including metered additional load) during the Triad.	
Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement	
14.17,15,The demand charges for Exemptible Generation and Derogated Distribution	Deleted: 11
Interconnector with a Bilateral Embedded Generation Agreement will be the sum of its gross demand and embedded export liabilities where:	Deleted: An
sum of his gross demand and embedded export liabilities where.	
 The Chargeable Gross Demand Capacity for Exemptible Generation and Deve geted Distribution Intercomposition with a Dilatoral Each added Composition 	
Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement will be based on the average of the metered <u>gross demand</u> of	Deleted: volume
each BM Unit specified in Appendix C of the Bilateral Embedded Generation	Deleted: volume
Agreement during the Triad.	
The Chargeable Embedded Export Capacity for Exemptible Generation and	
 <u>The Chargeable Embedded Export Capacity for Exemptible Generation and</u> Derogated Distribution Interconnectors with a Bilateral Embedded Generation 	
Agreement will be based on the average of the metered embedded export of	
each BM Unit specified in Appendix C of the Bilateral Embedded Generation	
Agreement during the Triad.	
Small Generators Tariffs	
14.17.16 In accordance with Standard Licence Condition C13, any under recovery from	Deleted: 12
the MAR arising from the small generators discount will result in a unit amount	
of increase to all GB gross demand tariffs.	
The Triad	
The mau	
14.17,17 The Triad is used as a short hand way to describe the three settlement periods	Deleted: 13
of highest transmission system demand within a Financial Year, namely the	
half hour settlement period of system peak net demand and the two half hour	
settlement periods of next highest <u>net</u> demand, which are separated from the	
system peak <u>net</u> demand and from each other by at least 10 Clear Days, between November and February of the Financial Year inclusive. Exports on	
directly connected Interconnectors and Interconnectors capable of exporting	
more than 100MW to the Total System shall be excluded when determining the	
system peak net demand. An illustration is shown below.	

I

I

- half-hourly metered embedded export to be supplied during the Triad for each BM Unit, multiplied by the relevant zonal £/kW tariff; and
- non-half hourly metered energy to be supplied over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year for each BM Unit, multiplied by the relevant zonal p/kWh tariff

Users' annual TNUoS demand charges are based on these forecasts and are split evenly over the 12 months of the year. Users have the opportunity to vary their demand forecasts on a quarterly basis over the course of the year, with the demand forecast requested in February relating to the next Financial Year. Users will be notified of the timescales and process for each of the quarterly updates. The Company will revise the monthly Transmission Network Use of System demand charges by calculating the annual charge based on the new forecast, subtracting the amount paid to date, and splitting the remainder evenly over the remaining months. For the avoidance of doubt, only positive demand forecasts (i.e. representing <u>a net</u> import from the system) will be <u>used in the calculation of charges</u>.

Demand forecasts for a User will be considered positive where:

- The sum of the gross demand forecast and embedded export forecast is positive; and
- The non-half hourly metered energy forecast is positive.

14.17.21 Users should submit reasonable forecasts of gross demand, embedded export and energy in accordance with the CUSC. The Company shall use the following methodology to derive a forecast to be used in determining whether a User's forecast is reasonable, in accordance with the CUSC, and this will be used as a replacement forecast if the User's total forecast is deemed unreasonable. The Company will, at all times, use the latest available Settlement data.

For existing Users:

- i) The User's Triad <u>gross</u> demand<u>and embedded export</u> for the preceding Financial Year will be used where User settlement data is available and where The Company calculates its forecast before the Financial Year. Otherwise, the User's average weekday settlement period 35 half-hourly metered (HH) <u>gross</u> demand <u>and embedded export</u> in the Financial Year to date is compared to the equivalent average <u>gross</u> demand<u>and</u> <u>embedded export</u> for the corresponding days in the preceding year. The percentage difference is then applied to the User's HH <u>gross</u> demand<u>and</u> <u>embedded export</u> at Triad in the preceding Financial Year to derive a forecast of the User's HH <u>gross</u> demand <u>and embedded export</u> at Triad for this Financial Year.
- ii) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day in the Financial Year to date is compared to the equivalent energy consumption over the corresponding days in the preceding year. The percentage difference is then applied to the User's total NHH energy consumption in the preceding Financial Year to derive a forecast of the User's NHH energy consumption for this Financial Year.

For new Users who have completed a Use of System Supply Confirmation Notice in the current Financial Year:

Page 42 of 63

V1.12-01 April 2016

Deleted: accepted

1

iii) The User's average weekday settlement period 35 half-hourly metered (HH) gross demand and embedded export over the last complete month for which The Company has settlement data is calculated. Total system average HH gross demand and embedded export for weekday settlement period 35 for the corresponding month in the previous year is compared to total system HH_gross demand and embedded export at Triad in that year and a percentage difference is calculated. This percentage is then applied to the User's average HH gross demand and embedded export for weekday settlement period 35 over the last month to derive a forecast of the User's HH gross demand and embedded export at Triad for this Financial Year.

- iv) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day over the last complete month for which The Company has settlement data is noted. Total system NHH energy consumption over the corresponding month in the previous year is compared to total system NHH energy consumption over the remaining months of that Financial Year and a percentage difference is calculated. This percentage is then applied to the User's NHH energy consumption over the month described above, and all NHH energy consumption in previous months is added, in order to derive a forecast of the User's NHH metered energy consumption for this Financial Year.
- 14.17.22 14.28 Determination of The Company's Forecast for Demand Charge Purposes illustrates how the demand forecast will be calculated by The Company.

Reconciliation of Demand Charges

14.17,23 The reconciliation process is set out in the CUSC. The demand reconciliation process compares the monthly charges paid by Users against actual outturn charges. Due to the Settlements process, reconciliation of demand charges is carried out in two stages; initial reconciliation and final reconciliation.

Initial Reconciliation of demand charges

14.17,24 The initial reconciliation process compares Users' demand forecasts and corresponding monthly charges paid over the year against actual outturn data (using latest Settlement data available at the time) and corresponding charges. Initial reconciliation is carried out in two parts; Initial Reconciliation Part 1 deals with the reconciliation of half-hourly metered demand charges and Initial Reconciliation Part 2 deals with the reconciliation of non-half-hourly metered demand charges.

Initial Reconciliation Part 1– Half-hourly metered demand

- 14.17.25 The Company will identify the periods forming the Triad once it has received Central Volume Allocation data from the Settlement Administration Agent for all days up to and including the last day of February. Once The Company has notified Users of the periods forming the Triad they will not be changed even if disputes are subsequently resolved which would change the periods forming the Triad.
- 14.17,<u>26</u> Initial outturn charges for half-hourly metered <u>gross</u> demand will be determined using the latest available data of actual average Triad <u>gross</u> demand (kW) multiplied by the zonal <u>gross</u> demand tariff(s) (£/kW) applicable to the months

Page 43 of 63

Deleted: 18

Deleted: 19

Deleted: 20

Deleted: 1

Сι

l

I

I

l

I

SC v1.12			
	concerned for each zone for that Financial Year. These acture reconciled against the monthly charges paid in respect of demand.		
<u>14.17,2</u>	7 Initial outturn charges for half-hourly metered embedded determined using the latest available data of actual average export (kW) multiplied by the zonal embedded export tariff(s) to the months concerned for each zone for that Financial Yo values are then reconciled against the monthly charges paid hourly embedded exports.	e Triad embedded (£/kW) applicable ear. These actual	Deleted: xx
Initial F	econciliation Part 2 – Non-half-hourly metered demand		
14.17	8 Actual payments for non-half-hourly metered demand will be the latest available actual energy consumption data (kWh) for hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 3 multiplied by the energy consumption tariff(s) (p/kWh) applica concerned for each zone. These actual values are then reco- monthly charges paid in respect of non-half-hourly energy con-	r the period 16:00 38) over the year able to the months onciled against the	Deleted: 23
Final R	econciliation of demand charges		
14.17.2	9 The final reconciliation process compares Users' charges (as the initial reconciliation process using the latest available outturn demand charges (based on final settlement data of demand, embedded exports and non-half-hourly energy cons	data) against final half-hourly gross	Deleted: 24
14.17	<u>Pinal actual charges will be determined using the final dem data taken from the Final Reconciliation Settlement Reconciliation Volume Allocation Run.</u>		Deleted: 25
Recon	iliation of manifest errors		
14.17	1 In the event that a manifest error, or multiple errors in the cal tariffs results in a material discrepancy in aUsers T reconciliation process for all Users qualifying under Section accordance with Sections 14.17,24 to 14.17,30. The reconciliation is not practicable, a post-year reconciliation will the form of a one-off payment.	NUoS tariff, the 14.17. <u>33</u> will be in onciliation process 5. Where such	Deleted: 26 Deleted: 28 Deleted: 20 Deleted: 25
14.17	2 A manifest error shall be defined as any of the following:		Deleted: 27
	 a) an error in the transfer of relevant data between Licensees or Distribution Network Operators; b) an error in the population of the Transport Model with c) an error in the function of the Transport Model; or d) an error in the inputs or function of the Tariff Model. 		
14.17	<u>3</u> A manifest error shall be considered material in the event that the net effect of multiple errors, has an impact of the lesser of the l		Deleted: 28
	a) an error in a User's TNUoS tariff of at least +/-£0.50/		
	Page 44 of 63	V1.12– 01 April 2016	

b) an error in a User's TNUoS tariff which results in an error in the annual TNUoS charge of a User in excess of +/-£250,000.

14.17,<u>34</u> A manifest error shall only be reconciled if it has been identified within the charging year for which the error has an effect. Errors identified outside of this period will not be eligible for reconciliation retrospectively.

Implementation of P272

- 14.17,<u>35</u>.1 BSC modification P272 requires Suppliers to move Profile Classes 5-8 to Measurement Class E - G (i.e. moving from NHH to HH settlement) by April 2016. The majority of these meters are expected to transfer during the preceding Charging Years up until the implementation date of P272 and some meters will have been transferred before the start of 1ST April 2015. A change from NHH to HH within a Charging Year would normally result in Suppliers being liable for TNUoS for part of the year as NHH and also being subject to HH charging. This section describes how the Company will treat this situation in the transition to P272 implementation for the purposes of TNUoS charging; and the forecasts that Suppliers should provide to the Company.
- 14.17,<u>35.2</u> Notwithstanding 14.17,<u>13</u>, for each Charging Year which begins after 31 March 2015 and prior to implementation of BSC Modification P272, all demand associated with meters that are in NHH Profile Classes 5 to 8 at the start of that charging year as well as all meters in Measurement Classes E G will be treated as Chargeable Energy Capacity (NHH) for the purposes of TNUoS charging for the full Charging Year unless 14.17,<u>35.3</u> applies.
 - 14.17,35.3 Where prior to 1st April 2015 a Profile Class meter has already transferred to Measurement Class settlement (HH) the associated Supplier may opt to treat the demand volume as Chargeable Demand Capacity (HH) for the purposes of TNUoS charging up until implementation of P272, subject to meeting conditions in 14.17,35.6. If the associated Supplier does not opt to treat the demand volume as Demand Capacity (HH) it will be treated by default as Chargeable Energy Capacity (NHH) for each full Charging Year up until implementation of P272.
 - 14.17,35.4 The Company will calculate the Chargeable Energy Capacity associated with meters that have transferred to HH settlement but are still treated as NHH for the purposes of TNUoS charging from Settlement data provided directly from Elexon i.e. Suppliers need not Supply any additional information if they accept this default position.
- 14.17,35.5 The forecasts that Suppliers submit to the Company under CUSC 3.10, 3.11 and 3.12 for the purpose of TNUoS monthly billing referred to in 14.17,20 and 14.17,21 for both Chargeable Demand Capacity and Chargeable Energy Capacity should reflect this position i.e. volumes associated those Metering Systems that have transferred from a Profile Class to a Measurement Class in the BSC (NHH to HH settlement) but are to be treated as NHH for the purposes of TNUoS charging should be included in the forecast of Chargeable Energy Capacity and not Chargeable Demand Capacity, unless 14.17,35.3 applies.
 - 14.17,<u>35</u>.6 Where a Supplier wishes for Metering Systems that have transferred from Profile Class to Measurement Class in the BSC (NHH to HH settlement) prior to 1st April 2015, to be treated as Chargeable Demand Capacity (HH/

Page 45 of 63

V1.12-01 April 2016

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 9

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 16

Deleted: 17

Deleted: 29

I

Measurement Class settled) it must inform the Company prior to October 2015. The Company will treat these as Chargeable Demand Capacity (HH / Measurement Class settled) for the purposes of calculating the actual annual liability for the Charging Years up until implementation of P272. For these cases only, the Supplier should notify the Company of the Meter Point Administration Number(s) (MPAN). For these notified meters the Supplier shall provide the Company with verified metered demand data for the hours between 4pm and 7pm of each day of each Charging Year up to implementation of P272 and for each Triad half hour as notified by the Company prior to May of the following Charging Year up until two years after the implementation of P272 to allow reconciliation (e.g. Mav 2017 and May 2018 for the Charging Year 2016/17). Where the Supplier fails to provide the data or the data is incomplete for a Charging Year TNUoS charges for that MPAN will be reconciled as part of the Supplier's NHH BMU (Chargeable Energy Capacity). Where a Supplier opts, if eligible, for TNUoS liability to be calculated on Chargeable Demand Capacity it shall submit the forecasts referred to in 14.17,35.5 taking account of this.

14.17,35.7 The Company will maintain a list of all MPANs that Suppliers have elected to be treated as HH. This list will be updated monthly and will be provided to registered Suppliers upon request.

Further Information

- 14.17,<u>36</u> 14.25 Reconciliation of Demand Related Transmission Network Use of System Charges of this statement illustrates how the monthly charges are reconciled against the actual values for <u>gross</u> demand, <u>embedded export</u> and consumption for half-hourly <u>gross demand</u>, <u>embedded export</u> and non-halfhourly metered demand respectively.
- 14.17,<u>37</u> **The Statement of Use of System Charges** contains the £/kW zonal gross demand tariffs, <u>the £/kW zonal embedded export tariffs</u>, and the p/kWh energy consumption tariffs for the current Financial Year.
- 14.17,<u>38</u>14.27 Transmission Network Use of System Charging Flowcharts of this statement contains flowcharts demonstrating the calculation of these charges for those parties liable.

Deleted: 29 Deleted: 30

Deleted: 29

Deleted: 31

....

14.24 Example: Calculation of Zonal Gross Demand Tariff

Let us consider all nodes in a demand zone in this example

The table below shows a sample output of the transport model comprising the node, the Peak Security and Year Round marginal km of an injection at the node with a consequent withdrawal at the distributed reference node, the generation sited at the node, scaled to ensure total national generation = total national <u>net</u> demand and the <u>net</u> demand sited at the node.

Demand Zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	<u>Net</u> Demand (MW)
14	ABHA4A	-77.25	-230.25	127
14	ABHA4B	-77.27	-230.12	127
14	ALVE4A	-82.28	-197.18	100
14	ALVE4B	-82.28	-197.15	100
14	AXMI40_SWEB	-125.58	-176.19	97
14	BRWA2A	-46.55	-182.68	96
14	BRWA2B	-46.55	-181.12	96
14	EXET40	-87.69	-164.42	340
14	HINP20	-46.55	-147.14	0
14	HINP40	-46.55	-147.14	0
14	INDQ40	-102.02	-262.50	444
14	IROA20_SWEB	-109.05	-141.92	462
14	LAND40	-62.54	-246.16	262
14	MELK40_SWEB	18.67	-140.75	83
14	SEAB40	65.33	-140.97	304
14	TAUN4A	-66.65	-149.11	55
14	TAUN4B	-66.66	-149.11	55
		Totals		2748

In order to calculate the <u>gross</u> demand tariff we would carry out the following steps:

(i) calculate the demand weighted nodal shadow costs

For this example zone this would be as follows:

Demand zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	Net Demand (MW)	Peak Security Demand Weighted Nodal Marginal km	Year Round Demand Weighted Nodal Marginal km
14	ABHA4A	-77.25	-230.25	127	-3.57	-10.64
14	ABHA4B	-77.27	-230.12	127	-3.57	-10.64
14	ALVE4A	-82.28	-197.18	100	-2.99	-7.17
14	ALVE4B	-82.28	-197.15	100	-2.99	-7.17
14	AXMI40_SWEB	-125.58	-176.19	97	-4.43	-6.22
14	BRWA2A	-46.55	-182.68	96	-1.63	-6.38
14	BRWA2B	-46.55	-181.12	96	-1.63	-6.33
14	EXET40	-87.69	-164.42	340	-10.85	-20.34
14	INDQ40	-102.02	-262.50	444	-16.48	-42.41
14	IROA20_SWEB	-109.05	-141.92	462	-18.33	-23.86
14	LAND40	-62.54	-246.16	262	-5.96	-23.47
14	MELK40_SWEB	18.67	-140.75	83	0.56	-4.25
14	SEAB40	65.33	-140.97	304	7.23	-15.59
14	TAUN4A	-66.65	-149.11	55	-1.33	-2.98
14	TAUN4B	-66.66	-149.11	55	-1.33	-2.98
		Totals		2748	-49.19	-190.43

(ii) sum the Peak Security and Year Round demand weighted nodal shadow costs to give zonal figures. For this example zone this is shown in the above table and is 49.19km for Peak Security background and 190.43km for Year Round background.

(iii) calculate the transport tariffs by multiplying the figures in (ii) above by the expansion constant (& dividing by 1000 to put into units of £/kW):

For this example zone, assuming an expansion constant of $\pm 10.07/MWkm$ and a locational security factor of 1.80:

a) Peak Security tariff – 49.19km <u>* £10.07/MWkm * 1.8</u> = <u>£0.89/kW</u> 1000

Page 49 of 63

b) Year Round tariff -<u>190.43km * £10.07/MWkm * 1.8</u> = <u>£3.45/kW</u> 1000

(iv) We now need to calculate the residual tariff. This is calculated by taking the total revenue to be recovered from demand (calculated as c.73% of total The Company_ TNUoS target revenue for the year), less the revenue which would be recovered through the demand transport tariffs and revenue recovery through embedded export tariffs, divided by total expected gross GSP group demand.

Assuming the total revenue to be recovered from TNUoS is £1067m, the total recovery from <u>gross GSP group</u> demand would be $(73\% \times £1067m) = £779m$. Assuming the total recovery from <u>gross GSP group</u> demand transport tariffs is £140m, total recovery from <u>embedded export tariffs is -£10m</u> and total forecast chargeable <u>gross GSP group</u> demand capacity is 50000MW, the demand residual tariff would be as follows:

 $\frac{\pounds779m - \pounds140m - -\pounds10m}{50,000MW} = \pounds12.98/kW$

 (v) to get to the final tariff, we simply add on the demand residual tariff calculated in (v) to the zonal transport tariffs calculated in (iii(a)) and (iii(b))

For zone 14:

 $\pounds 0.89/kW + \pounds 3.45/kW + \pounds 12.98/kW =$ $\pounds 17.32/kW$

- To summarise, in order to calculate the <u>gross</u> demand tariffs, we evaluate a <u>net</u> demand weighted zonal marginal km cost multiply by the expansion constant and locational security factor then we add a constant (termed the residual cost) to give the overall tariff.
- (vii) The final demand tariff is subject to further adjustment to allow for the minimum £0/kW gross_demand charge. The application of a discount for small generators pursuant to Licence Condition C13 will also affect the final gross_demand tariff.

Deleted: gross

Deleted: 130m

Deleted:	$\pounds779m - \pounds130m$	_
Deleteu:	50000MW	_

14.25 Reconciliation of <u>Gross</u> Demand Related Transmission Network Use of System Charges

This appendix illustrates the methodology used by The Company in the reconciliation of Transmission Network Use of System charges for <u>gross</u> demand. The example highlights the different stages of the calculations from the monthly invoiced amounts, right through to Final Reconciliation.

Monthly Charges

Suppliers provide half-hourly (HH) gross demand and embedded export forecasts and non-halfhourly (NHH) demand forecasts by BM Unit every quarter. An example of such forecasts and the corresponding monthly invoiced amounts, based on tariffs of £10.00/kW for gross demand, £5.00/kW for embedded export and 1.20p/kWh for energy consumption, is as follows:

	Forecast HH Triad <u>Gross</u> Demand <u>HHD_E (</u> kW)	HH <u>Gross</u> <u>Demand</u> Monthly Invoiced Amount (£)	Forecast HH Triad Embedded Export HHEE _E (kW)	<u>HH</u> <u>Embedded</u> <u>Generation</u> <u>Monthly</u> <u>Invoiced</u> <u>Amount (£)</u>	Forecast NHH Energy Consumpti on NHHC _F (kW h)	NHH Monthly Invoiced Amount (£)	Net Monthly Invoiced Amount (£)
Apr	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
May	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jun	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jul	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Aug	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Sep	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Oct	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Nov	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Dec	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Jan	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Feb	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Mar	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Total		72,000		<u>(3,000)</u>		216,000	<u>297</u> ,000

As shown, for the first nine months the Supplier provided a 12,000kW HH triad <u>gross</u> demand forecast, and hence paid HH <u>gross demand</u> monthly charges of £10,000 ((12,000kW x £10.00/kW)/12) for that BM Unit. In January the Supplier provided a revised forecast of 7,200kW, implying a forecast annual charge reduced to £72,000 (7,200kW x £10.00/kW). The Supplier had already paid £90,000, so the excess of £18,000 was credited back to the supplier in three £6,000 instalments over the last three months of the year.

The Supplier provided an embedded export triad forecast of -600kW and hence was paid an embedded export credit of £250 ((600kW x £5.00/kW)/12) for that BM Unit (For the avoidance of doubt, if the embedded export tariff is negative this will result in a debit).

The Supplier also initially provided a 15,000,000kWh NHH energy consumption forecast, and hence paid NHH monthly charges of £15,000 ((15,000,000kWh x 1.2p/kWh)/12) for that BM Unit. In July the Supplier provided a revised forecast of 18,000,000kWh, implying a forecast annual charge increased to £216,000 (18,000,000kWh x 1.2p/kWh). The Supplier had already

paid £45,000, so the remaining £171,000 was split into payments of £19,000 for the last nine months of the year.

The right hand column shows the net monthly charges for the BM Unit.

Initial Reconciliation (Part 1a)

The Supplier's outturn HH triad <u>gross</u> demand, based on <u>initial</u> settlement data (and therefore subject to change in subsequent settlement runs), was 9,000kW. The HH triad <u>gross</u> demand reconciliation charge is therefore calculated as follows:

HHD Reconciliation Charge = $(HHD_A - HHD_F) \times \pounds/kW$ Tariff

= (9,000kW - 7,200kW) x £10.00/kW

= 1,800kW x £10.00/kW

= £18,000

To calculate monthly interest charges, the outturn HHD charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHD charge less the HH <u>gross demand</u> monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 1b)

The Supplier's outturn HH triad embedded export, based on initial settlement data (and therefore subject to change in subsequent settlement runs), was 700kW. The HH triad embedded export reconciliation charge is therefore calculated as follows:

HHEE Reconciliation Charge = (HHEE_A – HHEE_E) x £/kW Tariff

 $= (-500 \text{kW} - -600 \text{kW}) \times \text{\pounds}5.00/\text{kW}$

 $= 100 \text{kW} \times \text{\pounds}5.00/\text{kW}$

= **£500**

To calculate monthly interest charges, the outturn HHEE charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHEE charge less the HH embedded generation monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 2)

The Supplier's outturn NHH energy consumption, based on initial settlement data, was 17,000,000kWh. The NHH energy consumption reconciliation charge is therefore calculated as follows:

Deleted: Please note that payments made to BM Units with a net export over the Triad, based on initial settlement data, will also be reconciled at this stage.¶ As monthly payments will not be made on the basis of a negative forecast, the HHD Reconciliation Charge for an exporting BM Unit will represent the full actual payment owed to that BM Unit (subject to adjustment by subsequent settlement runs). Interest will be calculated as described above.¶

NHHC Reconciliation Charge = $(NHHC_A - NHHC_F) \times p/kWh$ Tariff

100

= <u>(17,000,000kWh - 18,000,000kWh) x 1.20p/kWh</u>

100

= <u>-1,000,000kWh x 1.20p/kWh</u> 100 = **-£12,000**

worked example 4.xls - Initial!J104

The monthly reconciliation amount is equal to the outturn energy consumption charge for that month less the NHH monthly invoiced amount. Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

The net initial TNUoS demand reconciliation charge is therefore $\pounds 6,500$ (£18,000 + $\pounds 500$ - $\pounds 12,000$).

Final Reconciliation

Finally, let us now suppose that after all <u>final</u> Settlement data has been received (up to 14 months after the relevant dates), the outturn HH triad <u>gross</u> demand, <u>HH triad embedded export</u> and NHH energy consumption values were 9,500kW, <u>-550kW</u> and 16,500,000kWh, respectively.

Final HH <u>Gross Demand</u>	= (9,500kW - 9,000kW) x £10.00/kW
<u>Reconciliation Charge</u>	= £5,000
Final HH Embedded Export	= (-550kW500kW) x £5.00/kW
Reconciliation Charge	= -£250

Final NHH Reconciliation Charge = $(16,700,000kWh - 17,000,000kWh) \times 1.20p/kWh$ 100 = -£3,600

Consequently, the net final TNUoS demand reconciliation charge will be $\pounds 1, \underline{150} (\pounds 5,000 + -\pounds 250 + -\pounds 3,600)$.

Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

Outturn data for BM Units with a net export over the Triad will be received at this stage and final reconciliation will be carried out, as required. Interest will be calculated as described above.

Terminology:

 HHD_A = The Supplier's outturn half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

Page 53 of 63

I

 HHD_F = The Supplier's forecast half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

<u>HHEE_A = The Supplier's outturn half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

<u>HHEE_E = The Supplier's forecast half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

NHHC_A = The Supplier's outturn non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1^{st} to March 31^{st} , for the demand zone concerned.

NHHC_F = The Supplier's forecast non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1st to March 31st, for the demand zone concerned.

£/kW Tariff = The £/kW <u>Gross</u> Demand <u>or Embedded Export</u> Tariff as shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

p/kWh Tariff = The Energy Consumption Tariff shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

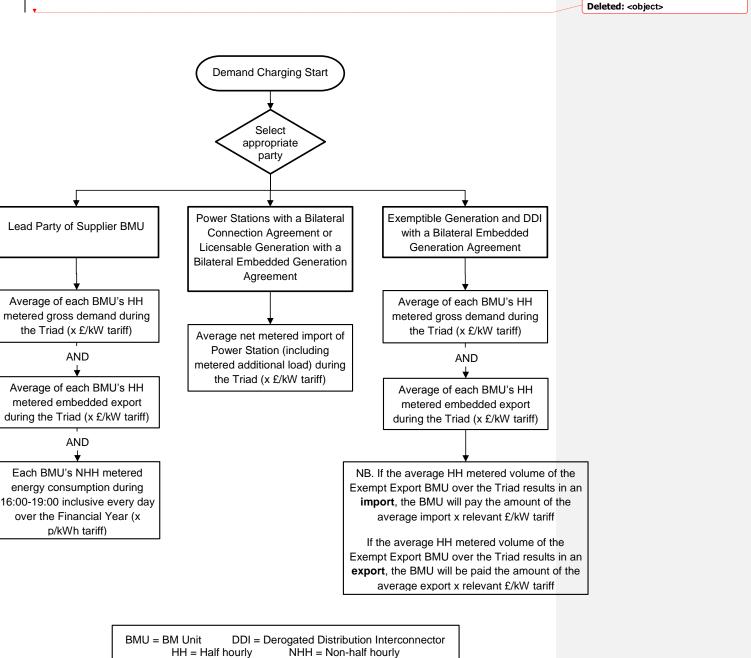
14.26 Classification of parties for charging purposes

In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precendence.

In the following diagrams, the parties liable for Transmission Network Use of System charges are outlined in red.

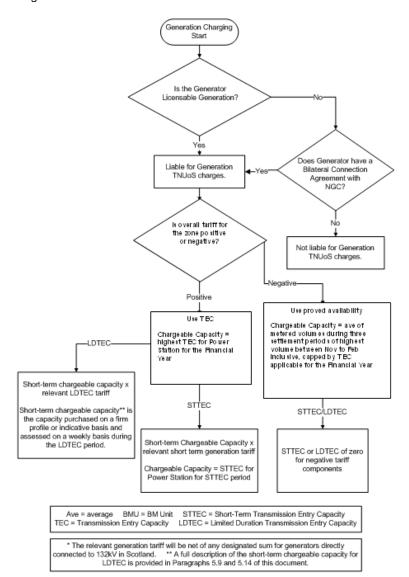
SUPPLIER		
Supplier Use of System Agreen	nent	
Supplier BMU1 Supplier BMUn		
Demand Charges	Generation Charges	
See 14.17, <mark>13</mark> and 14.17, <u>18</u> .	None.	Deleted: 9
		Deleted: 14
Bilateral Connection Agreemen Gen Unit BMU1 Gen Unit BMUn	Station Additional Load BMU Load BMU	
Demand Charges	Generation Charges	
See 14.17, <u>18</u> .	See 14.18.1 i) and 14.18.3 to 14.18.9 and	Deleted: 10
See 14.17. <u>18</u> .	J. J	Deleted: 10

Bilateral Emb	edded Generation	Agreement Ap	pendix C	7
Gen Unit BMU1	Gen Unit BMUn	Station Load BMU	Additional Load BMU	
Demand Charges	7. <u>15</u> and 14.17. <u>18</u> .	Generation Cl See 14.18.1 ii	U	
Jee 14.17 <u>14</u> , 14.17	<u>, 10</u> and 14.17 <u>,10</u> .		s in positive zone 14.18.18.	es, see 14.18.3 to


-{	Deleted: 10
-	Deleted: 11
Y	Deleted: 14

14.27 Transmission Network Use of System Charging Flowcharts

The following flowcharts illustrate the parties liable for Demand and Generation TNUoS charges and the calculation of those charges.


In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precedence.

Page 57 of 63

Generation Charges

14.28 Example: Determination of The Company's Forecast for Demand Charge Purposes

The Company will use the latest available settlement data for calculation of HH demand and NHH energy consumption forecasts for the Financial Year.

The Financial Year runs from 1st April to 31st March inclusive and for the purpose of these examples the year April 2005 to March 2006 is used.

Where the preceding year's settlement data is not available at the time that The Company needs to calculate its forecast, The Company will use settlement data from the corresponding period in Financial Year minus two unless indicated otherwise.

All values used with the examples are purely for illustrative purposes only.

i) Half-Hourly (HH) Metered Demand Forecast – Existing User

At the time of calculation of a HH demand forecast before the relevant Financial Year (approximately 10th March), The Company will be aware at a system level which dates will be used for the determination of Triad. However, The Company may not have settlement data at a User level if the Triad dates were to span a period that includes the latter half of February.

When undertaking forecasting before the relevant Financial Year, The Company will use the User's Triad demand for the previous year for its forecast providing it holds User settlement data for this period, thus:

F = T

where:

F = Forecast of User's HH demand at Triad for the Financial Year

T = User's HH gross_demand and embedded export_at Triad in Financial Year minus one

Where The Company determines its forecast within a Financial Year:

F = T * D/P

where:

- F = Forecast of User's HH demand at Triad for the Financial Year
- T = User's HH gross demand and embedded export at Triad in the preceding Financial Year
- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the preceding Financial Year

Where The Company determines its forecast before the relevant Financial Year and User settlement data for the Triad period is not available, The Company shall apply the formula immediately above (within year forecast) but substitute the following definitions for the values T, D, and P:

T = User's HH gross demand and embedded export at Triad in the Financial Year minus two

Page 59 of 63

- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year minus one, to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the Financial Year minus two

Example (where User settlement data is not yet available for the Triad period):

The Company calculates a HH demand forecast on the above methodology at 10th March 2005 for the period 1st April 2005 to 31st March 2006.

Gross demand:

F = 10,000 * 13,200 / 12,000

F = 11,000 kW,Deleted: hwhere:T = 10,000 kW, (period November 2003 to February 2004)Deleted: hD = 13,200 kW, (period 1st April 2004 to 15th February 2005#)Deleted: hP = 12,000 kW, (period 1st April 2003 to 15th February 2004)Deleted: h

Latest date for which settlement data is available.

Embedded export:

F = -280 * -300 / -350

<u>F = -240 kW</u>

where:

T = -280 kW (period November 2003 to February 2004)

D = -300 kW (period 1st April 2004 to 15th February 2005#)

P = -350 kW (period 1st April 2003 to 15th February 2004)

<u># Latest date for which settlement data is available.</u>

ii) Non Half-Hourly (NHH) Metered Energy Consumption Forecast – Existing User

F = E * D/P

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- E = User's summed NHH energy consumption over the hours 16:00 to 19:00 for each day in the preceding Financial Year

Page 60 of 63

- D = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the Financial Year to date
- P = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the period corresponding to D in the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th June 2005 for the period 1st April 2005 to 31st March 2006.

- F = 50,000,000 * 4,400,000 / 4,000,000
- F = 55,000,000 kWh

where:

- E = 50,000,000 kWh (period 1st April 2004 to 31st March 2005)
- D = 4,400,000 kWh (period 1st April 2005 to 15th May 2005#)
- P = 4,000,000 kWh (period 1st April 2004 to 15th May 2004)
- # Latest date for which settlement data is available

Where forecasting before the relevant Financial Year concerned, The Company would in the above example use values for E and P from Financial Year 2003/04 and D from Financial Year 2004/05.

iii) Half-Hourly (HH) Metered Demand Forecast – New User

F = M * T/W

where:

- F = Forecast of User's HH metered <u>gross</u> demand <u>and embedded export</u> at Triad for the Financial Year
 - M = User's HH average weekday period 35 demand for the last complete month for which settlement data is available
- T = Total system HH <u>gross</u> demand <u>and embedded export</u> at Triad in the preceding Financial Year
 - W = Total system HH average weekday settlement period 35 metered demand for the corresponding period to M for the preceding year

Example:

The Company calculates a HH demand forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2004 to 31st March 2006.

Gross demand:

F = 1,000 * 17,000,000 / 18,888,888

0030	, vi. 12	
F =	900 kW,	 Deleted: h
wher	e:	
M =	1,000 kW _v (period 1 st July 2005 to 31 st July 2005)	Deleted: h
T =	17,000,000 kW, (period November 2004 to February 2005)	 Deleted: h
W =	18,888,888 kW _e (period 1 st July 2004 to 31 st July 2004)	Deleted: h
<u>Emb</u>	edded export:	
<u>F =</u>	150 * 7,200,000 / 6,000,000	
<u>F =</u>	<u>180 kW</u>	
wher	<u>e:</u>	

- M = 150 kW (period 1st July 2005 to 31st July 2005)
- T = 7,200,000 kW (period November 2004 to February 2005)
- <u>W = 6,000,000 kW (period 1^{st} July 2004 to 31^{st} July 2004)</u>

iv) Non Half Hourly (NHH) Metered Energy Consumption Forecast – <u>New User</u>

F = J + (M * R/W)

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- J = Residual part month summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day where new User registration takes place other than on the first of a month
- M = User's summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the last complete month for which settlement data is available
- R = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period from the start of that defined under M but for the preceding year and until the end of that preceding Financial Year
- W = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period identified in M but for the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2005 to 31st March 2006.

- F = 500 + (1,000 * 20,000,000,000 / 2,000,000,000)
- F = 10,500 kWh

where:

- J = 500 kWh (period 10th June 2005 to 30th June 2005)
- M = 1,000 kWh (period 1st July 2005 to 31st July 2005)
- R = 20,000,000,000 kWh (period 1st July 2004 to 31st March 2005)
- W = 2,000,000,000 kWh (period 1st July 2004 to 31st July 2004)

CMP265 WACM8

14.15 Derivation of the Transmission Network Use of System Tariff

- 14.15.1 The Transmission Network Use of System (TNUoS) Tariff comprises two separate elements. Firstly, a locationally varying element derived from the DCLF ICRP transport model to reflect the costs of capital investment in, and the maintenance and operation of, a transmission system to provide bulk transport of power to and from different locations. Secondly, a non-locationally varying element related to the provision of residual revenue recovery. The combination of both these elements forms the TNUoS tariff.
- 14.15.2 For generation TNUoS tariffs the locational element itself is comprised of five separate components. Three wider components
 - o Wider Peak Security Component
 - Wider Year Round Not-shared component
 - Wider Year Round component

These components reflect the costs of the wider network under the different generation backgrounds set out in the Demand Security Criterion (for Peak Security component) and Economy Criterion (for both Year Round components) of the Security Standard. The two Year Round components reflect the unshared and shared costs of the wider network based on the diversity of generation plant types.

Two local components -

- o Local substation, and
- Local circuit

These components reflect the costs of the local network.

Accordingly, the wider tariff represents the combined effect of the three wider locational tariff components and the residual element; and the local tariff represents the combination of the two local locational tariff components.

14.15.3 The process for calculating the TNUoS tariff is described below.

The Transport Model

Model Inputs

14.15.4 The DCLF ICRP transport model calculates the marginal costs of investment in the transmission system which would be required as a consequence of an increase in demand or generation at each connection point or node on the transmission system, based on a study of peak demand conditions using both Peak Security and Year Round generation backgrounds on the transmission system. One measure of the investment costs is in terms of MWkm. This is the concept that ICRP uses to calculate marginal costs of investment. Hence, marginal costs are estimated initially in terms of increases or decreases in units of kilometres (km) of the transmission system for a 1 MW injection to the system.

- 14.15.5 The transport model requires a set of inputs representative of the Demand Security and Economy Criterion set out in the Security Standards. These conditions on the transmission system are represented in the Peak Security and Year Round background respectively as follows:
- Nodal generation information per node (TEC, plant type and SQSS scaling factors)
- Nodal <u>net</u> demand information
- Transmission circuits between these nodes
- The associated lengths of these routes, the proportion of which is overhead line or cable and the respective voltage level
- The cost ratio of each of 132kV overhead line, 132kV underground cable, 275kV overhead line, 275kV underground cable and 400kV underground cable to 400kV overhead line to give circuit expansion factors
- The cost ratio of each separate sub-sea AC circuit and HVDC circuit to 400kV overhead line to give circuit expansion factors
- 132kV overhead circuit capacity and single/double route construction information is used in the calculation of a generator's local charge.
- Offshore transmission cost and circuit/substation data
- 14.15.6 For a given charging year "t", the nodal generation TEC figure and generation plant types at each node will be based on the Applicable Value for year "t" in the NETS Seven Year Statement in year "t-1" plus updates to the October of year "t-1". The contracted TECs and generation plant types in the NETS Seven Year Statement include all plant belonging to generators who have a Bilateral Agreement with the TOs. For example, for 2010/11 charges, the nodal generation data is based on the forecast for 2010/11 in the 2009 NETS Seven Year Statement plus any data included in the quarterly updates in October 2009.
- 14.15.7 Scaling factors for different generation plant types are applied on their aggregated capacity for both Peak Security and Year Round backgrounds. The scaling is either Fixed or Variable (depending on the total demand level) in line with the factors used in the Security Standard, for example as shown in the table below.

Generation Plant Type	Peak Security Background	Year Round Background
Intermittent	Fixed (0%)	Fixed (70%)
Nuclear & CCS	Variable	Fixed (85%)
Interconnectors	Fixed (0%)	Fixed (100%)
Hydro	Variable	Variable
Pumped Storage	Variable	Fixed (50%)
Peaking	Variable	Fixed (0%)
Other (Conventional)	Variable	Variable

These scaling factors and generation plant types are set out in the Security Standard. These may be reviewed from time to time. The latest version will be used in the calculation of TNUoS tariffs and is published in the Statement of Use of System Charges

14.15.8 National Grid will categorise plant based on the categorisations described in the Security Standard. Peaking plant will include oil and OCGT technologies and Other (Conv.) represents all remaining conventional plant not explicitly stated elsewhere in the table In the event that a power station is made up of more than one technology type, the type of the higher Transmission Entry Capacity (TEC) would apply.

I

- 14.15.9 Nodal <u>net</u> demand data for the transport model will be based upon the GSP <u>net</u> demand that Users have forecast to occur at the time of National Grid Peak Average Cold Spell (ACS) Demand for year "t" in the April Seven Year Statement for year "t-1" plus updates to the October of year "t-1".
- 14.15.10 Subject to paragraphs 14.15.15 to 14.15.22, Transmission circuits for charging year "t" will be defined as those with existing wayleaves for the year "t" with the associated lengths based on the circuit lengths indicated for year "t" in the April NETS Seven Year Statement for year "t-1" plus updates to October of year "t-1". If certain circuit information is not explicitly contained in the NETS Seven Year Statement, The Company will use the best information available.
- 14.15.11 The circuit lengths included in the transport model are solely those, which relate to assets defined as 'Use of System' assets.
- 14.15.12 For HVDC circuits, the impedance will be calculated to provide flows based on a ratio of the capacity provided by the HVDC link relative to the capacities on all major transmission system boundaries that it parallels.
- 14.15.13 The transport model employs the use of circuit expansion factors to reflect the difference in cost between (i) AC Circuits and HVDC circuits. (ii) underground and sub-sea circuits, (iii) cabled circuits and overhead line circuits, (iv) 132kV and 275kV circuits, (v) 275kV circuits and 400kV circuits, and (vi) uses 400kV overhead line (i.e. the 400kV overhead line expansion factor is 1). As the transport model expresses cost as marginal km (irrespective of cables or overhead lines), some account needs to be made of the fact that investment in these other types of circuit (specifically HVDC and sub-sea cables of various voltages, 400kV underground cable, 275kV overhead line, 275kV underground cable, 132kV overhead line and 132kV underground cable) is more expensive than for 400kV overhead line. This is done by effectively 'expanding' these more expensive circuits by the relevant circuit expansion factor, thereby producing a larger marginal kilometre to reflect the additional cost of investing in these circuits compared to 400kV overhead line. When calculating the local circuit tariff for a generator, alternative 132kV and offshore expansion factors to those used in the remainder of the tariff calculation are applied to the generator's local circuits.
- 14.15.14 The circuit expansion factors for HVDC circuits and AC subsea cables are determined on a case by case basis using the costs which are specific to individual projects containing HVDC or AC subsea circuits.

Adjustments to Model Inputs associated with One-off Works

- 14.15.15 Where, following the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge that related to One-off Works carried out on an onshore circuit, and such One-off Works would affect the value of a TNUoS tariff paid by the User, the transport model inputs associated with the onshore circuit shall be adjusted by The Company to reflect the asset value that would have been modelled if the works had been undertaken on the basis of the original asset design rather than the One-off Works.
- 14.15.16 Subject to paragraphs 14.15.17 to 14.15.19, where, prior to the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge (or has paid a charge to the relevant TO prior to 1st April 2005 on the same principles as a

Page 3 of 63

One-Off Charge) that related to works equivalent to those described under paragraph 14.15.15, an adjustment equivalent to that under paragraph 14.15.15 shall be made to the transport model inputs as follows.

- 14.15.17 Such adjustment shall be made following a User's request, which must be received by The Company no later than the second occurrence of 31st December following the implementation of CUSC Modification CMP203.
- 14.15.18 The Company shall only make an adjustment to the transport model inputs, under paragraph 14.15.16 where the charge was paid to the relevant TO prior to 1st April 2005 where evidence has been provided by the User that satisfies The Company that works equivalent to those under paragraph 14.15.15 were funded by the User.
- 14.15.19 Where a User has sufficient reason to believe that adjustments under paragraph 14.15.18 should be made in relation to specific assets that affect a TNUoS tariff that applies to one of its sites and outlines its reasoning to The Company, The Company shall (upon the User's request and subject to the User's payment of reasonable costs incurred by The Company in doing so) use its reasonable endeavours to assist the User in obtaining any evidence The Company or a TO may have to support its position.
- 14.15.20 Where a request is made under paragraph 14.15.16 on or prior to 31st December in a charging year, and The Company is satisfied based on the accompanying evidence provided to The Company under paragraph 14.15.17 that it is a valid request, the transport model inputs shall be adjusted accordingly and taken into account in the calculation of TNUoS tariffs effective from the year commencing on the 1st April following this and otherwise from the next subsequent 1st April.
- 14.15.21 The following table provides examples of works for which adjustments to transport model inputs would typically apply:

Ref	Description of works	Adjustments
1	Undergrounding - A User requests to underground an overhead line at a greater cost.	As the cable cost will be more expensive than the overhead line (OHL) equivalent, the circuit will be modelled as an OHL.
2	Substation Siting Decision - A User requests to move the existing or a planned substation location to a place that means that the works cannot be justified as economic by the TO.	As the revised substation location may result in circuits being extended. If this is the case, the originally designed circuit lengths (as per the originally designed substation location) would be used in the transport model.
3	Circuit Routing Decision - A User asks to move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	As any circuit route changes that extend circuits are likely to result in a greater TNUoS tariff, the originally designed circuit lengths would be used in the transport model.

Ref	Description of works	Adjustments
4	Building circuits at lower voltages - A User requests lower tower height and therefore a different voltage.	As lower voltage circuits result in a higher expansion factor being used, the circuits would be modelled at the originally designed higher voltage.

14.15.22 The following table provides examples of works for which adjustments to transport model typically would not apply:

Ref	Description of works	Reasoning
1	Undergrounding - A User chooses to have a cable installed via a tunnel rather than buried.	Cable expansion factors are applied in the transport model regardless of whether a cable is tunnelled and buried, so there is no increased TNUoS cost.
2	Additional circuit route works - A User asks for screening to be provided around a new or existing circuit route.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
3	Additional circuit route works - A User requests that a planned overhead line route is built using alternative transmission tower designs.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
4	Additional substation works - A User asks for screening to be provided around a new or existing substation.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
5	Additional substation works - Changes to connection assets (e.g. HV-LV transformers and associated switchgear), metering, additional LV supplies, additional protection equipment, additional building works, etc.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
6	Diversion - A User asks to temporarily move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	The temporary circuit changes will not be incorporated into the transport model.

7	Connection Entry Capacity (CEC) before Transmission Entry Capacity (TEC). A User asks for a connection in a year prior to the relating TEC; i.e. physical connection without capacity.	No additional works are being undertaken, works are simply being completed well in advance of the generator commissioning. The One-Off Charge reflects the depreciated value of the assets prior to commissioning (and any TNUOS being charged).
8	Early asset replacement - An asset is replaced prior to the end of its expected life.	As the asset is simply replaced, no data in the transport model is expected to change.
9	Additional Engineering/ Mobilisation costs - A User requests changes to the planned works, that results in additional operational costs.	The data in the transport model is unaffected.
10	Offshore (Generator Build) - Any of the works described above or under paragraph 14.15.18.	The value of the works will not form part of the asset transfer value therefore will not be used as part of the offshore tariff calculation.
11	Offshore (Offshore Transmission Owner (OFTO) Build) - Any of the works described above or under paragraph 14.15.18.	As part of determining the TNUoS revenue associated with each asset, the value of the One-Off Works would be excluded when pro-rating the OFTO's allowed revenue against assets by asset value.

14.15.23 The Company shall publish any adjusted transport model inputs that it intends to use in the calculation of TNUoS tariffs effective from the year commencing on the following 1st April in the NETS Seven Year Statement October Update. Any further adjustments that The Company makes shall be published by The Company upon the publication of the final TNUoS tariffs for the year concerned.

Model Outputs

- 14.15.24 The transport model takes the inputs described above and carries out the following steps individually for Peak Security and Year Round backgrounds.
- 14.15.25 Depending on the background, the TEC of the relevant generation plant types are scaled by a percentage as described in 14.15.7, above. The TEC of the remaining generation plant types in each background are uniformly scaled such that total national generation (scaled sum of contracted TECs) equals total national ACS Demand.
- 14.15.26 For each background, the model then uses a DCLF ICRP transport algorithm to derive the resultant pattern of flows based on the network impedance required to meet the nodal <u>net</u> demand using the scaled nodal generation, assuming every circuit has infinite capacity. Flows on individual transmission circuits are compared for both backgrounds and the background giving rise to

Page 6 of 63

the highest flow is considered as the triggering criterion for future investment of that circuit for the purposes of the charging methodology. Therefore all circuits will be tagged as Peak Security or Year Round depending upon the background resulting in the highest flow. In the event that both backgrounds result in the same flow, the circuit will be tagged as Peak Security. Then it calculates the resultant total network Peak Security MWkm and Year Round MWkm, using the relevant circuit expansion factors as appropriate.

- 14.15.27 Using these baseline networks for Peak Security and Year Round backgrounds, the model then calculates for a given injection of 1MW of generation at each node, with a corresponding 1MW offtake (<u>net_demand</u>) distributed across all demand nodes in the network, the increase or decrease in total MWkm of the whole Peak Security and Year Round networks. The proportion of the 1MW offtake allocated to any given demand node will be based on total background nodal <u>net</u> demand in the model. For example, with a total GB <u>net_demand</u> of 60GW in the model, a node with a <u>net_demand</u> of 600MW would contain 1% of the offtake i.e. 0.01MW.
- 14.15.28 Given the assumption of a 1MW injection, for simplicity the marginal costs are expressed solely in km. This gives a Peak Security marginal km cost and a Year Round marginal km cost for generation at each node (although not that used to calculate generation tariffs which considers local and wider cost components). The Peak Security and Year Round marginal km costs for demand at each node are equal and opposite to the Peak Security and Year Round nodal marginal km respectively for generation and this is used to calculate demand tariffs. Note the marginal km costs can be positive or negative depending on the impact the injection of 1MW of generation has on the total circuit km.
- 14.15.29 Using a similar methodology as described above in 14.15.27, the local and wider marginal km costs used to determine generation TNUoS tariffs are calculated by injecting 1MW of generation against the node(s) the generator is modelled at and increasing by 1MW the offtake across the distributed reference node. It should be noted that although the wider marginal km costs are calculated for both Peak Security and Year Round backgrounds, the local marginal km costs are calculated on the Year Round background.
- 14.15.30 In addition, any circuits in the model, identified as local assets to a node will have the local circuit expansion factors which are applied in calculating that particular node's marginal km. Any remaining circuits will have the TO specific wider circuit expansion factors applied.
- 14.15.31 An example is contained in 14.21 Transport Model Example.

Calculation of local nodal marginal km

14.15.32 In order to ensure assets local to generation are charged in a cost reflective manner, a generation local circuit tariff is calculated. The nodal specific charge provides a financial signal reflecting the security and construction of the infrastructure circuits that connect the node to the transmission system.

14.15.33 Main Interconnected Transmission System (MITS) nodes are defined as:

- Grid Supply Point connections with 2 or more transmission circuits connecting at the site; or
- connections with more than 4 transmission circuits connecting at the site.

Page 7 of 63

- 14.15.34 Where a Grid Supply Point is defined as a point of supply from the National Electricity Transmission System to network operators or non-embedded customers excluding generator or interconnector load alone. For the avoidance of doubt, generator or interconnector load would be subject to the circuit component of its Local Charge. A transmission circuit is part of the National Electricity Transmission System between two or more circuit-breakers which includes transformers, cables and overhead lines but excludes busbars and generation circuits.
- 14.15.35 Generators directly connected to a MITS node will have a zero local circuit tariff.
- 14.15.36 Generators not connected to a MITS node will have a local circuit tariff derived from the local nodal marginal km for the generation node i.e. the increase or decrease in marginal km along the transmission circuits connecting it to all adjacent MITS nodes (local assets).

Calculation of zonal marginal km

- 14.15.37 Given the requirement for relatively stable cost messages through the ICRP methodology and administrative simplicity, nodes are assigned to zones. Typically, generation zones will be reviewed at the beginning of each price control period with another review only undertaken in exceptional circumstances. Any rezoning required during a price control period will be undertaken with the intention of minimal disruption to the established zonal boundaries. The full criteria for determining generation zones are outlined in paragraph 14.15.42. The number of generation zones set for 2010/11 is 20.
- 14.15.38 Demand zone boundaries have been fixed and relate to the GSP Groups used for energy market settlement purposes.
- 14.15.39 The nodal marginal km are amalgamated into zones by weighting them by their relevant generation or demand capacity.
- 14.15.40 Generators will have zonal tariffs derived from both, the wider Peak Security nodal marginal km; and the wider Year Round nodal marginal km for the generation node calculated as the increase or decrease in marginal km along all transmission circuits except those classified as local assets.

The zonal Peak Security marginal km for generation is calculated as:

$$WNMkm_{j_{PS}} = \frac{NMkm_{j_{PS}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiPS} = \sum_{j \in Gi} WNMkm_{jPS}$$

Where

Gi	=	Generation zone
j	=	Node
NMkm _{PS}	=	Peak Security Wider nodal marginal km from transport model
WNMkm _{PS}	=	Peak Security Weighted nodal marginal km
ZMkm _{PS}	=	Peak Security Zonal Marginal km

Gen = Nodal Generation (scaled by the appropriate Peak Security Scaling factor) from the transport model Similarly, the zonal Year Round marginal km for generation is calculated as

$$WNMkm_{j_{YR}} = \frac{NMkm_{j_{YR}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiYR} = \sum_{j \in Gi} WNMkm_{jYR}$$

Where

NMkm _{YR}	=	Year Round Wider nodal marginal km from transport model
WNMkm _{YR}	=	Year Round Weighted nodal marginal km
ZMkm _{YR}	=	Year Round Zonal Marginal km
Gen	=	Nodal Generation (scaled by the appropriate Year Round Scaling
		factor) from the transport model

14.15.41 The zonal Peak Security marginal km for demand zones are calculated as follows:

$$WNMkm_{j_{PS}} = \frac{-1 * NMkm_{j_{PS}} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{Di_{PS}} = \sum_{j \in Di} WNMkm_{j_{PS}}$$

Where:

I

Di	=	Demand zone
Dem	=	Nodal <u>Net</u> Demand from transport model

Similarly, the zonal Year Round marginal km for demand zones are calculated as follows:

$$WNMkm_{jYR} = \frac{-1 * NMkm_{jYR} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{DiYR} = \sum_{j \in Di} WNMkm_{jYR}$$

- 14.15.42 A number of criteria are used to determine the definition of the generation zones. Whilst it is the intention of The Company that zones are fixed for the duration of a price control period, it may become necessary in exceptional circumstances to review the boundaries having been set. In both circumstances, the following criteria are used to determine the zonal boundaries:
- i.) Zoning is determined using the generation background with the most MWkm of circuits. Zones should contain relevant nodes whose total wider marginal costs

from the relevant generation background (as determined from the output from the transport model, the relevant expansion constant and the locational security factor, see below) are all within +/-£1.00/kW (nominal prices) across the zone. This means a maximum spread of £2.00/kW in nominal prices across the zone.

- ii.) The nodes within zones should be geographically and electrically proximate.
- iii.) Relevant nodes are considered to be those with generation connected to them as these are the only ones, which contribute to the calculation of the zonal generation tariff.
- 14.15.43 The process behind the criteria in 14.15.42 is driven by initially applying the nodal marginal costs from the relevant generation background within the DCLF Transport model onto the appropriate areas of a substation line diagram. Generation nodes are grouped into initial zones using the +/- £1.00/kW range. All nodes within each zone are then checked to ensure the geographically and electrically proximate criteria have been met using the substation line diagram. The established zones are inspected to ensure the least number of zones are used with minimal change from previously established zonal boundaries. The zonal boundaries are finally confirmed using the demand nodal costs from the relevant generation background for guidance.
- 14.15.44 The zoning criteria are applied to a reasonable range of DCLF ICRP transport model scenarios, the inputs to which are determined by The Company to create appropriate TNUoS generation zones. The minimum number of zones, which meet the stated criteria, are used. If there is more than one feasible zonal definition of a certain number of zones, The Company determines and uses the one that best reflects the physical system boundaries.
- 14.15.45 Zones will typically not be reviewed more frequently than once every price control period to provide some stability. However, in exceptional circumstances, it may be necessary to review zoning more frequently to maintain appropriate, cost reflective, locational cost signals. For example, if a new generator connecting to the transmission system would cause the creation of a new generation zone for that generator alone, it may not be appropriate from a cost reflective perspective to wait until the next price control period to undertake this rezoning. If any such rezoning is required, it will be undertaken against a background of minimal change to existing generation zones and in line with the notification process set out in the Transmission Licence and CUSC.

Accounting for Sharing of Transmission by Generators

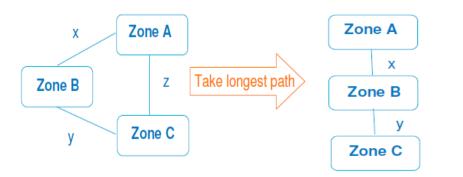
- 14.15.46 A proportion of the marginal km costs for generation are shared incremental km reflecting the ability of differing generation technologies to share transmission investment. This is reflected in charges through the splitting of Year Round marginal km costs for generation into Year Round Shared marginal km costs and Year Round Not-Shared marginal km which are then used in the calculation of the wider £/kW generation tariff.
- 14.15.47 The sharing between different generation types is accounted for by (a) using transmission network boundaries between generation zones set by connectivity between generation charging zones, and (b) the proportion of Low Carbon and Carbon generation behind these boundaries.

Page 10 of 63

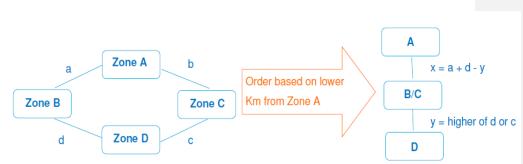
14.15.48 The zonal incremental km for each generation charging zone is split into each boundary component by considering the difference between it and the neighbouring generation charging zone using the formula below;

$$BIkm_{ab} = ZIkm_b - ZIkm_a$$

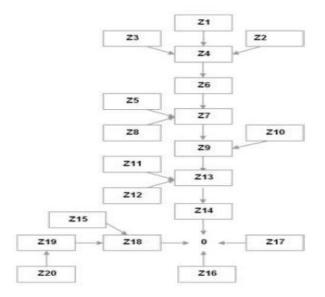
Where;


Blkm_{ab} = boundary incremental km between generation charging zone A and generation charging zone B Zlkm = generation charging zone incremental km.

14.15.49 The table below shows the categorisation of Low Carbon and Carbon generation. This table will be updated by National Grid in the Statement of Use of System Charges as new generation technologies are developed.


Carbon	Low Carbon
Coal	Wind
Gas	Hydro (excl. Pumped Storage)
Biomass	Nuclear
Oil	Marine
Pumped Storage	Tidal
Interconnectors	

Determination of Connectivity


- 14.15.50 Connectivity is based on the existence of electrical circuits between TNUoS generation charging zones that are represented in the Transport model. Where such paths exist, generation charging zones will be effectively linked via an incremental km transmission boundary length. These paths will be simplified through in the case of;
 - Parallel paths the longest path will be taken. An illustrative example is shown below with x, y and z representing the incremental km between zones.

 Parallel zones – parallel zones will be amalgamated with the incremental km immediately beyond the amalgamated zones being the greater of those existing prior to the amalgamation. An illustrative example is shown below with a, b, c, and d representing the the initial incremental km between zones, and x and y representing the final incremental km following zonal amalgamation.

14.15.51 An illustrative Connectivity diagram is shown below:

The arrows connecting generation charging zones and amalgamated generation charging zones represent the incremental km transmission boundary lengths towards the notional centre of the system. Generation located in charging zones behind arrows is considered to share based on the ratio of Low Carbon to Carbon cumulative generation TEC within those zones.

14.15.52 The Company will review Connectivity at the beginning of a new price control period, and under exceptional circumstances such as major system reconfigurations or generation rezoning. If any such reassessment is required, it will be undertaken against a background of minimal change to existing Connectivity and in line with the notification process set out in the Transmission Licence and the CUSC.

Calculation of Boundary Sharing Factors

14.15.53 Boundary sharing factors (BSFs) are derived from the comparison of the cumulative proportion of Low Carbon and Carbon generation TEC behind each of the incremental MWkm boundary lengths using the following formulae –

Page 12 of 63

If $\frac{LC}{LC+C} \le 0.5$, then all Year round marginal km costs are shared i.e. the BSF is 100%.

Where:

LC = Cumulative Low Carbon generation TEC behind the relevant transmission boundary C = Cumulative Carbon generation TEC behind the relevant transmission

C = Cumulative Carbon generation TEC behind the relevant transmission boundary

If
$$\frac{LC}{LC+C}$$
 > 0.5 then the BSF is calculated using the following formula: -

$$BSF = \left(-2 \times \left(\frac{LC}{LC+C}\right)\right) + 2$$

Where:

BSF = boundary sharing factor.

14.15.54 The shared incremental km for each boundary are derived from the multiplication of the boundary sharing factor by the incremental km for that boundary;

$$SBIkm_{ab} = BIIkm_{ab} \ x \ BSF_{ab}$$

Where;

 $SBIkm_{ab}$ = shared boundary incremental km between generation charging zone A and generation charging zone B

 BSF_{ab} = generation charging zone boundary sharing factor.

14.15.55 The shared incremental km is discounted from the incremental km for that boundary to establish the not-shared boundary incremental km. The not-shared boundary incremental km reflects the cost of transmission investment on that boundary accounting for the sharing of power stations behind that boundary.

$$NSBIkm_{ab} = BIkm_{ab} - SBIkm_{ab}$$

Where;

 $NSBIkm_{ab}$ = not shared boundary incremental km between generation charging zone A and generation charging zone B.

14.15.56 The shared incremental km for a generation charging zone is the sum of the appropriate shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRS}$$

Where;

 $ZMkm_{nYRS}$ = Year Round Shared Zonal Marginal km for generation charging zone n.

Page 13 of 63

14.15.57 The not-shared incremental km for a generation charging zone is the sum of the appropriate not-shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRNS}$$

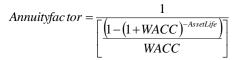
Where;

ZMkm_{nYRNS} = Year Round Not-Shared Zonal Marginal km for generation zone n.

Deriving the Final Local £/kW Tariff and the Wider £/kW Tariff

14.15.58 The zonal marginal km (ZMkm_{Gi}) are converted into costs and hence a tariff by multiplying by the Expansion Constant and the Locational Security Factor (see below). The nodal local marginal km (NLMkm^L) are converted into costs and hence a tariff by multiplying by the Expansion Constant and a Local Security Factor.

The Expansion Constant


- 14.15.59 The expansion constant, expressed in £/MWkm, represents the annuitised value of the transmission infrastructure capital investment required to transport 1 MW over 1 km. Its magnitude is derived from the projected cost of 400kV overhead line, including an estimate of the cost of capital, to provide for future system expansion.
- 14.15.60 In the methodology, the expansion constant is used to convert the marginal km figure derived from the transport model into a £/MW signal. The tariff model performs this calculation, in accordance with 14.15.95 14.15.117, and also then calculates the residual element of the overall tariff (to ensure correct revenue recovery in accordance with the price control), in accordance with 14.15.133.
- 14.15.61 The transmission infrastructure capital costs used in the calculation of the expansion constant are provided via an externally audited process. They also include information provided from all onshore Transmission Owners (TOs). They are based on historic costs and tender valuations adjusted by a number of indices (e.g. global price of steel, labour, inflation, etc.). The objective of these adjustments is to make the costs reflect current prices, making the tariffs as forward looking as possible. This cost data represents The Company's best view; however it is considered as commercially sensitive and is therefore treated as confidential. The calculation of the expansion constant also relies on a significant amount of transmission asset information, much of which is provided in the Seven Year Statement.
- 14.15.62 For each circuit type and voltage used onshore, an individual calculation is carried out to establish a £/MWkm figure, normalised against the 400KV overhead line (OHL) figure, these provide the basis of the onshore circuit expansion factors discussed in 14.15.70 14.15.77. In order to simplify the calculation a unity power factor is assumed, converting £/MVAkm to £/MWkm. This reflects that the fact tariffs and charges are based on real power.
- 14.15.63 The table below shows the first stage in calculating the onshore expansion constant. A range of overhead line types is used and the types are weighted by recent usage on the transmission system. This is a simplified calculation for 400kV OHL using example data:

Page 14 of 63

400kV	400kV OHL expansion constant calculation				
MW	Туре	£(000)/k	Circuit km*	£/MWkm	Weight
А	В	С	D	E = C/A	F=E*D
6500	La	700	500	107.69	53846
6500	Lb	780	0	120.00	0
3500	La/b	600	200	171.43	34286
3600	Lc	400	300	111.11	33333
4000	Lc/a	450	1100	112.50	123750
5000	Ld	500	300	100.00	30000
5400	Ld/a	550	100	101.85	10185
Sum			2500 (G)		285400 (H)
				Weighted Average (J= H/G):	114.160 (J)

*These are circuit km of types that have been provided in the previous 10 years. If no information is available for a particular category the best forecast will be used.

14.15.64 The weighted average £/MWkm (J in the example above) is then converted in to an annual figure by multiplying it by an annuity factor. The formula used to calculate of the annuity factor is shown below:

- 14.15.65 The Weighted Average Cost of Capital (WACC) and asset life are established at the start of a price control and remain constant throughout a price control period. The WACC used in the calculation of the annuity factor is the The Company regulated rate of return, this assumes that it will be reasonably representative of all licensees. The asset life used in the calculation is 50 years; the appropriateness of this is reviewed when the annuity factor is recalculated at the start of a price control period. These assumptions provide a current annuity factor of 0.066.
- 14.15.66 The final step in calculating the expansion constant is to add a share of the annual transmission overheads (maintenance, rates etc). This is done by multiplying the average weighted cost (J) by an 'overhead factor'. The 'overhead factor' represents the total business overhead in any year divided by the total Gross Asset Value (GAV) of the transmission system. This is recalculated at the start of each price control period. The overhead factor used in the calculation of the expansion constant for 2009/10 is 1.8%. The overhead and annuitised costs are then added to give the expansion constant.
- 14.15.67 Using the previous example, the final steps in establishing the expansion constant are demonstrated below:

400kV OHL expansion constant calculation	Ave £/MWkm
OHL	114.160

Page 15 of 63

Annuitised	7.535
Overhead	2.055
Final	9.589

- 14.15.68 This process is carried out for each voltage onshore, along with other adjustments to take account of upgrade options, see 14.15.73, and normalised against the 400KV overhead line cost (the expansion constant) the resulting ratios provide the basis of the onshore expansion factors. The process used to derive circuit expansion factors for Offshore Transmission Owner networks is described in 14.15.78.
- 14.15.69 This process of calculating the incremental cost of capacity for a 400kV OHL, along with calculating the onshore expansion factors is carried out for the first year of the price control and is increased by inflation, RPI, (May–October average increase, as defined in The Company's Transmission Licence) each subsequent year of the price control period. The expansion constant for 2010/11 is 10.633.

Onshore Wider Circuit Expansion Factors

- 14.15.70 Base onshore expansion factors are calculated by deriving individual expansion constants for the various types of circuit, following the same principles used to calculate the 400kV overhead line expansion constant. The factors are then derived by dividing the calculated expansion constant by the 400kV overhead line expansion constant. The factors will be fixed for each respective price control period.
- 14.15.71 In calculating the onshore underground cable factors, the forecast costs are weighted equally between urban and rural installation, and direct burial has been assumed. The operating costs for cable are aligned with those for overhead line. An allowance for overhead costs has also been included in the calculations.
- 14.15.72 The 132kV onshore circuit expansion factor is applied on a TO basis. This is to reflect the regional variation of plans to rebuild circuits at a lower voltage capacity to 400kV. The 132kV cable and line factor is calculated on the proportion of 132kV circuits likely to be uprated to 400kV. The 132kV expansion factor is then calculated by weighting the 132kV cable and overhead line costs with the relevant 400kV expansion factor, based on the proportion of 132kV circuitry to be uprated to 400kV. For example, in the TO areas of National Grid and Scottish Power where there are no plans to uprate any 132kV circuits, the full cable and overhead line costs of 132kV circuit are reflected in the 132kV expansion factor calculation.
- 14.15.73 The 275kV onshore circuit expansion factor is applied on a GB basis and includes a weighting of 83% of the relevant 400kV cable and overhead line factor. This is to reflect the averaged proportion of circuits across all three Transmission Licensees which are likely to be uprated from 275kV to 400kV across GB within a price control period.
- 14.15.74 The 400kV onshore circuit expansion factor is applied on a GB basis and reflects the full costs for 400kV cable and overhead lines.
- 14.15.75 AC sub-sea cable and HVDC circuit expansion factors are calculated on a case by case basis using actual project costs (Specific Circuit Expansion Factors).

Page 16 of 63

- 14.15.76 For HVDC circuit expansion factors both the cost of the converters and the cost of the cable are included in the calculation.
- 14.15.77 The TO specific onshore circuit expansion factors calculated for 2008/9 (and rounded to 2 decimal places) are:

Scottish Hydro Region

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	27.79
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.24	

Scottish Power & National Grid Regions

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	30.22
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.80	

Onshore Local Circuit Expansion Factors

- 14.15.78 The local onshore circuit tariff is calculated using local onshore circuit expansion factors. These expansion factors are calculated using the same methodology as the onshore wider expansion factor but without taking into account the proportion of circuit kms that are planned to be uprated.
- 14.15.79 In addition, the 132kV onshore overhead line circuit expansion factor is sub divided into four more specific expansion factors. This is based upon maximum (winter) circuit continuous rating (MVA) and route construction whether double or single circuit.

400kV underground cable factor:	22.39
275kV underground cable factor:	22.39
132kV underground cable factor:	30.22
400kV line factor:	1.00
275kV line factor:	1.14
132kV line factor (single; <200MVA):	10.00
132kV line factor (double; <200MVA):	8.32
132kV line factor (single; >=200MVA):	7.13
132kV line factor (double; >=200MVA):	4.42

Offshore Circuit Expansion Factors

14.15.80 Offshore expansion factors (£/MWkm) are derived from information provided by Offshore Transmission Owners for each offshore circuit. Offshore expansion factors are Offshore Transmission Owner and circuit specific. Each Offshore Transmission Owner will periodically provide, via the STC, information to derive an annual circuit revenue requirement. The offshore circuit revenue shall include revenues associated with the Offshore Transmission Owner's reactive compensation equipment, harmonic filtering equipment, asset spares and HVDC converter stations.

14.15.81 In the first year of connection, the offshore circuit expansion factor would be calculated as follows:

$\frac{CRevOFTO1}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$

Where:

CRevOFTO1	=	The offshore circuit revenue in £ for Year 1
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

14.15.82 In all subsequent years, the offshore circuit expansion factor would be calculated as follows:

$$\frac{AvCRevOFTO}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$$

Where:

AvCRevOFTO	=	The annual offshore circuit revenue averaged over the
		remaining years of the onshore National Electricity
		Transmission System Operator (NETSO) price control
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

- 14.15.83 For the avoidance of doubt, the offshore circuit revenue values, *CRevOFTO1* and *AvCRevOFTO* shall be determined using asset values after the removal of any One-Off Charges.
- 14.15.84 Prevailing OFFSHORE TRANSMISSION OWNER specific expansion factors will be published in this statement. These shall be recalculated at the start of each price control period using the formula in paragraph 14.15.71. For each subsequent year within the price control period, these expansion factors will be adjusted by the annual Offshore Transmission Owner specific indexation factor, *OFTOInd*, calculated as follows;

$$OFTOInd_{t,f} = \frac{OFTO \operatorname{Rev}Ind_{t,f}}{RPI_{t}}$$

where:

OFTOInd _{t,f}	=	the indexation factor for Offshore Transmission Owner <i>f</i> in respect of charging year <i>t</i> ;
OFTORevInd _t f	=	the indexation rate applied to the revenue of Offshore Transmission Owner f under the terms of its Transmission Licence in respect of charging year t ; and
<i>RPI</i> _t	=	the indexation rate applied to the expansion constant in respect of charging year <i>t</i> .

Offshore Interlinks

14.15.85 The revenue associated with an Offshore Interlink shall be divided entirely between those generators benefiting from the installation of that Offshore Interlink. Each of these Users will be responsible for their charge from their charging date, meaning that a proportion of the Offshore Interlink revenue may be socialised prior to all relevant Users being chargeable. The proportion associated with each User will be based on the Measure of Capacity to the MITS using the Offshore Interlink(s) in the event of a single circuit fault on the User's circuit from their offshore substation towards the shore, compared to the Measure of Capacity of the other Users.

Where:

An *Offshore Interlink* is a circuit which connects two offshore substations that are connected to a Single Common Substation. It is held in open standby until there is a transmission fault that limits the User's ability to export power to the Single Common Substation. In the Transport Model, they are to be modelled in open standby.

A Single Common Substation is a substation where:

- i. each substation that is connected by an Offshore Interlink is connected via at least one circuit without passing through another substation; and
- ii. all routes connecting each substation that is connected by an Offshore Interlink to the MITS pass through.

The Measure of Capacity to the MITS for each Offshore substation is the result of the following formula or zero whichever is larger. For the situation with only one interlink, all terms relating to C should be set to zero:

```
For Substation A:
min { Cap_{IAB}, ILF_A \times TEC_A - RCap_A, Cap_B - ILF_B \times TEC_B + min (Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation B:

min { ILF_B \times TEC_B - RCap_B, min (Cap_{IAB}, Cap_A - ILF_A \times TEC_A)

+ min ( Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation C:

min { Cap_{IBC}, ILF_{C} \times TEC_{C} - RCap_{C}, Cap_{B} - ILF_{B} \times TEC_{B} + min (Cap_{IAB}, Cap_{A} - ILF_{A} \times TEC_{A}) }

and
```

Cap _{IAB} = B	total capacity of the Offshore Interlink between substations A and
Cap _{IBC} = C	total capacity of the Offshore Interlink between substations B and
Cap _X =	total capacity of the circuit between offshore substation X and the Single Common Substation, where X is A, B or C.
RCap _x =	remaining capacity of the circuit between offshore substation X and the Single Common Substation in the event of a single cable fault, where X is A, B or C.
TEC _x =	the sum of the TEC for the Users connected, or contracted to connect, to offshore substation X, where X is A, B or C, where the value of TEC will be the maximum TEC that each User has held since the initial charging date, or is contracted to hold if prior to the initial charging date.

- ILF_x = Offshore Interlink Load Factor, where X is A, B or C. The Offshore Interlink Load Factor (ILF) is based on the Annual Load Factor (ALF). Until all the Users connected to a Single Common Substation have a station specific Annual Load Factor based on five years of data, the generic ALF for the fuel type will be used as the ILF for all stations. When all Users have a station specific ALF, the value of the ALF in the first such year will be used as the ILF in the calculation for all subsequent charging years.
- 14.15.86 The apportionment of revenue associated with Offshore Interlink(s) in 14.15.85 applies in situations where the Offshore Interlink was included in the design phase, or if one or more User(s) has already financially committed or been commissioned then only where that User(s) agrees to the Offshore Interlink.
- 14.15.87 Alternatively to the formula specified in 14.15.85 the proportion of the OFTO revenue associated with the Offshore Interlink allocated to each generator benefiting from the installation of an Offshore Interlink may be agreed between these Users. In this event:
- a. All relevant Users shall notify The Company of its respective proportions three months prior the OTSDUW asset transfer in the case of a generator build, or the charging date of the first generator, in the case of an OFTO build.
- b. All relevant Users may agree to vary the proportions notified under (a) by each writing to The Company three months prior to the charges being set for a given charging year.
- c. Once a set of proportions of the OFTO revenue associated with the Offshore Interlink has been provided to The Company, these will apply for the next and future charging years unless and until The Company is informed otherwise in accordance with (b) by all of the relevant Users.
- d. If all relevant Users are unable to reach agreement on the proportioning of the OFTO revenue associated with the Offshore Interlink they can raise a dispute. Any dispute between two or more Users as to the proportioning of such revenue shall be managed in accordance with CUSC Section 7 Paragraph 7.4.1 but the reference to the 'Electricity Arbitration Association' shall instead be to the 'Authority' and the Authority's determination of such dispute shall, without prejudice to apply for judicial review of any determination, be final and binding on the Users.

The Locational Onshore Security Factor

14.15.88 The locational onshore security factor is derived by running a secure DCLF ICRP transport study based on the same market background as used for Zoning in the DCLF ICRP transport model. This calculates the nodal marginal costs where peak <u>net</u> demand can be met despite the Security and Quality of Supply Standard contingencies (simulating single and double circuit faults) on the network. Essentially the calculation of secured nodal marginal costs is identical to the process outlined above except that the secure DCLF study additionally calculates a nodal marginal cost taking into account the requirement to be secure against a set of worse case contingencies in terms of maximum flow for each circuit.

- 14.15.89 The secured nodal cost differential is compared to that produced by the DCLF ICRP transport model and the resultant ratio of the two determines the locational security factor using the Least Squares Fit method. Further information may be obtained from the charging website¹.
- 14.15.90 The locational onshore security factor derived for 2010/11 is 1.8 and is based on an average from a number of studies conducted by The Company to account for future network developments. The security factor is reviewed for each price control period and fixed for the duration.

Local Security Factors

- 14.15.91 Local onshore security factors are generator specific and are applied to a generator's local onshore circuits. If the loss of any one of the local circuits prevents the export of power from the generator to the MITS then a local security factor of 1.0 is applied. For generation with circuit redundancy, a local security factor is applied that is equal to the locational security factor, currently 1.8.
- 14.15.92 Where a Transmission Owner has designed a local onshore circuit (or otherwise that circuit once built) to a capacity lower than the aggregated TEC of the generation using that circuit, then the local security factor of 1.0 will be multiplied by a Counter Correlation Factor (CCF) as described in the formula below;

$$CCF = \frac{D_{\min} + T_{cap}}{G_{cap}}$$

Where; D_{min} = minimum annual net demand (MW) supplied via that circuit in the absence of that generation using the circuit

 T_{cap} = transmission capacity built (MVA)

G_{cap} = aggregated TEC of generation using that circuit

CCF cannot be greater than 1.0.

14.15.93 A specific offshore local security factor (LocalSF) will be calculated for each offshore connection using the following methodology:

$$LocalSF = \frac{NetworkExportCapacity}{\sum_{k} Gen_{k}}$$

Where:

 NetworkExportCapacity =
 the total export capacity of the network disregarding any Offshore Interlinks

 k
 =
 the generation connected to the offshore network

1 http://www.nationalgrid.com/uk/Electricity/Charges/

Page 21 of 63

- 14.15.94 The offshore security factor for single circuits with a single cable will be 1.0 and for multiple circuit connections will be capped at the locational onshore security factor, derived as 1.8 for 2010/11.
- 14.15.95 The offshore local security factor for configurations with one or more Offshore Interlinks is updated so that the offshore circuit tariff will include the proportion of revenue associated with the Offshore Interlink(s). The specific offshore local security factor for configurations involving an Offshore Interlink, which may be greater than 1.8, will be calculated for each offshore connection using the following methodology:

 $LocalSF = \frac{IRevOFTO \times NetworkExportCapacity}{CRevOFTO \times \sum_{k}Gen_{k}} + LocalSF_{initial}$

Where:

The appropriate proportion of the Offshore Interlink(s) revenue in £
associated with the offshore connection calculated in 14.15.85
The offshore circuit revenue in £ associated with the circuit(s) from the
offshore substation to the Single Common Substation.
Initial Local Security Factor calculated in 14.15.80 and 14.15.81
And other definitions as in 14.15.80.

Initial Transport Tariff

14.15.96 First an Initial Transport Tariff (ITT) must be calculated for both Peak Security and Year Round backgrounds. For Generation, the Peak Security zonal marginal km (ZMkm_{PS}), Year Round Not-Shared zonal marginal km (ZMkm_{YRNS}) and Year Round Shared zonal marginal km (ZMkm_{YRS}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT, Year Round Not-Shared ITT and Year Round Shared ITT respectively:

 $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$

Where ZMkm _{GiPS} ZMkm _{GiYRNS} charging zone	= = e	Peak Security Zonal Marginal km for each generation zone Year Round Not-Shared Zonal Marginal km for each generation
ZMkm _{GiYRS}	=	Year Round Shared Zonal Marginal km for each generation
charging zon	е	
EC	=	Expansion Constant
LSF	=	Locational Security Factor
	=	Peak Security Initial Transport Tariff (£/MW) for each generation
zone		
ITT _{GiYRNS}	=	Year Round Not-Shared Initial Transport Tariff (£/MW) for each
generation charging zone		
ITT _{GiYRS}	=	Year Round Shared Initial Transport Tariff (£/MW) for each
generation ch	narging	zone.

- CUSC v1.12
 - 14.15.97 Similarly, for demand the Peak Security zonal marginal km (ZMkm_{PS}) and Year Round zonal marginal km (ZMkm_{YR}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT and Year Round ITT respectively:

		$ZMkm_{DiPS} \times EC \times LSF = ITT_{DiPS}$
		$ZMkm_{DiYR} \times EC \times LSF = ITT_{DiYR}$
Where ZMkm _{DiF} ZMkm _{DiY}	0	Peak Security Zonal Marginal km for each demand zone Year Round Zonal Marginal km for each demand zone
ITT _{DiPS} ITT _{DiYR}	= =	Peak Security Initial Transport Tariff (\pounds /MW) for each demand one Year Round Initial Transport Tariff (\pounds /MW) for each demand zone
14.15.98	GSP group revenue re metered tria	tep is to multiply these ITTs by the expected metered triad <u>gross</u> demand and generation capacity to gain an estimate of the initial covery for both Peak Security and Year Round backgrounds. The ad <u>gross GSP group</u> demand and generation capacity are based on forecasts provided by Users and are confidential.
a.		ad gross GSP group demand is net demand for all GSP groups less exports for all GSP groups .
Where		

ITRR _G =	Initial Transport Revenue Recovery for generation
G _{Gi} =	Total forecast Generation for each generation zone (based
	on analysis of confidential User forecasts)
ITRR _D =	Initial Transport Revenue Recovery for gross GSP group
	demand
D _{Di} =	Total forecast Metered Triad gross GSP group Demand for
each	
	demand zone (based on analysis of confidential User
	forecasts).

In addition, the initial tariffs for generation are also multiplied by the **Peak Security flag** when calculating the initial revenue recovery component for the Peak Security background. Similarly, when calculating the initial revenue recovery for the Shared component of the Year Round background, the initial tariffs are multiplied by the **Annual Load Factor** (see below).

Peak Security (PS) Flag

14.15.99 The revenue from a specific generator due to the Peak Security locational tariff needs to be multiplied by the appropriate Peak Security (PS) flag. The PS flags indicate the extent to which a generation plant type contributes to the need for transmission network investment at peak demand conditions. The PS

Page 23 of 63

flag is derived from the contribution of differing generation sources to the demand security criterion as described in the Security Standard. In the event of a significant change to the demand security assumptions in the Security Standard, National Grid will review the use of the PS flag.

Generation Plant Type	PS flag
Intermittent	0
Other	1

Annual Load Factor (ALF)

- 14.15.100 The ALF for each individual Power Station is calculated using the relevant TEC (MW) and corresponding output data. Where output data is not available for a Power Station, including for new Power Stations and emerging Power Station technologies, generic data for the appropriate generation plant type will be used.
- 14.15.101 For a given charging year "t" the Power Station ALF will be based on information from the previous five charging years, calculated for each charging year as set out below.

$$ALF = \frac{\sum_{p=1}^{17520} GMWh_p}{\sum_{p=1}^{17520} TECp \times 0.5}$$

Where:

 $\mathsf{GMWh}_{\mathsf{p}}$ is the maximum of FPN or actual metered output in a Settlement Period related to the power station TEC (MW); and

 TEC_{p} is the TEC (MW) applicable to that Power Station for that Settlement Period including any STTEC and LDTEC, accounting for any trading of TEC.

- 14.15.102 The appropriate output (FPN or actual metered) figure is derived from **BM Unit** data available to National Grid and relates to the total TEC of the Power Station.
- 14.15.103 Once all five charging year ALFs have been calculated for the individual Power Station they are compared, and the highest and lowest figures are discarded. The final ALF, to be used for transmission charging purposes, is calculated as the average of the remaining three ALFs.
- 14.15.104 In the event that only four charging years of complete output (FPN or actual metered) data are available for an individual Power Station then the higher three charging years ALF would be used in the calculation of the final ALF. In the event that only three charging years of complete output (FPN or actual metered) data are available then these three charging years would be used.
- 14.15.105 Due to the aggregation of output (FPN or actual metered) data for dispersed generation (e.g. cascade hydro schemes), where a single generator BMU consists of geographically separated power stations, the ALF would be calculated based on the total output of the BMU and the overall TEC of those Power Stations.

Page 24 of 63

1

- 14.15.106 In the event that there are not three full charging years of an individual power station's output available, missing output (FPN or actual metered) data would be replaced by generic data for that generation plant type to ensure three charging years of information are available for the Power Station. The derivation of the generic data is described in paragraphs 14.15.111-14.15.114.
- 14.15.107 Users will receive draft ALFs before 25th December of the charging year (t-1) for the charging year (t) and will have a period of 15 working days from date of publishing to notify the Company of any errors. Failure to agree changes relating to errors will be treated as a charging dispute under the CUSC.
- 14.15.108 The ALFs used in the setting of final tariffs will be published in the annual Statement of Use of System Charges. Changes to ALFs after this publication will not result in changes to published tariffs (e.g. following dispute resolution).

Derivation of Generic ALFs

14.15.109 The generic ALF is derived from the average annual output of the ten most recently commissioned GB generation of a particular generation plant type that have at least five charging years' data, using an identical methodology to that used for the Power Station specific calculation described above. Where less than ten GB generators of a particular generation plant type exist, then data from all existing generators of that particular generation plant type will be used. Example generation plant type categories are listed below;

Fuel Type	
Biomass	
Coal	
Gas	
Hydro	
Nuclear (by reactor	
type)	
Oil & OCGTs	
Pumped Storage	
Onshore Wind	
Offshore Wind	
CHP	

- 14.15.110 The Company will keep these categories under review and update as necessary. Where within a category there is a significant locational difference consideration will be given to zonal generic factors. The factors used will be published in the Statement of Use of System Charges and will be reviewed annually.
- 14.15.111 If a User can demonstrate that the generation plant type of a Power Station has changed, consideration will be given to the use of relevant generic ALF information in the calculation of their charges until sufficient specific data is available.
- 14.15.112 For new and emerging generation plant types, where insufficient data is available to allow a generic ALF to be developed, The Company will use the best information available e.g. from manufactuers and data from use of similar technologies outside GB. The factor will be agreed with the relevant Generator. In the event of a disagreement the standard provisions for dispute in the CUSC will apply.

TNUoS Embedded Export Tariff Embedded exports are exports measured on a half-hourly basis by 14.15.113 Metering Systems, in accordance with the BSC, that are not subject to generation TNUoS. The embedded export tariff will be applied to the metered Triad volumes 14.15.114 of Embedded Exports for each demand zone as follows: $EET_{Di} = ITT_{DiPS} + ITT_{DiYR} + EX$ Where ITT_{DiPS} = Peak Security Initial Transport Tariff for the demand zone; Year Round Initial Transport Tariff for the demand zone, and ITT_{DiYR} = £32.30 in April 2016 prices; indexed each year by the RPI formula EX = set out in 14.3.6. The Value of EET_{Di} will be floored at zero, so that EET_{Di} is always zero or positive. **Initial Revenue Recovery** 14.15,115 For the Peak Security background the initial tariff for generation is multiplied by the total forecast generation capacity and the PS flag to give the initial revenue recovery: $\sum_{Gi=1}^{n} (ITT_{GiPS} \times G_{Gi} \times F_{PS}) = ITRR_{GPS}$ Where ITR ation G_{Gi} ed on

Deleted: 113

		Real: On surfit a latitical Transment Resources Resources for a second
RR _{GPS}	=	Peak Security Initial Transport Revenue Recovery for generat
ài	=	Total forecast Generation for each generation zone (base
		<u>analysis of</u> confidential User forecasts)

F _{PS}	=	Peak Security flag appropriate to that generator type
n	=	Number of generation zones

The initial revenue recovery for gross GSP group demand for the Peak Security background is calculated by multiplying the initial tariff by the total forecast metered triad gross GSP group demand:

$$\sum_{Di=1}^{14} \left(ITT_{DiPS} \times D_{Di} \right) = ITRR_{DPS}$$

Where:

ITRRDPS	=	Peak Security Initial Transport Revenue Recovery for gross GSP
		group_demand
D _{Di}	=	Total forecast Metered Triad gross GSP group Demand for each
		demand zone (based on analysis of confidential User forecasts)

Page 26 of 63

14.15,<u>116</u> For the Year Round background, the initial tariff for generation is multiplied by the total forecast generation capacity whilst calculating Initial Recovery for Not-Shared component whereas the initial tariff for Shared component is multiplied by both, the total forecast generation capacity and the ALF to give the initial revenue recovery:

$$\sum_{G_{i=1}}^{n} (ITT_{G_{i}YRNS} \times G_{G_{i}}) = ITRR_{G_{YRNS}}$$
$$\sum_{G_{i=1}}^{n} (ITT_{G_{i}YRS} \times G_{G_{i}} \times ALF) = ITRR_{G_{YRS}}$$

Where:

ITRR _{GYRNS} generation	=	Year Round Not-Shared Initial Transport Revenue Recovery for
ITRR _{GYRS} generation	=	Year Round Shared Initial Transport Revenue Recovery for
ALF	=	Annual Load Factor appropriate to that generator.

14.15,117 Similar to the Peak Security background, the initial revenue recovery for gross <u>GSP group</u> demand for the Year Round background is calculated by multiplying the initial tariff by the total forecast metered triad gross GSP group demand:

$$\sum_{Di=1}^{14} \left(ITT_{DiYR} \times D_{Di} \right) = ITRR_{DYR}$$

=

Where:

ITRR

Year Round Initial Transport Revenue Recovery for gross GSP group demand

14.15.118The initial revenue recovery for Embedded Exports is the Embedded Export Tariff multiplied by the total forecast volume of Embedded Export at triad:

$$ITRR_{EE} = \sum_{Di=1}^{14} (EET_{Di} \times EEV_{Di})$$

<u>Where</u>

ITTR _{EE}	= Initial Revenue impact for Embedded Exports
EEV _{Di}	= Forecast Embedded Export metered volume at Triad
<u>(MW)</u>	

For the avoidance of doubt, the initial revenue recovery for affected embedded exports can be positive or negative.

Page 27 of 63

V1.12-01 April 2016

Deleted: 115

I

I

1

Deriving the Final Local Tariff (£/kW)

Local Circuit Tariff

14.15,119 Generation with a local circuit tariff is calculated by multiplying the Year Round nodal marginal km along the local circuit by the expansion constant and the relevant local security factor (whether onshore or offshore) and summing across local circuits to give the local circuit tariff:

$$\sum_{k} \frac{NLMkm_{Gj}^{L} \times EC \times LocalSF_{k}}{1000} = CLT_{Gi}$$

Where		
k	=	Local circuit <i>k</i> for generator
NLMkm _{Gj} ^L	=	Year Round Nodal marginal km along local circuit k using local
		circuit expansion factor.
EC	=	Expansion Constant
LocalSF _k	=	Local Security Factor for circuit k
CLT _{Gi}	=	Circuit Local Tariff (£/kW)

Onshore Local Substation Tariff

- 14.15,120 All chargeable generation is subject to the local substation tariff component which is determined by assessing the generation substation type which is the substation at the connection charging boundary, against three cost determining factors:
 - (a) HV connection voltage the voltage at the boundary between the User's connection assets and the transmission system;
 - (b) Sum of TEC at the generation substation the combined TEC of all generation at the connecting substation; and
 - (c) The level of redundancy at the generation substation single busbar / single switch mesh connections are examples of no redundancy connections, whereas examples of connections with redundancy include double busbar and mesh sub station designs.
- 14.15,<u>121</u> Using the above factors, the corresponding £/kW tariffs (quoted to 3dp) that will be applied during 2010/11 are:

Substation Connection		Substation Voltage (a)			
Rating (b)	Type (c)	132kV	275kV	400kV	
<1320MW	No redundancy	0.133	0.081	0.065	
<1320MW	Redundancy	0.301	0.192	0.155	
>=1320MW	No redundancy	n/a	0.257	0.208	
>=1320MW	Redundancy	n/a	0.417	0.336	

14.15,<u>122</u> The process for calculating Local Substation Tariffs will be carried out for the first year of the price control and will subsequently be indexed by RPI for each subsequent year of the price control period.

Deleted: 116

Deleted: 117

Deleted: 118

I

I

14.15,123 The effective Local Tariff (£/kW) is calculated as the sum of the circuit and substation onshore and/or offshore components:

$$ELT_{Gi} = CLT_{Gi} + SLT_{Gi}$$

Where

ELT _{Gi} SLT _{Gi}	=	Effective Local Tariff (£/kW) Substation Local Tariff (£/kW)

14.15,<u>124</u> Where tariffs do not change mid way through a charging year, final local tariffs will be the same as the effective tariffs:

14.15,125 Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$LT_{Gi} = \frac{12 \times \left(ELT_{Gi} \times \sum_{Gi=1}^{21} G_{Gi} - FLL_{Gi}\right)}{b \times \sum_{Gi=1}^{21} G_{Gi}} \quad \text{and} \quad FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{21} G_{Di}}$$

Where:

b = number of months the revised tariff is applicable for

FLL = Forecast local liability incurred over the period that the original tariff is applicable for

14.15,<u>126</u> For the purposes of charge setting, the total local charge revenue is calculated by:

$$\text{LCRR}_{\text{G}} = \sum_{j=Gi} \text{LT}_{\text{Gi}} * G_j$$

Where LCRR_G G_i

 Local Charge Revenue Recovery
 Forecast chargeable Generation or Transmission Entry Capacity in kW (as applicable) for each generator (based on <u>analysis of</u> confidential information received from Users)

Offshore substation local tariff

14.15,<u>127</u> All offshore chargeable generation is subject to an offshore substation tariff. The offshore substation tariff shall be the sum of transformer, switchgear and platform components.

14.15,128 Each tariff component, expressed in £/kW, shall be the ratio of the Offshore Transmission Owner revenue (£) and rating associated with the transformers, switchgear or platform (kW) at each offshore substation. The Offshore Transmission Owner revenue of each tariff component shall include that associated with asset spares. In the case of the platform component, the relevant rating shall be the lower of the transformer or switchgear ratings. As with the offshore circuit expansion factors, the Offshore Transmission Owner revenue associated with each tariff component shall be averaged over the remaining years of the NETSO price control.

Page 29 of 63

V1.12-01 April 2016

Deleted: 121

Deleted: 120

Deleted: 122

Deleted: 123

Deleted: 125

- 14.15,129 Offshore Transmission Owner revenue associated with interest during construction and project development overheads will be attributed to the relevant asset category with which it is associated. If these or any other costs included in the Offshore Transmission Owner revenue are not readily attributable to a given asset category, they will be pro-rated across the various asset categories based on their relative cost.
- 14.15,130 For 2010/11 a discount of £0.345590/kW shall be provided to the offshore substation tariff to reflect the average cost of civil engineering for onshore substations. This will be inflated by RPI each year and reviewed every price control period.
- 14.15,131 Offshore substation tariffs shall be reviewed at the start of every onshore price control period. For each subsequent year within the price control period, these shall be inflated in the same manner as the associated Offshore Transmission Owner Revenue.
 - 14.15,132 The revenue from the offshore substation local tariff is calculated by:

$$SLTR = \sum_{\substack{All offshore \\ substatios}} \left(SLT_k \times \sum_k Gen_k \right)$$

Where:		
SLT _k	=	the offshore substation tariff for substation k
Gen _k	=	the generation connected to offshore substation k

The Residual Tariff

14.15,133 The total revenue to be recovered through TNUoS charges is determined each year with reference to the Transmission Licensees' Price Control formulas less the costs expected to be recovered through Pre-Vesting connection charges. Hence in any given year t, a target revenue figure for TNUoS charges (TRR_i) is set after adjusting for any under or over recovery for and including, the small generators discount is as follows:

$$TRR_t = R_t - PVC_t - SG_{t-1}$$

Where

- TRR_t = TNUoS Revenue Recovery target for year t
- R_t = Forecast Revenue allowed under The Company's RPI-X Price Control Formula for year t (this term includes a number of adjustments, including for over/under recovery from the previous year). For further information, refer to Special Condition D2 of The Company's Transmission Licence. PVC_t = Forecast Revenue from Pre-Vesting connection charges for year t
- SG_{t-1} = The proportion of the under/over recovery included within R_t which relates to the operation of statement C13 of the The Company Transmission Licence. Should the operation of statement C13 result in an under recovery in year t 1, the SG figure will be positive and vice versa for an over recovery.
- 14.15,134 In normal circumstances, the revenue forecast to be recovered from the initial transport tariffs will not equate to the total revenue target. This is due to a number of factors. For example, the transport model assumes, for simplicity, smooth incremental transmission investments can be made. In reality, transmission investment can only be made in discrete 'lumps'. The transmission system has been planned and developed over a long period of

Page 30 of 63

V1.12-01 April 2016

Deleted: 126

Deleted: 127

Deleted: 128

Deleted: 129

Deleted: 130

time. Forecasts and assessments used for planning purposes will not have been borne out precisely by events and therefore some distinction between an optimal system for one year and the actual system can be expected.

14.15,135 As a result of the factors above, in order to ensure adequate revenue recovery, a constant non-locational **Residual Tariff** for generation and demand is calculated, which includes infrastructure substation asset costs. It is added to the initial transport tariffs for both Peak Security and Year Round backgrounds so that the correct generation / demand revenue split is maintained and the total revenue recovery is achieved.

$$RT_{D} = \frac{(p \times TRR) - ITRR_{DPS} - ITRR_{DYR} - ITRR_{EE}}{\sum_{Di=1}^{14} D_{Di}}$$

$$RT_{G} = \frac{\left[(1-p) \times TRR\right] - ITRR_{GPS} - ITRR_{GYRNS} - ITRR_{GYRS} - LCRR_{G}}{\sum_{Gi=1}^{n} G_{Gi}}$$

Where

RT

Residual Tariff (£/MW)

Proportion of revenue to be recovered from demand

Final £/kW Tariff

р

14.15,136 The effective Transmission Network Use of System tariff (TNUoS) for generation and gross demand can now be calculated as the sum of the initial transport wider tariffs for Peak Security and Year Round backgrounds, the non-locational residual tariff and the local tariff:

$$ET_{Gi} = \frac{ITT_{GiPS} + ITT_{GiYRNS} + ITT_{GiYRS} + RT_{G}}{1000} + LT_{Gi}$$
$$= ET_{Di} = \frac{ITT_{DiPS} + ITT_{DiYR} + RT_{D}}{1000}$$

Where

ET_{Gi} = Effective Generation TNUoS Tariff expressed in £/kW (ET_{Gi} would only be applicable to a Power Station with a PS flag of 1 and ALF of 1; in all other circumstances ITT_{GiPS}, ITT_{GiPRNS} and ITT_{GiPRS} will be applied using Power Station specific data)

The effective Transmission Network Use of System tariff (TNUoS) for affected embedded exports and grandfathered embedded exports can now be calculated by expressing the embedded export tariff in £/kW values:

$$ET_{EEi} = \frac{EET_D}{1000}$$

Where **Where**

ET_{EEi} = Effective Embedded Export TNUoS Tariff expressed in £/kW

Page 31 of 63

Deleted: ¶ $(p \times TRR)$ $RT_{D} =$ Ī

Deleted: 132

For the purposes of the annual Statement of Use of System Charges ET_{Gi} will be published as ITT_{GIPS} ; ITT_{GIYRS} , ITT_{GIYRS} , RT_G and LT_{Gi}

14.15,137 Where tariffs do not change mid way through a charging year, final demand and generation tariffs will be the same as the effective tariffs.

 $FT_{Gi} = ET_{Gi}$ $FT_{Di} = ET_{Di}$ $F\overline{T_{EEAi}} = ET_{EEi}$

14.15,<u>138</u> Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$FT_{Gi} = \frac{12 \times \left(ET_{Gi} \times \sum_{Gi=1}^{20} G_{Gi} - FL_{Gi} \right)}{b \times \sum_{Gi=1}^{27} G_{Gi}}$$

$$FT_{EEi} = \frac{12 \times (ET_{EEi} \times \sum_{Di=1}^{14} EET_{Di} - FL_{Di})}{b \times \sum_{Di=1}^{14} EET_{Di}} \text{ and } FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di} \right)}{b \times \sum_{Di=1}^{14} EET_{Di}}$$

Where:

b = number of months the revised tariff is applicable for

FL = Forecast liability incurred over the period that the original tariff is applicable for

Note: The ET_{Gi} element used in the formula above will be based on an individual Power Stations PS flag and ALF for Power Station G_{Gi}, aggregated to ensure overall correct revenue recovery.

14.15.139 If the final gross_demand TNUoS Tariff results in a negative number then this is collared to £0/kW with the resultant non-recovered revenue smeared over the remaining demand zones:

If $FT_{Di} < 0$, then i = 1 to z

Therefore,

 $NRRT_{D} = \frac{\sum_{i=1}^{z} \left(FT_{Di} \times D_{Di}\right)}{\sum_{i=-i+1}^{14} D_{Di}}$

For i=1 to z: $RFT_{Di} = 0$

For *i*=z+1 to 14:
$$RFT_{Di} = FT_{Di} + NRRT_D$$

Where

Page 32 of 63

V1.12-01 April 2016

Deleted: 40

Deleted: 134

CUS	SC v1.12		
	$NRRT_{D} = Non Recovered Revenue Tariff (\pounds/kW)$ RFT _{Di} = Revised Final Tariff (\pounds/kW)		
	14.15,140 The tariffs applicable for any particular year are detailed in The Company's Statement of Use of System Charges, which is available from the Charging website. Archived tariff information may also be obtained from the Charging website.	Deleted: 137	
	14.15, <u>141</u> The zonal maps referenced in The Company's Statement of Use of System Charges and available on the Charging website contain detailed information for the charging year in question of which Grid Supply Points fall into which TNUoS zones.	Deleted: 138	
	14.15,142 New Grid Supply Points will be classified into zones on the following basis:	Deleted: 139	
	• For demand zones, according to the GSP Group to which the Grid Supply Point is allocated for energy market settlement purposes.		
	• For generation zones, with reference to the geographic proximity to existing zones and, where close to a boundary between existing zones, with reference to the marginal costs arising from transport model studies. The GSP will then be allocated to the zone, which contains the most similar marginal costs.		
I	14.15,143 The Company has available, upon request, the DCLF ICRP transport model, tariff model template and data necessary to run the model, consisting of nodal values of generation and demand connection points to the NETS. The model and data will enable the basic nodal charges to be determined and will also allow sensitivity analysis concerning alternative developments of generation and demand to be undertaken. The model is available from the Charging Team and whilst it is free of charge, it is provided under licence to restrict its distribution and commercial use.	Deleted: 140	
ļ	14.15,144 The Company will be pleased to run specific sensitivity studies for Users under a separate study contract in line with the fees set out in the Statement of Use of System Charges . Please contact the Charging Team .	Deleted: 141	
I	14.15,145 The factors which will affect the level of TNUoS charges from year to year include-;	Deleted: 142	
	 the forecast level of peak demand on the system the Price Control formula (including the effect of any under/over recovery from the previous year), the expansion constant, the locational security factor, the PS flag the ALF of a generator changes in the transmission network HVDC circuit impedance calculation changes in the pattern of generation capacity and demand. changes in the pattern of embedded exports 		
	14.15,146 In accordance with Standard Licence Condition C13, generation directly connected to the NETS 132kV transmission network which would normally be subject to generation TNUoS charges but would not, on the basis of generating capacity, be liable for charges if it were connected to a licensed distribution network qualifies for a reduction in transmission charges by a designated sum,	Deleted: 143	

Page 33 of 63

1

determined by the Authority. Any shortfall in recovery will result in a unit amount increase in <u>gross</u> demand charges to compensate for the deficit. Further information is provided in the Statement of the Use of System Charges.

Stability & Predictability of TNUoS tariffs

14.15,147 A number of provisions are included within the methodology to promote the stability and predictability of TNUoS tariffs. These are described in 14.29.

14.16 Derivation of the Transmission Network Use of System Energy Consumption Tariff and Short Term Capacity Tariffs

- 14.16.1 For the purposes of this section, Lead Parties of Balancing Mechanism (BM) Units that are liable for Transmission Network Use of System Demand Charges are termed Suppliers.
- 14.16.2 Following calculation of the Transmission Network Use of System £/kW Gross Demand Tariff (as outlined in Chapter 2: Derivation of the TNUoS Tariff) for each GSP Group is calculated as follows:

$$p/kWh Tariff = (NHHD_F * £/kW Tariff - FL_G) *100$$

NHHC_G

Where:

 \pounds/kW Tariff = The \pounds/kW Effective <u>Gross</u> Demand Tariff (\pounds/kW), as calculated previously, for the GSP Group concerned.

 \mathbf{NHHD}_{F} = The Company's forecast of Suppliers' non-half-hourly metered Triad Demand (kW) for the GSP Group concerned. The forecast is based on historical data.

 FL_{G} = Forecast Liability incurred for the GSP Group concerned.

 $\rm NHHC_{G}$ = The Company's forecast of GSP Group non-half-hourly metered total energy consumption (kWh) for the period 16:00 hrs to 19:00hrs inclusive (i.e. settlement periods 33 to 38) inclusive over the period the tariff is applicable for the GSP Group concerned.

Short Term Transmission Entry Capacity (STTEC) Tariff

14.16.3 The Short Term Transmission Entry Capacity (STTEC) tariff for positive zones is derived from the Effective Tariff (ET_{Gi}) annual TNUoS £/kW tariffs (14.15.112). If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the STTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (i.e. over the whole financial year, not just the period that the STTEC is applicable for). STTECs will not be reconciled following a mid year charge change. The premium associated with the flexible product is associated with the analysis that 90% of the annual charge is linked to the system peak. The system peak is likely to occur in the period of November to February inclusive (120 days, irrespective of leap years). The calculation for positive generation zones is as follows:

$$\frac{FT_{Gi} \times 0.9 \times STTEC \ Period}{120} = STTEC \ tariff \ (\pounds/kW/period)$$

Where:

FT	=	Final annual TNUoS Tariff expressed in £/kW
Gi	=	Generation zone
STTEC Period	=	A period applied for in days as defined in the CUSC

Page 35 of 63

- 14.16.4 For the avoidance of doubt, the charge calculated under 14.16.3 above will represent each single period application for STTEC. Requests for multiple /STTEC periods will result in each STTEC period being calculated and invoiced separately.
- 14.16.5 The STTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.

Limited Duration Transmission Entry Capacity (LDTEC) Tariffs

14.16.6 The Limited Duration Transmission Entry Capacity (LDTEC) tariff for positive zones is derived from the equivalent zonal STTEC tariff for up to the initial 17 weeks of LDTEC in a given charging year (whether consecutive or not). For the remaining weeks of the year, the LDTEC tariff is set to collect the balance of the annual TNUoS liability over the maximum duration of LDTEC that can be granted in a single application. If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the LDTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (ie over the whole financial year, not just the period that the STTEC is applicable for). LDTECs will not be reconciled following a mid year charge change:

Initial 17 weeks (high rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.9 \times 7}{120}$$

Remaining weeks (low rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.1075 \times 7}{316 - 120} \times (1 + P)$$

where FT is the final annual TNUoS tariff expressed in £/kW; G_i is the generation TNUoS zone; and P is the premium in % above the annual equivalent TNUoS charge as determined by The Company, which shall have the value 0.

- 14.16.7 The LDTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.
- 14.16.8 The tariffs applicable for any particular year are detailed in The Company's **Statement of Use of System Charges** which is available from the **Charging website**. Historical tariffs are also available on the **Charging website**.

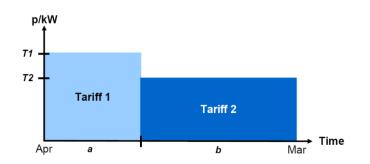
14.17 Demand Charges

Parties Liable for Demand Charges

- 14.17.1 Demand charges are subdivided into charges for gross demand, energy and embedded export. The following parties shall be liable for some or all of the categories of demand charges:
 - The Lead Party of a Supplier BM Unit;
 - Power Stations with a Bilateral Connection Agreement;
 - Parties with a Bilateral Embedded Generation Agreement
- 14.17.2 Classification of parties for charging purposes, section 14.26, provides an illustration of how a party is classified in the context of Use of System charging and refers to the paragraphs most pertinent to each party.

Basis of Gross Demand Charges

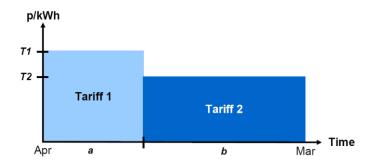
app


app

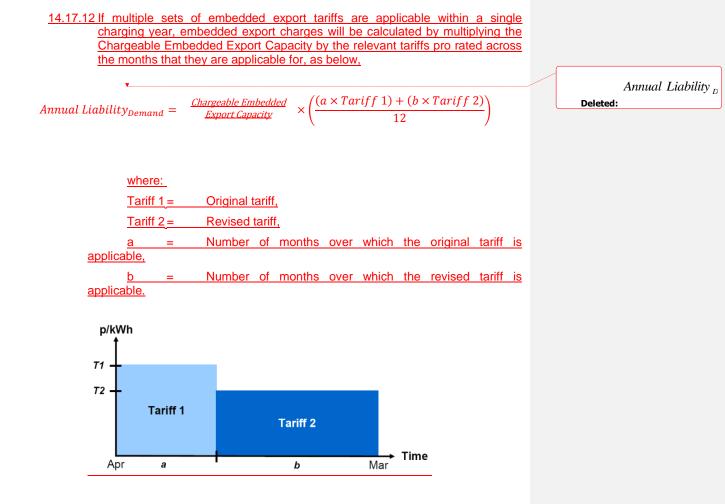
- 14.17.3 <u>Gross d</u>emand charges are based on a de-<u>minimis</u> £0/kW charge for Half Hourly and £0/kWh for Non Half Hourly metered demand.
 - 14.17.4 Chargeable <u>Gross</u> Demand Capacity is the value of Triad <u>gross</u> demand (kW). Chargeable Energy Capacity is the energy consumption (kWh). The definition of both these terms is set out below.
 - 14.17.5 If there is a single set of <u>gross</u> demand tariffs within a charging year, the Chargeable <u>Gross</u> Demand Capacity is multiplied by the relevant <u>gross</u> demand tariff, for the calculation of <u>gross</u> demand charges.
 - 14.17.6 If there is a single set of energy tariffs within a charging year, the Chargeable Energy Capacity is multiplied by the relevant energy consumption tariff for the calculation of energy charges..
 - 14.17.7 If multiple sets of <u>gross</u> demand tariffs are applicable within a single charging year, <u>gross</u> demand charges will be calculated by multiplying the Chargeable <u>Gross</u> Demand Capacity by the relevant tariffs pro rated across the months that they are applicable for, as below,

Annı	ual Liabi	$lity_{Demand} = \frac{Ch}{De}$	e <u>arge</u> eman	able Gross d Capacity	$\times \left(\frac{(a)}{a}\right)$	<tariff< th=""><th>$\frac{1) + (b)}{12}$</th><th>×Tariff2</th><th><u>2)</u>)</th><th></th></tariff<>	$\frac{1) + (b)}{12}$	×Tariff2	<u>2)</u>)	
wh	ere:						_			
Tai	riff 1 =	Original t	ariff	,						
Tai	riff 2 =	Revised	tarif	f,						
a licable	,	Number	of	months	over	which	the	original	tariff	is
b licable.	=	Number	of	months	over	which	the	revised	tariff	is

Deleted: minimus


Deleted: Annual Liability _D

14.17.8 If multiple sets of energy tariffs are applicable within a single charging year, energy charges will be calculated by multiplying relevant Tariffs by the Chargeable Energy Capacity over the period that that the tariffs are applicable for and summing over the year.


Annual Liability $_{Energy} = Tariff \ 1 \times \sum_{TI_s}^{TI_E} Chargeable Energy Capacity + Tariff \ 2 \times \sum_{TZ_s}^{TI_E} Chargeable Energy Capacity$

Where: T1s Start date for the period for which the original tariff is = applicable, End date for the period for which the original tariff is T1_E applicable, Start date for the period for which the revised tariff is T2s _ applicable, End date for the period for which the revised tariff is T2_E = applicable.

Basis of Embedded Export Charges

- 14.17.9 Embedded export charges are based on a £/kW charge for Half Hourly metered embedded export.
- <u>14.17.10 Chargeable Embedded Export Capacity is the value of Embedded Export at</u> <u>Triad (kW). The definition of this term is set out below.</u>
- 14.17.11 If there is a single set of embedded export tariffs within a charging year, the Chargeable Embedded Export Capacity is multiplied by the relevant embedded export tariff, for the calculation of embedded export charges.

Supplier BM Unit

14.17,<u>13</u> A Supplier BM Unit charges will be the sum of its energy, <u>gross_demand_and</u> <u>embedded export</u> liabilities where:

- The Chargeable <u>Gross</u> Demand Capacity will be the average of the Supplier BM Unit's half-hourly metered <u>gross</u> demand during the Triad (and the £/kW tariff),
- The Chargeable Embedded Export Capacity will be the average of the Supplier BM Unit's half-hourly metered embedded export during the Triad (and the £/kW tariff), and
- The Chargeable Energy Capacity will be the Supplier BM Unit's non halfhourly metered energy consumption over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year (and the p/kWh tariff).

Power Stations with a Bilateral Connection Agreement and Licensable Generation with a Bilateral Embedded Generation Agreement

Page 39 of 63

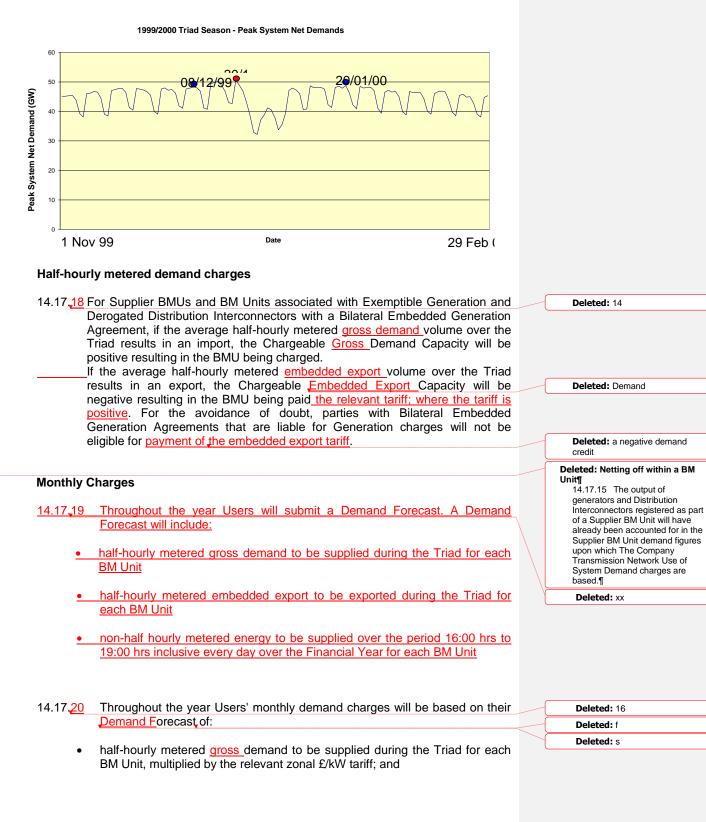
V1.12-01 April 2016

USC v1.12	
14.17, <u>14</u> The Chargeable <u>Gross</u> Demand Capacity for a Power Station with a Bilateral Connection Agreement or Licensable Generation with a Bilateral Embedded Generation Agreement will be based on the average of the <u>gross</u> import over each Triad leg of the BM Units associated with the Power Station (in Appendix C of its Bilateral Connection Agreement or Bilateral Embedded Generation Agreement, including metered additional load) during the Triad.	1
Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement	
14.17, <u>15,The demand charges for Exemptible Generation and Derogated Distribution</u> Interconnector with a Bilateral Embedded Generation Agreement will be the sum of its gross demand and embedded export liabilities where:	
 The Chargeable <u>Gross</u> Demand Capacity for Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement will be based on the average of the metered <u>gross demand</u> of 	
each BM Unit specified in Appendix C of the Bilateral Embedded Generation Agreement during the Triad.	
 The Chargeable Embedded Export Capacity for Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement will be based on the average of the metered embedded export of each BM Unit specified in Appendix C of the Bilateral Embedded Generation Agreement during the Triad. 	
mall Generators Tariffs	
14.17, <u>16</u> In accordance with Standard Licence Condition C13, any under recovery from the MAR arising from the small generators discount will result in a unit amount of increase to all GB gross_demand tariffs.	
he Triad	
14.17,17 The Triad is used as a short hand way to describe the three settlement periods of highest transmission system demand within a Financial Year, namely the half hour settlement period of system peak <u>net</u> demand and the two half hour settlement periods of next highest <u>net</u> demand, which are separated from the	

system peak<u>net</u> demand and from each other by at least 10 Clear Days, between November and February of the Financial Year inclusive. Exports on directly connected Interconnectors and Interconnectors capable of exporting more than 100MW to the Total System shall be excluded when determining the

system peak net demand. An illustration is shown below.

I


Deleted: 10

Deleted: net

Deleted: 11 Deleted: An

Deleted: volume

Deleted: 12

- half-hourly metered embedded export to be supplied during the Triad for each BM Unit, multiplied by the relevant zonal £/kW tariff; and
- non-half hourly metered energy to be supplied over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year for each BM Unit, multiplied by the relevant zonal p/kWh tariff

Users' annual TNUoS demand charges are based on these forecasts and are split evenly over the 12 months of the year. Users have the opportunity to vary their demand forecasts on a quarterly basis over the course of the year, with the demand forecast requested in February relating to the next Financial Year. Users will be notified of the timescales and process for each of the quarterly updates. The Company will revise the monthly Transmission Network Use of System demand charges by calculating the annual charge based on the new forecast, subtracting the amount paid to date, and splitting the remainder evenly over the remaining months. For the avoidance of doubt, only positive demand forecasts (i.e. representing <u>a net</u> import from the system) will be <u>used in the calculation of charges</u>.

Demand forecasts for a User will be considered positive where:

- The sum of the gross demand forecast and embedded export forecast is positive; and
- The non-half hourly metered energy forecast is positive.

14.17.21 Users should submit reasonable forecasts of gross demand, embedded export and energy in accordance with the CUSC. The Company shall use the following methodology to derive a forecast to be used in determining whether a User's forecast is reasonable, in accordance with the CUSC, and this will be used as a replacement forecast if the User's total forecast is deemed unreasonable. The Company will, at all times, use the latest available Settlement data.

For existing Users:

- i) The User's Triad <u>gross</u> demand<u>and embedded export</u> for the preceding Financial Year will be used where User settlement data is available and where The Company calculates its forecast before the Financial Year. Otherwise, the User's average weekday settlement period 35 half-hourly metered (HH) <u>gross</u> demand <u>and embedded export</u> in the Financial Year to date is compared to the equivalent average <u>gross</u> demand<u>and</u> <u>embedded export</u> for the corresponding days in the preceding year. The percentage difference is then applied to the User's HH <u>gross</u> demand<u>and</u> <u>embedded export</u> at Triad in the preceding Financial Year to derive a forecast of the User's HH <u>gross</u> demand <u>and embedded export</u> at Triad for this Financial Year.
- ii) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day in the Financial Year to date is compared to the equivalent energy consumption over the corresponding days in the preceding year. The percentage difference is then applied to the User's total NHH energy consumption in the preceding Financial Year to derive a forecast of the User's NHH energy consumption for this Financial Year.

For new Users who have completed a Use of System Supply Confirmation Notice in the current Financial Year:

Page 42 of 63

V1.12-01 April 2016

Deleted: accepted

1

iii) The User's average weekday settlement period 35 half-hourly metered (HH) gross demand and embedded export over the last complete month for which The Company has settlement data is calculated. Total system average HH gross demand and embedded export for weekday settlement period 35 for the corresponding month in the previous year is compared to total system HH_gross demand and embedded export at Triad in that year and a percentage difference is calculated. This percentage is then applied to the User's average HH gross demand and embedded export for weekday settlement period 35 over the last month to derive a forecast of the User's HH gross demand and embedded export at Triad for this Financial Year.

- iv) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day over the last complete month for which The Company has settlement data is noted. Total system NHH energy consumption over the corresponding month in the previous year is compared to total system NHH energy consumption over the remaining months of that Financial Year and a percentage difference is calculated. This percentage is then applied to the User's NHH energy consumption over the month described above, and all NHH energy consumption in previous months is added, in order to derive a forecast of the User's NHH metered energy consumption for this Financial Year.
- 14.17.22 14.28 Determination of The Company's Forecast for Demand Charge Purposes illustrates how the demand forecast will be calculated by The Company.

Reconciliation of Demand Charges

14.17,23 The reconciliation process is set out in the CUSC. The demand reconciliation process compares the monthly charges paid by Users against actual outturn charges. Due to the Settlements process, reconciliation of demand charges is carried out in two stages; initial reconciliation and final reconciliation.

Initial Reconciliation of demand charges

14.17,24 The initial reconciliation process compares Users' demand forecasts and corresponding monthly charges paid over the year against actual outturn data (using latest Settlement data available at the time) and corresponding charges. Initial reconciliation is carried out in two parts; Initial Reconciliation Part 1 deals with the reconciliation of half-hourly metered demand charges and Initial Reconciliation Part 2 deals with the reconciliation of non-half-hourly metered demand charges.

Initial Reconciliation Part 1– Half-hourly metered demand

- 14.17.25 The Company will identify the periods forming the Triad once it has received Central Volume Allocation data from the Settlement Administration Agent for all days up to and including the last day of February. Once The Company has notified Users of the periods forming the Triad they will not be changed even if disputes are subsequently resolved which would change the periods forming the Triad.
- 14.17,<u>26</u> Initial outturn charges for half-hourly metered <u>gross</u> demand will be determined using the latest available data of actual average Triad <u>gross</u> demand (kW) multiplied by the zonal <u>gross</u> demand tariff(s) (£/kW) applicable to the months

Page 43 of 63

V1.12-01 April 2016

Deleted: 18

Deleted: 19

Deleted: 20

Deleted: 1

Сι

l

I

I

l

I

SC v1.12			
r	concerned for each zone for that Financial Year. These actual values econciled against the monthly charges paid in respect of half-hold demand.		
<u>c</u> <u>e</u> <u>t</u> <u>\</u>	nitial outturn charges for half-hourly metered embedded expon determined using the latest available data of actual average Triad export (kW) multiplied by the zonal embedded export tariff(s) (£/kW) o the months concerned for each zone for that Financial Year. The values are then reconciled against the monthly charges paid in respe- nourly embedded exports.	embedded applicable ese actual	Deleted: xx
Initial Red	conciliation Part 2 – Non-half-hourly metered demand		
t ł r	Actual payments for non-half-hourly metered demand will be determine the latest available actual energy consumption data (kWh) for the per- bins to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) over multiplied by the energy consumption tariff(s) (p/kWh) applicable to the concerned for each zone. These actual values are then reconciled a monthly charges paid in respect of non-half-hourly energy consumption	riod 16:00 the year ne months ligainst the	Deleted: 23
Final Rec	onciliation of demand charges		
t	The final reconciliation process compares Users' charges (as calculation he initial reconciliation process using the latest available data) ago tutturn demand charges (based on final settlement data <u>of half-ho</u> demand, embedded exports and non-half-hourly energy consumption	ainst final urly gross	Deleted: 24
	Final actual charges will be determined using the final demand rec data taken from the Final Reconciliation Settlement Run or Reconciliation Volume Allocation Run.		Deleted: 25
Reconcili	ation of manifest errors		
t	n the event that a manifest error, or multiple errors in the calculation ariffs results in a material discrepancy in aUsers TNUoS econciliation process for all Users qualifying under Section 14.17	tariff, the	 Deleted: 26
a	accordance with Sections 14.17.24 to 14.17.30. The reconciliation	n process	Deleted: 20
r	shall be carried out using recalculated TNUoS tariffs. Wh econciliation is not practicable, a post-year reconciliation will be und he form of a one-off payment.	ere such ertaken in	Deleted: 25
14.17. <mark>32</mark> /	A manifest error shall be defined as any of the following:		Deleted: 27
	 a) an error in the transfer of relevant data between the Tra Licensees or Distribution Network Operators; b) an error in the population of the Transport Model with relevant c) an error in the function of the Transport Model; or d) an error in the inputs or function of the Tariff Model. 		
	A manifest error shall be considered material in the event that such a he net effect of multiple errors, has an impact of the lesser of either:	n error or,	Deleted: 28
	a) an error in a User's TNUoS tariff of at least +/-£0.50/kW; or		
	Page 44 of 63 V1.12-0	01 April 2016	

b) an error in a User's TNUoS tariff which results in an error in the annual TNUoS charge of a User in excess of +/-£250,000.

14.17,<u>34</u> A manifest error shall only be reconciled if it has been identified within the charging year for which the error has an effect. Errors identified outside of this period will not be eligible for reconciliation retrospectively.

Implementation of P272

- 14.17,<u>35</u>.1 BSC modification P272 requires Suppliers to move Profile Classes 5-8 to Measurement Class E - G (i.e. moving from NHH to HH settlement) by April 2016. The majority of these meters are expected to transfer during the preceding Charging Years up until the implementation date of P272 and some meters will have been transferred before the start of 1ST April 2015. A change from NHH to HH within a Charging Year would normally result in Suppliers being liable for TNUoS for part of the year as NHH and also being subject to HH charging. This section describes how the Company will treat this situation in the transition to P272 implementation for the purposes of TNUoS charging; and the forecasts that Suppliers should provide to the Company.
- 14.17,35.2 Notwithstanding 14.17,13, for each Charging Year which begins after 31 March 2015 and prior to implementation of BSC Modification P272, all demand associated with meters that are in NHH Profile Classes 5 to 8 at the start of that charging year as well as all meters in Measurement Classes E G will be treated as Chargeable Energy Capacity (NHH) for the purposes of TNUoS charging for the full Charging Year unless 14.17,35.3 applies.
 - 14.17,35.3 Where prior to 1st April 2015 a Profile Class meter has already transferred to Measurement Class settlement (HH) the associated Supplier may opt to treat the demand volume as Chargeable Demand Capacity (HH) for the purposes of TNUoS charging up until implementation of P272, subject to meeting conditions in 14.17,35.6. If the associated Supplier does not opt to treat the demand volume as Demand Capacity (HH) it will be treated by default as Chargeable Energy Capacity (NHH) for each full Charging Year up until implementation of P272.
 - 14.17,35.4 The Company will calculate the Chargeable Energy Capacity associated with meters that have transferred to HH settlement but are still treated as NHH for the purposes of TNUoS charging from Settlement data provided directly from Elexon i.e. Suppliers need not Supply any additional information if they accept this default position.
- 14.17,35.5 The forecasts that Suppliers submit to the Company under CUSC 3.10, 3.11 and 3.12 for the purpose of TNUoS monthly billing referred to in 14.17,20 and 14.17,21 for both Chargeable Demand Capacity and Chargeable Energy Capacity should reflect this position i.e. volumes associated those Metering Systems that have transferred from a Profile Class to a Measurement Class in the BSC (NHH to HH settlement) but are to be treated as NHH for the purposes of TNUoS charging should be included in the forecast of Chargeable Energy Capacity and not Chargeable Demand Capacity, unless 14.17,35.3 applies.
 - 14.17,<u>35</u>.6 Where a Supplier wishes for Metering Systems that have transferred from Profile Class to Measurement Class in the BSC (NHH to HH settlement) prior to 1st April 2015, to be treated as Chargeable Demand Capacity (HH/

Page 45 of 63

V1.12-01 April 2016

Deleted: 29 Deleted: 9 Deleted: 29 Deleted: 29 Deleted: 29 Deleted: 29 Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 16 **Deleted:** 17

Deleted: 29

I

Measurement Class settled) it must inform the Company prior to October 2015. The Company will treat these as Chargeable Demand Capacity (HH / Measurement Class settled) for the purposes of calculating the actual annual liability for the Charging Years up until implementation of P272. For these cases only, the Supplier should notify the Company of the Meter Point Administration Number(s) (MPAN). For these notified meters the Supplier shall provide the Company with verified metered demand data for the hours between 4pm and 7pm of each day of each Charging Year up to implementation of P272 and for each Triad half hour as notified by the Company prior to May of the following Charging Year up until two years after the implementation of P272 to allow reconciliation (e.g. Mav 2017 and May 2018 for the Charging Year 2016/17). Where the Supplier fails to provide the data or the data is incomplete for a Charging Year TNUoS charges for that MPAN will be reconciled as part of the Supplier's NHH BMU (Chargeable Energy Capacity). Where a Supplier opts, if eligible, for TNUoS liability to be calculated on Chargeable Demand Capacity it shall submit the forecasts referred to in 14.17,35.5 taking account of this.

14.17,35.7 The Company will maintain a list of all MPANs that Suppliers have elected to be treated as HH. This list will be updated monthly and will be provided to registered Suppliers upon request.

Further Information

- 14.17,<u>36</u> 14.25 Reconciliation of Demand Related Transmission Network Use of System Charges of this statement illustrates how the monthly charges are reconciled against the actual values for <u>gross</u> demand, <u>embedded export</u> and consumption for half-hourly <u>gross demand</u>, <u>embedded export</u> and non-halfhourly metered demand respectively.
- 14.17,<u>37</u> **The Statement of Use of System Charges** contains the £/kW zonal gross demand tariffs, <u>the £/kW zonal embedded export tariffs</u>, and the p/kWh energy consumption tariffs for the current Financial Year.
- 14.17,<u>38</u> 14.27 Transmission Network Use of System Charging Flowcharts of this statement contains flowcharts demonstrating the calculation of these charges for those parties liable.

Deleted: 29 Deleted: 30

Deleted: 29

Deleted: 31

....

14.24 Example: Calculation of Zonal Gross Demand Tariff

Let us consider all nodes in a demand zone in this example

The table below shows a sample output of the transport model comprising the node, the Peak Security and Year Round marginal km of an injection at the node with a consequent withdrawal at the distributed reference node, the generation sited at the node, scaled to ensure total national generation = total national <u>net</u> demand and the <u>net</u> demand sited at the node.

Demand Zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	<u>Net</u> Demand (MW)
14	ABHA4A	-77.25	-230.25	127
14	ABHA4B	-77.27	-230.12	127
14	ALVE4A	-82.28	-197.18	100
14	ALVE4B	-82.28	-197.15	100
14	AXMI40_SWEB	-125.58	-176.19	97
14	BRWA2A	-46.55	-182.68	96
14	BRWA2B	-46.55	-181.12	96
14	EXET40	-87.69	-164.42	340
14	HINP20	-46.55	-147.14	0
14	HINP40	-46.55	-147.14	0
14	INDQ40	-102.02	-262.50	444
14	IROA20_SWEB	-109.05	-141.92	462
14	LAND40	-62.54	-246.16	262
14	MELK40_SWEB	18.67	-140.75	83
14	SEAB40	65.33	-140.97	304
14	TAUN4A	-66.65	-149.11	55
14	TAUN4B	-66.66	-149.11	55
		Totals		2748

In order to calculate the <u>gross</u> demand tariff we would carry out the following steps:

(i) calculate the demand weighted nodal shadow costs

For this example zone this would be as follows:

Demand zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	Net Demand (MW)	Peak Security Demand Weighted Nodal Marginal km	Year Round Demand Weighted Nodal Marginal km
14	ABHA4A	-77.25	-230.25	127	-3.57	-10.64
14	ABHA4B	-77.27	-230.12	127	-3.57	-10.64
14	ALVE4A	-82.28	-197.18	100	-2.99	-7.17
14	ALVE4B	-82.28	-197.15	100	-2.99	-7.17
14	AXMI40_SWEB	-125.58	-176.19	97	-4.43	-6.22
14	BRWA2A	-46.55	-182.68	96	-1.63	-6.38
14	BRWA2B	-46.55	-181.12	96	-1.63	-6.33
14	EXET40	-87.69	-164.42	340	-10.85	-20.34
14	INDQ40	-102.02	-262.50	444	-16.48	-42.41
14	IROA20_SWEB	-109.05	-141.92	462	-18.33	-23.86
14	LAND40	-62.54	-246.16	262	-5.96	-23.47
14	MELK40_SWEB	18.67	-140.75	83	0.56	-4.25
14	SEAB40	65.33	-140.97	304	7.23	-15.59
14	TAUN4A	-66.65	-149.11	55	-1.33	-2.98
14	TAUN4B	-66.66	-149.11	55	-1.33	-2.98
		Totals		2748	-49.19	-190.43

(ii) sum the Peak Security and Year Round demand weighted nodal shadow costs to give zonal figures. For this example zone this is shown in the above table and is 49.19km for Peak Security background and 190.43km for Year Round background.

(iii) calculate the transport tariffs by multiplying the figures in (ii) above by the expansion constant (& dividing by 1000 to put into units of £/kW):

For this example zone, assuming an expansion constant of $\pm 10.07/MWkm$ and a locational security factor of 1.80:

a) Peak Security tariff – 49.19km <u>* £10.07/MWkm * 1.8</u> = <u>£0.89/kW</u> 1000

Page 49 of 63

b) Year Round tariff -<u>190.43km * £10.07/MWkm * 1.8</u> = <u>£3.45/kW</u> 1000

(iv) We now need to calculate the residual tariff. This is calculated by taking the total revenue to be recovered from demand (calculated as c.73% of total The Company_ TNUoS target revenue for the year), less the revenue which would be recovered through the demand transport tariffs and revenue recovery through embedded export tariffs, divided by total expected gross GSP group demand.

Assuming the total revenue to be recovered from TNUoS is £1067m, the total recovery from <u>gross GSP group</u> demand would be $(73\% \times £1067m) = £779m$. Assuming the total recovery from <u>gross GSP group</u> demand transport tariffs is £140m, total recovery from <u>embedded export tariffs is -£10m</u> and total forecast chargeable <u>gross GSP group</u> demand capacity is 50000MW, the demand residual tariff would be as follows:

 $\frac{\pounds779m - \pounds140m - -\pounds10m}{50,000MW} = \pounds12.98/kW$

 (v) to get to the final tariff, we simply add on the demand residual tariff calculated in (v) to the zonal transport tariffs calculated in (iii(a)) and (iii(b))

For zone 14:

 $\pounds 0.89/kW + \pounds 3.45/kW + \pounds 12.98/kW =$ $\pounds 17.32/kW$

- To summarise, in order to calculate the <u>gross</u> demand tariffs, we evaluate a <u>net</u> demand weighted zonal marginal km cost multiply by the expansion constant and locational security factor then we add a constant (termed the residual cost) to give the overall tariff.
- (vii) The final demand tariff is subject to further adjustment to allow for the minimum £0/kW gross_demand charge. The application of a discount for small generators pursuant to Licence Condition C13 will also affect the final gross_demand tariff.

Deleted: gross

Deleted: 130m

Deleted:	$\pounds779m - \pounds130m$	_
Deleteu:	50000MW	_

14.25 Reconciliation of <u>Gross</u> Demand Related Transmission Network Use of System Charges

This appendix illustrates the methodology used by The Company in the reconciliation of Transmission Network Use of System charges for <u>gross</u> demand. The example highlights the different stages of the calculations from the monthly invoiced amounts, right through to Final Reconciliation.

Monthly Charges

Suppliers provide half-hourly (HH) gross demand and embedded export forecasts and non-halfhourly (NHH) demand forecasts by BM Unit every quarter. An example of such forecasts and the corresponding monthly invoiced amounts, based on tariffs of £10.00/kW for gross demand, £5.00/kW for embedded export and 1.20p/kWh for energy consumption, is as follows:

	Forecast HH Triad <u>Gross</u> Demand <u>HHD_E (</u> kW)	HH <u>Gross</u> <u>Demand</u> Monthly Invoiced Amount (£)	Forecast HH Triad Embedded Export HHEE _E (kW)	<u>HH</u> <u>Embedded</u> <u>Generation</u> <u>Monthly</u> <u>Invoiced</u> <u>Amount (£)</u>	Forecast NHH Energy Consumpti on NHHC _F (kW h)	NHH Monthly Invoiced Amount (£)	Net Monthly Invoiced Amount (£)
Apr	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
May	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jun	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jul	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Aug	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Sep	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Oct	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Nov	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Dec	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Jan	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Feb	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Mar	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Total		72,000		<u>(3,000)</u>		216,000	<u>297</u> ,000

As shown, for the first nine months the Supplier provided a 12,000kW HH triad <u>gross</u> demand forecast, and hence paid HH <u>gross demand</u> monthly charges of £10,000 ((12,000kW x £10.00/kW)/12) for that BM Unit. In January the Supplier provided a revised forecast of 7,200kW, implying a forecast annual charge reduced to £72,000 (7,200kW x £10.00/kW). The Supplier had already paid £90,000, so the excess of £18,000 was credited back to the supplier in three £6,000 instalments over the last three months of the year.

The Supplier provided an embedded export triad forecast of -600kW and hence was paid an embedded export credit of £250 ((600kW x £5.00/kW)/12) for that BM Unit (For the avoidance of doubt, if the embedded export tariff is negative this will result in a debit).

The Supplier also initially provided a 15,000,000kWh NHH energy consumption forecast, and hence paid NHH monthly charges of £15,000 ((15,000,000kWh x 1.2p/kWh)/12) for that BM Unit. In July the Supplier provided a revised forecast of 18,000,000kWh, implying a forecast annual charge increased to £216,000 (18,000,000kWh x 1.2p/kWh). The Supplier had already

paid £45,000, so the remaining £171,000 was split into payments of £19,000 for the last nine months of the year.

The right hand column shows the net monthly charges for the BM Unit.

Initial Reconciliation (Part 1a)

The Supplier's outturn HH triad <u>gross</u> demand, based on <u>initial</u> settlement data (and therefore subject to change in subsequent settlement runs), was 9,000kW. The HH triad <u>gross</u> demand reconciliation charge is therefore calculated as follows:

HHD Reconciliation Charge = $(HHD_A - HHD_F) \times \pounds/kW$ Tariff

= (9,000kW - 7,200kW) x £10.00/kW

= 1,800kW x £10.00/kW

= £18,000

To calculate monthly interest charges, the outturn HHD charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHD charge less the HH <u>gross demand</u> monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 1b)

The Supplier's outturn HH triad embedded export, based on initial settlement data (and therefore subject to change in subsequent settlement runs), was 700kW. The HH triad embedded export reconciliation charge is therefore calculated as follows:

HHEE Reconciliation Charge = (HHEE_A – HHEE_E) x £/kW Tariff

 $= (-500 \text{kW} - -600 \text{kW}) \times \text{\pounds}5.00/\text{kW}$

 $= 100 \text{kW} \times \text{\pounds}5.00/\text{kW}$

= **£500**

To calculate monthly interest charges, the outturn HHEE charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHEE charge less the HH embedded generation monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 2)

The Supplier's outturn NHH energy consumption, based on initial settlement data, was 17,000,000kWh. The NHH energy consumption reconciliation charge is therefore calculated as follows:

Deleted: Please note that payments made to BM Units with a net export over the Triad, based on initial settlement data, will also be reconciled at this stage.¶ As monthly payments will not be made on the basis of a negative forecast, the HHD Reconciliation Charge for an exporting BM Unit will represent the full actual payment owed to that BM Unit (subject to adjustment by subsequent settlement runs). Interest will be calculated as described above.¶

NHHC Reconciliation Charge = $(NHHC_A - NHHC_F) \times p/kWh$ Tariff

100

= (17,000,000kWh - 18,000,000kWh) x 1.20p/kWh

100

= <u>-1,000,000kWh x 1.20p/kWh</u> 100 = **-£12,000**

worked example 4.xls - Initial!J104

The monthly reconciliation amount is equal to the outturn energy consumption charge for that month less the NHH monthly invoiced amount. Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

The net initial TNUoS demand reconciliation charge is therefore $\pounds 6,500$ (£18,000 + $\pounds 500$ - $\pounds 12,000$).

Final Reconciliation

Finally, let us now suppose that after all <u>final</u> Settlement data has been received (up to 14 months after the relevant dates), the outturn HH triad <u>gross</u> demand, <u>HH triad embedded export</u> and NHH energy consumption values were 9,500kW, <u>-550kW</u> and 16,500,000kWh, respectively.

Final HH <u>Gross Demand</u>	= (9,500kW - 9,000kW) x £10.00/kW
<u>Reconciliation Charge</u>	= £5,000
Final HH Embedded Export	= (-550kW500kW) x £5.00/kW
Reconciliation Charge	= -£250

Final NHH Reconciliation Charge = $(16,700,000kWh - 17,000,000kWh) \times 1.20p/kWh$ 100 = -£3,600

Consequently, the net final TNUoS demand reconciliation charge will be $\pounds 1, \underline{150} (\pounds 5,000 + -\pounds 250 + -\pounds 3,600)$.

Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

Outturn data for BM Units with a net export over the Triad will be received at this stage and final reconciliation will be carried out, as required. Interest will be calculated as described above.

Terminology:

 HHD_A = The Supplier's outturn half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

Page 53 of 63

I

 HHD_F = The Supplier's forecast half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

<u>HHEE_A = The Supplier's outturn half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

<u>HHEE_E = The Supplier's forecast half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

NHHC_A = The Supplier's outturn non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1^{st} to March 31^{st} , for the demand zone concerned.

NHHC_F = The Supplier's forecast non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1st to March 31st, for the demand zone concerned.

£/kW Tariff = The £/kW <u>Gross</u> Demand <u>or Embedded Export</u> Tariff as shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

p/kWh Tariff = The Energy Consumption Tariff shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

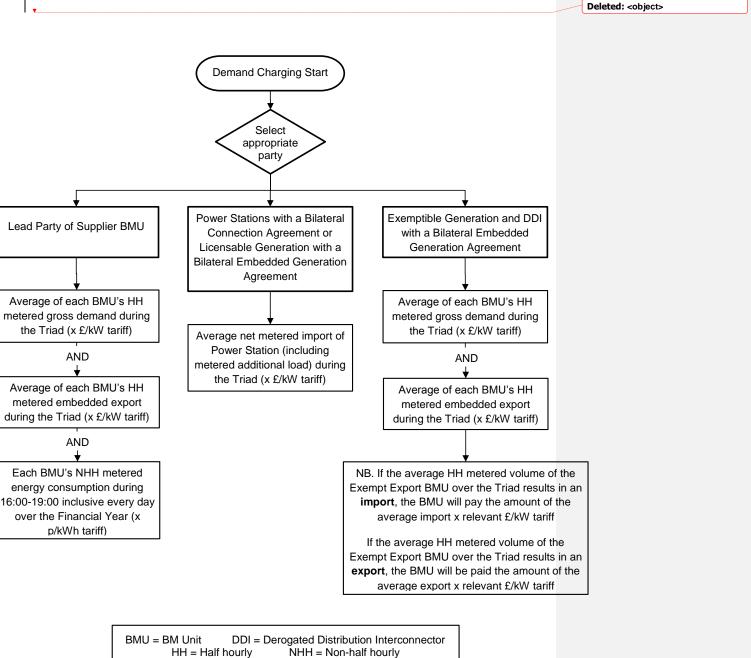
14.26 Classification of parties for charging purposes

In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precendence.

In the following diagrams, the parties liable for Transmission Network Use of System charges are outlined in red.

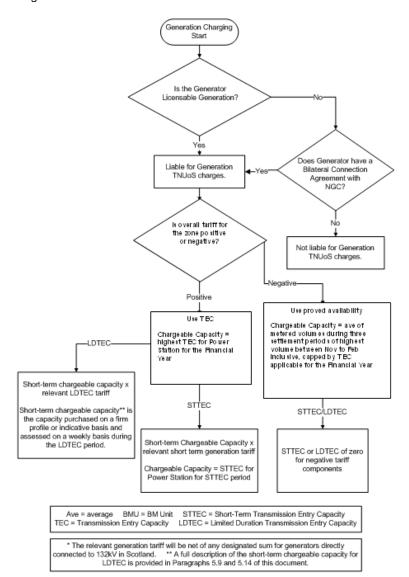
SUPPLIER		
Supplier Use of System Agreem	ent	
Supplier Supplier BMU1 BMUn		
Demand Charges	Generation Charges	
See 14.17. <mark>13 and 14.17.18</mark> .	None.	Deleted: 9 Deleted: 14
POWER STATION WITH A BILATERAL Bilateral Connection Agreement Gen Unit BMU1 Gen Unit BMU1		
Demand Charges	Generation Charges	
See 14.17. <mark>18</mark> .	See 14.18.1 i) and 14.18.3 to 14.18.9 and	Deleted: 10
	14.18.18.	
	For generators in positive zones, see 14.18.10 to 14.18.12.	
	For generators in negative zones, see 14.18.13 to 14.18.17 .	
L	1	J

Bilateral Emb	bedded Generation	Agreement App	pendix C
Gen Unit BMU1	Gen Unit BMUn	Station Load BMU	Additional Load BMU
Demand Charges See 14.17,<u>14</u>, 14.1 7	7, <u>15</u> and 14.17, <u>18</u> .	Generation Cl See 14.18.1 ii	0
		For generators	s in positive zones, see 14.18.3 t
		14.18.12 and	14.18.18.


-{	Deleted: 10
-	Deleted: 11
Y	Deleted: 14

14.27 Transmission Network Use of System Charging Flowcharts

The following flowcharts illustrate the parties liable for Demand and Generation TNUoS charges and the calculation of those charges.


In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precedence.

Page 57 of 63

Generation Charges

14.28 Example: Determination of The Company's Forecast for Demand Charge Purposes

The Company will use the latest available settlement data for calculation of HH demand and NHH energy consumption forecasts for the Financial Year.

The Financial Year runs from 1st April to 31st March inclusive and for the purpose of these examples the year April 2005 to March 2006 is used.

Where the preceding year's settlement data is not available at the time that The Company needs to calculate its forecast, The Company will use settlement data from the corresponding period in Financial Year minus two unless indicated otherwise.

All values used with the examples are purely for illustrative purposes only.

i) Half-Hourly (HH) Metered Demand Forecast – Existing User

At the time of calculation of a HH demand forecast before the relevant Financial Year (approximately 10th March), The Company will be aware at a system level which dates will be used for the determination of Triad. However, The Company may not have settlement data at a User level if the Triad dates were to span a period that includes the latter half of February.

When undertaking forecasting before the relevant Financial Year, The Company will use the User's Triad demand for the previous year for its forecast providing it holds User settlement data for this period, thus:

F = T

where:

F = Forecast of User's HH demand at Triad for the Financial Year

T = User's HH gross_demand and embedded export_at Triad in Financial Year minus one

Where The Company determines its forecast within a Financial Year:

F = T * D/P

where:

- F = Forecast of User's HH demand at Triad for the Financial Year
- T = User's HH gross demand and embedded export at Triad in the preceding Financial Year
- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the preceding Financial Year

Where The Company determines its forecast before the relevant Financial Year and User settlement data for the Triad period is not available, The Company shall apply the formula immediately above (within year forecast) but substitute the following definitions for the values T, D, and P:

T = User's HH gross demand and embedded export at Triad in the Financial Year minus two

Page 59 of 63

- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year minus one, to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the Financial Year minus two

Example (where User settlement data is not yet available for the Triad period):

The Company calculates a HH demand forecast on the above methodology at 10th March 2005 for the period 1st April 2005 to 31st March 2006.

Gross demand:

F = 10,000 * 13,200 / 12,000

F = 11,000 kW,Deleted: hwhere:T = 10,000 kW, (period November 2003 to February 2004)Deleted: hD = 13,200 kW, (period 1st April 2004 to 15th February 2005#)Deleted: hP = 12,000 kW, (period 1st April 2003 to 15th February 2004)Deleted: h

Latest date for which settlement data is available.

Embedded export:

F = -280 * -300 / -350

<u>F = -240 kW</u>

where:

T = -280 kW (period November 2003 to February 2004)

D = -300 kW (period 1st April 2004 to 15th February 2005#)

P = -350 kW (period 1st April 2003 to 15th February 2004)

<u># Latest date for which settlement data is available.</u>

ii) Non Half-Hourly (NHH) Metered Energy Consumption Forecast – Existing User

F = E * D/P

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- E = User's summed NHH energy consumption over the hours 16:00 to 19:00 for each day in the preceding Financial Year

Page 60 of 63

- D = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the Financial Year to date
- P = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the period corresponding to D in the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th June 2005 for the period 1st April 2005 to 31st March 2006.

- F = 50,000,000 * 4,400,000 / 4,000,000
- F = 55,000,000 kWh

where:

- E = 50,000,000 kWh (period 1st April 2004 to 31st March 2005)
- D = 4,400,000 kWh (period 1st April 2005 to 15th May 2005#)
- P = 4,000,000 kWh (period 1st April 2004 to 15th May 2004)
- # Latest date for which settlement data is available

Where forecasting before the relevant Financial Year concerned, The Company would in the above example use values for E and P from Financial Year 2003/04 and D from Financial Year 2004/05.

iii) Half-Hourly (HH) Metered Demand Forecast – New User

F = M * T/W

where:

- F = Forecast of User's HH metered <u>gross</u> demand <u>and embedded export</u> at Triad for the Financial Year
 - M = User's HH average weekday period 35 demand for the last complete month for which settlement data is available
- T = Total system HH <u>gross</u> demand <u>and embedded export</u> at Triad in the preceding Financial Year
 - W = Total system HH average weekday settlement period 35 metered demand for the corresponding period to M for the preceding year

Example:

The Company calculates a HH demand forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2004 to 31st March 2006.

Gross demand:

F = 1,000 * 17,000,000 / 18,888,888

6056 11.12				
l	F =	900 kW _e	(Deleted: h
	where			
l	M =	1,000 kW _* (period 1 st July 2005 to 31 st July 2005)		Deleted: h
l	T =	17,000,000 kW, (period November 2004 to February 2005)	(Deleted: h
1	W =	18,888,888 kW _v (period 1 st July 2004 to 31 st July 2004)		Deleted: h
	Embeo	ded export:		
	<u>F =</u>	<u>150 * 7,200,000 / 6,000,000</u>		
	<u>F =</u>	<u>180 kW</u>		
	where			

- M = 150 kW (period 1st July 2005 to 31st July 2005)
- T = 7,200,000 kW (period November 2004 to February 2005)
- <u>W = 6,000,000 kW (period 1^{st} July 2004 to 31^{st} July 2004)</u>

iv) Non Half Hourly (NHH) Metered Energy Consumption Forecast – <u>New User</u>

F = J + (M * R/W)

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- J = Residual part month summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day where new User registration takes place other than on the first of a month
- M = User's summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the last complete month for which settlement data is available
- R = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period from the start of that defined under M but for the preceding year and until the end of that preceding Financial Year
- W = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period identified in M but for the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2005 to 31st March 2006.

- F = 500 + (1,000 * 20,000,000,000 / 2,000,000,000)
- F = 10,500 kWh

where:

- J = 500 kWh (period 10th June 2005 to 30th June 2005)
- M = 1,000 kWh (period 1st July 2005 to 31st July 2005)
- R = 20,000,000,000 kWh (period 1st July 2004 to 31st March 2005)
- W = 2,000,000,000 kWh (period 1st July 2004 to 31st July 2004)

CMP265 WACM9

14.15 Derivation of the Transmission Network Use of System Tariff

- 14.15.1 The Transmission Network Use of System (TNUoS) Tariff comprises two separate elements. Firstly, a locationally varying element derived from the DCLF ICRP transport model to reflect the costs of capital investment in, and the maintenance and operation of, a transmission system to provide bulk transport of power to and from different locations. Secondly, a non-locationally varying element related to the provision of residual revenue recovery. The combination of both these elements forms the TNUoS tariff.
- 14.15.2 For generation TNUoS tariffs the locational element itself is comprised of five separate components. Three wider components
 - o Wider Peak Security Component
 - Wider Year Round Not-shared component
 - Wider Year Round component

These components reflect the costs of the wider network under the different generation backgrounds set out in the Demand Security Criterion (for Peak Security component) and Economy Criterion (for both Year Round components) of the Security Standard. The two Year Round components reflect the unshared and shared costs of the wider network based on the diversity of generation plant types.

Two local components -

- o Local substation, and
- Local circuit

These components reflect the costs of the local network.

Accordingly, the wider tariff represents the combined effect of the three wider locational tariff components and the residual element; and the local tariff represents the combination of the two local locational tariff components.

14.15.3 The process for calculating the TNUoS tariff is described below.

The Transport Model

Model Inputs

14.15.4 The DCLF ICRP transport model calculates the marginal costs of investment in the transmission system which would be required as a consequence of an increase in demand or generation at each connection point or node on the transmission system, based on a study of peak demand conditions using both Peak Security and Year Round generation backgrounds on the transmission system. One measure of the investment costs is in terms of MWkm. This is the concept that ICRP uses to calculate marginal costs of investment. Hence, marginal costs are estimated initially in terms of increases or decreases in units of kilometres (km) of the transmission system for a 1 MW injection to the system.

- 14.15.5 The transport model requires a set of inputs representative of the Demand Security and Economy Criterion set out in the Security Standards. These conditions on the transmission system are represented in the Peak Security and Year Round background respectively as follows:
- Nodal generation information per node (TEC, plant type and SQSS scaling factors)
- Nodal <u>net</u> demand information
- Transmission circuits between these nodes
- The associated lengths of these routes, the proportion of which is overhead line or cable and the respective voltage level
- The cost ratio of each of 132kV overhead line, 132kV underground cable, 275kV overhead line, 275kV underground cable and 400kV underground cable to 400kV overhead line to give circuit expansion factors
- The cost ratio of each separate sub-sea AC circuit and HVDC circuit to 400kV overhead line to give circuit expansion factors
- 132kV overhead circuit capacity and single/double route construction information is used in the calculation of a generator's local charge.
- Offshore transmission cost and circuit/substation data
- 14.15.6 For a given charging year "t", the nodal generation TEC figure and generation plant types at each node will be based on the Applicable Value for year "t" in the NETS Seven Year Statement in year "t-1" plus updates to the October of year "t-1". The contracted TECs and generation plant types in the NETS Seven Year Statement include all plant belonging to generators who have a Bilateral Agreement with the TOs. For example, for 2010/11 charges, the nodal generation data is based on the forecast for 2010/11 in the 2009 NETS Seven Year Statement plus any data included in the quarterly updates in October 2009.
- 14.15.7 Scaling factors for different generation plant types are applied on their aggregated capacity for both Peak Security and Year Round backgrounds. The scaling is either Fixed or Variable (depending on the total demand level) in line with the factors used in the Security Standard, for example as shown in the table below.

Generation Plant Type	Peak Security Background	Year Round Background
Intermittent	Fixed (0%)	Fixed (70%)
Nuclear & CCS	Variable	Fixed (85%)
Interconnectors	Fixed (0%)	Fixed (100%)
Hydro	Variable	Variable
Pumped Storage	Variable	Fixed (50%)
Peaking	Variable	Fixed (0%)
Other (Conventional)	Variable	Variable

These scaling factors and generation plant types are set out in the Security Standard. These may be reviewed from time to time. The latest version will be used in the calculation of TNUoS tariffs and is published in the Statement of Use of System Charges

14.15.8 National Grid will categorise plant based on the categorisations described in the Security Standard. Peaking plant will include oil and OCGT technologies and Other (Conv.) represents all remaining conventional plant not explicitly stated elsewhere in the table In the event that a power station is made up of more than one technology type, the type of the higher Transmission Entry Capacity (TEC) would apply.

I

- 14.15.9 Nodal <u>net</u> demand data for the transport model will be based upon the GSP <u>net</u> demand that Users have forecast to occur at the time of National Grid Peak Average Cold Spell (ACS) Demand for year "t" in the April Seven Year Statement for year "t-1" plus updates to the October of year "t-1".
- 14.15.10 Subject to paragraphs 14.15.15 to 14.15.22, Transmission circuits for charging year "t" will be defined as those with existing wayleaves for the year "t" with the associated lengths based on the circuit lengths indicated for year "t" in the April NETS Seven Year Statement for year "t-1" plus updates to October of year "t-1". If certain circuit information is not explicitly contained in the NETS Seven Year Statement, The Company will use the best information available.
- 14.15.11 The circuit lengths included in the transport model are solely those, which relate to assets defined as 'Use of System' assets.
- 14.15.12 For HVDC circuits, the impedance will be calculated to provide flows based on a ratio of the capacity provided by the HVDC link relative to the capacities on all major transmission system boundaries that it parallels.
- 14.15.13 The transport model employs the use of circuit expansion factors to reflect the difference in cost between (i) AC Circuits and HVDC circuits. (ii) underground and sub-sea circuits, (iii) cabled circuits and overhead line circuits, (iv) 132kV and 275kV circuits, (v) 275kV circuits and 400kV circuits, and (vi) uses 400kV overhead line (i.e. the 400kV overhead line expansion factor is 1). As the transport model expresses cost as marginal km (irrespective of cables or overhead lines), some account needs to be made of the fact that investment in these other types of circuit (specifically HVDC and sub-sea cables of various voltages, 400kV underground cable, 275kV overhead line, 275kV underground cable, 132kV overhead line and 132kV underground cable) is more expensive than for 400kV overhead line. This is done by effectively 'expanding' these more expensive circuits by the relevant circuit expansion factor, thereby producing a larger marginal kilometre to reflect the additional cost of investing in these circuits compared to 400kV overhead line. When calculating the local circuit tariff for a generator, alternative 132kV and offshore expansion factors to those used in the remainder of the tariff calculation are applied to the generator's local circuits.
- 14.15.14 The circuit expansion factors for HVDC circuits and AC subsea cables are determined on a case by case basis using the costs which are specific to individual projects containing HVDC or AC subsea circuits.

Adjustments to Model Inputs associated with One-off Works

- 14.15.15 Where, following the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge that related to One-off Works carried out on an onshore circuit, and such One-off Works would affect the value of a TNUoS tariff paid by the User, the transport model inputs associated with the onshore circuit shall be adjusted by The Company to reflect the asset value that would have been modelled if the works had been undertaken on the basis of the original asset design rather than the One-off Works.
- 14.15.16 Subject to paragraphs 14.15.17 to 14.15.19, where, prior to the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge (or has paid a charge to the relevant TO prior to 1st April 2005 on the same principles as a

Page 3 of 63

One-Off Charge) that related to works equivalent to those described under paragraph 14.15.15, an adjustment equivalent to that under paragraph 14.15.15 shall be made to the transport model inputs as follows.

- 14.15.17 Such adjustment shall be made following a User's request, which must be received by The Company no later than the second occurrence of 31st December following the implementation of CUSC Modification CMP203.
- 14.15.18 The Company shall only make an adjustment to the transport model inputs, under paragraph 14.15.16 where the charge was paid to the relevant TO prior to 1st April 2005 where evidence has been provided by the User that satisfies The Company that works equivalent to those under paragraph 14.15.15 were funded by the User.
- 14.15.19 Where a User has sufficient reason to believe that adjustments under paragraph 14.15.18 should be made in relation to specific assets that affect a TNUoS tariff that applies to one of its sites and outlines its reasoning to The Company, The Company shall (upon the User's request and subject to the User's payment of reasonable costs incurred by The Company in doing so) use its reasonable endeavours to assist the User in obtaining any evidence The Company or a TO may have to support its position.
- 14.15.20 Where a request is made under paragraph 14.15.16 on or prior to 31st December in a charging year, and The Company is satisfied based on the accompanying evidence provided to The Company under paragraph 14.15.17 that it is a valid request, the transport model inputs shall be adjusted accordingly and taken into account in the calculation of TNUoS tariffs effective from the year commencing on the 1st April following this and otherwise from the next subsequent 1st April.
- 14.15.21 The following table provides examples of works for which adjustments to transport model inputs would typically apply:

Ref	Description of works	Adjustments
1	Undergrounding - A User requests to underground an overhead line at a greater cost.	As the cable cost will be more expensive than the overhead line (OHL) equivalent, the circuit will be modelled as an OHL.
2	Substation Siting Decision - A User requests to move the existing or a planned substation location to a place that means that the works cannot be justified as economic by the TO.	As the revised substation location may result in circuits being extended. If this is the case, the originally designed circuit lengths (as per the originally designed substation location) would be used in the transport model.
3	Circuit Routing Decision - A User asks to move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	As any circuit route changes that extend circuits are likely to result in a greater TNUoS tariff, the originally designed circuit lengths would be used in the transport model.

Ref	Description of works	Adjustments
4	Building circuits at lower voltages - A User requests lower tower height and therefore a different voltage.	As lower voltage circuits result in a higher expansion factor being used, the circuits would be modelled at the originally designed higher voltage.

14.15.22 The following table provides examples of works for which adjustments to transport model typically would not apply:

Ref	Description of works	Reasoning
1	Undergrounding - A User chooses to have a cable installed via a tunnel rather than buried.	Cable expansion factors are applied in the transport model regardless of whether a cable is tunnelled and buried, so there is no increased TNUoS cost.
2	Additional circuit route works - A User asks for screening to be provided around a new or existing circuit route.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
3	Additional circuit route works - A User requests that a planned overhead line route is built using alternative transmission tower designs.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
4	Additional substation works - A User asks for screening to be provided around a new or existing substation.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
5	Additional substation works - Changes to connection assets (e.g. HV-LV transformers and associated switchgear), metering, additional LV supplies, additional protection equipment, additional building works, etc.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
6	Diversion - A User asks to temporarily move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	The temporary circuit changes will not be incorporated into the transport model.

7	Connection Entry Capacity (CEC) before Transmission Entry Capacity (TEC). A User asks for a connection in a year prior to the relating TEC; i.e. physical connection without capacity.	No additional works are being undertaken, works are simply being completed well in advance of the generator commissioning. The One-Off Charge reflects the depreciated value of the assets prior to commissioning (and any TNUOS being charged).
8	Early asset replacement - An asset is replaced prior to the end of its expected life.	As the asset is simply replaced, no data in the transport model is expected to change.
9	Additional Engineering/ Mobilisation costs - A User requests changes to the planned works, that results in additional operational costs.	The data in the transport model is unaffected.
10	Offshore (Generator Build) - Any of the works described above or under paragraph 14.15.18.	The value of the works will not form part of the asset transfer value therefore will not be used as part of the offshore tariff calculation.
11	Offshore (Offshore Transmission Owner (OFTO) Build) - Any of the works described above or under paragraph 14.15.18.	As part of determining the TNUoS revenue associated with each asset, the value of the One-Off Works would be excluded when pro-rating the OFTO's allowed revenue against assets by asset value.

14.15.23 The Company shall publish any adjusted transport model inputs that it intends to use in the calculation of TNUoS tariffs effective from the year commencing on the following 1st April in the NETS Seven Year Statement October Update. Any further adjustments that The Company makes shall be published by The Company upon the publication of the final TNUoS tariffs for the year concerned.

Model Outputs

- 14.15.24 The transport model takes the inputs described above and carries out the following steps individually for Peak Security and Year Round backgrounds.
- 14.15.25 Depending on the background, the TEC of the relevant generation plant types are scaled by a percentage as described in 14.15.7, above. The TEC of the remaining generation plant types in each background are uniformly scaled such that total national generation (scaled sum of contracted TECs) equals total national ACS Demand.
- 14.15.26 For each background, the model then uses a DCLF ICRP transport algorithm to derive the resultant pattern of flows based on the network impedance required to meet the nodal <u>net</u> demand using the scaled nodal generation, assuming every circuit has infinite capacity. Flows on individual transmission circuits are compared for both backgrounds and the background giving rise to

Page 6 of 63

the highest flow is considered as the triggering criterion for future investment of that circuit for the purposes of the charging methodology. Therefore all circuits will be tagged as Peak Security or Year Round depending upon the background resulting in the highest flow. In the event that both backgrounds result in the same flow, the circuit will be tagged as Peak Security. Then it calculates the resultant total network Peak Security MWkm and Year Round MWkm, using the relevant circuit expansion factors as appropriate.

- 14.15.27 Using these baseline networks for Peak Security and Year Round backgrounds, the model then calculates for a given injection of 1MW of generation at each node, with a corresponding 1MW offtake (<u>net_demand</u>) distributed across all demand nodes in the network, the increase or decrease in total MWkm of the whole Peak Security and Year Round networks. The proportion of the 1MW offtake allocated to any given demand node will be based on total background nodal <u>net</u> demand in the model. For example, with a total GB <u>net_demand of 60GW</u> in the model, a node with a <u>net_demand of 600MW</u> would contain 1% of the offtake i.e. 0.01MW.
- 14.15.28 Given the assumption of a 1MW injection, for simplicity the marginal costs are expressed solely in km. This gives a Peak Security marginal km cost and a Year Round marginal km cost for generation at each node (although not that used to calculate generation tariffs which considers local and wider cost components). The Peak Security and Year Round marginal km costs for demand at each node are equal and opposite to the Peak Security and Year Round nodal marginal km respectively for generation and this is used to calculate demand tariffs. Note the marginal km costs can be positive or negative depending on the impact the injection of 1MW of generation has on the total circuit km.
- 14.15.29 Using a similar methodology as described above in 14.15.27, the local and wider marginal km costs used to determine generation TNUoS tariffs are calculated by injecting 1MW of generation against the node(s) the generator is modelled at and increasing by 1MW the offtake across the distributed reference node. It should be noted that although the wider marginal km costs are calculated for both Peak Security and Year Round backgrounds, the local marginal km costs are calculated on the Year Round background.
- 14.15.30 In addition, any circuits in the model, identified as local assets to a node will have the local circuit expansion factors which are applied in calculating that particular node's marginal km. Any remaining circuits will have the TO specific wider circuit expansion factors applied.
- 14.15.31 An example is contained in 14.21 Transport Model Example.

Calculation of local nodal marginal km

14.15.32 In order to ensure assets local to generation are charged in a cost reflective manner, a generation local circuit tariff is calculated. The nodal specific charge provides a financial signal reflecting the security and construction of the infrastructure circuits that connect the node to the transmission system.

14.15.33 Main Interconnected Transmission System (MITS) nodes are defined as:

- Grid Supply Point connections with 2 or more transmission circuits connecting at the site; or
- connections with more than 4 transmission circuits connecting at the site.

Page 7 of 63

- 14.15.34 Where a Grid Supply Point is defined as a point of supply from the National Electricity Transmission System to network operators or non-embedded customers excluding generator or interconnector load alone. For the avoidance of doubt, generator or interconnector load would be subject to the circuit component of its Local Charge. A transmission circuit is part of the National Electricity Transmission System between two or more circuit-breakers which includes transformers, cables and overhead lines but excludes busbars and generation circuits.
- 14.15.35 Generators directly connected to a MITS node will have a zero local circuit tariff.
- 14.15.36 Generators not connected to a MITS node will have a local circuit tariff derived from the local nodal marginal km for the generation node i.e. the increase or decrease in marginal km along the transmission circuits connecting it to all adjacent MITS nodes (local assets).

Calculation of zonal marginal km

- 14.15.37 Given the requirement for relatively stable cost messages through the ICRP methodology and administrative simplicity, nodes are assigned to zones. Typically, generation zones will be reviewed at the beginning of each price control period with another review only undertaken in exceptional circumstances. Any rezoning required during a price control period will be undertaken with the intention of minimal disruption to the established zonal boundaries. The full criteria for determining generation zones are outlined in paragraph 14.15.42. The number of generation zones set for 2010/11 is 20.
- 14.15.38 Demand zone boundaries have been fixed and relate to the GSP Groups used for energy market settlement purposes.
- 14.15.39 The nodal marginal km are amalgamated into zones by weighting them by their relevant generation or demand capacity.
- 14.15.40 Generators will have zonal tariffs derived from both, the wider Peak Security nodal marginal km; and the wider Year Round nodal marginal km for the generation node calculated as the increase or decrease in marginal km along all transmission circuits except those classified as local assets.

The zonal Peak Security marginal km for generation is calculated as:

$$WNMkm_{j_{PS}} = \frac{NMkm_{j_{PS}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiPS} = \sum_{j \in Gi} WNMkm_{jPS}$$

Where

Gi	=	Generation zone
j	=	Node
NMkm _{PS}	=	Peak Security Wider nodal marginal km from transport model
WNMkm _{PS}	=	Peak Security Weighted nodal marginal km
ZMkm _{PS}	=	Peak Security Zonal Marginal km

Gen = Nodal Generation (scaled by the appropriate Peak Security Scaling factor) from the transport model Similarly, the zonal Year Round marginal km for generation is calculated as

$$WNMkm_{j_{YR}} = \frac{NMkm_{j_{YR}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiYR} = \sum_{j \in Gi} WNMkm_{jYR}$$

Where

NMkm _{YR}	=	Year Round Wider nodal marginal km from transport model
WNMkm _{YR}	=	Year Round Weighted nodal marginal km
ZMkm _{YR}	=	Year Round Zonal Marginal km
Gen	=	Nodal Generation (scaled by the appropriate Year Round Scaling
		factor) from the transport model

14.15.41 The zonal Peak Security marginal km for demand zones are calculated as follows:

$$WNMkm_{j_{PS}} = \frac{-1 * NMkm_{j_{PS}} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{Di_{PS}} = \sum_{j \in Di} WNMkm_{j_{PS}}$$

Where:

I

Di	=	Demand zone
Dem	=	Nodal <u>Net</u> Demand from transport model

Similarly, the zonal Year Round marginal km for demand zones are calculated as follows:

$$WNMkm_{jYR} = \frac{-1 * NMkm_{jYR} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{DiYR} = \sum_{j \in Di} WNMkm_{jYR}$$

- 14.15.42 A number of criteria are used to determine the definition of the generation zones. Whilst it is the intention of The Company that zones are fixed for the duration of a price control period, it may become necessary in exceptional circumstances to review the boundaries having been set. In both circumstances, the following criteria are used to determine the zonal boundaries:
- i.) Zoning is determined using the generation background with the most MWkm of circuits. Zones should contain relevant nodes whose total wider marginal costs

from the relevant generation background (as determined from the output from the transport model, the relevant expansion constant and the locational security factor, see below) are all within +/-£1.00/kW (nominal prices) across the zone. This means a maximum spread of £2.00/kW in nominal prices across the zone.

- ii.) The nodes within zones should be geographically and electrically proximate.
- iii.) Relevant nodes are considered to be those with generation connected to them as these are the only ones, which contribute to the calculation of the zonal generation tariff.
- 14.15.43 The process behind the criteria in 14.15.42 is driven by initially applying the nodal marginal costs from the relevant generation background within the DCLF Transport model onto the appropriate areas of a substation line diagram. Generation nodes are grouped into initial zones using the +/- £1.00/kW range. All nodes within each zone are then checked to ensure the geographically and electrically proximate criteria have been met using the substation line diagram. The established zones are inspected to ensure the least number of zones are used with minimal change from previously established zonal boundaries. The zonal boundaries are finally confirmed using the demand nodal costs from the relevant generation background for guidance.
- 14.15.44 The zoning criteria are applied to a reasonable range of DCLF ICRP transport model scenarios, the inputs to which are determined by The Company to create appropriate TNUoS generation zones. The minimum number of zones, which meet the stated criteria, are used. If there is more than one feasible zonal definition of a certain number of zones, The Company determines and uses the one that best reflects the physical system boundaries.
- 14.15.45 Zones will typically not be reviewed more frequently than once every price control period to provide some stability. However, in exceptional circumstances, it may be necessary to review zoning more frequently to maintain appropriate, cost reflective, locational cost signals. For example, if a new generator connecting to the transmission system would cause the creation of a new generation zone for that generator alone, it may not be appropriate from a cost reflective perspective to wait until the next price control period to undertake this rezoning. If any such rezoning is required, it will be undertaken against a background of minimal change to existing generation zones and in line with the notification process set out in the Transmission Licence and CUSC.

Accounting for Sharing of Transmission by Generators

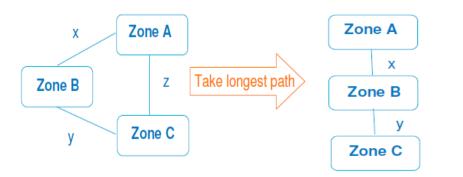
- 14.15.46 A proportion of the marginal km costs for generation are shared incremental km reflecting the ability of differing generation technologies to share transmission investment. This is reflected in charges through the splitting of Year Round marginal km costs for generation into Year Round Shared marginal km costs and Year Round Not-Shared marginal km which are then used in the calculation of the wider £/kW generation tariff.
- 14.15.47 The sharing between different generation types is accounted for by (a) using transmission network boundaries between generation zones set by connectivity between generation charging zones, and (b) the proportion of Low Carbon and Carbon generation behind these boundaries.

Page 10 of 63

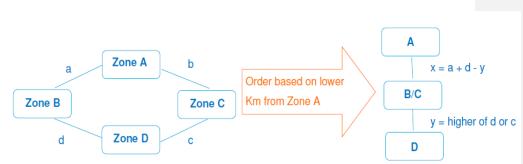
14.15.48 The zonal incremental km for each generation charging zone is split into each boundary component by considering the difference between it and the neighbouring generation charging zone using the formula below;

$$BIkm_{ab} = ZIkm_b - ZIkm_a$$

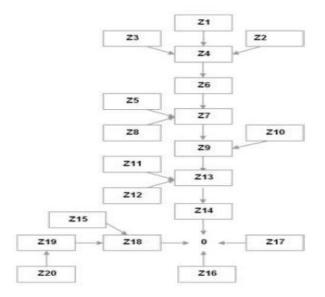
Where;


Blkm_{ab} = boundary incremental km between generation charging zone A and generation charging zone B Zlkm = generation charging zone incremental km.

14.15.49 The table below shows the categorisation of Low Carbon and Carbon generation. This table will be updated by National Grid in the Statement of Use of System Charges as new generation technologies are developed.


Carbon	Low Carbon
Coal	Wind
Gas	Hydro (excl. Pumped Storage)
Biomass	Nuclear
Oil	Marine
Pumped Storage	Tidal
Interconnectors	

Determination of Connectivity


- 14.15.50 Connectivity is based on the existence of electrical circuits between TNUoS generation charging zones that are represented in the Transport model. Where such paths exist, generation charging zones will be effectively linked via an incremental km transmission boundary length. These paths will be simplified through in the case of;
 - Parallel paths the longest path will be taken. An illustrative example is shown below with x, y and z representing the incremental km between zones.

 Parallel zones – parallel zones will be amalgamated with the incremental km immediately beyond the amalgamated zones being the greater of those existing prior to the amalgamation. An illustrative example is shown below with a, b, c, and d representing the the initial incremental km between zones, and x and y representing the final incremental km following zonal amalgamation.

14.15.51 An illustrative Connectivity diagram is shown below:

The arrows connecting generation charging zones and amalgamated generation charging zones represent the incremental km transmission boundary lengths towards the notional centre of the system. Generation located in charging zones behind arrows is considered to share based on the ratio of Low Carbon to Carbon cumulative generation TEC within those zones.

14.15.52 The Company will review Connectivity at the beginning of a new price control period, and under exceptional circumstances such as major system reconfigurations or generation rezoning. If any such reassessment is required, it will be undertaken against a background of minimal change to existing Connectivity and in line with the notification process set out in the Transmission Licence and the CUSC.

Calculation of Boundary Sharing Factors

14.15.53 Boundary sharing factors (BSFs) are derived from the comparison of the cumulative proportion of Low Carbon and Carbon generation TEC behind each of the incremental MWkm boundary lengths using the following formulae –

Page 12 of 63

If $\frac{LC}{LC+C} \le 0.5$, then all Year round marginal km costs are shared i.e. the BSF is 100%.

Where:

LC = Cumulative Low Carbon generation TEC behind the relevant transmission boundary C = Cumulative Carbon generation TEC behind the relevant transmission

C = Cumulative Carbon generation TEC behind the relevant transmission boundary

If
$$\frac{LC}{LC+C}$$
 > 0.5 then the BSF is calculated using the following formula: -

$$BSF = \left(-2 \times \left(\frac{LC}{LC+C}\right)\right) + 2$$

Where:

BSF = boundary sharing factor.

14.15.54 The shared incremental km for each boundary are derived from the multiplication of the boundary sharing factor by the incremental km for that boundary;

$$SBIkm_{ab} = BIIkm_{ab} \ x \ BSF_{ab}$$

Where;

 $SBIkm_{ab}$ = shared boundary incremental km between generation charging zone A and generation charging zone B

 BSF_{ab} = generation charging zone boundary sharing factor.

14.15.55 The shared incremental km is discounted from the incremental km for that boundary to establish the not-shared boundary incremental km. The not-shared boundary incremental km reflects the cost of transmission investment on that boundary accounting for the sharing of power stations behind that boundary.

$$NSBIkm_{ab} = BIkm_{ab} - SBIkm_{ab}$$

Where;

 $NSBIkm_{ab}$ = not shared boundary incremental km between generation charging zone A and generation charging zone B.

14.15.56 The shared incremental km for a generation charging zone is the sum of the appropriate shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRS}$$

Where;

 $ZMkm_{nYRS}$ = Year Round Shared Zonal Marginal km for generation charging zone n.

Page 13 of 63

14.15.57 The not-shared incremental km for a generation charging zone is the sum of the appropriate not-shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRNS}$$

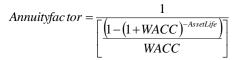
Where;

ZMkm_{nYRNS} = Year Round Not-Shared Zonal Marginal km for generation zone n.

Deriving the Final Local £/kW Tariff and the Wider £/kW Tariff

14.15.58 The zonal marginal km (ZMkm_{Gi}) are converted into costs and hence a tariff by multiplying by the Expansion Constant and the Locational Security Factor (see below). The nodal local marginal km (NLMkm^L) are converted into costs and hence a tariff by multiplying by the Expansion Constant and a Local Security Factor.

The Expansion Constant


- 14.15.59 The expansion constant, expressed in £/MWkm, represents the annuitised value of the transmission infrastructure capital investment required to transport 1 MW over 1 km. Its magnitude is derived from the projected cost of 400kV overhead line, including an estimate of the cost of capital, to provide for future system expansion.
- 14.15.60 In the methodology, the expansion constant is used to convert the marginal km figure derived from the transport model into a £/MW signal. The tariff model performs this calculation, in accordance with 14.15.95 14.15.117, and also then calculates the residual element of the overall tariff (to ensure correct revenue recovery in accordance with the price control), in accordance with 14.15.133.
- 14.15.61 The transmission infrastructure capital costs used in the calculation of the expansion constant are provided via an externally audited process. They also include information provided from all onshore Transmission Owners (TOs). They are based on historic costs and tender valuations adjusted by a number of indices (e.g. global price of steel, labour, inflation, etc.). The objective of these adjustments is to make the costs reflect current prices, making the tariffs as forward looking as possible. This cost data represents The Company's best view; however it is considered as commercially sensitive and is therefore treated as confidential. The calculation of the expansion constant also relies on a significant amount of transmission asset information, much of which is provided in the Seven Year Statement.
- 14.15.62 For each circuit type and voltage used onshore, an individual calculation is carried out to establish a £/MWkm figure, normalised against the 400KV overhead line (OHL) figure, these provide the basis of the onshore circuit expansion factors discussed in 14.15.70 14.15.77. In order to simplify the calculation a unity power factor is assumed, converting £/MVAkm to £/MWkm. This reflects that the fact tariffs and charges are based on real power.
- 14.15.63 The table below shows the first stage in calculating the onshore expansion constant. A range of overhead line types is used and the types are weighted by recent usage on the transmission system. This is a simplified calculation for 400kV OHL using example data:

Page 14 of 63

400kV	400kV OHL expansion constant calculation				
MW	Туре	£(000)/k	Circuit km*	£/MWkm	Weight
А	В	С	D	E = C/A	F=E*D
6500	La	700	500	107.69	53846
6500	Lb	780	0	120.00	0
3500	La/b	600	200	171.43	34286
3600	Lc	400	300	111.11	33333
4000	Lc/a	450	1100	112.50	123750
5000	Ld	500	300	100.00	30000
5400	Ld/a	550	100	101.85	10185
Sum			2500 (G)		285400 (H)
				Weighted Average (J= H/G):	114.160 (J)

*These are circuit km of types that have been provided in the previous 10 years. If no information is available for a particular category the best forecast will be used.

14.15.64 The weighted average £/MWkm (J in the example above) is then converted in to an annual figure by multiplying it by an annuity factor. The formula used to calculate of the annuity factor is shown below:

- 14.15.65 The Weighted Average Cost of Capital (WACC) and asset life are established at the start of a price control and remain constant throughout a price control period. The WACC used in the calculation of the annuity factor is the The Company regulated rate of return, this assumes that it will be reasonably representative of all licensees. The asset life used in the calculation is 50 years; the appropriateness of this is reviewed when the annuity factor is recalculated at the start of a price control period. These assumptions provide a current annuity factor of 0.066.
- 14.15.66 The final step in calculating the expansion constant is to add a share of the annual transmission overheads (maintenance, rates etc). This is done by multiplying the average weighted cost (J) by an 'overhead factor'. The 'overhead factor' represents the total business overhead in any year divided by the total Gross Asset Value (GAV) of the transmission system. This is recalculated at the start of each price control period. The overhead factor used in the calculation of the expansion constant for 2009/10 is 1.8%. The overhead and annuitised costs are then added to give the expansion constant.
- 14.15.67 Using the previous example, the final steps in establishing the expansion constant are demonstrated below:

400kV OHL expansion constant calculation	Ave £/MWkm
OHL	114.160

Page 15 of 63

Annuitised	7.535
Overhead	2.055
Final	9.589

- 14.15.68 This process is carried out for each voltage onshore, along with other adjustments to take account of upgrade options, see 14.15.73, and normalised against the 400KV overhead line cost (the expansion constant) the resulting ratios provide the basis of the onshore expansion factors. The process used to derive circuit expansion factors for Offshore Transmission Owner networks is described in 14.15.78.
- 14.15.69 This process of calculating the incremental cost of capacity for a 400kV OHL, along with calculating the onshore expansion factors is carried out for the first year of the price control and is increased by inflation, RPI, (May–October average increase, as defined in The Company's Transmission Licence) each subsequent year of the price control period. The expansion constant for 2010/11 is 10.633.

Onshore Wider Circuit Expansion Factors

- 14.15.70 Base onshore expansion factors are calculated by deriving individual expansion constants for the various types of circuit, following the same principles used to calculate the 400kV overhead line expansion constant. The factors are then derived by dividing the calculated expansion constant by the 400kV overhead line expansion constant. The factors will be fixed for each respective price control period.
- 14.15.71 In calculating the onshore underground cable factors, the forecast costs are weighted equally between urban and rural installation, and direct burial has been assumed. The operating costs for cable are aligned with those for overhead line. An allowance for overhead costs has also been included in the calculations.
- 14.15.72 The 132kV onshore circuit expansion factor is applied on a TO basis. This is to reflect the regional variation of plans to rebuild circuits at a lower voltage capacity to 400kV. The 132kV cable and line factor is calculated on the proportion of 132kV circuits likely to be uprated to 400kV. The 132kV expansion factor is then calculated by weighting the 132kV cable and overhead line costs with the relevant 400kV expansion factor, based on the proportion of 132kV circuitry to be uprated to 400kV. For example, in the TO areas of National Grid and Scottish Power where there are no plans to uprate any 132kV circuits, the full cable and overhead line costs of 132kV circuit are reflected in the 132kV expansion factor calculation.
- 14.15.73 The 275kV onshore circuit expansion factor is applied on a GB basis and includes a weighting of 83% of the relevant 400kV cable and overhead line factor. This is to reflect the averaged proportion of circuits across all three Transmission Licensees which are likely to be uprated from 275kV to 400kV across GB within a price control period.
- 14.15.74 The 400kV onshore circuit expansion factor is applied on a GB basis and reflects the full costs for 400kV cable and overhead lines.
- 14.15.75 AC sub-sea cable and HVDC circuit expansion factors are calculated on a case by case basis using actual project costs (Specific Circuit Expansion Factors).

Page 16 of 63

- 14.15.76 For HVDC circuit expansion factors both the cost of the converters and the cost of the cable are included in the calculation.
- 14.15.77 The TO specific onshore circuit expansion factors calculated for 2008/9 (and rounded to 2 decimal places) are:

Scottish Hydro Region

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	27.79
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.24	

Scottish Power & National Grid Regions

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	30.22
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.80	

Onshore Local Circuit Expansion Factors

- 14.15.78 The local onshore circuit tariff is calculated using local onshore circuit expansion factors. These expansion factors are calculated using the same methodology as the onshore wider expansion factor but without taking into account the proportion of circuit kms that are planned to be uprated.
- 14.15.79 In addition, the 132kV onshore overhead line circuit expansion factor is sub divided into four more specific expansion factors. This is based upon maximum (winter) circuit continuous rating (MVA) and route construction whether double or single circuit.

400kV underground cable factor:	22.39
275kV underground cable factor:	22.39
132kV underground cable factor:	30.22
400kV line factor:	1.00
275kV line factor:	1.14
132kV line factor (single; <200MVA):	10.00
132kV line factor (double; <200MVA):	8.32
132kV line factor (single; >=200MVA):	7.13
132kV line factor (double; >=200MVA):	4.42

Offshore Circuit Expansion Factors

14.15.80 Offshore expansion factors (£/MWkm) are derived from information provided by Offshore Transmission Owners for each offshore circuit. Offshore expansion factors are Offshore Transmission Owner and circuit specific. Each Offshore Transmission Owner will periodically provide, via the STC, information to derive an annual circuit revenue requirement. The offshore circuit revenue shall include revenues associated with the Offshore Transmission Owner's reactive compensation equipment, harmonic filtering equipment, asset spares and HVDC converter stations.

14.15.81 In the first year of connection, the offshore circuit expansion factor would be calculated as follows:

$\frac{CRevOFTO1}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$

Where:

CRevOFTO1	=	The offshore circuit revenue in £ for Year 1
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

14.15.82 In all subsequent years, the offshore circuit expansion factor would be calculated as follows:

$$\frac{AvCRevOFTO}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$$

Where:

AvCRevOFTO	=	The annual offshore circuit revenue averaged over the
		remaining years of the onshore National Electricity
		Transmission System Operator (NETSO) price control
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

- 14.15.83 For the avoidance of doubt, the offshore circuit revenue values, *CRevOFTO1* and *AvCRevOFTO* shall be determined using asset values after the removal of any One-Off Charges.
- 14.15.84 Prevailing OFFSHORE TRANSMISSION OWNER specific expansion factors will be published in this statement. These shall be recalculated at the start of each price control period using the formula in paragraph 14.15.71. For each subsequent year within the price control period, these expansion factors will be adjusted by the annual Offshore Transmission Owner specific indexation factor, *OFTOInd*, calculated as follows;

$$OFTOInd_{t,f} = \frac{OFTO \operatorname{Rev}Ind_{t,f}}{RPI_{t}}$$

where:

OFTOInd _{t,f}	=	the indexation factor for Offshore Transmission Owner <i>f</i> in respect of charging year <i>t</i> ;
OFTORevInd _t f	=	the indexation rate applied to the revenue of Offshore Transmission Owner f under the terms of its Transmission Licence in respect of charging year t ; and
<i>RPI</i> _t	=	the indexation rate applied to the expansion constant in respect of charging year <i>t</i> .

Offshore Interlinks

14.15.85 The revenue associated with an Offshore Interlink shall be divided entirely between those generators benefiting from the installation of that Offshore Interlink. Each of these Users will be responsible for their charge from their charging date, meaning that a proportion of the Offshore Interlink revenue may be socialised prior to all relevant Users being chargeable. The proportion associated with each User will be based on the Measure of Capacity to the MITS using the Offshore Interlink(s) in the event of a single circuit fault on the User's circuit from their offshore substation towards the shore, compared to the Measure of Capacity of the other Users.

Where:

An *Offshore Interlink* is a circuit which connects two offshore substations that are connected to a Single Common Substation. It is held in open standby until there is a transmission fault that limits the User's ability to export power to the Single Common Substation. In the Transport Model, they are to be modelled in open standby.

A Single Common Substation is a substation where:

- i. each substation that is connected by an Offshore Interlink is connected via at least one circuit without passing through another substation; and
- ii. all routes connecting each substation that is connected by an Offshore Interlink to the MITS pass through.

The Measure of Capacity to the MITS for each Offshore substation is the result of the following formula or zero whichever is larger. For the situation with only one interlink, all terms relating to C should be set to zero:

```
For Substation A:
min { Cap_{IAB}, ILF_A \times TEC_A - RCap_A, Cap_B - ILF_B \times TEC_B + min (Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation B:

min { ILF_B \times TEC_B - RCap_B, min (Cap_{IAB}, Cap_A - ILF_A \times TEC_A)

+ min ( Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation C:

min { Cap_{IBC}, ILF_{C} \times TEC_{C} - RCap_{C}, Cap_{B} - ILF_{B} \times TEC_{B} + min (Cap_{IAB}, Cap_{A} - ILF_{A} \times TEC_{A}) }

and
```

Cap _{IAB} = B	total capacity of the Offshore Interlink between substations A and
Cap _{IBC} = C	total capacity of the Offshore Interlink between substations B and
Cap _X =	total capacity of the circuit between offshore substation X and the Single Common Substation, where X is A, B or C.
RCap _x =	remaining capacity of the circuit between offshore substation X and the Single Common Substation in the event of a single cable fault, where X is A, B or C.
TEC _x =	the sum of the TEC for the Users connected, or contracted to connect, to offshore substation X, where X is A, B or C, where the value of TEC will be the maximum TEC that each User has held since the initial charging date, or is contracted to hold if prior to the initial charging date.

- ILF_x = Offshore Interlink Load Factor, where X is A, B or C. The Offshore Interlink Load Factor (ILF) is based on the Annual Load Factor (ALF). Until all the Users connected to a Single Common Substation have a station specific Annual Load Factor based on five years of data, the generic ALF for the fuel type will be used as the ILF for all stations. When all Users have a station specific ALF, the value of the ALF in the first such year will be used as the ILF in the calculation for all subsequent charging years.
- 14.15.86 The apportionment of revenue associated with Offshore Interlink(s) in 14.15.85 applies in situations where the Offshore Interlink was included in the design phase, or if one or more User(s) has already financially committed or been commissioned then only where that User(s) agrees to the Offshore Interlink.
- 14.15.87 Alternatively to the formula specified in 14.15.85 the proportion of the OFTO revenue associated with the Offshore Interlink allocated to each generator benefiting from the installation of an Offshore Interlink may be agreed between these Users. In this event:
- a. All relevant Users shall notify The Company of its respective proportions three months prior the OTSDUW asset transfer in the case of a generator build, or the charging date of the first generator, in the case of an OFTO build.
- b. All relevant Users may agree to vary the proportions notified under (a) by each writing to The Company three months prior to the charges being set for a given charging year.
- c. Once a set of proportions of the OFTO revenue associated with the Offshore Interlink has been provided to The Company, these will apply for the next and future charging years unless and until The Company is informed otherwise in accordance with (b) by all of the relevant Users.
- d. If all relevant Users are unable to reach agreement on the proportioning of the OFTO revenue associated with the Offshore Interlink they can raise a dispute. Any dispute between two or more Users as to the proportioning of such revenue shall be managed in accordance with CUSC Section 7 Paragraph 7.4.1 but the reference to the 'Electricity Arbitration Association' shall instead be to the 'Authority' and the Authority's determination of such dispute shall, without prejudice to apply for judicial review of any determination, be final and binding on the Users.

The Locational Onshore Security Factor

14.15.88 The locational onshore security factor is derived by running a secure DCLF ICRP transport study based on the same market background as used for Zoning in the DCLF ICRP transport model. This calculates the nodal marginal costs where peak <u>net</u> demand can be met despite the Security and Quality of Supply Standard contingencies (simulating single and double circuit faults) on the network. Essentially the calculation of secured nodal marginal costs is identical to the process outlined above except that the secure DCLF study additionally calculates a nodal marginal cost taking into account the requirement to be secure against a set of worse case contingencies in terms of maximum flow for each circuit.

- 14.15.89 The secured nodal cost differential is compared to that produced by the DCLF ICRP transport model and the resultant ratio of the two determines the locational security factor using the Least Squares Fit method. Further information may be obtained from the charging website¹.
- 14.15.90 The locational onshore security factor derived for 2010/11 is 1.8 and is based on an average from a number of studies conducted by The Company to account for future network developments. The security factor is reviewed for each price control period and fixed for the duration.

Local Security Factors

- 14.15.91 Local onshore security factors are generator specific and are applied to a generator's local onshore circuits. If the loss of any one of the local circuits prevents the export of power from the generator to the MITS then a local security factor of 1.0 is applied. For generation with circuit redundancy, a local security factor is applied that is equal to the locational security factor, currently 1.8.
- 14.15.92 Where a Transmission Owner has designed a local onshore circuit (or otherwise that circuit once built) to a capacity lower than the aggregated TEC of the generation using that circuit, then the local security factor of 1.0 will be multiplied by a Counter Correlation Factor (CCF) as described in the formula below;

$$CCF = \frac{D_{\min} + T_{cap}}{G_{cap}}$$

Where; D_{min} = minimum annual net demand (MW) supplied via that circuit in the absence of that generation using the circuit

 T_{cap} = transmission capacity built (MVA)

G_{cap} = aggregated TEC of generation using that circuit

CCF cannot be greater than 1.0.

14.15.93 A specific offshore local security factor (LocalSF) will be calculated for each offshore connection using the following methodology:

$$LocalSF = \frac{NetworkExportCapacity}{\sum_{k} Gen_{k}}$$

Where:

 NetworkExportCapacity =
 the total export capacity of the network disregarding any Offshore Interlinks

 k
 =
 the generation connected to the offshore network

1 http://www.nationalgrid.com/uk/Electricity/Charges/

Page 21 of 63

- 14.15.94 The offshore security factor for single circuits with a single cable will be 1.0 and for multiple circuit connections will be capped at the locational onshore security factor, derived as 1.8 for 2010/11.
- 14.15.95 The offshore local security factor for configurations with one or more Offshore Interlinks is updated so that the offshore circuit tariff will include the proportion of revenue associated with the Offshore Interlink(s). The specific offshore local security factor for configurations involving an Offshore Interlink, which may be greater than 1.8, will be calculated for each offshore connection using the following methodology:

 $LocalSF = \frac{IRevOFTO \times NetworkExportCapacity}{CRevOFTO \times \sum_{k}Gen_{k}} + LocalSF_{initial}$

Where:

The appropriate proportion of the Offshore Interlink(s) revenue in £
associated with the offshore connection calculated in 14.15.85
The offshore circuit revenue in £ associated with the circuit(s) from the
offshore substation to the Single Common Substation.
Initial Local Security Factor calculated in 14.15.80 and 14.15.81
And other definitions as in 14.15.80.

Initial Transport Tariff

14.15.96 First an Initial Transport Tariff (ITT) must be calculated for both Peak Security and Year Round backgrounds. For Generation, the Peak Security zonal marginal km (ZMkm_{PS}), Year Round Not-Shared zonal marginal km (ZMkm_{YRNS}) and Year Round Shared zonal marginal km (ZMkm_{YRS}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT, Year Round Not-Shared ITT and Year Round Shared ITT respectively:

 $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$

Where ZMkm _{GiPS} ZMkm _{GiYRNS} charging zone	= = e	Peak Security Zonal Marginal km for each generation zone Year Round Not-Shared Zonal Marginal km for each generation	
ZMkm _{GiYRS}	=	Year Round Shared Zonal Marginal km for each generation	
charging zon	е		
EC	=	Expansion Constant	
LSF	=	Locational Security Factor	
	=	Peak Security Initial Transport Tariff (£/MW) for each generation	
zone			
ITT _{GiYRNS}	=	Year Round Not-Shared Initial Transport Tariff (£/MW) for each	
generation charging zone			
ITT _{GiYRS}	=	Year Round Shared Initial Transport Tariff (£/MW) for each	
generation charging zone.			

- CUSC v1.12
 - 14.15.97 Similarly, for demand the Peak Security zonal marginal km (ZMkm_{PS}) and Year Round zonal marginal km (ZMkm_{YR}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT and Year Round ITT respectively:

		$ZMkm_{DiPS} \times EC \times LSF = ITT_{DiPS}$	
		$ZMkm_{DiYR} \times EC \times LSF = ITT_{DiYR}$	
Where ZMkm _{DiF} ZMkm _{DiY}	0	Peak Security Zonal Marginal km for each demand zone Year Round Zonal Marginal km for each demand zone	
ITT _{DiPS} ITT _{DiYR}	= =	Peak Security Initial Transport Tariff (\pounds /MW) for each demand one Year Round Initial Transport Tariff (\pounds /MW) for each demand zone	
14.15.98	14.15.98 The next step is to multiply these ITTs by the expected metered triad <u>gross</u> <u>GSP group</u> demand and generation capacity to gain an estimate of the initial revenue recovery for both Peak Security and Year Round backgrounds. The metered triad <u>gross GSP group</u> demand and generation capacity are based on <u>analysis of</u> forecasts provided by Users and are confidential.		
a.		ad gross GSP group demand is net demand for all GSP groups less exports for all GSP groups .	
Where			

ITRR _G =	Initial Transport Revenue Recovery for generation
G _{Gi} =	Total forecast Generation for each generation zone (based
	on analysis of confidential User forecasts)
ITRR _D =	Initial Transport Revenue Recovery for gross GSP group
	demand
D _{Di} =	Total forecast Metered Triad gross GSP group Demand for
each	
	demand zone (based on analysis of confidential User
	forecasts).

In addition, the initial tariffs for generation are also multiplied by the **Peak Security flag** when calculating the initial revenue recovery component for the Peak Security background. Similarly, when calculating the initial revenue recovery for the Shared component of the Year Round background, the initial tariffs are multiplied by the **Annual Load Factor** (see below).

Peak Security (PS) Flag

14.15.99 The revenue from a specific generator due to the Peak Security locational tariff needs to be multiplied by the appropriate Peak Security (PS) flag. The PS flags indicate the extent to which a generation plant type contributes to the need for transmission network investment at peak demand conditions. The PS

Page 23 of 63

flag is derived from the contribution of differing generation sources to the demand security criterion as described in the Security Standard. In the event of a significant change to the demand security assumptions in the Security Standard, National Grid will review the use of the PS flag.

Generation Plant Type	PS flag
Intermittent	0
Other	1

Annual Load Factor (ALF)

- 14.15.100 The ALF for each individual Power Station is calculated using the relevant TEC (MW) and corresponding output data. Where output data is not available for a Power Station, including for new Power Stations and emerging Power Station technologies, generic data for the appropriate generation plant type will be used.
- 14.15.101 For a given charging year "t" the Power Station ALF will be based on information from the previous five charging years, calculated for each charging year as set out below.

$$ALF = \frac{\sum_{p=1}^{17520} GMWh_p}{\sum_{p=1}^{17520} TECp \times 0.5}$$

Where:

 $\mathsf{GMWh}_{\mathsf{p}}$ is the maximum of FPN or actual metered output in a Settlement Period related to the power station TEC (MW); and

 TEC_{p} is the TEC (MW) applicable to that Power Station for that Settlement Period including any STTEC and LDTEC, accounting for any trading of TEC.

- 14.15.102 The appropriate output (FPN or actual metered) figure is derived from **BM Unit** data available to National Grid and relates to the total TEC of the Power Station.
- 14.15.103 Once all five charging year ALFs have been calculated for the individual Power Station they are compared, and the highest and lowest figures are discarded. The final ALF, to be used for transmission charging purposes, is calculated as the average of the remaining three ALFs.
- 14.15.104 In the event that only four charging years of complete output (FPN or actual metered) data are available for an individual Power Station then the higher three charging years ALF would be used in the calculation of the final ALF. In the event that only three charging years of complete output (FPN or actual metered) data are available then these three charging years would be used.
- 14.15.105 Due to the aggregation of output (FPN or actual metered) data for dispersed generation (e.g. cascade hydro schemes), where a single generator BMU consists of geographically separated power stations, the ALF would be calculated based on the total output of the BMU and the overall TEC of those Power Stations.

Page 24 of 63

1

- 14.15.106 In the event that there are not three full charging years of an individual power station's output available, missing output (FPN or actual metered) data would be replaced by generic data for that generation plant type to ensure three charging years of information are available for the Power Station. The derivation of the generic data is described in paragraphs 14.15.111-14.15.114.
- 14.15.107 Users will receive draft ALFs before 25th December of the charging year (t-1) for the charging year (t) and will have a period of 15 working days from date of publishing to notify the Company of any errors. Failure to agree changes relating to errors will be treated as a charging dispute under the CUSC.
- 14.15.108 The ALFs used in the setting of final tariffs will be published in the annual Statement of Use of System Charges. Changes to ALFs after this publication will not result in changes to published tariffs (e.g. following dispute resolution).

Derivation of Generic ALFs

14.15.109 The generic ALF is derived from the average annual output of the ten most recently commissioned GB generation of a particular generation plant type that have at least five charging years' data, using an identical methodology to that used for the Power Station specific calculation described above. Where less than ten GB generators of a particular generation plant type exist, then data from all existing generators of that particular generation plant type will be used. Example generation plant type categories are listed below;

Fuel Type	
Biomass	
Coal	
Gas	
Hydro	
Nuclear (by reactor	
type)	
Oil & OCGTs	
Pumped Storage	
Onshore Wind	
Offshore Wind	
CHP	

- 14.15.110 The Company will keep these categories under review and update as necessary. Where within a category there is a significant locational difference consideration will be given to zonal generic factors. The factors used will be published in the Statement of Use of System Charges and will be reviewed annually.
- 14.15.111 If a User can demonstrate that the generation plant type of a Power Station has changed, consideration will be given to the use of relevant generic ALF information in the calculation of their charges until sufficient specific data is available.
- 14.15.112 For new and emerging generation plant types, where insufficient data is available to allow a generic ALF to be developed, The Company will use the best information available e.g. from manufactuers and data from use of similar technologies outside GB. The factor will be agreed with the relevant Generator. In the event of a disagreement the standard provisions for dispute in the CUSC will apply.

TNUoS Embedded Export Tariff

14.15.113	Embedded exports are exports measured on a half-hourly basis by
	Metering Systems, in accordance with the BSC, that are not subject to
	generation TNUoS.

14.15.114 The embedded export tariff will be applied to the metered Triad volumes of Embedded Exports for each demand zone as follows:

 $EET_{Di} = ITT_{DiPS} + ITT_{DiYR} + EX$

Where

ITT _{DiPS} =	Peak Security Initial Transport Tariff for the demand zone;
ITT _{DiYR} =	Year Round Initial Transport Tariff for the demand zone, and
EX =	For the first charging year following implementation, £34.11 in
A 10040 1 1	

April 2016 prices; indexed each year by the RPI formula set out in 14.3.6. In every subsequent charging year, AGIC + (£18.50 in April 2019 prices; indexed each year by the RPI formula set out in 14.3.6).

Where

AGIC= The Avoided GSP Infrastructure Credit (AGIC) which represents the unit cost of infrastructure reinforcement at GSPs which is avoided as a consequence of embedded generation connected to the distribution networks served by those GSPs. It is calculated from the average annuitised cost of that infrastructure reinforcement divided by the average capacity delivered by a supergrid transformer.

The Avoided GSP Infrastructure Credit is calculated at the beginning of each price control period and in the first applicable charging year following the implementation date of CMP264/265 using data submitted by onshore TSOs as part of the price control process. The data used is from the most recent [20] schemes submitted under the price control process and indexed each year by the RPI formula set out in 14.3.6 until the end of the price control. For the avoidance of doubt, this approach does not include the cost of the supergrid transformers or any other connection assets as they are paid for by the relevant DNOs thorough their connection charges.

The Value of EET_{Di} will be floored at zero, so that EET_{Di} is always zero or positive.

Initial Revenue Recovery

=

14.15,115 For the Peak Security background the initial tariff for generation is multiplied by the total forecast generation capacity and the PS flag to give the initial revenue recovery:

$$\sum_{G_i=1}^{n} (ITT_{G_i PS} \times G_{G_i} \times F_{PS}) = ITRR_{GPS}$$

Where

 $ITRR_{GPS}$ G_{Gi} Peak Security Initial Transport Revenue Recovery for generation
 Total forecast Generation for each generation zone (based on <u>analysis of</u> confidential User forecasts)

 F_{PS}

Peak Security flag appropriate to that generator type

Page 26 of 63

Number of generation zones

The initial revenue recovery for <u>gross GSP group</u> demand for the Peak Security background is calculated by multiplying the initial tariff by the total forecast metered triad <u>gross GSP group</u> demand:

$$\sum_{Di=1}^{14} (ITT_{DiPS} \times D_{Di}) = ITRR_{DPS}$$

=

Where:

- Total forecast Metered Triad gross GSP group Demand for each demand zone (based on <u>analysis of</u> confidential User forecasts)
- 14.15,<u>116</u> For the Year Round background, the initial tariff for generation is multiplied by the total forecast generation capacity whilst calculating Initial Recovery for Not-Shared component whereas the initial tariff for Shared component is multiplied by both, the total forecast generation capacity and the ALF to give the initial revenue recovery:

$$\sum_{G_{i=1}}^{n} (ITT_{GiYRNS} \times G_{Gi}) = ITRR_{GYRNS}$$
$$\sum_{G_{i=1}}^{n} (ITT_{GiYRS} \times G_{Gi} \times ALF) = ITRR_{GYRS}$$

Where:

ITRR _{GYRNS}	=	Year Round Not-Shared Initial Transport Revenue Recovery for
ITRR _{GYRS} generation ALF	=	Year Round Shared Initial Transport Revenue Recovery for
	=	Annual Load Factor appropriate to that generator.

14.15,117 Similar to the Peak Security background, the initial revenue recovery for gross <u>GSP group</u> demand for the Year Round background is calculated by multiplying the initial tariff by the total forecast metered triad gross GSP group demand:

$$\sum_{Di=1}^{14} \left(ITT_{DiYR} \times D_{Di} \right) = ITRR_{DYR}$$

Where:

- ITRR_{DYR}
- Year Round Initial Transport Revenue Recovery for gross GSP group demand

14.15.118The initial revenue recovery for Embedded Exports is the Embedded Export Tariff multiplied by the total forecast volume of Embedded Export at triad:

Page 27 of 63

Deleted: 114

Deleted: 115

n

$$ITRR_{EE} = \sum_{Di=1}^{14} (EET_{Di} \times EEV_{Di})$$

<u>Where</u>

ITTR _{EE}	= Initial Revenue impact for Embedded Exports
EEV _{Di}	= Forecast Embedded Export metered volume at Triad
(MW)	
<u> </u>	
For the avoidance of	f doubt, the initial revenue recovery for affected embedded

Deriving the Final Local Tariff (£/kW)

exports can be positive or negative.

Local Circuit Tariff

14.15,<u>119</u> Generation with a local circuit tariff is calculated by multiplying the Year Round nodal marginal km along the local circuit by the expansion constant and the relevant local security factor (whether onshore or offshore) and summing across local circuits to give the local circuit tariff:

$$\sum_{k} \frac{NLMkm_{Gj}^{L} \times EC \times LocalSF_{k}}{1000} = CLT_{Gi}$$

Where

VVIICIC		
k	=	Local circuit k for generator
NLMkm _{Gj} ^L	=	Year Round Nodal marginal km along local circuit <i>k</i> using local circuit expansion factor.
EC	=	Expansion Constant
LocalSF _k	=	Local Security Factor for circuit k
CLT _{Gi}	=	Circuit Local Tariff (£/kW)

Onshore Local Substation Tariff

- 14.15,120 All chargeable generation is subject to the local substation tariff component which is determined by assessing the generation substation type which is the substation at the connection charging boundary, against three cost determining factors:
 - (a) HV connection voltage the voltage at the boundary between the User's connection assets and the transmission system;
 - (b) Sum of TEC at the generation substation the combined TEC of all generation at the connecting substation; and
 - (c) The level of redundancy at the generation substation single busbar / single switch mesh connections are examples of no redundancy connections, whereas examples of connections with redundancy include double busbar and mesh sub station designs.

Page 28 of 63

V1.12-01 April 2016

Deleted: 116

CUSC v1.12 14.15,121 Using the above factors, the corresponding £/kW tariffs (quoted to 3dp) that will Deleted: 118 be applied during 2010/11 are: Substation Voltage (a) Substation Connection Rating (b) Type (c) 132kV 275kV 400kV <1320MW No redundancy 0.133 0.081 0.065 0.301 0.192 0.155 <1320MW Redundancy 0.257 0.208 >=1320MW No redundancy n/a 0.417 >=1320MW Redundancy n/a 0.336 I 14.15,122 The process for calculating Local Substation Tariffs will be carried out for the Deleted: 119 first year of the price control and will subsequently be indexed by RPI for each subsequent year of the price control period. 14.15,123 The effective Local Tariff (£/kW) is calculated as the sum of the circuit and I Deleted: 120 substation onshore and/or offshore components: $ELT_{Ci} = CLT_{Ci} + SLT_{Ci}$ Where ELT_{Gi} Effective Local Tariff (£/kW) = Substation Local Tariff (£/kW) SLT_{Gi} = I 14.15,124 Where tariffs do not change mid way through a charging year, final local tariffs Deleted: 121 will be the same as the effective tariffs: **ELT**_{Gi} LT_{Gi} = Where Final Local Tariff (£/kW) LT_{Gi} _ 14.15,125 Where tariffs are changed part way through the year, the final tariffs will be Deleted: 122 calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS $LT_{Gi} = \frac{12 \times \left(ELT_{Gi} \times \sum_{Gi=1}^{21} G_{Gi} - FLL_{Gi}\right)}{b \times \sum_{i=1}^{21} G_{Gi}} \quad \text{and} \quad FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{i=1}^{21} D_{Di}}$ Where: b = number of months the revised tariff is applicable for FLL = Forecast local liability incurred over the period that the original tariff is applicable for 14.15,126 For the purposes of charge setting, the total local charge revenue is calculated Deleted: 123 by: $\text{LCRR}_{\text{G}} = \sum_{j=Gi} \text{LT}_{\text{Gi}} * G_j$ Where **LCRR**_G Local Charge Revenue Recovery = Forecast chargeable Generation or Transmission Entry Capacity Gi in kW (as applicable) for each generator (based on analysis of confidential information received from Users) Offshore substation local tariff V1.12-01 April 2016 Page 29 of 63

- 14.15,127 All offshore chargeable generation is subject to an offshore substation tariff. The offshore substation tariff shall be the sum of transformer, switchgear and platform components.
- 14.15,128 Each tariff component, expressed in £/kW, shall be the ratio of the Offshore Transmission Owner revenue (£) and rating associated with the transformers, switchgear or platform (kW) at each offshore substation. The Offshore Transmission Owner revenue of each tariff component shall include that associated with asset spares. In the case of the platform component, the relevant rating shall be the lower of the transformer or switchgear ratings. As with the offshore circuit expansion factors, the Offshore Transmission Owner revenue associated with each tariff component shall be averaged over the remaining years of the NETSO price control.
- 14.15,129 Offshore Transmission Owner revenue associated with interest during construction and project development overheads will be attributed to the relevant asset category with which it is associated. If these or any other costs included in the Offshore Transmission Owner revenue are not readily attributable to a given asset category, they will be pro-rated across the various asset categories based on their relative cost.
 - 14.15,130 For 2010/11 a discount of £0.345590/kW shall be provided to the offshore substation tariff to reflect the average cost of civil engineering for onshore substations. This will be inflated by RPI each year and reviewed every price control period.
- 14.15,131 Offshore substation tariffs shall be reviewed at the start of every onshore price control period. For each subsequent year within the price control period, these shall be inflated in the same manner as the associated Offshore Transmission Owner Revenue.
- 14.15,132 The revenue from the offshore substation local tariff is calculated by:

$$SLTR = \sum_{\substack{All offshore \\ substatios}} \left(SLT_k \times \sum_k Gen_k \right)$$

Where

SLT _k	=	the offshore substation tariff for substation k
Gen _k	=	the generation connected to offshore substation k

The Residual Tariff

14.15,133 The total revenue to be recovered through TNUoS charges is determined each year with reference to the Transmission Licensees' Price Control formulas less the costs expected to be recovered through Pre-Vesting connection charges. Hence in any given year t, a target revenue figure for TNUoS charges (TRR_t) is set after adjusting for any under or over recovery for and including, the small generators discount is as follows:

$$TRR_t = R_t - PVC_t - SG_{t-1}$$

Where

TRR_t = TNUoS Revenue Recovery target for year t Forecast Revenue allowed under The Company's RPI-X Price Control R_t Formula for year t (this term includes a number of adjustments, including for over/under recovery from the previous year). For further information, refer to Special Condition D2 of The Company's Transmission Licence.

Page 30 of 63

Deleted: 130

Deleted: 127

Deleted: 128

Deleted: 129

Deleted: 126

Deleted: 124

- PVC_t = Forecast Revenue from Pre-Vesting connection charges for year t
- SG_{t-1} = The proportion of the under/over recovery included within R_t which relates to the operation of statement C13 of the The Company Transmission Licence. Should the operation of statement C13 result in an under recovery in year t 1, the SG figure will be positive and vice versa for an over recovery.
- 14.15,134 In normal circumstances, the revenue forecast to be recovered from the initial transport tariffs will not equate to the total revenue target. This is due to a number of factors. For example, the transport model assumes, for simplicity, smooth incremental transmission investments can be made. In reality, transmission investment can only be made in discrete 'lumps'. The transmission system has been planned and developed over a long period of time. Forecasts and assessments used for planning purposes will not have been borne out precisely by events and therefore some distinction between an optimal system for one year and the actual system can be expected.
 - 14.15,135 As a result of the factors above, in order to ensure adequate revenue recovery, a constant non-locational **Residual Tariff** for generation and demand is calculated, which includes infrastructure substation asset costs. It is added to the initial transport tariffs for both Peak Security and Year Round backgrounds so that the correct generation / demand revenue split is maintained and the total revenue recovery is achieved.

$$RT_{D} = \frac{(p \times TRR) - ITRR_{DPS} - ITRR_{DYR} - ITRR_{EE}}{\sum_{Di=1}^{14} D_{Di}}$$

$$RT_{G} = \frac{\left[(1-p) \times TRR\right] - ITRR_{GPS} - ITRR_{GYRS} - ITRR_{GYRS} - LCRR_{G}}{\sum_{Gi=1}^{n} G_{Gi}}$$

Where RT

Residual Tariff (£/MW)

р

Proportion of revenue to be recovered from demand

Final £/kW Tariff

14.15,<u>136</u> The effective Transmission Network Use of System tariff (TNUoS) for generation and gross demand can now be calculated as the sum of the initial transport wider tariffs for Peak Security and Year Round backgrounds, the non-locational residual tariff and the local tariff:

$$ET_{Gi} = \frac{ITT_{GiPS} + ITT_{GiYRNS} + ITT_{GiYRS} + RT_{G}}{1000} + LT_{Gi}$$
$$\underline{ET_{Di}} = \frac{ITT_{DiPS} + ITT_{DiYR} + RT_{D}}{1000}$$

Where

ET_{Gi} = Effective Generation TNUoS Tariff expressed in £/kW (ET_{Gi} would only be applicable to a Power Station with a PS flag of 1 and ALF of 1; in all other circumstances ITT_{GiPS}, ITT_{GiPRNS} and ITT_{GiPRS} will be applied using Power Station specific data)

Page 31 of 63

V1.12-01 April 2016

Deleted: ¶ $RT_{D} = \frac{(p \times TRR) - I}{I}$

Deleted: 133

Deleted: 131

ET_{pi} = Effective Gross Demand TNUoS Tariff expressed in £/kW
 The effective Transmission Network Use of System tariff (TNUoS) for affected embedded exports and grandfathered embedded exports can now be calculated by expressing the embedded export tariff in £/kW values:
 ET_{EEi} = EFT_{Di}/1000
 Where ET_{EEi} = Effective Embedded Export TNUoS Tariff expressed in £/kW
 For the purposes of the annual Statement of Use of System Charges ET_{Gi} will be published as ITT_{GIPS}; ITT_{GIYRS}, RT_G and LT_{Gi}
 14.15,137 Where tariffs do not change mid way through a charging year, final demand and generation tariffs will be the same as the effective tariffs.

 $FT_{Gi} = ET_{Gi}$ $FT_{Di} = ET_{Di}$ $FT_{EEAi} = ET_{EEi}$

14.15,<u>138</u> Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$FT_{Gi} = \frac{12 \times \left(ET_{Gi} \times \sum_{Gi=1}^{20} G_{Gi} - FL_{Gi}\right)}{b \times \sum_{Gi=1}^{27} G_{Gi}}$$

$$FT_{EEi} = \frac{12 \times (ET_{EEi} \times \sum_{Di=1}^{14} EET_{Di} - FL_{Di})}{b \times \sum_{Di=1}^{14} EET_{Di}} \text{ and } FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{14} D_{Di}}$$

Where:

b = number of months the revised tariff is applicable for FL = Forecast liability incurred over the period that the original tariff is applicable for

Note: The ET_{Gi} element used in the formula above will be based on an individual Power Stations PS flag and ALF for Power Station G_{Gi} , aggregated to ensure overall correct revenue recovery.

14.15.139 If the final <u>gross</u> demand TNUoS Tariff results in a negative number then this is collared to £0/kW with the resultant non-recovered revenue smeared over the remaining demand zones:

If $FT_{Di} < 0$, then i = 1 to z

Page 32 of 63

Deleted: 134

Deleted: 135

$$NRRT_{D} = \frac{\sum_{i=1}^{z} (FT_{Di} \times D_{Di})}{\sum_{i=z+1}^{14} D_{Di}}$$

Therefore,

Therefore the revised Final Tariff for the <u>gross</u> demand zones with positive Final tariffs is given by:

For i= 1 to z: $RFT_{Di} = 0$

For *i*=z+1 to 14:

 $RFT_{Di} = FT_{Di} + NRRT_{D}$

Where

I

1

I

 $NRRT_D = Non Recovered Revenue Tariff (£/kW)$ $RFT_{Di} = Revised Final Tariff (£/kW)$

- 14.15,140 The tariffs applicable for any particular year are detailed in The Company's Statement of Use of System Charges, which is available from the Charging website. Archived tariff information may also be obtained from the Charging website.
- 14.15,<u>141</u> The zonal maps referenced in The Company's **Statement of Use of System Charges** and available on the **Charging website** contain detailed information for the charging year in question of which Grid Supply Points fall into which TNUoS zones.

14.15,142 New Grid Supply Points will be classified into zones on the following basis:

- For demand zones, according to the GSP Group to which the Grid Supply Point is allocated for energy market settlement purposes.
- For generation zones, with reference to the geographic proximity to existing zones and, where close to a boundary between existing zones, with reference to the marginal costs arising from transport model studies. The GSP will then be allocated to the zone, which contains the most similar marginal costs.
- 14.15,143 The Company has available, upon request, the DCLF ICRP transport model, tariff model template and data necessary to run the model, consisting of nodal values of generation and demand connection points to the NETS. The model and data will enable the basic nodal charges to be determined and will also allow sensitivity analysis concerning alternative developments of generation and demand to be undertaken. The model is available from the Charging Team and whilst it is free of charge, it is provided under licence to restrict its distribution and commercial use.
 - 14.15,144 The Company will be pleased to run specific sensitivity studies for Users under a separate study contract in line with the fees set out in the **Statement of Use** of **System Charges**. Please contact the **Charging Team**.
 - 14.15,145 The factors which will affect the level of TNUoS charges from year to year include-;

V1.12-

V1.12-01 April 2016

Page 33 of 63

Deleted: 137

Deleted: 138

Deleted: 139

Deleted: 140

Deleted: 141

- the forecast level of peak demand on the system
- the Price Control formula (including the effect of any under/over recovery from the previous year),
- the expansion constant,
- the locational security factor,
- the PS flag
- the ALF of a generator
- changes in the transmission network
- HVDC circuit impedance calculation
- changes in the pattern of generation capacity and demand.
- changes in the pattern of embedded exports

14.15,146 In accordance with Standard Licence Condition C13, generation directly connected to the NETS 132kV transmission network which would normally be subject to generation TNUoS charges but would not, on the basis of generating capacity, be liable for charges if it were connected to a licensed distribution network qualifies for a reduction in transmission charges by a designated sum, determined by the Authority. Any shortfall in recovery will result in a unit amount increase in gross demand charges to compensate for the deficit. Further information is provided in the Statement of the Use of System Charges.

Stability & Predictability of TNUoS tariffs

14.15,147 A number of provisions are included within the methodology to promote the stability and predictability of TNUoS tariffs. These are described in 14.29.

Deleted: 143

14.16 Derivation of the Transmission Network Use of System Energy Consumption Tariff and Short Term Capacity Tariffs

- 14.16.1 For the purposes of this section, Lead Parties of Balancing Mechanism (BM) Units that are liable for Transmission Network Use of System Demand Charges are termed Suppliers.
- 14.16.2 Following calculation of the Transmission Network Use of System £/kW Gross Demand Tariff (as outlined in Chapter 2: Derivation of the TNUoS Tariff) for each GSP Group is calculated as follows:

$$p/kWh Tariff = (NHHD_F * £/kW Tariff - FL_G) *100$$

NHHC_G

Where:

 \pounds/kW Tariff = The \pounds/kW Effective <u>Gross</u> Demand Tariff (\pounds/kW), as calculated previously, for the GSP Group concerned.

 \mathbf{NHHD}_{F} = The Company's forecast of Suppliers' non-half-hourly metered Triad Demand (kW) for the GSP Group concerned. The forecast is based on historical data.

 FL_{G} = Forecast Liability incurred for the GSP Group concerned.

 $\rm NHHC_{G}$ = The Company's forecast of GSP Group non-half-hourly metered total energy consumption (kWh) for the period 16:00 hrs to 19:00hrs inclusive (i.e. settlement periods 33 to 38) inclusive over the period the tariff is applicable for the GSP Group concerned.

Short Term Transmission Entry Capacity (STTEC) Tariff

14.16.3 The Short Term Transmission Entry Capacity (STTEC) tariff for positive zones is derived from the Effective Tariff (ET_{Gi}) annual TNUoS £/kW tariffs (14.15.112). If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the STTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (i.e. over the whole financial year, not just the period that the STTEC is applicable for). STTECs will not be reconciled following a mid year charge change. The premium associated with the flexible product is associated with the analysis that 90% of the annual charge is linked to the system peak. The system peak is likely to occur in the period of November to February inclusive (120 days, irrespective of leap years). The calculation for positive generation zones is as follows:

$$\frac{FT_{Gi} \times 0.9 \times STTEC \ Period}{120} = STTEC \ tariff \ (\pounds/kW/period)$$

Where:

FT	=	Final annual TNUoS Tariff expressed in £/kW
Gi	=	Generation zone
STTEC Period	=	A period applied for in days as defined in the CUSC

Page 35 of 63

- 14.16.4 For the avoidance of doubt, the charge calculated under 14.16.3 above will represent each single period application for STTEC. Requests for multiple /STTEC periods will result in each STTEC period being calculated and invoiced separately.
- 14.16.5 The STTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.

Limited Duration Transmission Entry Capacity (LDTEC) Tariffs

14.16.6 The Limited Duration Transmission Entry Capacity (LDTEC) tariff for positive zones is derived from the equivalent zonal STTEC tariff for up to the initial 17 weeks of LDTEC in a given charging year (whether consecutive or not). For the remaining weeks of the year, the LDTEC tariff is set to collect the balance of the annual TNUoS liability over the maximum duration of LDTEC that can be granted in a single application. If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the LDTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (ie over the whole financial year, not just the period that the STTEC is applicable for). LDTECs will not be reconciled following a mid year charge change:

Initial 17 weeks (high rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.9 \times 7}{120}$$

Remaining weeks (low rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.1075 \times 7}{316 - 120} \times (1 + P)$$

where FT is the final annual TNUoS tariff expressed in £/kW; G_i is the generation TNUoS zone; and P is the premium in % above the annual equivalent TNUoS charge as determined by The Company, which shall have the value 0.

- 14.16.7 The LDTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.
- 14.16.8 The tariffs applicable for any particular year are detailed in The Company's **Statement of Use of System Charges** which is available from the **Charging website**. Historical tariffs are also available on the **Charging website**.

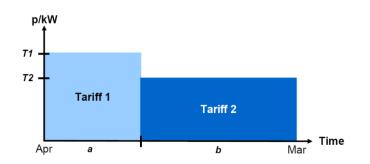
14.17 Demand Charges

Parties Liable for Demand Charges

- 14.17.1 Demand charges are subdivided into charges for gross demand, energy and embedded export. The following parties shall be liable for some or all of the categories of demand charges:
 - The Lead Party of a Supplier BM Unit;
 - Power Stations with a Bilateral Connection Agreement;
 - Parties with a Bilateral Embedded Generation Agreement
- 14.17.2 Classification of parties for charging purposes, section 14.26, provides an illustration of how a party is classified in the context of Use of System charging and refers to the paragraphs most pertinent to each party.

Basis of Gross Demand Charges

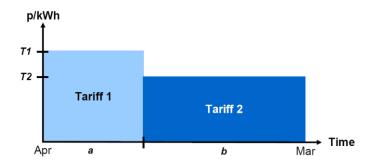
app


app

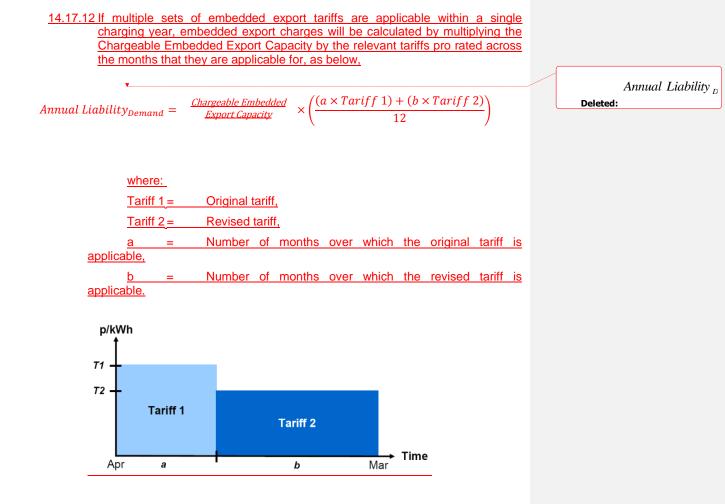
- 14.17.3 <u>Gross d</u>emand charges are based on a de-<u>minimis</u> £0/kW charge for Half Hourly and £0/kWh for Non Half Hourly metered demand.
 - 14.17.4 Chargeable <u>Gross</u> Demand Capacity is the value of Triad <u>gross</u> demand (kW). Chargeable Energy Capacity is the energy consumption (kWh). The definition of both these terms is set out below.
 - 14.17.5 If there is a single set of <u>gross</u> demand tariffs within a charging year, the Chargeable <u>Gross</u> Demand Capacity is multiplied by the relevant <u>gross</u> demand tariff, for the calculation of <u>gross</u> demand charges.
 - 14.17.6 If there is a single set of energy tariffs within a charging year, the Chargeable Energy Capacity is multiplied by the relevant energy consumption tariff for the calculation of energy charges..
 - 14.17.7 If multiple sets of <u>gross</u> demand tariffs are applicable within a single charging year, <u>gross</u> demand charges will be calculated by multiplying the Chargeable <u>Gross</u> Demand Capacity by the relevant tariffs pro rated across the months that they are applicable for, as below,

Liability	$_{Demand} = \frac{Ch}{De}$	arge eman	able Gross d Capacity	$\times \left(\frac{(a)}{a}\right)$	<tariff< th=""><th>$\frac{1) + (b)}{12}$</th><th>×Tariff2</th><th><u>2)</u>)</th><th></th></tariff<>	$\frac{1) + (b)}{12}$	×Tariff2	<u>2)</u>)	
e:						_			
1=	Original t	ariff	,						
2=	Revised	tarif	f,						
=	Number	of	months	over	which	the	original	tariff	is
=	Number	of	months	over	which	the	revised	tariff	is
	e: 1 = 2 = =	e: 1 = Original t 2 = Revised = Number	e: 1 = Original tariff 2 = Revised tarif = Number of	e: 1 = Original tariff, 2 = Revised tariff, = Number of months	e: 1 = Original tariff, 2 = Revised tariff, = Number of months over	e: 1 = Original tariff, 2 = Revised tariff, = Number of months over which	e: 1 = Original tariff, 2 = Revised tariff, = Number of months over which the	e: 1 = Original tariff, 2 = Revised tariff, = Number of months over which the original	 1 = Original tariff, 2 = Revised tariff, = Number of months over which the original tariff

Deleted: minimus


Deleted: Annual Liability _D

14.17.8 If multiple sets of energy tariffs are applicable within a single charging year, energy charges will be calculated by multiplying relevant Tariffs by the Chargeable Energy Capacity over the period that that the tariffs are applicable for and summing over the year.


Annual Liability $_{Energy} = Tariff \ 1 \times \sum_{TI_s}^{TI_E} Chargeable Energy Capacity + Tariff \ 2 \times \sum_{TZ_s}^{TI_E} Chargeable Energy Capacity$

Where: T1s Start date for the period for which the original tariff is = applicable, End date for the period for which the original tariff is T1_E applicable, Start date for the period for which the revised tariff is T2s _ applicable, End date for the period for which the revised tariff is T₂E = applicable.

Basis of Embedded Export Charges

- 14.17.9 Embedded export charges are based on a £/kW charge for Half Hourly metered embedded export.
- <u>14.17.10 Chargeable Embedded Export Capacity is the value of Embedded Export at</u> <u>Triad (kW). The definition of this term is set out below.</u>
- 14.17.11 If there is a single set of embedded export tariffs within a charging year, the Chargeable Embedded Export Capacity is multiplied by the relevant embedded export tariff, for the calculation of embedded export charges.

Supplier BM Unit

14.17,<u>13</u> A Supplier BM Unit charges will be the sum of its energy, <u>gross_demand_and</u> <u>embedded export</u> liabilities where:

- The Chargeable <u>Gross</u> Demand Capacity will be the average of the Supplier BM Unit's half-hourly metered <u>gross</u> demand during the Triad (and the £/kW tariff),
- The Chargeable Embedded Export Capacity will be the average of the Supplier BM Unit's half-hourly metered embedded export during the Triad (and the £/kW tariff), and
- The Chargeable Energy Capacity will be the Supplier BM Unit's non halfhourly metered energy consumption over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year (and the p/kWh tariff).

Power Stations with a Bilateral Connection Agreement and Licensable Generation with a Bilateral Embedded Generation Agreement

Page 39 of 63

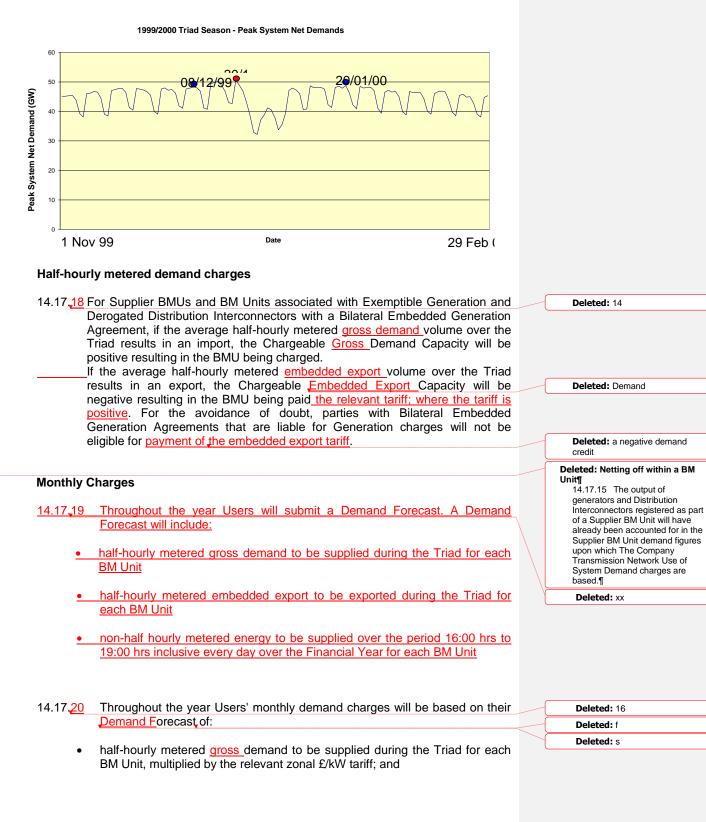
V1.12-01 April 2016

USC v1.12	
14.17, <u>14</u> The Chargeable <u>Gross</u> Demand Capacity for a Power Station with a Bilateral Connection Agreement or Licensable Generation with a Bilateral Embedded Generation Agreement will be based on the average of the <u>gross</u> import over each Triad leg of the BM Units associated with the Power Station (in Appendix C of its Bilateral Connection Agreement or Bilateral Embedded Generation Agreement, including metered additional load) during the Triad.	1
Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement	
14.17, <u>15,The demand charges for Exemptible Generation and Derogated Distribution</u> Interconnector with a Bilateral Embedded Generation Agreement will be the sum of its gross demand and embedded export liabilities where:	
 The Chargeable <u>Gross</u> Demand Capacity for Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement will be based on the average of the metered <u>gross demand</u> of 	
each BM Unit specified in Appendix C of the Bilateral Embedded Generation Agreement during the Triad.	
 The Chargeable Embedded Export Capacity for Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement will be based on the average of the metered embedded export of each BM Unit specified in Appendix C of the Bilateral Embedded Generation Agreement during the Triad. 	
mall Generators Tariffs	
14.17, <u>16</u> In accordance with Standard Licence Condition C13, any under recovery from the MAR arising from the small generators discount will result in a unit amount of increase to all GB gross_demand tariffs.	_
he Triad	
14.17,17 The Triad is used as a short hand way to describe the three settlement periods of highest transmission system demand within a Financial Year, namely the half hour settlement period of system peak <u>net</u> demand and the two half hour settlement periods of next highest <u>net</u> demand, which are separated from the	

system peak<u>net</u> demand and from each other by at least 10 Clear Days, between November and February of the Financial Year inclusive. Exports on directly connected Interconnectors and Interconnectors capable of exporting more than 100MW to the Total System shall be excluded when determining the

system peak net demand. An illustration is shown below.

I


Deleted: 10

Deleted: net

Deleted: 11 Deleted: An

Deleted: volume

Deleted: 12

- half-hourly metered embedded export to be supplied during the Triad for each BM Unit, multiplied by the relevant zonal £/kW tariff; and
- non-half hourly metered energy to be supplied over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year for each BM Unit, multiplied by the relevant zonal p/kWh tariff

Users' annual TNUoS demand charges are based on these forecasts and are split evenly over the 12 months of the year. Users have the opportunity to vary their demand forecasts on a quarterly basis over the course of the year, with the demand forecast requested in February relating to the next Financial Year. Users will be notified of the timescales and process for each of the quarterly updates. The Company will revise the monthly Transmission Network Use of System demand charges by calculating the annual charge based on the new forecast, subtracting the amount paid to date, and splitting the remainder evenly over the remaining months. For the avoidance of doubt, only positive demand forecasts (i.e. representing <u>a net</u> import from the system) will be <u>used in the calculation of charges</u>.

Demand forecasts for a User will be considered positive where:

- The sum of the gross demand forecast and embedded export forecast is positive; and
- The non-half hourly metered energy forecast is positive.

14.17.21 Users should submit reasonable forecasts of gross demand, embedded export and energy in accordance with the CUSC. The Company shall use the following methodology to derive a forecast to be used in determining whether a User's forecast is reasonable, in accordance with the CUSC, and this will be used as a replacement forecast if the User's total forecast is deemed unreasonable. The Company will, at all times, use the latest available Settlement data.

For existing Users:

- i) The User's Triad <u>gross</u> demand<u>and embedded export</u> for the preceding Financial Year will be used where User settlement data is available and where The Company calculates its forecast before the Financial Year. Otherwise, the User's average weekday settlement period 35 half-hourly metered (HH) <u>gross</u> demand <u>and embedded export</u> in the Financial Year to date is compared to the equivalent average <u>gross</u> demand<u>and</u> <u>embedded export</u> for the corresponding days in the preceding year. The percentage difference is then applied to the User's HH <u>gross</u> demand<u>and</u> <u>embedded export</u> at Triad in the preceding Financial Year to derive a forecast of the User's HH <u>gross</u> demand <u>and embedded export</u> at Triad for this Financial Year.
- ii) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day in the Financial Year to date is compared to the equivalent energy consumption over the corresponding days in the preceding year. The percentage difference is then applied to the User's total NHH energy consumption in the preceding Financial Year to derive a forecast of the User's NHH energy consumption for this Financial Year.

For new Users who have completed a Use of System Supply Confirmation Notice in the current Financial Year:

Page 42 of 63

V1.12-01 April 2016

Deleted: accepted

1

iii) The User's average weekday settlement period 35 half-hourly metered (HH) gross demand and embedded export over the last complete month for which The Company has settlement data is calculated. Total system average HH gross demand and embedded export for weekday settlement period 35 for the corresponding month in the previous year is compared to total system HH_gross demand and embedded export at Triad in that year and a percentage difference is calculated. This percentage is then applied to the User's average HH gross demand and embedded export for weekday settlement period 35 over the last month to derive a forecast of the User's HH gross demand and embedded export at Triad for this Financial Year.

- iv) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day over the last complete month for which The Company has settlement data is noted. Total system NHH energy consumption over the corresponding month in the previous year is compared to total system NHH energy consumption over the remaining months of that Financial Year and a percentage difference is calculated. This percentage is then applied to the User's NHH energy consumption over the month described above, and all NHH energy consumption in previous months is added, in order to derive a forecast of the User's NHH metered energy consumption for this Financial Year.
- 14.17.22 14.28 Determination of The Company's Forecast for Demand Charge Purposes illustrates how the demand forecast will be calculated by The Company.

Reconciliation of Demand Charges

14.17,23 The reconciliation process is set out in the CUSC. The demand reconciliation process compares the monthly charges paid by Users against actual outturn charges. Due to the Settlements process, reconciliation of demand charges is carried out in two stages; initial reconciliation and final reconciliation.

Initial Reconciliation of demand charges

14.17,24 The initial reconciliation process compares Users' demand forecasts and corresponding monthly charges paid over the year against actual outturn data (using latest Settlement data available at the time) and corresponding charges. Initial reconciliation is carried out in two parts; Initial Reconciliation Part 1 deals with the reconciliation of half-hourly metered demand charges and Initial Reconciliation Part 2 deals with the reconciliation of non-half-hourly metered demand charges.

Initial Reconciliation Part 1– Half-hourly metered demand

- 14.17.25 The Company will identify the periods forming the Triad once it has received Central Volume Allocation data from the Settlement Administration Agent for all days up to and including the last day of February. Once The Company has notified Users of the periods forming the Triad they will not be changed even if disputes are subsequently resolved which would change the periods forming the Triad.
- 14.17,<u>26</u> Initial outturn charges for half-hourly metered <u>gross</u> demand will be determined using the latest available data of actual average Triad <u>gross</u> demand (kW) multiplied by the zonal <u>gross</u> demand tariff(s) (£/kW) applicable to the months

Page 43 of 63

V1.12-01 April 2016

Deleted: 18

Deleted: 19

Deleted: 20

Deleted: 1

Сι

l

I

I

l

I

SC v1.12			
r	concerned for each zone for that Financial Year. These actual values econciled against the monthly charges paid in respect of half-hold demand.		
<u>c</u> <u>e</u> <u>t</u> <u>\</u>	nitial outturn charges for half-hourly metered embedded expon determined using the latest available data of actual average Triad export (kW) multiplied by the zonal embedded export tariff(s) (£/kW) o the months concerned for each zone for that Financial Year. The values are then reconciled against the monthly charges paid in respe- nourly embedded exports.	embedded applicable ese actual	Deleted: xx
Initial Red	conciliation Part 2 – Non-half-hourly metered demand		
t ł r	Actual payments for non-half-hourly metered demand will be determine the latest available actual energy consumption data (kWh) for the per- bins to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) over multiplied by the energy consumption tariff(s) (p/kWh) applicable to the concerned for each zone. These actual values are then reconciled a monthly charges paid in respect of non-half-hourly energy consumption	riod 16:00 the year ne months ligainst the	Deleted: 23
Final Rec	onciliation of demand charges		
t	The final reconciliation process compares Users' charges (as calculation he initial reconciliation process using the latest available data) ago tutturn demand charges (based on final settlement data <u>of half-ho</u> demand, embedded exports and non-half-hourly energy consumption	ainst final urly gross	Deleted: 24
	Final actual charges will be determined using the final demand rec data taken from the Final Reconciliation Settlement Run or Reconciliation Volume Allocation Run.		Deleted: 25
Reconcili	ation of manifest errors		
t	n the event that a manifest error, or multiple errors in the calculation ariffs results in a material discrepancy in aUsers TNUoS econciliation process for all Users qualifying under Section 14.17	tariff, the	 Deleted: 26
a	accordance with Sections 14.17.24 to 14.17.30. The reconciliation	n process	Deleted: 20
r	shall be carried out using recalculated TNUoS tariffs. Wh econciliation is not practicable, a post-year reconciliation will be und he form of a one-off payment.	ere such ertaken in	Deleted: 25
14.17. <mark>32</mark> /	A manifest error shall be defined as any of the following:		Deleted: 27
	 a) an error in the transfer of relevant data between the Tra Licensees or Distribution Network Operators; b) an error in the population of the Transport Model with relevant c) an error in the function of the Transport Model; or d) an error in the inputs or function of the Tariff Model. 		
	A manifest error shall be considered material in the event that such a he net effect of multiple errors, has an impact of the lesser of either:	n error or,	Deleted: 28
	a) an error in a User's TNUoS tariff of at least +/-£0.50/kW; or		
	Page 44 of 63 V1.12-0	01 April 2016	

b) an error in a User's TNUoS tariff which results in an error in the annual TNUoS charge of a User in excess of +/-£250,000.

14.17,<u>34</u> A manifest error shall only be reconciled if it has been identified within the charging year for which the error has an effect. Errors identified outside of this period will not be eligible for reconciliation retrospectively.

Implementation of P272

- 14.17,<u>35</u>.1 BSC modification P272 requires Suppliers to move Profile Classes 5-8 to Measurement Class E - G (i.e. moving from NHH to HH settlement) by April 2016. The majority of these meters are expected to transfer during the preceding Charging Years up until the implementation date of P272 and some meters will have been transferred before the start of 1ST April 2015. A change from NHH to HH within a Charging Year would normally result in Suppliers being liable for TNUoS for part of the year as NHH and also being subject to HH charging. This section describes how the Company will treat this situation in the transition to P272 implementation for the purposes of TNUoS charging; and the forecasts that Suppliers should provide to the Company.
- 14.17,35.2 Notwithstanding 14.17,13, for each Charging Year which begins after 31 March 2015 and prior to implementation of BSC Modification P272, all demand associated with meters that are in NHH Profile Classes 5 to 8 at the start of that charging year as well as all meters in Measurement Classes E G will be treated as Chargeable Energy Capacity (NHH) for the purposes of TNUoS charging for the full Charging Year unless 14.17,35.3 applies.
 - 14.17,35.3 Where prior to 1st April 2015 a Profile Class meter has already transferred to Measurement Class settlement (HH) the associated Supplier may opt to treat the demand volume as Chargeable Demand Capacity (HH) for the purposes of TNUoS charging up until implementation of P272, subject to meeting conditions in 14.17,35.6. If the associated Supplier does not opt to treat the demand volume as Demand Capacity (HH) it will be treated by default as Chargeable Energy Capacity (NHH) for each full Charging Year up until implementation of P272.
 - 14.17,35.4 The Company will calculate the Chargeable Energy Capacity associated with meters that have transferred to HH settlement but are still treated as NHH for the purposes of TNUoS charging from Settlement data provided directly from Elexon i.e. Suppliers need not Supply any additional information if they accept this default position.
- 14.17,35.5 The forecasts that Suppliers submit to the Company under CUSC 3.10, 3.11 and 3.12 for the purpose of TNUoS monthly billing referred to in 14.17,20 and 14.17,21 for both Chargeable Demand Capacity and Chargeable Energy Capacity should reflect this position i.e. volumes associated those Metering Systems that have transferred from a Profile Class to a Measurement Class in the BSC (NHH to HH settlement) but are to be treated as NHH for the purposes of TNUoS charging should be included in the forecast of Chargeable Energy Capacity and not Chargeable Demand Capacity, unless 14.17,35.3 applies.
 - 14.17,<u>35</u>.6 Where a Supplier wishes for Metering Systems that have transferred from Profile Class to Measurement Class in the BSC (NHH to HH settlement) prior to 1st April 2015, to be treated as Chargeable Demand Capacity (HH/

Page 45 of 63

V1.12-01 April 2016

Deleted: 29 Deleted: 9 Deleted: 29 Deleted: 29 Deleted: 29 Deleted: 29 Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 16 **Deleted:** 17

Deleted: 29

Deleted: 29

I

Measurement Class settled) it must inform the Company prior to October 2015. The Company will treat these as Chargeable Demand Capacity (HH / Measurement Class settled) for the purposes of calculating the actual annual liability for the Charging Years up until implementation of P272. For these cases only, the Supplier should notify the Company of the Meter Point Administration Number(s) (MPAN). For these notified meters the Supplier shall provide the Company with verified metered demand data for the hours between 4pm and 7pm of each day of each Charging Year up to implementation of P272 and for each Triad half hour as notified by the Company prior to May of the following Charging Year up until two years after the implementation of P272 to allow reconciliation (e.g. Mav 2017 and May 2018 for the Charging Year 2016/17). Where the Supplier fails to provide the data or the data is incomplete for a Charging Year TNUoS charges for that MPAN will be reconciled as part of the Supplier's NHH BMU (Chargeable Energy Capacity). Where a Supplier opts, if eligible, for TNUoS liability to be calculated on Chargeable Demand Capacity it shall submit the forecasts referred to in 14.17,35.5 taking account of this.

14.17,35.7 The Company will maintain a list of all MPANs that Suppliers have elected to be treated as HH. This list will be updated monthly and will be provided to registered Suppliers upon request.

Further Information

- 14.17,<u>36</u> 14.25 Reconciliation of Demand Related Transmission Network Use of System Charges of this statement illustrates how the monthly charges are reconciled against the actual values for <u>gross</u> demand, <u>embedded export</u> and consumption for half-hourly <u>gross demand</u>, <u>embedded export</u> and non-halfhourly metered demand respectively.
- 14.17,<u>37</u> **The Statement of Use of System Charges** contains the £/kW zonal gross demand tariffs, <u>the £/kW zonal embedded export tariffs</u>, and the p/kWh energy consumption tariffs for the current Financial Year.
- 14.17,<u>38</u>14.27 Transmission Network Use of System Charging Flowcharts of this statement contains flowcharts demonstrating the calculation of these charges for those parties liable.

Deleted: 29 Deleted: 30

Deleted: 29

Deleted: 31

Deleted: 32

....

14.24 Example: Calculation of Zonal Gross Demand Tariff

Let us consider all nodes in a demand zone in this example

The table below shows a sample output of the transport model comprising the node, the Peak Security and Year Round marginal km of an injection at the node with a consequent withdrawal at the distributed reference node, the generation sited at the node, scaled to ensure total national generation = total national <u>net</u> demand and the <u>net</u> demand sited at the node.

Demand Zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	<u>Net</u> Demand (MW)
14	ABHA4A	-77.25	-230.25	127
14	ABHA4B	-77.27	-230.12	127
14	ALVE4A	-82.28	-197.18	100
14	ALVE4B	-82.28	-197.15	100
14	AXMI40_SWEB	-125.58	-176.19	97
14	BRWA2A	-46.55	-182.68	96
14	BRWA2B	-46.55	-181.12	96
14	EXET40	-87.69	-164.42	340
14	HINP20	-46.55	-147.14	0
14	HINP40	-46.55	-147.14	0
14	INDQ40	-102.02	-262.50	444
14	IROA20_SWEB	-109.05	-141.92	462
14	LAND40	-62.54	-246.16	262
14	MELK40_SWEB	18.67	-140.75	83
14	SEAB40	65.33	-140.97	304
14	TAUN4A	-66.65	-149.11	55
14	TAUN4B	-66.66	-149.11	55
		Totals		2748

In order to calculate the <u>gross</u> demand tariff we would carry out the following steps:

(i) calculate the demand weighted nodal shadow costs

For this example zone this would be as follows:

Demand zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	Net Demand (MW)	Peak Security Demand Weighted Nodal Marginal km	Year Round Demand Weighted Nodal Marginal km
14	ABHA4A	-77.25	-230.25	127	-3.57	-10.64
14	ABHA4B	-77.27	-230.12	127	-3.57	-10.64
14	ALVE4A	-82.28	-197.18	100	-2.99	-7.17
14	ALVE4B	-82.28	-197.15	100	-2.99	-7.17
14	AXMI40_SWEB	-125.58	-176.19	97	-4.43	-6.22
14	BRWA2A	-46.55	-182.68	96	-1.63	-6.38
14	BRWA2B	-46.55	-181.12	96	-1.63	-6.33
14	EXET40	-87.69	-164.42	340	-10.85	-20.34
14	INDQ40	-102.02	-262.50	444	-16.48	-42.41
14	IROA20_SWEB	-109.05	-141.92	462	-18.33	-23.86
14	LAND40	-62.54	-246.16	262	-5.96	-23.47
14	MELK40_SWEB	18.67	-140.75	83	0.56	-4.25
14	SEAB40	65.33	-140.97	304	7.23	-15.59
14	TAUN4A	-66.65	-149.11	55	-1.33	-2.98
14	TAUN4B	-66.66	-149.11	55	-1.33	-2.98
		Totals		2748	-49.19	-190.43

(ii) sum the Peak Security and Year Round demand weighted nodal shadow costs to give zonal figures. For this example zone this is shown in the above table and is 49.19km for Peak Security background and 190.43km for Year Round background.

(iii) calculate the transport tariffs by multiplying the figures in (ii) above by the expansion constant (& dividing by 1000 to put into units of £/kW):

For this example zone, assuming an expansion constant of $\pm 10.07/MWkm$ and a locational security factor of 1.80:

a) Peak Security tariff – 49.19km <u>* £10.07/MWkm * 1.8</u> = <u>£0.89/kW</u> 1000

Page 49 of 63

b) Year Round tariff -<u>190.43km * £10.07/MWkm * 1.8</u> = <u>£3.45/kW</u> 1000

(iv) We now need to calculate the residual tariff. This is calculated by taking the total revenue to be recovered from demand (calculated as c.73% of total The Company_ TNUoS target revenue for the year), less the revenue which would be recovered through the demand transport tariffs and revenue recovery through embedded export tariffs, divided by total expected gross GSP group demand.

Assuming the total revenue to be recovered from TNUoS is £1067m, the total recovery from <u>gross GSP group</u> demand would be $(73\% \times £1067m) = £779m$. Assuming the total recovery from <u>gross GSP group</u> demand transport tariffs is £140m, total recovery from <u>embedded export tariffs is -£10m</u> and total forecast chargeable <u>gross GSP group</u> demand capacity is 50000MW, the demand residual tariff would be as follows:

 $\frac{\pounds779m - \pounds140m - -\pounds10m}{50,000MW} = \pounds12.98/kW$

 (v) to get to the final tariff, we simply add on the demand residual tariff calculated in (v) to the zonal transport tariffs calculated in (iii(a)) and (iii(b))

For zone 14:

 $\pounds 0.89/kW + \pounds 3.45/kW + \pounds 12.98/kW =$ $\pounds 17.32/kW$

- To summarise, in order to calculate the <u>gross</u> demand tariffs, we evaluate a <u>net</u> demand weighted zonal marginal km cost multiply by the expansion constant and locational security factor then we add a constant (termed the residual cost) to give the overall tariff.
- (vii) The final demand tariff is subject to further adjustment to allow for the minimum £0/kW gross_demand charge. The application of a discount for small generators pursuant to Licence Condition C13 will also affect the final gross_demand tariff.

Deleted: gross

Deleted: 130m

Deleted:	$\pounds779m - \pounds130m$	_
Deleteu:	50000MW	_

14.25 Reconciliation of <u>Gross</u> Demand Related Transmission Network Use of System Charges

This appendix illustrates the methodology used by The Company in the reconciliation of Transmission Network Use of System charges for <u>gross</u> demand. The example highlights the different stages of the calculations from the monthly invoiced amounts, right through to Final Reconciliation.

Monthly Charges

Suppliers provide half-hourly (HH) gross demand and embedded export forecasts and non-halfhourly (NHH) demand forecasts by BM Unit every quarter. An example of such forecasts and the corresponding monthly invoiced amounts, based on tariffs of £10.00/kW for gross demand, £5.00/kW for embedded export and 1.20p/kWh for energy consumption, is as follows:

	Forecast HH Triad <u>Gross</u> Demand <u>HHD_E (</u> kW)	HH <u>Gross</u> <u>Demand</u> Monthly Invoiced Amount (£)	Forecast HH Triad Embedded Export HHEE _E (kW)	<u>HH</u> <u>Embedded</u> <u>Generation</u> <u>Monthly</u> <u>Invoiced</u> <u>Amount (£)</u>	Forecast NHH Energy Consumpti on NHHC _F (kW h)	NHH Monthly Invoiced Amount (£)	Net Monthly Invoiced Amount (£)
Apr	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
May	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jun	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jul	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Aug	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Sep	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Oct	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Nov	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Dec	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Jan	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Feb	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Mar	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Total		72,000		<u>(3,000)</u>		216,000	<u>297</u> ,000

As shown, for the first nine months the Supplier provided a 12,000kW HH triad <u>gross</u> demand forecast, and hence paid HH <u>gross demand</u> monthly charges of £10,000 ((12,000kW x £10.00/kW)/12) for that BM Unit. In January the Supplier provided a revised forecast of 7,200kW, implying a forecast annual charge reduced to £72,000 (7,200kW x £10.00/kW). The Supplier had already paid £90,000, so the excess of £18,000 was credited back to the supplier in three £6,000 instalments over the last three months of the year.

The Supplier provided an embedded export triad forecast of -600kW and hence was paid an embedded export credit of £250 ((600kW x £5.00/kW)/12) for that BM Unit (For the avoidance of doubt, if the embedded export tariff is negative this will result in a debit).

The Supplier also initially provided a 15,000,000kWh NHH energy consumption forecast, and hence paid NHH monthly charges of £15,000 ((15,000,000kWh x 1.2p/kWh)/12) for that BM Unit. In July the Supplier provided a revised forecast of 18,000,000kWh, implying a forecast annual charge increased to £216,000 (18,000,000kWh x 1.2p/kWh). The Supplier had already

paid £45,000, so the remaining £171,000 was split into payments of £19,000 for the last nine months of the year.

The right hand column shows the net monthly charges for the BM Unit.

Initial Reconciliation (Part 1a)

The Supplier's outturn HH triad <u>gross</u> demand, based on <u>initial</u> settlement data (and therefore subject to change in subsequent settlement runs), was 9,000kW. The HH triad <u>gross</u> demand reconciliation charge is therefore calculated as follows:

HHD Reconciliation Charge = $(HHD_A - HHD_F) \times \pounds/kW$ Tariff

= (9,000kW - 7,200kW) x £10.00/kW

= 1,800kW x £10.00/kW

= £18,000

To calculate monthly interest charges, the outturn HHD charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHD charge less the HH <u>gross demand</u> monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 1b)

The Supplier's outturn HH triad embedded export, based on initial settlement data (and therefore subject to change in subsequent settlement runs), was 700kW. The HH triad embedded export reconciliation charge is therefore calculated as follows:

HHEE Reconciliation Charge = (HHEE_A – HHEE_E) x £/kW Tariff

 $= (-500 \text{kW} - -600 \text{kW}) \times \text{\pounds}5.00/\text{kW}$

 $= 100 \text{kW} \times \text{\pounds}5.00/\text{kW}$

= **£500**

To calculate monthly interest charges, the outturn HHEE charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHEE charge less the HH embedded generation monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 2)

The Supplier's outturn NHH energy consumption, based on initial settlement data, was 17,000,000kWh. The NHH energy consumption reconciliation charge is therefore calculated as follows:

Deleted: Please note that payments made to BM Units with a net export over the Triad, based on initial settlement data, will also be reconciled at this stage.¶ As monthly payments will not be made on the basis of a negative forecast, the HHD Reconciliation Charge for an exporting BM Unit will represent the full actual payment owed to that BM Unit (subject to adjustment by subsequent settlement runs). Interest will be calculated as described above.¶

NHHC Reconciliation Charge = $(NHHC_A - NHHC_F) \times p/kWh$ Tariff

100

= (17,000,000kWh - 18,000,000kWh) x 1.20p/kWh

100

= <u>-1,000,000kWh x 1.20p/kWh</u> 100 = **-£12,000**

worked example 4.xls - Initial!J104

The monthly reconciliation amount is equal to the outturn energy consumption charge for that month less the NHH monthly invoiced amount. Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

The net initial TNUoS demand reconciliation charge is therefore $\pounds 6,500$ (£18,000 + $\pounds 500$ - $\pounds 12,000$).

Final Reconciliation

Finally, let us now suppose that after all <u>final</u> Settlement data has been received (up to 14 months after the relevant dates), the outturn HH triad <u>gross</u> demand, <u>HH triad embedded export</u> and NHH energy consumption values were 9,500kW, <u>-550kW</u> and 16,500,000kWh, respectively.

Final HH <u>Gross Demand</u>	= (9,500kW - 9,000kW) x £10.00/kW
<u>Reconciliation Charge</u>	= £5,000
Final HH Embedded Export	= (-550kW500kW) x £5.00/kW
Reconciliation Charge	= -£250

Final NHH Reconciliation Charge = $(16,700,000kWh - 17,000,000kWh) \times 1.20p/kWh$ 100 = -£3,600

Consequently, the net final TNUoS demand reconciliation charge will be $\pounds 1, \underline{150} (\pounds 5,000 + -\pounds 250 + -\pounds 3,600)$.

Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

Outturn data for BM Units with a net export over the Triad will be received at this stage and final reconciliation will be carried out, as required. Interest will be calculated as described above.

Terminology:

 HHD_A = The Supplier's outturn half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

Page 53 of 63

Deleted: 000

I

 HHD_F = The Supplier's forecast half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

<u>HHEE_A = The Supplier's outturn half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

<u>HHEE_E = The Supplier's forecast half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

NHHC_A = The Supplier's outturn non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1^{st} to March 31^{st} , for the demand zone concerned.

NHHC_F = The Supplier's forecast non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1st to March 31st, for the demand zone concerned.

£/kW Tariff = The £/kW <u>Gross</u> Demand <u>or Embedded Export</u> Tariff as shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

p/kWh Tariff = The Energy Consumption Tariff shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

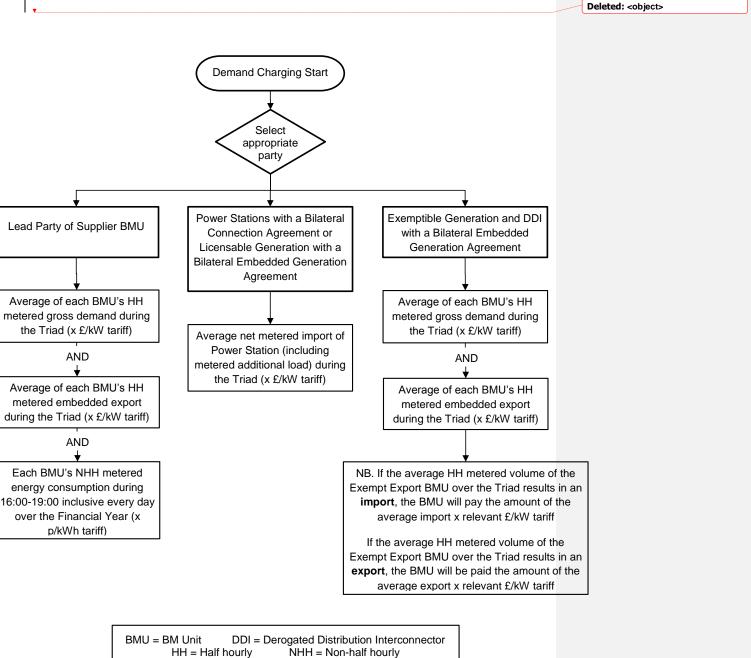
14.26 Classification of parties for charging purposes

In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precendence.

In the following diagrams, the parties liable for Transmission Network Use of System charges are outlined in red.

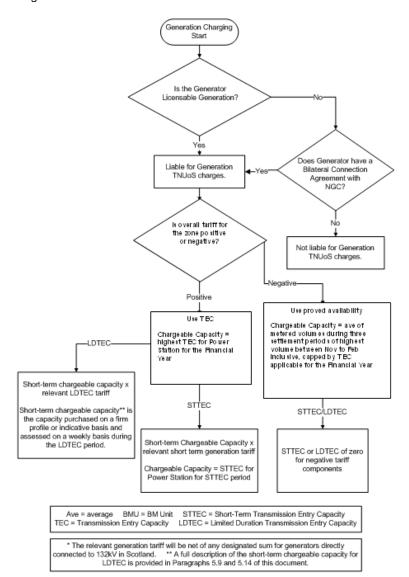
SUPPLIER		
Supplier Use of System Agreem	ent	
Supplier Supplier BMU1 BMUn		
Demand Charges	Generation Charges	
See 14.17. <mark>13 and 14.17.18</mark> .	None.	Deleted: 9 Deleted: 14
POWER STATION WITH A BILATERAL Bilateral Connection Agreement Gen Unit BMU1 Gen Unit BMU1		
Demand Charges	Generation Charges	
See 14.17. <mark>18</mark> .	See 14.18.1 i) and 14.18.3 to 14.18.9 and	Deleted: 10
	14.18.18.	
	For generators in positive zones, see 14.18.10 to 14.18.12.	
	For generators in negative zones, see 14.18.13 to 14.18.17 .	
L	1	J

Bilateral Embedded Generation Agreement Appendix C				
Gen Unit BMU1	Gen Unit BMUn	Station Load BMU	Additional Load BMU	
Demand Charges Gene See 14.17,14, 14.17,15 and 14.17,18. See 14.17,18.			harges	
		For generators	s in positive zones, see 14.18.3 t	
		14.18.12 and	14.18.18.	


-{	Deleted: 10
-	Deleted: 11
Y	Deleted: 14

14.27 Transmission Network Use of System Charging Flowcharts

The following flowcharts illustrate the parties liable for Demand and Generation TNUoS charges and the calculation of those charges.


In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precedence.

Page 57 of 63

Generation Charges

14.28 Example: Determination of The Company's Forecast for Demand Charge Purposes

The Company will use the latest available settlement data for calculation of HH demand and NHH energy consumption forecasts for the Financial Year.

The Financial Year runs from 1st April to 31st March inclusive and for the purpose of these examples the year April 2005 to March 2006 is used.

Where the preceding year's settlement data is not available at the time that The Company needs to calculate its forecast, The Company will use settlement data from the corresponding period in Financial Year minus two unless indicated otherwise.

All values used with the examples are purely for illustrative purposes only.

i) Half-Hourly (HH) Metered Demand Forecast – Existing User

At the time of calculation of a HH demand forecast before the relevant Financial Year (approximately 10th March), The Company will be aware at a system level which dates will be used for the determination of Triad. However, The Company may not have settlement data at a User level if the Triad dates were to span a period that includes the latter half of February.

When undertaking forecasting before the relevant Financial Year, The Company will use the User's Triad demand for the previous year for its forecast providing it holds User settlement data for this period, thus:

F = T

where:

F = Forecast of User's HH demand at Triad for the Financial Year

T = User's HH gross_demand and embedded export_at Triad in Financial Year minus one

Where The Company determines its forecast within a Financial Year:

F = T * D/P

where:

- F = Forecast of User's HH demand at Triad for the Financial Year
- T = User's HH gross demand and embedded export at Triad in the preceding Financial Year
- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the preceding Financial Year

Where The Company determines its forecast before the relevant Financial Year and User settlement data for the Triad period is not available, The Company shall apply the formula immediately above (within year forecast) but substitute the following definitions for the values T, D, and P:

T = User's HH gross demand and embedded export at Triad in the Financial Year minus two

Page 59 of 63

- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year minus one, to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the Financial Year minus two

Example (where User settlement data is not yet available for the Triad period):

The Company calculates a HH demand forecast on the above methodology at 10th March 2005 for the period 1st April 2005 to 31st March 2006.

Gross demand:

F = 10,000 * 13,200 / 12,000

F = 11,000 kW,Deleted: hwhere:T = 10,000 kW, (period November 2003 to February 2004)Deleted: hD = 13,200 kW, (period 1st April 2004 to 15th February 2005#)Deleted: hP = 12,000 kW, (period 1st April 2003 to 15th February 2004)Deleted: h

Latest date for which settlement data is available.

Embedded export:

F = -280 * -300 / -350

<u>F = -240 kW</u>

where:

T = -280 kW (period November 2003 to February 2004)

D = -300 kW (period 1st April 2004 to 15th February 2005#)

P = -350 kW (period 1st April 2003 to 15th February 2004)

<u># Latest date for which settlement data is available.</u>

ii) Non Half-Hourly (NHH) Metered Energy Consumption Forecast – Existing User

F = E * D/P

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- E = User's summed NHH energy consumption over the hours 16:00 to 19:00 for each day in the preceding Financial Year

Page 60 of 63

- D = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the Financial Year to date
- P = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the period corresponding to D in the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th June 2005 for the period 1st April 2005 to 31st March 2006.

- F = 50,000,000 * 4,400,000 / 4,000,000
- F = 55,000,000 kWh

where:

- E = 50,000,000 kWh (period 1st April 2004 to 31st March 2005)
- D = 4,400,000 kWh (period 1st April 2005 to 15th May 2005#)
- P = 4,000,000 kWh (period 1st April 2004 to 15th May 2004)
- # Latest date for which settlement data is available

Where forecasting before the relevant Financial Year concerned, The Company would in the above example use values for E and P from Financial Year 2003/04 and D from Financial Year 2004/05.

iii) Half-Hourly (HH) Metered Demand Forecast – New User

F = M * T/W

where:

- F = Forecast of User's HH metered <u>gross</u> demand <u>and embedded export</u> at Triad for the Financial Year
 - M = User's HH average weekday period 35 demand for the last complete month for which settlement data is available
- T = Total system HH <u>gross</u> demand <u>and embedded export</u> at Triad in the preceding Financial Year
 - W = Total system HH average weekday settlement period 35 metered demand for the corresponding period to M for the preceding year

Example:

The Company calculates a HH demand forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2004 to 31st March 2006.

Gross demand:

F = 1,000 * 17,000,000 / 18,888,888

0030	, vi. 12	
F =	900 kW,	 Deleted: h
wher	e:	
M =	1,000 kW _v (period 1 st July 2005 to 31 st July 2005)	Deleted: h
T =	17,000,000 kW, (period November 2004 to February 2005)	 Deleted: h
W =	18,888,888 kW _e (period 1 st July 2004 to 31 st July 2004)	Deleted: h
<u>Emb</u>	edded export:	
<u>F =</u>	150 * 7,200,000 / 6,000,000	
<u>F =</u>	<u>180 kW</u>	
wher	<u>e:</u>	

- M = 150 kW (period 1st July 2005 to 31st July 2005)
- T = 7,200,000 kW (period November 2004 to February 2005)
- <u>W = 6,000,000 kW (period 1^{st} July 2004 to 31^{st} July 2004)</u>

iv) Non Half Hourly (NHH) Metered Energy Consumption Forecast – <u>New User</u>

F = J + (M * R/W)

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- J = Residual part month summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day where new User registration takes place other than on the first of a month
- M = User's summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the last complete month for which settlement data is available
- R = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period from the start of that defined under M but for the preceding year and until the end of that preceding Financial Year
- W = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period identified in M but for the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2005 to 31st March 2006.

- F = 500 + (1,000 * 20,000,000,000 / 2,000,000,000)
- F = 10,500 kWh

where:

- J = 500 kWh (period 10th June 2005 to 30th June 2005)
- M = 1,000 kWh (period 1st July 2005 to 31st July 2005)
- R = 20,000,000,000 kWh (period 1st July 2004 to 31st March 2005)
- W = 2,000,000,000 kWh (period 1st July 2004 to 31st July 2004)

CMP265 WACM10

14.15 Derivation of the Transmission Network Use of System Tariff

- 14.15.1 The Transmission Network Use of System (TNUoS) Tariff comprises two separate elements. Firstly, a locationally varying element derived from the DCLF ICRP transport model to reflect the costs of capital investment in, and the maintenance and operation of, a transmission system to provide bulk transport of power to and from different locations. Secondly, a non-locationally varying element related to the provision of residual revenue recovery. The combination of both these elements forms the TNUoS tariff.
- 14.15.2 For generation TNUoS tariffs the locational element itself is comprised of five separate components. Three wider components
 - o Wider Peak Security Component
 - Wider Year Round Not-shared component
 - Wider Year Round component

These components reflect the costs of the wider network under the different generation backgrounds set out in the Demand Security Criterion (for Peak Security component) and Economy Criterion (for both Year Round components) of the Security Standard. The two Year Round components reflect the unshared and shared costs of the wider network based on the diversity of generation plant types.

Two local components -

- o Local substation, and
- Local circuit

These components reflect the costs of the local network.

Accordingly, the wider tariff represents the combined effect of the three wider locational tariff components and the residual element; and the local tariff represents the combination of the two local locational tariff components.

14.15.3 The process for calculating the TNUoS tariff is described below.

The Transport Model

Model Inputs

14.15.4 The DCLF ICRP transport model calculates the marginal costs of investment in the transmission system which would be required as a consequence of an increase in demand or generation at each connection point or node on the transmission system, based on a study of peak demand conditions using both Peak Security and Year Round generation backgrounds on the transmission system. One measure of the investment costs is in terms of MWkm. This is the concept that ICRP uses to calculate marginal costs of investment. Hence, marginal costs are estimated initially in terms of increases or decreases in units of kilometres (km) of the transmission system for a 1 MW injection to the system.

- 14.15.5 The transport model requires a set of inputs representative of the Demand Security and Economy Criterion set out in the Security Standards. These conditions on the transmission system are represented in the Peak Security and Year Round background respectively as follows:
- Nodal generation information per node (TEC, plant type and SQSS scaling factors)
- Nodal <u>net</u> demand information
- Transmission circuits between these nodes
- The associated lengths of these routes, the proportion of which is overhead line or cable and the respective voltage level
- The cost ratio of each of 132kV overhead line, 132kV underground cable, 275kV overhead line, 275kV underground cable and 400kV underground cable to 400kV overhead line to give circuit expansion factors
- The cost ratio of each separate sub-sea AC circuit and HVDC circuit to 400kV overhead line to give circuit expansion factors
- 132kV overhead circuit capacity and single/double route construction information is used in the calculation of a generator's local charge.
- Offshore transmission cost and circuit/substation data
- 14.15.6 For a given charging year "t", the nodal generation TEC figure and generation plant types at each node will be based on the Applicable Value for year "t" in the NETS Seven Year Statement in year "t-1" plus updates to the October of year "t-1". The contracted TECs and generation plant types in the NETS Seven Year Statement include all plant belonging to generators who have a Bilateral Agreement with the TOs. For example, for 2010/11 charges, the nodal generation data is based on the forecast for 2010/11 in the 2009 NETS Seven Year Statement plus any data included in the quarterly updates in October 2009.
- 14.15.7 Scaling factors for different generation plant types are applied on their aggregated capacity for both Peak Security and Year Round backgrounds. The scaling is either Fixed or Variable (depending on the total demand level) in line with the factors used in the Security Standard, for example as shown in the table below.

Generation Plant Type	Peak Security Background	Year Round Background
Intermittent	Fixed (0%)	Fixed (70%)
Nuclear & CCS	Variable	Fixed (85%)
Interconnectors	Fixed (0%)	Fixed (100%)
Hydro	Variable	Variable
Pumped Storage	Variable	Fixed (50%)
Peaking	Variable	Fixed (0%)
Other (Conventional)	Variable	Variable

These scaling factors and generation plant types are set out in the Security Standard. These may be reviewed from time to time. The latest version will be used in the calculation of TNUoS tariffs and is published in the Statement of Use of System Charges

14.15.8 National Grid will categorise plant based on the categorisations described in the Security Standard. Peaking plant will include oil and OCGT technologies and Other (Conv.) represents all remaining conventional plant not explicitly stated elsewhere in the table In the event that a power station is made up of more than one technology type, the type of the higher Transmission Entry Capacity (TEC) would apply.

I

- 14.15.9 Nodal <u>net</u> demand data for the transport model will be based upon the GSP <u>net</u> demand that Users have forecast to occur at the time of National Grid Peak Average Cold Spell (ACS) Demand for year "t" in the April Seven Year Statement for year "t-1" plus updates to the October of year "t-1".
- 14.15.10 Subject to paragraphs 14.15.15 to 14.15.22, Transmission circuits for charging year "t" will be defined as those with existing wayleaves for the year "t" with the associated lengths based on the circuit lengths indicated for year "t" in the April NETS Seven Year Statement for year "t-1" plus updates to October of year "t-1". If certain circuit information is not explicitly contained in the NETS Seven Year Statement, The Company will use the best information available.
- 14.15.11 The circuit lengths included in the transport model are solely those, which relate to assets defined as 'Use of System' assets.
- 14.15.12 For HVDC circuits, the impedance will be calculated to provide flows based on a ratio of the capacity provided by the HVDC link relative to the capacities on all major transmission system boundaries that it parallels.
- 14.15.13 The transport model employs the use of circuit expansion factors to reflect the difference in cost between (i) AC Circuits and HVDC circuits. (ii) underground and sub-sea circuits, (iii) cabled circuits and overhead line circuits, (iv) 132kV and 275kV circuits, (v) 275kV circuits and 400kV circuits, and (vi) uses 400kV overhead line (i.e. the 400kV overhead line expansion factor is 1). As the transport model expresses cost as marginal km (irrespective of cables or overhead lines), some account needs to be made of the fact that investment in these other types of circuit (specifically HVDC and sub-sea cables of various voltages, 400kV underground cable, 275kV overhead line, 275kV underground cable, 132kV overhead line and 132kV underground cable) is more expensive than for 400kV overhead line. This is done by effectively 'expanding' these more expensive circuits by the relevant circuit expansion factor, thereby producing a larger marginal kilometre to reflect the additional cost of investing in these circuits compared to 400kV overhead line. When calculating the local circuit tariff for a generator, alternative 132kV and offshore expansion factors to those used in the remainder of the tariff calculation are applied to the generator's local circuits.
- 14.15.14 The circuit expansion factors for HVDC circuits and AC subsea cables are determined on a case by case basis using the costs which are specific to individual projects containing HVDC or AC subsea circuits.

Adjustments to Model Inputs associated with One-off Works

- 14.15.15 Where, following the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge that related to One-off Works carried out on an onshore circuit, and such One-off Works would affect the value of a TNUoS tariff paid by the User, the transport model inputs associated with the onshore circuit shall be adjusted by The Company to reflect the asset value that would have been modelled if the works had been undertaken on the basis of the original asset design rather than the One-off Works.
- 14.15.16 Subject to paragraphs 14.15.17 to 14.15.19, where, prior to the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge (or has paid a charge to the relevant TO prior to 1st April 2005 on the same principles as a

Page 3 of 63

One-Off Charge) that related to works equivalent to those described under paragraph 14.15.15, an adjustment equivalent to that under paragraph 14.15.15 shall be made to the transport model inputs as follows.

- 14.15.17 Such adjustment shall be made following a User's request, which must be received by The Company no later than the second occurrence of 31st December following the implementation of CUSC Modification CMP203.
- 14.15.18 The Company shall only make an adjustment to the transport model inputs, under paragraph 14.15.16 where the charge was paid to the relevant TO prior to 1st April 2005 where evidence has been provided by the User that satisfies The Company that works equivalent to those under paragraph 14.15.15 were funded by the User.
- 14.15.19 Where a User has sufficient reason to believe that adjustments under paragraph 14.15.18 should be made in relation to specific assets that affect a TNUoS tariff that applies to one of its sites and outlines its reasoning to The Company, The Company shall (upon the User's request and subject to the User's payment of reasonable costs incurred by The Company in doing so) use its reasonable endeavours to assist the User in obtaining any evidence The Company or a TO may have to support its position.
- 14.15.20 Where a request is made under paragraph 14.15.16 on or prior to 31st December in a charging year, and The Company is satisfied based on the accompanying evidence provided to The Company under paragraph 14.15.17 that it is a valid request, the transport model inputs shall be adjusted accordingly and taken into account in the calculation of TNUoS tariffs effective from the year commencing on the 1st April following this and otherwise from the next subsequent 1st April.
- 14.15.21 The following table provides examples of works for which adjustments to transport model inputs would typically apply:

Ref	Description of works	Adjustments
1	Undergrounding - A User requests to underground an overhead line at a greater cost.	As the cable cost will be more expensive than the overhead line (OHL) equivalent, the circuit will be modelled as an OHL.
2	Substation Siting Decision - A User requests to move the existing or a planned substation location to a place that means that the works cannot be justified as economic by the TO.	As the revised substation location may result in circuits being extended. If this is the case, the originally designed circuit lengths (as per the originally designed substation location) would be used in the transport model.
3	Circuit Routing Decision - A User asks to move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	As any circuit route changes that extend circuits are likely to result in a greater TNUoS tariff, the originally designed circuit lengths would be used in the transport model.

Ref	Description of works	Adjustments
4	Building circuits at lower voltages - A User requests lower tower height and therefore a different voltage.	As lower voltage circuits result in a higher expansion factor being used, the circuits would be modelled at the originally designed higher voltage.

14.15.22 The following table provides examples of works for which adjustments to transport model typically would not apply:

Ref	Description of works	Reasoning
1	Undergrounding - A User chooses to have a cable installed via a tunnel rather than buried.	Cable expansion factors are applied in the transport model regardless of whether a cable is tunnelled and buried, so there is no increased TNUoS cost.
2	Additional circuit route works - A User asks for screening to be provided around a new or existing circuit route.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
3	Additional circuit route works - A User requests that a planned overhead line route is built using alternative transmission tower designs.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
4	Additional substation works - A User asks for screening to be provided around a new or existing substation.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
5	Additional substation works - Changes to connection assets (e.g. HV-LV transformers and associated switchgear), metering, additional LV supplies, additional protection equipment, additional building works, etc.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
6	Diversion - A User asks to temporarily move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	The temporary circuit changes will not be incorporated into the transport model.

7	Connection Entry Capacity (CEC) before Transmission Entry Capacity (TEC). A User asks for a connection in a year prior to the relating TEC; i.e. physical connection without capacity.	No additional works are being undertaken, works are simply being completed well in advance of the generator commissioning. The One-Off Charge reflects the depreciated value of the assets prior to commissioning (and any TNUOS being charged).
8	Early asset replacement - An asset is replaced prior to the end of its expected life.	As the asset is simply replaced, no data in the transport model is expected to change.
9	Additional Engineering/ Mobilisation costs - A User requests changes to the planned works, that results in additional operational costs.	The data in the transport model is unaffected.
10	Offshore (Generator Build) - Any of the works described above or under paragraph 14.15.18.	The value of the works will not form part of the asset transfer value therefore will not be used as part of the offshore tariff calculation.
11	Offshore (Offshore Transmission Owner (OFTO) Build) - Any of the works described above or under paragraph 14.15.18.	As part of determining the TNUoS revenue associated with each asset, the value of the One-Off Works would be excluded when pro-rating the OFTO's allowed revenue against assets by asset value.

14.15.23 The Company shall publish any adjusted transport model inputs that it intends to use in the calculation of TNUoS tariffs effective from the year commencing on the following 1st April in the NETS Seven Year Statement October Update. Any further adjustments that The Company makes shall be published by The Company upon the publication of the final TNUoS tariffs for the year concerned.

Model Outputs

- 14.15.24 The transport model takes the inputs described above and carries out the following steps individually for Peak Security and Year Round backgrounds.
- 14.15.25 Depending on the background, the TEC of the relevant generation plant types are scaled by a percentage as described in 14.15.7, above. The TEC of the remaining generation plant types in each background are uniformly scaled such that total national generation (scaled sum of contracted TECs) equals total national ACS Demand.
- 14.15.26 For each background, the model then uses a DCLF ICRP transport algorithm to derive the resultant pattern of flows based on the network impedance required to meet the nodal <u>net</u> demand using the scaled nodal generation, assuming every circuit has infinite capacity. Flows on individual transmission circuits are compared for both backgrounds and the background giving rise to

Page 6 of 63

the highest flow is considered as the triggering criterion for future investment of that circuit for the purposes of the charging methodology. Therefore all circuits will be tagged as Peak Security or Year Round depending upon the background resulting in the highest flow. In the event that both backgrounds result in the same flow, the circuit will be tagged as Peak Security. Then it calculates the resultant total network Peak Security MWkm and Year Round MWkm, using the relevant circuit expansion factors as appropriate.

- 14.15.27 Using these baseline networks for Peak Security and Year Round backgrounds, the model then calculates for a given injection of 1MW of generation at each node, with a corresponding 1MW offtake (<u>net_demand</u>) distributed across all demand nodes in the network, the increase or decrease in total MWkm of the whole Peak Security and Year Round networks. The proportion of the 1MW offtake allocated to any given demand node will be based on total background nodal <u>net</u> demand in the model. For example, with a total GB <u>net_demand</u> of 60GW in the model, a node with a <u>net_demand</u> of 600MW would contain 1% of the offtake i.e. 0.01MW.
- 14.15.28 Given the assumption of a 1MW injection, for simplicity the marginal costs are expressed solely in km. This gives a Peak Security marginal km cost and a Year Round marginal km cost for generation at each node (although not that used to calculate generation tariffs which considers local and wider cost components). The Peak Security and Year Round marginal km costs for demand at each node are equal and opposite to the Peak Security and Year Round nodal marginal km respectively for generation and this is used to calculate demand tariffs. Note the marginal km costs can be positive or negative depending on the impact the injection of 1MW of generation has on the total circuit km.
- 14.15.29 Using a similar methodology as described above in 14.15.27, the local and wider marginal km costs used to determine generation TNUoS tariffs are calculated by injecting 1MW of generation against the node(s) the generator is modelled at and increasing by 1MW the offtake across the distributed reference node. It should be noted that although the wider marginal km costs are calculated for both Peak Security and Year Round backgrounds, the local marginal km costs are calculated on the Year Round background.
- 14.15.30 In addition, any circuits in the model, identified as local assets to a node will have the local circuit expansion factors which are applied in calculating that particular node's marginal km. Any remaining circuits will have the TO specific wider circuit expansion factors applied.
- 14.15.31 An example is contained in 14.21 Transport Model Example.

Calculation of local nodal marginal km

14.15.32 In order to ensure assets local to generation are charged in a cost reflective manner, a generation local circuit tariff is calculated. The nodal specific charge provides a financial signal reflecting the security and construction of the infrastructure circuits that connect the node to the transmission system.

14.15.33 Main Interconnected Transmission System (MITS) nodes are defined as:

- Grid Supply Point connections with 2 or more transmission circuits connecting at the site; or
- connections with more than 4 transmission circuits connecting at the site.

Page 7 of 63

- 14.15.34 Where a Grid Supply Point is defined as a point of supply from the National Electricity Transmission System to network operators or non-embedded customers excluding generator or interconnector load alone. For the avoidance of doubt, generator or interconnector load would be subject to the circuit component of its Local Charge. A transmission circuit is part of the National Electricity Transmission System between two or more circuit-breakers which includes transformers, cables and overhead lines but excludes busbars and generation circuits.
- 14.15.35 Generators directly connected to a MITS node will have a zero local circuit tariff.
- 14.15.36 Generators not connected to a MITS node will have a local circuit tariff derived from the local nodal marginal km for the generation node i.e. the increase or decrease in marginal km along the transmission circuits connecting it to all adjacent MITS nodes (local assets).

Calculation of zonal marginal km

- 14.15.37 Given the requirement for relatively stable cost messages through the ICRP methodology and administrative simplicity, nodes are assigned to zones. Typically, generation zones will be reviewed at the beginning of each price control period with another review only undertaken in exceptional circumstances. Any rezoning required during a price control period will be undertaken with the intention of minimal disruption to the established zonal boundaries. The full criteria for determining generation zones are outlined in paragraph 14.15.42. The number of generation zones set for 2010/11 is 20.
- 14.15.38 Demand zone boundaries have been fixed and relate to the GSP Groups used for energy market settlement purposes.
- 14.15.39 The nodal marginal km are amalgamated into zones by weighting them by their relevant generation or demand capacity.
- 14.15.40 Generators will have zonal tariffs derived from both, the wider Peak Security nodal marginal km; and the wider Year Round nodal marginal km for the generation node calculated as the increase or decrease in marginal km along all transmission circuits except those classified as local assets.

The zonal Peak Security marginal km for generation is calculated as:

$$WNMkm_{j_{PS}} = \frac{NMkm_{j_{PS}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiPS} = \sum_{j \in Gi} WNMkm_{jPS}$$

Where

Gi	=	Generation zone
j	=	Node
NMkm _{PS}	=	Peak Security Wider nodal marginal km from transport model
WNMkm _{PS}	=	Peak Security Weighted nodal marginal km
ZMkm _{PS}	=	Peak Security Zonal Marginal km

Gen = Nodal Generation (scaled by the appropriate Peak Security Scaling factor) from the transport model Similarly, the zonal Year Round marginal km for generation is calculated as

$$WNMkm_{j_{YR}} = \frac{NMkm_{j_{YR}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiYR} = \sum_{j \in Gi} WNMkm_{jYR}$$

Where

NMkm _{YR}	=	Year Round Wider nodal marginal km from transport model
WNMkm _{YR}	=	Year Round Weighted nodal marginal km
ZMkm _{YR}	=	Year Round Zonal Marginal km
Gen	=	Nodal Generation (scaled by the appropriate Year Round Scaling
		factor) from the transport model

14.15.41 The zonal Peak Security marginal km for demand zones are calculated as follows:

$$WNMkm_{j_{PS}} = \frac{-1 * NMkm_{j_{PS}} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{Di_{PS}} = \sum_{j \in Di} WNMkm_{j_{PS}}$$

Where:

I

Di	=	Demand zone
Dem	=	Nodal <u>Net</u> Demand from transport model

Similarly, the zonal Year Round marginal km for demand zones are calculated as follows:

$$WNMkm_{jYR} = \frac{-1 * NMkm_{jYR} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{DiYR} = \sum_{j \in Di} WNMkm_{jYR}$$

- 14.15.42 A number of criteria are used to determine the definition of the generation zones. Whilst it is the intention of The Company that zones are fixed for the duration of a price control period, it may become necessary in exceptional circumstances to review the boundaries having been set. In both circumstances, the following criteria are used to determine the zonal boundaries:
- i.) Zoning is determined using the generation background with the most MWkm of circuits. Zones should contain relevant nodes whose total wider marginal costs

from the relevant generation background (as determined from the output from the transport model, the relevant expansion constant and the locational security factor, see below) are all within +/-£1.00/kW (nominal prices) across the zone. This means a maximum spread of £2.00/kW in nominal prices across the zone.

- ii.) The nodes within zones should be geographically and electrically proximate.
- iii.) Relevant nodes are considered to be those with generation connected to them as these are the only ones, which contribute to the calculation of the zonal generation tariff.
- 14.15.43 The process behind the criteria in 14.15.42 is driven by initially applying the nodal marginal costs from the relevant generation background within the DCLF Transport model onto the appropriate areas of a substation line diagram. Generation nodes are grouped into initial zones using the +/- £1.00/kW range. All nodes within each zone are then checked to ensure the geographically and electrically proximate criteria have been met using the substation line diagram. The established zones are inspected to ensure the least number of zones are used with minimal change from previously established zonal boundaries. The zonal boundaries are finally confirmed using the demand nodal costs from the relevant generation background for guidance.
- 14.15.44 The zoning criteria are applied to a reasonable range of DCLF ICRP transport model scenarios, the inputs to which are determined by The Company to create appropriate TNUoS generation zones. The minimum number of zones, which meet the stated criteria, are used. If there is more than one feasible zonal definition of a certain number of zones, The Company determines and uses the one that best reflects the physical system boundaries.
- 14.15.45 Zones will typically not be reviewed more frequently than once every price control period to provide some stability. However, in exceptional circumstances, it may be necessary to review zoning more frequently to maintain appropriate, cost reflective, locational cost signals. For example, if a new generator connecting to the transmission system would cause the creation of a new generation zone for that generator alone, it may not be appropriate from a cost reflective perspective to wait until the next price control period to undertake this rezoning. If any such rezoning is required, it will be undertaken against a background of minimal change to existing generation zones and in line with the notification process set out in the Transmission Licence and CUSC.

Accounting for Sharing of Transmission by Generators

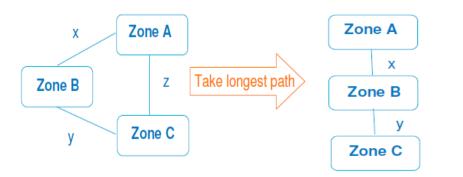
- 14.15.46 A proportion of the marginal km costs for generation are shared incremental km reflecting the ability of differing generation technologies to share transmission investment. This is reflected in charges through the splitting of Year Round marginal km costs for generation into Year Round Shared marginal km costs and Year Round Not-Shared marginal km which are then used in the calculation of the wider £/kW generation tariff.
- 14.15.47 The sharing between different generation types is accounted for by (a) using transmission network boundaries between generation zones set by connectivity between generation charging zones, and (b) the proportion of Low Carbon and Carbon generation behind these boundaries.

Page 10 of 63

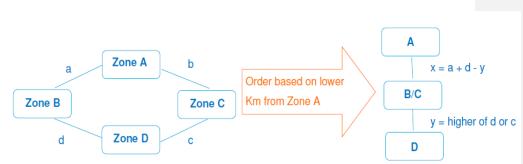
14.15.48 The zonal incremental km for each generation charging zone is split into each boundary component by considering the difference between it and the neighbouring generation charging zone using the formula below;

$$BIkm_{ab} = ZIkm_b - ZIkm_a$$

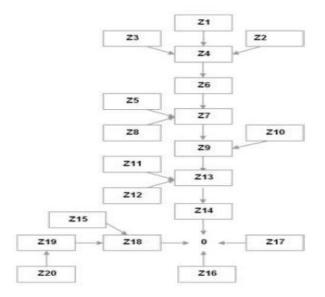
Where;


Blkm_{ab} = boundary incremental km between generation charging zone A and generation charging zone B Zlkm = generation charging zone incremental km.

14.15.49 The table below shows the categorisation of Low Carbon and Carbon generation. This table will be updated by National Grid in the Statement of Use of System Charges as new generation technologies are developed.


Carbon	Low Carbon
Coal	Wind
Gas	Hydro (excl. Pumped Storage)
Biomass	Nuclear
Oil	Marine
Pumped Storage	Tidal
Interconnectors	

Determination of Connectivity


- 14.15.50 Connectivity is based on the existence of electrical circuits between TNUoS generation charging zones that are represented in the Transport model. Where such paths exist, generation charging zones will be effectively linked via an incremental km transmission boundary length. These paths will be simplified through in the case of;
 - Parallel paths the longest path will be taken. An illustrative example is shown below with x, y and z representing the incremental km between zones.

 Parallel zones – parallel zones will be amalgamated with the incremental km immediately beyond the amalgamated zones being the greater of those existing prior to the amalgamation. An illustrative example is shown below with a, b, c, and d representing the the initial incremental km between zones, and x and y representing the final incremental km following zonal amalgamation.

14.15.51 An illustrative Connectivity diagram is shown below:

The arrows connecting generation charging zones and amalgamated generation charging zones represent the incremental km transmission boundary lengths towards the notional centre of the system. Generation located in charging zones behind arrows is considered to share based on the ratio of Low Carbon to Carbon cumulative generation TEC within those zones.

14.15.52 The Company will review Connectivity at the beginning of a new price control period, and under exceptional circumstances such as major system reconfigurations or generation rezoning. If any such reassessment is required, it will be undertaken against a background of minimal change to existing Connectivity and in line with the notification process set out in the Transmission Licence and the CUSC.

Calculation of Boundary Sharing Factors

14.15.53 Boundary sharing factors (BSFs) are derived from the comparison of the cumulative proportion of Low Carbon and Carbon generation TEC behind each of the incremental MWkm boundary lengths using the following formulae –

Page 12 of 63

If $\frac{LC}{LC+C} \le 0.5$, then all Year round marginal km costs are shared i.e. the BSF is 100%.

Where:

LC = Cumulative Low Carbon generation TEC behind the relevant transmission boundary C = Cumulative Carbon generation TEC behind the relevant transmission

C = Cumulative Carbon generation TEC behind the relevant transmission boundary

If
$$\frac{LC}{LC+C}$$
 > 0.5 then the BSF is calculated using the following formula: -

$$BSF = \left(-2 \times \left(\frac{LC}{LC+C}\right)\right) + 2$$

Where:

BSF = boundary sharing factor.

14.15.54 The shared incremental km for each boundary are derived from the multiplication of the boundary sharing factor by the incremental km for that boundary;

$$SBIkm_{ab} = BIIkm_{ab} \ x \ BSF_{ab}$$

Where;

 $SBIkm_{ab}$ = shared boundary incremental km between generation charging zone A and generation charging zone B

 BSF_{ab} = generation charging zone boundary sharing factor.

14.15.55 The shared incremental km is discounted from the incremental km for that boundary to establish the not-shared boundary incremental km. The not-shared boundary incremental km reflects the cost of transmission investment on that boundary accounting for the sharing of power stations behind that boundary.

$$NSBIkm_{ab} = BIkm_{ab} - SBIkm_{ab}$$

Where;

 $NSBIkm_{ab}$ = not shared boundary incremental km between generation charging zone A and generation charging zone B.

14.15.56 The shared incremental km for a generation charging zone is the sum of the appropriate shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRS}$$

Where;

 $ZMkm_{nYRS}$ = Year Round Shared Zonal Marginal km for generation charging zone n.

Page 13 of 63

14.15.57 The not-shared incremental km for a generation charging zone is the sum of the appropriate not-shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRNS}$$

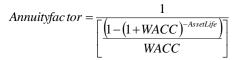
Where;

ZMkm_{nYRNS} = Year Round Not-Shared Zonal Marginal km for generation zone n.

Deriving the Final Local £/kW Tariff and the Wider £/kW Tariff

14.15.58 The zonal marginal km (ZMkm_{Gi}) are converted into costs and hence a tariff by multiplying by the Expansion Constant and the Locational Security Factor (see below). The nodal local marginal km (NLMkm^L) are converted into costs and hence a tariff by multiplying by the Expansion Constant and a Local Security Factor.

The Expansion Constant


- 14.15.59 The expansion constant, expressed in £/MWkm, represents the annuitised value of the transmission infrastructure capital investment required to transport 1 MW over 1 km. Its magnitude is derived from the projected cost of 400kV overhead line, including an estimate of the cost of capital, to provide for future system expansion.
- 14.15.60 In the methodology, the expansion constant is used to convert the marginal km figure derived from the transport model into a £/MW signal. The tariff model performs this calculation, in accordance with 14.15.95 14.15.117, and also then calculates the residual element of the overall tariff (to ensure correct revenue recovery in accordance with the price control), in accordance with 14.15.133.
- 14.15.61 The transmission infrastructure capital costs used in the calculation of the expansion constant are provided via an externally audited process. They also include information provided from all onshore Transmission Owners (TOs). They are based on historic costs and tender valuations adjusted by a number of indices (e.g. global price of steel, labour, inflation, etc.). The objective of these adjustments is to make the costs reflect current prices, making the tariffs as forward looking as possible. This cost data represents The Company's best view; however it is considered as commercially sensitive and is therefore treated as confidential. The calculation of the expansion constant also relies on a significant amount of transmission asset information, much of which is provided in the Seven Year Statement.
- 14.15.62 For each circuit type and voltage used onshore, an individual calculation is carried out to establish a £/MWkm figure, normalised against the 400KV overhead line (OHL) figure, these provide the basis of the onshore circuit expansion factors discussed in 14.15.70 14.15.77. In order to simplify the calculation a unity power factor is assumed, converting £/MVAkm to £/MWkm. This reflects that the fact tariffs and charges are based on real power.
- 14.15.63 The table below shows the first stage in calculating the onshore expansion constant. A range of overhead line types is used and the types are weighted by recent usage on the transmission system. This is a simplified calculation for 400kV OHL using example data:

Page 14 of 63

400kV	400kV OHL expansion constant calculation				
MW	Туре	£(000)/k	Circuit km*	£/MWkm	Weight
А	В	С	D	E = C/A	F=E*D
6500	La	700	500	107.69	53846
6500	Lb	780	0	120.00	0
3500	La/b	600	200	171.43	34286
3600	Lc	400	300	111.11	33333
4000	Lc/a	450	1100	112.50	123750
5000	Ld	500	300	100.00	30000
5400	Ld/a	550	100	101.85	10185
Sum			2500 (G)		285400 (H)
				Weighted Average (J= H/G):	114.160 (J)

*These are circuit km of types that have been provided in the previous 10 years. If no information is available for a particular category the best forecast will be used.

14.15.64 The weighted average £/MWkm (J in the example above) is then converted in to an annual figure by multiplying it by an annuity factor. The formula used to calculate of the annuity factor is shown below:

- 14.15.65 The Weighted Average Cost of Capital (WACC) and asset life are established at the start of a price control and remain constant throughout a price control period. The WACC used in the calculation of the annuity factor is the The Company regulated rate of return, this assumes that it will be reasonably representative of all licensees. The asset life used in the calculation is 50 years; the appropriateness of this is reviewed when the annuity factor is recalculated at the start of a price control period. These assumptions provide a current annuity factor of 0.066.
- 14.15.66 The final step in calculating the expansion constant is to add a share of the annual transmission overheads (maintenance, rates etc). This is done by multiplying the average weighted cost (J) by an 'overhead factor'. The 'overhead factor' represents the total business overhead in any year divided by the total Gross Asset Value (GAV) of the transmission system. This is recalculated at the start of each price control period. The overhead factor used in the calculation of the expansion constant for 2009/10 is 1.8%. The overhead and annuitised costs are then added to give the expansion constant.
- 14.15.67 Using the previous example, the final steps in establishing the expansion constant are demonstrated below:

400kV OHL expansion constant calculation	Ave £/MWkm
OHL	114.160

Page 15 of 63

Annuitised	7.535
Overhead	2.055
Final	9.589

- 14.15.68 This process is carried out for each voltage onshore, along with other adjustments to take account of upgrade options, see 14.15.73, and normalised against the 400KV overhead line cost (the expansion constant) the resulting ratios provide the basis of the onshore expansion factors. The process used to derive circuit expansion factors for Offshore Transmission Owner networks is described in 14.15.78.
- 14.15.69 This process of calculating the incremental cost of capacity for a 400kV OHL, along with calculating the onshore expansion factors is carried out for the first year of the price control and is increased by inflation, RPI, (May–October average increase, as defined in The Company's Transmission Licence) each subsequent year of the price control period. The expansion constant for 2010/11 is 10.633.

Onshore Wider Circuit Expansion Factors

- 14.15.70 Base onshore expansion factors are calculated by deriving individual expansion constants for the various types of circuit, following the same principles used to calculate the 400kV overhead line expansion constant. The factors are then derived by dividing the calculated expansion constant by the 400kV overhead line expansion constant. The factors will be fixed for each respective price control period.
- 14.15.71 In calculating the onshore underground cable factors, the forecast costs are weighted equally between urban and rural installation, and direct burial has been assumed. The operating costs for cable are aligned with those for overhead line. An allowance for overhead costs has also been included in the calculations.
- 14.15.72 The 132kV onshore circuit expansion factor is applied on a TO basis. This is to reflect the regional variation of plans to rebuild circuits at a lower voltage capacity to 400kV. The 132kV cable and line factor is calculated on the proportion of 132kV circuits likely to be uprated to 400kV. The 132kV expansion factor is then calculated by weighting the 132kV cable and overhead line costs with the relevant 400kV expansion factor, based on the proportion of 132kV circuitry to be uprated to 400kV. For example, in the TO areas of National Grid and Scottish Power where there are no plans to uprate any 132kV circuits, the full cable and overhead line costs of 132kV circuit are reflected in the 132kV expansion factor calculation.
- 14.15.73 The 275kV onshore circuit expansion factor is applied on a GB basis and includes a weighting of 83% of the relevant 400kV cable and overhead line factor. This is to reflect the averaged proportion of circuits across all three Transmission Licensees which are likely to be uprated from 275kV to 400kV across GB within a price control period.
- 14.15.74 The 400kV onshore circuit expansion factor is applied on a GB basis and reflects the full costs for 400kV cable and overhead lines.
- 14.15.75 AC sub-sea cable and HVDC circuit expansion factors are calculated on a case by case basis using actual project costs (Specific Circuit Expansion Factors).

Page 16 of 63

- 14.15.76 For HVDC circuit expansion factors both the cost of the converters and the cost of the cable are included in the calculation.
- 14.15.77 The TO specific onshore circuit expansion factors calculated for 2008/9 (and rounded to 2 decimal places) are:

Scottish Hydro Region

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	27.79
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.24	

Scottish Power & National Grid Regions

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	30.22
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.80	

Onshore Local Circuit Expansion Factors

- 14.15.78 The local onshore circuit tariff is calculated using local onshore circuit expansion factors. These expansion factors are calculated using the same methodology as the onshore wider expansion factor but without taking into account the proportion of circuit kms that are planned to be uprated.
- 14.15.79 In addition, the 132kV onshore overhead line circuit expansion factor is sub divided into four more specific expansion factors. This is based upon maximum (winter) circuit continuous rating (MVA) and route construction whether double or single circuit.

400kV underground cable factor:	22.39
275kV underground cable factor:	22.39
132kV underground cable factor:	30.22
400kV line factor:	1.00
275kV line factor:	1.14
132kV line factor (single; <200MVA):	10.00
132kV line factor (double; <200MVA):	8.32
132kV line factor (single; >=200MVA):	7.13
132kV line factor (double; >=200MVA):	4.42

Offshore Circuit Expansion Factors

14.15.80 Offshore expansion factors (£/MWkm) are derived from information provided by Offshore Transmission Owners for each offshore circuit. Offshore expansion factors are Offshore Transmission Owner and circuit specific. Each Offshore Transmission Owner will periodically provide, via the STC, information to derive an annual circuit revenue requirement. The offshore circuit revenue shall include revenues associated with the Offshore Transmission Owner's reactive compensation equipment, harmonic filtering equipment, asset spares and HVDC converter stations.

14.15.81 In the first year of connection, the offshore circuit expansion factor would be calculated as follows:

$\frac{CRevOFTO1}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$

Where:

CRevOFTO1	=	The offshore circuit revenue in £ for Year 1
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

14.15.82 In all subsequent years, the offshore circuit expansion factor would be calculated as follows:

$$\frac{AvCRevOFTO}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$$

Where:

AvCRevOFTO	=	The annual offshore circuit revenue averaged over the
		remaining years of the onshore National Electricity
		Transmission System Operator (NETSO) price control
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

- 14.15.83 For the avoidance of doubt, the offshore circuit revenue values, *CRevOFTO1* and *AvCRevOFTO* shall be determined using asset values after the removal of any One-Off Charges.
- 14.15.84 Prevailing OFFSHORE TRANSMISSION OWNER specific expansion factors will be published in this statement. These shall be recalculated at the start of each price control period using the formula in paragraph 14.15.71. For each subsequent year within the price control period, these expansion factors will be adjusted by the annual Offshore Transmission Owner specific indexation factor, *OFTOInd*, calculated as follows;

$$OFTOInd_{t,f} = \frac{OFTO \operatorname{Rev}Ind_{t,f}}{RPI_{t}}$$

where:

OFTOInd _{t,f}	=	the indexation factor for Offshore Transmission Owner <i>f</i> in respect of charging year <i>t</i> ;
OFTORevInd _t f	=	the indexation rate applied to the revenue of Offshore Transmission Owner f under the terms of its Transmission Licence in respect of charging year t ; and
<i>RPI</i> _t	=	the indexation rate applied to the expansion constant in respect of charging year <i>t</i> .

Offshore Interlinks

14.15.85 The revenue associated with an Offshore Interlink shall be divided entirely between those generators benefiting from the installation of that Offshore Interlink. Each of these Users will be responsible for their charge from their charging date, meaning that a proportion of the Offshore Interlink revenue may be socialised prior to all relevant Users being chargeable. The proportion associated with each User will be based on the Measure of Capacity to the MITS using the Offshore Interlink(s) in the event of a single circuit fault on the User's circuit from their offshore substation towards the shore, compared to the Measure of Capacity of the other Users.

Where:

An *Offshore Interlink* is a circuit which connects two offshore substations that are connected to a Single Common Substation. It is held in open standby until there is a transmission fault that limits the User's ability to export power to the Single Common Substation. In the Transport Model, they are to be modelled in open standby.

A Single Common Substation is a substation where:

- i. each substation that is connected by an Offshore Interlink is connected via at least one circuit without passing through another substation; and
- ii. all routes connecting each substation that is connected by an Offshore Interlink to the MITS pass through.

The Measure of Capacity to the MITS for each Offshore substation is the result of the following formula or zero whichever is larger. For the situation with only one interlink, all terms relating to C should be set to zero:

```
For Substation A:
min { Cap_{IAB}, ILF_A \times TEC_A - RCap_A, Cap_B - ILF_B \times TEC_B + min (Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation B:

min { ILF_B \times TEC_B - RCap_B, min (Cap_{IAB}, Cap_A - ILF_A \times TEC_A)

+ min ( Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation C:

min { Cap_{IBC}, ILF_{C} \times TEC_{C} - RCap_{C}, Cap_{B} - ILF_{B} \times TEC_{B} + min (Cap_{IAB}, Cap_{A} - ILF_{A} \times TEC_{A}) }

and
```

Cap _{IAB} = B	total capacity of the Offshore Interlink between substations A and
Cap _{IBC} = C	total capacity of the Offshore Interlink between substations B and
Cap _X =	total capacity of the circuit between offshore substation X and the Single Common Substation, where X is A, B or C.
RCap _x =	remaining capacity of the circuit between offshore substation X and the Single Common Substation in the event of a single cable fault, where X is A, B or C.
TEC _x =	the sum of the TEC for the Users connected, or contracted to connect, to offshore substation X, where X is A, B or C, where the value of TEC will be the maximum TEC that each User has held since the initial charging date, or is contracted to hold if prior to the initial charging date.

- ILF_x = Offshore Interlink Load Factor, where X is A, B or C. The Offshore Interlink Load Factor (ILF) is based on the Annual Load Factor (ALF). Until all the Users connected to a Single Common Substation have a station specific Annual Load Factor based on five years of data, the generic ALF for the fuel type will be used as the ILF for all stations. When all Users have a station specific ALF, the value of the ALF in the first such year will be used as the ILF in the calculation for all subsequent charging years.
- 14.15.86 The apportionment of revenue associated with Offshore Interlink(s) in 14.15.85 applies in situations where the Offshore Interlink was included in the design phase, or if one or more User(s) has already financially committed or been commissioned then only where that User(s) agrees to the Offshore Interlink.
- 14.15.87 Alternatively to the formula specified in 14.15.85 the proportion of the OFTO revenue associated with the Offshore Interlink allocated to each generator benefiting from the installation of an Offshore Interlink may be agreed between these Users. In this event:
- a. All relevant Users shall notify The Company of its respective proportions three months prior the OTSDUW asset transfer in the case of a generator build, or the charging date of the first generator, in the case of an OFTO build.
- b. All relevant Users may agree to vary the proportions notified under (a) by each writing to The Company three months prior to the charges being set for a given charging year.
- c. Once a set of proportions of the OFTO revenue associated with the Offshore Interlink has been provided to The Company, these will apply for the next and future charging years unless and until The Company is informed otherwise in accordance with (b) by all of the relevant Users.
- d. If all relevant Users are unable to reach agreement on the proportioning of the OFTO revenue associated with the Offshore Interlink they can raise a dispute. Any dispute between two or more Users as to the proportioning of such revenue shall be managed in accordance with CUSC Section 7 Paragraph 7.4.1 but the reference to the 'Electricity Arbitration Association' shall instead be to the 'Authority' and the Authority's determination of such dispute shall, without prejudice to apply for judicial review of any determination, be final and binding on the Users.

The Locational Onshore Security Factor

14.15.88 The locational onshore security factor is derived by running a secure DCLF ICRP transport study based on the same market background as used for Zoning in the DCLF ICRP transport model. This calculates the nodal marginal costs where peak <u>net</u> demand can be met despite the Security and Quality of Supply Standard contingencies (simulating single and double circuit faults) on the network. Essentially the calculation of secured nodal marginal costs is identical to the process outlined above except that the secure DCLF study additionally calculates a nodal marginal cost taking into account the requirement to be secure against a set of worse case contingencies in terms of maximum flow for each circuit.

- 14.15.89 The secured nodal cost differential is compared to that produced by the DCLF ICRP transport model and the resultant ratio of the two determines the locational security factor using the Least Squares Fit method. Further information may be obtained from the charging website¹.
- 14.15.90 The locational onshore security factor derived for 2010/11 is 1.8 and is based on an average from a number of studies conducted by The Company to account for future network developments. The security factor is reviewed for each price control period and fixed for the duration.

Local Security Factors

- 14.15.91 Local onshore security factors are generator specific and are applied to a generator's local onshore circuits. If the loss of any one of the local circuits prevents the export of power from the generator to the MITS then a local security factor of 1.0 is applied. For generation with circuit redundancy, a local security factor is applied that is equal to the locational security factor, currently 1.8.
- 14.15.92 Where a Transmission Owner has designed a local onshore circuit (or otherwise that circuit once built) to a capacity lower than the aggregated TEC of the generation using that circuit, then the local security factor of 1.0 will be multiplied by a Counter Correlation Factor (CCF) as described in the formula below;

$$CCF = \frac{D_{\min} + T_{cap}}{G_{cap}}$$

Where; D_{min} = minimum annual net demand (MW) supplied via that circuit in the absence of that generation using the circuit

 T_{cap} = transmission capacity built (MVA)

 G_{cap} = aggregated TEC of generation using that circuit

CCF cannot be greater than 1.0.

14.15.93 A specific offshore local security factor (LocalSF) will be calculated for each offshore connection using the following methodology:

$$LocalSF = \frac{NetworkExportCapacity}{\sum_{k} Gen_{k}}$$

Where:

 NetworkExportCapacity =
 the total export capacity of the network disregarding any Offshore Interlinks

 k
 =
 the generation connected to the offshore network

1 http://www.nationalgrid.com/uk/Electricity/Charges/

Page 21 of 63

- 14.15.94 The offshore security factor for single circuits with a single cable will be 1.0 and for multiple circuit connections will be capped at the locational onshore security factor, derived as 1.8 for 2010/11.
- 14.15.95 The offshore local security factor for configurations with one or more Offshore Interlinks is updated so that the offshore circuit tariff will include the proportion of revenue associated with the Offshore Interlink(s). The specific offshore local security factor for configurations involving an Offshore Interlink, which may be greater than 1.8, will be calculated for each offshore connection using the following methodology:

 $LocalSF = \frac{IRevOFTO \times NetworkExportCapacity}{CRevOFTO \times \sum_{k}Gen_{k}} + LocalSF_{initial}$

Where:

The appropriate proportion of the Offshore Interlink(s) revenue in £
associated with the offshore connection calculated in 14.15.85
The offshore circuit revenue in £ associated with the circuit(s) from the
offshore substation to the Single Common Substation.
Initial Local Security Factor calculated in 14.15.80 and 14.15.81
And other definitions as in 14.15.80.

Initial Transport Tariff

14.15.96 First an Initial Transport Tariff (ITT) must be calculated for both Peak Security and Year Round backgrounds. For Generation, the Peak Security zonal marginal km (ZMkm_{PS}), Year Round Not-Shared zonal marginal km (ZMkm_{YRNS}) and Year Round Shared zonal marginal km (ZMkm_{YRS}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT, Year Round Not-Shared ITT and Year Round Shared ITT respectively:

 $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$

Where ZMkm _{GiPS} ZMkm _{GiYRNS} charging zone	= = e	Peak Security Zonal Marginal km for each generation zone Year Round Not-Shared Zonal Marginal km for each generation	
ZMkm _{GiYRS}	=	Year Round Shared Zonal Marginal km for each generation	
charging zon	е		
EC	=	Expansion Constant	
LSF	=	Locational Security Factor	
	=	Peak Security Initial Transport Tariff (£/MW) for each generation	
zone			
ITT _{GiYRNS}	=	Year Round Not-Shared Initial Transport Tariff (£/MW) for each	
generation charging zone			
ITT _{GiYRS}	=	Year Round Shared Initial Transport Tariff (£/MW) for each	
generation ch	narging	zone.	

- CUSC v1.12
 - 14.15.97 Similarly, for demand the Peak Security zonal marginal km (ZMkm_{PS}) and Year Round zonal marginal km (ZMkm_{YR}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT and Year Round ITT respectively:

		$ZMkm_{DiPS} \times EC \times LSF = ITT_{DiPS}$
		$ZMkm_{DiYR} \times EC \times LSF = ITT_{DiYR}$
Where ZMkm _{DiF} ZMkm _{DiY}	0	Peak Security Zonal Marginal km for each demand zone Year Round Zonal Marginal km for each demand zone
ITT _{DiPS} ITT _{DiYR}	= =	Peak Security Initial Transport Tariff (\pounds /MW) for each demand one Year Round Initial Transport Tariff (\pounds /MW) for each demand zone
14.15.98	GSP group revenue re metered tria	tep is to multiply these ITTs by the expected metered triad <u>gross</u> demand and generation capacity to gain an estimate of the initial covery for both Peak Security and Year Round backgrounds. The ad <u>gross GSP group</u> demand and generation capacity are based on forecasts provided by Users and are confidential.
a.		ad gross GSP group demand is net demand for all GSP groups less exports for all GSP groups .
Where		

ITRR _G =	Initial Transport Revenue Recovery for generation
G _{Gi} =	Total forecast Generation for each generation zone (based
	on analysis of confidential User forecasts)
ITRR _D =	Initial Transport Revenue Recovery for gross GSP group
	demand
D _{Di} =	Total forecast Metered Triad gross GSP group Demand for
each	
	demand zone (based on analysis of confidential User
	forecasts).

In addition, the initial tariffs for generation are also multiplied by the **Peak Security flag** when calculating the initial revenue recovery component for the Peak Security background. Similarly, when calculating the initial revenue recovery for the Shared component of the Year Round background, the initial tariffs are multiplied by the **Annual Load Factor** (see below).

Peak Security (PS) Flag

14.15.99 The revenue from a specific generator due to the Peak Security locational tariff needs to be multiplied by the appropriate Peak Security (PS) flag. The PS flags indicate the extent to which a generation plant type contributes to the need for transmission network investment at peak demand conditions. The PS

Page 23 of 63

flag is derived from the contribution of differing generation sources to the demand security criterion as described in the Security Standard. In the event of a significant change to the demand security assumptions in the Security Standard, National Grid will review the use of the PS flag.

Generation Plant Type	PS flag
Intermittent	0
Other	1

Annual Load Factor (ALF)

- 14.15.100 The ALF for each individual Power Station is calculated using the relevant TEC (MW) and corresponding output data. Where output data is not available for a Power Station, including for new Power Stations and emerging Power Station technologies, generic data for the appropriate generation plant type will be used.
- 14.15.101 For a given charging year "t" the Power Station ALF will be based on information from the previous five charging years, calculated for each charging year as set out below.

$$ALF = \frac{\sum_{p=1}^{17520} GMWh_p}{\sum_{p=1}^{17520} TECp \times 0.5}$$

Where:

 $\mathsf{GMWh}_{\mathsf{p}}$ is the maximum of FPN or actual metered output in a Settlement Period related to the power station TEC (MW); and

 TEC_{p} is the TEC (MW) applicable to that Power Station for that Settlement Period including any STTEC and LDTEC, accounting for any trading of TEC.

- 14.15.102 The appropriate output (FPN or actual metered) figure is derived from **BM Unit** data available to National Grid and relates to the total TEC of the Power Station.
- 14.15.103 Once all five charging year ALFs have been calculated for the individual Power Station they are compared, and the highest and lowest figures are discarded. The final ALF, to be used for transmission charging purposes, is calculated as the average of the remaining three ALFs.
- 14.15.104 In the event that only four charging years of complete output (FPN or actual metered) data are available for an individual Power Station then the higher three charging years ALF would be used in the calculation of the final ALF. In the event that only three charging years of complete output (FPN or actual metered) data are available then these three charging years would be used.
- 14.15.105 Due to the aggregation of output (FPN or actual metered) data for dispersed generation (e.g. cascade hydro schemes), where a single generator BMU consists of geographically separated power stations, the ALF would be calculated based on the total output of the BMU and the overall TEC of those Power Stations.

Page 24 of 63

1

- 14.15.106 In the event that there are not three full charging years of an individual power station's output available, missing output (FPN or actual metered) data would be replaced by generic data for that generation plant type to ensure three charging years of information are available for the Power Station. The derivation of the generic data is described in paragraphs 14.15.111-14.15.114.
- 14.15.107 Users will receive draft ALFs before 25th December of the charging year (t-1) for the charging year (t) and will have a period of 15 working days from date of publishing to notify the Company of any errors. Failure to agree changes relating to errors will be treated as a charging dispute under the CUSC.
- 14.15.108 The ALFs used in the setting of final tariffs will be published in the annual Statement of Use of System Charges. Changes to ALFs after this publication will not result in changes to published tariffs (e.g. following dispute resolution).

Derivation of Generic ALFs

14.15.109 The generic ALF is derived from the average annual output of the ten most recently commissioned GB generation of a particular generation plant type that have at least five charging years' data, using an identical methodology to that used for the Power Station specific calculation described above. Where less than ten GB generators of a particular generation plant type exist, then data from all existing generators of that particular generation plant type will be used. Example generation plant type categories are listed below;

Fuel Type	
Biomass	
Coal	
Gas	
Hydro	
Nuclear (by reactor	
type)	
Oil & OCGTs	
Pumped Storage	
Onshore Wind	
Offshore Wind	
CHP	

- 14.15.110 The Company will keep these categories under review and update as necessary. Where within a category there is a significant locational difference consideration will be given to zonal generic factors. The factors used will be published in the Statement of Use of System Charges and will be reviewed annually.
- 14.15.111 If a User can demonstrate that the generation plant type of a Power Station has changed, consideration will be given to the use of relevant generic ALF information in the calculation of their charges until sufficient specific data is available.
- 14.15.112 For new and emerging generation plant types, where insufficient data is available to allow a generic ALF to be developed, The Company will use the best information available e.g. from manufactuers and data from use of similar technologies outside GB. The factor will be agreed with the relevant Generator. In the event of a disagreement the standard provisions for dispute in the CUSC will apply.

 F_{PS}

Where:

D_{Di}

ITRRDPS

n

=

=

=

TNUoS Embedded Export Tariff Embedded exports are exports measured on a half-hourly basis by 14.15.113 Metering Systems, in accordance with the BSC, that are not subject to generation TNUoS. The embedded export tariff will be applied to the metered Triad volumes 14.15.114 of Embedded Exports for each demand zone as follows: $EET_{Di} = ITT_{DiPS} + ITT_{DiYR} + EX$ Where Peak Security Initial Transport Tariff for the demand zone; $ITT_{DiPS} =$ ITT_{DiYR} = Year Round Initial Transport Tariff for the demand zone, and £45.33 in April 2016 prices; indexed each year by the RPI formula EX set out in 14.3.6. The Value of EET_{Di} will be floored at zero, so that EET_{Di} is always zero or positive. **Initial Revenue Recovery** 14.15,115 For the Peak Security background the initial tariff for generation is multiplied by the total forecast generation capacity and the PS flag to give the initial revenue recovery: $\sum_{G_i=1}^{n} (ITT_{G_i PS} \times G_{G_i} \times F_{PS}) = ITRR_{GPS}$ Where **ITRR**_{GPS} Peak Security Initial Transport Revenue Recovery for generation = G_{Gi} Total forecast Generation for each generation zone (based on _

analysis of confidential User forecasts)

Number of generation zones

Page 26 of 63

metered triad gross GSP group demand:

group demand

 $\sum_{D=1}^{14} (ITT_{DiPS} \times D_{Di}) = ITRR_{DPS}$

Peak Security flag appropriate to that generator type

The initial revenue recovery for gross GSP group demand for the Peak Security background is calculated by multiplying the initial tariff by the total forecast

Peak Security Initial Transport Revenue Recovery for gross GSP

Total forecast Metered Triad gross GSP group Demand for each

V1.12-01 April 2016

demand zone (based on analysis of confidential User forecasts)

14.15,<u>116</u> For the Year Round background, the initial tariff for generation is multiplied by the total forecast generation capacity whilst calculating Initial Recovery for Not-Shared component whereas the initial tariff for Shared component is multiplied by both, the total forecast generation capacity and the ALF to give the initial revenue recovery:

$$\sum_{G_{i=1}}^{n} (ITT_{G_{i}YRNS} \times G_{G_{i}}) = ITRR_{G_{YRNS}}$$
$$\sum_{G_{i=1}}^{n} (ITT_{G_{i}YRS} \times G_{G_{i}} \times ALF) = ITRR_{G_{YRS}}$$

Where:

ITRR _{GYRNS} generation	=	Year Round Not-Shared Initial Transport Revenue Recovery for
, and the second	=	Year Round Shared Initial Transport Revenue Recovery for
ALF	=	Annual Load Factor appropriate to that generator.

14.15,117 Similar to the Peak Security background, the initial revenue recovery for gross <u>GSP group</u> demand for the Year Round background is calculated by multiplying the initial tariff by the total forecast metered triad gross GSP group demand:

$$\sum_{Di=1}^{14} \left(ITT_{DiYR} \times D_{Di} \right) = ITRR_{DYR}$$

=

Where:

ITRR

Year Round Initial Transport Revenue Recovery for gross GSP group demand

14.15.118The initial revenue recovery for Embedded Exports is the Embedded Export Tariff multiplied by the total forecast volume of Embedded Export at triad:

$$ITRR_{EE} = \sum_{Di=1}^{14} (EET_{Di} \times EEV_{Di})$$

<u>Where</u>

ITTR _{EE}	= Initial Revenue impact for Embedded Exports
EEV _{Di}	= Forecast Embedded Export metered volume at Triad
<u>(MW)</u>	

For the avoidance of doubt, the initial revenue recovery for affected embedded exports can be positive or negative.

Page 27 of 63

V1.12-01 April 2016

Deleted: 115

I

I

1

Deriving the Final Local Tariff (£/kW)

Local Circuit Tariff

14.15,119 Generation with a local circuit tariff is calculated by multiplying the Year Round nodal marginal km along the local circuit by the expansion constant and the relevant local security factor (whether onshore or offshore) and summing across local circuits to give the local circuit tariff:

$$\sum_{k} \frac{NLMkm_{Gj}^{L} \times EC \times LocalSF_{k}}{1000} = CLT_{Gi}$$

Where		
k	=	Local circuit <i>k</i> for generator
NLMkm _{Gj} ^L	=	Year Round Nodal marginal km along local circuit k using local
		circuit expansion factor.
EC	=	Expansion Constant
LocalSF _k	=	Local Security Factor for circuit k
CLT _{Gi}	=	Circuit Local Tariff (£/kW)

Onshore Local Substation Tariff

- 14.15,120 All chargeable generation is subject to the local substation tariff component which is determined by assessing the generation substation type which is the substation at the connection charging boundary, against three cost determining factors:
 - (a) HV connection voltage the voltage at the boundary between the User's connection assets and the transmission system;
 - (b) Sum of TEC at the generation substation the combined TEC of all generation at the connecting substation; and
 - (c) The level of redundancy at the generation substation single busbar / single switch mesh connections are examples of no redundancy connections, whereas examples of connections with redundancy include double busbar and mesh sub station designs.
- 14.15,<u>121</u> Using the above factors, the corresponding £/kW tariffs (quoted to 3dp) that will be applied during 2010/11 are:

Substation	Substation Voltage (a)					
Rating (b)	Type (c)	132kV	275kV	400kV		
<1320MW	No redundancy	0.133	0.081	0.065		
<1320MW	Redundancy	0.301	0.192	0.155		
>=1320MW	No redundancy	n/a	0.257	0.208		
>=1320MW	Redundancy	n/a	0.417	0.336		

14.15,<u>122</u> The process for calculating Local Substation Tariffs will be carried out for the first year of the price control and will subsequently be indexed by RPI for each subsequent year of the price control period.

Deleted: 116

Deleted: 117

Deleted: 118

I

I

14.15,123 The effective Local Tariff (£/kW) is calculated as the sum of the circuit and substation onshore and/or offshore components:

$$ELT_{Gi} = CLT_{Gi} + SLT_{Gi}$$

Where

ELT _{Gi} SLT _{Gi}	=	Effective Local Tariff (£/kW) Substation Local Tariff (£/kW)

14.15,<u>124</u> Where tariffs do not change mid way through a charging year, final local tariffs will be the same as the effective tariffs:

14.15,125 Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$LT_{Gi} = \frac{12 \times \left(ELT_{Gi} \times \sum_{Gi=1}^{21} G_{Gi} - FLL_{Gi}\right)}{b \times \sum_{Gi=1}^{21} G_{Gi}} \quad \text{and} \quad FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{21} G_{Di}}$$

Where:

b = number of months the revised tariff is applicable for

FLL = Forecast local liability incurred over the period that the original tariff is applicable for

14.15,<u>126</u> For the purposes of charge setting, the total local charge revenue is calculated by:

$$\text{LCRR}_{\text{G}} = \sum_{j=Gi} \text{LT}_{\text{Gi}} * G_j$$

Where LCRR_G G_i

 Local Charge Revenue Recovery
 Forecast chargeable Generation or Transmission Entry Capacity in kW (as applicable) for each generator (based on <u>analysis of</u> confidential information received from Users)

Offshore substation local tariff

14.15,<u>127</u> All offshore chargeable generation is subject to an offshore substation tariff. The offshore substation tariff shall be the sum of transformer, switchgear and platform components.

14.15,128 Each tariff component, expressed in £/kW, shall be the ratio of the Offshore Transmission Owner revenue (£) and rating associated with the transformers, switchgear or platform (kW) at each offshore substation. The Offshore Transmission Owner revenue of each tariff component shall include that associated with asset spares. In the case of the platform component, the relevant rating shall be the lower of the transformer or switchgear ratings. As with the offshore circuit expansion factors, the Offshore Transmission Owner revenue associated with each tariff component shall be averaged over the remaining years of the NETSO price control.

Page 29 of 63

V1.12-01 April 2016

Deleted: 121

Deleted: 120

Deleted: 122

Deleted: 123

Deleted: 125

- 14.15,129 Offshore Transmission Owner revenue associated with interest during construction and project development overheads will be attributed to the relevant asset category with which it is associated. If these or any other costs included in the Offshore Transmission Owner revenue are not readily attributable to a given asset category, they will be pro-rated across the various asset categories based on their relative cost.
- 14.15,130 For 2010/11 a discount of £0.345590/kW shall be provided to the offshore substation tariff to reflect the average cost of civil engineering for onshore substations. This will be inflated by RPI each year and reviewed every price control period.
- 14.15,131 Offshore substation tariffs shall be reviewed at the start of every onshore price control period. For each subsequent year within the price control period, these shall be inflated in the same manner as the associated Offshore Transmission Owner Revenue.
 - 14.15,132 The revenue from the offshore substation local tariff is calculated by:

$$SLTR = \sum_{\substack{All offshore \\ substatios}} \left(SLT_k \times \sum_k Gen_k \right)$$

Where:		
SLT _k	=	the offshore substation tariff for substation k
Gen _k	=	the generation connected to offshore substation k

The Residual Tariff

14.15,133 The total revenue to be recovered through TNUoS charges is determined each year with reference to the Transmission Licensees' Price Control formulas less the costs expected to be recovered through Pre-Vesting connection charges. Hence in any given year t, a target revenue figure for TNUoS charges (TRR_i) is set after adjusting for any under or over recovery for and including, the small generators discount is as follows:

$$TRR_t = R_t - PVC_t - SG_{t-1}$$

Where

- TRR_t = TNUoS Revenue Recovery target for year t
- R_t = Forecast Revenue allowed under The Company's RPI-X Price Control Formula for year t (this term includes a number of adjustments, including for over/under recovery from the previous year). For further information, refer to Special Condition D2 of The Company's Transmission Licence. PVC_t = Forecast Revenue from Pre-Vesting connection charges for year t
- SG_{t-1} = The proportion of the under/over recovery included within R_t which relates to the operation of statement C13 of the The Company Transmission Licence. Should the operation of statement C13 result in an under recovery in year t 1, the SG figure will be positive and vice versa for an over recovery.
- 14.15,134 In normal circumstances, the revenue forecast to be recovered from the initial transport tariffs will not equate to the total revenue target. This is due to a number of factors. For example, the transport model assumes, for simplicity, smooth incremental transmission investments can be made. In reality, transmission investment can only be made in discrete 'lumps'. The transmission system has been planned and developed over a long period of

Page 30 of 63

V1.12-01 April 2016

Deleted: 126

Deleted: 127

Deleted: 128

Deleted: 129

Deleted: 130

time. Forecasts and assessments used for planning purposes will not have been borne out precisely by events and therefore some distinction between an optimal system for one year and the actual system can be expected.

14.15,135 As a result of the factors above, in order to ensure adequate revenue recovery, a constant non-locational **Residual Tariff** for generation and demand is calculated, which includes infrastructure substation asset costs. It is added to the initial transport tariffs for both Peak Security and Year Round backgrounds so that the correct generation / demand revenue split is maintained and the total revenue recovery is achieved.

$$RT_{D} = \frac{(p \times TRR) - ITRR_{DPS} - ITRR_{DYR} - ITRR_{EE}}{\sum_{Di=1}^{14} D_{Di}}$$

$$RT_{G} = \frac{\left[(1-p) \times TRR\right] - ITRR_{GPS} - ITRR_{GYRNS} - ITRR_{GYRS} - LCRR_{G}}{\sum_{Gi=1}^{n} G_{Gi}}$$

Where

RT

Residual Tariff (£/MW)

Proportion of revenue to be recovered from demand

Final £/kW Tariff

р

14.15,136 The effective Transmission Network Use of System tariff (TNUoS) for generation and gross demand can now be calculated as the sum of the initial transport wider tariffs for Peak Security and Year Round backgrounds, the non-locational residual tariff and the local tariff:

$$ET_{Gi} = \frac{ITT_{GiPS} + ITT_{GiYRNS} + ITT_{GiYRS} + RT_{G}}{1000} + LT_{Gi}$$
$$= ET_{Di} = \frac{ITT_{DiPS} + ITT_{DiYR} + RT_{D}}{1000}$$

Where

ET_{Gi} = Effective Generation TNUoS Tariff expressed in £/kW (ET_{Gi} would only be applicable to a Power Station with a PS flag of 1 and ALF of 1; in all other circumstances ITT_{GiPS}, ITT_{GiPRNS} and ITT_{GiPRS} will be applied using Power Station specific data)

The effective Transmission Network Use of System tariff (TNUoS) for affected embedded exports and grandfathered embedded exports can now be calculated by expressing the embedded export tariff in £/kW values:

$$ET_{EEi} = \frac{EET_D}{1000}$$

Where **Where**

ET_{EEi} = Effective Embedded Export TNUoS Tariff expressed in £/kW

Page 31 of 63

Deleted: ¶ $(p \times TRR)$ $RT_{D} =$ Ī

Deleted: 132

For the purposes of the annual Statement of Use of System Charges ET_{Gi} will be published as ITT_{GIPS} ; ITT_{GIYRS} , ITT_{GIYRS} , RT_G and LT_{Gi}

14.15,137 Where tariffs do not change mid way through a charging year, final demand and generation tariffs will be the same as the effective tariffs.

 $FT_{Gi} = ET_{Gi}$ $FT_{Di} = ET_{Di}$ $F\overline{T_{EEAi}} = ET_{EEi}$

14.15,<u>138</u> Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$FT_{Gi} = \frac{12 \times \left(ET_{Gi} \times \sum_{Gi=1}^{20} G_{Gi} - FL_{Gi} \right)}{b \times \sum_{Gi=1}^{27} G_{Gi}}$$

$$FT_{EEi} = \frac{12 \times (ET_{EEi} \times \sum_{Di=1}^{14} EET_{Di} - FL_{Di})}{b \times \sum_{Di=1}^{14} EET_{Di}} \text{ and } FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di} \right)}{b \times \sum_{Di=1}^{14} EET_{Di}}$$

Where:

b = number of months the revised tariff is applicable for

FL = Forecast liability incurred over the period that the original tariff is applicable for

Note: The ET_{Gi} element used in the formula above will be based on an individual Power Stations PS flag and ALF for Power Station G_{Gi} , aggregated to ensure overall correct revenue recovery.

14.15.139 If the final gross_demand TNUoS Tariff results in a negative number then this is collared to £0/kW with the resultant non-recovered revenue smeared over the remaining demand zones:

If $FT_{Di} < 0$, then i = 1 to z

Therefore,

 $NRRT_{D} = \frac{\sum_{i=1}^{z} \left(FT_{Di} \times D_{Di}\right)}{\sum_{i=-i+1}^{14} D_{Di}}$

For i=1 to z: $RFT_{Di} = 0$

For *i*=z+1 to 14:
$$RFT_{Di} = FT_{Di} + NRRT_D$$

Where

Page 32 of 63

V1.12-01 April 2016

Deleted: 40

Deleted: 134

CUS	SC v1.12		
	$NRRT_{D} = Non Recovered Revenue Tariff (\pounds/kW)$ RFT _{Di} = Revised Final Tariff (\pounds/kW)		
	14.15,140 The tariffs applicable for any particular year are detailed in The Company's Statement of Use of System Charges, which is available from the Charging website. Archived tariff information may also be obtained from the Charging website.	Deleted: 137	
	14.15, <u>141</u> The zonal maps referenced in The Company's Statement of Use of System Charges and available on the Charging website contain detailed information for the charging year in question of which Grid Supply Points fall into which TNUoS zones.	Deleted: 138	
	14.15,142 New Grid Supply Points will be classified into zones on the following basis:	Deleted: 139	
	• For demand zones, according to the GSP Group to which the Grid Supply Point is allocated for energy market settlement purposes.		
	• For generation zones, with reference to the geographic proximity to existing zones and, where close to a boundary between existing zones, with reference to the marginal costs arising from transport model studies. The GSP will then be allocated to the zone, which contains the most similar marginal costs.		
1	14.15,143 The Company has available, upon request, the DCLF ICRP transport model, tariff model template and data necessary to run the model, consisting of nodal values of generation and demand connection points to the NETS. The model and data will enable the basic nodal charges to be determined and will also allow sensitivity analysis concerning alternative developments of generation and demand to be undertaken. The model is available from the Charging Team and whilst it is free of charge, it is provided under licence to restrict its distribution and commercial use.	Deleted: 140	
ļ	14.15,144 The Company will be pleased to run specific sensitivity studies for Users under a separate study contract in line with the fees set out in the Statement of Use of System Charges . Please contact the Charging Team .	Deleted: 141	
I	14.15,145 The factors which will affect the level of TNUoS charges from year to year include-;	Deleted: 142	
	 the forecast level of peak demand on the system the Price Control formula (including the effect of any under/over recovery from the previous year), the expansion constant, the locational security factor, the PS flag the ALF of a generator changes in the transmission network HVDC circuit impedance calculation changes in the pattern of generation capacity and demand. changes in the pattern of embedded exports 		
	14.15,146 In accordance with Standard Licence Condition C13, generation directly connected to the NETS 132kV transmission network which would normally be subject to generation TNUoS charges but would not, on the basis of generating capacity, be liable for charges if it were connected to a licensed distribution network qualifies for a reduction in transmission charges by a designated sum,	Deleted: 143	

Page 33 of 63

1

determined by the Authority. Any shortfall in recovery will result in a unit amount increase in <u>gross</u> demand charges to compensate for the deficit. Further information is provided in the Statement of the Use of System Charges.

Stability & Predictability of TNUoS tariffs

14.15,147 A number of provisions are included within the methodology to promote the stability and predictability of TNUoS tariffs. These are described in 14.29.

14.16 Derivation of the Transmission Network Use of System Energy Consumption Tariff and Short Term Capacity Tariffs

- 14.16.1 For the purposes of this section, Lead Parties of Balancing Mechanism (BM) Units that are liable for Transmission Network Use of System Demand Charges are termed Suppliers.
- 14.16.2 Following calculation of the Transmission Network Use of System £/kW Gross Demand Tariff (as outlined in Chapter 2: Derivation of the TNUoS Tariff) for each GSP Group is calculated as follows:

$$p/kWh Tariff = (NHHD_F * £/kW Tariff - FL_G) *100$$

NHHC_G

Where:

 \pounds/kW Tariff = The \pounds/kW Effective <u>Gross</u> Demand Tariff (\pounds/kW), as calculated previously, for the GSP Group concerned.

 \mathbf{NHHD}_{F} = The Company's forecast of Suppliers' non-half-hourly metered Triad Demand (kW) for the GSP Group concerned. The forecast is based on historical data.

 FL_{G} = Forecast Liability incurred for the GSP Group concerned.

 $\rm NHHC_{G}$ = The Company's forecast of GSP Group non-half-hourly metered total energy consumption (kWh) for the period 16:00 hrs to 19:00hrs inclusive (i.e. settlement periods 33 to 38) inclusive over the period the tariff is applicable for the GSP Group concerned.

Short Term Transmission Entry Capacity (STTEC) Tariff

14.16.3 The Short Term Transmission Entry Capacity (STTEC) tariff for positive zones is derived from the Effective Tariff (ET_{Gi}) annual TNUoS £/kW tariffs (14.15.112). If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the STTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (i.e. over the whole financial year, not just the period that the STTEC is applicable for). STTECs will not be reconciled following a mid year charge change. The premium associated with the flexible product is associated with the analysis that 90% of the annual charge is linked to the system peak. The system peak is likely to occur in the period of November to February inclusive (120 days, irrespective of leap years). The calculation for positive generation zones is as follows:

$$\frac{FT_{Gi} \times 0.9 \times STTEC \ Period}{120} = STTEC \ tariff \ (\pounds/kW/period)$$

Where:

FT	=	Final annual TNUoS Tariff expressed in £/kW
Gi	=	Generation zone
STTEC Period	=	A period applied for in days as defined in the CUSC

Page 35 of 63

- 14.16.4 For the avoidance of doubt, the charge calculated under 14.16.3 above will represent each single period application for STTEC. Requests for multiple /STTEC periods will result in each STTEC period being calculated and invoiced separately.
- 14.16.5 The STTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.

Limited Duration Transmission Entry Capacity (LDTEC) Tariffs

14.16.6 The Limited Duration Transmission Entry Capacity (LDTEC) tariff for positive zones is derived from the equivalent zonal STTEC tariff for up to the initial 17 weeks of LDTEC in a given charging year (whether consecutive or not). For the remaining weeks of the year, the LDTEC tariff is set to collect the balance of the annual TNUoS liability over the maximum duration of LDTEC that can be granted in a single application. If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the LDTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (ie over the whole financial year, not just the period that the STTEC is applicable for). LDTECs will not be reconciled following a mid year charge change:

Initial 17 weeks (high rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.9 \times 7}{120}$$

Remaining weeks (low rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.1075 \times 7}{316 - 120} \times (1 + P)$$

where FT is the final annual TNUoS tariff expressed in £/kW; G_i is the generation TNUoS zone; and P is the premium in % above the annual equivalent TNUoS charge as determined by The Company, which shall have the value 0.

- 14.16.7 The LDTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.
- 14.16.8 The tariffs applicable for any particular year are detailed in The Company's **Statement of Use of System Charges** which is available from the **Charging website**. Historical tariffs are also available on the **Charging website**.

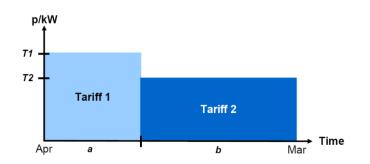
14.17 Demand Charges

Parties Liable for Demand Charges

- 14.17.1 Demand charges are subdivided into charges for gross demand, energy and embedded export. The following parties shall be liable for some or all of the categories of demand charges:
 - The Lead Party of a Supplier BM Unit;
 - Power Stations with a Bilateral Connection Agreement;
 - Parties with a Bilateral Embedded Generation Agreement
- 14.17.2 Classification of parties for charging purposes, section 14.26, provides an illustration of how a party is classified in the context of Use of System charging and refers to the paragraphs most pertinent to each party.

Basis of Gross Demand Charges

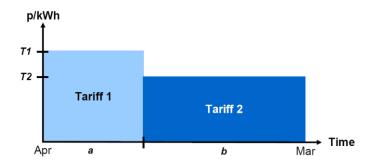
app


app

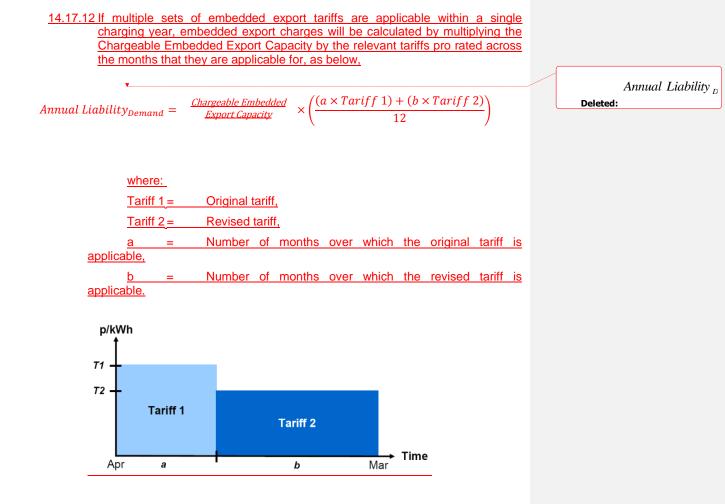
- 14.17.3 <u>Gross d</u>emand charges are based on a de-<u>minimis</u> £0/kW charge for Half Hourly and £0/kWh for Non Half Hourly metered demand.
 - 14.17.4 Chargeable <u>Gross</u> Demand Capacity is the value of Triad <u>gross</u> demand (kW). Chargeable Energy Capacity is the energy consumption (kWh). The definition of both these terms is set out below.
 - 14.17.5 If there is a single set of <u>gross</u> demand tariffs within a charging year, the Chargeable <u>Gross</u> Demand Capacity is multiplied by the relevant <u>gross</u> demand tariff, for the calculation of <u>gross</u> demand charges.
 - 14.17.6 If there is a single set of energy tariffs within a charging year, the Chargeable Energy Capacity is multiplied by the relevant energy consumption tariff for the calculation of energy charges..
 - 14.17.7 If multiple sets of <u>gross</u> demand tariffs are applicable within a single charging year, <u>gross</u> demand charges will be calculated by multiplying the Chargeable <u>Gross</u> Demand Capacity by the relevant tariffs pro rated across the months that they are applicable for, as below,

Annı	ual Liabi	$lity_{Demand} = \frac{Ch}{De}$	e <u>arge</u> eman	able Gross d Capacity	$\times \left(\frac{(a)}{a}\right)$	<tariff< th=""><th>$\frac{1) + (b)}{12}$</th><th>×Tariff2</th><th><u>2)</u>)</th><th></th></tariff<>	$\frac{1) + (b)}{12}$	×Tariff2	<u>2)</u>)	
wh	ere:						_			
Tai	riff 1 =	Original t	ariff	,						
Tai	riff 2 =	Revised	tarif	f,						
a licable	,	Number	of	months	over	which	the	original	tariff	is
b licable.	=	Number	of	months	over	which	the	revised	tariff	is

Deleted: minimus


Deleted: Annual Liability D

14.17.8 If multiple sets of energy tariffs are applicable within a single charging year, energy charges will be calculated by multiplying relevant Tariffs by the Chargeable Energy Capacity over the period that that the tariffs are applicable for and summing over the year.


Annual Liability $_{Energy} = Tariff \ 1 \times \sum_{TI_s}^{TI_E} Chargeable Energy Capacity + Tariff \ 2 \times \sum_{TZ_s}^{TI_E} Chargeable Energy Capacity$

Where: T1s Start date for the period for which the original tariff is = applicable, End date for the period for which the original tariff is T1_E applicable, Start date for the period for which the revised tariff is T2s _ applicable, End date for the period for which the revised tariff is T2_E = applicable.

Basis of Embedded Export Charges

- 14.17.9 Embedded export charges are based on a £/kW charge for Half Hourly metered embedded export.
- <u>14.17.10 Chargeable Embedded Export Capacity is the value of Embedded Export at</u> <u>Triad (kW). The definition of this term is set out below.</u>
- 14.17.11 If there is a single set of embedded export tariffs within a charging year, the Chargeable Embedded Export Capacity is multiplied by the relevant embedded export tariff, for the calculation of embedded export charges.

Supplier BM Unit

14.17,<u>13</u> A Supplier BM Unit charges will be the sum of its energy, <u>gross_demand_and</u> <u>embedded export</u> liabilities where:

- The Chargeable <u>Gross</u> Demand Capacity will be the average of the Supplier BM Unit's half-hourly metered <u>gross</u> demand during the Triad (and the £/kW tariff),
- The Chargeable Embedded Export Capacity will be the average of the Supplier BM Unit's half-hourly metered embedded export during the Triad (and the £/kW tariff), and
- The Chargeable Energy Capacity will be the Supplier BM Unit's non halfhourly metered energy consumption over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year (and the p/kWh tariff).

Power Stations with a Bilateral Connection Agreement and Licensable Generation with a Bilateral Embedded Generation Agreement

Page 39 of 63

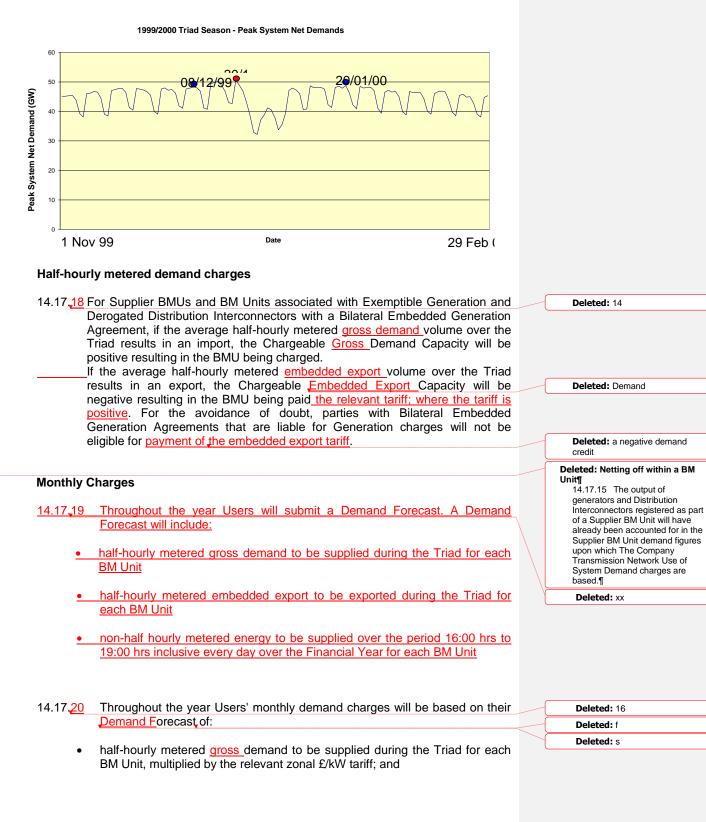
V1.12-01 April 2016

USC v1.12	
14.17, <u>14</u> The Chargeable <u>Gross</u> Demand Capacity for a Power Station with a Bilateral Connection Agreement or Licensable Generation with a Bilateral Embedded Generation Agreement will be based on the average of the <u>gross</u> import over each Triad leg of the BM Units associated with the Power Station (in Appendix C of its Bilateral Connection Agreement or Bilateral Embedded Generation Agreement, including metered additional load) during the Triad.	1
Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement	
14.17, <u>15,The demand charges for Exemptible Generation and Derogated Distribution</u> Interconnector with a Bilateral Embedded Generation Agreement will be the sum of its gross demand and embedded export liabilities where:	
 The Chargeable <u>Gross</u> Demand Capacity for Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement will be based on the average of the metered <u>gross demand</u> of 	
each BM Unit specified in Appendix C of the Bilateral Embedded Generation Agreement during the Triad.	
 The Chargeable Embedded Export Capacity for Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement will be based on the average of the metered embedded export of each BM Unit specified in Appendix C of the Bilateral Embedded Generation Agreement during the Triad. 	
mall Generators Tariffs	
14.17, <u>16</u> In accordance with Standard Licence Condition C13, any under recovery from the MAR arising from the small generators discount will result in a unit amount of increase to all GB gross_demand tariffs.	
he Triad	
14.17,17 The Triad is used as a short hand way to describe the three settlement periods of highest transmission system demand within a Financial Year, namely the half hour settlement period of system peak <u>net</u> demand and the two half hour settlement periods of next highest <u>net</u> demand, which are separated from the	

system peak<u>net</u> demand and from each other by at least 10 Clear Days, between November and February of the Financial Year inclusive. Exports on directly connected Interconnectors and Interconnectors capable of exporting more than 100MW to the Total System shall be excluded when determining the

system peak net demand. An illustration is shown below.

I


Deleted: 10

Deleted: net

Deleted: 11 Deleted: An

Deleted: volume

Deleted: 12

- half-hourly metered embedded export to be supplied during the Triad for each BM Unit, multiplied by the relevant zonal £/kW tariff; and
- non-half hourly metered energy to be supplied over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year for each BM Unit, multiplied by the relevant zonal p/kWh tariff

Users' annual TNUoS demand charges are based on these forecasts and are split evenly over the 12 months of the year. Users have the opportunity to vary their demand forecasts on a quarterly basis over the course of the year, with the demand forecast requested in February relating to the next Financial Year. Users will be notified of the timescales and process for each of the quarterly updates. The Company will revise the monthly Transmission Network Use of System demand charges by calculating the annual charge based on the new forecast, subtracting the amount paid to date, and splitting the remainder evenly over the remaining months. For the avoidance of doubt, only positive demand forecasts (i.e. representing <u>a net</u> import from the system) will be <u>used in the calculation of charges</u>.

Demand forecasts for a User will be considered positive where:

- The sum of the gross demand forecast and embedded export forecast is positive; and
- The non-half hourly metered energy forecast is positive.

14.17.21 Users should submit reasonable forecasts of gross demand, embedded export and energy in accordance with the CUSC. The Company shall use the following methodology to derive a forecast to be used in determining whether a User's forecast is reasonable, in accordance with the CUSC, and this will be used as a replacement forecast if the User's total forecast is deemed unreasonable. The Company will, at all times, use the latest available Settlement data.

For existing Users:

- i) The User's Triad <u>gross</u> demand<u>and embedded export</u> for the preceding Financial Year will be used where User settlement data is available and where The Company calculates its forecast before the Financial Year. Otherwise, the User's average weekday settlement period 35 half-hourly metered (HH) <u>gross</u> demand <u>and embedded export</u> in the Financial Year to date is compared to the equivalent average <u>gross</u> demand<u>and</u> <u>embedded export</u> for the corresponding days in the preceding year. The percentage difference is then applied to the User's HH <u>gross</u> demand<u>and</u> <u>embedded export</u> at Triad in the preceding Financial Year to derive a forecast of the User's HH <u>gross</u> demand <u>and embedded export</u> at Triad for this Financial Year.
- ii) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day in the Financial Year to date is compared to the equivalent energy consumption over the corresponding days in the preceding year. The percentage difference is then applied to the User's total NHH energy consumption in the preceding Financial Year to derive a forecast of the User's NHH energy consumption for this Financial Year.

For new Users who have completed a Use of System Supply Confirmation Notice in the current Financial Year:

Page 42 of 63

V1.12-01 April 2016

Deleted: accepted

1

iii) The User's average weekday settlement period 35 half-hourly metered (HH) gross demand and embedded export over the last complete month for which The Company has settlement data is calculated. Total system average HH gross demand and embedded export for weekday settlement period 35 for the corresponding month in the previous year is compared to total system HH_gross demand and embedded export at Triad in that year and a percentage difference is calculated. This percentage is then applied to the User's average HH gross demand and embedded export for weekday settlement period 35 over the last month to derive a forecast of the User's HH gross demand and embedded export at Triad for this Financial Year.

- iv) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day over the last complete month for which The Company has settlement data is noted. Total system NHH energy consumption over the corresponding month in the previous year is compared to total system NHH energy consumption over the remaining months of that Financial Year and a percentage difference is calculated. This percentage is then applied to the User's NHH energy consumption over the month described above, and all NHH energy consumption in previous months is added, in order to derive a forecast of the User's NHH metered energy consumption for this Financial Year.
- 14.17.22 14.28 Determination of The Company's Forecast for Demand Charge Purposes illustrates how the demand forecast will be calculated by The Company.

Reconciliation of Demand Charges

14.17,23 The reconciliation process is set out in the CUSC. The demand reconciliation process compares the monthly charges paid by Users against actual outturn charges. Due to the Settlements process, reconciliation of demand charges is carried out in two stages; initial reconciliation and final reconciliation.

Initial Reconciliation of demand charges

14.17,24 The initial reconciliation process compares Users' demand forecasts and corresponding monthly charges paid over the year against actual outturn data (using latest Settlement data available at the time) and corresponding charges. Initial reconciliation is carried out in two parts; Initial Reconciliation Part 1 deals with the reconciliation of half-hourly metered demand charges and Initial Reconciliation Part 2 deals with the reconciliation of non-half-hourly metered demand charges.

Initial Reconciliation Part 1– Half-hourly metered demand

- 14.17.25 The Company will identify the periods forming the Triad once it has received Central Volume Allocation data from the Settlement Administration Agent for all days up to and including the last day of February. Once The Company has notified Users of the periods forming the Triad they will not be changed even if disputes are subsequently resolved which would change the periods forming the Triad.
- 14.17,<u>26</u> Initial outturn charges for half-hourly metered <u>gross</u> demand will be determined using the latest available data of actual average Triad <u>gross</u> demand (kW) multiplied by the zonal <u>gross</u> demand tariff(s) (£/kW) applicable to the months

Page 43 of 63

V1.12-01 April 2016

Deleted: 18

Deleted: 19

Deleted: 20

Deleted: 1

Сι

l

I

I

l

I

SC v1.12			
r	concerned for each zone for that Financial Year. These actual values econciled against the monthly charges paid in respect of half-hold demand.		
<u>c</u> <u>e</u> <u>t</u> <u>\</u>	nitial outturn charges for half-hourly metered embedded expon determined using the latest available data of actual average Triad export (kW) multiplied by the zonal embedded export tariff(s) (£/kW) o the months concerned for each zone for that Financial Year. The values are then reconciled against the monthly charges paid in respe- nourly embedded exports.	embedded applicable ese actual	Deleted: xx
Initial Rec	conciliation Part 2 – Non-half-hourly metered demand		
t ł r	Actual payments for non-half-hourly metered demand will be determine the latest available actual energy consumption data (kWh) for the per- bins to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) over multiplied by the energy consumption tariff(s) (p/kWh) applicable to the concerned for each zone. These actual values are then reconciled a monthly charges paid in respect of non-half-hourly energy consumption	riod 16:00 the year ne months ligainst the	Deleted: 23
Final Rec	onciliation of demand charges		
t	The final reconciliation process compares Users' charges (as calculation he initial reconciliation process using the latest available data) ago tutturn demand charges (based on final settlement data <u>of half-ho</u> demand, embedded exports and non-half-hourly energy consumption	ainst final urly gross	Deleted: 24
	Final actual charges will be determined using the final demand rec data taken from the Final Reconciliation Settlement Run or Reconciliation Volume Allocation Run.		Deleted: 25
Reconcili	ation of manifest errors		
t	n the event that a manifest error, or multiple errors in the calculation ariffs results in a material discrepancy in aUsers TNUoS econciliation process for all Users qualifying under Section 14.17	tariff, the	 Deleted: 26
a	accordance with Sections 14.17.24 to 14.17.30. The reconciliation	n process	Deleted: 20
r	shall be carried out using recalculated TNUoS tariffs. Wh econciliation is not practicable, a post-year reconciliation will be und he form of a one-off payment.	ere such ertaken in	Deleted: 25
14.17. <mark>32</mark> /	A manifest error shall be defined as any of the following:		Deleted: 27
	 a) an error in the transfer of relevant data between the Tra Licensees or Distribution Network Operators; b) an error in the population of the Transport Model with relevant c) an error in the function of the Transport Model; or d) an error in the inputs or function of the Tariff Model. 		
	A manifest error shall be considered material in the event that such a he net effect of multiple errors, has an impact of the lesser of either:	n error or,	Deleted: 28
	a) an error in a User's TNUoS tariff of at least +/-£0.50/kW; or		
	Page 44 of 63 V1.12-0	01 April 2016	

b) an error in a User's TNUoS tariff which results in an error in the annual TNUoS charge of a User in excess of +/-£250,000.

14.17,<u>34</u> A manifest error shall only be reconciled if it has been identified within the charging year for which the error has an effect. Errors identified outside of this period will not be eligible for reconciliation retrospectively.

Implementation of P272

- 14.17,<u>35</u>.1 BSC modification P272 requires Suppliers to move Profile Classes 5-8 to Measurement Class E - G (i.e. moving from NHH to HH settlement) by April 2016. The majority of these meters are expected to transfer during the preceding Charging Years up until the implementation date of P272 and some meters will have been transferred before the start of 1ST April 2015. A change from NHH to HH within a Charging Year would normally result in Suppliers being liable for TNUoS for part of the year as NHH and also being subject to HH charging. This section describes how the Company will treat this situation in the transition to P272 implementation for the purposes of TNUoS charging; and the forecasts that Suppliers should provide to the Company.
- 14.17,35.2 Notwithstanding 14.17,13, for each Charging Year which begins after 31 March 2015 and prior to implementation of BSC Modification P272, all demand associated with meters that are in NHH Profile Classes 5 to 8 at the start of that charging year as well as all meters in Measurement Classes E G will be treated as Chargeable Energy Capacity (NHH) for the purposes of TNUoS charging for the full Charging Year unless 14.17,35.3 applies.
 - 14.17,35.3 Where prior to 1st April 2015 a Profile Class meter has already transferred to Measurement Class settlement (HH) the associated Supplier may opt to treat the demand volume as Chargeable Demand Capacity (HH) for the purposes of TNUoS charging up until implementation of P272, subject to meeting conditions in 14.17,35.6. If the associated Supplier does not opt to treat the demand volume as Demand Capacity (HH) it will be treated by default as Chargeable Energy Capacity (NHH) for each full Charging Year up until implementation of P272.
 - 14.17,35.4 The Company will calculate the Chargeable Energy Capacity associated with meters that have transferred to HH settlement but are still treated as NHH for the purposes of TNUoS charging from Settlement data provided directly from Elexon i.e. Suppliers need not Supply any additional information if they accept this default position.
- 14.17,35.5 The forecasts that Suppliers submit to the Company under CUSC 3.10, 3.11 and 3.12 for the purpose of TNUoS monthly billing referred to in 14.17,20 and 14.17,21 for both Chargeable Demand Capacity and Chargeable Energy Capacity should reflect this position i.e. volumes associated those Metering Systems that have transferred from a Profile Class to a Measurement Class in the BSC (NHH to HH settlement) but are to be treated as NHH for the purposes of TNUoS charging should be included in the forecast of Chargeable Energy Capacity and not Chargeable Demand Capacity, unless 14.17,35.3 applies.
 - 14.17,<u>35</u>.6 Where a Supplier wishes for Metering Systems that have transferred from Profile Class to Measurement Class in the BSC (NHH to HH settlement) prior to 1st April 2015, to be treated as Chargeable Demand Capacity (HH/

Page 45 of 63

V1.12-01 April 2016

Deleted: 29 Deleted: 9 Deleted: 29 Deleted: 29 Deleted: 29 Deleted: 29 Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 16 **Deleted:** 17

Deleted: 29

I

Measurement Class settled) it must inform the Company prior to October 2015. The Company will treat these as Chargeable Demand Capacity (HH / Measurement Class settled) for the purposes of calculating the actual annual liability for the Charging Years up until implementation of P272. For these cases only, the Supplier should notify the Company of the Meter Point Administration Number(s) (MPAN). For these notified meters the Supplier shall provide the Company with verified metered demand data for the hours between 4pm and 7pm of each day of each Charging Year up to implementation of P272 and for each Triad half hour as notified by the Company prior to May of the following Charging Year up until two years after the implementation of P272 to allow reconciliation (e.g. Mav 2017 and May 2018 for the Charging Year 2016/17). Where the Supplier fails to provide the data or the data is incomplete for a Charging Year TNUoS charges for that MPAN will be reconciled as part of the Supplier's NHH BMU (Chargeable Energy Capacity). Where a Supplier opts, if eligible, for TNUoS liability to be calculated on Chargeable Demand Capacity it shall submit the forecasts referred to in 14.17,35.5 taking account of this.

14.17,35.7 The Company will maintain a list of all MPANs that Suppliers have elected to be treated as HH. This list will be updated monthly and will be provided to registered Suppliers upon request.

Further Information

- 14.17,<u>36</u> 14.25 Reconciliation of Demand Related Transmission Network Use of System Charges of this statement illustrates how the monthly charges are reconciled against the actual values for <u>gross</u> demand, <u>embedded export</u> and consumption for half-hourly <u>gross demand</u>, <u>embedded export</u> and non-halfhourly metered demand respectively.
- 14.17,<u>37</u> **The Statement of Use of System Charges** contains the £/kW zonal gross demand tariffs, <u>the £/kW zonal embedded export tariffs</u>, and the p/kWh energy consumption tariffs for the current Financial Year.
- 14.17,<u>38</u> 14.27 Transmission Network Use of System Charging Flowcharts of this statement contains flowcharts demonstrating the calculation of these charges for those parties liable.

Deleted: 29 Deleted: 30

Deleted: 29

Deleted: 31

....

14.24 Example: Calculation of Zonal Gross Demand Tariff

Let us consider all nodes in a demand zone in this example

The table below shows a sample output of the transport model comprising the node, the Peak Security and Year Round marginal km of an injection at the node with a consequent withdrawal at the distributed reference node, the generation sited at the node, scaled to ensure total national generation = total national <u>net</u> demand and the <u>net</u> demand sited at the node.

Demand Zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	<u>Net</u> Demand (MW)
14	ABHA4A	-77.25	-230.25	127
14	ABHA4B	-77.27	-230.12	127
14	ALVE4A	-82.28	-197.18	100
14	ALVE4B	-82.28	-197.15	100
14	AXMI40_SWEB	-125.58	-176.19	97
14	BRWA2A	-46.55	-182.68	96
14	BRWA2B	-46.55	-181.12	96
14	EXET40	-87.69	-164.42	340
14	HINP20	-46.55	-147.14	0
14	HINP40	-46.55	-147.14	0
14	INDQ40	-102.02	-262.50	444
14	IROA20_SWEB	-109.05	-141.92	462
14	LAND40	-62.54	-246.16	262
14	MELK40_SWEB	18.67	-140.75	83
14	SEAB40	65.33	-140.97	304
14	TAUN4A	-66.65	-149.11	55
14	TAUN4B	-66.66	-149.11	55
		Totals		2748

In order to calculate the <u>gross</u> demand tariff we would carry out the following steps:

(i) calculate the demand weighted nodal shadow costs

For this example zone this would be as follows:

Demand zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	Net Demand (MW)	Peak Security Demand Weighted Nodal Marginal km	Year Round Demand Weighted Nodal Marginal km
14	ABHA4A	-77.25	-230.25	127	-3.57	-10.64
14	ABHA4B	-77.27	-230.12	127	-3.57	-10.64
14	ALVE4A	-82.28	-197.18	100	-2.99	-7.17
14	ALVE4B	-82.28	-197.15	100	-2.99	-7.17
14	AXMI40_SWEB	-125.58	-176.19	97	-4.43	-6.22
14	BRWA2A	-46.55	-182.68	96	-1.63	-6.38
14	BRWA2B	-46.55	-181.12	96	-1.63	-6.33
14	EXET40	-87.69	-164.42	340	-10.85	-20.34
14	INDQ40	-102.02	-262.50	444	-16.48	-42.41
14	IROA20_SWEB	-109.05	-141.92	462	-18.33	-23.86
14	LAND40	-62.54	-246.16	262	-5.96	-23.47
14	MELK40_SWEB	18.67	-140.75	83	0.56	-4.25
14	SEAB40	65.33	-140.97	304	7.23	-15.59
14	TAUN4A	-66.65	-149.11	55	-1.33	-2.98
14	TAUN4B	-66.66	-149.11	55	-1.33	-2.98
		Totals		2748	-49.19	-190.43

(ii) sum the Peak Security and Year Round demand weighted nodal shadow costs to give zonal figures. For this example zone this is shown in the above table and is 49.19km for Peak Security background and 190.43km for Year Round background.

(iii) calculate the transport tariffs by multiplying the figures in (ii) above by the expansion constant (& dividing by 1000 to put into units of £/kW):

For this example zone, assuming an expansion constant of $\pm 10.07/MWkm$ and a locational security factor of 1.80:

a) Peak Security tariff – 49.19km <u>* £10.07/MWkm * 1.8</u> = <u>£0.89/kW</u> 1000

Page 49 of 63

b) Year Round tariff -<u>190.43km * £10.07/MWkm * 1.8</u> = <u>£3.45/kW</u> 1000

(iv) We now need to calculate the residual tariff. This is calculated by taking the total revenue to be recovered from demand (calculated as c.73% of total The Company_ TNUoS target revenue for the year), less the revenue which would be recovered through the demand transport tariffs and revenue recovery through embedded export tariffs, divided by total expected gross GSP group demand.

Assuming the total revenue to be recovered from TNUoS is £1067m, the total recovery from <u>gross GSP group</u> demand would be $(73\% \times £1067m) = £779m$. Assuming the total recovery from <u>gross GSP group</u> demand transport tariffs is £140m, total recovery from <u>embedded export tariffs is -£10m</u> and total forecast chargeable <u>gross GSP group</u> demand capacity is 50000MW, the demand residual tariff would be as follows:

 $\frac{\pounds779m - \pounds140m - -\pounds10m}{50,000MW} = \pounds12.98/kW$

 (v) to get to the final tariff, we simply add on the demand residual tariff calculated in (v) to the zonal transport tariffs calculated in (iii(a)) and (iii(b))

For zone 14:

 $\pounds 0.89/kW + \pounds 3.45/kW + \pounds 12.98/kW =$ $\pounds 17.32/kW$

- To summarise, in order to calculate the <u>gross</u> demand tariffs, we evaluate a <u>net</u> demand weighted zonal marginal km cost multiply by the expansion constant and locational security factor then we add a constant (termed the residual cost) to give the overall tariff.
- (vii) The final demand tariff is subject to further adjustment to allow for the minimum £0/kW gross_demand charge. The application of a discount for small generators pursuant to Licence Condition C13 will also affect the final gross_demand tariff.

Deleted: gross

Deleted: 130m

Deleted:	$\pounds779m - \pounds130m$	_
Deleted:	50000MW	_

14.25 Reconciliation of <u>Gross</u> Demand Related Transmission Network Use of System Charges

This appendix illustrates the methodology used by The Company in the reconciliation of Transmission Network Use of System charges for <u>gross</u> demand. The example highlights the different stages of the calculations from the monthly invoiced amounts, right through to Final Reconciliation.

Monthly Charges

Suppliers provide half-hourly (HH) gross demand and embedded export forecasts and non-halfhourly (NHH) demand forecasts by BM Unit every quarter. An example of such forecasts and the corresponding monthly invoiced amounts, based on tariffs of £10.00/kW for gross demand, £5.00/kW for embedded export and 1.20p/kWh for energy consumption, is as follows:

	Forecast HH Triad <u>Gross</u> Demand <u>HHD_E (</u> kW)	HH <u>Gross</u> <u>Demand</u> Monthly Invoiced Amount (£)	Forecast HH Triad Embedded Export HHEE _E (kW)	<u>HH</u> <u>Embedded</u> <u>Generation</u> <u>Monthly</u> <u>Invoiced</u> <u>Amount (£)</u>	Forecast NHH Energy Consumpti on NHHC _F (kW h)	NHH Monthly Invoiced Amount (£)	Net Monthly Invoiced Amount (£)
Apr	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
May	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jun	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jul	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Aug	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Sep	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Oct	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Nov	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Dec	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Jan	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Feb	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Mar	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Total		72,000		<u>(3,000)</u>		216,000	<u>297</u> ,000

As shown, for the first nine months the Supplier provided a 12,000kW HH triad <u>gross</u> demand forecast, and hence paid HH <u>gross demand</u> monthly charges of £10,000 ((12,000kW x £10.00/kW)/12) for that BM Unit. In January the Supplier provided a revised forecast of 7,200kW, implying a forecast annual charge reduced to £72,000 (7,200kW x £10.00/kW). The Supplier had already paid £90,000, so the excess of £18,000 was credited back to the supplier in three £6,000 instalments over the last three months of the year.

The Supplier provided an embedded export triad forecast of -600kW and hence was paid an embedded export credit of £250 ((600kW x £5.00/kW)/12) for that BM Unit (For the avoidance of doubt, if the embedded export tariff is negative this will result in a debit).

The Supplier also initially provided a 15,000,000kWh NHH energy consumption forecast, and hence paid NHH monthly charges of £15,000 ((15,000,000kWh x 1.2p/kWh)/12) for that BM Unit. In July the Supplier provided a revised forecast of 18,000,000kWh, implying a forecast annual charge increased to £216,000 (18,000,000kWh x 1.2p/kWh). The Supplier had already

paid £45,000, so the remaining £171,000 was split into payments of £19,000 for the last nine months of the year.

The right hand column shows the net monthly charges for the BM Unit.

Initial Reconciliation (Part 1a)

The Supplier's outturn HH triad <u>gross</u> demand, based on <u>initial</u> settlement data (and therefore subject to change in subsequent settlement runs), was 9,000kW. The HH triad <u>gross</u> demand reconciliation charge is therefore calculated as follows:

HHD Reconciliation Charge = $(HHD_A - HHD_F) \times \pounds/kW$ Tariff

= (9,000kW - 7,200kW) x £10.00/kW

= 1,800kW x £10.00/kW

= £18,000

To calculate monthly interest charges, the outturn HHD charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHD charge less the HH <u>gross demand</u> monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 1b)

The Supplier's outturn HH triad embedded export, based on initial settlement data (and therefore subject to change in subsequent settlement runs), was 700kW. The HH triad embedded export reconciliation charge is therefore calculated as follows:

HHEE Reconciliation Charge = (HHEE_A – HHEE_E) x £/kW Tariff

 $= (-500 \text{kW} - -600 \text{kW}) \times \text{\pounds}5.00/\text{kW}$

 $= 100 kW x \pounds 5.00 / kW$

= **£500**

To calculate monthly interest charges, the outturn HHEE charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHEE charge less the HH embedded generation monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 2)

The Supplier's outturn NHH energy consumption, based on initial settlement data, was 17,000,000kWh. The NHH energy consumption reconciliation charge is therefore calculated as follows:

Deleted: Please note that payments made to BM Units with a net export over the Triad, based on initial settlement data, will also be reconciled at this stage.¶ As monthly payments will not be made on the basis of a negative forecast, the HHD Reconciliation Charge for an exporting BM Unit will represent the full actual payment owed to that BM Unit (subject to adjustment by subsequent settlement runs). Interest will be calculated as described above.¶

NHHC Reconciliation Charge = $(NHHC_A - NHHC_F) \times p/kWh$ Tariff

100

= (17,000,000kWh - 18,000,000kWh) x 1.20p/kWh

100

= <u>-1,000,000kWh x 1.20p/kWh</u> 100 = **-£12,000**

worked example 4.xls - Initial!J104

The monthly reconciliation amount is equal to the outturn energy consumption charge for that month less the NHH monthly invoiced amount. Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

The net initial TNUoS demand reconciliation charge is therefore $\pounds 6,500$ (£18,000 + $\pounds 500$ - $\pounds 12,000$).

Final Reconciliation

Finally, let us now suppose that after all <u>final</u> Settlement data has been received (up to 14 months after the relevant dates), the outturn HH triad <u>gross</u> demand, <u>HH triad embedded export</u> and NHH energy consumption values were 9,500kW, <u>-550kW</u> and 16,500,000kWh, respectively.

Final HH <u>Gross Demand</u>	= (9,500kW - 9,000kW) x £10.00/kW
<u>Reconciliation Charge</u>	= £5,000
Final HH Embedded Export	= (-550kW500kW) x £5.00/kW
Reconciliation Charge	= -£250

Final NHH Reconciliation Charge = $(16,700,000kWh - 17,000,000kWh) \times 1.20p/kWh$ 100 = -£3,600

Consequently, the net final TNUoS demand reconciliation charge will be $\pounds 1, \underline{150} (\pounds 5,000 + -\pounds 250 + -\pounds 3,600)$.

Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

Outturn data for BM Units with a net export over the Triad will be received at this stage and final reconciliation will be carried out, as required. Interest will be calculated as described above.

Terminology:

 HHD_A = The Supplier's outturn half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

Page 53 of 63

Deleted: 000

I

 HHD_F = The Supplier's forecast half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

<u>HHEE_A = The Supplier's outturn half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

<u>HHEE_E = The Supplier's forecast half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

NHHC_A = The Supplier's outturn non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1^{st} to March 31^{st} , for the demand zone concerned.

NHHC_F = The Supplier's forecast non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1st to March 31st, for the demand zone concerned.

£/kW Tariff = The £/kW <u>Gross</u> Demand <u>or Embedded Export</u> Tariff as shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

p/kWh Tariff = The Energy Consumption Tariff shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

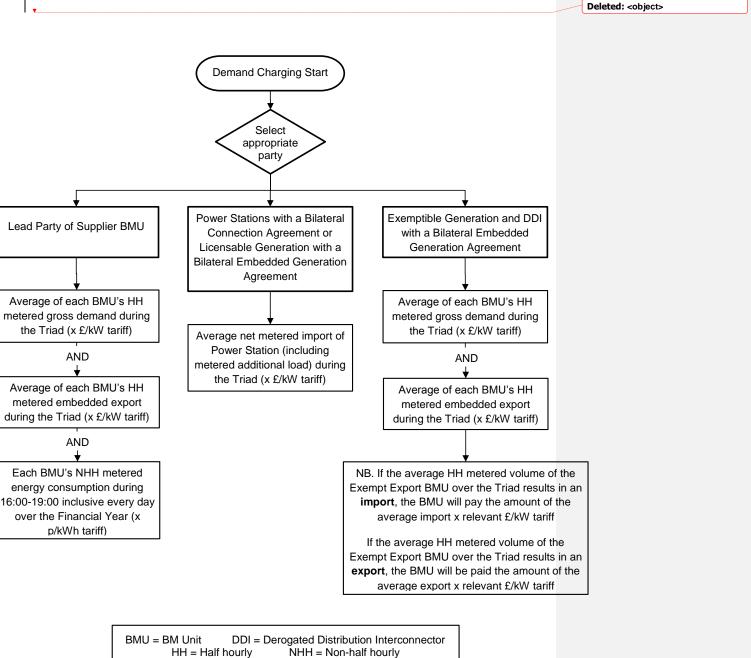
14.26 Classification of parties for charging purposes

In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precendence.

In the following diagrams, the parties liable for Transmission Network Use of System charges are outlined in red.

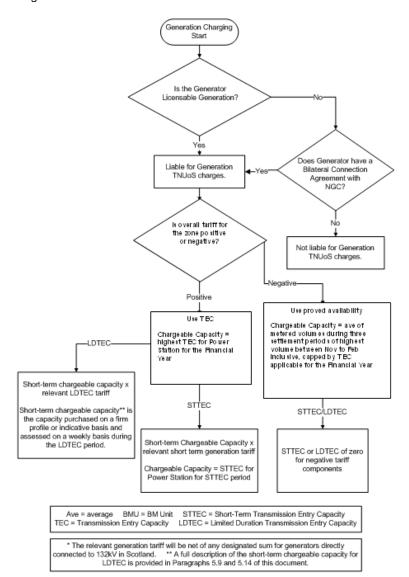
SUPPLIER		
Supplier Use of System Agreem	ent	
Supplier Supplier BMU1 BMUn		
Demand Charges	Generation Charges	
See 14.17. <mark>13 and 14.17.18</mark> .	None.	Deleted: 9 Deleted: 14
POWER STATION WITH A BILATERAL Bilateral Connection Agreement Gen Unit BMU1 Gen Unit BMU1		
Demand Charges	Generation Charges	
See 14.17. <mark>18</mark> .	See 14.18.1 i) and 14.18.3 to 14.18.9 and	Deleted: 10
	14.18.18.	
	For generators in positive zones, see 14.18.10 to 14.18.12.	
	For generators in negative zones, see 14.18.13 to 14.18.17 .	
L	1	J

Bilateral Emb	bedded Generation	Agreement App	pendix C
Gen Unit BMU1	Gen Unit BMUn	Station Load BMU	Additional Load BMU
Demand Charges See 14.17,<u>14</u>, 14.1 7	7, <u>15</u> and 14.17, <u>18</u> .	Generation Cl See 14.18.1 ii	0
		For generators	s in positive zones, see 14.18.3 t
		14.18.12 and	14.18.18.


-{	Deleted: 10
-	Deleted: 11
Y	Deleted: 14

14.27 Transmission Network Use of System Charging Flowcharts

The following flowcharts illustrate the parties liable for Demand and Generation TNUoS charges and the calculation of those charges.


In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precedence.

Page 57 of 63

Generation Charges

14.28 Example: Determination of The Company's Forecast for Demand Charge Purposes

The Company will use the latest available settlement data for calculation of HH demand and NHH energy consumption forecasts for the Financial Year.

The Financial Year runs from 1st April to 31st March inclusive and for the purpose of these examples the year April 2005 to March 2006 is used.

Where the preceding year's settlement data is not available at the time that The Company needs to calculate its forecast, The Company will use settlement data from the corresponding period in Financial Year minus two unless indicated otherwise.

All values used with the examples are purely for illustrative purposes only.

i) Half-Hourly (HH) Metered Demand Forecast – Existing User

At the time of calculation of a HH demand forecast before the relevant Financial Year (approximately 10th March), The Company will be aware at a system level which dates will be used for the determination of Triad. However, The Company may not have settlement data at a User level if the Triad dates were to span a period that includes the latter half of February.

When undertaking forecasting before the relevant Financial Year, The Company will use the User's Triad demand for the previous year for its forecast providing it holds User settlement data for this period, thus:

F = T

where:

F = Forecast of User's HH demand at Triad for the Financial Year

T = User's HH gross_demand and embedded export_at Triad in Financial Year minus one

Where The Company determines its forecast within a Financial Year:

F = T * D/P

where:

- F = Forecast of User's HH demand at Triad for the Financial Year
- T = User's HH gross demand and embedded export at Triad in the preceding Financial Year
- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the preceding Financial Year

Where The Company determines its forecast before the relevant Financial Year and User settlement data for the Triad period is not available, The Company shall apply the formula immediately above (within year forecast) but substitute the following definitions for the values T, D, and P:

T = User's HH gross demand and embedded export at Triad in the Financial Year minus two

Page 59 of 63

- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year minus one, to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the Financial Year minus two

Example (where User settlement data is not yet available for the Triad period):

The Company calculates a HH demand forecast on the above methodology at 10th March 2005 for the period 1st April 2005 to 31st March 2006.

Gross demand:

F = 10,000 * 13,200 / 12,000

F = 11,000 kW,Deleted: hwhere:T = 10,000 kW, (period November 2003 to February 2004)Deleted: hD = 13,200 kW, (period 1st April 2004 to 15th February 2005#)Deleted: hP = 12,000 kW, (period 1st April 2003 to 15th February 2004)Deleted: h

Latest date for which settlement data is available.

Embedded export:

F = -280 * -300 / -350

<u>F = -240 kW</u>

where:

T = -280 kW (period November 2003 to February 2004)

D = -300 kW (period 1st April 2004 to 15th February 2005#)

P = -350 kW (period 1st April 2003 to 15th February 2004)

<u># Latest date for which settlement data is available.</u>

ii) Non Half-Hourly (NHH) Metered Energy Consumption Forecast – Existing User

F = E * D/P

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- E = User's summed NHH energy consumption over the hours 16:00 to 19:00 for each day in the preceding Financial Year

Page 60 of 63

- D = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the Financial Year to date
- P = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the period corresponding to D in the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th June 2005 for the period 1st April 2005 to 31st March 2006.

- F = 50,000,000 * 4,400,000 / 4,000,000
- F = 55,000,000 kWh

where:

- E = 50,000,000 kWh (period 1st April 2004 to 31st March 2005)
- D = 4,400,000 kWh (period 1st April 2005 to 15th May 2005#)
- P = 4,000,000 kWh (period 1st April 2004 to 15th May 2004)
- # Latest date for which settlement data is available

Where forecasting before the relevant Financial Year concerned, The Company would in the above example use values for E and P from Financial Year 2003/04 and D from Financial Year 2004/05.

iii) Half-Hourly (HH) Metered Demand Forecast – New User

F = M * T/W

where:

- F = Forecast of User's HH metered <u>gross</u> demand <u>and embedded export</u> at Triad for the Financial Year
 - M = User's HH average weekday period 35 demand for the last complete month for which settlement data is available
- T = Total system HH <u>gross</u> demand <u>and embedded export</u> at Triad in the preceding Financial Year
 - W = Total system HH average weekday settlement period 35 metered demand for the corresponding period to M for the preceding year

Example:

The Company calculates a HH demand forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2004 to 31st March 2006.

Gross demand:

F = 1,000 * 17,000,000 / 18,888,888

0030	, vi. 12		
F =	900 kW,		Deleted: h
wher	e:		
M =	1,000 kW _v (period 1 st July 2005 to 31 st July 2005)		Deleted: h
T =	17,000,000 kW, (period November 2004 to February 2005)		Deleted: h
W =	18,888,888 kW _e (period 1 st July 2004 to 31 st July 2004)		Deleted: h
Embedded export:			
<u>F =</u>	150 * 7,200,000 / 6,000,000		
<u>F =</u>	<u>180 kW</u>		
wher	<u>e:</u>		

- M = 150 kW (period 1st July 2005 to 31st July 2005)
- T = 7,200,000 kW (period November 2004 to February 2005)
- <u>W = 6,000,000 kW (period 1^{st} July 2004 to 31^{st} July 2004)</u>

iv) Non Half Hourly (NHH) Metered Energy Consumption Forecast – <u>New User</u>

F = J + (M * R/W)

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- J = Residual part month summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day where new User registration takes place other than on the first of a month
- M = User's summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the last complete month for which settlement data is available
- R = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period from the start of that defined under M but for the preceding year and until the end of that preceding Financial Year
- W = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period identified in M but for the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2005 to 31st March 2006.

- F = 500 + (1,000 * 20,000,000,000 / 2,000,000,000)
- F = 10,500 kWh

where:

- J = 500 kWh (period 10th June 2005 to 30th June 2005)
- M = 1,000 kWh (period 1st July 2005 to 31st July 2005)
- R = 20,000,000,000 kWh (period 1st July 2004 to 31st March 2005)
- W = 2,000,000,000 kWh (period 1st July 2004 to 31st July 2004)

CMP265 WACM11

14.15 Derivation of the Transmission Network Use of System Tariff

- 14.15.1 The Transmission Network Use of System (TNUoS) Tariff comprises two separate elements. Firstly, a locationally varying element derived from the DCLF ICRP transport model to reflect the costs of capital investment in, and the maintenance and operation of, a transmission system to provide bulk transport of power to and from different locations. Secondly, a non-locationally varying element related to the provision of residual revenue recovery. The combination of both these elements forms the TNUoS tariff.
- 14.15.2 For generation TNUoS tariffs the locational element itself is comprised of five separate components. Three wider components
 - o Wider Peak Security Component
 - Wider Year Round Not-shared component
 - o Wider Year Round component

These components reflect the costs of the wider network under the different generation backgrounds set out in the Demand Security Criterion (for Peak Security component) and Economy Criterion (for both Year Round components) of the Security Standard. The two Year Round components reflect the unshared and shared costs of the wider network based on the diversity of generation plant types.

Two local components -

- o Local substation, and
- Local circuit

These components reflect the costs of the local network.

Accordingly, the wider tariff represents the combined effect of the three wider locational tariff components and the residual element; and the local tariff represents the combination of the two local locational tariff components.

14.15.3 The process for calculating the TNUoS tariff is described below.

The Transport Model

Model Inputs

14.15.4 The DCLF ICRP transport model calculates the marginal costs of investment in the transmission system which would be required as a consequence of an increase in demand or generation at each connection point or node on the transmission system, based on a study of peak demand conditions using both Peak Security and Year Round generation backgrounds on the transmission system. One measure of the investment costs is in terms of MWkm. This is the concept that ICRP uses to calculate marginal costs of investment. Hence, marginal costs are estimated initially in terms of increases or decreases in units of kilometres (km) of the transmission system for a 1 MW injection to the system.

- 14.15.5 The transport model requires a set of inputs representative of the Demand Security and Economy Criterion set out in the Security Standards. These conditions on the transmission system are represented in the Peak Security and Year Round background respectively as follows:
- Nodal generation information per node (TEC, plant type and SQSS scaling factors)
- Nodal <u>net</u> demand information
- Transmission circuits between these nodes
- The associated lengths of these routes, the proportion of which is overhead line or cable and the respective voltage level
- The cost ratio of each of 132kV overhead line, 132kV underground cable, 275kV overhead line, 275kV underground cable and 400kV underground cable to 400kV overhead line to give circuit expansion factors
- The cost ratio of each separate sub-sea AC circuit and HVDC circuit to 400kV overhead line to give circuit expansion factors
- 132kV overhead circuit capacity and single/double route construction information is used in the calculation of a generator's local charge.
- Offshore transmission cost and circuit/substation data
- 14.15.6 For a given charging year "t", the nodal generation TEC figure and generation plant types at each node will be based on the Applicable Value for year "t" in the NETS Seven Year Statement in year "t-1" plus updates to the October of year "t-1". The contracted TECs and generation plant types in the NETS Seven Year Statement include all plant belonging to generators who have a Bilateral Agreement with the TOs. For example, for 2010/11 charges, the nodal generation data is based on the forecast for 2010/11 in the 2009 NETS Seven Year Statement plus any data included in the quarterly updates in October 2009.
- 14.15.7 Scaling factors for different generation plant types are applied on their aggregated capacity for both Peak Security and Year Round backgrounds. The scaling is either Fixed or Variable (depending on the total demand level) in line with the factors used in the Security Standard, for example as shown in the table below.

Generation Plant Type	Peak Security Background	Year Round Background
Intermittent	Fixed (0%)	Fixed (70%)
Nuclear & CCS	Variable	Fixed (85%)
Interconnectors	Fixed (0%)	Fixed (100%)
Hydro	Variable	Variable
Pumped Storage	Variable	Fixed (50%)
Peaking	Variable	Fixed (0%)
Other (Conventional)	Variable	Variable

These scaling factors and generation plant types are set out in the Security Standard. These may be reviewed from time to time. The latest version will be used in the calculation of TNUoS tariffs and is published in the Statement of Use of System Charges

14.15.8 National Grid will categorise plant based on the categorisations described in the Security Standard. Peaking plant will include oil and OCGT technologies and Other (Conv.) represents all remaining conventional plant not explicitly stated elsewhere in the table In the event that a power station is made up of more than one technology type, the type of the higher Transmission Entry Capacity (TEC) would apply.

I

- 14.15.9 Nodal <u>net</u> demand data for the transport model will be based upon the GSP <u>net</u> demand that Users have forecast to occur at the time of National Grid Peak Average Cold Spell (ACS) Demand for year "t" in the April Seven Year Statement for year "t-1" plus updates to the October of year "t-1".
- 14.15.10 Subject to paragraphs 14.15.15 to 14.15.22, Transmission circuits for charging year "t" will be defined as those with existing wayleaves for the year "t" with the associated lengths based on the circuit lengths indicated for year "t" in the April NETS Seven Year Statement for year "t-1" plus updates to October of year "t-1". If certain circuit information is not explicitly contained in the NETS Seven Year Statement, The Company will use the best information available.
- 14.15.11 The circuit lengths included in the transport model are solely those, which relate to assets defined as 'Use of System' assets.
- 14.15.12 For HVDC circuits, the impedance will be calculated to provide flows based on a ratio of the capacity provided by the HVDC link relative to the capacities on all major transmission system boundaries that it parallels.
- 14.15.13 The transport model employs the use of circuit expansion factors to reflect the difference in cost between (i) AC Circuits and HVDC circuits. (ii) underground and sub-sea circuits, (iii) cabled circuits and overhead line circuits, (iv) 132kV and 275kV circuits, (v) 275kV circuits and 400kV circuits, and (vi) uses 400kV overhead line (i.e. the 400kV overhead line expansion factor is 1). As the transport model expresses cost as marginal km (irrespective of cables or overhead lines), some account needs to be made of the fact that investment in these other types of circuit (specifically HVDC and sub-sea cables of various voltages, 400kV underground cable, 275kV overhead line, 275kV underground cable, 132kV overhead line and 132kV underground cable) is more expensive than for 400kV overhead line. This is done by effectively 'expanding' these more expensive circuits by the relevant circuit expansion factor, thereby producing a larger marginal kilometre to reflect the additional cost of investing in these circuits compared to 400kV overhead line. When calculating the local circuit tariff for a generator, alternative 132kV and offshore expansion factors to those used in the remainder of the tariff calculation are applied to the generator's local circuits.
- 14.15.14 The circuit expansion factors for HVDC circuits and AC subsea cables are determined on a case by case basis using the costs which are specific to individual projects containing HVDC or AC subsea circuits.

Adjustments to Model Inputs associated with One-off Works

- 14.15.15 Where, following the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge that related to One-off Works carried out on an onshore circuit, and such One-off Works would affect the value of a TNUoS tariff paid by the User, the transport model inputs associated with the onshore circuit shall be adjusted by The Company to reflect the asset value that would have been modelled if the works had been undertaken on the basis of the original asset design rather than the One-off Works.
- 14.15.16 Subject to paragraphs 14.15.17 to 14.15.19, where, prior to the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge (or has paid a charge to the relevant TO prior to 1st April 2005 on the same principles as a

Page 3 of 63

One-Off Charge) that related to works equivalent to those described under paragraph 14.15.15, an adjustment equivalent to that under paragraph 14.15.15 shall be made to the transport model inputs as follows.

- 14.15.17 Such adjustment shall be made following a User's request, which must be received by The Company no later than the second occurrence of 31st December following the implementation of CUSC Modification CMP203.
- 14.15.18 The Company shall only make an adjustment to the transport model inputs, under paragraph 14.15.16 where the charge was paid to the relevant TO prior to 1st April 2005 where evidence has been provided by the User that satisfies The Company that works equivalent to those under paragraph 14.15.15 were funded by the User.
- 14.15.19 Where a User has sufficient reason to believe that adjustments under paragraph 14.15.18 should be made in relation to specific assets that affect a TNUoS tariff that applies to one of its sites and outlines its reasoning to The Company, The Company shall (upon the User's request and subject to the User's payment of reasonable costs incurred by The Company in doing so) use its reasonable endeavours to assist the User in obtaining any evidence The Company or a TO may have to support its position.
- 14.15.20 Where a request is made under paragraph 14.15.16 on or prior to 31st December in a charging year, and The Company is satisfied based on the accompanying evidence provided to The Company under paragraph 14.15.17 that it is a valid request, the transport model inputs shall be adjusted accordingly and taken into account in the calculation of TNUoS tariffs effective from the year commencing on the 1st April following this and otherwise from the next subsequent 1st April.
- 14.15.21 The following table provides examples of works for which adjustments to transport model inputs would typically apply:

Ref	Description of works	Adjustments
1	Undergrounding - A User requests to underground an overhead line at a greater cost.	As the cable cost will be more expensive than the overhead line (OHL) equivalent, the circuit will be modelled as an OHL.
2	Substation Siting Decision - A User requests to move the existing or a planned substation location to a place that means that the works cannot be justified as economic by the TO.	As the revised substation location may result in circuits being extended. If this is the case, the originally designed circuit lengths (as per the originally designed substation location) would be used in the transport model.
3	Circuit Routing Decision - A User asks to move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	As any circuit route changes that extend circuits are likely to result in a greater TNUoS tariff, the originally designed circuit lengths would be used in the transport model.

Ref	Description of works	Adjustments
4	Building circuits at lower voltages - A User requests lower tower height and therefore a different voltage.	As lower voltage circuits result in a higher expansion factor being used, the circuits would be modelled at the originally designed higher voltage.

14.15.22 The following table provides examples of works for which adjustments to transport model typically would not apply:

Ref	Description of works	Reasoning
1	Undergrounding - A User chooses to have a cable installed via a tunnel rather than buried.	Cable expansion factors are applied in the transport model regardless of whether a cable is tunnelled and buried, so there is no increased TNUoS cost.
2	Additional circuit route works - A User asks for screening to be provided around a new or existing circuit route.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
3	Additional circuit route works - A User requests that a planned overhead line route is built using alternative transmission tower designs.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
4	Additional substation works - A User asks for screening to be provided around a new or existing substation.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
5	Additional substation works - Changes to connection assets (e.g. HV-LV transformers and associated switchgear), metering, additional LV supplies, additional protection equipment, additional building works, etc.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
6	Diversion - A User asks to temporarily move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	The temporary circuit changes will not be incorporated into the transport model.

7	Connection Entry Capacity (CEC) before Transmission Entry Capacity (TEC). A User asks for a connection in a year prior to the relating TEC; i.e. physical connection without capacity.	No additional works are being undertaken, works are simply being completed well in advance of the generator commissioning. The One-Off Charge reflects the depreciated value of the assets prior to commissioning (and any TNUOS being charged).
8	Early asset replacement - An asset is replaced prior to the end of its expected life.	As the asset is simply replaced, no data in the transport model is expected to change.
9	Additional Engineering/ Mobilisation costs - A User requests changes to the planned works, that results in additional operational costs.	The data in the transport model is unaffected.
10	Offshore (Generator Build) - Any of the works described above or under paragraph 14.15.18.	The value of the works will not form part of the asset transfer value therefore will not be used as part of the offshore tariff calculation.
11	Offshore (Offshore Transmission Owner (OFTO) Build) - Any of the works described above or under paragraph 14.15.18.	As part of determining the TNUoS revenue associated with each asset, the value of the One-Off Works would be excluded when pro-rating the OFTO's allowed revenue against assets by asset value.

14.15.23 The Company shall publish any adjusted transport model inputs that it intends to use in the calculation of TNUoS tariffs effective from the year commencing on the following 1st April in the NETS Seven Year Statement October Update. Any further adjustments that The Company makes shall be published by The Company upon the publication of the final TNUoS tariffs for the year concerned.

Model Outputs

- 14.15.24 The transport model takes the inputs described above and carries out the following steps individually for Peak Security and Year Round backgrounds.
- 14.15.25 Depending on the background, the TEC of the relevant generation plant types are scaled by a percentage as described in 14.15.7, above. The TEC of the remaining generation plant types in each background are uniformly scaled such that total national generation (scaled sum of contracted TECs) equals total national ACS Demand.
- 14.15.26 For each background, the model then uses a DCLF ICRP transport algorithm to derive the resultant pattern of flows based on the network impedance required to meet the nodal <u>net</u> demand using the scaled nodal generation, assuming every circuit has infinite capacity. Flows on individual transmission circuits are compared for both backgrounds and the background giving rise to

Page 6 of 63

the highest flow is considered as the triggering criterion for future investment of that circuit for the purposes of the charging methodology. Therefore all circuits will be tagged as Peak Security or Year Round depending upon the background resulting in the highest flow. In the event that both backgrounds result in the same flow, the circuit will be tagged as Peak Security. Then it calculates the resultant total network Peak Security MWkm and Year Round MWkm, using the relevant circuit expansion factors as appropriate.

- 14.15.27 Using these baseline networks for Peak Security and Year Round backgrounds, the model then calculates for a given injection of 1MW of generation at each node, with a corresponding 1MW offtake (<u>net_demand</u>) distributed across all demand nodes in the network, the increase or decrease in total MWkm of the whole Peak Security and Year Round networks. The proportion of the 1MW offtake allocated to any given demand node will be based on total background nodal <u>net</u> demand in the model. For example, with a total GB <u>net_demand</u> of 60GW in the model, a node with a <u>net_demand</u> of 600MW would contain 1% of the offtake i.e. 0.01MW.
- 14.15.28 Given the assumption of a 1MW injection, for simplicity the marginal costs are expressed solely in km. This gives a Peak Security marginal km cost and a Year Round marginal km cost for generation at each node (although not that used to calculate generation tariffs which considers local and wider cost components). The Peak Security and Year Round marginal km costs for demand at each node are equal and opposite to the Peak Security and Year Round nodal marginal km respectively for generation and this is used to calculate demand tariffs. Note the marginal km costs can be positive or negative depending on the impact the injection of 1MW of generation has on the total circuit km.
- 14.15.29 Using a similar methodology as described above in 14.15.27, the local and wider marginal km costs used to determine generation TNUoS tariffs are calculated by injecting 1MW of generation against the node(s) the generator is modelled at and increasing by 1MW the offtake across the distributed reference node. It should be noted that although the wider marginal km costs are calculated for both Peak Security and Year Round backgrounds, the local marginal km costs are calculated on the Year Round background.
- 14.15.30 In addition, any circuits in the model, identified as local assets to a node will have the local circuit expansion factors which are applied in calculating that particular node's marginal km. Any remaining circuits will have the TO specific wider circuit expansion factors applied.
- 14.15.31 An example is contained in 14.21 Transport Model Example.

Calculation of local nodal marginal km

14.15.32 In order to ensure assets local to generation are charged in a cost reflective manner, a generation local circuit tariff is calculated. The nodal specific charge provides a financial signal reflecting the security and construction of the infrastructure circuits that connect the node to the transmission system.

14.15.33 Main Interconnected Transmission System (MITS) nodes are defined as:

- Grid Supply Point connections with 2 or more transmission circuits connecting at the site; or
- connections with more than 4 transmission circuits connecting at the site.

Page 7 of 63

- 14.15.34 Where a Grid Supply Point is defined as a point of supply from the National Electricity Transmission System to network operators or non-embedded customers excluding generator or interconnector load alone. For the avoidance of doubt, generator or interconnector load would be subject to the circuit component of its Local Charge. A transmission circuit is part of the National Electricity Transmission System between two or more circuit-breakers which includes transformers, cables and overhead lines but excludes busbars and generation circuits.
- 14.15.35 Generators directly connected to a MITS node will have a zero local circuit tariff.
- 14.15.36 Generators not connected to a MITS node will have a local circuit tariff derived from the local nodal marginal km for the generation node i.e. the increase or decrease in marginal km along the transmission circuits connecting it to all adjacent MITS nodes (local assets).

Calculation of zonal marginal km

- 14.15.37 Given the requirement for relatively stable cost messages through the ICRP methodology and administrative simplicity, nodes are assigned to zones. Typically, generation zones will be reviewed at the beginning of each price control period with another review only undertaken in exceptional circumstances. Any rezoning required during a price control period will be undertaken with the intention of minimal disruption to the established zonal boundaries. The full criteria for determining generation zones are outlined in paragraph 14.15.42. The number of generation zones set for 2010/11 is 20.
- 14.15.38 Demand zone boundaries have been fixed and relate to the GSP Groups used for energy market settlement purposes.
- 14.15.39 The nodal marginal km are amalgamated into zones by weighting them by their relevant generation or demand capacity.
- 14.15.40 Generators will have zonal tariffs derived from both, the wider Peak Security nodal marginal km; and the wider Year Round nodal marginal km for the generation node calculated as the increase or decrease in marginal km along all transmission circuits except those classified as local assets.

The zonal Peak Security marginal km for generation is calculated as:

$$WNMkm_{j_{PS}} = \frac{NMkm_{j_{PS}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiPS} = \sum_{j \in Gi} WNMkm_{jPS}$$

Where

Gi	=	Generation zone
j	=	Node
NMkm _{PS}	=	Peak Security Wider nodal marginal km from transport model
WNMkm _{PS}	=	Peak Security Weighted nodal marginal km
ZMkm _{PS}	=	Peak Security Zonal Marginal km

Gen = Nodal Generation (scaled by the appropriate Peak Security Scaling factor) from the transport model Similarly, the zonal Year Round marginal km for generation is calculated as

$$WNMkm_{j_{YR}} = \frac{NMkm_{j_{YR}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiYR} = \sum_{j \in Gi} WNMkm_{jYR}$$

Where

NMkm _{YR}	=	Year Round Wider nodal marginal km from transport model
WNMkm _{YR}	=	Year Round Weighted nodal marginal km
ZMkm _{YR}	=	Year Round Zonal Marginal km
Gen	=	Nodal Generation (scaled by the appropriate Year Round Scaling
		factor) from the transport model

14.15.41 The zonal Peak Security marginal km for demand zones are calculated as follows:

$$WNMkm_{j_{PS}} = \frac{-1 * NMkm_{j_{PS}} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{Di_{PS}} = \sum_{j \in Di} WNMkm_{j_{PS}}$$

Where:

I

Di	=	Demand zone
Dem	=	Nodal <u>Net</u> Demand from transport model

Similarly, the zonal Year Round marginal km for demand zones are calculated as follows:

$$WNMkm_{jYR} = \frac{-1 * NMkm_{jYR} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{DiYR} = \sum_{j \in Di} WNMkm_{jYR}$$

- 14.15.42 A number of criteria are used to determine the definition of the generation zones. Whilst it is the intention of The Company that zones are fixed for the duration of a price control period, it may become necessary in exceptional circumstances to review the boundaries having been set. In both circumstances, the following criteria are used to determine the zonal boundaries:
- i.) Zoning is determined using the generation background with the most MWkm of circuits. Zones should contain relevant nodes whose total wider marginal costs

from the relevant generation background (as determined from the output from the transport model, the relevant expansion constant and the locational security factor, see below) are all within $+/-\pounds1.00/kW$ (nominal prices) across the zone. This means a maximum spread of $\pounds2.00/kW$ in nominal prices across the zone.

- ii.) The nodes within zones should be geographically and electrically proximate.
- iii.) Relevant nodes are considered to be those with generation connected to them as these are the only ones, which contribute to the calculation of the zonal generation tariff.
- 14.15.43 The process behind the criteria in 14.15.42 is driven by initially applying the nodal marginal costs from the relevant generation background within the DCLF Transport model onto the appropriate areas of a substation line diagram. Generation nodes are grouped into initial zones using the +/- £1.00/kW range. All nodes within each zone are then checked to ensure the geographically and electrically proximate criteria have been met using the substation line diagram. The established zones are inspected to ensure the least number of zones are used with minimal change from previously established zonal boundaries. The zonal boundaries are finally confirmed using the demand nodal costs from the relevant generation background for guidance.
- 14.15.44 The zoning criteria are applied to a reasonable range of DCLF ICRP transport model scenarios, the inputs to which are determined by The Company to create appropriate TNUoS generation zones. The minimum number of zones, which meet the stated criteria, are used. If there is more than one feasible zonal definition of a certain number of zones, The Company determines and uses the one that best reflects the physical system boundaries.
- 14.15.45 Zones will typically not be reviewed more frequently than once every price control period to provide some stability. However, in exceptional circumstances, it may be necessary to review zoning more frequently to maintain appropriate, cost reflective, locational cost signals. For example, if a new generator connecting to the transmission system would cause the creation of a new generation zone for that generator alone, it may not be appropriate from a cost reflective perspective to wait until the next price control period to undertake this rezoning. If any such rezoning is required, it will be undertaken against a background of minimal change to existing generation zones and in line with the notification process set out in the Transmission Licence and CUSC.

Accounting for Sharing of Transmission by Generators

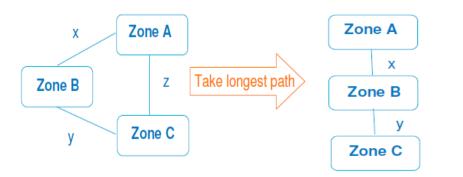
- 14.15.46 A proportion of the marginal km costs for generation are shared incremental km reflecting the ability of differing generation technologies to share transmission investment. This is reflected in charges through the splitting of Year Round marginal km costs for generation into Year Round Shared marginal km costs and Year Round Not-Shared marginal km which are then used in the calculation of the wider £/kW generation tariff.
- 14.15.47 The sharing between different generation types is accounted for by (a) using transmission network boundaries between generation zones set by connectivity between generation charging zones, and (b) the proportion of Low Carbon and Carbon generation behind these boundaries.

Page 10 of 63

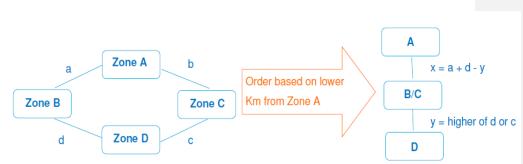
14.15.48 The zonal incremental km for each generation charging zone is split into each boundary component by considering the difference between it and the neighbouring generation charging zone using the formula below;

$$BIkm_{ab} = ZIkm_b - ZIkm_a$$

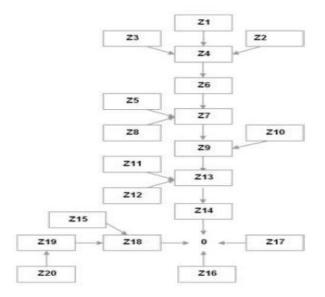
Where;


Blkm_{ab} = boundary incremental km between generation charging zone A and generation charging zone B Zlkm = generation charging zone incremental km.

14.15.49 The table below shows the categorisation of Low Carbon and Carbon generation. This table will be updated by National Grid in the Statement of Use of System Charges as new generation technologies are developed.


Carbon	Low Carbon
Coal	Wind
Gas	Hydro (excl. Pumped Storage)
Biomass	Nuclear
Oil	Marine
Pumped Storage	Tidal
Interconnectors	

Determination of Connectivity


- 14.15.50 Connectivity is based on the existence of electrical circuits between TNUoS generation charging zones that are represented in the Transport model. Where such paths exist, generation charging zones will be effectively linked via an incremental km transmission boundary length. These paths will be simplified through in the case of;
 - Parallel paths the longest path will be taken. An illustrative example is shown below with x, y and z representing the incremental km between zones.

 Parallel zones – parallel zones will be amalgamated with the incremental km immediately beyond the amalgamated zones being the greater of those existing prior to the amalgamation. An illustrative example is shown below with a, b, c, and d representing the the initial incremental km between zones, and x and y representing the final incremental km following zonal amalgamation.

14.15.51 An illustrative Connectivity diagram is shown below:

The arrows connecting generation charging zones and amalgamated generation charging zones represent the incremental km transmission boundary lengths towards the notional centre of the system. Generation located in charging zones behind arrows is considered to share based on the ratio of Low Carbon to Carbon cumulative generation TEC within those zones.

14.15.52 The Company will review Connectivity at the beginning of a new price control period, and under exceptional circumstances such as major system reconfigurations or generation rezoning. If any such reassessment is required, it will be undertaken against a background of minimal change to existing Connectivity and in line with the notification process set out in the Transmission Licence and the CUSC.

Calculation of Boundary Sharing Factors

14.15.53 Boundary sharing factors (BSFs) are derived from the comparison of the cumulative proportion of Low Carbon and Carbon generation TEC behind each of the incremental MWkm boundary lengths using the following formulae –

Page 12 of 63

If $\frac{LC}{LC+C} \le 0.5$, then all Year round marginal km costs are shared i.e. the BSF is 100%.

Where:

LC = Cumulative Low Carbon generation TEC behind the relevant transmission boundary C = Cumulative Carbon generation TEC behind the relevant transmission

C = Cumulative Carbon generation TEC behind the relevant transmission boundary

If
$$\frac{LC}{LC+C}$$
 > 0.5 then the BSF is calculated using the following formula: -

$$BSF = \left(-2 \times \left(\frac{LC}{LC+C}\right)\right) + 2$$

Where:

BSF = boundary sharing factor.

14.15.54 The shared incremental km for each boundary are derived from the multiplication of the boundary sharing factor by the incremental km for that boundary;

$$SBIkm_{ab} = BIIkm_{ab} \ x \ BSF_{ab}$$

Where;

 $SBIkm_{ab}$ = shared boundary incremental km between generation charging zone A and generation charging zone B

 BSF_{ab} = generation charging zone boundary sharing factor.

14.15.55 The shared incremental km is discounted from the incremental km for that boundary to establish the not-shared boundary incremental km. The not-shared boundary incremental km reflects the cost of transmission investment on that boundary accounting for the sharing of power stations behind that boundary.

$$NSBIkm_{ab} = BIkm_{ab} - SBIkm_{ab}$$

Where;

 $NSBIkm_{ab}$ = not shared boundary incremental km between generation charging zone A and generation charging zone B.

14.15.56 The shared incremental km for a generation charging zone is the sum of the appropriate shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRS}$$

Where;

 $ZMkm_{nYRS}$ = Year Round Shared Zonal Marginal km for generation charging zone n.

Page 13 of 63

14.15.57 The not-shared incremental km for a generation charging zone is the sum of the appropriate not-shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRNS}$$

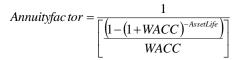
Where;

ZMkm_{nYRNS} = Year Round Not-Shared Zonal Marginal km for generation zone n.

Deriving the Final Local £/kW Tariff and the Wider £/kW Tariff

14.15.58 The zonal marginal km (ZMkm_{Gi}) are converted into costs and hence a tariff by multiplying by the Expansion Constant and the Locational Security Factor (see below). The nodal local marginal km (NLMkm^L) are converted into costs and hence a tariff by multiplying by the Expansion Constant and a Local Security Factor.

The Expansion Constant


- 14.15.59 The expansion constant, expressed in £/MWkm, represents the annuitised value of the transmission infrastructure capital investment required to transport 1 MW over 1 km. Its magnitude is derived from the projected cost of 400kV overhead line, including an estimate of the cost of capital, to provide for future system expansion.
- 14.15.60 In the methodology, the expansion constant is used to convert the marginal km figure derived from the transport model into a £/MW signal. The tariff model performs this calculation, in accordance with 14.15.95 14.15.117, and also then calculates the residual element of the overall tariff (to ensure correct revenue recovery in accordance with the price control), in accordance with 14.15.133.
- 14.15.61 The transmission infrastructure capital costs used in the calculation of the expansion constant are provided via an externally audited process. They also include information provided from all onshore Transmission Owners (TOs). They are based on historic costs and tender valuations adjusted by a number of indices (e.g. global price of steel, labour, inflation, etc.). The objective of these adjustments is to make the costs reflect current prices, making the tariffs as forward looking as possible. This cost data represents The Company's best view; however it is considered as commercially sensitive and is therefore treated as confidential. The calculation of the expansion constant also relies on a significant amount of transmission asset information, much of which is provided in the Seven Year Statement.
- 14.15.62 For each circuit type and voltage used onshore, an individual calculation is carried out to establish a £/MWkm figure, normalised against the 400KV overhead line (OHL) figure, these provide the basis of the onshore circuit expansion factors discussed in 14.15.70 14.15.77. In order to simplify the calculation a unity power factor is assumed, converting £/MVAkm to £/MWkm. This reflects that the fact tariffs and charges are based on real power.
- 14.15.63 The table below shows the first stage in calculating the onshore expansion constant. A range of overhead line types is used and the types are weighted by recent usage on the transmission system. This is a simplified calculation for 400kV OHL using example data:

Page 14 of 63

400kV	OHL e	xpansion o	onstant calcu	llation	
MW	Туре	£(000)/k	Circuit km*	£/MWkm	Weight
А	В	С	D	E = C/A	F=E*D
6500	La	700	500	107.69	53846
6500	Lb	780	0	120.00	0
3500	La/b	600	200	171.43	34286
3600	Lc	400	300	111.11	33333
4000	Lc/a	450	1100	112.50	123750
5000	Ld	500	300	100.00	30000
5400	Ld/a	550	100	101.85	10185
Sum			2500 (G)		285400 (H)
				Weighted Average (J= H/G):	114.160 (J)

*These are circuit km of types that have been provided in the previous 10 years. If no information is available for a particular category the best forecast will be used.

14.15.64 The weighted average £/MWkm (J in the example above) is then converted in to an annual figure by multiplying it by an annuity factor. The formula used to calculate of the annuity factor is shown below:

- 14.15.65 The Weighted Average Cost of Capital (WACC) and asset life are established at the start of a price control and remain constant throughout a price control period. The WACC used in the calculation of the annuity factor is the The Company regulated rate of return, this assumes that it will be reasonably representative of all licensees. The asset life used in the calculation is 50 years; the appropriateness of this is reviewed when the annuity factor is recalculated at the start of a price control period. These assumptions provide a current annuity factor of 0.066.
- 14.15.66 The final step in calculating the expansion constant is to add a share of the annual transmission overheads (maintenance, rates etc). This is done by multiplying the average weighted cost (J) by an 'overhead factor'. The 'overhead factor' represents the total business overhead in any year divided by the total Gross Asset Value (GAV) of the transmission system. This is recalculated at the start of each price control period. The overhead factor used in the calculation of the expansion constant for 2009/10 is 1.8%. The overhead and annuitised costs are then added to give the expansion constant.
- 14.15.67 Using the previous example, the final steps in establishing the expansion constant are demonstrated below:

400kV OHL expansion constant calculation	Ave £/MWkm
OHL	114.160

Page 15 of 63

Annuitised	7.535
Overhead	2.055
Final	9.589

- 14.15.68 This process is carried out for each voltage onshore, along with other adjustments to take account of upgrade options, see 14.15.73, and normalised against the 400KV overhead line cost (the expansion constant) the resulting ratios provide the basis of the onshore expansion factors. The process used to derive circuit expansion factors for Offshore Transmission Owner networks is described in 14.15.78.
- 14.15.69 This process of calculating the incremental cost of capacity for a 400kV OHL, along with calculating the onshore expansion factors is carried out for the first year of the price control and is increased by inflation, RPI, (May–October average increase, as defined in The Company's Transmission Licence) each subsequent year of the price control period. The expansion constant for 2010/11 is 10.633.

Onshore Wider Circuit Expansion Factors

- 14.15.70 Base onshore expansion factors are calculated by deriving individual expansion constants for the various types of circuit, following the same principles used to calculate the 400kV overhead line expansion constant. The factors are then derived by dividing the calculated expansion constant by the 400kV overhead line expansion constant. The factors will be fixed for each respective price control period.
- 14.15.71 In calculating the onshore underground cable factors, the forecast costs are weighted equally between urban and rural installation, and direct burial has been assumed. The operating costs for cable are aligned with those for overhead line. An allowance for overhead costs has also been included in the calculations.
- 14.15.72 The 132kV onshore circuit expansion factor is applied on a TO basis. This is to reflect the regional variation of plans to rebuild circuits at a lower voltage capacity to 400kV. The 132kV cable and line factor is calculated on the proportion of 132kV circuits likely to be uprated to 400kV. The 132kV expansion factor is then calculated by weighting the 132kV cable and overhead line costs with the relevant 400kV expansion factor, based on the proportion of 132kV circuitry to be uprated to 400kV. For example, in the TO areas of National Grid and Scottish Power where there are no plans to uprate any 132kV circuits, the full cable and overhead line costs of 132kV circuit are reflected in the 132kV expansion factor calculation.
- 14.15.73 The 275kV onshore circuit expansion factor is applied on a GB basis and includes a weighting of 83% of the relevant 400kV cable and overhead line factor. This is to reflect the averaged proportion of circuits across all three Transmission Licensees which are likely to be uprated from 275kV to 400kV across GB within a price control period.
- 14.15.74 The 400kV onshore circuit expansion factor is applied on a GB basis and reflects the full costs for 400kV cable and overhead lines.
- 14.15.75 AC sub-sea cable and HVDC circuit expansion factors are calculated on a case by case basis using actual project costs (Specific Circuit Expansion Factors).

Page 16 of 63

- 14.15.76 For HVDC circuit expansion factors both the cost of the converters and the cost of the cable are included in the calculation.
- 14.15.77 The TO specific onshore circuit expansion factors calculated for 2008/9 (and rounded to 2 decimal places) are:

Scottish Hydro Region

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	27.79
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.24	

Scottish Power & National Grid Regions

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	30.22
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.80	

Onshore Local Circuit Expansion Factors

- 14.15.78 The local onshore circuit tariff is calculated using local onshore circuit expansion factors. These expansion factors are calculated using the same methodology as the onshore wider expansion factor but without taking into account the proportion of circuit kms that are planned to be uprated.
- 14.15.79 In addition, the 132kV onshore overhead line circuit expansion factor is sub divided into four more specific expansion factors. This is based upon maximum (winter) circuit continuous rating (MVA) and route construction whether double or single circuit.

400kV underground cable factor:	22.39
275kV underground cable factor:	22.39
132kV underground cable factor:	30.22
400kV line factor:	1.00
275kV line factor:	1.14
132kV line factor (single; <200MVA):	10.00
132kV line factor (double; <200MVA):	8.32
132kV line factor (single; >=200MVA):	7.13
132kV line factor (double; >=200MVA):	4.42

Offshore Circuit Expansion Factors

14.15.80 Offshore expansion factors (£/MWkm) are derived from information provided by Offshore Transmission Owners for each offshore circuit. Offshore expansion factors are Offshore Transmission Owner and circuit specific. Each Offshore Transmission Owner will periodically provide, via the STC, information to derive an annual circuit revenue requirement. The offshore circuit revenue shall include revenues associated with the Offshore Transmission Owner's reactive compensation equipment, harmonic filtering equipment, asset spares and HVDC converter stations.

14.15.81 In the first year of connection, the offshore circuit expansion factor would be calculated as follows:

$\frac{CRevOFTO1}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$

Where:

CRevOFTO1	=	The offshore circuit revenue in £ for Year 1
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

14.15.82 In all subsequent years, the offshore circuit expansion factor would be calculated as follows:

$$\frac{AvCRevOFTO}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$$

Where:

AvCRevOFTO	=	The annual offshore circuit revenue averaged over the
		remaining years of the onshore National Electricity
		Transmission System Operator (NETSO) price control
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

- 14.15.83 For the avoidance of doubt, the offshore circuit revenue values, *CRevOFTO1* and *AvCRevOFTO* shall be determined using asset values after the removal of any One-Off Charges.
- 14.15.84 Prevailing OFFSHORE TRANSMISSION OWNER specific expansion factors will be published in this statement. These shall be recalculated at the start of each price control period using the formula in paragraph 14.15.71. For each subsequent year within the price control period, these expansion factors will be adjusted by the annual Offshore Transmission Owner specific indexation factor, *OFTOInd*, calculated as follows;

$$OFTOInd_{t,f} = \frac{OFTO \operatorname{Rev}Ind_{t,f}}{RPI_{t}}$$

where:

OFTOInd _{t,f}	=	the indexation factor for Offshore Transmission Owner <i>f</i> in respect of charging year <i>t</i> ,
OFTORevInd _t f	=	the indexation rate applied to the revenue of Offshore Transmission Owner f under the terms of its Transmission Licence in respect of charging year t , and
<i>RPI</i> _t	=	the indexation rate applied to the expansion constant in respect of charging year <i>t</i> .

Offshore Interlinks

14.15.85 The revenue associated with an Offshore Interlink shall be divided entirely between those generators benefiting from the installation of that Offshore Interlink. Each of these Users will be responsible for their charge from their charging date, meaning that a proportion of the Offshore Interlink revenue may be socialised prior to all relevant Users being chargeable. The proportion associated with each User will be based on the Measure of Capacity to the MITS using the Offshore Interlink(s) in the event of a single circuit fault on the User's circuit from their offshore substation towards the shore, compared to the Measure of Capacity of the other Users.

Where:

An *Offshore Interlink* is a circuit which connects two offshore substations that are connected to a Single Common Substation. It is held in open standby until there is a transmission fault that limits the User's ability to export power to the Single Common Substation. In the Transport Model, they are to be modelled in open standby.

A Single Common Substation is a substation where:

- i. each substation that is connected by an Offshore Interlink is connected via at least one circuit without passing through another substation; and
- ii. all routes connecting each substation that is connected by an Offshore Interlink to the MITS pass through.

The Measure of Capacity to the MITS for each Offshore substation is the result of the following formula or zero whichever is larger. For the situation with only one interlink, all terms relating to C should be set to zero:

```
For Substation A:
min { Cap_{IAB}, ILF_A \times TEC_A - RCap_A, Cap_B - ILF_B \times TEC_B + min (Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation B:

min { ILF_B \times TEC_B - RCap_B, min (Cap_{IAB}, Cap_A - ILF_A \times TEC_A)

+ min ( Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation C:

min { Cap_{IBC}, ILF_{C} \times TEC_{C} - RCap_{C}, Cap_{B} - ILF_{B} \times TEC_{B} + min (Cap_{IAB}, Cap_{A} - ILF_{A} \times TEC_{A}) }

and
```

Cap _{IAB} = B	total capacity of the Offshore Interlink between substations A and
Cap _{IBC} = C	total capacity of the Offshore Interlink between substations B and
Cap _X =	total capacity of the circuit between offshore substation X and the Single Common Substation, where X is A, B or C.
RCap _x =	remaining capacity of the circuit between offshore substation X and the Single Common Substation in the event of a single cable fault, where X is A, B or C.
TEC _x =	the sum of the TEC for the Users connected, or contracted to connect, to offshore substation X, where X is A, B or C, where the value of TEC will be the maximum TEC that each User has held since the initial charging date, or is contracted to hold if prior to the initial charging date.

- ILF_x = Offshore Interlink Load Factor, where X is A, B or C. The Offshore Interlink Load Factor (ILF) is based on the Annual Load Factor (ALF). Until all the Users connected to a Single Common Substation have a station specific Annual Load Factor based on five years of data, the generic ALF for the fuel type will be used as the ILF for all stations. When all Users have a station specific ALF, the value of the ALF in the first such year will be used as the ILF in the calculation for all subsequent charging years.
- 14.15.86 The apportionment of revenue associated with Offshore Interlink(s) in 14.15.85 applies in situations where the Offshore Interlink was included in the design phase, or if one or more User(s) has already financially committed or been commissioned then only where that User(s) agrees to the Offshore Interlink.
- 14.15.87 Alternatively to the formula specified in 14.15.85 the proportion of the OFTO revenue associated with the Offshore Interlink allocated to each generator benefiting from the installation of an Offshore Interlink may be agreed between these Users. In this event:
- a. All relevant Users shall notify The Company of its respective proportions three months prior the OTSDUW asset transfer in the case of a generator build, or the charging date of the first generator, in the case of an OFTO build.
- b. All relevant Users may agree to vary the proportions notified under (a) by each writing to The Company three months prior to the charges being set for a given charging year.
- c. Once a set of proportions of the OFTO revenue associated with the Offshore Interlink has been provided to The Company, these will apply for the next and future charging years unless and until The Company is informed otherwise in accordance with (b) by all of the relevant Users.
- d. If all relevant Users are unable to reach agreement on the proportioning of the OFTO revenue associated with the Offshore Interlink they can raise a dispute. Any dispute between two or more Users as to the proportioning of such revenue shall be managed in accordance with CUSC Section 7 Paragraph 7.4.1 but the reference to the 'Electricity Arbitration Association' shall instead be to the 'Authority' and the Authority's determination of such dispute shall, without prejudice to apply for judicial review of any determination, be final and binding on the Users.

The Locational Onshore Security Factor

14.15.88 The locational onshore security factor is derived by running a secure DCLF ICRP transport study based on the same market background as used for Zoning in the DCLF ICRP transport model. This calculates the nodal marginal costs where peak <u>net</u> demand can be met despite the Security and Quality of Supply Standard contingencies (simulating single and double circuit faults) on the network. Essentially the calculation of secured nodal marginal costs is identical to the process outlined above except that the secure DCLF study additionally calculates a nodal marginal cost taking into account the requirement to be secure against a set of worse case contingencies in terms of maximum flow for each circuit.

- 14.15.89 The secured nodal cost differential is compared to that produced by the DCLF ICRP transport model and the resultant ratio of the two determines the locational security factor using the Least Squares Fit method. Further information may be obtained from the charging website¹.
- 14.15.90 The locational onshore security factor derived for 2010/11 is 1.8 and is based on an average from a number of studies conducted by The Company to account for future network developments. The security factor is reviewed for each price control period and fixed for the duration.

Local Security Factors

- 14.15.91 Local onshore security factors are generator specific and are applied to a generator's local onshore circuits. If the loss of any one of the local circuits prevents the export of power from the generator to the MITS then a local security factor of 1.0 is applied. For generation with circuit redundancy, a local security factor is applied that is equal to the locational security factor, currently 1.8.
- 14.15.92 Where a Transmission Owner has designed a local onshore circuit (or otherwise that circuit once built) to a capacity lower than the aggregated TEC of the generation using that circuit, then the local security factor of 1.0 will be multiplied by a Counter Correlation Factor (CCF) as described in the formula below;

$$CCF = \frac{D_{\min} + T_{cap}}{G_{cap}}$$

Where; D_{min} = minimum annual net demand (MW) supplied via that circuit in the absence of that generation using the circuit

 T_{cap} = transmission capacity built (MVA)

 G_{cap} = aggregated TEC of generation using that circuit

CCF cannot be greater than 1.0.

14.15.93 A specific offshore local security factor (LocalSF) will be calculated for each offshore connection using the following methodology:

$$LocalSF = \frac{NetworkExportCapacity}{\sum_{k} Gen_{k}}$$

Where:

 NetworkExportCapacity =
 the total export capacity of the network disregarding any Offshore Interlinks

 k
 =
 the generation connected to the offshore network

1 http://www.nationalgrid.com/uk/Electricity/Charges/

Page 21 of 63

- 14.15.94 The offshore security factor for single circuits with a single cable will be 1.0 and for multiple circuit connections will be capped at the locational onshore security factor, derived as 1.8 for 2010/11.
- 14.15.95 The offshore local security factor for configurations with one or more Offshore Interlinks is updated so that the offshore circuit tariff will include the proportion of revenue associated with the Offshore Interlink(s). The specific offshore local security factor for configurations involving an Offshore Interlink, which may be greater than 1.8, will be calculated for each offshore connection using the following methodology:

LocalSE -	$\frac{\text{IRevOFTO} \times \text{NetworkExportCapacity}}{\text{CP} + \text{LocalSF}_{\text{initial}}} + LocalSF_{\text{initial}}$
Locust -	$CRevOFTO \times \sum Gen_k$
	k k

Where:

IRevOFTO =	The appropriate proportion of the Offshore Interlink(s) revenue in £
	associated with the offshore connection calculated in 14.15.85
CRevOFTO =	The offshore circuit revenue in £ associated with the circuit(s) from the
	offshore substation to the Single Common Substation.
LocalSF _{initial} =	Initial Local Security Factor calculated in 14.15.80 and 14.15.81
	And other definitions as in 14.15.80.

Initial Transport Tariff

14.15.96 First an Initial Transport Tariff (ITT) must be calculated for both Peak Security and Year Round backgrounds. For Generation, the Peak Security zonal marginal km (ZMkm_{PS}), Year Round Not-Shared zonal marginal km (ZMkm_{YRNS}) and Year Round Shared zonal marginal km (ZMkm_{YRS}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT, Year Round Not-Shared ITT and Year Round Shared ITT respectively:

 $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$

Where ZMkm _{GiPS} ZMkm _{GiYRNS} charging zone	= = e	Peak Security Zonal Marginal km for each generation zone Year Round Not-Shared Zonal Marginal km for each generation
ZMkm _{GiYRS}	=	Year Round Shared Zonal Marginal km for each generation
charging zon	е	
EC	=	Expansion Constant
LSF	=	Locational Security Factor
	=	Peak Security Initial Transport Tariff (£/MW) for each generation
zone		
ITT _{GiYRNS}	=	Year Round Not-Shared Initial Transport Tariff (£/MW) for each
generation ch	narging	zone
ITT _{GiYRS}	=	Year Round Shared Initial Transport Tariff (£/MW) for each
generation ch	narging	zone.

- CUSC v1.12
 - 14.15.97 Similarly, for demand the Peak Security zonal marginal km (ZMkm_{PS}) and Year Round zonal marginal km (ZMkm_{YR}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT and Year Round ITT respectively:

		$ZMkm_{DiPS} \times EC \times LSF = ITT_{DiPS}$
		$ZMkm_{DiYR} \times EC \times LSF = ITT_{DiYR}$
Where ZMkm _{DiP} ZMkm _{DiY}	0	Peak Security Zonal Marginal km for each demand zone Year Round Zonal Marginal km for each demand zone
ITT _{DiPS} ITT _{DiYR}	= =	Peak Security Initial Transport Tariff (£/MW) for each demand one Year Round Initial Transport Tariff (£/MW) for each demand zone
14.15.98	GSP group revenue ree metered tria	tep is to multiply these ITTs by the expected metered triad gross demand and generation capacity to gain an estimate of the initial covery for both Peak Security and Year Round backgrounds. The ad gross GSP group demand and generation capacity are based on forecasts provided by Users and are confidential.
a.		ad gross GSP group demand is net demand for all GSP groups less exports for all GSP groups .
Where		

ITRR _G =	Initial Transport Revenue Recovery for generation		
G _{Gi} =	Total forecast Generation for each generation zone (based		
	on analysis of confidential User forecasts)		
ITRR _D =	Initial Transport Revenue Recovery for gross GSP group		
	demand		
D _{Di} =	Total forecast Metered Triad gross GSP group Demand for		
each			
	demand zone (based on <u>analysis of</u> confidential User		
	forecasts).		

In addition, the initial tariffs for generation are also multiplied by the **Peak Security flag** when calculating the initial revenue recovery component for the Peak Security background. Similarly, when calculating the initial revenue recovery for the Shared component of the Year Round background, the initial tariffs are multiplied by the **Annual Load Factor** (see below).

Peak Security (PS) Flag

14.15.99 The revenue from a specific generator due to the Peak Security locational tariff needs to be multiplied by the appropriate Peak Security (PS) flag. The PS flags indicate the extent to which a generation plant type contributes to the need for transmission network investment at peak demand conditions. The PS

Page 23 of 63

flag is derived from the contribution of differing generation sources to the demand security criterion as described in the Security Standard. In the event of a significant change to the demand security assumptions in the Security Standard, National Grid will review the use of the PS flag.

Generation Plant Type	PS flag
Intermittent	0
Other	1

Annual Load Factor (ALF)

- 14.15.100 The ALF for each individual Power Station is calculated using the relevant TEC (MW) and corresponding output data. Where output data is not available for a Power Station, including for new Power Stations and emerging Power Station technologies, generic data for the appropriate generation plant type will be used.
- 14.15.101 For a given charging year "t" the Power Station ALF will be based on information from the previous five charging years, calculated for each charging year as set out below.

$$ALF = \frac{\sum_{p=1}^{17520} GMWh_p}{\sum_{p=1}^{17520} TECp \times 0.5}$$

Where:

 $\mathsf{GMWh}_{\mathsf{p}}$ is the maximum of FPN or actual metered output in a Settlement Period related to the power station TEC (MW); and

 TEC_{p} is the TEC (MW) applicable to that Power Station for that Settlement Period including any STTEC and LDTEC, accounting for any trading of TEC.

- 14.15.102 The appropriate output (FPN or actual metered) figure is derived from **BM Unit** data available to National Grid and relates to the total TEC of the Power Station.
- 14.15.103 Once all five charging year ALFs have been calculated for the individual Power Station they are compared, and the highest and lowest figures are discarded. The final ALF, to be used for transmission charging purposes, is calculated as the average of the remaining three ALFs.
- 14.15.104 In the event that only four charging years of complete output (FPN or actual metered) data are available for an individual Power Station then the higher three charging years ALF would be used in the calculation of the final ALF. In the event that only three charging years of complete output (FPN or actual metered) data are available then these three charging years would be used.
- 14.15.105 Due to the aggregation of output (FPN or actual metered) data for dispersed generation (e.g. cascade hydro schemes), where a single generator BMU consists of geographically separated power stations, the ALF would be calculated based on the total output of the BMU and the overall TEC of those Power Stations.

Page 24 of 63

1

- 14.15.106 In the event that there are not three full charging years of an individual power station's output available, missing output (FPN or actual metered) data would be replaced by generic data for that generation plant type to ensure three charging years of information are available for the Power Station. The derivation of the generic data is described in paragraphs 14.15.111-14.15.114.
- 14.15.107 Users will receive draft ALFs before 25th December of the charging year (t-1) for the charging year (t) and will have a period of 15 working days from date of publishing to notify the Company of any errors. Failure to agree changes relating to errors will be treated as a charging dispute under the CUSC.
- 14.15.108 The ALFs used in the setting of final tariffs will be published in the annual Statement of Use of System Charges. Changes to ALFs after this publication will not result in changes to published tariffs (e.g. following dispute resolution).

Derivation of Generic ALFs

14.15.109 The generic ALF is derived from the average annual output of the ten most recently commissioned GB generation of a particular generation plant type that have at least five charging years' data, using an identical methodology to that used for the Power Station specific calculation described above. Where less than ten GB generators of a particular generation plant type exist, then data from all existing generators of that particular generation plant type will be used. Example generation plant type categories are listed below;

Fuel Type
Biomass
Coal
Gas
Hydro
Nuclear (by reactor
type)
Oil & OCGTs
Pumped Storage
Onshore Wind
Offshore Wind
CHP

- 14.15.110 The Company will keep these categories under review and update as necessary. Where within a category there is a significant locational difference consideration will be given to zonal generic factors. The factors used will be published in the Statement of Use of System Charges and will be reviewed annually.
- 14.15.111 If a User can demonstrate that the generation plant type of a Power Station has changed, consideration will be given to the use of relevant generic ALF information in the calculation of their charges until sufficient specific data is available.
- 14.15.112 For new and emerging generation plant types, where insufficient data is available to allow a generic ALF to be developed, The Company will use the best information available e.g. from manufactuers and data from use of similar technologies outside GB. The factor will be agreed with the relevant Generator. In the event of a disagreement the standard provisions for dispute in the CUSC will apply.

TNUoS Emb	edded Export Tariff
<u>14.15.113</u>	Embedded exports are exports measured on a half-hourly basis by Metering Systems, in accordance with the BSC, that are not subject to generation TNUoS.
<u>14.15.114</u>	The embedded export tariff will be applied to the metered Triad volumes of Embedded Exports for each demand zone as follows:
	$EET_{Di} = ITT_{DiPS} + ITT_{DiYR} + EX$
	Where
ITT _{Dif} ITT _{Di} FX	
<u></u>	$\underline{AEX11} = \frac{(p \times TRR) - OC - ITRR_{DPS} - ITRR_{DYR}}{\sum_{Di=1}^{14} (D_{Di} + EEV_{Di})}$
Wher	
AGX11=	Residual Tariff for embedded Affected Embedded Exports
P =	Proportion of revenue to be recovered from demand
<u> </u>	Offshore Costs paid by demand
<u>ITRR_{DPS} =</u>	Peak Security Initial Transport Revenue Recovery for demand
<u>ITRR_{DYR} =</u>	Year Round Initial Transport Revenue Recovery for demand
<u>D_{Di} =</u>	Total forecast Metered Triad Gross Demand for each demand zone EEV _{Di}
	Forecast Embedded Export metered volume at Triad (MW)

<u>The Value of EET_{Di} will be floored at zero, so that EET_{Di} is always zero or positive.</u>

Initial Revenue Recovery

14.15,115 For the Peak Security background the initial tariff for generation is multiplied by the total forecast generation capacity and the PS flag to give the initial revenue recovery:

$$\sum_{G_i=1}^{n} (ITT_{G_i PS} \times G_{G_i} \times F_{PS}) = ITRR_{GPS}$$

Where

ITRR _{GPS} G _{Gi}	= =	Peak Security Initial Transport Revenue Recovery for generation Total forecast Generation for each generation zone (based on <u>analysis of</u> confidential User forecasts)
F _{PS}	=	Peak Security flag appropriate to that generator type
n	=	Number of generation zones
T L - 1		and a second for second COP second demond for the Deals Operative

The initial revenue recovery for <u>gross GSP group</u> demand for the Peak Security background is calculated by multiplying the initial tariff by the total forecast metered triad <u>gross GSP group</u> demand:

Page 26 of 63

$$\sum_{Di=1}^{14} (ITT_{DiPS} \times D_{Di}) = ITRR_{DPS}$$

Where:

ITRRDPS	=	Peak Security Initial Transport Revenue Recovery for gross GSP				
		group_demand				
D _{Di}	=	Total forecast Metered Triad gross GSP group Demand for each				

- demand zone (based on <u>analysis of</u> confidential User forecasts) 14.15,116 For the Year Round background, the initial tariff for generation is multiplied by
 - the total forecast generation capacity whilst calculating Initial Recovery for Not-Shared component whereas the initial tariff for Shared component is multiplied by both, the total forecast generation capacity and the ALF to give the initial revenue recovery:

$$\sum_{G_{i=1}}^{n} (ITT_{GiYRNS} \times G_{Gi}) = ITRR_{GYRNS}$$
$$\sum_{G_{i=1}}^{n} (ITT_{GiYRS} \times G_{Gi} \times ALF) = ITRR_{GYRS}$$

Where:

ITRR
generation=Year Round Not-Shared Initial Transport Revenue Recovery for
Year Round Shared Initial Transport Revenue Recovery for
generation
ALFALF=Annual Load Factor appropriate to that generator.

14.15,117 Similar to the Peak Security background, the initial revenue recovery for gross <u>GSP group</u> demand for the Year Round background is calculated by multiplying the initial tariff by the total forecast metered triad gross GSP group demand:

$$\sum_{Di=1}^{14} \left(ITT_{DiYR} \times D_{Di} \right) = ITRR_{DYR}$$

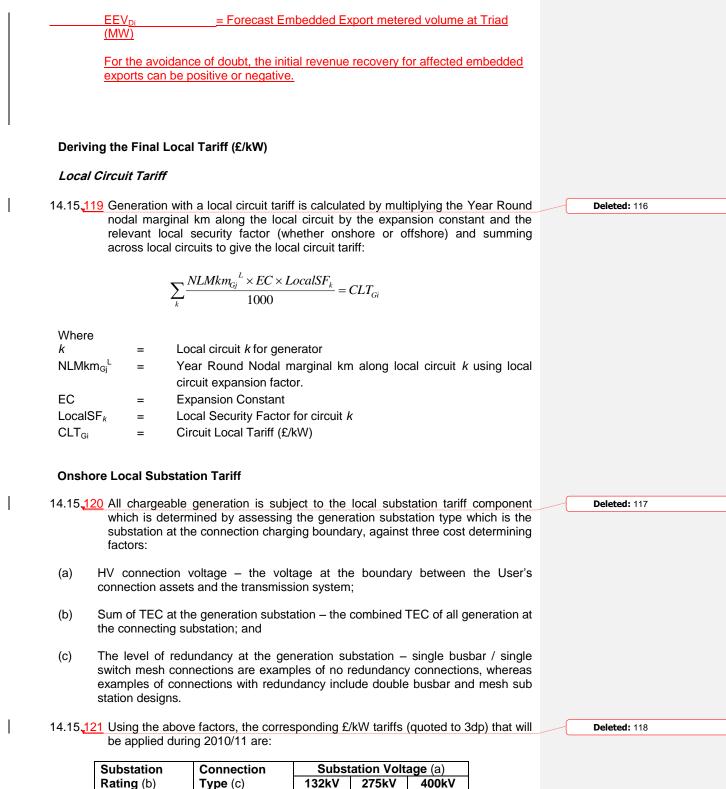
Where:

 Year Round Initial Transport Revenue Recovery for <u>gross GSP</u> group demand

14.15.118The initial revenue recovery for Embedded Exports is the Embedded Export Tariff multiplied by the total forecast volume of Embedded Export at triad:

$$ITRR_{EE} = \sum_{Di=1}^{14} (EET_{Di} \times EEV_{Di})$$

<u>Where</u>


ITTREE

= Initial Revenue impact for Embedded Exports

Page 27 of 63

V1.12-01 April 2016

Deleted: 114

Page 28 of 63

No redundancy

<1320MW

0.133

0.081

V1.12-01 April 2016

0.065

I

1

I

1

<1320MW	Redundancy	0.301	0.192	0.155
>=1320MW	No redundancy	n/a	0.257	0.208
>=1320MW	Redundancy	n/a	0.417	0.336

- 14.15,122 The process for calculating Local Substation Tariffs will be carried out for the first year of the price control and will subsequently be indexed by RPI for each subsequent year of the price control period.
- 14.15,123 The effective Local Tariff (£/kW) is calculated as the sum of the circuit and substation onshore and/or offshore components:

$$ELT_{Gi} = CLT_{Gi} + SLT_{Gi}$$

Where

ELT _{Gi}	=	Effective Local Tariff (£/kW)
SLT_{Gi}	=	Substation Local Tariff (£/kW)

14.15,124 Where tariffs do not change mid way through a charging year, final local tariffs will be the same as the effective tariffs: T_{Gi}

ELT _{Gi}	=	Ľ
Where		
LT _{Gi}	=	F

Final Local Tariff (£/kW) =

14.15,125 Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$LT_{Gi} = \frac{12 \times \left(ELT_{Gi} \times \sum_{Gi=1}^{21} G_{Gi} - FLL_{Gi}\right)}{b \times \sum_{Gi=1}^{21} G_{Gi}} \quad \text{and} \quad FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{21} D_{Di}}$$

Where:

Where

Gi

b = number of months the revised tariff is applicable for

FLL = Forecast local liability incurred over the period that the original tariff is applicable for

14.15,126 For the purposes of charge setting, the total local charge revenue is calculated by:

confidential information received from Users)

in kW (as applicable) for each generator (based on analysis of

$$\begin{aligned} LCRR_{G} &= \sum_{j=Gi} LT_{Gi} * G_{j} \\ \end{aligned}$$
 Where

$$\begin{aligned} LCRR_{G} &= Local \ Charge \ Revenue \ Recovery \\ G_{i} &= Forecast \ chargeable \ Generation \ or \ Transmission \ Entry \ Capacity \end{aligned}$$

Offshore substation local tariff

platform components.

14.15,127 All offshore chargeable generation is subject to an offshore substation tariff. The offshore substation tariff shall be the sum of transformer, switchgear and

Deleted: 124

Deleted: 119

Deleted: 120

Deleted: 121

Deleted: 122

Deleted: 123

Page 29 of 63

I

I

- 14.15,128 Each tariff component, expressed in £/kW, shall be the ratio of the Offshore Transmission Owner revenue (£) and rating associated with the transformers, switchgear or platform (kW) at each offshore substation. The Offshore Transmission Owner revenue of each tariff component shall include that associated with asset spares. In the case of the platform component, the relevant rating shall be the lower of the transformer or switchgear ratings. As with the offshore circuit expansion factors, the Offshore Transmission Owner revenue associated with each tariff component shall be averaged over the remaining years of the NETSO price control.
- 14.15,129 Offshore Transmission Owner revenue associated with interest during construction and project development overheads will be attributed to the relevant asset category with which it is associated. If these or any other costs included in the Offshore Transmission Owner revenue are not readily attributable to a given asset category, they will be pro-rated across the various asset categories based on their relative cost.
 - 14.15,130 For 2010/11 a discount of £0.345590/kW shall be provided to the offshore substation tariff to reflect the average cost of civil engineering for onshore substations. This will be inflated by RPI each year and reviewed every price control period.
 - 14.15,131 Offshore substation tariffs shall be reviewed at the start of every onshore price control period. For each subsequent year within the price control period, these shall be inflated in the same manner as the associated Offshore Transmission Owner Revenue.
- 14.15,132 The revenue from the offshore substation local tariff is calculated by:

$$SLTR = \sum_{\substack{All \text{ offshore}\\ \text{substatios}}} \left(SLT_k \times \sum_k Gen_k \right)$$

Where:

SLT _k	=	the offshore substation tariff for substation k
Gen _k	=	the generation connected to offshore substation k

The Residual Tariff

14.15,133 The total revenue to be recovered through TNUoS charges is determined each year with reference to the Transmission Licensees' Price Control formulas less the costs expected to be recovered through Pre-Vesting connection charges. Hence in any given year t, a target revenue figure for TNUoS charges (TRR_t) is set after adjusting for any under or over recovery for and including, the small generators discount is as follows:

$$TRR_t = R_t - PVC_t - SG_{t-1}$$

Where

- TRRt = TNUoS Revenue Recovery target for year t
 Rt = Forecast Revenue allowed under The Company's RPI-X Price Control Formula for year t (this term includes a number of adjustments, including for over/under recovery from the previous year). For further information, refer to Special Condition D2 of The Company's Transmission Licence.
 PVCt = Forecast Revenue from Pre-Vesting connection charges for year t
- SG_{t-1} = The proportion of the under/over recovery included within R_t which relates to the operation of statement C13 of the The Company Transmission Licence. Should the operation of statement C13 result in an under

Page 30 of 63

Deleted: 125

Deleted: 126

Deleted: 127

Deleted: 128

Deleted: 129

recovery in year t – 1, the SG figure will be positive and vice versa for an over recovery.

14.15,134 In normal circumstances, the revenue forecast to be recovered from the initial transport tariffs will not equate to the total revenue target. This is due to a number of factors. For example, the transport model assumes, for simplicity, smooth incremental transmission investments can be made. In reality, transmission investment can only be made in discrete 'lumps'. The transmission system has been planned and developed over a long period of time. Forecasts and assessments used for planning purposes will not have been borne out precisely by events and therefore some distinction between an optimal system for one year and the actual system can be expected.

14.15,135 As a result of the factors above, in order to ensure adequate revenue recovery, a constant non-locational **Residual Tariff** for generation and demand is calculated, which includes infrastructure substation asset costs. It is added to the initial transport tariffs for both Peak Security and Year Round backgrounds so that the correct generation / demand revenue split is maintained and the total revenue recovery is achieved.

$$RT_{D} = \frac{(p \times TRR) - ITRR_{DPS} - ITRR_{DYR} - ITRR_{EE}}{\sum_{di=1}^{14} D_{Di}}$$
$$RT_{G} = \frac{[(1-p) \times TRR] - ITRR_{GPS} - ITRR_{GYRNS} - ITRR_{GYRS} - LCRR_{G}}{n}$$

$$\sum_{Gi=1}^{n} G_{Gi}$$

Where

Residual Tariff (£/MW)

Proportion of revenue to be recovered from demand

Final £/kW Tariff

RT

р

14.15,<u>136</u> The effective Transmission Network Use of System tariff (TNUoS) for generation and gross demand can now be calculated as the sum of the initial transport wider tariffs for Peak Security and Year Round backgrounds, the non-locational residual tariff and the local tariff:

$$ET_{Gi} = \frac{ITT_{GiPS} + ITT_{GiYRNS} + ITT_{GiYRNS} + RT_{G}}{1000} + LT_{Gi}$$
$$= ET_{Di} = \frac{ITT_{DiPS} + ITT_{DiYR} + RT_{D}}{1000}$$

Where

ET_{Gi} = Effective Generation TNUoS Tariff expressed in £/kW (ET_{Gi} would only be applicable to a Power Station with a PS flag of 1 and ALF of 1; in all other circumstances ITT_{GiPS}, ITT_{GiYRNS} and ITT_{GiYRS} will be applied using Power Station specific data)

ET_{Di} = Effective Gross Demand TNUoS Tariff expressed in £/kW

Page 31 of 63

Deleted: 131

Deleted: 132

 $RT_D = \frac{(p \times TRR)}{(p \times TRR)}$

Deleted: 133

Ĩ

Deleted: ¶

The effective Transmission Network Use of System tariff (TNUoS) for affected embedded exports and grandfathered embedded exports can now be calculated by expressing the embedded export tariff in £/kW values:

$$ET_{EEi} = \frac{EET_{Di}}{1000}$$

Where **Where**

ET_{EEi} = Effective Embedded Export TNUoS Tariff expressed in £/kW

For the purposes of the annual Statement of Use of System Charges ET_{Gi} will be published as ITT_{GIPS} ; ITT_{GIYRS} , ITT_{GIYRS} , RT_G and LT_{Gi}

14.15,<u>137</u> Where tariffs do not change mid way through a charging year, final demand and generation tariffs will be the same as the effective tariffs.

$$FT_{Gi} = ET_{Gi}$$

$$FT_{Di} = ET_{Di}$$

$$FT_{EEAi} = ET_{EEi}$$

14.15.<u>138</u> Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$FT_{Gi} = \frac{12 \times \left(ET_{Gi} \times \sum_{Gi=1}^{20} G_{Gi} - FL_{Gi}\right)}{b \times \sum_{Gi=1}^{27} G_{Gi}}$$

$$FT_{EEi} = \frac{12 \times (ET_{EEi} \times \sum_{Di=1}^{14} EET_{Di} - FL_{Di})}{b \times \sum_{Di=1}^{14} EET_{Di}} \text{ and } FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{14} EET_{Di}}$$

Where:

1

b = number of months the revised tariff is applicable for FL = Forecast liability incurred over the period that the original tariff is applicable for

Note: The ET_{Gi} element used in the formula above will be based on an individual Power Stations PS flag and ALF for Power Station G_{Gi}, aggregated to ensure overall correct revenue recovery.

14.15.1.39 If the final gross demand TNUoS Tariff results in a negative number then this is collared to £0/kW with the resultant non-recovered revenue smeared over the remaining demand zones:

 $NRRT_{D} = \frac{\sum_{i=1}^{2} \left(FT_{Di} \times D_{Di} \right)}{\sum_{i=\tau+1}^{14} D_{Di}}$

If
$$FT_{Di} < 0$$
, then $i = 1$ to z

Therefore,

Page 32 of 63

V1.12-01 April 2016

Deleted: 134

Deleted: 135

|

ļ

Therefore the revised Final Tariff for the <u>gross</u> demand zones with positive Final tariffs is given by:

	For <i>i</i> = 1 to z:	$RFT_{Di} = 0$			
	For <i>i</i> =z+1 to 14:	$RFT_{Di} = FT_{Di} + NRRT_{D}$			
Where NRRT _D RFT _{Di}	 Non Recovered Reve Revised Final Tariff (£ 				
	The tariffs applicable for a Statement of Use of Syst website. Archived tariff in website.	em Charges, which is av	ailable from the Charging	Deleted: 137	
•	The zonal maps reference Charges and available on for the charging year in q TNUoS zones.	the Charging website co	ontain detailed information	Deleted: 138	
14.15 <mark>,142</mark>	New Grid Supply Points wil	l be classified into zones o	on the following basis:	Deleted: 139	
	demand zones, according t ated for energy market settl		h the Grid Supply Point is		
and, marg	generation zones, with refe where close to a bounda ginal costs arising from trans e zone, which contains the r	ary between existing zon sport model studies. The	es, with reference to the GSP will then be allocated		
	The Company has availab			Deleted: 140	
	tariff model template and c values of generation and c and data will enable the b allow sensitivity analysis o and demand to be under Team and whilst it is free distribution and commercia	demand connection points asic nodal charges to be concerning alternative de aken. The model is av of charge, it is provided u	to the NETS. The model determined and will also velopments of generation ailable from the Charging		
14.15 <mark>,144</mark>	The Company will be pleas			Deleted: 141	
	a separate study contract i of System Charges. Pleas				
	The factors which will affer include-;	ect the level of TNUoS c	harges from year to year	Deleted: 142	
		revious year), stant,	tem effect of any under/over		
	Pa	ge 33 of 63	V1.12– 01 April 2016		

- the ALF of a generator
- changes in the transmission network
- HVDC circuit impedance calculation
- changes in the pattern of generation capacity and demand.
- changes in the pattern of embedded exports

14.15,146 In accordance with Standard Licence Condition C13, generation directly connected to the NETS 132kV transmission network which would normally be subject to generation TNUoS charges but would not, on the basis of generating capacity, be liable for charges if it were connected to a licensed distribution network qualifies for a reduction in transmission charges by a designated sum, determined by the Authority. Any shortfall in recovery will result in a unit amount increase in gross demand charges to compensate for the deficit. Further information is provided in the Statement of the Use of System Charges.

Stability & Predictability of TNUoS tariffs

14.15,<u>147</u> A number of provisions are included within the methodology to promote the stability and predictability of TNUoS tariffs. These are described in 14.29.

Deleted: 143

Deleted: 144

14.16 Derivation of the Transmission Network Use of System Energy Consumption Tariff and Short Term Capacity Tariffs

- 14.16.1 For the purposes of this section, Lead Parties of Balancing Mechanism (BM) Units that are liable for Transmission Network Use of System Demand Charges are termed Suppliers.
- 14.16.2 Following calculation of the Transmission Network Use of System £/kW Gross Demand Tariff (as outlined in Chapter 2: Derivation of the TNUoS Tariff) for each GSP Group is calculated as follows:

$$p/kWh Tariff = (NHHD_{E} * \pounds/kW Tariff - FL_{G}) *100$$

NHHC_G

Where:

 \pounds/kW Tariff = The \pounds/kW Effective <u>Gross</u> Demand Tariff (\pounds/kW), as calculated previously, for the GSP Group concerned.

 \textbf{NHHD}_{F} = The Company's forecast of Suppliers' non-half-hourly metered Triad Demand (kW) for the GSP Group concerned. The forecast is based on historical data.

 FL_{G} = Forecast Liability incurred for the GSP Group concerned.

 $\rm NHHC_{G}$ = The Company's forecast of GSP Group non-half-hourly metered total energy consumption (kWh) for the period 16:00 hrs to 19:00hrs inclusive (i.e. settlement periods 33 to 38) inclusive over the period the tariff is applicable for the GSP Group concerned.

Short Term Transmission Entry Capacity (STTEC) Tariff

14.16.3 The Short Term Transmission Entry Capacity (STTEC) tariff for positive zones is derived from the Effective Tariff (ET_{Gi}) annual TNUoS £/kW tariffs (14.15.112). If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the STTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (i.e. over the whole financial year, not just the period that the STTEC is applicable for). STTECs will not be reconciled following a mid year charge change. The premium associated with the flexible product is associated with the analysis that 90% of the annual charge is linked to the system peak. The system peak is likely to occur in the period of November to February inclusive (120 days, irrespective of leap years). The calculation for positive generation zones is as follows:

$$\frac{FT_{Gi} \times 0.9 \times STTEC \ Period}{120} = STTEC \ tariff \ (\pounds/kW/period)$$

Where:

FT	=	Final annual TNUoS Tariff expressed in £/kW
Gi	=	Generation zone
STTEC Period	=	A period applied for in days as defined in the CUSC

Page 35 of 63

- 14.16.4 For the avoidance of doubt, the charge calculated under 14.16.3 above will represent each single period application for STTEC. Requests for multiple /STTEC periods will result in each STTEC period being calculated and invoiced separately.
- 14.16.5 The STTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.

Limited Duration Transmission Entry Capacity (LDTEC) Tariffs

14.16.6 The Limited Duration Transmission Entry Capacity (LDTEC) tariff for positive zones is derived from the equivalent zonal STTEC tariff for up to the initial 17 weeks of LDTEC in a given charging year (whether consecutive or not). For the remaining weeks of the year, the LDTEC tariff is set to collect the balance of the annual TNUoS liability over the maximum duration of LDTEC that can be granted in a single application. If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the LDTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (ie over the whole financial year, not just the period that the STTEC is applicable for). LDTECs will not be reconciled following a mid year charge change:

Initial 17 weeks (high rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.9 \times 7}{120}$$

Remaining weeks (low rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.1075 \times 7}{316 - 120} \times (1 + P)$$

where FT is the final annual TNUoS tariff expressed in £/kW; G_i is the generation TNUoS zone; and P is the premium in % above the annual equivalent TNUoS charge as determined by The Company, which shall have the value 0.

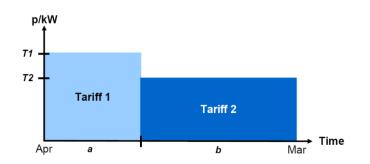
- 14.16.7 The LDTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.
- 14.16.8 The tariffs applicable for any particular year are detailed in The Company's **Statement of Use of System Charges** which is available from the **Charging website**. Historical tariffs are also available on the **Charging website**.

1

14.17 Demand Charges

Parties Liable for Demand Charges

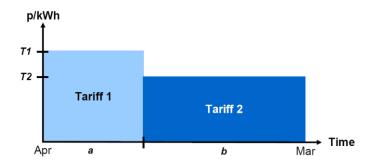
- 14.17.1 Demand charges are subdivided into charges for gross demand, energy and embedded export. The following parties shall be liable for some or all of the categories of demand charges:
 - The Lead Party of a Supplier BM Unit;
 - Power Stations with a Bilateral Connection Agreement;
 - Parties with a Bilateral Embedded Generation Agreement
- 14.17.2 Classification of parties for charging purposes, <u>section 14.26</u>, provides an illustration of how a party is classified in the context of Use of System charging and refers to the paragraphs most pertinent to each party.


Basis of Gross Demand Charges

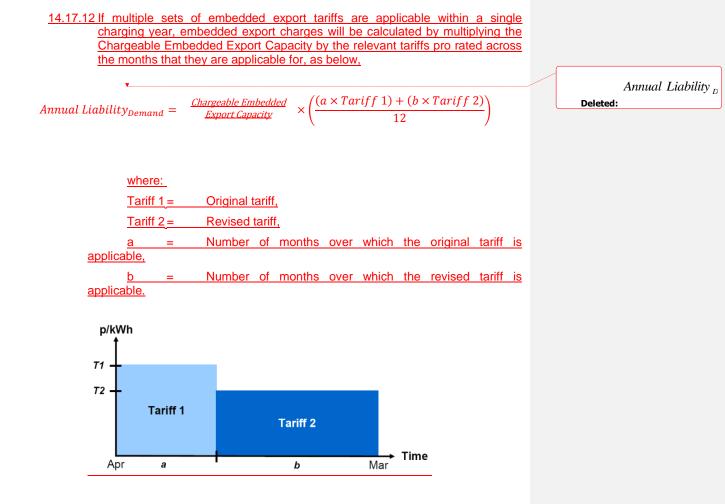
- 14.17.3 <u>Gross d</u>emand charges are based on a de-<u>minimis</u> £0/kW charge for Half Hourly and £0/kWh for Non Half Hourly metered demand.
 - 14.17.4 Chargeable <u>Gross</u> Demand Capacity is the value of Triad <u>gross</u> demand (kW). Chargeable Energy Capacity is the energy consumption (kWh). The definition of both these terms is set out below.
 - 14.17.5 If there is a single set of <u>gross</u> demand tariffs within a charging year, the Chargeable <u>Gross</u> Demand Capacity is multiplied by the relevant <u>gross</u> demand tariff, for the calculation of <u>gross</u> demand charges.
 - 14.17.6 If there is a single set of energy tariffs within a charging year, the Chargeable Energy Capacity is multiplied by the relevant energy consumption tariff for the calculation of energy charges..
 - 14.17.7 If multiple sets of <u>gross</u> demand tariffs are applicable within a single charging year, <u>gross</u> demand charges will be calculated by multiplying the Chargeable <u>Gross</u> Demand Capacity by the relevant tariffs pro rated across the months that they are applicable for, as below,

	V										
	Annual Liability _{Demand} =			<u>Chargeable Gross</u> <u>Demand Capacity</u>		$\times \left(\frac{(a \times Tariff 1)}{a}\right)$		$\frac{1) + (b \times Tariff}{12}$		<u>2)</u>)	
	where	:						_			
	Tariff	1 =	Original t	tariff	f,						
	Tariff	2=	Revised	tarif	f,						
applica	a able,	=	Number	of	months	over	which	the	original	tariff	is
applica	b able.	=	Number	of	months	over	which	the	revised	tariff	is

Deleted: minimus


Deleted: Annual Liability _D

14.17.8 If multiple sets of energy tariffs are applicable within a single charging year, energy charges will be calculated by multiplying relevant Tariffs by the Chargeable Energy Capacity over the period that that the tariffs are applicable for and summing over the year.


Annual Liability $_{Energy} = Tariff \ 1 \times \sum_{TI_s}^{TI_E} Chargeable Energy Capacity + Tariff \ 2 \times \sum_{TZ_s}^{TI_E} Chargeable Energy Capacity$

Where: T1s Start date for the period for which the original tariff is = applicable, End date for the period for which the original tariff is T1_E applicable, Start date for the period for which the revised tariff is T2s _ applicable, End date for the period for which the revised tariff is T2_E = applicable.

Basis of Embedded Export Charges

- 14.17.9 Embedded export charges are based on a £/kW charge for Half Hourly metered embedded export.
- <u>14.17.10 Chargeable Embedded Export Capacity is the value of Embedded Export at</u> <u>Triad (kW). The definition of this term is set out below.</u>
- 14.17.11 If there is a single set of embedded export tariffs within a charging year, the Chargeable Embedded Export Capacity is multiplied by the relevant embedded export tariff, for the calculation of embedded export charges.

Supplier BM Unit

14.17,<u>13</u> A Supplier BM Unit charges will be the sum of its energy, <u>gross_demand_and</u> <u>embedded export</u> liabilities where:

- The Chargeable <u>Gross</u> Demand Capacity will be the average of the Supplier BM Unit's half-hourly metered <u>gross</u> demand during the Triad (and the £/kW tariff),
- The Chargeable Embedded Export Capacity will be the average of the Supplier BM Unit's half-hourly metered embedded export during the Triad (and the £/kW tariff), and
- The Chargeable Energy Capacity will be the Supplier BM Unit's non halfhourly metered energy consumption over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year (and the p/kWh tariff).

Power Stations with a Bilateral Connection Agreement and Licensable Generation with a Bilateral Embedded Generation Agreement

Page 39 of 63

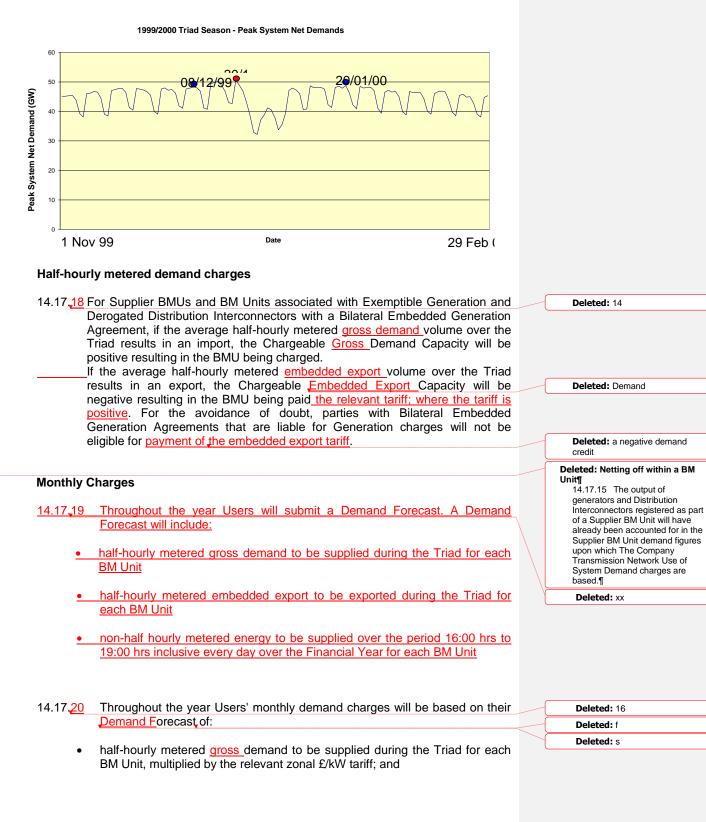
V1.12-01 April 2016

USC v1.12	
14.17, <u>14</u> The Chargeable <u>Gross</u> Demand Capacity for a Power Station with a Bilateral Connection Agreement or Licensable Generation with a Bilateral Embedded Generation Agreement will be based on the average of the <u>gross</u> import over each Triad leg of the BM Units associated with the Power Station (in Appendix C of its Bilateral Connection Agreement or Bilateral Embedded Generation Agreement, including metered additional load) during the Triad.	1
Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement	
14.17, <u>15,The demand charges for Exemptible Generation and Derogated Distribution</u> Interconnector with a Bilateral Embedded Generation Agreement will be the sum of its gross demand and embedded export liabilities where:	
 The Chargeable <u>Gross</u> Demand Capacity for Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement will be based on the average of the metered <u>gross demand</u> of 	
each BM Unit specified in Appendix C of the Bilateral Embedded Generation Agreement during the Triad.	
 The Chargeable Embedded Export Capacity for Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement will be based on the average of the metered embedded export of each BM Unit specified in Appendix C of the Bilateral Embedded Generation Agreement during the Triad. 	
mall Generators Tariffs	
14.17, <u>16</u> In accordance with Standard Licence Condition C13, any under recovery from the MAR arising from the small generators discount will result in a unit amount of increase to all GB gross_demand tariffs.	
he Triad	
14.17,17 The Triad is used as a short hand way to describe the three settlement periods of highest transmission system demand within a Financial Year, namely the half hour settlement period of system peak <u>net</u> demand and the two half hour settlement periods of next highest <u>net</u> demand, which are separated from the	

system peak<u>net</u> demand and from each other by at least 10 Clear Days, between November and February of the Financial Year inclusive. Exports on directly connected Interconnectors and Interconnectors capable of exporting more than 100MW to the Total System shall be excluded when determining the

system peak net demand. An illustration is shown below.

I


Deleted: 10

Deleted: net

Deleted: 11 Deleted: An

Deleted: volume

Deleted: 12

- half-hourly metered embedded export to be supplied during the Triad for each BM Unit, multiplied by the relevant zonal £/kW tariff; and
- non-half hourly metered energy to be supplied over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year for each BM Unit, multiplied by the relevant zonal p/kWh tariff

Users' annual TNUoS demand charges are based on these forecasts and are split evenly over the 12 months of the year. Users have the opportunity to vary their demand forecasts on a quarterly basis over the course of the year, with the demand forecast requested in February relating to the next Financial Year. Users will be notified of the timescales and process for each of the quarterly updates. The Company will revise the monthly Transmission Network Use of System demand charges by calculating the annual charge based on the new forecast, subtracting the amount paid to date, and splitting the remainder evenly over the remaining months. For the avoidance of doubt, only positive demand forecasts (i.e. representing <u>a net</u> import from the system) will be <u>used in the calculation of charges</u>.

Demand forecasts for a User will be considered positive where:

- The sum of the gross demand forecast and embedded export forecast is positive; and
- The non-half hourly metered energy forecast is positive.

14.17.21 Users should submit reasonable forecasts of gross demand, embedded export and energy in accordance with the CUSC. The Company shall use the following methodology to derive a forecast to be used in determining whether a User's forecast is reasonable, in accordance with the CUSC, and this will be used as a replacement forecast if the User's total forecast is deemed unreasonable. The Company will, at all times, use the latest available Settlement data.

For existing Users:

- i) The User's Triad <u>gross</u> demand<u>and embedded export</u> for the preceding Financial Year will be used where User settlement data is available and where The Company calculates its forecast before the Financial Year. Otherwise, the User's average weekday settlement period 35 half-hourly metered (HH) <u>gross</u> demand <u>and embedded export</u> in the Financial Year to date is compared to the equivalent average <u>gross</u> demand<u>and</u> <u>embedded export</u> for the corresponding days in the preceding year. The percentage difference is then applied to the User's HH <u>gross</u> demand<u>and</u> <u>embedded export</u> at Triad in the preceding Financial Year to derive a forecast of the User's HH <u>gross</u> demand <u>and embedded export</u> at Triad for this Financial Year.
- ii) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day in the Financial Year to date is compared to the equivalent energy consumption over the corresponding days in the preceding year. The percentage difference is then applied to the User's total NHH energy consumption in the preceding Financial Year to derive a forecast of the User's NHH energy consumption for this Financial Year.

For new Users who have completed a Use of System Supply Confirmation Notice in the current Financial Year:

Page 42 of 63

V1.12-01 April 2016

Deleted: accepted

1

iii) The User's average weekday settlement period 35 half-hourly metered (HH) gross demand and embedded export over the last complete month for which The Company has settlement data is calculated. Total system average HH gross demand and embedded export for weekday settlement period 35 for the corresponding month in the previous year is compared to total system HH_gross demand and embedded export at Triad in that year and a percentage difference is calculated. This percentage is then applied to the User's average HH gross demand and embedded export for weekday settlement period 35 over the last month to derive a forecast of the User's HH gross demand and embedded export at Triad for this Financial Year.

- iv) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day over the last complete month for which The Company has settlement data is noted. Total system NHH energy consumption over the corresponding month in the previous year is compared to total system NHH energy consumption over the remaining months of that Financial Year and a percentage difference is calculated. This percentage is then applied to the User's NHH energy consumption over the month described above, and all NHH energy consumption in previous months is added, in order to derive a forecast of the User's NHH metered energy consumption for this Financial Year.
- 14.17.22 14.28 Determination of The Company's Forecast for Demand Charge Purposes illustrates how the demand forecast will be calculated by The Company.

Reconciliation of Demand Charges

14.17,23 The reconciliation process is set out in the CUSC. The demand reconciliation process compares the monthly charges paid by Users against actual outturn charges. Due to the Settlements process, reconciliation of demand charges is carried out in two stages; initial reconciliation and final reconciliation.

Initial Reconciliation of demand charges

14.17,24 The initial reconciliation process compares Users' demand forecasts and corresponding monthly charges paid over the year against actual outturn data (using latest Settlement data available at the time) and corresponding charges. Initial reconciliation is carried out in two parts; Initial Reconciliation Part 1 deals with the reconciliation of half-hourly metered demand charges and Initial Reconciliation Part 2 deals with the reconciliation of non-half-hourly metered demand charges.

Initial Reconciliation Part 1– Half-hourly metered demand

- 14.17.25 The Company will identify the periods forming the Triad once it has received Central Volume Allocation data from the Settlement Administration Agent for all days up to and including the last day of February. Once The Company has notified Users of the periods forming the Triad they will not be changed even if disputes are subsequently resolved which would change the periods forming the Triad.
- 14.17,<u>26</u> Initial outturn charges for half-hourly metered <u>gross</u> demand will be determined using the latest available data of actual average Triad <u>gross</u> demand (kW) multiplied by the zonal <u>gross</u> demand tariff(s) (£/kW) applicable to the months

Page 43 of 63

V1.12-01 April 2016

Deleted: 18

Deleted: 19

Deleted: 20

Deleted: 1

Сι

l

I

I

l

I

SC v1.12			
	concerned for each zone for that Financial Year. These acture reconciled against the monthly charges paid in respect of demand.		
<u>14.17,2</u>	7 Initial outturn charges for half-hourly metered embedded determined using the latest available data of actual average export (kW) multiplied by the zonal embedded export tariff(s) to the months concerned for each zone for that Financial Yo values are then reconciled against the monthly charges paid hourly embedded exports.	e Triad embedded (£/kW) applicable ear. These actual	Deleted: xx
Initial F	econciliation Part 2 – Non-half-hourly metered demand		
14.17	8 Actual payments for non-half-hourly metered demand will be the latest available actual energy consumption data (kWh) for hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 3 multiplied by the energy consumption tariff(s) (p/kWh) applica concerned for each zone. These actual values are then reco- monthly charges paid in respect of non-half-hourly energy con-	r the period 16:00 38) over the year able to the months onciled against the	Deleted: 23
Final R	econciliation of demand charges		
14.17.2	9 The final reconciliation process compares Users' charges (as the initial reconciliation process using the latest available outturn demand charges (based on final settlement data of demand, embedded exports and non-half-hourly energy cons	data) against final half-hourly gross	Deleted: 24
14.17	<u>Pinal actual charges will be determined using the final dem data taken from the Final Reconciliation Settlement Reconciliation Volume Allocation Run.</u>		Deleted: 25
Recon	iliation of manifest errors		
14.17	1 In the event that a manifest error, or multiple errors in the cal tariffs results in a material discrepancy in aUsers T reconciliation process for all Users qualifying under Section accordance with Sections 14.17,24 to 14.17,30. The reconciliation is not practicable, a post-year reconciliation will the form of a one-off payment.	NUoS tariff, the 14.17. <u>33</u> will be in onciliation process 5. Where such	Deleted: 26 Deleted: 28 Deleted: 20 Deleted: 25
14.17	2 A manifest error shall be defined as any of the following:		Deleted: 27
	 a) an error in the transfer of relevant data between Licensees or Distribution Network Operators; b) an error in the population of the Transport Model with c) an error in the function of the Transport Model; or d) an error in the inputs or function of the Tariff Model. 		
14.17	<u>3</u> A manifest error shall be considered material in the event that the net effect of multiple errors, has an impact of the lesser of the l		Deleted: 28
	a) an error in a User's TNUoS tariff of at least +/-£0.50/		
	Page 44 of 63	V1.12– 01 April 2016	

b) an error in a User's TNUoS tariff which results in an error in the annual TNUoS charge of a User in excess of +/-£250,000.

14.17,<u>34</u> A manifest error shall only be reconciled if it has been identified within the charging year for which the error has an effect. Errors identified outside of this period will not be eligible for reconciliation retrospectively.

Implementation of P272

- 14.17,<u>35</u>.1 BSC modification P272 requires Suppliers to move Profile Classes 5-8 to Measurement Class E - G (i.e. moving from NHH to HH settlement) by April 2016. The majority of these meters are expected to transfer during the preceding Charging Years up until the implementation date of P272 and some meters will have been transferred before the start of 1ST April 2015. A change from NHH to HH within a Charging Year would normally result in Suppliers being liable for TNUoS for part of the year as NHH and also being subject to HH charging. This section describes how the Company will treat this situation in the transition to P272 implementation for the purposes of TNUoS charging; and the forecasts that Suppliers should provide to the Company.
- 14.17,<u>35.2</u> Notwithstanding 14.17,<u>13</u>, for each Charging Year which begins after 31 March 2015 and prior to implementation of BSC Modification P272, all demand associated with meters that are in NHH Profile Classes 5 to 8 at the start of that charging year as well as all meters in Measurement Classes E G will be treated as Chargeable Energy Capacity (NHH) for the purposes of TNUoS charging for the full Charging Year unless 14.17,<u>35.3</u> applies.
 - 14.17,35.3 Where prior to 1st April 2015 a Profile Class meter has already transferred to Measurement Class settlement (HH) the associated Supplier may opt to treat the demand volume as Chargeable Demand Capacity (HH) for the purposes of TNUoS charging up until implementation of P272, subject to meeting conditions in 14.17,35.6. If the associated Supplier does not opt to treat the demand volume as Demand Capacity (HH) it will be treated by default as Chargeable Energy Capacity (NHH) for each full Charging Year up until implementation of P272.
 - 14.17,35.4 The Company will calculate the Chargeable Energy Capacity associated with meters that have transferred to HH settlement but are still treated as NHH for the purposes of TNUoS charging from Settlement data provided directly from Elexon i.e. Suppliers need not Supply any additional information if they accept this default position.
- 14.17,35.5 The forecasts that Suppliers submit to the Company under CUSC 3.10, 3.11 and 3.12 for the purpose of TNUoS monthly billing referred to in 14.17,20 and 14.17,21 for both Chargeable Demand Capacity and Chargeable Energy Capacity should reflect this position i.e. volumes associated those Metering Systems that have transferred from a Profile Class to a Measurement Class in the BSC (NHH to HH settlement) but are to be treated as NHH for the purposes of TNUoS charging should be included in the forecast of Chargeable Energy Capacity and not Chargeable Demand Capacity, unless 14.17,35.3 applies.
 - 14.17,<u>35</u>.6 Where a Supplier wishes for Metering Systems that have transferred from Profile Class to Measurement Class in the BSC (NHH to HH settlement) prior to 1st April 2015, to be treated as Chargeable Demand Capacity (HH/

Page 45 of 63

V1.12-01 April 2016

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 9

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 16

Deleted: 17

Deleted: 29

I

Measurement Class settled) it must inform the Company prior to October 2015. The Company will treat these as Chargeable Demand Capacity (HH / Measurement Class settled) for the purposes of calculating the actual annual liability for the Charging Years up until implementation of P272. For these cases only, the Supplier should notify the Company of the Meter Point Administration Number(s) (MPAN). For these notified meters the Supplier shall provide the Company with verified metered demand data for the hours between 4pm and 7pm of each day of each Charging Year up to implementation of P272 and for each Triad half hour as notified by the Company prior to May of the following Charging Year up until two years after the implementation of P272 to allow reconciliation (e.g. Mav 2017 and May 2018 for the Charging Year 2016/17). Where the Supplier fails to provide the data or the data is incomplete for a Charging Year TNUoS charges for that MPAN will be reconciled as part of the Supplier's NHH BMU (Chargeable Energy Capacity). Where a Supplier opts, if eligible, for TNUoS liability to be calculated on Chargeable Demand Capacity it shall submit the forecasts referred to in 14.17,35.5 taking account of this.

14.17,35.7 The Company will maintain a list of all MPANs that Suppliers have elected to be treated as HH. This list will be updated monthly and will be provided to registered Suppliers upon request.

Further Information

- 14.17,<u>36</u> 14.25 Reconciliation of Demand Related Transmission Network Use of System Charges of this statement illustrates how the monthly charges are reconciled against the actual values for <u>gross</u> demand, <u>embedded export</u> and consumption for half-hourly <u>gross demand</u>, <u>embedded export</u> and non-halfhourly metered demand respectively.
- 14.17,<u>37</u> **The Statement of Use of System Charges** contains the £/kW zonal gross demand tariffs, <u>the £/kW zonal embedded export tariffs</u>, and the p/kWh energy consumption tariffs for the current Financial Year.
- 14.17.<u>38</u> 14.27 Transmission Network Use of System Charging Flowcharts of this statement contains flowcharts demonstrating the calculation of these charges for those parties liable.

Deleted: 29 Deleted: 30

Deleted: 29

Deleted: 31

....

14.24 Example: Calculation of Zonal Gross Demand Tariff

Let us consider all nodes in a demand zone in this example

The table below shows a sample output of the transport model comprising the node, the Peak Security and Year Round marginal km of an injection at the node with a consequent withdrawal at the distributed reference node, the generation sited at the node, scaled to ensure total national generation = total national <u>net</u> demand and the <u>net</u> demand sited at the node.

Demand Zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	<u>Net</u> Demand (MW)
14	ABHA4A	-77.25	-230.25	127
14	ABHA4B	-77.27	-230.12	127
14	ALVE4A	-82.28	-197.18	100
14	ALVE4B	-82.28	-197.15	100
14	AXMI40_SWEB	-125.58	-176.19	97
14	BRWA2A	-46.55	-182.68	96
14	BRWA2B	-46.55	-181.12	96
14	EXET40	-87.69	-164.42	340
14	HINP20	-46.55	-147.14	0
14	HINP40	-46.55	-147.14	0
14	INDQ40	-102.02	-262.50	444
14	IROA20_SWEB	-109.05	-141.92	462
14	LAND40	-62.54	-246.16	262
14	MELK40_SWEB	18.67	-140.75	83
14	SEAB40	65.33	-140.97	304
14	TAUN4A	-66.65	-149.11	55
14	TAUN4B	-66.66	-149.11	55
		Totals		2748

In order to calculate the <u>gross</u> demand tariff we would carry out the following steps:

(i) calculate the demand weighted nodal shadow costs

For this example zone this would be as follows:

Demand zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	Net Demand (MW)	Peak Security Demand Weighted Nodal Marginal km	Year Round Demand Weighted Nodal Marginal km
14	ABHA4A	-77.25	-230.25	127	-3.57	-10.64
14	ABHA4B	-77.27	-230.12	127	-3.57	-10.64
14	ALVE4A	-82.28	-197.18	100	-2.99	-7.17
14	ALVE4B	-82.28	-197.15	100	-2.99	-7.17
14	AXMI40_SWEB	-125.58	-176.19	97	-4.43	-6.22
14	BRWA2A	-46.55	-182.68	96	-1.63	-6.38
14	BRWA2B	-46.55	-181.12	96	-1.63	-6.33
14	EXET40	-87.69	-164.42	340	-10.85	-20.34
14	INDQ40	-102.02	-262.50	444	-16.48	-42.41
14	IROA20_SWEB	-109.05	-141.92	462	-18.33	-23.86
14	LAND40	-62.54	-246.16	262	-5.96	-23.47
14	MELK40_SWEB	18.67	-140.75	83	0.56	-4.25
14	SEAB40	65.33	-140.97	304	7.23	-15.59
14	TAUN4A	-66.65	-149.11	55	-1.33	-2.98
14	TAUN4B	-66.66	-149.11	55	-1.33	-2.98
		Totals		2748	-49.19	-190.43

(ii) sum the Peak Security and Year Round demand weighted nodal shadow costs to give zonal figures. For this example zone this is shown in the above table and is 49.19km for Peak Security background and 190.43km for Year Round background.

(iii) calculate the transport tariffs by multiplying the figures in (ii) above by the expansion constant (& dividing by 1000 to put into units of £/kW):

For this example zone, assuming an expansion constant of $\pm 10.07/MWkm$ and a locational security factor of 1.80:

a) Peak Security tariff – 49.19km <u>* £10.07/MWkm * 1.8</u> = <u>£0.89/kW</u> 1000

Page 49 of 63

b) Year Round tariff -<u>190.43km * £10.07/MWkm * 1.8</u> = <u>£3.45/kW</u> 1000

(iv) We now need to calculate the residual tariff. This is calculated by taking the total revenue to be recovered from demand (calculated as c.73% of total The Company_ TNUoS target revenue for the year), less the revenue which would be recovered through the demand transport tariffs and revenue recovery through embedded export tariffs, divided by total expected gross GSP group demand.

Assuming the total revenue to be recovered from TNUoS is £1067m, the total recovery from <u>gross GSP group</u> demand would be $(73\% \times £1067m) = £779m$. Assuming the total recovery from <u>gross GSP group</u> demand transport tariffs is £140m, total recovery from <u>embedded export tariffs is -£10m</u> and total forecast chargeable <u>gross GSP group</u> demand capacity is 50000MW, the demand residual tariff would be as follows:

 $\frac{\pounds779m - \pounds140m - -\pounds10m}{50,000MW} = \pounds12.98/kW$

 (v) to get to the final tariff, we simply add on the demand residual tariff calculated in (v) to the zonal transport tariffs calculated in (iii(a)) and (iii(b))

For zone 14:

 $\pounds 0.89/kW + \pounds 3.45/kW + \pounds 12.98/kW =$ $\pounds 17.32/kW$

- To summarise, in order to calculate the <u>gross</u> demand tariffs, we evaluate a <u>net</u> demand weighted zonal marginal km cost multiply by the expansion constant and locational security factor then we add a constant (termed the residual cost) to give the overall tariff.
- (vii) The final demand tariff is subject to further adjustment to allow for the minimum £0/kW gross_demand charge. The application of a discount for small generators pursuant to Licence Condition C13 will also affect the final gross_demand tariff.

Deleted: gross

Deleted: 130m

Deleted:	$\pounds779m - \pounds130m$	_
Deleteu:	50000MW	_

14.25 Reconciliation of <u>Gross</u> Demand Related Transmission Network Use of System Charges

This appendix illustrates the methodology used by The Company in the reconciliation of Transmission Network Use of System charges for <u>gross</u> demand. The example highlights the different stages of the calculations from the monthly invoiced amounts, right through to Final Reconciliation.

Monthly Charges

Suppliers provide half-hourly (HH) gross demand and embedded export forecasts and non-halfhourly (NHH) demand forecasts by BM Unit every quarter. An example of such forecasts and the corresponding monthly invoiced amounts, based on tariffs of £10.00/kW for gross demand, £5.00/kW for embedded export and 1.20p/kWh for energy consumption, is as follows:

	Forecast HH Triad <u>Gross</u> Demand <u>HHD_E (</u> kW)	HH <u>Gross</u> <u>Demand</u> Monthly Invoiced Amount (£)	Forecast HH Triad Embedded Export HHEE _E (kW)	<u>HH</u> <u>Embedded</u> <u>Generation</u> <u>Monthly</u> <u>Invoiced</u> <u>Amount (£)</u>	Forecast NHH Energy Consumpti on NHHC _F (kW h)	NHH Monthly Invoiced Amount (£)	Net Monthly Invoiced Amount (£)
Apr	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
May	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jun	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jul	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Aug	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Sep	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Oct	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Nov	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Dec	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Jan	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Feb	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Mar	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Total		72,000		<u>(3,000)</u>		216,000	<u>297</u> ,000

As shown, for the first nine months the Supplier provided a 12,000kW HH triad <u>gross</u> demand forecast, and hence paid HH <u>gross demand</u> monthly charges of £10,000 ((12,000kW x £10.00/kW)/12) for that BM Unit. In January the Supplier provided a revised forecast of 7,200kW, implying a forecast annual charge reduced to £72,000 (7,200kW x £10.00/kW). The Supplier had already paid £90,000, so the excess of £18,000 was credited back to the supplier in three £6,000 instalments over the last three months of the year.

The Supplier provided an embedded export triad forecast of -600kW and hence was paid an embedded export credit of £250 ((600kW x £5.00/kW)/12) for that BM Unit (For the avoidance of doubt, if the embedded export tariff is negative this will result in a debit).

The Supplier also initially provided a 15,000,000kWh NHH energy consumption forecast, and hence paid NHH monthly charges of £15,000 ((15,000,000kWh x 1.2p/kWh)/12) for that BM Unit. In July the Supplier provided a revised forecast of 18,000,000kWh, implying a forecast annual charge increased to £216,000 (18,000,000kWh x 1.2p/kWh). The Supplier had already

paid £45,000, so the remaining £171,000 was split into payments of £19,000 for the last nine months of the year.

The right hand column shows the net monthly charges for the BM Unit.

Initial Reconciliation (Part 1a)

The Supplier's outturn HH triad <u>gross</u> demand, based on <u>initial</u> settlement data (and therefore subject to change in subsequent settlement runs), was 9,000kW. The HH triad <u>gross</u> demand reconciliation charge is therefore calculated as follows:

HHD Reconciliation Charge = $(HHD_A - HHD_F) \times \pounds/kW$ Tariff

= (9,000kW - 7,200kW) x £10.00/kW

= 1,800kW x £10.00/kW

= £18,000

To calculate monthly interest charges, the outturn HHD charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHD charge less the HH <u>gross demand</u> monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 1b)

The Supplier's outturn HH triad embedded export, based on initial settlement data (and therefore subject to change in subsequent settlement runs), was 700kW. The HH triad embedded export reconciliation charge is therefore calculated as follows:

HHEE Reconciliation Charge = (HHEE_A – HHEE_E) x £/kW Tariff

 $= (-500 \text{kW} - -600 \text{kW}) \times \text{\pounds}5.00/\text{kW}$

 $= 100 \text{kW} \times \text{\pounds}5.00/\text{kW}$

= **£500**

To calculate monthly interest charges, the outturn HHEE charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHEE charge less the HH embedded generation monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 2)

The Supplier's outturn NHH energy consumption, based on initial settlement data, was 17,000,000kWh. The NHH energy consumption reconciliation charge is therefore calculated as follows:

Deleted: Please note that payments made to BM Units with a net export over the Triad, based on initial settlement data, will also be reconciled at this stage.¶ As monthly payments will not be made on the basis of a negative forecast, the HHD Reconciliation Charge for an exporting BM Unit will represent the full actual payment owed to that BM Unit (subject to adjustment by subsequent settlement runs). Interest will be calculated as described above.¶

NHHC Reconciliation Charge = $(NHHC_A - NHHC_F) \times p/kWh$ Tariff

100

= <u>(17,000,000kWh - 18,000,000kWh) x 1.20p/kWh</u>

100

= <u>-1,000,000kWh x 1.20p/kWh</u> 100 = **-£12,000**

worked example 4.xls - Initial!J104

The monthly reconciliation amount is equal to the outturn energy consumption charge for that month less the NHH monthly invoiced amount. Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

The net initial TNUoS demand reconciliation charge is therefore $\pounds 6,500$ (£18,000 + $\pounds 500$ - $\pounds 12,000$).

Final Reconciliation

Finally, let us now suppose that after all <u>final</u> Settlement data has been received (up to 14 months after the relevant dates), the outturn HH triad <u>gross</u> demand, <u>HH triad embedded export</u> and NHH energy consumption values were 9,500kW, <u>-550kW</u> and 16,500,000kWh, respectively.

Final HH <u>Gross Demand</u>	= (9,500kW - 9,000kW) x £10.00/kW
<u>Reconciliation Charge</u>	= £5,000
Final HH Embedded Export	= (-550kW500kW) x £5.00/kW
Reconciliation Charge	= -£250

Final NHH Reconciliation Charge = $(16,700,000kWh - 17,000,000kWh) \times 1.20p/kWh$ 100 = -£3,600

Consequently, the net final TNUoS demand reconciliation charge will be $\pounds 1, \underline{150} (\pounds 5,000 + -\pounds 250 + -\pounds 3,600)$.

Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

Outturn data for BM Units with a net export over the Triad will be received at this stage and final reconciliation will be carried out, as required. Interest will be calculated as described above.

Terminology:

 HHD_A = The Supplier's outturn half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

Page 53 of 63

I

 HHD_F = The Supplier's forecast half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

<u>HHEE_A = The Supplier's outturn half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

<u>HHEE_E = The Supplier's forecast half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

NHHC_A = The Supplier's outturn non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1^{st} to March 31^{st} , for the demand zone concerned.

NHHC_F = The Supplier's forecast non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1st to March 31st, for the demand zone concerned.

£/kW Tariff = The £/kW <u>Gross</u> Demand <u>or Embedded Export</u> Tariff as shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

p/kWh Tariff = The Energy Consumption Tariff shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

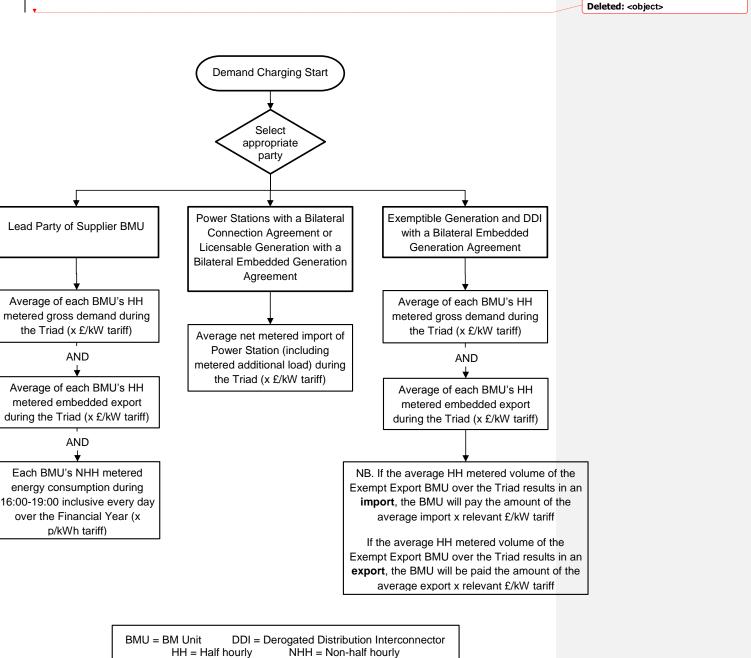
14.26 Classification of parties for charging purposes

In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precendence.

In the following diagrams, the parties liable for Transmission Network Use of System charges are outlined in red.

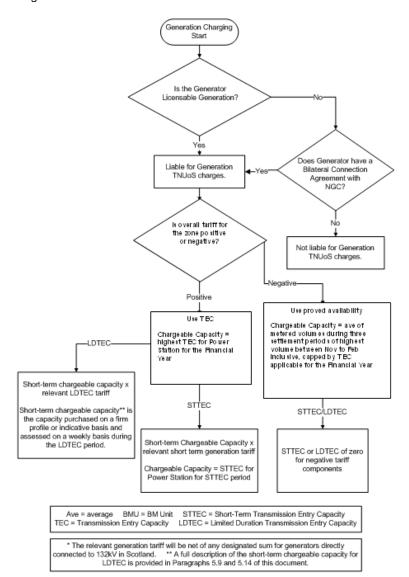
SUPPLIER		
Supplier Use of System Agreeme	ent	
Supplier Supplier BMU1 BMUn		
Demand Charges	Generation Charges	
See 14.17, <mark>13</mark> and 14.17, <mark>18</mark> .	None.	Deleted: 9
		Deleted: 14
Bilateral Connection Agreement Gen Unit BMU1	Appendix C Station Load BMU Load BMU	
Demand Charges	Generation Charges	
See 14.17. <u>18</u> .	See 14.18.1 i) and 14.18.3 to 14.18.9 and	Deleted: 10
	14.18.18.For generators in positive zones, see 14.18.10 to 14.18.12.For generators in negative zones, see 14.18.13 to	
	14.18.17.	

Bilateral Emb	edded Generation	Agreement Ap	pendix C	7
Gen Unit BMU1	Gen Unit BMUn	Station Load BMU	Additional Load BMU	
Demand Charges	7. <u>15</u> and 14.17. <u>18</u> .	Generation Cl See 14.18.1 ii	U	
Jee 14.17 <u>14</u> , 14.17	<u>, 10</u> and 14.17, <u>10</u> .		s in positive zone 14.18.18.	es, see 14.18.3 to


-{	Deleted: 10
-	Deleted: 11
Y	Deleted: 14

14.27 Transmission Network Use of System Charging Flowcharts

The following flowcharts illustrate the parties liable for Demand and Generation TNUoS charges and the calculation of those charges.


In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precedence.

Page 57 of 63

Generation Charges

14.28 Example: Determination of The Company's Forecast for Demand Charge Purposes

The Company will use the latest available settlement data for calculation of HH demand and NHH energy consumption forecasts for the Financial Year.

The Financial Year runs from 1st April to 31st March inclusive and for the purpose of these examples the year April 2005 to March 2006 is used.

Where the preceding year's settlement data is not available at the time that The Company needs to calculate its forecast, The Company will use settlement data from the corresponding period in Financial Year minus two unless indicated otherwise.

All values used with the examples are purely for illustrative purposes only.

i) Half-Hourly (HH) Metered Demand Forecast – Existing User

At the time of calculation of a HH demand forecast before the relevant Financial Year (approximately 10th March), The Company will be aware at a system level which dates will be used for the determination of Triad. However, The Company may not have settlement data at a User level if the Triad dates were to span a period that includes the latter half of February.

When undertaking forecasting before the relevant Financial Year, The Company will use the User's Triad demand for the previous year for its forecast providing it holds User settlement data for this period, thus:

F = T

where:

F = Forecast of User's HH demand at Triad for the Financial Year

T = User's HH gross_demand and embedded export_at Triad in Financial Year minus one

Where The Company determines its forecast within a Financial Year:

F = T * D/P

where:

- F = Forecast of User's HH demand at Triad for the Financial Year
- T = User's HH gross demand and embedded export at Triad in the preceding Financial Year
- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the preceding Financial Year

Where The Company determines its forecast before the relevant Financial Year and User settlement data for the Triad period is not available, The Company shall apply the formula immediately above (within year forecast) but substitute the following definitions for the values T, D, and P:

T = User's HH gross demand and embedded export at Triad in the Financial Year minus two

Page 59 of 63

- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year minus one, to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the Financial Year minus two

Example (where User settlement data is not yet available for the Triad period):

The Company calculates a HH demand forecast on the above methodology at 10th March 2005 for the period 1st April 2005 to 31st March 2006.

Gross demand:

F = 10,000 * 13,200 / 12,000

F = 11,000 kW,Deleted: hwhere:T = 10,000 kW, (period November 2003 to February 2004)Deleted: hD = 13,200 kW, (period 1st April 2004 to 15th February 2005#)Deleted: hP = 12,000 kW, (period 1st April 2003 to 15th February 2004)Deleted: h

Latest date for which settlement data is available.

Embedded export:

F = -280 * -300 / -350

<u>F = -240 kW</u>

where:

T = -280 kW (period November 2003 to February 2004)

D = -300 kW (period 1st April 2004 to 15th February 2005#)

P = -350 kW (period 1st April 2003 to 15th February 2004)

<u># Latest date for which settlement data is available.</u>

ii) Non Half-Hourly (NHH) Metered Energy Consumption Forecast – Existing User

F = E * D/P

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- E = User's summed NHH energy consumption over the hours 16:00 to 19:00 for each day in the preceding Financial Year

Page 60 of 63

- D = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the Financial Year to date
- P = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the period corresponding to D in the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th June 2005 for the period 1st April 2005 to 31st March 2006.

- F = 50,000,000 * 4,400,000 / 4,000,000
- F = 55,000,000 kWh

where:

- E = 50,000,000 kWh (period 1st April 2004 to 31st March 2005)
- D = 4,400,000 kWh (period 1st April 2005 to 15th May 2005#)
- P = 4,000,000 kWh (period 1st April 2004 to 15th May 2004)
- # Latest date for which settlement data is available

Where forecasting before the relevant Financial Year concerned, The Company would in the above example use values for E and P from Financial Year 2003/04 and D from Financial Year 2004/05.

iii) Half-Hourly (HH) Metered Demand Forecast – New User

F = M * T/W

where:

- F = Forecast of User's HH metered <u>gross</u> demand <u>and embedded export</u> at Triad for the Financial Year
 - M = User's HH average weekday period 35 demand for the last complete month for which settlement data is available
- T = Total system HH <u>gross</u> demand <u>and embedded export</u> at Triad in the preceding Financial Year
 - W = Total system HH average weekday settlement period 35 metered demand for the corresponding period to M for the preceding year

Example:

The Company calculates a HH demand forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2004 to 31st March 2006.

Gross demand:

F = 1,000 * 17,000,000 / 18,888,888

0030	, vi. 12	
F =	900 kW,	 Deleted: h
wher	e:	
M =	1,000 kW _v (period 1 st July 2005 to 31 st July 2005)	Deleted: h
T =	17,000,000 kW, (period November 2004 to February 2005)	 Deleted: h
W =	18,888,888 kW _e (period 1 st July 2004 to 31 st July 2004)	Deleted: h
<u>Emb</u>	edded export:	
<u>F =</u>	150 * 7,200,000 / 6,000,000	
<u>F =</u>	<u>180 kW</u>	
wher	<u>e:</u>	

- M = 150 kW (period 1st July 2005 to 31st July 2005)
- T = 7,200,000 kW (period November 2004 to February 2005)
- <u>W = 6,000,000 kW (period 1^{st} July 2004 to 31^{st} July 2004)</u>

iv) Non Half Hourly (NHH) Metered Energy Consumption Forecast – <u>New User</u>

F = J + (M * R/W)

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- J = Residual part month summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day where new User registration takes place other than on the first of a month
- M = User's summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the last complete month for which settlement data is available
- R = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period from the start of that defined under M but for the preceding year and until the end of that preceding Financial Year
- W = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period identified in M but for the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2005 to 31st March 2006.

- F = 500 + (1,000 * 20,000,000,000 / 2,000,000,000)
- F = 10,500 kWh

where:

- J = 500 kWh (period 10th June 2005 to 30th June 2005)
- M = 1,000 kWh (period 1st July 2005 to 31st July 2005)
- R = 20,000,000,000 kWh (period 1st July 2004 to 31st March 2005)
- W = 2,000,000,000 kWh (period 1st July 2004 to 31st July 2004)

CMP265 WACM12

14.15 Derivation of the Transmission Network Use of System Tariff

- 14.15.1 The Transmission Network Use of System (TNUoS) Tariff comprises two separate elements. Firstly, a locationally varying element derived from the DCLF ICRP transport model to reflect the costs of capital investment in, and the maintenance and operation of, a transmission system to provide bulk transport of power to and from different locations. Secondly, a non-locationally varying element related to the provision of residual revenue recovery. The combination of both these elements forms the TNUoS tariff.
- 14.15.2 For generation TNUoS tariffs the locational element itself is comprised of five separate components. Three wider components
 - o Wider Peak Security Component
 - Wider Year Round Not-shared component
 - Wider Year Round component

These components reflect the costs of the wider network under the different generation backgrounds set out in the Demand Security Criterion (for Peak Security component) and Economy Criterion (for both Year Round components) of the Security Standard. The two Year Round components reflect the unshared and shared costs of the wider network based on the diversity of generation plant types.

Two local components -

- o Local substation, and
- Local circuit

These components reflect the costs of the local network.

Accordingly, the wider tariff represents the combined effect of the three wider locational tariff components and the residual element; and the local tariff represents the combination of the two local locational tariff components.

14.15.3 The process for calculating the TNUoS tariff is described below.

The Transport Model

Model Inputs

14.15.4 The DCLF ICRP transport model calculates the marginal costs of investment in the transmission system which would be required as a consequence of an increase in demand or generation at each connection point or node on the transmission system, based on a study of peak demand conditions using both Peak Security and Year Round generation backgrounds on the transmission system. One measure of the investment costs is in terms of MWkm. This is the concept that ICRP uses to calculate marginal costs of investment. Hence, marginal costs are estimated initially in terms of increases or decreases in units of kilometres (km) of the transmission system for a 1 MW injection to the system.

- 14.15.5 The transport model requires a set of inputs representative of the Demand Security and Economy Criterion set out in the Security Standards. These conditions on the transmission system are represented in the Peak Security and Year Round background respectively as follows:
- Nodal generation information per node (TEC, plant type and SQSS scaling factors)
- Nodal <u>net</u> demand information
- Transmission circuits between these nodes
- The associated lengths of these routes, the proportion of which is overhead line or cable and the respective voltage level
- The cost ratio of each of 132kV overhead line, 132kV underground cable, 275kV overhead line, 275kV underground cable and 400kV underground cable to 400kV overhead line to give circuit expansion factors
- The cost ratio of each separate sub-sea AC circuit and HVDC circuit to 400kV overhead line to give circuit expansion factors
- 132kV overhead circuit capacity and single/double route construction information is used in the calculation of a generator's local charge.
- Offshore transmission cost and circuit/substation data
- 14.15.6 For a given charging year "t", the nodal generation TEC figure and generation plant types at each node will be based on the Applicable Value for year "t" in the NETS Seven Year Statement in year "t-1" plus updates to the October of year "t-1". The contracted TECs and generation plant types in the NETS Seven Year Statement include all plant belonging to generators who have a Bilateral Agreement with the TOs. For example, for 2010/11 charges, the nodal generation data is based on the forecast for 2010/11 in the 2009 NETS Seven Year Statement plus any data included in the quarterly updates in October 2009.
- 14.15.7 Scaling factors for different generation plant types are applied on their aggregated capacity for both Peak Security and Year Round backgrounds. The scaling is either Fixed or Variable (depending on the total demand level) in line with the factors used in the Security Standard, for example as shown in the table below.

Generation Plant Type	Peak Security Background	Year Round Background
Intermittent	Fixed (0%)	Fixed (70%)
Nuclear & CCS	Variable	Fixed (85%)
Interconnectors	Fixed (0%)	Fixed (100%)
Hydro	Variable	Variable
Pumped Storage	Variable	Fixed (50%)
Peaking	Variable	Fixed (0%)
Other (Conventional)	Variable	Variable

These scaling factors and generation plant types are set out in the Security Standard. These may be reviewed from time to time. The latest version will be used in the calculation of TNUoS tariffs and is published in the Statement of Use of System Charges

14.15.8 National Grid will categorise plant based on the categorisations described in the Security Standard. Peaking plant will include oil and OCGT technologies and Other (Conv.) represents all remaining conventional plant not explicitly stated elsewhere in the table In the event that a power station is made up of more than one technology type, the type of the higher Transmission Entry Capacity (TEC) would apply.

I

- 14.15.9 Nodal <u>net</u> demand data for the transport model will be based upon the GSP <u>net</u> demand that Users have forecast to occur at the time of National Grid Peak Average Cold Spell (ACS) Demand for year "t" in the April Seven Year Statement for year "t-1" plus updates to the October of year "t-1".
- 14.15.10 Subject to paragraphs 14.15.15 to 14.15.22, Transmission circuits for charging year "t" will be defined as those with existing wayleaves for the year "t" with the associated lengths based on the circuit lengths indicated for year "t" in the April NETS Seven Year Statement for year "t-1" plus updates to October of year "t-1". If certain circuit information is not explicitly contained in the NETS Seven Year Statement, The Company will use the best information available.
- 14.15.11 The circuit lengths included in the transport model are solely those, which relate to assets defined as 'Use of System' assets.
- 14.15.12 For HVDC circuits, the impedance will be calculated to provide flows based on a ratio of the capacity provided by the HVDC link relative to the capacities on all major transmission system boundaries that it parallels.
- 14.15.13 The transport model employs the use of circuit expansion factors to reflect the difference in cost between (i) AC Circuits and HVDC circuits. (ii) underground and sub-sea circuits, (iii) cabled circuits and overhead line circuits, (iv) 132kV and 275kV circuits, (v) 275kV circuits and 400kV circuits, and (vi) uses 400kV overhead line (i.e. the 400kV overhead line expansion factor is 1). As the transport model expresses cost as marginal km (irrespective of cables or overhead lines), some account needs to be made of the fact that investment in these other types of circuit (specifically HVDC and sub-sea cables of various voltages, 400kV underground cable, 275kV overhead line, 275kV underground cable, 132kV overhead line and 132kV underground cable) is more expensive than for 400kV overhead line. This is done by effectively 'expanding' these more expensive circuits by the relevant circuit expansion factor, thereby producing a larger marginal kilometre to reflect the additional cost of investing in these circuits compared to 400kV overhead line. When calculating the local circuit tariff for a generator, alternative 132kV and offshore expansion factors to those used in the remainder of the tariff calculation are applied to the generator's local circuits.
- 14.15.14 The circuit expansion factors for HVDC circuits and AC subsea cables are determined on a case by case basis using the costs which are specific to individual projects containing HVDC or AC subsea circuits.

Adjustments to Model Inputs associated with One-off Works

- 14.15.15 Where, following the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge that related to One-off Works carried out on an onshore circuit, and such One-off Works would affect the value of a TNUoS tariff paid by the User, the transport model inputs associated with the onshore circuit shall be adjusted by The Company to reflect the asset value that would have been modelled if the works had been undertaken on the basis of the original asset design rather than the One-off Works.
- 14.15.16 Subject to paragraphs 14.15.17 to 14.15.19, where, prior to the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge (or has paid a charge to the relevant TO prior to 1st April 2005 on the same principles as a

Page 3 of 64

One-Off Charge) that related to works equivalent to those described under paragraph 14.15.15, an adjustment equivalent to that under paragraph 14.15.15 shall be made to the transport model inputs as follows.

- 14.15.17 Such adjustment shall be made following a User's request, which must be received by The Company no later than the second occurrence of 31st December following the implementation of CUSC Modification CMP203.
- 14.15.18 The Company shall only make an adjustment to the transport model inputs, under paragraph 14.15.16 where the charge was paid to the relevant TO prior to 1st April 2005 where evidence has been provided by the User that satisfies The Company that works equivalent to those under paragraph 14.15.15 were funded by the User.
- 14.15.19 Where a User has sufficient reason to believe that adjustments under paragraph 14.15.18 should be made in relation to specific assets that affect a TNUoS tariff that applies to one of its sites and outlines its reasoning to The Company, The Company shall (upon the User's request and subject to the User's payment of reasonable costs incurred by The Company in doing so) use its reasonable endeavours to assist the User in obtaining any evidence The Company or a TO may have to support its position.
- 14.15.20 Where a request is made under paragraph 14.15.16 on or prior to 31st December in a charging year, and The Company is satisfied based on the accompanying evidence provided to The Company under paragraph 14.15.17 that it is a valid request, the transport model inputs shall be adjusted accordingly and taken into account in the calculation of TNUoS tariffs effective from the year commencing on the 1st April following this and otherwise from the next subsequent 1st April.
- 14.15.21 The following table provides examples of works for which adjustments to transport model inputs would typically apply:

Ref	Description of works	Adjustments
1	Undergrounding - A User requests to underground an overhead line at a greater cost.	As the cable cost will be more expensive than the overhead line (OHL) equivalent, the circuit will be modelled as an OHL.
2	Substation Siting Decision - A User requests to move the existing or a planned substation location to a place that means that the works cannot be justified as economic by the TO.	As the revised substation location may result in circuits being extended. If this is the case, the originally designed circuit lengths (as per the originally designed substation location) would be used in the transport model.
3	Circuit Routing Decision - A User asks to move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	As any circuit route changes that extend circuits are likely to result in a greater TNUoS tariff, the originally designed circuit lengths would be used in the transport model.

Ref	Description of works	Adjustments
4	Building circuits at lower voltages - A User requests lower tower height and therefore a different voltage.	As lower voltage circuits result in a higher expansion factor being used, the circuits would be modelled at the originally designed higher voltage.

14.15.22 The following table provides examples of works for which adjustments to transport model typically would not apply:

Ref	Description of works	Reasoning
1	Undergrounding - A User chooses to have a cable installed via a tunnel rather than buried.	Cable expansion factors are applied in the transport model regardless of whether a cable is tunnelled and buried, so there is no increased TNUoS cost.
2	Additional circuit route works - A User asks for screening to be provided around a new or existing circuit route.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
3	Additional circuit route works - A User requests that a planned overhead line route is built using alternative transmission tower designs.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
4	Additional substation works - A User asks for screening to be provided around a new or existing substation.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
5	Additional substation works - Changes to connection assets (e.g. HV-LV transformers and associated switchgear), metering, additional LV supplies, additional protection equipment, additional building works, etc.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
6	Diversion - A User asks to temporarily move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	The temporary circuit changes will not be incorporated into the transport model.

7	Connection Entry Capacity (CEC) before Transmission Entry Capacity (TEC). A User asks for a connection in a year prior to the relating TEC; i.e. physical connection without capacity.	No additional works are being undertaken, works are simply being completed well in advance of the generator commissioning. The One-Off Charge reflects the depreciated value of the assets prior to commissioning (and any TNUOS being charged).
8	Early asset replacement - An asset is replaced prior to the end of its expected life.	As the asset is simply replaced, no data in the transport model is expected to change.
9	Additional Engineering/ Mobilisation costs - A User requests changes to the planned works, that results in additional operational costs.	The data in the transport model is unaffected.
10	Offshore (Generator Build) - Any of the works described above or under paragraph 14.15.18.	The value of the works will not form part of the asset transfer value therefore will not be used as part of the offshore tariff calculation.
11	Offshore (Offshore Transmission Owner (OFTO) Build) - Any of the works described above or under paragraph 14.15.18.	As part of determining the TNUoS revenue associated with each asset, the value of the One-Off Works would be excluded when pro-rating the OFTO's allowed revenue against assets by asset value.

14.15.23 The Company shall publish any adjusted transport model inputs that it intends to use in the calculation of TNUoS tariffs effective from the year commencing on the following 1st April in the NETS Seven Year Statement October Update. Any further adjustments that The Company makes shall be published by The Company upon the publication of the final TNUoS tariffs for the year concerned.

Model Outputs

- 14.15.24 The transport model takes the inputs described above and carries out the following steps individually for Peak Security and Year Round backgrounds.
- 14.15.25 Depending on the background, the TEC of the relevant generation plant types are scaled by a percentage as described in 14.15.7, above. The TEC of the remaining generation plant types in each background are uniformly scaled such that total national generation (scaled sum of contracted TECs) equals total national ACS Demand.
- 14.15.26 For each background, the model then uses a DCLF ICRP transport algorithm to derive the resultant pattern of flows based on the network impedance required to meet the nodal <u>net</u> demand using the scaled nodal generation, assuming every circuit has infinite capacity. Flows on individual transmission circuits are compared for both backgrounds and the background giving rise to

Page 6 of 64

the highest flow is considered as the triggering criterion for future investment of that circuit for the purposes of the charging methodology. Therefore all circuits will be tagged as Peak Security or Year Round depending upon the background resulting in the highest flow. In the event that both backgrounds result in the same flow, the circuit will be tagged as Peak Security. Then it calculates the resultant total network Peak Security MWkm and Year Round MWkm, using the relevant circuit expansion factors as appropriate.

- 14.15.27 Using these baseline networks for Peak Security and Year Round backgrounds, the model then calculates for a given injection of 1MW of generation at each node, with a corresponding 1MW offtake (<u>net_demand</u>) distributed across all demand nodes in the network, the increase or decrease in total MWkm of the whole Peak Security and Year Round networks. The proportion of the 1MW offtake allocated to any given demand node will be based on total background nodal <u>net</u> demand in the model. For example, with a total GB <u>net_demand</u> of 60GW in the model, a node with a <u>net_demand</u> of 600MW would contain 1% of the offtake i.e. 0.01MW.
- 14.15.28 Given the assumption of a 1MW injection, for simplicity the marginal costs are expressed solely in km. This gives a Peak Security marginal km cost and a Year Round marginal km cost for generation at each node (although not that used to calculate generation tariffs which considers local and wider cost components). The Peak Security and Year Round marginal km costs for demand at each node are equal and opposite to the Peak Security and Year Round nodal marginal km respectively for generation and this is used to calculate demand tariffs. Note the marginal km costs can be positive or negative depending on the impact the injection of 1MW of generation has on the total circuit km.
- 14.15.29 Using a similar methodology as described above in 14.15.27, the local and wider marginal km costs used to determine generation TNUoS tariffs are calculated by injecting 1MW of generation against the node(s) the generator is modelled at and increasing by 1MW the offtake across the distributed reference node. It should be noted that although the wider marginal km costs are calculated for both Peak Security and Year Round backgrounds, the local marginal km costs are calculated on the Year Round background.
- 14.15.30 In addition, any circuits in the model, identified as local assets to a node will have the local circuit expansion factors which are applied in calculating that particular node's marginal km. Any remaining circuits will have the TO specific wider circuit expansion factors applied.
- 14.15.31 An example is contained in 14.21 Transport Model Example.

Calculation of local nodal marginal km

14.15.32 In order to ensure assets local to generation are charged in a cost reflective manner, a generation local circuit tariff is calculated. The nodal specific charge provides a financial signal reflecting the security and construction of the infrastructure circuits that connect the node to the transmission system.

14.15.33 Main Interconnected Transmission System (MITS) nodes are defined as:

- Grid Supply Point connections with 2 or more transmission circuits connecting at the site; or
- connections with more than 4 transmission circuits connecting at the site.

Page 7 of 64

- 14.15.34 Where a Grid Supply Point is defined as a point of supply from the National Electricity Transmission System to network operators or non-embedded customers excluding generator or interconnector load alone. For the avoidance of doubt, generator or interconnector load would be subject to the circuit component of its Local Charge. A transmission circuit is part of the National Electricity Transmission System between two or more circuit-breakers which includes transformers, cables and overhead lines but excludes busbars and generation circuits.
- 14.15.35 Generators directly connected to a MITS node will have a zero local circuit tariff.
- 14.15.36 Generators not connected to a MITS node will have a local circuit tariff derived from the local nodal marginal km for the generation node i.e. the increase or decrease in marginal km along the transmission circuits connecting it to all adjacent MITS nodes (local assets).

Calculation of zonal marginal km

- 14.15.37 Given the requirement for relatively stable cost messages through the ICRP methodology and administrative simplicity, nodes are assigned to zones. Typically, generation zones will be reviewed at the beginning of each price control period with another review only undertaken in exceptional circumstances. Any rezoning required during a price control period will be undertaken with the intention of minimal disruption to the established zonal boundaries. The full criteria for determining generation zones are outlined in paragraph 14.15.42. The number of generation zones set for 2010/11 is 20.
- 14.15.38 Demand zone boundaries have been fixed and relate to the GSP Groups used for energy market settlement purposes.
- 14.15.39 The nodal marginal km are amalgamated into zones by weighting them by their relevant generation or demand capacity.
- 14.15.40 Generators will have zonal tariffs derived from both, the wider Peak Security nodal marginal km; and the wider Year Round nodal marginal km for the generation node calculated as the increase or decrease in marginal km along all transmission circuits except those classified as local assets.

The zonal Peak Security marginal km for generation is calculated as:

$$WNMkm_{j_{PS}} = \frac{NMkm_{j_{PS}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiPS} = \sum_{j \in Gi} WNMkm_{jPS}$$

Where

Gi	=	Generation zone
j	=	Node
NMkm _{PS}	=	Peak Security Wider nodal marginal km from transport model
WNMkm _{PS}	=	Peak Security Weighted nodal marginal km
ZMkm _{PS}	=	Peak Security Zonal Marginal km

Gen = Nodal Generation (scaled by the appropriate Peak Security Scaling factor) from the transport model Similarly, the zonal Year Round marginal km for generation is calculated as

$$WNMkm_{j_{YR}} = \frac{NMkm_{j_{YR}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiYR} = \sum_{j \in Gi} WNMkm_{jYR}$$

Where

NMkm _{YR}	=	Year Round Wider nodal marginal km from transport model
WNMkm _{YR}	=	Year Round Weighted nodal marginal km
ZMkm _{YR}	=	Year Round Zonal Marginal km
Gen	=	Nodal Generation (scaled by the appropriate Year Round Scaling
		factor) from the transport model

14.15.41 The zonal Peak Security marginal km for demand zones are calculated as follows:

$$WNMkm_{j_{PS}} = \frac{-1 * NMkm_{j_{PS}} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{Di_{PS}} = \sum_{j \in Di} WNMkm_{j_{PS}}$$

Where:

I

Di	=	Demand zone
Dem	=	Nodal <u>Net</u> Demand from transport model

Similarly, the zonal Year Round marginal km for demand zones are calculated as follows:

$$WNMkm_{jYR} = \frac{-1 * NMkm_{jYR} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{DiYR} = \sum_{j \in Di} WNMkm_{jYR}$$

- 14.15.42 A number of criteria are used to determine the definition of the generation zones. Whilst it is the intention of The Company that zones are fixed for the duration of a price control period, it may become necessary in exceptional circumstances to review the boundaries having been set. In both circumstances, the following criteria are used to determine the zonal boundaries:
- i.) Zoning is determined using the generation background with the most MWkm of circuits. Zones should contain relevant nodes whose total wider marginal costs

from the relevant generation background (as determined from the output from the transport model, the relevant expansion constant and the locational security factor, see below) are all within +/-£1.00/kW (nominal prices) across the zone. This means a maximum spread of £2.00/kW in nominal prices across the zone.

- ii.) The nodes within zones should be geographically and electrically proximate.
- iii.) Relevant nodes are considered to be those with generation connected to them as these are the only ones, which contribute to the calculation of the zonal generation tariff.
- 14.15.43 The process behind the criteria in 14.15.42 is driven by initially applying the nodal marginal costs from the relevant generation background within the DCLF Transport model onto the appropriate areas of a substation line diagram. Generation nodes are grouped into initial zones using the +/- £1.00/kW range. All nodes within each zone are then checked to ensure the geographically and electrically proximate criteria have been met using the substation line diagram. The established zones are inspected to ensure the least number of zones are used with minimal change from previously established zonal boundaries. The zonal boundaries are finally confirmed using the demand nodal costs from the relevant generation background for guidance.
- 14.15.44 The zoning criteria are applied to a reasonable range of DCLF ICRP transport model scenarios, the inputs to which are determined by The Company to create appropriate TNUoS generation zones. The minimum number of zones, which meet the stated criteria, are used. If there is more than one feasible zonal definition of a certain number of zones, The Company determines and uses the one that best reflects the physical system boundaries.
- 14.15.45 Zones will typically not be reviewed more frequently than once every price control period to provide some stability. However, in exceptional circumstances, it may be necessary to review zoning more frequently to maintain appropriate, cost reflective, locational cost signals. For example, if a new generator connecting to the transmission system would cause the creation of a new generation zone for that generator alone, it may not be appropriate from a cost reflective perspective to wait until the next price control period to undertake this rezoning. If any such rezoning is required, it will be undertaken against a background of minimal change to existing generation zones and in line with the notification process set out in the Transmission Licence and CUSC.

Accounting for Sharing of Transmission by Generators

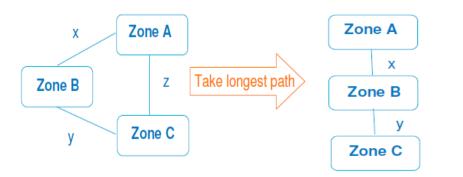
- 14.15.46 A proportion of the marginal km costs for generation are shared incremental km reflecting the ability of differing generation technologies to share transmission investment. This is reflected in charges through the splitting of Year Round marginal km costs for generation into Year Round Shared marginal km costs and Year Round Not-Shared marginal km which are then used in the calculation of the wider £/kW generation tariff.
- 14.15.47 The sharing between different generation types is accounted for by (a) using transmission network boundaries between generation zones set by connectivity between generation charging zones, and (b) the proportion of Low Carbon and Carbon generation behind these boundaries.

Page 10 of 64

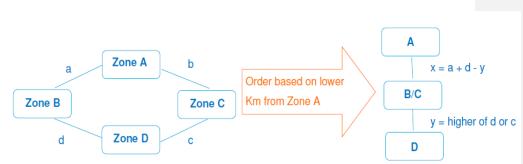
14.15.48 The zonal incremental km for each generation charging zone is split into each boundary component by considering the difference between it and the neighbouring generation charging zone using the formula below;

$$BIkm_{ab} = ZIkm_b - ZIkm_a$$

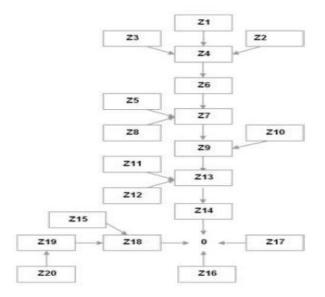
Where;


Blkm_{ab} = boundary incremental km between generation charging zone A and generation charging zone B Zlkm = generation charging zone incremental km.

14.15.49 The table below shows the categorisation of Low Carbon and Carbon generation. This table will be updated by National Grid in the Statement of Use of System Charges as new generation technologies are developed.


Carbon	Low Carbon
Coal	Wind
Gas	Hydro (excl. Pumped Storage)
Biomass	Nuclear
Oil	Marine
Pumped Storage	Tidal
Interconnectors	

Determination of Connectivity


- 14.15.50 Connectivity is based on the existence of electrical circuits between TNUoS generation charging zones that are represented in the Transport model. Where such paths exist, generation charging zones will be effectively linked via an incremental km transmission boundary length. These paths will be simplified through in the case of;
 - Parallel paths the longest path will be taken. An illustrative example is shown below with x, y and z representing the incremental km between zones.

 Parallel zones – parallel zones will be amalgamated with the incremental km immediately beyond the amalgamated zones being the greater of those existing prior to the amalgamation. An illustrative example is shown below with a, b, c, and d representing the the initial incremental km between zones, and x and y representing the final incremental km following zonal amalgamation.

14.15.51 An illustrative Connectivity diagram is shown below:

The arrows connecting generation charging zones and amalgamated generation charging zones represent the incremental km transmission boundary lengths towards the notional centre of the system. Generation located in charging zones behind arrows is considered to share based on the ratio of Low Carbon to Carbon cumulative generation TEC within those zones.

14.15.52 The Company will review Connectivity at the beginning of a new price control period, and under exceptional circumstances such as major system reconfigurations or generation rezoning. If any such reassessment is required, it will be undertaken against a background of minimal change to existing Connectivity and in line with the notification process set out in the Transmission Licence and the CUSC.

Calculation of Boundary Sharing Factors

14.15.53 Boundary sharing factors (BSFs) are derived from the comparison of the cumulative proportion of Low Carbon and Carbon generation TEC behind each of the incremental MWkm boundary lengths using the following formulae –

Page 12 of 64

If $\frac{LC}{LC+C} \le 0.5$, then all Year round marginal km costs are shared i.e. the BSF is 100%.

Where:

LC = Cumulative Low Carbon generation TEC behind the relevant transmission boundary C = Cumulative Carbon generation TEC behind the relevant transmission

C = Cumulative Carbon generation TEC behind the relevant transmission boundary

If
$$\frac{LC}{LC+C}$$
 > 0.5 then the BSF is calculated using the following formula: -

$$BSF = \left(-2 \times \left(\frac{LC}{LC+C}\right)\right) + 2$$

Where:

BSF = boundary sharing factor.

14.15.54 The shared incremental km for each boundary are derived from the multiplication of the boundary sharing factor by the incremental km for that boundary;

$$SBIkm_{ab} = BIIkm_{ab} \ x \ BSF_{ab}$$

Where;

 $SBIkm_{ab}$ = shared boundary incremental km between generation charging zone A and generation charging zone B

 BSF_{ab} = generation charging zone boundary sharing factor.

14.15.55 The shared incremental km is discounted from the incremental km for that boundary to establish the not-shared boundary incremental km. The not-shared boundary incremental km reflects the cost of transmission investment on that boundary accounting for the sharing of power stations behind that boundary.

$$NSBIkm_{ab} = BIkm_{ab} - SBIkm_{ab}$$

Where;

 $NSBIkm_{ab}$ = not shared boundary incremental km between generation charging zone A and generation charging zone B.

14.15.56 The shared incremental km for a generation charging zone is the sum of the appropriate shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRS}$$

Where;

 $ZMkm_{nYRS}$ = Year Round Shared Zonal Marginal km for generation charging zone n.

Page 13 of 64

14.15.57 The not-shared incremental km for a generation charging zone is the sum of the appropriate not-shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRNS}$$

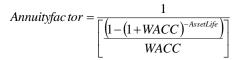
Where;

ZMkm_{nYRNS} = Year Round Not-Shared Zonal Marginal km for generation zone n.

Deriving the Final Local £/kW Tariff and the Wider £/kW Tariff

14.15.58 The zonal marginal km (ZMkm_{Gi}) are converted into costs and hence a tariff by multiplying by the Expansion Constant and the Locational Security Factor (see below). The nodal local marginal km (NLMkm^L) are converted into costs and hence a tariff by multiplying by the Expansion Constant and a Local Security Factor.

The Expansion Constant


- 14.15.59 The expansion constant, expressed in £/MWkm, represents the annuitised value of the transmission infrastructure capital investment required to transport 1 MW over 1 km. Its magnitude is derived from the projected cost of 400kV overhead line, including an estimate of the cost of capital, to provide for future system expansion.
- 14.15.60 In the methodology, the expansion constant is used to convert the marginal km figure derived from the transport model into a £/MW signal. The tariff model performs this calculation, in accordance with 14.15.95 14.15.117, and also then calculates the residual element of the overall tariff (to ensure correct revenue recovery in accordance with the price control), in accordance with 14.15.133.
- 14.15.61 The transmission infrastructure capital costs used in the calculation of the expansion constant are provided via an externally audited process. They also include information provided from all onshore Transmission Owners (TOs). They are based on historic costs and tender valuations adjusted by a number of indices (e.g. global price of steel, labour, inflation, etc.). The objective of these adjustments is to make the costs reflect current prices, making the tariffs as forward looking as possible. This cost data represents The Company's best view; however it is considered as commercially sensitive and is therefore treated as confidential. The calculation of the expansion constant also relies on a significant amount of transmission asset information, much of which is provided in the Seven Year Statement.
- 14.15.62 For each circuit type and voltage used onshore, an individual calculation is carried out to establish a £/MWkm figure, normalised against the 400KV overhead line (OHL) figure, these provide the basis of the onshore circuit expansion factors discussed in 14.15.70 14.15.77. In order to simplify the calculation a unity power factor is assumed, converting £/MVAkm to £/MWkm. This reflects that the fact tariffs and charges are based on real power.
- 14.15.63 The table below shows the first stage in calculating the onshore expansion constant. A range of overhead line types is used and the types are weighted by recent usage on the transmission system. This is a simplified calculation for 400kV OHL using example data:

Page 14 of 64

400kV	400kV OHL expansion constant calculation				
MW	Туре	£(000)/k	Circuit km*	£/MWkm	Weight
А	В	С	D	E = C/A	F=E*D
6500	La	700	500	107.69	53846
6500	Lb	780	0	120.00	0
3500	La/b	600	200	171.43	34286
3600	Lc	400	300	111.11	33333
4000	Lc/a	450	1100	112.50	123750
5000	Ld	500	300	100.00	30000
5400	Ld/a	550	100	101.85	10185
Sum			2500 (G)		285400 (H)
				Weighted Average (J= H/G):	114.160 (J)

*These are circuit km of types that have been provided in the previous 10 years. If no information is available for a particular category the best forecast will be used.

14.15.64 The weighted average £/MWkm (J in the example above) is then converted in to an annual figure by multiplying it by an annuity factor. The formula used to calculate of the annuity factor is shown below:

- 14.15.65 The Weighted Average Cost of Capital (WACC) and asset life are established at the start of a price control and remain constant throughout a price control period. The WACC used in the calculation of the annuity factor is the The Company regulated rate of return, this assumes that it will be reasonably representative of all licensees. The asset life used in the calculation is 50 years; the appropriateness of this is reviewed when the annuity factor is recalculated at the start of a price control period. These assumptions provide a current annuity factor of 0.066.
- 14.15.66 The final step in calculating the expansion constant is to add a share of the annual transmission overheads (maintenance, rates etc). This is done by multiplying the average weighted cost (J) by an 'overhead factor'. The 'overhead factor' represents the total business overhead in any year divided by the total Gross Asset Value (GAV) of the transmission system. This is recalculated at the start of each price control period. The overhead factor used in the calculation of the expansion constant for 2009/10 is 1.8%. The overhead and annuitised costs are then added to give the expansion constant.
- 14.15.67 Using the previous example, the final steps in establishing the expansion constant are demonstrated below:

400kV OHL expansion constant calculation	Ave £/MWkm
OHL	114.160

Page 15 of 64

Final	9.589
Overhead	2.055
Annuitised	7.535

- 14.15.68 This process is carried out for each voltage onshore, along with other adjustments to take account of upgrade options, see 14.15.73, and normalised against the 400KV overhead line cost (the expansion constant) the resulting ratios provide the basis of the onshore expansion factors. The process used to derive circuit expansion factors for Offshore Transmission Owner networks is described in 14.15.78.
- 14.15.69 This process of calculating the incremental cost of capacity for a 400kV OHL, along with calculating the onshore expansion factors is carried out for the first year of the price control and is increased by inflation, RPI, (May–October average increase, as defined in The Company's Transmission Licence) each subsequent year of the price control period. The expansion constant for 2010/11 is 10.633.

Onshore Wider Circuit Expansion Factors

- 14.15.70 Base onshore expansion factors are calculated by deriving individual expansion constants for the various types of circuit, following the same principles used to calculate the 400kV overhead line expansion constant. The factors are then derived by dividing the calculated expansion constant by the 400kV overhead line expansion constant. The factors will be fixed for each respective price control period.
- 14.15.71 In calculating the onshore underground cable factors, the forecast costs are weighted equally between urban and rural installation, and direct burial has been assumed. The operating costs for cable are aligned with those for overhead line. An allowance for overhead costs has also been included in the calculations.
- 14.15.72 The 132kV onshore circuit expansion factor is applied on a TO basis. This is to reflect the regional variation of plans to rebuild circuits at a lower voltage capacity to 400kV. The 132kV cable and line factor is calculated on the proportion of 132kV circuits likely to be uprated to 400kV. The 132kV expansion factor is then calculated by weighting the 132kV cable and overhead line costs with the relevant 400kV expansion factor, based on the proportion of 132kV circuitry to be uprated to 400kV. For example, in the TO areas of National Grid and Scottish Power where there are no plans to uprate any 132kV circuits, the full cable and overhead line costs of 132kV circuit are reflected in the 132kV expansion factor calculation.
- 14.15.73 The 275kV onshore circuit expansion factor is applied on a GB basis and includes a weighting of 83% of the relevant 400kV cable and overhead line factor. This is to reflect the averaged proportion of circuits across all three Transmission Licensees which are likely to be uprated from 275kV to 400kV across GB within a price control period.
- 14.15.74 The 400kV onshore circuit expansion factor is applied on a GB basis and reflects the full costs for 400kV cable and overhead lines.
- 14.15.75 AC sub-sea cable and HVDC circuit expansion factors are calculated on a case by case basis using actual project costs (Specific Circuit Expansion Factors).

Page 16 of 64

- 14.15.76 For HVDC circuit expansion factors both the cost of the converters and the cost of the cable are included in the calculation.
- 14.15.77 The TO specific onshore circuit expansion factors calculated for 2008/9 (and rounded to 2 decimal places) are:

Scottish Hydro Region

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	27.79
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.24	

Scottish Power & National Grid Regions

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	30.22
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.80	

Onshore Local Circuit Expansion Factors

- 14.15.78 The local onshore circuit tariff is calculated using local onshore circuit expansion factors. These expansion factors are calculated using the same methodology as the onshore wider expansion factor but without taking into account the proportion of circuit kms that are planned to be uprated.
- 14.15.79 In addition, the 132kV onshore overhead line circuit expansion factor is sub divided into four more specific expansion factors. This is based upon maximum (winter) circuit continuous rating (MVA) and route construction whether double or single circuit.

400kV underground cable factor:	22.39
275kV underground cable factor:	22.39
132kV underground cable factor:	30.22
400kV line factor:	1.00
275kV line factor:	1.14
132kV line factor (single; <200MVA):	10.00
132kV line factor (double; <200MVA):	8.32
132kV line factor (single; >=200MVA):	7.13
132kV line factor (double; >=200MVA):	4.42

Offshore Circuit Expansion Factors

14.15.80 Offshore expansion factors (£/MWkm) are derived from information provided by Offshore Transmission Owners for each offshore circuit. Offshore expansion factors are Offshore Transmission Owner and circuit specific. Each Offshore Transmission Owner will periodically provide, via the STC, information to derive an annual circuit revenue requirement. The offshore circuit revenue shall include revenues associated with the Offshore Transmission Owner's reactive compensation equipment, harmonic filtering equipment, asset spares and HVDC converter stations.

14.15.81 In the first year of connection, the offshore circuit expansion factor would be calculated as follows:

$\frac{CRevOFTO1}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$

Where:

CRevOFTO1	=	The offshore circuit revenue in £ for Year 1
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

14.15.82 In all subsequent years, the offshore circuit expansion factor would be calculated as follows:

Where:

AvCRevOFTO	=	The annual offshore circuit revenue averaged over the
		remaining years of the onshore National Electricity
		Transmission System Operator (NETSO) price control
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

- 14.15.83 For the avoidance of doubt, the offshore circuit revenue values, *CRevOFTO1* and *AvCRevOFTO* shall be determined using asset values after the removal of any One-Off Charges.
- 14.15.84 Prevailing OFFSHORE TRANSMISSION OWNER specific expansion factors will be published in this statement. These shall be recalculated at the start of each price control period using the formula in paragraph 14.15.71. For each subsequent year within the price control period, these expansion factors will be adjusted by the annual Offshore Transmission Owner specific indexation factor, *OFTOInd*, calculated as follows;

$$OFTOInd_{t,f} = \frac{OFTO \operatorname{Rev}Ind_{t,f}}{RPI_{t}}$$

where:

OFTOInd _{t,f}	=	the indexation factor for Offshore Transmission Owner <i>f</i> in respect of charging year <i>t</i> ;
OFTORevInd _{tf}	=	the indexation rate applied to the revenue of Offshore Transmission Owner f under the terms of its Transmission Licence in respect of charging year t , and
<i>RPI</i> _t	=	the indexation rate applied to the expansion constant in respect of charging year <i>t</i> .

Offshore Interlinks

14.15.85 The revenue associated with an Offshore Interlink shall be divided entirely between those generators benefiting from the installation of that Offshore Interlink. Each of these Users will be responsible for their charge from their charging date, meaning that a proportion of the Offshore Interlink revenue may be socialised prior to all relevant Users being chargeable. The proportion associated with each User will be based on the Measure of Capacity to the MITS using the Offshore Interlink(s) in the event of a single circuit fault on the User's circuit from their offshore substation towards the shore, compared to the Measure of Capacity of the other Users.

Where:

An *Offshore Interlink* is a circuit which connects two offshore substations that are connected to a Single Common Substation. It is held in open standby until there is a transmission fault that limits the User's ability to export power to the Single Common Substation. In the Transport Model, they are to be modelled in open standby.

A Single Common Substation is a substation where:

- i. each substation that is connected by an Offshore Interlink is connected via at least one circuit without passing through another substation; and
- ii. all routes connecting each substation that is connected by an Offshore Interlink to the MITS pass through.

The Measure of Capacity to the MITS for each Offshore substation is the result of the following formula or zero whichever is larger. For the situation with only one interlink, all terms relating to C should be set to zero:

```
For Substation A:
min { Cap_{IAB}, ILF_A \times TEC_A - RCap_A, Cap_B - ILF_B \times TEC_B + min (Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation B:

min { ILF_B \times TEC_B - RCap_B, min (Cap_{IAB}, Cap_A - ILF_A \times TEC_A)

+ min ( Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation C:

min { Cap_{IBC}, ILF_{C} \times TEC_{C} - RCap_{C}, Cap_{B} - ILF_{B} \times TEC_{B} + min (Cap_{IAB}, Cap_{A} - ILF_{A} \times TEC_{A}) }

and
```

Cap _{IAB} = B	total capacity of the Offshore Interlink between substations A and
Cap _{IBC} = C	total capacity of the Offshore Interlink between substations B and
Cap _X =	total capacity of the circuit between offshore substation X and the Single Common Substation, where X is A, B or C.
RCap _x =	remaining capacity of the circuit between offshore substation X and the Single Common Substation in the event of a single cable fault, where X is A, B or C.
TEC _x =	the sum of the TEC for the Users connected, or contracted to connect, to offshore substation X, where X is A, B or C, where the value of TEC will be the maximum TEC that each User has held since the initial charging date, or is contracted to hold if prior to the initial charging date.

- ILF_x = Offshore Interlink Load Factor, where X is A, B or C. The Offshore Interlink Load Factor (ILF) is based on the Annual Load Factor (ALF). Until all the Users connected to a Single Common Substation have a station specific Annual Load Factor based on five years of data, the generic ALF for the fuel type will be used as the ILF for all stations. When all Users have a station specific ALF, the value of the ALF in the first such year will be used as the ILF in the calculation for all subsequent charging years.
- 14.15.86 The apportionment of revenue associated with Offshore Interlink(s) in 14.15.85 applies in situations where the Offshore Interlink was included in the design phase, or if one or more User(s) has already financially committed or been commissioned then only where that User(s) agrees to the Offshore Interlink.
- 14.15.87 Alternatively to the formula specified in 14.15.85 the proportion of the OFTO revenue associated with the Offshore Interlink allocated to each generator benefiting from the installation of an Offshore Interlink may be agreed between these Users. In this event:
- a. All relevant Users shall notify The Company of its respective proportions three months prior the OTSDUW asset transfer in the case of a generator build, or the charging date of the first generator, in the case of an OFTO build.
- b. All relevant Users may agree to vary the proportions notified under (a) by each writing to The Company three months prior to the charges being set for a given charging year.
- c. Once a set of proportions of the OFTO revenue associated with the Offshore Interlink has been provided to The Company, these will apply for the next and future charging years unless and until The Company is informed otherwise in accordance with (b) by all of the relevant Users.
- d. If all relevant Users are unable to reach agreement on the proportioning of the OFTO revenue associated with the Offshore Interlink they can raise a dispute. Any dispute between two or more Users as to the proportioning of such revenue shall be managed in accordance with CUSC Section 7 Paragraph 7.4.1 but the reference to the 'Electricity Arbitration Association' shall instead be to the 'Authority' and the Authority's determination of such dispute shall, without prejudice to apply for judicial review of any determination, be final and binding on the Users.

The Locational Onshore Security Factor

14.15.88 The locational onshore security factor is derived by running a secure DCLF ICRP transport study based on the same market background as used for Zoning in the DCLF ICRP transport model. This calculates the nodal marginal costs where peak <u>net</u> demand can be met despite the Security and Quality of Supply Standard contingencies (simulating single and double circuit faults) on the network. Essentially the calculation of secured nodal marginal costs is identical to the process outlined above except that the secure DCLF study additionally calculates a nodal marginal cost taking into account the requirement to be secure against a set of worse case contingencies in terms of maximum flow for each circuit.

- 14.15.89 The secured nodal cost differential is compared to that produced by the DCLF ICRP transport model and the resultant ratio of the two determines the locational security factor using the Least Squares Fit method. Further information may be obtained from the charging website¹.
- 14.15.90 The locational onshore security factor derived for 2010/11 is 1.8 and is based on an average from a number of studies conducted by The Company to account for future network developments. The security factor is reviewed for each price control period and fixed for the duration.

Local Security Factors

- 14.15.91 Local onshore security factors are generator specific and are applied to a generator's local onshore circuits. If the loss of any one of the local circuits prevents the export of power from the generator to the MITS then a local security factor of 1.0 is applied. For generation with circuit redundancy, a local security factor is applied that is equal to the locational security factor, currently 1.8.
- 14.15.92 Where a Transmission Owner has designed a local onshore circuit (or otherwise that circuit once built) to a capacity lower than the aggregated TEC of the generation using that circuit, then the local security factor of 1.0 will be multiplied by a Counter Correlation Factor (CCF) as described in the formula below;

$$CCF = \frac{D_{\min} + T_{cap}}{G_{cap}}$$

Where; D_{min} = minimum annual net demand (MW) supplied via that circuit in the absence of that generation using the circuit

 T_{cap} = transmission capacity built (MVA)

G_{cap} = aggregated TEC of generation using that circuit

CCF cannot be greater than 1.0.

14.15.93 A specific offshore local security factor (LocalSF) will be calculated for each offshore connection using the following methodology:

$$LocalSF = \frac{NetworkExportCapacity}{\sum_{k} Gen_{k}}$$

Where:

 NetworkExportCapacity =
 the total export capacity of the network disregarding any Offshore Interlinks

 k
 =
 the generation connected to the offshore network

1 http://www.nationalgrid.com/uk/Electricity/Charges/

Page 21 of 64

- 14.15.94 The offshore security factor for single circuits with a single cable will be 1.0 and for multiple circuit connections will be capped at the locational onshore security factor, derived as 1.8 for 2010/11.
- 14.15.95 The offshore local security factor for configurations with one or more Offshore Interlinks is updated so that the offshore circuit tariff will include the proportion of revenue associated with the Offshore Interlink(s). The specific offshore local security factor for configurations involving an Offshore Interlink, which may be greater than 1.8, will be calculated for each offshore connection using the following methodology:

 $LocalSF = \frac{IRevOFTO \times NetworkExportCapacity}{CRevOFTO \times \sum_{k}Gen_{k}} + LocalSF_{initial}$

Where:

The appropriate proportion of the Offshore Interlink(s) revenue in £
associated with the offshore connection calculated in 14.15.85
The offshore circuit revenue in £ associated with the circuit(s) from the
offshore substation to the Single Common Substation.
Initial Local Security Factor calculated in 14.15.80 and 14.15.81
And other definitions as in 14.15.80.

Initial Transport Tariff

14.15.96 First an Initial Transport Tariff (ITT) must be calculated for both Peak Security and Year Round backgrounds. For Generation, the Peak Security zonal marginal km (ZMkm_{PS}), Year Round Not-Shared zonal marginal km (ZMkm_{YRNS}) and Year Round Shared zonal marginal km (ZMkm_{YRS}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT, Year Round Not-Shared ITT and Year Round Shared ITT respectively:

 $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$

Where ZMkm _{GiPS} ZMkm _{GiYRNS} charging zone	= = e	Peak Security Zonal Marginal km for each generation zone Year Round Not-Shared Zonal Marginal km for each generation	
ZMkm _{GiYRS}	=	Year Round Shared Zonal Marginal km for each generation	
charging zon	е		
EC	=	Expansion Constant	
LSF	=	Locational Security Factor	
	=	Peak Security Initial Transport Tariff (£/MW) for each generation	
zone			
ITT _{GiYRNS}	=	Year Round Not-Shared Initial Transport Tariff (£/MW) for each	
generation charging zone			
ITT _{GiYRS}	=	Year Round Shared Initial Transport Tariff (£/MW) for each	
generation ch	narging	zone.	

14.15.97 Similarly, for demand the Peak Security zonal marginal km (ZMkm_{PS}) and Year Round zonal marginal km (ZMkm_{YR}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT and Year Round ITT respectively:

		$ZMkm_{DiPS} \times EC \times LSF = ITT_{DiPS}$
		$ZMkm_{DiYR} \times EC \times LSF = ITT_{DiYR}$
Where ZMkm _{DiP} ZMkm _{DiY}	0	Peak Security Zonal Marginal km for each demand zone Year Round Zonal Marginal km for each demand zone
ITT _{DiPS}	=	Peak Security Initial Transport Tariff (£/MW) for each demand one
ITT_{DiYR}	=	Year Round Initial Transport Tariff (£/MW) for each demand zone
14.15.98	GSP group revenue red metered tria	tep is to multiply these ITTs by the expected metered triad <u>gross</u> demand and generation capacity to gain an estimate of the initial covery for both Peak Security and Year Round backgrounds. The ad <u>gross GSP group</u> demand and generation capacity are based on forecasts provided by Users and are confidential.
	affected em	ad gross GSP group demand is net demand for all GSP groups less bedded exports and grandfathered embedded exports for all GSP
a.	<u>groups.</u>	

Where

ITRR _G =	Initial Transport Revenue Recovery for generation
G _{Gi} =	Total forecast Generation for each generation zone (based
	on analysis of confidential User forecasts)
ITRR _D =	Initial Transport Revenue Recovery for gross GSP group
_	demand
D _{Di} = each	Total forecast Metered Triad gross GSP group Demand for
	demand zone (based on <u>analysis of</u> confidential User forecasts).

In addition, the initial tariffs for generation are also multiplied by the **Peak Security flag** when calculating the initial revenue recovery component for the Peak Security background. Similarly, when calculating the initial revenue recovery for the Shared component of the Year Round background, the initial tariffs are multiplied by the **Annual Load Factor** (see below).

Peak Security (PS) Flag

14.15.99 The revenue from a specific generator due to the Peak Security locational tariff needs to be multiplied by the appropriate Peak Security (PS) flag. The PS flags indicate the extent to which a generation plant type contributes to the

Page 23 of 64

need for transmission network investment at peak demand conditions. The PS flag is derived from the contribution of differing generation sources to the demand security criterion as described in the Security Standard. In the event of a significant change to the demand security assumptions in the Security Standard, National Grid will review the use of the PS flag.

Generation Plant Type	PS flag
Intermittent	0
Other	1

Annual Load Factor (ALF)

- 14.15.100 The ALF for each individual Power Station is calculated using the relevant TEC (MW) and corresponding output data. Where output data is not available for a Power Station, including for new Power Stations and emerging Power Station technologies, generic data for the appropriate generation plant type will be used.
- 14.15.101 For a given charging year "t" the Power Station ALF will be based on information from the previous five charging years, calculated for each charging year as set out below.

$$ALF = \frac{\sum_{p=1}^{17520} GMWh_p}{\sum_{p=1}^{17520} TECp \times 0.5}$$

Where:

 $GMWh_p$ is the maximum of FPN or actual metered output in a Settlement Period related to the power station TEC (MW); and

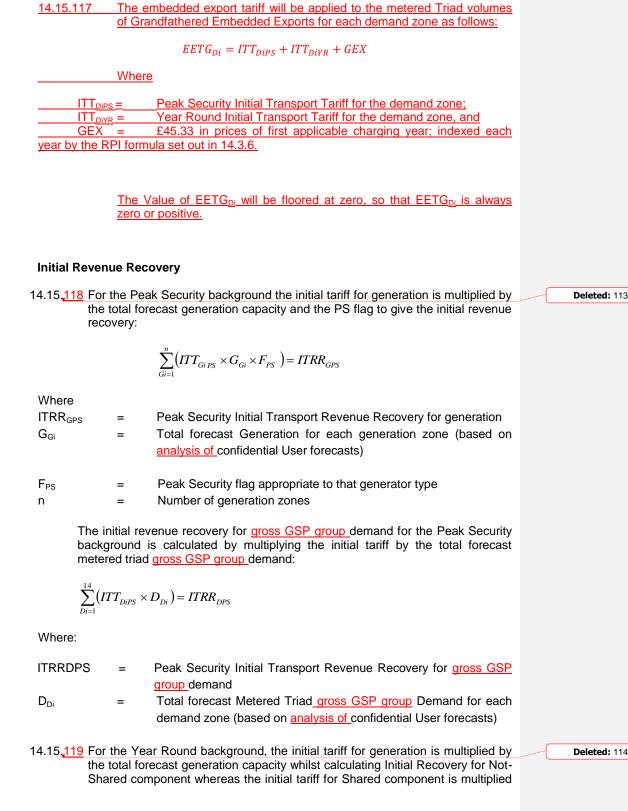
 TEC_{p} is the TEC (MW) applicable to that Power Station for that Settlement Period including any STTEC and LDTEC, accounting for any trading of TEC.

- 14.15.102 The appropriate output (FPN or actual metered) figure is derived from **BM Unit** data available to National Grid and relates to the total TEC of the Power Station.
- 14.15.103 Once all five charging year ALFs have been calculated for the individual Power Station they are compared, and the highest and lowest figures are discarded. The final ALF, to be used for transmission charging purposes, is calculated as the average of the remaining three ALFs.
- 14.15.104 In the event that only four charging years of complete output (FPN or actual metered) data are available for an individual Power Station then the higher three charging years ALF would be used in the calculation of the final ALF. In the event that only three charging years of complete output (FPN or actual metered) data are available then these three charging years would be used.
- 14.15.105 Due to the aggregation of output (FPN or actual metered) data for dispersed generation (e.g. cascade hydro schemes), where a single generator BMU consists of geographically separated power stations, the ALF would be calculated based on the total output of the BMU and the overall TEC of those Power Stations.

Page 24 of 64

- 14.15.106 In the event that there are not three full charging years of an individual power station's output available, missing output (FPN or actual metered) data would be replaced by generic data for that generation plant type to ensure three charging years of information are available for the Power Station. The derivation of the generic data is described in paragraphs 14.15.111-14.15.114.
- 14.15.107 Users will receive draft ALFs before 25th December of the charging year (t-1) for the charging year (t) and will have a period of 15 working days from date of publishing to notify the Company of any errors. Failure to agree changes relating to errors will be treated as a charging dispute under the CUSC.
- 14.15.108 The ALFs used in the setting of final tariffs will be published in the annual Statement of Use of System Charges. Changes to ALFs after this publication will not result in changes to published tariffs (e.g. following dispute resolution).

Derivation of Generic ALFs


14.15.109 The generic ALF is derived from the average annual output of the ten most recently commissioned GB generation of a particular generation plant type that have at least five charging years' data, using an identical methodology to that used for the Power Station specific calculation described above. Where less than ten GB generators of a particular generation plant type exist, then data from all existing generators of that particular generation plant type will be used. Example generation plant type categories are listed below;

Fuel Type
Biomass
Coal
Gas
Hydro
Nuclear (by reactor
type)
Oil & OCGTs
Pumped Storage
Onshore Wind
Offshore Wind
CHP

- 14.15.110 The Company will keep these categories under review and update as necessary. Where within a category there is a significant locational difference consideration will be given to zonal generic factors. The factors used will be published in the Statement of Use of System Charges and will be reviewed annually.
- 14.15.111 If a User can demonstrate that the generation plant type of a Power Station has changed, consideration will be given to the use of relevant generic ALF information in the calculation of their charges until sufficient specific data is available.
- 14.15.112 For new and emerging generation plant types, where insufficient data is available to allow a generic ALF to be developed, The Company will use the best information available e.g. from manufactuers and data from use of similar technologies outside GB. The factor will be agreed with the relevant Generator. In the event of a disagreement the standard provisions for dispute in the CUSC will apply.

Page 25 of 64

exports is different depending on whether the embedded exports a affected embedded exports or grandfathered embedded exports TNUOS Embedded Export Tariff for Affected Embedded Exports 14.15.114 Affected Embedded Exports are embedded exports other than Grandfathered Embedded Exports. 14.15.115 The embedded export tariff will be applied to the metered Triad volum of Affected Embedded Exports for each demand zone as follows: $EETA_{Di} = ITT_{DiPS} + ITT_{DiYR} + AEX$	14.15.113	Embedded exports are exports measured on a half-hourly basis to Metering Systems, in accordance with the BSC, that are not subject to
14.15.114 Affected Embedded Exports are embedded exports other than Grandfathered Embedded Exports. 14.15.115 The embedded export tariff will be applied to the metered Triad volum of Affected Embedded Exports for each demand zone as follows: $EETA_{DI} = ITT_{DIPS} + ITT_{DIYR} + AEX$ Where ITT_DIPS = Peak Security Initial Transport Tariff for the demand zone; ITT_DIYR = Year Round Initial Transport Tariff for the demand zone, and AEX = $RT_C \times -1$ ation Residual Tariff with the inverse sign. For clarity, this means that if the Generatial is negative, the generation residual will be applied as a positive number for embedded as. The Value of EETA _{DI} will be floored at zero, so that EETA _{DI} is always zero or positive. TNUOS Embedded Export Tariff for Grandfathered Embedded Exports 14.15.116 Grandfathered Embedded Exports are embedded exports measured by metering systems where all associated generation either: Has a Contract for Difference Agreement that was awarded in allocation rounds prior to 01/01/2016 which has not been terminated; or Has a Capacity Agreement that is recorded on the T-4 Auction Capacity Market Register 2015 as an agreement; In respect of a 'new build generating CMU'		generation TNUoS. The tariff to be applied in respect of embedded exports is different depending on whether the embedded exports and affected embedded exports or grandfathered embedded exports
Grandfathered Embedded Exports. 14.15.115 The embedded export tariff will be applied to the metered Triad volum of Affected Embedded Exports for each demand zone as follows: <i>EETA_{DI} = ITT_{DIPS} + ITT_{DIYR} + AEX</i> Where <u>UTT_{DIPS} = Peak Security Initial Transport Tariff for the demand zone; ITT_{DIYR} = Year Round Initial Transport Tariff for the demand zone, and AEX = RT_G × -1 ation Residual Tariff with the inverse sign. For clarity, this means that if the Generatial is negative, the generation residual will be applied as a positive number for embedded as. The Value of EETA_{DI} will be floored at zero, so that EETA_{DI} is always zeror positive. TNUOS Embedded Export Tariff for Grandfathered Embedded Exports 14.15.116 Grandfathered Embedded Exports are embedded exports measured by metering systems where all associated generation either: Has a Contract for Difference Agreement that was awarded in allocation rounds prior to 01/01/2016 which has not been terminated; or Has a Capacity Agreement that is recorded on the T-4 Auction Capacity Market Register 2015 as an agreement; In respect of a 'new build generating CMU' </u>	TNUoS Emb	edded Export Tariff for Affected Embedded Exports
of Affected Embedded Exports for each demand zone as follows: $EETA_{Di} = ITT_{DiPS} + ITT_{DiPR} + AEX$ Where ITT_DiPS = Peak Security Initial Transport Tariff for the demand zone; ITT_DiPS = Peak Security Initial Transport Tariff for the demand zone; ITT_DiPS = Peak Security Initial Transport Tariff for the demand zone; ITT_DiPS = Peak Security Initial Transport Tariff for the demand zone; ITT_DiPS = Peak Security Initial Transport Tariff for the demand zone; ITT_DiPS = Peak Security Initial Transport Tariff for the demand zone; ITT_DiPS = Peak Security Initial Transport Tariff for the demand zone; ITT_DiPS = Peak Security Initial Transport Tariff for the demand zone; ITT_DiPS = Peak Security Initial Transport Tariff for the demand zone; ITT_DiPS = Peak Security Initial Transport Tariff for the demand zone; ITTO: NUOS Embedded Tariff with the inverse sign. For clarity, this means that if the Generatinal is negative, the generation residual will be applied as a positive number for embedded Sa. The Value of EETA _{D1} will be floored at zero, so that EETA _{D1} is always zero or positive. INUOS Embedded Export Tariff for Grandfathered Embedded Exports 14.15.116 Grandfathered Embedded Exports are embedded exports measured by metering systems where al	<u>14.15.114</u>	
Where ITT DIPS =	<u>14.15.115</u>	
ITT _{DIPS} = Peak Security Initial Transport Tariff for the demand zone; ITT _{DIPS} = Year Round Initial Transport Tariff for the demand zone, and AEX = RT _G × -1 ation Residual Tariff with the inverse sign. For clarity, this means that if the Generati ial is negative, the generation residual will be applied as a positive number for embedd S. The Value of EETA _{DI} will be floored at zero, so that EETA _{DI} is always zero or positive. TNUOS Embedded Export Tariff for Grandfathered Embedded Exports 14.15.116 Grandfathered Embedded Exports are embedded exports measured by metering systems where all associated generation either: • Has a Contract for Difference Agreement that was awarded in allocation rounds prior to 01/01/2016 which has not been terminated; or • Has a Capacity Agreement that is recorded on the T-4 Auction Capacity Market Register 2014 or T-4 Auction Capacity Market Register 2015 as an agreement: • In respect of a 'new build generating CMU'		$EETA_{Di} = ITT_{DiPS} + ITT_{DiYR} + AEX$
ITT DIVE Year Round Initial Transport Tariff for the demand zone, and AEX = RT _G × -1 ation Residual Tariff with the inverse sign. For clarity, this means that if the Generatial is negative, the generation residual will be applied as a positive number for embedded as a positive. TNUOS Embedded Export Tariff for Grandfathered Embedded Exports are embedded exports measured by metering systems where all associated generation either: 14.15.116 Grandfathered Embedded Export as an advected positive number for only number for only number for embedded exports and positive number for only number for embedded exports and positive number for only number for embedded export as an agreement;		Where
 <u>The Value of EETA_{pi} will be floored at zero, so that EETA_{pi} is always zero or positive.</u> <u>TNUoS Embedded Export Tariff for Grandfathered Embedded Exports</u> <u>14.15.116</u> Grandfathered Embedded Exports are embedded exports measured by metering systems where all associated generation either: <u>Has a Contract for Difference Agreement that was awarded in allocation rounds prior to 01/01/2016 which has not been terminated; or</u> <u>Has a Capacity Agreement that is recorded on the T-4 Auction Capacity Market Register 2014 or T-4 Auction Capacity Market Register 2015 as an agreement:</u> <u>In respect of a 'new build generating CMU'</u> 	ITT _{Di}	YR = Year Round Initial Transport Tariff for the demand zone, and
or positive. TNUoS Embedded Export Tariff for Grandfathered Embedded Exports 14.15.116 Grandfathered Embedded Exports are embedded exports measured by metering systems where all associated generation either: • Has a Contract for Difference Agreement that was awarded in allocation rounds prior to 01/01/2016 which has not been terminated; or • Has a Capacity Agreement that is recorded on the T-4 Auction Capacity Market Register 2014 or T-4 Auction Capacity Market Register 2015 as an agreement: • In respect of a 'new build generating CMU'	al is negative	
 <u>14.15.116</u> Grandfathered Embedded Exports are embedded exports measured by metering systems where all associated generation either: <u>Has a Contract for Difference Agreement that was awarded in allocation rounds prior to 01/01/2016 which has not been terminated; or</u> <u>Has a Capacity Agreement that is recorded on the T-4 Auction Capacity Marke Register 2014 or T-4 Auction Capacity Market Register 2015 as an agreement:</u> <u>In respect of a 'new build generating CMU'</u> 		
 <u>metering systems where all associated generation either:</u> <u>Has a Contract for Difference Agreement that was awarded in allocation rounds prior to 01/01/2016 which has not been terminated; or</u> <u>Has a Capacity Agreement that is recorded on the T-4 Auction Capacity Marke Register 2014 or T-4 Auction Capacity Market Register 2015 as an agreement:</u> <u>In respect of a 'new build generating CMU'</u> 		
 prior to 01/01/2016 which has not been terminated; or Has a Capacity Agreement that is recorded on the T-4 Auction Capacity Marke Register 2014 or T-4 Auction Capacity Market Register 2015 as an agreement: In respect of a 'new build generating CMU' 	TNUoS Emb	
 Register 2014 or T-4 Auction Capacity Market Register 2015 as an agreement: In respect of a 'new build generating CMU' 		or positive. bedded Export Tariff for Grandfathered Embedded Exports Grandfathered Embedded Exports are embedded exports measured by
	<u>14.15.116</u> • <u>Has a</u>	or positive. bedded Export Tariff for Grandfathered Embedded Exports Grandfathered Embedded Exports are embedded exports measured by metering systems where all associated generation either: a Contract for Difference Agreement that was awarded in allocation rounds
Having more than one delivery year	<u>14.15.116</u> • <u>Has a prior</u> • <u>Has a</u>	or positive. bedded Export Tariff for Grandfathered Embedded Exports Grandfathered Embedded Exports are embedded exports measured by metering systems where all associated generation either: a Contract for Difference Agreement that was awarded in allocation rounds to 01/01/2016 which has not been terminated; or a Capacity Agreement that is recorded on the T-4 Auction Capacity Market
	<u>14.15.116</u> • <u>Has a prior</u> • <u>Has a Regis</u>	or positive. bedded Export Tariff for Grandfathered Embedded Exports Grandfathered Embedded Exports are embedded exports measured by metering systems where all associated generation either: a Contract for Difference Agreement that was awarded in allocation rounds to 01/01/2016 which has not been terminated; or a Capacity Agreement that is recorded on the T-4 Auction Capacity Market ster 2014 or T-4 Auction Capacity Market Register 2015 as an agreement:

Page 27 of 64

by both, the total forecast generation capacity and the ALF to give the initial revenue recovery:

$$\sum_{G_{i}=1}^{n} (ITT_{G_{i}YRNS} \times G_{G_{i}}) = ITRR_{GYRNS}$$
$$\sum_{G_{i}=1}^{n} (ITT_{G_{i}YRS} \times G_{G_{i}} \times ALF) = ITRR_{GYRS}$$

Where:

ITRR
GYRNS
generation=Year Round Not-Shared Initial Transport Revenue Recovery for
Year Round Shared Initial Transport Revenue Recovery for
generation
ALFALF=Annual Load Factor appropriate to that generator.

14.15.115 Similar to the Peak Security background, the initial revenue recovery for <u>gross</u> <u>GSP group</u> demand for the Year Round background is calculated by multiplying the initial tariff by the total forecast metered triad <u>gross GSP group</u> demand:

$$\sum_{D_i=1}^{14} (ITT_{D_iYR} \times D_{D_i}) = ITRR_{DYR}$$

=

Where:

ITRR_{DYR}

- Year Round Initial Transport Revenue Recovery for gross GSP group demand
- 14.15.120The initial revenue recovery for Affected Embedded Exports is the Affected Embedded Export Tariff multiplied by the total forecast volume of Affected Embedded Export at triad:

$$ITRR_{EEA} = \sum_{Di=1}^{14} (EETA_{Di} \times EEVA_{Di})$$

Where

IT	TR _{EEA}	= Initial Revenue impact for Affected Embedded Exports
EI	EVA _{Di}	= Forecast Affected Embedded Export metered volume at
<u>Tı</u>	iad (MW)	

For the avoidance of doubt, the initial revenue recovery for affected embedded exports can be positive or negative.

14.15.121The initial revenue recovery for Grandfathered Embedded Exports is the Grandfathered Embedded Export Tariff multiplied by the total forecast volume of Grandfathered Embedded Export at triad:

$$ITRR_{EEG} = \sum_{Di=1}^{14} (EETG_{Di} \times EEVG_{Di})$$

<u>Where</u>

 ITTR_{EEG}
 = Initial Revenue impact for Grandfathered Embedded Exports

 EEVG_{Di}
 = Forecast Grandfathered Embedded Export metered volume at

 Triad (MW)

 For the avoidance of doubt, the initial revenue recovery for grandfathered

Deriving the Final Local Tariff (£/kW)

embedded exports can be positive or negative.

Local Circuit Tariff

14.15,122 Generation with a local circuit tariff is calculated by multiplying the Year Round nodal marginal km along the local circuit by the expansion constant and the relevant local security factor (whether onshore or offshore) and summing across local circuits to give the local circuit tariff:

$$\sum_{k} \frac{NLMkm_{Gi}^{L} \times EC \times LocalSF_{k}}{1000} = CLT_{Gi}$$

Where

1

VVIIEIE		
k	=	Local circuit k for generator
NLMkm _{Gj} L	=	Year Round Nodal marginal km along local circuit <i>k</i> using local circuit expansion factor.
EC	=	Expansion Constant
LocalSF _k	=	Local Security Factor for circuit k
CLT _{Gi}	=	Circuit Local Tariff (£/kW)

Onshore Local Substation Tariff

- 14.15,123 All chargeable generation is subject to the local substation tariff component which is determined by assessing the generation substation type which is the substation at the connection charging boundary, against three cost determining factors:
 - (a) HV connection voltage the voltage at the boundary between the User's connection assets and the transmission system;
 - (b) Sum of TEC at the generation substation the combined TEC of all generation at the connecting substation; and
 - (c) The level of redundancy at the generation substation single busbar / single switch mesh connections are examples of no redundancy connections, whereas examples of connections with redundancy include double busbar and mesh sub station designs.
- 14.15,<u>124</u> Using the above factors, the corresponding £/kW tariffs (quoted to 3dp) that will be applied during 2010/11 are:

Deleted: 116

Deleted: 117

Deleted: 118

Page 29 of 64

V1.12– 01 April 2016

I

1

I

Substation	Ibstation Connection Substation Voltage (a		age (a)	
Rating (b)	Type (c)	132kV	275kV	400kV
<1320MW	No redundancy	0.133	0.081	0.065
<1320MW	Redundancy	0.301	0.192	0.155
>=1320MW	No redundancy	n/a	0.257	0.208
>=1320MW	Redundancy	n/a	0.417	0.336

- 14.15,125 The process for calculating Local Substation Tariffs will be carried out for the first year of the price control and will subsequently be indexed by RPI for each subsequent year of the price control period.
- 14.15,<u>126</u> The effective Local Tariff (£/kW) is calculated as the sum of the circuit and substation onshore and/or offshore components:

$$ELT_{Gi} = CLT_{Gi} + SLT_{Gi}$$

Where

ELT _{Gi}	=	Effective Local Tariff (£/kW)
SLT_{Gi}	=	Substation Local Tariff (£/kW)

14.15,127 Where tariffs do not change mid way through a charging year, final local tariffs will be the same as the effective tariffs:

14.15,<u>128</u> Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$LT_{Gi} = \frac{12 \times \left(ELT_{Gi} \times \sum_{Gi=1}^{21} G_{Gi} - FLL_{Gi}\right)}{b \times \sum_{Gi=1}^{21} G_{Gi}} \quad \text{and} \quad FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{21} D_{Di}}$$

Where:

b = number of months the revised tariff is applicable for

FLL = Forecast local liability incurred over the period that the original tariff is applicable for

14.15,129 For the purposes of charge setting, the total local charge revenue is calculated by:

$$\text{LCRR}_{\text{G}} = \sum_{j=Gi} \text{LT}_{\text{Gi}} * G_j$$

Where

LCRR_G = Local Charge Revenue Recovery G_j = Forecast chargeable Generation or Transmission Entry Capacity in kW (as applicable) for each generator (based on <u>analysis of</u> confidential information received from Users)

Offshore substation local tariff

Page 30 of 64

V1.12-01 April 2016

Deleted: 121

Deleted: 119

Deleted: 120

Deleted: 122

Deleted: 123

- 14.15,<u>130</u> All offshore chargeable generation is subject to an offshore substation tariff. The offshore substation tariff shall be the sum of transformer, switchgear and platform components.
- 14.15,131 Each tariff component, expressed in £/kW, shall be the ratio of the Offshore Transmission Owner revenue (£) and rating associated with the transformers, switchgear or platform (kW) at each offshore substation. The Offshore Transmission Owner revenue of each tariff component shall include that associated with asset spares. In the case of the platform component, the relevant rating shall be the lower of the transformer or switchgear ratings. As with the offshore circuit expansion factors, the Offshore Transmission Owner revenue associated with each tariff component shall be averaged over the remaining years of the NETSO price control.
- 14.15,<u>132</u> Offshore Transmission Owner revenue associated with interest during construction and project development overheads will be attributed to the relevant asset category with which it is associated. If these or any other costs included in the Offshore Transmission Owner revenue are not readily attributable to a given asset category, they will be pro-rated across the various asset categories based on their relative cost.
 - 14.15,133 For 2010/11 a discount of £0.345590/kW shall be provided to the offshore substation tariff to reflect the average cost of civil engineering for onshore substations. This will be inflated by RPI each year and reviewed every price control period.
- 14.15,134 Offshore substation tariffs shall be reviewed at the start of every onshore price control period. For each subsequent year within the price control period, these shall be inflated in the same manner as the associated Offshore Transmission Owner Revenue.
- 14.15,<u>135</u> The revenue from the offshore substation local tariff is calculated by:

$$SLTR = \sum_{\substack{All offshore \\ substatios}} \left(SLT_k \times \sum_k Gen_k \right)$$

Where:

SLT _k	=	the offshore substation tariff for substation k
Gen _k	=	the generation connected to offshore substation k

The Residual Tariff

14.15,136 The total revenue to be recovered through TNUoS charges is determined each year with reference to the Transmission Licensees' Price Control formulas less the costs expected to be recovered through Pre-Vesting connection charges. Hence in any given year t, a target revenue figure for TNUoS charges (TRR_t) is set after adjusting for any under or over recovery for and including, the small generators discount is as follows:

$$TRR_t = R_t - PVC_t - SG_{t-1}$$

Where

TRR_t = TNUoS Revenue Recovery target for year t
 R_t = Forecast Revenue allowed under The Company's RPI-X Price Control Formula for year t (this term includes a number of adjustments, including for over/under recovery from the previous year). For further information,

refer to Special Condition D2 of The Company's Transmission Licence.

Page 31 of 64

V1.12-01 April 2016

Deleted: 130

Deleted: 127

Deleted: 128

Deleted: 129

Deleted: 126

Deleted: 124

Deleted: 125

- PVC_t = Forecast Revenue from Pre-Vesting connection charges for year t
- $SG_{t-1} =$ The proportion of the under/over recovery included within R_t which relates to the operation of statement C13 of the The Company Transmission Licence. Should the operation of statement C13 result in an under recovery in year t – 1, the SG figure will be positive and vice versa for an over recovery.
- 14.15,137 In normal circumstances, the revenue forecast to be recovered from the initial transport tariffs will not equate to the total revenue target. This is due to a number of factors. For example, the transport model assumes, for simplicity, smooth incremental transmission investments can be made. In reality, transmission investment can only be made in discrete 'lumps'. The transmission system has been planned and developed over a long period of time. Forecasts and assessments used for planning purposes will not have been borne out precisely by events and therefore some distinction between an optimal system for one year and the actual system can be expected.
 - 14.15,138 As a result of the factors above, in order to ensure adequate revenue recovery, a constant non-locational **Residual Tariff** for generation and demand is calculated, which includes infrastructure substation asset costs. It is added to the initial transport tariffs for both Peak Security and Year Round backgrounds so that the correct generation / demand revenue split is maintained and the total revenue recovery is achieved.

$$RT_{D} = \frac{(p \times TRR) - ITRR_{DPS} - ITRR_{DYR} - ITRR_{EEA} - ITTR_{EEG}}{\sum_{l=1}^{14} D_{li}}$$

$$RT_{G} = \frac{\left[(1-p) \times TRR\right] - ITRR_{GPS} - ITRR_{GYRNS} - ITRR_{GYRS} - LCRR_{G}}{\sum_{Gi=1}^{n} G_{Gi}}$$

Where RT

Residual Tariff (£/MW)

Proportion of revenue to be recovered from demand

Final £/kW Tariff

р

14.15,<u>139</u> The effective Transmission Network Use of System tariff (TNUoS) for generation and gross demand can now be calculated as the sum of the initial transport wider tariffs for Peak Security and Year Round backgrounds, the non-locational residual tariff and the local tariff:

$$ET_{Gi} = \frac{ITT_{GiPS} + ITT_{GiYRNS} + ITT_{GiYRNS} + RT_{G}}{1000} + LT_{Gi}$$
$$= ET_{Di} = \frac{ITT_{DiPS} + ITT_{DiYR} + RT_{D}}{1000}$$

Where

Page 32 of 64


Deleted: 131

Deleted: 132

Deleted:

Deleted: 133

 $RT_D = \frac{(p \times TR)}{TR}$

For the purposes of the annual Statement of Use of System Charges ET_{Gi} will be published as ITT_{GiPS} ; ITT_{GiYRS} , ITT_{GiYRS} , RT_G and LT_{Gi}

14.15,<u>140</u> Where tariffs do not change mid way through a charging year, final demand and generation tariffs will be the same as the effective tariffs.

$$FT_{Gi} = ET_{Gi}$$

$$FT_{Di} = ET_{Di}$$

$$FT_{EEAi} = ET_{EEAi}$$

$$FT_{EEGi} = ET_{EEGi}$$

14.15,141 Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$FT_{Gi} = \frac{12 \times \left(ET_{Gi} \times \sum_{Gi=1}^{20} G_{Gi} - FL_{Gi}\right)}{b \times \sum_{Gi=1}^{27} G_{Gi}} \text{ and } FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{14} D_{Di}}$$

$$FT_{EEAi} = \frac{12 \times (ET_{EEAi} \times \sum_{Di=1}^{14} EETA_{Di} - FL_{Di})}{b \times \sum_{Di=1}^{14} EETA_{Di}} \quad \text{and} \quad FT_{EEGi} = \frac{12 \times (ET_{EEGi} \times \sum_{Di=1}^{14} EETG_{Di} - FL_{Di})}{b \times \sum_{Di=1}^{14} EETG_{Di}}$$

Where:

b = number of months the revised tariff is applicable for FL = Forecast liability incurred over the period that the original tariff is applicable for

Note: The ET_{Gi} element used in the formula above will be based on an individual Power Stations PS flag and ALF for Power Station G_{Gi} , aggregated to ensure overall correct revenue recovery.

Page 33 of 64

V1.12-01 April 2016

Deleted: 134

Deleted: 135

14.15,142 If the final gross demand TNUoS Tariff results in a negative number then this is collared to £0/kW with the resultant non-recovered revenue smeared over the remaining demand zones:

 $NRRT_{D} = \frac{\sum_{i=1}^{z} \left(FT_{Di} \times D_{Di} \right)}{\sum_{i=z+1}^{14} D_{Di}}$

If $FT_{Di} < 0$, then i = 1 to z

Therefore,

Therefore the revised Final Tariff for the <u>gross</u> demand zones with positive Final tariffs is given by:

For i=1 to z: $RFT_{Di} = 0$

For
$$i=z+1$$
 to 14: $RFT_{Di} = FT_{Di} + NRRT_D$

Where

I

 $NRRT_D = Non Recovered Revenue Tariff (\pounds/kW)$ RFT_{Di} = Revised Final Tariff (\pounds/kW)

- 14.15,143 The tariffs applicable for any particular year are detailed in The Company's Statement of Use of System Charges, which is available from the Charging website. Archived tariff information may also be obtained from the Charging website.
 - 14.15,144 The zonal maps referenced in The Company's **Statement of Use of System Charges** and available on the **Charging website** contain detailed information for the charging year in question of which Grid Supply Points fall into which TNUoS zones.

- For demand zones, according to the GSP Group to which the Grid Supply Point is allocated for energy market settlement purposes.
- For generation zones, with reference to the geographic proximity to existing zones and, where close to a boundary between existing zones, with reference to the marginal costs arising from transport model studies. The GSP will then be allocated to the zone, which contains the most similar marginal costs.

14.15,146 The Company has available, upon request, the DCLF ICRP transport model, tariff model template and data necessary to run the model, consisting of nodal values of generation and demand connection points to the NETS. The model and data will enable the basic nodal charges to be determined and will also allow sensitivity analysis concerning alternative developments of generation and demand to be undertaken. The model is available from the Charging Team and whilst it is free of charge, it is provided under licence to restrict its distribution and commercial use.

Page 34 of 64

Deleted: 136

Deleted: 139

Deleted: 137

Deleted: 138

Deleted: 140

CUSC v1.12	
14.15,147 The Company will be pleased to run specific sensitivity studies for Users unde a separate study contract in line with the fees set out in the Statement of Use of System Charges. Please contact the Charging Team.	
14.15,148 The factors which will affect the level of TNUoS charges from year to yea include-;	r Deleted: 142
 the forecast level of peak demand on the system the Price Control formula (including the effect of any under/ove recovery from the previous year), the expansion constant, the locational security factor, the PS flag the ALF of a generator changes in the transmission network HVDC circuit impedance calculation changes in the pattern of generation capacity and demand. changes in the pattern of embedded exports 	r
14.15,149 In accordance with Standard Licence Condition C13, generation directly connected to the NETS 132kV transmission network which would normally be	
subject to generation TNUoS charges but would not, on the basis of generating capacity, be liable for charges if it were connected to a licensed distribution	9
network qualifies for a reduction in transmission charges by a designated sum	,
determined by the Authority. Any shortfall in recovery will result in a uni amount increase in gross_demand charges to compensate for the deficit	

Stability & Predictability of TNUoS tariffs

1

14.15,150 A number of provisions are included within the methodology to promote the stability and predictability of TNUoS tariffs. These are described in 14.29.

Further information is provided in the Statement of the Use of System Charges.

Deleted: 144

14.16 Derivation of the Transmission Network Use of System Energy Consumption Tariff and Short Term Capacity Tariffs

- 14.16.1 For the purposes of this section, Lead Parties of Balancing Mechanism (BM) Units that are liable for Transmission Network Use of System Demand Charges are termed Suppliers.
- 14.16.2 Following calculation of the Transmission Network Use of System £/kW Gross Demand Tariff (as outlined in Chapter 2: Derivation of the TNUoS Tariff) for each GSP Group is calculated as follows:

$$p/kWh Tariff = (NHHD_F * £/kW Tariff - FL_G) *100$$

NHHC_G

Where:

 \pounds/kW Tariff = The \pounds/kW Effective <u>Gross</u> Demand Tariff (\pounds/kW), as calculated previously, for the GSP Group concerned.

 \mathbf{NHHD}_{F} = The Company's forecast of Suppliers' non-half-hourly metered Triad Demand (kW) for the GSP Group concerned. The forecast is based on historical data.

 FL_{G} = Forecast Liability incurred for the GSP Group concerned.

 $\rm NHHC_{G}$ = The Company's forecast of GSP Group non-half-hourly metered total energy consumption (kWh) for the period 16:00 hrs to 19:00hrs inclusive (i.e. settlement periods 33 to 38) inclusive over the period the tariff is applicable for the GSP Group concerned.

Short Term Transmission Entry Capacity (STTEC) Tariff

14.16.3 The Short Term Transmission Entry Capacity (STTEC) tariff for positive zones is derived from the Effective Tariff (ET_{Gi}) annual TNUoS £/kW tariffs (14.15.112). If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the STTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (i.e. over the whole financial year, not just the period that the STTEC is applicable for). STTECs will not be reconciled following a mid year charge change. The premium associated with the flexible product is associated with the analysis that 90% of the annual charge is linked to the system peak. The system peak is likely to occur in the period of November to February inclusive (120 days, irrespective of leap years). The calculation for positive generation zones is as follows:

$$\frac{FT_{Gi} \times 0.9 \times STTEC \ Period}{120} = STTEC \ tariff \ (\pounds/kW/period)$$

Where:

FT	=	Final annual TNUoS Tariff expressed in £/kW
Gi	=	Generation zone
STTEC Period	=	A period applied for in days as defined in the CUSC

Page 36 of 64

- 14.16.4 For the avoidance of doubt, the charge calculated under 14.16.3 above will represent each single period application for STTEC. Requests for multiple /STTEC periods will result in each STTEC period being calculated and invoiced separately.
- 14.16.5 The STTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.

Limited Duration Transmission Entry Capacity (LDTEC) Tariffs

14.16.6 The Limited Duration Transmission Entry Capacity (LDTEC) tariff for positive zones is derived from the equivalent zonal STTEC tariff for up to the initial 17 weeks of LDTEC in a given charging year (whether consecutive or not). For the remaining weeks of the year, the LDTEC tariff is set to collect the balance of the annual TNUoS liability over the maximum duration of LDTEC that can be granted in a single application. If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the LDTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (ie over the whole financial year, not just the period that the STTEC is applicable for). LDTECs will not be reconciled following a mid year charge change:

Initial 17 weeks (high rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.9 \times 7}{120}$$

Remaining weeks (low rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.1075 \times 7}{316 - 120} \times (1 + P)$$

where FT is the final annual TNUoS tariff expressed in £/kW; G_i is the generation TNUoS zone; and P is the premium in % above the annual equivalent TNUoS charge as determined by The Company, which shall have the value 0.

- 14.16.7 The LDTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.
- 14.16.8 The tariffs applicable for any particular year are detailed in The Company's **Statement of Use of System Charges** which is available from the **Charging website.** Historical tariffs are also available on the **Charging website.**

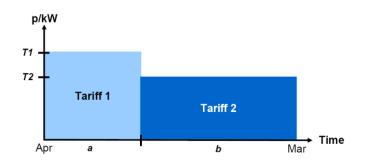
14.17 Demand Charges

Parties Liable for Demand Charges

- 14.17.1 <u>Demand charges are subdivided into charges for gross demand, energy and</u> <u>embedded export.</u> The following parties shall be liable for <u>some or all of the</u> <u>categories of</u> demand charges:
 - The Lead Party of a Supplier BM Unit;
 - Power Stations with a Bilateral Connection Agreement;
 - Parties with a Bilateral Embedded Generation Agreement
- 14.17.2 Classification of parties for charging purposes, section 14.26, provides an illustration of how a party is classified in the context of Use of System charging and refers to the paragraphs most pertinent to each party.

Basis of Gross Demand Charges

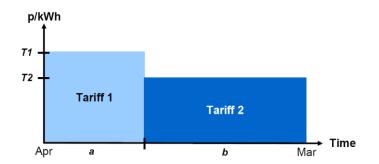
- 14.17.3 <u>Gross d</u>emand charges are based on a de-<u>minimis</u> £0/kW charge for Half Hourly and £0/kWh for Non Half Hourly metered demand.
 - 14.17.4 Chargeable <u>Gross</u> Demand Capacity is the value of Triad <u>gross</u> demand (kW). Chargeable Energy Capacity is the energy consumption (kWh). The definition of both these terms is set out below.
 - 14.17.5 If there is a single set of <u>gross</u> demand tariffs within a charging year, the Chargeable <u>Gross</u> Demand Capacity is multiplied by the relevant <u>gross</u> demand tariff, for the calculation of <u>gross</u> demand charges.
 - 14.17.6 If there is a single set of energy tariffs within a charging year, the Chargeable Energy Capacity is multiplied by the relevant energy consumption tariff for the calculation of energy charges..
 - 14.17.7 If multiple sets of <u>gross</u> demand tariffs are applicable within a single charging year, <u>gross</u> demand charges will be calculated by multiplying the Chargeable <u>Gross</u> Demand Capacity by the relevant tariffs pro rated across the months that they are applicable for, as below,


▼		
Annual Liability	$y_{Demand} = \frac{Chargeable \ Gross}{Demand \ Capacity} \times \left(\frac{(a \times Tariff \ 1) + (b \times Tariff \ 2)}{12}\right)$	
where:		
Tariff 1 =	Original tariff,	
Tariff 2 =	Revised tariff,	

a = Number of months over which the original tariff is applicable,
 b = Number of months over which the revised tariff is applicable.

Deleted: minimus

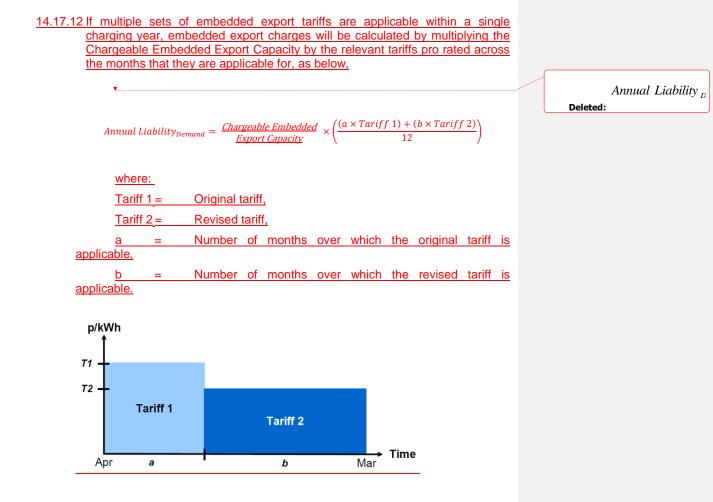
Deleted: Annual Liability _D


Page 38 of 64

14.17.8 If multiple sets of energy tariffs are applicable within a single charging year, energy charges will be calculated by multiplying relevant Tariffs by the Chargeable Energy Capacity over the period that that the tariffs are applicable for and summing over the year.

Annual Liability $_{Energy} = Tariff \ 1 \times \sum_{TI_s}^{TI_E} Chargeable Energy Capacity + Tariff \ 2 \times \sum_{TZ_s}^{TI_E} Chargeable Energy Capacity$

Where: T1_s Start date for the period for which the original tariff is = applicable, End date for the period for which the original tariff is T1_E = applicable, Start date for the period for which the revised tariff is T2s _ applicable, End date for the period for which the revised tariff is T₂E = applicable.



Basis of Embedded Export Charges

- 14.17.9 Embedded export charges are based on a £/kW charge for Half Hourly metered embedded export.
- <u>14.17.10 Chargeable Embedded Export Capacity is the value of Embedded Export at</u> <u>Triad (kW). The definition of this term is set out below.</u>

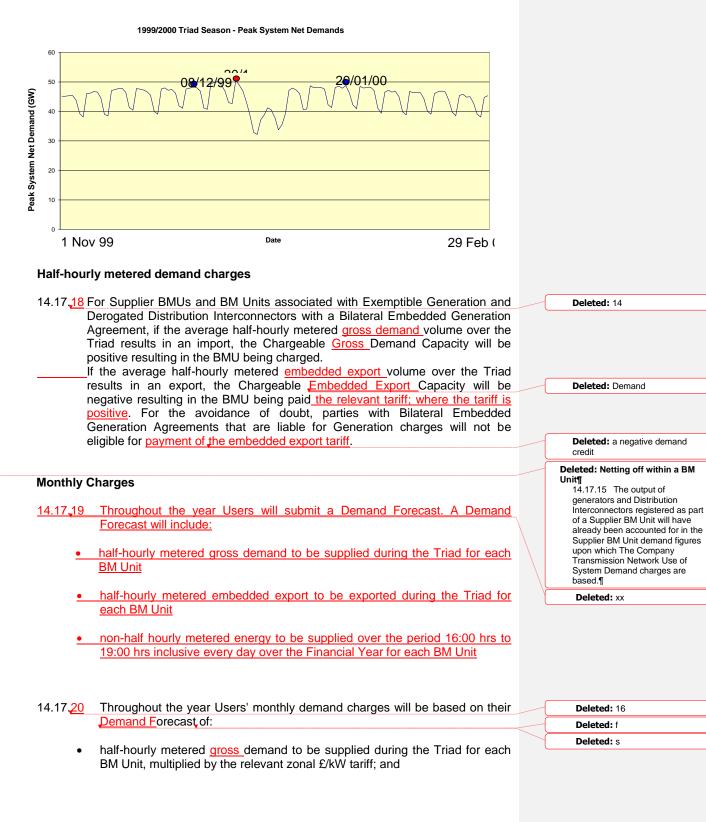
If there is a single set of embedded export tariffs within a charging year, the Chargeable Embedded Export Capacity is multiplied by the relevant embedded export tariff, for the calculation of embedded export charges. Deleted: 14.17.11

Page	39	of	64
------	----	----	----

Supplier BM Unit

14.17,<u>13</u> A Supplier BM Unit charges will be the sum of its energy, <u>gross</u> demand <u>and</u> <u>embedded export</u> liabilities where:

- The Chargeable <u>Gross</u> Demand Capacity will be the average of the Supplier BM Unit's half-hourly metered <u>gross</u> demand during the Triad (and the £/kW tariff),
- The Chargeable Embedded Export Capacity will be the average of the Supplier BM Unit's half-hourly metered embedded export during the Triad (and the £/kW tariff), and
- The Chargeable Energy Capacity will be the Supplier BM Unit's non halfhourly metered energy consumption over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year (and the p/kWh tariff).


Power Stations with a Bilateral Connection Agreement and Licensable Generation with a Bilateral Embedded Generation Agreement

Page 40 of 64

V1.12-01 April 2016

Deleted: 9

	CUSC v1.12			
1	14.17,14 The Chargeable Gross Demand Capacity for a Power Station with a Bilateral	_	Deleted: 10	
I	Connection Agreement or Licensable Generation with a Bilateral Embedded)
	Generation Agreement will be based on the average of the gross import over		Deleted: net	
	each Triad leg of the BM Units associated with the Power Station (in Appendix			
	C of its Bilateral Connection Agreement or Bilateral Embedded Generation Agreement, including metered additional load) during the Triad.			
	Agreement, including metered additional load) during the Thad.			
	Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement			
1	14.17,15 The demand charges for Exemptible Generation and Derogated Distribution		Deleted: 11	
	Interconnector with a Bilateral Embedded Generation Agreement will be the			
	sum of its gross demand and embedded export liabilities where:			
	The Observable Organ Demond Opperity for Every title Opperation and			
	 The Chargeable <u>Gross</u> Demand Capacity for Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation 			
	Agreement will be based on the average of the metered gross demand of	-	Deleted: volume	
	each BM Unit specified in Appendix C of the Bilateral Embedded Generation)
	Agreement during the Triad.			
	 <u>The Chargeable Embedded Export Capacity for Exemptible Generation and</u> Derogated Distribution Interconnectors with a Bilateral Embedded Generation 			
	Agreement will be based on the average of the metered embedded export of			
	each BM Unit specified in Appendix C of the Bilateral Embedded Generation			
	Agreement during the Triad.			
	Small Generators Tariffs			
	14.17,16 In accordance with Standard Licence Condition C13, any under recovery from		Deleted: 12	
	the MAR arising from the small generators discount will result in a unit amount	- (
	of increase to all GB gross demand tariffs.			
	The Triad			
	The Triad			
1	14.17,17 The Triad is used as a short hand way to describe the three settlement periods	\square	Deleted: 13	
	of highest transmission system demand within a Financial Year, namely the)
	half hour settlement period of system peak <u>net</u> demand and the two half hour			
	settlement periods of next highest <u>net</u> demand, which are separated from the			
	system peak <u>net</u> demand and from each other by at least 10 Clear Days, between November and February of the Financial Year inclusive. Exports on			
	directly connected Interconnectors and Interconnectors capable of exporting			
	more than 100MW to the Total System shall be excluded when determining the			
	system peak <u>net</u> demand. An illustration is shown below.			
-				

- half-hourly metered embedded export to be supplied during the Triad for each BM Unit, multiplied by the relevant zonal £/kW tariff; and
- non-half hourly metered energy to be supplied over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year for each BM Unit, multiplied by the relevant zonal p/kWh tariff

Users' annual TNUoS demand charges are based on these forecasts and are split evenly over the 12 months of the year. Users have the opportunity to vary their demand forecasts on a quarterly basis over the course of the year, with the demand forecast requested in February relating to the next Financial Year. Users will be notified of the timescales and process for each of the quarterly updates. The Company will revise the monthly Transmission Network Use of System demand charges by calculating the annual charge based on the new forecast, subtracting the amount paid to date, and splitting the remainder evenly over the remaining months. For the avoidance of doubt, only positive demand forecasts (i.e. representing <u>a net</u> import from the system) will be <u>used in the calculation of charges</u>.

Demand forecasts for a User will be considered positive where:

- The sum of the gross demand forecast and embedded export forecast is positive; and
- The non-half hourly metered energy forecast is positive.

14.17.21 Users should submit reasonable forecasts of gross demand, embedded export and energy in accordance with the CUSC. The Company shall use the following methodology to derive a forecast to be used in determining whether a User's forecast is reasonable, in accordance with the CUSC, and this will be used as a replacement forecast if the User's total forecast is deemed unreasonable. The Company will, at all times, use the latest available Settlement data.

For existing Users:

- i) The User's Triad <u>gross</u> demand<u>and embedded export</u> for the preceding Financial Year will be used where User settlement data is available and where The Company calculates its forecast before the Financial Year. Otherwise, the User's average weekday settlement period 35 half-hourly metered (HH) <u>gross</u> demand <u>and embedded export</u> in the Financial Year to date is compared to the equivalent average <u>gross</u> demand<u>and</u> <u>embedded export</u> for the corresponding days in the preceding year. The percentage difference is then applied to the User's HH <u>gross</u> demand<u>and</u> <u>embedded export</u> at Triad in the preceding Financial Year to derive a forecast of the User's HH <u>gross</u> demand <u>and embedded export</u> at Triad for this Financial Year.
- ii) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day in the Financial Year to date is compared to the equivalent energy consumption over the corresponding days in the preceding year. The percentage difference is then applied to the User's total NHH energy consumption in the preceding Financial Year to derive a forecast of the User's NHH energy consumption for this Financial Year.

For new Users who have completed a Use of System Supply Confirmation Notice in the current Financial Year:

Page 43 of 64

V1.12-01 April 2016

Deleted: accepted

Deleted: 17

1

iii) The User's average weekday settlement period 35 half-hourly metered (HH) gross demand and embedded export over the last complete month for which The Company has settlement data is calculated. Total system average HH gross demand and embedded export for weekday settlement period 35 for the corresponding month in the previous year is compared to total system HH_gross demand and embedded export at Triad in that year and a percentage difference is calculated. This percentage is then applied to the User's average HH gross demand and embedded export for weekday settlement period 35 over the last month to derive a forecast of the User's HH gross demand and embedded export at Triad for this Financial Year.

- iv) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day over the last complete month for which The Company has settlement data is noted. Total system NHH energy consumption over the corresponding month in the previous year is compared to total system NHH energy consumption over the remaining months of that Financial Year and a percentage difference is calculated. This percentage is then applied to the User's NHH energy consumption over the month described above, and all NHH energy consumption in previous months is added, in order to derive a forecast of the User's NHH metered energy consumption for this Financial Year.
- 14.17,22 14.28 Determination of The Company's Forecast for Demand Charge Purposes illustrates how the demand forecast will be calculated by The Company.

Reconciliation of Demand Charges

14.17,23 The reconciliation process is set out in the CUSC. The demand reconciliation process compares the monthly charges paid by Users against actual outturn charges. Due to the Settlements process, reconciliation of demand charges is carried out in two stages; initial reconciliation and final reconciliation.

Initial Reconciliation of demand charges

14.17,24 The initial reconciliation process compares Users' demand forecasts and corresponding monthly charges paid over the year against actual outturn data (using latest Settlement data available at the time) and corresponding charges. Initial reconciliation is carried out in two parts; Initial Reconciliation Part 1 deals with the reconciliation of half-hourly metered demand charges and Initial Reconciliation Part 2 deals with the reconciliation of non-half-hourly metered demand charges.

Initial Reconciliation Part 1– Half-hourly metered demand

- 14.17,25 The Company will identify the periods forming the Triad once it has received Central Volume Allocation data from the Settlement Administration Agent for all days up to and including the last day of February. Once The Company has notified Users of the periods forming the Triad they will not be changed even if disputes are subsequently resolved which would change the periods forming the Triad.
- 14.17,<u>26</u> Initial outturn charges for half-hourly metered <u>gross</u> demand will be determined using the latest available data of actual average Triad <u>gross</u> demand (kW) multiplied by the zonal <u>gross</u> demand tariff(s) (£/kW) applicable to the months

Page 44 of 64

Deleted: 18

Deleted: 19

Deleted: 20

Deleted: 21

Deleted: 22

С

I

I

I

I

1.12	
concerned for each zone for that Financial Year. These actual values are then reconciled against the monthly charges paid in respect of half-hourly gross demand.	
14.17.27 Initial outturn charges for half-hourly metered embedded export will be determined using the latest available data of actual average Triad embedded	
export (kW) multiplied by the zonal embedded export tariff(s) (£/kW) applicable to the months concerned for each zone for that Financial Year. These actual values are then reconciled against the monthly charges paid in respect of half-	
hourly embedded exports.	
Initial Reconciliation Part 2 – Non-half-hourly metered demand	
14.17,28 Actual payments for non-half-hourly metered demand will be determined using	Deleted: 23
the latest available actual energy consumption data (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) over the year multiplied by the energy consumption tariff(s) (p/kWh) applicable to the months concerned for each zone. These actual values are then reconciled against the monthly charges paid in respect of non-half-hourly energy consumption.	
Final Reconciliation of demand charges	
14.17,29 The final reconciliation process compares Users' charges (as calculated during	Deleted: 24
the initial reconciliation process using the latest available data) against final outturn demand charges (based on final settlement data <u>of half-hourly gross</u> <u>demand, embedded exports and non-half-hourly energy consumption).</u>	
14.17.30 Final actual charges will be determined using the final demand reconciliation data taken from the Final Reconciliation Settlement Run or the Final Reconciliation Volume Allocation Run.	Deleted: 25
Reconciliation of manifest errors	
14.17, <u>31</u> In the event that a manifest error, or multiple errors in the calculation of TNUoS tariffs results in a material discrepancy in aUsers TNUoS tariff, the	Deleted: 26
reconciliation process for all Users qualifying under Section 14.17,33 will be in	Deleted: 28
accordance with Sections 14.17,24 to 14.17,50. The reconciliation process shall be carried out using recalculated TNUoS tariffs. Where such	Deleted: 20
reconciliation is not practicable, a post-year reconciliation will be undertaken in the form of a one-off payment.	Deleted: 25
14.17. <u>32 A manifest error shall be defined as any of the following:</u>	Deleted: 27
 a) an error in the transfer of relevant data between the Transmission Licensees or Distribution Network Operators; 	
b) an error in the population of the Transport Model with relevant data;	
c) an error in the function of the Transport Model; ord) an error in the inputs or function of the Tariff Model.	
14.17,33 A manifest error shall be considered material in the event that such an error or, the net effect of multiple errors, has an impact of the lesser of either:	Deleted: 28
a) an error in a User's TNUoS tariff of at least +/-£0.50/kW; or	

Page 45 of 64

b) an error in a User's TNUoS tariff which results in an error in the annual TNUoS charge of a User in excess of +/-£250,000.

14.17,<u>34</u> A manifest error shall only be reconciled if it has been identified within the charging year for which the error has an effect. Errors identified outside of this period will not be eligible for reconciliation retrospectively.

Implementation of P272

- 14.17,<u>35</u>.1 BSC modification P272 requires Suppliers to move Profile Classes 5-8 to Measurement Class E - G (i.e. moving from NHH to HH settlement) by April 2016. The majority of these meters are expected to transfer during the preceding Charging Years up until the implementation date of P272 and some meters will have been transferred before the start of 1ST April 2015. A change from NHH to HH within a Charging Year would normally result in Suppliers being liable for TNUoS for part of the year as NHH and also being subject to HH charging. This section describes how the Company will treat this situation in the transition to P272 implementation for the purposes of TNUoS charging; and the forecasts that Suppliers should provide to the Company.
- 14.17,35.2 Notwithstanding 14.17,13, for each Charging Year which begins after 31 March 2015 and prior to implementation of BSC Modification P272, all demand associated with meters that are in NHH Profile Classes 5 to 8 at the start of that charging year as well as all meters in Measurement Classes E G will be treated as Chargeable Energy Capacity (NHH) for the purposes of TNUoS charging for the full Charging Year unless 14.17,35.3 applies.
 - 14.17,35.3 Where prior to 1st April 2015 a Profile Class meter has already transferred to Measurement Class settlement (HH) the associated Supplier may opt to treat the demand volume as Chargeable Demand Capacity (HH) for the purposes of TNUoS charging up until implementation of P272, subject to meeting conditions in 14.17,35.6. If the associated Supplier does not opt to treat the demand volume as Demand Capacity (HH) it will be treated by default as Chargeable Energy Capacity (NHH) for each full Charging Year up until implementation of P272.
 - 14.17,35.4 The Company will calculate the Chargeable Energy Capacity associated with meters that have transferred to HH settlement but are still treated as NHH for the purposes of TNUoS charging from Settlement data provided directly from Elexon i.e. Suppliers need not Supply any additional information if they accept this default position.
- 14.17,35.5 The forecasts that Suppliers submit to the Company under CUSC 3.10, 3.11 and 3.12 for the purpose of TNUoS monthly billing referred to in 14.17,20 and 14.17,21 for both Chargeable Demand Capacity and Chargeable Energy Capacity should reflect this position i.e. volumes associated those Metering Systems that have transferred from a Profile Class to a Measurement Class in the BSC (NHH to HH settlement) but are to be treated as NHH for the purposes of TNUoS charging should be included in the forecast of Chargeable Energy Capacity and not Chargeable Demand Capacity, unless 14.17,35.3 applies.
 - 14.17,<u>35</u>.6 Where a Supplier wishes for Metering Systems that have transferred from Profile Class to Measurement Class in the BSC (NHH to HH settlement) prior to 1st April 2015, to be treated as Chargeable Demand Capacity (HH/

Page 46 of 64

V1.12-01 April 2016

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 9

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 16

Deleted: 17

Deleted: 29

Deleted: 29

I

Measurement Class settled) it must inform the Company prior to October 2015. The Company will treat these as Chargeable Demand Capacity (HH / Measurement Class settled) for the purposes of calculating the actual annual liability for the Charging Years up until implementation of P272. For these cases only, the Supplier should notify the Company of the Meter Point Administration Number(s) (MPAN). For these notified meters the Supplier shall provide the Company with verified metered demand data for the hours between 4pm and 7pm of each day of each Charging Year up to implementation of P272 and for each Triad half hour as notified by the Company prior to May of the following Charging Year up until two years after the implementation of P272 to allow reconciliation (e.g. Mav 2017 and May 2018 for the Charging Year 2016/17). Where the Supplier fails to provide the data or the data is incomplete for a Charging Year TNUoS charges for that MPAN will be reconciled as part of the Supplier's NHH BMU (Chargeable Energy Capacity). Where a Supplier opts, if eligible, for TNUoS liability to be calculated on Chargeable Demand Capacity it shall submit the forecasts referred to in 14.17,35.5 taking account of this.

14.17,35.7 The Company will maintain a list of all MPANs that Suppliers have elected to be treated as HH. This list will be updated monthly and will be provided to registered Suppliers upon request.

Further Information

- 14.17,<u>36</u> 14.25 Reconciliation of Demand Related Transmission Network Use of System Charges of this statement illustrates how the monthly charges are reconciled against the actual values for <u>gross</u> demand, <u>embedded export</u> and consumption for half-hourly <u>gross demand</u>, <u>embedded export</u> and non-halfhourly metered demand respectively.
- 14.17,<u>37</u> **The Statement of Use of System Charges** contains the £/kW zonal gross demand tariffs, <u>the £/kW zonal embedded export tariffs</u>, and the p/kWh energy consumption tariffs for the current Financial Year.
- 14.17,<u>38</u>14.27 Transmission Network Use of System Charging Flowcharts of this statement contains flowcharts demonstrating the calculation of these charges for those parties liable.

Deleted: 30

Deleted: 29

Deleted: 29

Deleted: 31

Deleted: 32

....

14.24 Example: Calculation of Zonal Gross Demand Tariff

Let us consider all nodes in a demand zone in this example

The table below shows a sample output of the transport model comprising the node, the Peak Security and Year Round marginal km of an injection at the node with a consequent withdrawal at the distributed reference node, the generation sited at the node, scaled to ensure total national generation = total national <u>net</u> demand and the <u>net</u> demand sited at the node.

Demand Zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	<u>Net</u> Demand (MW)
14	ABHA4A	-77.25	-230.25	127
14	ABHA4B	-77.27	-230.12	127
14	ALVE4A	-82.28	-197.18	100
14	ALVE4B	-82.28	-197.15	100
14	AXMI40_SWEB	-125.58	-176.19	97
14	BRWA2A	-46.55	-182.68	96
14	BRWA2B	-46.55	-181.12	96
14	EXET40	-87.69	-164.42	340
14	HINP20	-46.55	-147.14	0
14	HINP40	-46.55	-147.14	0
14	INDQ40	-102.02	-262.50	444
14	IROA20_SWEB	-109.05	-141.92	462
14	LAND40	-62.54	-246.16	262
14	MELK40_SWEB	18.67	-140.75	83
14	SEAB40	65.33	-140.97	304
14	TAUN4A	-66.65	-149.11	55
14	TAUN4B	-66.66	-149.11	55
		Totals		2748

In order to calculate the <u>gross</u> demand tariff we would carry out the following steps:

(i) calculate the demand weighted nodal shadow costs

For this example zone this would be as follows:

Demand zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	Net Demand (MW)	Peak Security Demand Weighted Nodal Marginal km	Year Round Demand Weighted Nodal Marginal km
14	ABHA4A	-77.25	-230.25	127	-3.57	-10.64
14	ABHA4B	-77.27	-230.12	127	-3.57	-10.64
14	ALVE4A	-82.28	-197.18	100	-2.99	-7.17
14	ALVE4B	-82.28	-197.15	100	-2.99	-7.17
14	AXMI40_SWEB	-125.58	-176.19	97	-4.43	-6.22
14	BRWA2A	-46.55	-182.68	96	-1.63	-6.38
14	BRWA2B	-46.55	-181.12	96	-1.63	-6.33
14	EXET40	-87.69	-164.42	340	-10.85	-20.34
14	INDQ40	-102.02	-262.50	444	-16.48	-42.41
14	IROA20_SWEB	-109.05	-141.92	462	-18.33	-23.86
14	LAND40	-62.54	-246.16	262	-5.96	-23.47
14	MELK40_SWEB	18.67	-140.75	83	0.56	-4.25
14	SEAB40	65.33	-140.97	304	7.23	-15.59
14	TAUN4A	-66.65	-149.11	55	-1.33	-2.98
14	TAUN4B	-66.66	-149.11	55	-1.33	-2.98
		Totals		2748	-49.19	-190.43

(ii) sum the Peak Security and Year Round demand weighted nodal shadow costs to give zonal figures. For this example zone this is shown in the above table and is 49.19km for Peak Security background and 190.43km for Year Round background.

(iii) calculate the transport tariffs by multiplying the figures in (ii) above by the expansion constant (& dividing by 1000 to put into units of £/kW):

For this example zone, assuming an expansion constant of ± 10.07 /MWkm and a locational security factor of 1.80:

a) Peak Security tariff – 49.19km <u>* £10.07/MWkm * 1.8</u> = <u>£0.89/kW</u> 1000

Page 50 of 64

b) Year Round tariff -<u>190.43km * £10.07/MWkm * 1.8</u> = <u>£3.45/kW</u> 1000

(iv) We now need to calculate the residual tariff. This is calculated by taking the total revenue to be recovered from demand (calculated as c.73% of total The Company TNUoS target revenue for the year), less the revenue which would be recovered through the demand transport tariffs and revenue recovery through embedded export tariffs, divided by total expected gross GSP group demand.

Assuming the total revenue to be recovered from TNUoS is £1067m, the total recovery from <u>gross GSP group</u> demand would be (73% x £1067m) = £779m. Assuming the total recovery from <u>gross GSP group</u> demand transport tariffs is £<u>140m</u>, total recovery from <u>embedded export tariffs is -£10m</u> and total forecast chargeable <u>gross GSP group</u> demand capacity is 50000MW, the demand residual tariff would be as follows:

 $\frac{\pounds779m - \pounds140m - -\pounds10m}{50,000MW} = \pounds12.98/kW$

 (v) to get to the final tariff, we simply add on the demand residual tariff calculated in (v) to the zonal transport tariffs calculated in (iii(a)) and (iii(b))

For zone 14:

 $\pounds 0.89/kW + \pounds 3.45/kW + \pounds 12.98/kW =$ $\pounds 17.32/kW$

- To summarise, in order to calculate the <u>gross</u> demand tariffs, we evaluate a <u>net</u> demand weighted zonal marginal km cost multiply by the expansion constant and locational security factor then we add a constant (termed the residual cost) to give the overall tariff.
- (vii) The final demand tariff is subject to further adjustment to allow for the minimum £0/kW gross_demand charge. The application of a discount for small generators pursuant to Licence Condition C13 will also affect the final gross_demand tariff.

Deleted: gross

Deleted: 130m

Deleted: $\frac{\pounds779m - \pounds130m}{2}$	_
50000MW	_
¶ <u>£779m - £140m£10m</u> = £12.98/kW¶	
50,000MW	

14.25 Reconciliation of <u>Gross</u> Demand Related Transmission Network Use of System Charges

This appendix illustrates the methodology used by The Company in the reconciliation of Transmission Network Use of System charges for <u>gross</u> demand. The example highlights the different stages of the calculations from the monthly invoiced amounts, right through to Final Reconciliation.

Monthly Charges

Suppliers provide half-hourly (HH) gross demand and embedded export forecasts and non-halfhourly (NHH) demand forecasts by BM Unit every quarter. An example of such forecasts and the corresponding monthly invoiced amounts, based on tariffs of £10.00/kW for gross demand, £5.00/kW for embedded export and 1.20p/kWh for energy consumption, is as follows:

	Forecast HH Triad <u>Gross</u> Demand <u>HHD_E (</u> kW)	HH <u>Gross</u> <u>Demand</u> Monthly Invoiced Amount (£)	Forecast <u>HH</u> <u>Triad</u> <u>Embedded</u> <u>Export</u> <u>HHEE_E (kW)</u>	<u>HH</u> <u>Embedded</u> <u>Generation</u> <u>Monthly</u> <u>Invoiced</u> <u>Amount (£)</u>	Forecast NHH Energy Consumpti on NHHC _F (kW h)	NHH Monthly Invoiced Amount (£)	Net Monthly Invoiced Amount (£)
Apr	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
May	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jun	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jul	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Aug	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Sep	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Oct	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Nov	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Dec	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Jan	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Feb	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Mar	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Total		72,000		<u>(3,000)</u>		216,000	<u>297</u> ,000

As shown, for the first nine months the Supplier provided a 12,000kW HH triad <u>gross</u> demand forecast, and hence paid HH <u>gross demand</u> monthly charges of £10,000 ((12,000kW x £10.00/kW)/12) for that BM Unit. In January the Supplier provided a revised forecast of 7,200kW, implying a forecast annual charge reduced to £72,000 (7,200kW x £10.00/kW). The Supplier had already paid £90,000, so the excess of £18,000 was credited back to the supplier in three £6,000 instalments over the last three months of the year.

The Supplier provided an embedded export triad forecast of -600kW and hence was paid an embedded export credit of £250 ((600kW x £5.00/kW)/12) for that BM Unit (For the avoidance of doubt, if the embedded export tariff is negative this will result in a debit).

The Supplier also initially provided a 15,000,000kWh NHH energy consumption forecast, and hence paid NHH monthly charges of £15,000 ((15,000,000kWh x 1.2p/kWh)/12) for that BM Unit. In July the Supplier provided a revised forecast of 18,000,000kWh, implying a forecast annual charge increased to £216,000 (18,000,000kWh x 1.2p/kWh). The Supplier had already

Page 52 of 64

paid £45,000, so the remaining £171,000 was split into payments of £19,000 for the last nine months of the year.

The right hand column shows the net monthly charges for the BM Unit.

Initial Reconciliation (Part 1a)

The Supplier's outturn HH triad <u>gross</u> demand, based on <u>initial</u> settlement data (and therefore subject to change in subsequent settlement runs), was 9,000kW. The HH triad <u>gross</u> demand reconciliation charge is therefore calculated as follows:

HHD Reconciliation Charge = $(HHD_A - HHD_F) \times \pounds/kW$ Tariff

= (9,000kW - 7,200kW) x £10.00/kW

= 1,800kW x £10.00/kW

= £18,000

To calculate monthly interest charges, the outturn HHD charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHD charge less the HH <u>gross demand</u> monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 1b)

The Supplier's outturn HH triad embedded export, based on initial settlement data (and therefore subject to change in subsequent settlement runs), was 700kW. The HH triad embedded export reconciliation charge is therefore calculated as follows:

HHEE Reconciliation Charge = (HHEE_A – HHEE_E) x £/kW Tariff

 $= (-500 \text{kW} - -600 \text{kW}) \times \text{\pounds}5.00/\text{kW}$

 $= 100 kW x \pounds 5.00 / kW$

= **£500**

To calculate monthly interest charges, the outturn HHEE charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHEE charge less the HH embedded generation monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 2)

The Supplier's outturn NHH energy consumption, based on initial settlement data, was 17,000,000kWh. The NHH energy consumption reconciliation charge is therefore calculated as follows:

Deleted: Please note that payments made to BM Units with a net export over the Triad, based on initial settlement data, will also be reconciled at this stage.¶ As monthly payments will not be made on the basis of a negative forecast, the HHD Reconciliation Charge for an exporting BM Unit will represent the full actual payment owed to that BM Unit (subject to adjustment by subsequent settlement runs). Interest will be calculated as described above.¶

NHHC Reconciliation Charge = $(NHHC_A - NHHC_F) \times p/kWh$ Tariff

100

= <u>(17,000,000kWh - 18,000,000kWh) x 1.20p/kWh</u>

100

= <u>-1,000,000kWh x 1.20p/kWh</u> 100 = **-£12,000**

worked example 4.xls - Initial!J104

The monthly reconciliation amount is equal to the outturn energy consumption charge for that month less the NHH monthly invoiced amount. Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

The net initial TNUoS demand reconciliation charge is therefore $\pounds 6,500$ (£18,000 + $\pounds 500$ - $\pounds 12,000$).

Final Reconciliation

Finally, let us now suppose that after all <u>final</u> Settlement data has been received (up to 14 months after the relevant dates), the outturn HH triad <u>gross</u> demand, <u>HH triad embedded export</u> and NHH energy consumption values were 9,500kW, <u>-550kW</u> and 16,500,000kWh, respectively.

Final HH <u>Gross Demand</u>	= (9,500kW - 9,000kW) x £10.00/kW
<u>Reconciliation Charge</u>	= £5,000
Final HH Embedded Export	= (-550kW500kW) x £5.00/kW
Reconciliation Charge	= -£250

Final NHH Reconciliation Charge = $(16,700,000kWh - 17,000,000kWh) \times 1.20p/kWh$ 100 = -£3,600

Consequently, the net final TNUoS demand reconciliation charge will be $\pounds 1, \underline{150} (\pounds 5,000 + -\pounds 250 + -\pounds 3,600)$.

Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

Outturn data for BM Units with a net export over the Triad will be received at this stage and final reconciliation will be carried out, as required. Interest will be calculated as described above.

Terminology:

 HHD_A = The Supplier's outturn half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

Page 54 of 64

Deleted: 000

I

 HHD_F = The Supplier's forecast half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

<u>HHEE_A = The Supplier's outturn half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

<u>HHEE_E = The Supplier's forecast half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

NHHC_A = The Supplier's outturn non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1^{st} to March 31^{st} , for the demand zone concerned.

NHHC_F = The Supplier's forecast non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1st to March 31st, for the demand zone concerned.

£/kW Tariff = The £/kW <u>Gross</u> Demand <u>or Embedded Export</u> Tariff as shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

p/kWh Tariff = The Energy Consumption Tariff shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

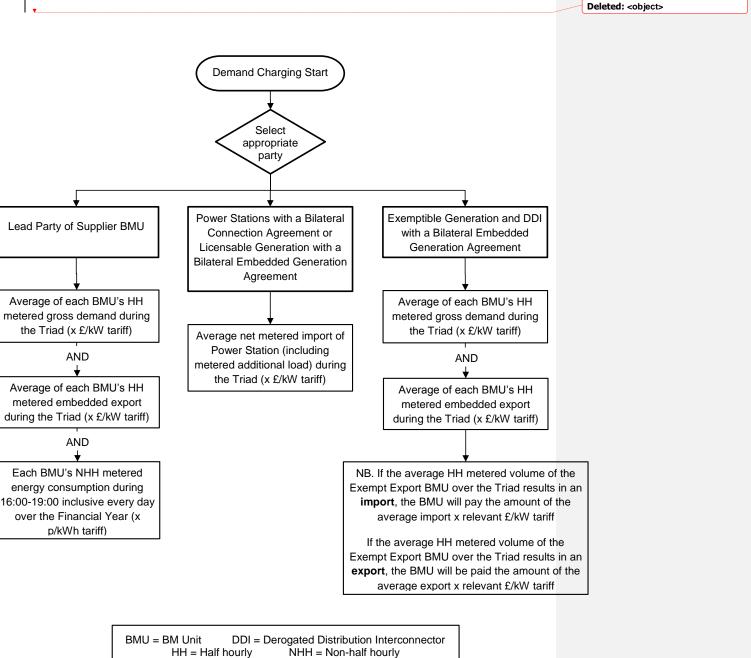
14.26 Classification of parties for charging purposes

In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precendence.

In the following diagrams, the parties liable for Transmission Network Use of System charges are outlined in red.

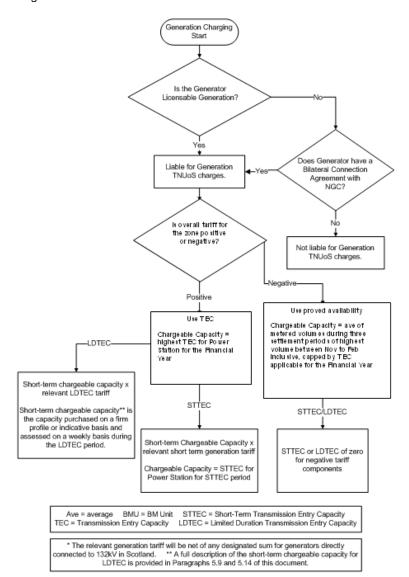
SUPPLIER		
Supplier Use of System Agreem	ent	
Supplier Supplier BMU1 BMUn		
Demand Charges	Generation Charges	
See 14.17, <mark>13</mark> and 14.17, <u>18</u> .	None.	Deleted: 9
		Deleted: 14
Bilateral Connection Agreement Gen Unit BMU1 Gen Unit BMUn	Appendix C Station Load BMU Load BMU	
Demand Charges	Generation Charges	
See 14.17, <mark>14</mark> .	See 14.18.1 i) and 14.18.3 to 14.18.9 and 14.18.18. For generators in positive zones, see 14.18.10 to	Deleted: 10
	14.18.12.For generators in negative zones, see 14.18.13 to14.18.17.	

Bilateral Emb	edded Generation	Agreement Ap	pendix C	7
Gen Unit BMU1	Gen Unit BMUn	Station Load BMU	Additional Load BMU	
Demand Charges	7. <u>15</u> and 14.17. <u>18</u> .	Generation Cl See 14.18.1 ii	U	
Jee 14.17 <u>14</u> , 14.17	<u>, 10</u> and 14.17 <u>,10</u> .	For generators in positive zones, see 14.18.3 to 14.18.12 and 14.18.18. For generators in negative zones, see 14.18.3 to		


-{	Deleted: 10
-	Deleted: 11
Y	Deleted: 14

14.27 Transmission Network Use of System Charging Flowcharts

The following flowcharts illustrate the parties liable for Demand and Generation TNUoS charges and the calculation of those charges.


In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precedence.

Page 58 of 64

Generation Charges

14.28 Example: Determination of The Company's Forecast for Demand Charge Purposes

The Company will use the latest available settlement data for calculation of HH demand and NHH energy consumption forecasts for the Financial Year.

The Financial Year runs from 1st April to 31st March inclusive and for the purpose of these examples the year April 2005 to March 2006 is used.

Where the preceding year's settlement data is not available at the time that The Company needs to calculate its forecast, The Company will use settlement data from the corresponding period in Financial Year minus two unless indicated otherwise.

All values used with the examples are purely for illustrative purposes only.

i) Half-Hourly (HH) Metered Demand Forecast – Existing User

At the time of calculation of a HH demand forecast before the relevant Financial Year (approximately 10th March), The Company will be aware at a system level which dates will be used for the determination of Triad. However, The Company may not have settlement data at a User level if the Triad dates were to span a period that includes the latter half of February.

When undertaking forecasting before the relevant Financial Year, The Company will use the User's Triad demand for the previous year for its forecast providing it holds User settlement data for this period, thus:

F = T

where:

F = Forecast of User's HH demand at Triad for the Financial Year

T = User's HH gross_demand and embedded export_at Triad in Financial Year minus one

Where The Company determines its forecast within a Financial Year:

F = T * D/P

where:

- F = Forecast of User's HH demand at Triad for the Financial Year
- T = User's HH gross demand and embedded export at Triad in the preceding Financial Year
- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the preceding Financial Year

Where The Company determines its forecast before the relevant Financial Year and User settlement data for the Triad period is not available, The Company shall apply the formula immediately above (within year forecast) but substitute the following definitions for the values T, D, and P:

T = User's HH gross demand and embedded export at Triad in the Financial Year minus two

Page 60 of 64

- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year minus one, to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the Financial Year minus two

Example (where User settlement data is not yet available for the Triad period):

The Company calculates a HH demand forecast on the above methodology at 10th March 2005 for the period 1st April 2005 to 31st March 2006.

Gross demand:

F = 10,000 * 13,200 / 12,000

F = 11,000 kW,Deleted: hwhere:T = 10,000 kW, (period November 2003 to February 2004)Deleted: hD = 13,200 kW, (period 1st April 2004 to 15th February 2005#)Deleted: hP = 12,000 kW, (period 1st April 2003 to 15th February 2004)Deleted: h

Latest date for which settlement data is available.

Embedded export:

F = -280 * -300 / -350

<u>F = -240 kW</u>

where:

T = -280 kW (period November 2003 to February 2004)

D = -300 kW (period 1st April 2004 to 15th February 2005#)

P = -350 kW (period 1st April 2003 to 15th February 2004)

<u># Latest date for which settlement data is available.</u>

ii) Non Half-Hourly (NHH) Metered Energy Consumption Forecast – Existing User

F = E * D/P

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- E = User's summed NHH energy consumption over the hours 16:00 to 19:00 for each day in the preceding Financial Year

Page 61 of 64

- D = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the Financial Year to date
- P = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the period corresponding to D in the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th June 2005 for the period 1st April 2005 to 31st March 2006.

- F = 50,000,000 * 4,400,000 / 4,000,000
- F = 55,000,000 kWh

where:

- E = 50,000,000 kWh (period 1st April 2004 to 31st March 2005)
- D = 4,400,000 kWh (period 1st April 2005 to 15th May 2005#)
- P = 4,000,000 kWh (period 1st April 2004 to 15th May 2004)
- # Latest date for which settlement data is available

Where forecasting before the relevant Financial Year concerned, The Company would in the above example use values for E and P from Financial Year 2003/04 and D from Financial Year 2004/05.

iii) Half-Hourly (HH) Metered Demand Forecast – New User

F = M * T/W

where:

- F = Forecast of User's HH metered <u>gross</u> demand <u>and embedded export</u> at Triad for the Financial Year
 - M = User's HH average weekday period 35 demand for the last complete month for which settlement data is available
- T = Total system HH <u>gross</u> demand <u>and embedded export</u> at Triad in the preceding Financial Year
 - W = Total system HH average weekday settlement period 35 metered demand for the corresponding period to M for the preceding year

Example:

The Company calculates a HH demand forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2004 to 31st March 2006.

Gross demand:

F = 1,000 * 17,000,000 / 18,888,888

	0000 0	1.12		
I	F =	900 kW,	(Deleted: h
	where			
ļ	M =	1,000 kW _• (period 1 st July 2005 to 31 st July 2005)	(Deleted: h
ļ	T =	17,000,000 kW, (period November 2004 to February 2005)	(Deleted: h
I	W =	18,888,888 kW _v (period 1 st July 2004 to 31 st July 2004)	(Deleted: h
	Embeo	Ided export:		
	<u>F =</u>	<u>150 * 7,200,000 / 6,000,000</u>		
	<u>F = </u>	<u>180 kW</u>		
	where			

- M = 150 kW (period 1st July 2005 to 31st July 2005)
- T = 7,200,000 kW (period November 2004 to February 2005)
- <u>W = 6,000,000 kW (period 1^{st} July 2004 to 31^{st} July 2004)</u>

iv) Non Half Hourly (NHH) Metered Energy Consumption Forecast – <u>New User</u>

 $\mathsf{F} = \mathsf{J} + (\mathsf{M} * \mathsf{R}/\mathsf{W})$

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- J = Residual part month summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day where new User registration takes place other than on the first of a month
- M = User's summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the last complete month for which settlement data is available
- R = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period from the start of that defined under M but for the preceding year and until the end of that preceding Financial Year
- W = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period identified in M but for the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2005 to 31st March 2006.

- F = 500 + (1,000 * 20,000,000,000 / 2,000,000,000)
- F = 10,500 kWh

where:

- J = 500 kWh (period 10th June 2005 to 30th June 2005)
- M = 1,000 kWh (period 1st July 2005 to 31st July 2005)
- R = 20,000,000,000 kWh (period 1st July 2004 to 31st March 2005)
- W = 2,000,000,000 kWh (period 1st July 2004 to 31st July 2004)

CMP265 WACM13

14.15 Derivation of the Transmission Network Use of System Tariff

- 14.15.1 The Transmission Network Use of System (TNUoS) Tariff comprises two separate elements. Firstly, a locationally varying element derived from the DCLF ICRP transport model to reflect the costs of capital investment in, and the maintenance and operation of, a transmission system to provide bulk transport of power to and from different locations. Secondly, a non-locationally varying element related to the provision of residual revenue recovery. The combination of both these elements forms the TNUoS tariff.
- 14.15.2 For generation TNUoS tariffs the locational element itself is comprised of five separate components. Three wider components
 - o Wider Peak Security Component
 - Wider Year Round Not-shared component
 - Wider Year Round component

These components reflect the costs of the wider network under the different generation backgrounds set out in the Demand Security Criterion (for Peak Security component) and Economy Criterion (for both Year Round components) of the Security Standard. The two Year Round components reflect the unshared and shared costs of the wider network based on the diversity of generation plant types.

Two local components -

- o Local substation, and
- Local circuit

These components reflect the costs of the local network.

Accordingly, the wider tariff represents the combined effect of the three wider locational tariff components and the residual element; and the local tariff represents the combination of the two local locational tariff components.

14.15.3 The process for calculating the TNUoS tariff is described below.

The Transport Model

Model Inputs

14.15.4 The DCLF ICRP transport model calculates the marginal costs of investment in the transmission system which would be required as a consequence of an increase in demand or generation at each connection point or node on the transmission system, based on a study of peak demand conditions using both Peak Security and Year Round generation backgrounds on the transmission system. One measure of the investment costs is in terms of MWkm. This is the concept that ICRP uses to calculate marginal costs of investment. Hence, marginal costs are estimated initially in terms of increases or decreases in units of kilometres (km) of the transmission system for a 1 MW injection to the system.

- 14.15.5 The transport model requires a set of inputs representative of the Demand Security and Economy Criterion set out in the Security Standards. These conditions on the transmission system are represented in the Peak Security and Year Round background respectively as follows:
- Nodal generation information per node (TEC, plant type and SQSS scaling factors)
- Nodal <u>net</u> demand information
- Transmission circuits between these nodes
- The associated lengths of these routes, the proportion of which is overhead line or cable and the respective voltage level
- The cost ratio of each of 132kV overhead line, 132kV underground cable, 275kV overhead line, 275kV underground cable and 400kV underground cable to 400kV overhead line to give circuit expansion factors
- The cost ratio of each separate sub-sea AC circuit and HVDC circuit to 400kV overhead line to give circuit expansion factors
- 132kV overhead circuit capacity and single/double route construction information is used in the calculation of a generator's local charge.
- Offshore transmission cost and circuit/substation data
- 14.15.6 For a given charging year "t", the nodal generation TEC figure and generation plant types at each node will be based on the Applicable Value for year "t" in the NETS Seven Year Statement in year "t-1" plus updates to the October of year "t-1". The contracted TECs and generation plant types in the NETS Seven Year Statement include all plant belonging to generators who have a Bilateral Agreement with the TOs. For example, for 2010/11 charges, the nodal generation data is based on the forecast for 2010/11 in the 2009 NETS Seven Year Statement plus any data included in the quarterly updates in October 2009.
- 14.15.7 Scaling factors for different generation plant types are applied on their aggregated capacity for both Peak Security and Year Round backgrounds. The scaling is either Fixed or Variable (depending on the total demand level) in line with the factors used in the Security Standard, for example as shown in the table below.

Generation Plant Type	Peak Security Background	Year Round Background
Intermittent	Fixed (0%)	Fixed (70%)
Nuclear & CCS	Variable	Fixed (85%)
Interconnectors	Fixed (0%)	Fixed (100%)
Hydro	Variable	Variable
Pumped Storage	Variable	Fixed (50%)
Peaking	Variable	Fixed (0%)
Other (Conventional)	Variable	Variable

These scaling factors and generation plant types are set out in the Security Standard. These may be reviewed from time to time. The latest version will be used in the calculation of TNUoS tariffs and is published in the Statement of Use of System Charges

14.15.8 National Grid will categorise plant based on the categorisations described in the Security Standard. Peaking plant will include oil and OCGT technologies and Other (Conv.) represents all remaining conventional plant not explicitly stated elsewhere in the table In the event that a power station is made up of more than one technology type, the type of the higher Transmission Entry Capacity (TEC) would apply.

I

- 14.15.9 Nodal <u>net</u> demand data for the transport model will be based upon the GSP <u>net</u> demand that Users have forecast to occur at the time of National Grid Peak Average Cold Spell (ACS) Demand for year "t" in the April Seven Year Statement for year "t-1" plus updates to the October of year "t-1".
- 14.15.10 Subject to paragraphs 14.15.15 to 14.15.22, Transmission circuits for charging year "t" will be defined as those with existing wayleaves for the year "t" with the associated lengths based on the circuit lengths indicated for year "t" in the April NETS Seven Year Statement for year "t-1" plus updates to October of year "t-1". If certain circuit information is not explicitly contained in the NETS Seven Year Statement, The Company will use the best information available.
- 14.15.11 The circuit lengths included in the transport model are solely those, which relate to assets defined as 'Use of System' assets.
- 14.15.12 For HVDC circuits, the impedance will be calculated to provide flows based on a ratio of the capacity provided by the HVDC link relative to the capacities on all major transmission system boundaries that it parallels.
- 14.15.13 The transport model employs the use of circuit expansion factors to reflect the difference in cost between (i) AC Circuits and HVDC circuits. (ii) underground and sub-sea circuits, (iii) cabled circuits and overhead line circuits, (iv) 132kV and 275kV circuits, (v) 275kV circuits and 400kV circuits, and (vi) uses 400kV overhead line (i.e. the 400kV overhead line expansion factor is 1). As the transport model expresses cost as marginal km (irrespective of cables or overhead lines), some account needs to be made of the fact that investment in these other types of circuit (specifically HVDC and sub-sea cables of various voltages, 400kV underground cable, 275kV overhead line, 275kV underground cable, 132kV overhead line and 132kV underground cable) is more expensive than for 400kV overhead line. This is done by effectively 'expanding' these more expensive circuits by the relevant circuit expansion factor, thereby producing a larger marginal kilometre to reflect the additional cost of investing in these circuits compared to 400kV overhead line. When calculating the local circuit tariff for a generator, alternative 132kV and offshore expansion factors to those used in the remainder of the tariff calculation are applied to the generator's local circuits.
- 14.15.14 The circuit expansion factors for HVDC circuits and AC subsea cables are determined on a case by case basis using the costs which are specific to individual projects containing HVDC or AC subsea circuits.

Adjustments to Model Inputs associated with One-off Works

- 14.15.15 Where, following the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge that related to One-off Works carried out on an onshore circuit, and such One-off Works would affect the value of a TNUoS tariff paid by the User, the transport model inputs associated with the onshore circuit shall be adjusted by The Company to reflect the asset value that would have been modelled if the works had been undertaken on the basis of the original asset design rather than the One-off Works.
- 14.15.16 Subject to paragraphs 14.15.17 to 14.15.19, where, prior to the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge (or has paid a charge to the relevant TO prior to 1st April 2005 on the same principles as a

Page 3 of 64

One-Off Charge) that related to works equivalent to those described under paragraph 14.15.15, an adjustment equivalent to that under paragraph 14.15.15 shall be made to the transport model inputs as follows.

- 14.15.17 Such adjustment shall be made following a User's request, which must be received by The Company no later than the second occurrence of 31st December following the implementation of CUSC Modification CMP203.
- 14.15.18 The Company shall only make an adjustment to the transport model inputs, under paragraph 14.15.16 where the charge was paid to the relevant TO prior to 1st April 2005 where evidence has been provided by the User that satisfies The Company that works equivalent to those under paragraph 14.15.15 were funded by the User.
- 14.15.19 Where a User has sufficient reason to believe that adjustments under paragraph 14.15.18 should be made in relation to specific assets that affect a TNUoS tariff that applies to one of its sites and outlines its reasoning to The Company, The Company shall (upon the User's request and subject to the User's payment of reasonable costs incurred by The Company in doing so) use its reasonable endeavours to assist the User in obtaining any evidence The Company or a TO may have to support its position.
- 14.15.20 Where a request is made under paragraph 14.15.16 on or prior to 31st December in a charging year, and The Company is satisfied based on the accompanying evidence provided to The Company under paragraph 14.15.17 that it is a valid request, the transport model inputs shall be adjusted accordingly and taken into account in the calculation of TNUoS tariffs effective from the year commencing on the 1st April following this and otherwise from the next subsequent 1st April.
- 14.15.21 The following table provides examples of works for which adjustments to transport model inputs would typically apply:

Ref	Description of works	Adjustments
1	Undergrounding - A User requests to underground an overhead line at a greater cost.	As the cable cost will be more expensive than the overhead line (OHL) equivalent, the circuit will be modelled as an OHL.
2	Substation Siting Decision - A User requests to move the existing or a planned substation location to a place that means that the works cannot be justified as economic by the TO.	As the revised substation location may result in circuits being extended. If this is the case, the originally designed circuit lengths (as per the originally designed substation location) would be used in the transport model.
3	Circuit Routing Decision - A User asks to move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	As any circuit route changes that extend circuits are likely to result in a greater TNUoS tariff, the originally designed circuit lengths would be used in the transport model.

Ref	Description of works	Adjustments
4	Building circuits at lower voltages - A User requests lower tower height and therefore a different voltage.	As lower voltage circuits result in a higher expansion factor being used, the circuits would be modelled at the originally designed higher voltage.

14.15.22 The following table provides examples of works for which adjustments to transport model typically would not apply:

Ref	Description of works	Reasoning
1	Undergrounding - A User chooses to have a cable installed via a tunnel rather than buried.	Cable expansion factors are applied in the transport model regardless of whether a cable is tunnelled and buried, so there is no increased TNUoS cost.
2	Additional circuit route works - A User asks for screening to be provided around a new or existing circuit route.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
3	Additional circuit route works - A User requests that a planned overhead line route is built using alternative transmission tower designs.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
4	Additional substation works - A User asks for screening to be provided around a new or existing substation.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
5	Additional substation works - Changes to connection assets (e.g. HV-LV transformers and associated switchgear), metering, additional LV supplies, additional protection equipment, additional building works, etc.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
6	Diversion - A User asks to temporarily move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	The temporary circuit changes will not be incorporated into the transport model.

7	Connection Entry Capacity (CEC) before Transmission Entry Capacity (TEC). A User asks for a connection in a year prior to the relating TEC; i.e. physical connection without capacity.	No additional works are being undertaken, works are simply being completed well in advance of the generator commissioning. The One-Off Charge reflects the depreciated value of the assets prior to commissioning (and any TNUOS being charged).
8	Early asset replacement - An asset is replaced prior to the end of its expected life.	As the asset is simply replaced, no data in the transport model is expected to change.
9	Additional Engineering/ Mobilisation costs - A User requests changes to the planned works, that results in additional operational costs.	The data in the transport model is unaffected.
10	Offshore (Generator Build) - Any of the works described above or under paragraph 14.15.18.	The value of the works will not form part of the asset transfer value therefore will not be used as part of the offshore tariff calculation.
11	Offshore (Offshore Transmission Owner (OFTO) Build) - Any of the works described above or under paragraph 14.15.18.	As part of determining the TNUoS revenue associated with each asset, the value of the One-Off Works would be excluded when pro-rating the OFTO's allowed revenue against assets by asset value.

14.15.23 The Company shall publish any adjusted transport model inputs that it intends to use in the calculation of TNUoS tariffs effective from the year commencing on the following 1st April in the NETS Seven Year Statement October Update. Any further adjustments that The Company makes shall be published by The Company upon the publication of the final TNUoS tariffs for the year concerned.

Model Outputs

- 14.15.24 The transport model takes the inputs described above and carries out the following steps individually for Peak Security and Year Round backgrounds.
- 14.15.25 Depending on the background, the TEC of the relevant generation plant types are scaled by a percentage as described in 14.15.7, above. The TEC of the remaining generation plant types in each background are uniformly scaled such that total national generation (scaled sum of contracted TECs) equals total national ACS Demand.
- 14.15.26 For each background, the model then uses a DCLF ICRP transport algorithm to derive the resultant pattern of flows based on the network impedance required to meet the nodal <u>net</u> demand using the scaled nodal generation, assuming every circuit has infinite capacity. Flows on individual transmission circuits are compared for both backgrounds and the background giving rise to

Page 6 of 64

the highest flow is considered as the triggering criterion for future investment of that circuit for the purposes of the charging methodology. Therefore all circuits will be tagged as Peak Security or Year Round depending upon the background resulting in the highest flow. In the event that both backgrounds result in the same flow, the circuit will be tagged as Peak Security. Then it calculates the resultant total network Peak Security MWkm and Year Round MWkm, using the relevant circuit expansion factors as appropriate.

- 14.15.27 Using these baseline networks for Peak Security and Year Round backgrounds, the model then calculates for a given injection of 1MW of generation at each node, with a corresponding 1MW offtake (<u>net_demand</u>) distributed across all demand nodes in the network, the increase or decrease in total MWkm of the whole Peak Security and Year Round networks. The proportion of the 1MW offtake allocated to any given demand node will be based on total background nodal <u>net</u> demand in the model. For example, with a total GB <u>net_demand of 60GW</u> in the model, a node with a <u>net_demand of 600MW</u> would contain 1% of the offtake i.e. 0.01MW.
- 14.15.28 Given the assumption of a 1MW injection, for simplicity the marginal costs are expressed solely in km. This gives a Peak Security marginal km cost and a Year Round marginal km cost for generation at each node (although not that used to calculate generation tariffs which considers local and wider cost components). The Peak Security and Year Round marginal km costs for demand at each node are equal and opposite to the Peak Security and Year Round nodal marginal km respectively for generation and this is used to calculate demand tariffs. Note the marginal km costs can be positive or negative depending on the impact the injection of 1MW of generation has on the total circuit km.
- 14.15.29 Using a similar methodology as described above in 14.15.27, the local and wider marginal km costs used to determine generation TNUoS tariffs are calculated by injecting 1MW of generation against the node(s) the generator is modelled at and increasing by 1MW the offtake across the distributed reference node. It should be noted that although the wider marginal km costs are calculated for both Peak Security and Year Round backgrounds, the local marginal km costs are calculated on the Year Round background.
- 14.15.30 In addition, any circuits in the model, identified as local assets to a node will have the local circuit expansion factors which are applied in calculating that particular node's marginal km. Any remaining circuits will have the TO specific wider circuit expansion factors applied.
- 14.15.31 An example is contained in 14.21 Transport Model Example.

Calculation of local nodal marginal km

14.15.32 In order to ensure assets local to generation are charged in a cost reflective manner, a generation local circuit tariff is calculated. The nodal specific charge provides a financial signal reflecting the security and construction of the infrastructure circuits that connect the node to the transmission system.

14.15.33 Main Interconnected Transmission System (MITS) nodes are defined as:

- Grid Supply Point connections with 2 or more transmission circuits connecting at the site; or
- connections with more than 4 transmission circuits connecting at the site.

Page 7 of 64

- 14.15.34 Where a Grid Supply Point is defined as a point of supply from the National Electricity Transmission System to network operators or non-embedded customers excluding generator or interconnector load alone. For the avoidance of doubt, generator or interconnector load would be subject to the circuit component of its Local Charge. A transmission circuit is part of the National Electricity Transmission System between two or more circuit-breakers which includes transformers, cables and overhead lines but excludes busbars and generation circuits.
- 14.15.35 Generators directly connected to a MITS node will have a zero local circuit tariff.
- 14.15.36 Generators not connected to a MITS node will have a local circuit tariff derived from the local nodal marginal km for the generation node i.e. the increase or decrease in marginal km along the transmission circuits connecting it to all adjacent MITS nodes (local assets).

Calculation of zonal marginal km

- 14.15.37 Given the requirement for relatively stable cost messages through the ICRP methodology and administrative simplicity, nodes are assigned to zones. Typically, generation zones will be reviewed at the beginning of each price control period with another review only undertaken in exceptional circumstances. Any rezoning required during a price control period will be undertaken with the intention of minimal disruption to the established zonal boundaries. The full criteria for determining generation zones are outlined in paragraph 14.15.42. The number of generation zones set for 2010/11 is 20.
- 14.15.38 Demand zone boundaries have been fixed and relate to the GSP Groups used for energy market settlement purposes.
- 14.15.39 The nodal marginal km are amalgamated into zones by weighting them by their relevant generation or demand capacity.
- 14.15.40 Generators will have zonal tariffs derived from both, the wider Peak Security nodal marginal km; and the wider Year Round nodal marginal km for the generation node calculated as the increase or decrease in marginal km along all transmission circuits except those classified as local assets.

The zonal Peak Security marginal km for generation is calculated as:

$$WNMkm_{j_{PS}} = \frac{NMkm_{j_{PS}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiPS} = \sum_{j \in Gi} WNMkm_{jPS}$$

Where

Gi	=	Generation zone
j	=	Node
NMkm _{PS}	=	Peak Security Wider nodal marginal km from transport model
WNMkm _{PS}	=	Peak Security Weighted nodal marginal km
ZMkm _{PS}	=	Peak Security Zonal Marginal km

Gen = Nodal Generation (scaled by the appropriate Peak Security Scaling factor) from the transport model Similarly, the zonal Year Round marginal km for generation is calculated as

$$WNMkm_{j_{YR}} = \frac{NMkm_{j_{YR}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiYR} = \sum_{j \in Gi} WNMkm_{jYR}$$

Where

NMkm _{YR}	=	Year Round Wider nodal marginal km from transport model
WNMkm _{YR}	=	Year Round Weighted nodal marginal km
ZMkm _{YR}	=	Year Round Zonal Marginal km
Gen	=	Nodal Generation (scaled by the appropriate Year Round Scaling
		factor) from the transport model

14.15.41 The zonal Peak Security marginal km for demand zones are calculated as follows:

$$WNMkm_{j_{PS}} = \frac{-1 * NMkm_{j_{PS}} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{Di_{PS}} = \sum_{j \in Di} WNMkm_{j_{PS}}$$

Where:

I

Di	=	Demand zone
Dem	=	Nodal <u>Net</u> Demand from transport model

Similarly, the zonal Year Round marginal km for demand zones are calculated as follows:

$$WNMkm_{jYR} = \frac{-1 * NMkm_{jYR} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{DiYR} = \sum_{j \in Di} WNMkm_{jYR}$$

- 14.15.42 A number of criteria are used to determine the definition of the generation zones. Whilst it is the intention of The Company that zones are fixed for the duration of a price control period, it may become necessary in exceptional circumstances to review the boundaries having been set. In both circumstances, the following criteria are used to determine the zonal boundaries:
- i.) Zoning is determined using the generation background with the most MWkm of circuits. Zones should contain relevant nodes whose total wider marginal costs

from the relevant generation background (as determined from the output from the transport model, the relevant expansion constant and the locational security factor, see below) are all within $+/-\pounds1.00/kW$ (nominal prices) across the zone. This means a maximum spread of $\pounds2.00/kW$ in nominal prices across the zone.

- ii.) The nodes within zones should be geographically and electrically proximate.
- iii.) Relevant nodes are considered to be those with generation connected to them as these are the only ones, which contribute to the calculation of the zonal generation tariff.
- 14.15.43 The process behind the criteria in 14.15.42 is driven by initially applying the nodal marginal costs from the relevant generation background within the DCLF Transport model onto the appropriate areas of a substation line diagram. Generation nodes are grouped into initial zones using the +/- £1.00/kW range. All nodes within each zone are then checked to ensure the geographically and electrically proximate criteria have been met using the substation line diagram. The established zones are inspected to ensure the least number of zones are used with minimal change from previously established zonal boundaries. The zonal boundaries are finally confirmed using the demand nodal costs from the relevant generation background for guidance.
- 14.15.44 The zoning criteria are applied to a reasonable range of DCLF ICRP transport model scenarios, the inputs to which are determined by The Company to create appropriate TNUoS generation zones. The minimum number of zones, which meet the stated criteria, are used. If there is more than one feasible zonal definition of a certain number of zones, The Company determines and uses the one that best reflects the physical system boundaries.
- 14.15.45 Zones will typically not be reviewed more frequently than once every price control period to provide some stability. However, in exceptional circumstances, it may be necessary to review zoning more frequently to maintain appropriate, cost reflective, locational cost signals. For example, if a new generator connecting to the transmission system would cause the creation of a new generation zone for that generator alone, it may not be appropriate from a cost reflective perspective to wait until the next price control period to undertake this rezoning. If any such rezoning is required, it will be undertaken against a background of minimal change to existing generation zones and in line with the notification process set out in the Transmission Licence and CUSC.

Accounting for Sharing of Transmission by Generators

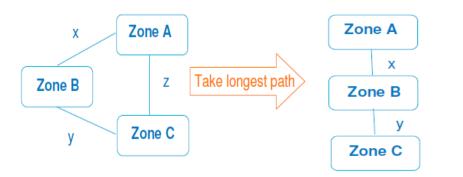
- 14.15.46 A proportion of the marginal km costs for generation are shared incremental km reflecting the ability of differing generation technologies to share transmission investment. This is reflected in charges through the splitting of Year Round marginal km costs for generation into Year Round Shared marginal km costs and Year Round Not-Shared marginal km which are then used in the calculation of the wider £/kW generation tariff.
- 14.15.47 The sharing between different generation types is accounted for by (a) using transmission network boundaries between generation zones set by connectivity between generation charging zones, and (b) the proportion of Low Carbon and Carbon generation behind these boundaries.

Page 10 of 64

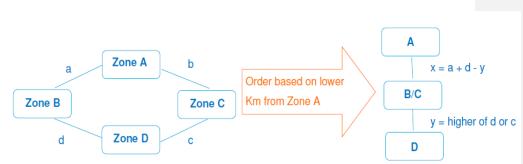
14.15.48 The zonal incremental km for each generation charging zone is split into each boundary component by considering the difference between it and the neighbouring generation charging zone using the formula below;

$$BIkm_{ab} = ZIkm_b - ZIkm_a$$

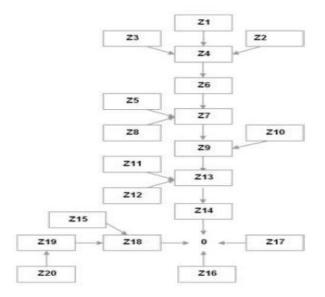
Where;


Blkm_{ab} = boundary incremental km between generation charging zone A and generation charging zone B Zlkm = generation charging zone incremental km.

14.15.49 The table below shows the categorisation of Low Carbon and Carbon generation. This table will be updated by National Grid in the Statement of Use of System Charges as new generation technologies are developed.


Carbon	Low Carbon
Coal	Wind
Gas	Hydro (excl. Pumped Storage)
Biomass	Nuclear
Oil	Marine
Pumped Storage	Tidal
Interconnectors	

Determination of Connectivity


- 14.15.50 Connectivity is based on the existence of electrical circuits between TNUoS generation charging zones that are represented in the Transport model. Where such paths exist, generation charging zones will be effectively linked via an incremental km transmission boundary length. These paths will be simplified through in the case of;
 - Parallel paths the longest path will be taken. An illustrative example is shown below with x, y and z representing the incremental km between zones.

 Parallel zones – parallel zones will be amalgamated with the incremental km immediately beyond the amalgamated zones being the greater of those existing prior to the amalgamation. An illustrative example is shown below with a, b, c, and d representing the the initial incremental km between zones, and x and y representing the final incremental km following zonal amalgamation.

14.15.51 An illustrative Connectivity diagram is shown below:

The arrows connecting generation charging zones and amalgamated generation charging zones represent the incremental km transmission boundary lengths towards the notional centre of the system. Generation located in charging zones behind arrows is considered to share based on the ratio of Low Carbon to Carbon cumulative generation TEC within those zones.

14.15.52 The Company will review Connectivity at the beginning of a new price control period, and under exceptional circumstances such as major system reconfigurations or generation rezoning. If any such reassessment is required, it will be undertaken against a background of minimal change to existing Connectivity and in line with the notification process set out in the Transmission Licence and the CUSC.

Calculation of Boundary Sharing Factors

14.15.53 Boundary sharing factors (BSFs) are derived from the comparison of the cumulative proportion of Low Carbon and Carbon generation TEC behind each of the incremental MWkm boundary lengths using the following formulae –

Page 12 of 64

If $\frac{LC}{LC+C} \le 0.5$, then all Year round marginal km costs are shared i.e. the BSF is 100%.

Where:

LC = Cumulative Low Carbon generation TEC behind the relevant transmission boundary C = Cumulative Carbon generation TEC behind the relevant transmission

C = Cumulative Carbon generation TEC behind the relevant transmission boundary

If
$$\frac{LC}{LC+C}$$
 > 0.5 then the BSF is calculated using the following formula: -

$$BSF = \left(-2 \times \left(\frac{LC}{LC+C}\right)\right) + 2$$

Where:

BSF = boundary sharing factor.

14.15.54 The shared incremental km for each boundary are derived from the multiplication of the boundary sharing factor by the incremental km for that boundary;

$$SBIkm_{ab} = BIIkm_{ab} \ x \ BSF_{ab}$$

Where;

 $SBIkm_{ab}$ = shared boundary incremental km between generation charging zone A and generation charging zone B

 BSF_{ab} = generation charging zone boundary sharing factor.

14.15.55 The shared incremental km is discounted from the incremental km for that boundary to establish the not-shared boundary incremental km. The not-shared boundary incremental km reflects the cost of transmission investment on that boundary accounting for the sharing of power stations behind that boundary.

$$NSBIkm_{ab} = BIkm_{ab} - SBIkm_{ab}$$

Where;

 $NSBIkm_{ab}$ = not shared boundary incremental km between generation charging zone A and generation charging zone B.

14.15.56 The shared incremental km for a generation charging zone is the sum of the appropriate shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRS}$$

Where;

 $ZMkm_{nYRS}$ = Year Round Shared Zonal Marginal km for generation charging zone n.

Page 13 of 64

14.15.57 The not-shared incremental km for a generation charging zone is the sum of the appropriate not-shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRNS}$$

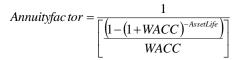
Where;

ZMkm_{nYRNS} = Year Round Not-Shared Zonal Marginal km for generation zone n.

Deriving the Final Local £/kW Tariff and the Wider £/kW Tariff

14.15.58 The zonal marginal km (ZMkm_{Gi}) are converted into costs and hence a tariff by multiplying by the Expansion Constant and the Locational Security Factor (see below). The nodal local marginal km (NLMkm^L) are converted into costs and hence a tariff by multiplying by the Expansion Constant and a Local Security Factor.

The Expansion Constant


- 14.15.59 The expansion constant, expressed in £/MWkm, represents the annuitised value of the transmission infrastructure capital investment required to transport 1 MW over 1 km. Its magnitude is derived from the projected cost of 400kV overhead line, including an estimate of the cost of capital, to provide for future system expansion.
- 14.15.60 In the methodology, the expansion constant is used to convert the marginal km figure derived from the transport model into a £/MW signal. The tariff model performs this calculation, in accordance with 14.15.95 14.15.117, and also then calculates the residual element of the overall tariff (to ensure correct revenue recovery in accordance with the price control), in accordance with 14.15.133.
- 14.15.61 The transmission infrastructure capital costs used in the calculation of the expansion constant are provided via an externally audited process. They also include information provided from all onshore Transmission Owners (TOs). They are based on historic costs and tender valuations adjusted by a number of indices (e.g. global price of steel, labour, inflation, etc.). The objective of these adjustments is to make the costs reflect current prices, making the tariffs as forward looking as possible. This cost data represents The Company's best view; however it is considered as commercially sensitive and is therefore treated as confidential. The calculation of the expansion constant also relies on a significant amount of transmission asset information, much of which is provided in the Seven Year Statement.
- 14.15.62 For each circuit type and voltage used onshore, an individual calculation is carried out to establish a £/MWkm figure, normalised against the 400KV overhead line (OHL) figure, these provide the basis of the onshore circuit expansion factors discussed in 14.15.70 14.15.77. In order to simplify the calculation a unity power factor is assumed, converting £/MVAkm to £/MWkm. This reflects that the fact tariffs and charges are based on real power.
- 14.15.63 The table below shows the first stage in calculating the onshore expansion constant. A range of overhead line types is used and the types are weighted by recent usage on the transmission system. This is a simplified calculation for 400kV OHL using example data:

Page 14 of 64

400kV	400kV OHL expansion constant calculation				
MW	Туре	£(000)/k	Circuit km*	£/MWkm	Weight
А	В	С	D	E = C/A	F=E*D
6500	La	700	500	107.69	53846
6500	Lb	780	0	120.00	0
3500	La/b	600	200	171.43	34286
3600	Lc	400	300	111.11	33333
4000	Lc/a	450	1100	112.50	123750
5000	Ld	500	300	100.00	30000
5400	Ld/a	550	100	101.85	10185
Sum			2500 (G)		285400 (H)
				Weighted Average (J= H/G):	114.160 (J)

*These are circuit km of types that have been provided in the previous 10 years. If no information is available for a particular category the best forecast will be used.

14.15.64 The weighted average £/MWkm (J in the example above) is then converted in to an annual figure by multiplying it by an annuity factor. The formula used to calculate of the annuity factor is shown below:

- 14.15.65 The Weighted Average Cost of Capital (WACC) and asset life are established at the start of a price control and remain constant throughout a price control period. The WACC used in the calculation of the annuity factor is the The Company regulated rate of return, this assumes that it will be reasonably representative of all licensees. The asset life used in the calculation is 50 years; the appropriateness of this is reviewed when the annuity factor is recalculated at the start of a price control period. These assumptions provide a current annuity factor of 0.066.
- 14.15.66 The final step in calculating the expansion constant is to add a share of the annual transmission overheads (maintenance, rates etc). This is done by multiplying the average weighted cost (J) by an 'overhead factor'. The 'overhead factor' represents the total business overhead in any year divided by the total Gross Asset Value (GAV) of the transmission system. This is recalculated at the start of each price control period. The overhead factor used in the calculation of the expansion constant for 2009/10 is 1.8%. The overhead and annuitised costs are then added to give the expansion constant.
- 14.15.67 Using the previous example, the final steps in establishing the expansion constant are demonstrated below:

400kV OHL expansion constant calculation	Ave £/MWkm
OHL	114.160

Page 15 of 64

Final	9.589
Overhead	2.055
Annuitised	7.535

- 14.15.68 This process is carried out for each voltage onshore, along with other adjustments to take account of upgrade options, see 14.15.73, and normalised against the 400KV overhead line cost (the expansion constant) the resulting ratios provide the basis of the onshore expansion factors. The process used to derive circuit expansion factors for Offshore Transmission Owner networks is described in 14.15.78.
- 14.15.69 This process of calculating the incremental cost of capacity for a 400kV OHL, along with calculating the onshore expansion factors is carried out for the first year of the price control and is increased by inflation, RPI, (May–October average increase, as defined in The Company's Transmission Licence) each subsequent year of the price control period. The expansion constant for 2010/11 is 10.633.

Onshore Wider Circuit Expansion Factors

- 14.15.70 Base onshore expansion factors are calculated by deriving individual expansion constants for the various types of circuit, following the same principles used to calculate the 400kV overhead line expansion constant. The factors are then derived by dividing the calculated expansion constant by the 400kV overhead line expansion constant. The factors will be fixed for each respective price control period.
- 14.15.71 In calculating the onshore underground cable factors, the forecast costs are weighted equally between urban and rural installation, and direct burial has been assumed. The operating costs for cable are aligned with those for overhead line. An allowance for overhead costs has also been included in the calculations.
- 14.15.72 The 132kV onshore circuit expansion factor is applied on a TO basis. This is to reflect the regional variation of plans to rebuild circuits at a lower voltage capacity to 400kV. The 132kV cable and line factor is calculated on the proportion of 132kV circuits likely to be uprated to 400kV. The 132kV expansion factor is then calculated by weighting the 132kV cable and overhead line costs with the relevant 400kV expansion factor, based on the proportion of 132kV circuitry to be uprated to 400kV. For example, in the TO areas of National Grid and Scottish Power where there are no plans to uprate any 132kV circuits, the full cable and overhead line costs of 132kV circuit are reflected in the 132kV expansion factor calculation.
- 14.15.73 The 275kV onshore circuit expansion factor is applied on a GB basis and includes a weighting of 83% of the relevant 400kV cable and overhead line factor. This is to reflect the averaged proportion of circuits across all three Transmission Licensees which are likely to be uprated from 275kV to 400kV across GB within a price control period.
- 14.15.74 The 400kV onshore circuit expansion factor is applied on a GB basis and reflects the full costs for 400kV cable and overhead lines.
- 14.15.75 AC sub-sea cable and HVDC circuit expansion factors are calculated on a case by case basis using actual project costs (Specific Circuit Expansion Factors).

Page 16 of 64

- 14.15.76 For HVDC circuit expansion factors both the cost of the converters and the cost of the cable are included in the calculation.
- 14.15.77 The TO specific onshore circuit expansion factors calculated for 2008/9 (and rounded to 2 decimal places) are:

Scottish Hydro Region

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	27.79
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.24	

Scottish Power & National Grid Regions

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	30.22
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.80	

Onshore Local Circuit Expansion Factors

- 14.15.78 The local onshore circuit tariff is calculated using local onshore circuit expansion factors. These expansion factors are calculated using the same methodology as the onshore wider expansion factor but without taking into account the proportion of circuit kms that are planned to be uprated.
- 14.15.79 In addition, the 132kV onshore overhead line circuit expansion factor is sub divided into four more specific expansion factors. This is based upon maximum (winter) circuit continuous rating (MVA) and route construction whether double or single circuit.

400kV underground cable factor:	22.39
275kV underground cable factor:	22.39
132kV underground cable factor:	30.22
400kV line factor:	1.00
275kV line factor:	1.14
132kV line factor (single; <200MVA):	10.00
132kV line factor (double; <200MVA):	8.32
132kV line factor (single; >=200MVA):	7.13
132kV line factor (double; >=200MVA):	4.42

Offshore Circuit Expansion Factors

14.15.80 Offshore expansion factors (£/MWkm) are derived from information provided by Offshore Transmission Owners for each offshore circuit. Offshore expansion factors are Offshore Transmission Owner and circuit specific. Each Offshore Transmission Owner will periodically provide, via the STC, information to derive an annual circuit revenue requirement. The offshore circuit revenue shall include revenues associated with the Offshore Transmission Owner's reactive compensation equipment, harmonic filtering equipment, asset spares and HVDC converter stations.

14.15.81 In the first year of connection, the offshore circuit expansion factor would be calculated as follows:

$\frac{CRevOFTO1}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$

Where:

CRevOFTO1	=	The offshore circuit revenue in £ for Year 1
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

14.15.82 In all subsequent years, the offshore circuit expansion factor would be calculated as follows:

Where:

AvCRevOFTO	=	The annual offshore circuit revenue averaged over the
		remaining years of the onshore National Electricity
		Transmission System Operator (NETSO) price control
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

- 14.15.83 For the avoidance of doubt, the offshore circuit revenue values, *CRevOFTO1* and *AvCRevOFTO* shall be determined using asset values after the removal of any One-Off Charges.
- 14.15.84 Prevailing OFFSHORE TRANSMISSION OWNER specific expansion factors will be published in this statement. These shall be recalculated at the start of each price control period using the formula in paragraph 14.15.71. For each subsequent year within the price control period, these expansion factors will be adjusted by the annual Offshore Transmission Owner specific indexation factor, *OFTOInd*, calculated as follows;

$$OFTOInd_{t,f} = \frac{OFTO \operatorname{Rev}Ind_{t,f}}{RPI_{t}}$$

where:

OFTOInd _{t,f}	=	the indexation factor for Offshore Transmission Owner <i>f</i> in respect of charging year <i>t</i> ;
OFTORevInd _{tf}	=	the indexation rate applied to the revenue of Offshore Transmission Owner f under the terms of its Transmission Licence in respect of charging year t ; and
<i>RPI</i> _t	=	the indexation rate applied to the expansion constant in respect of charging year <i>t</i> .

Offshore Interlinks

14.15.85 The revenue associated with an Offshore Interlink shall be divided entirely between those generators benefiting from the installation of that Offshore Interlink. Each of these Users will be responsible for their charge from their charging date, meaning that a proportion of the Offshore Interlink revenue may be socialised prior to all relevant Users being chargeable. The proportion associated with each User will be based on the Measure of Capacity to the MITS using the Offshore Interlink(s) in the event of a single circuit fault on the User's circuit from their offshore substation towards the shore, compared to the Measure of Capacity of the other Users.

Where:

An *Offshore Interlink* is a circuit which connects two offshore substations that are connected to a Single Common Substation. It is held in open standby until there is a transmission fault that limits the User's ability to export power to the Single Common Substation. In the Transport Model, they are to be modelled in open standby.

A Single Common Substation is a substation where:

- i. each substation that is connected by an Offshore Interlink is connected via at least one circuit without passing through another substation; and
- ii. all routes connecting each substation that is connected by an Offshore Interlink to the MITS pass through.

The Measure of Capacity to the MITS for each Offshore substation is the result of the following formula or zero whichever is larger. For the situation with only one interlink, all terms relating to C should be set to zero:

```
For Substation A:
min { Cap_{IAB}, ILF_A \times TEC_A - RCap_A, Cap_B - ILF_B \times TEC_B + min (Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation B:

min { ILF_B \times TEC_B - RCap_B, min (Cap_{IAB}, Cap_A - ILF_A \times TEC_A)

+ min ( Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation C:

min { Cap_{IBC}, ILF_{C} \times TEC_{C} - RCap_{C}, Cap_{B} - ILF_{B} \times TEC_{B} + min (Cap_{IAB}, Cap_{A} - ILF_{A} \times TEC_{A}) }

and
```

Cap _{IAB} = B	total capacity of the Offshore Interlink between substations A and
Cap _{IBC} = C	total capacity of the Offshore Interlink between substations B and
Cap _X =	total capacity of the circuit between offshore substation X and the Single Common Substation, where X is A, B or C.
RCap _x =	remaining capacity of the circuit between offshore substation X and the Single Common Substation in the event of a single cable fault, where X is A, B or C.
TEC _x =	the sum of the TEC for the Users connected, or contracted to connect, to offshore substation X, where X is A, B or C, where the value of TEC will be the maximum TEC that each User has held since the initial charging date, or is contracted to hold if prior to the initial charging date.

- ILF_x = Offshore Interlink Load Factor, where X is A, B or C. The Offshore Interlink Load Factor (ILF) is based on the Annual Load Factor (ALF). Until all the Users connected to a Single Common Substation have a station specific Annual Load Factor based on five years of data, the generic ALF for the fuel type will be used as the ILF for all stations. When all Users have a station specific ALF, the value of the ALF in the first such year will be used as the ILF in the calculation for all subsequent charging years.
- 14.15.86 The apportionment of revenue associated with Offshore Interlink(s) in 14.15.85 applies in situations where the Offshore Interlink was included in the design phase, or if one or more User(s) has already financially committed or been commissioned then only where that User(s) agrees to the Offshore Interlink.
- 14.15.87 Alternatively to the formula specified in 14.15.85 the proportion of the OFTO revenue associated with the Offshore Interlink allocated to each generator benefiting from the installation of an Offshore Interlink may be agreed between these Users. In this event:
- a. All relevant Users shall notify The Company of its respective proportions three months prior the OTSDUW asset transfer in the case of a generator build, or the charging date of the first generator, in the case of an OFTO build.
- b. All relevant Users may agree to vary the proportions notified under (a) by each writing to The Company three months prior to the charges being set for a given charging year.
- c. Once a set of proportions of the OFTO revenue associated with the Offshore Interlink has been provided to The Company, these will apply for the next and future charging years unless and until The Company is informed otherwise in accordance with (b) by all of the relevant Users.
- d. If all relevant Users are unable to reach agreement on the proportioning of the OFTO revenue associated with the Offshore Interlink they can raise a dispute. Any dispute between two or more Users as to the proportioning of such revenue shall be managed in accordance with CUSC Section 7 Paragraph 7.4.1 but the reference to the 'Electricity Arbitration Association' shall instead be to the 'Authority' and the Authority's determination of such dispute shall, without prejudice to apply for judicial review of any determination, be final and binding on the Users.

The Locational Onshore Security Factor

14.15.88 The locational onshore security factor is derived by running a secure DCLF ICRP transport study based on the same market background as used for Zoning in the DCLF ICRP transport model. This calculates the nodal marginal costs where peak <u>net</u> demand can be met despite the Security and Quality of Supply Standard contingencies (simulating single and double circuit faults) on the network. Essentially the calculation of secured nodal marginal costs is identical to the process outlined above except that the secure DCLF study additionally calculates a nodal marginal cost taking into account the requirement to be secure against a set of worse case contingencies in terms of maximum flow for each circuit.

- 14.15.89 The secured nodal cost differential is compared to that produced by the DCLF ICRP transport model and the resultant ratio of the two determines the locational security factor using the Least Squares Fit method. Further information may be obtained from the charging website¹.
- 14.15.90 The locational onshore security factor derived for 2010/11 is 1.8 and is based on an average from a number of studies conducted by The Company to account for future network developments. The security factor is reviewed for each price control period and fixed for the duration.

Local Security Factors

- 14.15.91 Local onshore security factors are generator specific and are applied to a generator's local onshore circuits. If the loss of any one of the local circuits prevents the export of power from the generator to the MITS then a local security factor of 1.0 is applied. For generation with circuit redundancy, a local security factor is applied that is equal to the locational security factor, currently 1.8.
- 14.15.92 Where a Transmission Owner has designed a local onshore circuit (or otherwise that circuit once built) to a capacity lower than the aggregated TEC of the generation using that circuit, then the local security factor of 1.0 will be multiplied by a Counter Correlation Factor (CCF) as described in the formula below;

$$CCF = \frac{D_{\min} + T_{cap}}{G_{cap}}$$

Where; D_{min} = minimum annual net demand (MW) supplied via that circuit in the absence of that generation using the circuit

 T_{cap} = transmission capacity built (MVA)

 G_{cap} = aggregated TEC of generation using that circuit

CCF cannot be greater than 1.0.

14.15.93 A specific offshore local security factor (LocalSF) will be calculated for each offshore connection using the following methodology:

$$LocalSF = \frac{NetworkExportCapacity}{\sum_{k} Gen_{k}}$$

Where:

 NetworkExportCapacity =
 the total export capacity of the network disregarding any Offshore Interlinks

 k
 =
 the generation connected to the offshore network

1 http://www.nationalgrid.com/uk/Electricity/Charges/

Page 21 of 64

- 14.15.94 The offshore security factor for single circuits with a single cable will be 1.0 and for multiple circuit connections will be capped at the locational onshore security factor, derived as 1.8 for 2010/11.
- 14.15.95 The offshore local security factor for configurations with one or more Offshore Interlinks is updated so that the offshore circuit tariff will include the proportion of revenue associated with the Offshore Interlink(s). The specific offshore local security factor for configurations involving an Offshore Interlink, which may be greater than 1.8, will be calculated for each offshore connection using the following methodology:

 $LocalSF = \frac{IRevOFTO \times NetworkExportCapacity}{CRevOFTO \times \sum_{k}Gen_{k}} + LocalSF_{initial}$

Where:

The appropriate proportion of the Offshore Interlink(s) revenue in £
associated with the offshore connection calculated in 14.15.85
The offshore circuit revenue in £ associated with the circuit(s) from the
offshore substation to the Single Common Substation.
Initial Local Security Factor calculated in 14.15.80 and 14.15.81
And other definitions as in 14.15.80.

Initial Transport Tariff

14.15.96 First an Initial Transport Tariff (ITT) must be calculated for both Peak Security and Year Round backgrounds. For Generation, the Peak Security zonal marginal km (ZMkm_{PS}), Year Round Not-Shared zonal marginal km (ZMkm_{YRNS}) and Year Round Shared zonal marginal km (ZMkm_{YRS}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT, Year Round Not-Shared ITT and Year Round Shared ITT respectively:

 $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$

Where ZMkm _{GiPS} ZMkm _{GiYRNS} charging zone	= = e	Peak Security Zonal Marginal km for each generation zone Year Round Not-Shared Zonal Marginal km for each generation	
ZMkm _{GiYRS}	=	Year Round Shared Zonal Marginal km for each generation	
charging zon	е		
EC	=	Expansion Constant	
LSF	=	Locational Security Factor	
	=	Peak Security Initial Transport Tariff (£/MW) for each generation	
zone			
ITT _{GiYRNS}	=	Year Round Not-Shared Initial Transport Tariff (£/MW) for each	
generation charging zone			
ITT _{GiYRS}	=	Year Round Shared Initial Transport Tariff (£/MW) for each	
generation charging zone.			

14.15.97 Similarly, for demand the Peak Security zonal marginal km (ZMkm_{PS}) and Year Round zonal marginal km (ZMkm_{YR}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT and Year Round ITT respectively:

		$ZMkm_{DiPS} \times EC \times LSF = ITT_{DiPS}$	
		$ZMkm_{DiYR} \times EC \times LSF = ITT_{DiYR}$	
Where ZMkm _{DiP} ZMkm _{DiY}	0	Peak Security Zonal Marginal km for each demand zone Year Round Zonal Marginal km for each demand zone	
ITT _{DiPS}	=	Peak Security Initial Transport Tariff (£/MW) for each demand one	
ITT_{DiYR}	=	Year Round Initial Transport Tariff (£/MW) for each demand zone	
14.15.98	The next step is to multiply these ITTs by the expected metered triad <u>gross</u> <u>GSP group</u> demand and generation capacity to gain an estimate of the initial revenue recovery for both Peak Security and Year Round backgrounds. The metered triad <u>gross GSP group</u> demand and generation capacity are based on <u>analysis of</u> forecasts provided by Users and are confidential.		
	affected em	ad gross GSP group demand is net demand for all GSP groups less bedded exports and grandfathered embedded exports for all GSP	
a.	<u>groups.</u>		

Where

ITRR _G =	Initial Transport Revenue Recovery for generation
G _{Gi} =	Total forecast Generation for each generation zone (based
	on analysis of confidential User forecasts)
ITRR _D =	Initial Transport Revenue Recovery for gross GSP group
_	demand
D _{Di} = each	Total forecast Metered Triad gross GSP group Demand for
	demand zone (based on <u>analysis of</u> confidential User forecasts).

In addition, the initial tariffs for generation are also multiplied by the **Peak Security flag** when calculating the initial revenue recovery component for the Peak Security background. Similarly, when calculating the initial revenue recovery for the Shared component of the Year Round background, the initial tariffs are multiplied by the **Annual Load Factor** (see below).

Peak Security (PS) Flag

14.15.99 The revenue from a specific generator due to the Peak Security locational tariff needs to be multiplied by the appropriate Peak Security (PS) flag. The PS flags indicate the extent to which a generation plant type contributes to the

Page 23 of 64

need for transmission network investment at peak demand conditions. The PS flag is derived from the contribution of differing generation sources to the demand security criterion as described in the Security Standard. In the event of a significant change to the demand security assumptions in the Security Standard, National Grid will review the use of the PS flag.

Generation Plant Type	PS flag
Intermittent	0
Other	1

Annual Load Factor (ALF)

- 14.15.100 The ALF for each individual Power Station is calculated using the relevant TEC (MW) and corresponding output data. Where output data is not available for a Power Station, including for new Power Stations and emerging Power Station technologies, generic data for the appropriate generation plant type will be used.
- 14.15.101 For a given charging year "t" the Power Station ALF will be based on information from the previous five charging years, calculated for each charging year as set out below.

$$ALF = \frac{\sum_{p=1}^{17520} GMWh_p}{\sum_{p=1}^{17520} TECp \times 0.5}$$

Where:

 $GMWh_p$ is the maximum of FPN or actual metered output in a Settlement Period related to the power station TEC (MW); and

 TEC_{p} is the TEC (MW) applicable to that Power Station for that Settlement Period including any STTEC and LDTEC, accounting for any trading of TEC.

- 14.15.102 The appropriate output (FPN or actual metered) figure is derived from **BM Unit** data available to National Grid and relates to the total TEC of the Power Station.
- 14.15.103 Once all five charging year ALFs have been calculated for the individual Power Station they are compared, and the highest and lowest figures are discarded. The final ALF, to be used for transmission charging purposes, is calculated as the average of the remaining three ALFs.
- 14.15.104 In the event that only four charging years of complete output (FPN or actual metered) data are available for an individual Power Station then the higher three charging years ALF would be used in the calculation of the final ALF. In the event that only three charging years of complete output (FPN or actual metered) data are available then these three charging years would be used.
- 14.15.105 Due to the aggregation of output (FPN or actual metered) data for dispersed generation (e.g. cascade hydro schemes), where a single generator BMU consists of geographically separated power stations, the ALF would be calculated based on the total output of the BMU and the overall TEC of those Power Stations.

Page 24 of 64

- 14.15.106 In the event that there are not three full charging years of an individual power station's output available, missing output (FPN or actual metered) data would be replaced by generic data for that generation plant type to ensure three charging years of information are available for the Power Station. The derivation of the generic data is described in paragraphs 14.15.111-14.15.114.
- 14.15.107 Users will receive draft ALFs before 25th December of the charging year (t-1) for the charging year (t) and will have a period of 15 working days from date of publishing to notify the Company of any errors. Failure to agree changes relating to errors will be treated as a charging dispute under the CUSC.
- 14.15.108 The ALFs used in the setting of final tariffs will be published in the annual Statement of Use of System Charges. Changes to ALFs after this publication will not result in changes to published tariffs (e.g. following dispute resolution).

Derivation of Generic ALFs

14.15.109 The generic ALF is derived from the average annual output of the ten most recently commissioned GB generation of a particular generation plant type that have at least five charging years' data, using an identical methodology to that used for the Power Station specific calculation described above. Where less than ten GB generators of a particular generation plant type exist, then data from all existing generators of that particular generation plant type will be used. Example generation plant type categories are listed below;

Fuel Type
Biomass
Coal
Gas
Hydro
Nuclear (by reactor
type)
Oil & OCGTs
Pumped Storage
Onshore Wind
Offshore Wind
CHP

- 14.15.110 The Company will keep these categories under review and update as necessary. Where within a category there is a significant locational difference consideration will be given to zonal generic factors. The factors used will be published in the Statement of Use of System Charges and will be reviewed annually.
- 14.15.111 If a User can demonstrate that the generation plant type of a Power Station has changed, consideration will be given to the use of relevant generic ALF information in the calculation of their charges until sufficient specific data is available.
- 14.15.112 For new and emerging generation plant types, where insufficient data is available to allow a generic ALF to be developed, The Company will use the best information available e.g. from manufactuers and data from use of similar technologies outside GB. The factor will be agreed with the relevant Generator. In the event of a disagreement the standard provisions for dispute in the CUSC will apply.

Page 25 of 64

TNUoS Embedded Export Tariffs Embedded exports are exports measured on a half-hourly basis by 14.15.113 Metering Systems, in accordance with the BSC, that are not subject to generation TNUoS. The tariff to be applied in respect of embedded exports is different depending on whether the embedded exports are affected embedded exports or grandfathered embedded exports TNUoS Embedded Export Tariff for Affected Embedded Exports Affected Embedded Exports are embedded exports other than 14.15.114 Grandfathered Embedded Exports. 14.15.115 The embedded export tariff will be applied to the metered Triad volumes of Affected Embedded Exports for each demand zone as follows: $EETA_{Di} = ITT_{DiPS} + ITT_{DiYR} + AEX$ Where Peak Security Initial Transport Tariff for the demand zone: <u>ITT_{DiPS} =</u> ITT_{DiYR} = Year Round Initial Transport Tariff for the demand zone, and The Avoided GSP Infrastructure Credit (AGIC) which represents the unit AEX = cost of infrastructure reinforcement at GSPs which is avoided as a consequence of embedded generation connected to the distribution networks served by those GSPs. It is calculated from the average annuitised cost of that infrastructure reinforcement divided by the average capacity delivered by a supergrid transformer. The Avoided GSP Infrastructure Credit is calculated at the beginning of each price control period and in the first applicable charging year following the implementation date of CMP264/265 using data submitted by onshore TSOs as part of the price control process. The data used is from the most recent [20] schemes submitted under the price control process and indexed each year by the RPI formula set out in 14.3.6 until the end of the price control. For the avoidance of doubt, this approach does not include the cost of the supergrid transformers or any other connection assets as they are paid for by the relevant DNOs thorough their connection charges. The Value of EETA_{Di} will be floored at zero, so that EETA_{Di} is always zero or positive. TNUoS Embedded Export Tariff for Grandfathered Embedded Exports Grandfathered Embedded Exports are embedded exports measured by <u>14.15.116</u> metering systems where all associated generation either: Has a Contract for Difference Agreement that was awarded in allocation rounds prior to 01/01/2016 which has not been terminated; or Has a Capacity Agreement that is recorded on the T-4 Auction Capacity Market Register 2014 or T-4 Auction Capacity Market Register 2015 as an agreement:

In respect of a 'new build generating CMU'

Page 26 of 64

- Having more than one delivery year
- And which has not been terminated

<u>14.15.117</u> The embedded export tariff will be applied to the metered Triad volumes of Grandfathered Embedded Exports for each demand zone as follows:

$$EETG_{Di} = ITT_{DiPS} + ITT_{DiYR} + GEX$$

Where

ITT _{DiPS} =	Peak Security Initial Transport Tariff for the demand zone;
ITT _{DiYR} =	Year Round Initial Transport Tariff for the demand zone, and
GEX =	£45.33 in prices of first applicable charging year; indexed each
year by the RPI for	mula set out in 14.3.6.

<u>The Value of EETG_{Di} will be floored at zero, so that EETG_{Di} is always zero or positive.</u>

Initial Revenue Recovery

14.15.118 For the Peak Security background the initial tariff for generation is multiplied by the total forecast generation capacity and the PS flag to give the initial revenue recovery:

$$\sum_{G_{i=1}}^{n} (ITT_{G_{iPS}} \times G_{G_{i}} \times F_{PS}) = ITRR_{GPS}$$

Where

	=	Peak Security Initial Transport Revenue Recovery for generation
G_{Gi}	=	Total forecast Generation for each generation zone (based on
		analysis of confidential User forecasts)

F _{PS}	=	Peak Security flag appropriate to that generator type
n	=	Number of generation zones

The initial revenue recovery for <u>gross GSP group</u> demand for the Peak Security background is calculated by multiplying the initial tariff by the total forecast metered triad <u>gross GSP group</u> demand:

$$\sum_{Di=1}^{14} (ITT_{DiPS} \times D_{Di}) = ITRR_{DPS}$$

Where:

Page 27 of 64

V1.12-01 April 2016

ITRRDPS = Peak Security Initial Transport Revenue Recovery for <u>gross GSP</u> <u>group</u> demand

$$\mathsf{D}_{\mathsf{Di}}$$

=

Total forecast Metered Triad gross GSP group Demand for each demand zone (based on <u>analysis of</u> confidential User forecasts)

14.15,119 For the Year Round background, the initial tariff for generation is multiplied by the total forecast generation capacity whilst calculating Initial Recovery for Not-Shared component whereas the initial tariff for Shared component is multiplied by both, the total forecast generation capacity and the ALF to give the initial revenue recovery:

$$\sum_{G_{i=1}}^{n} (ITT_{G_{iYRNS}} \times G_{G_{i}}) = ITRR_{GYRNS}$$
$$\sum_{G_{i=1}}^{n} (ITT_{G_{iYRS}} \times G_{G_{i}} \times ALF) = ITRR_{GYRS}$$

Where:

ITRR _{GYRNS} generation ITRR _{GYRS} generation ALF	=	Year Round Not-Shared Initial Transport Revenue Recovery for
	=	Year Round Shared Initial Transport Revenue Recovery for
	=	Annual Load Factor appropriate to that generator.

14.15.115 Similar to the Peak Security background, the initial revenue recovery for <u>gross</u> <u>GSP group</u> demand for the Year Round background is calculated by multiplying the initial tariff by the total forecast metered triad <u>gross GSP group</u> demand:

$$\sum_{Di=1}^{14} (ITT_{DiYR} \times D_{Di}) = ITRR_{DYR}$$

Where:

ITRR

 Year Round Initial Transport Revenue Recovery for <u>gross GSP</u> group demand

14.15.120The initial revenue recovery for Affected Embedded Exports is the Affected Embedded Export Tariff multiplied by the total forecast volume of Affected Embedded Export at triad:

$$ITRR_{EEA} = \sum_{Di=1}^{14} (EETA_{Di} \times EEVA_{Di})$$

<u>Where</u>

	= Initial Revenue impact for Affected Embedded Exports
<u>EEVA_{Di}</u>	= Forecast Affected Embedded Export metered volume at
Triad (MW)	

For the avoidance of doubt, the initial revenue recovery for affected embedded exports can be positive or negative.

Page 28 of 64

V1.12-01 April 2016

14.15.121The initial revenue recovery for Grandfathered Embedded Exports is the Grandfathered Embedded Export Tariff multiplied by the total forecast volume of Grandfathered Embedded Export at triad:

$$ITRR_{EEG} = \sum_{Di=1}^{14} (EETG_{Di} \times EEVG_{Di})$$

Where

For the avoidance of doubt, the initial revenue recovery for grandfathered embedded exports can be positive or negative.

Deriving the Final Local Tariff (£/kW)

Local Circuit Tariff

14.15,<u>122</u> Generation with a local circuit tariff is calculated by multiplying the Year Round nodal marginal km along the local circuit by the expansion constant and the relevant local security factor (whether onshore or offshore) and summing across local circuits to give the local circuit tariff:

$$\sum_{k} \frac{NLMkm_{Gj}^{L} \times EC \times LocalSF_{k}}{1000} = CLT_{Gi}$$

Where

k	=	Local circuit k for generator
NLMkm _{Gj} L	=	Year Round Nodal marginal km along local circuit k using local
		circuit expansion factor.
EC	=	Expansion Constant
LocalSF _k	=	Local Security Factor for circuit k
CLT _{Gi}	=	Circuit Local Tariff (£/kW)

Onshore Local Substation Tariff

14.15,123 All chargeable generation is subject to the local substation tariff component which is determined by assessing the generation substation type which is the substation at the connection charging boundary, against three cost determining factors: Deleted: 116

- (a) HV connection voltage the voltage at the boundary between the User's connection assets and the transmission system;
- (b) Sum of TEC at the generation substation the combined TEC of all generation at the connecting substation; and
- (c) The level of redundancy at the generation substation single busbar / single switch mesh connections are examples of no redundancy connections, whereas examples of connections with redundancy include double busbar and mesh sub station designs.
- 14.15,<u>124</u> Using the above factors, the corresponding £/kW tariffs (quoted to 3dp) that will be applied during 2010/11 are:

Substation	Connection	Substation Voltage (a)		
Rating (b)	Type (c)	132kV	275kV	400kV
<1320MW	No redundancy	0.133	0.081	0.065
<1320MW	Redundancy	0.301	0.192	0.155
>=1320MW	No redundancy	n/a	0.257	0.208
>=1320MW	Redundancy	n/a	0.417	0.336

- 14.15,125 The process for calculating Local Substation Tariffs will be carried out for the first year of the price control and will subsequently be indexed by RPI for each subsequent year of the price control period.
- 14.15,<u>126</u> The effective Local Tariff (£/kW) is calculated as the sum of the circuit and substation onshore and/or offshore components:

$$ELT_{Gi} = CLT_{Gi} + SLT_{Gi}$$

Where

 ELT_{Gi} = Effective Local Tariff (£/kW) SLT_{Gi} = Substation Local Tariff (£/kW)

14.15,<u>127</u> Where tariffs do not change mid way through a charging year, final local tariffs will be the same as the effective tariffs:

14.15,<u>128</u> Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$LT_{Gi} = \frac{12 \times \left(ELT_{Gi} \times \sum_{Gi=1}^{21} G_{Gi} - FLL_{Gi}\right)}{b \times \sum_{Gi=1}^{21} G_{Gi}} \quad \text{and} \quad FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{21} D_{Di}}$$

Where:

b = number of months the revised tariff is applicable for

FLL = Forecast local liability incurred over the period that the original tariff is applicable for

Page 30 of 64

V1.12-01 April 2016

Deleted: 118

Deleted: 119

Deleted: 120

Deleted: 121

CUSC v1.12 14.15,129 For the purposes of charge setting, the total local charge revenue is calculated Deleted: 123 by: $\mathrm{LCRR}_{\mathrm{G}} = \sum_{i=Gi} \mathrm{LT}_{\mathrm{Gi}} * G_{i}$ Where LCRR_G Local Charge Revenue Recovery = = Forecast chargeable Generation or Transmission Entry Capacity Gi in kW (as applicable) for each generator (based on analysis of confidential information received from Users) Offshore substation local tariff 14.15,130 All offshore chargeable generation is subject to an offshore substation tariff. Deleted: 124 The offshore substation tariff shall be the sum of transformer, switchgear and platform components. 14.15,131 Each tariff component, expressed in £/kW, shall be the ratio of the Offshore Deleted: 125 Transmission Owner revenue (£) and rating associated with the transformers, switchgear or platform (kW) at each offshore substation. The Offshore Transmission Owner revenue of each tariff component shall include that associated with asset spares. In the case of the platform component, the relevant rating shall be the lower of the transformer or switchgear ratings. As with the offshore circuit expansion factors, the Offshore Transmission Owner revenue associated with each tariff component shall be averaged over the remaining years of the NETSO price control. 14.15,132 Offshore Transmission Owner revenue associated with interest during Deleted: 126 construction and project development overheads will be attributed to the relevant asset category with which it is associated. If these or any other costs included in the Offshore Transmission Owner revenue are not readily attributable to a given asset category, they will be pro-rated across the various asset categories based on their relative cost. 14.15,133 For 2010/11 a discount of £0.345590/kW shall be provided to the offshore Deleted: 127 substation tariff to reflect the average cost of civil engineering for onshore substations. This will be inflated by RPI each year and reviewed every price control period. 14.15,134 Offshore substation tariffs shall be reviewed at the start of every onshore price Deleted: 128 control period. For each subsequent year within the price control period, these shall be inflated in the same manner as the associated Offshore Transmission Owner Revenue. 14.15,135 The revenue from the offshore substation local tariff is calculated by: Deleted: 129 $SLTR = \sum_{All offshore} \left(SLT_k \times \sum_k Gen_k \right)$ Where: the offshore substation tariff for substation k SLT_k = the generation connected to offshore substation k Gen⊬ = Page 31 of 64 V1.12-01 April 2016

The Residual Tariff

14.15,136 The total revenue to be recovered through TNUoS charges is determined each year with reference to the Transmission Licensees' Price Control formulas less the costs expected to be recovered through Pre-Vesting connection charges. Hence in any given year t, a target revenue figure for TNUoS charges (TRR_t) is set after adjusting for any under or over recovery for and including, the small generators discount is as follows:

$$TRR_t = R_t - PVC_t - SG_{t-1}$$

Where

I

- TRRt = TNUoS Revenue Recovery target for year t
 Rt = Forecast Revenue allowed under The Company's RPI-X Price Control Formula for year t (this term includes a number of adjustments, including for over/under recovery from the previous year). For further information, refer to Special Condition D2 of The Company's Transmission Licence.
- PVC_t = Forecast Revenue from Pre-Vesting connection charges for year t
- SG_{t-1} = The proportion of the under/over recovery included within R_t which relates to the operation of statement C13 of the The Company Transmission Licence. Should the operation of statement C13 result in an under recovery in year t 1, the SG figure will be positive and vice versa for an over recovery.
- 14.15,137 In normal circumstances, the revenue forecast to be recovered from the initial transport tariffs will not equate to the total revenue target. This is due to a number of factors. For example, the transport model assumes, for simplicity, smooth incremental transmission investments can be made. In reality, transmission investment can only be made in discrete 'lumps'. The transmission system has been planned and developed over a long period of time. Forecasts and assessments used for planning purposes will not have been borne out precisely by events and therefore some distinction between an optimal system for one year and the actual system can be expected.
- 14.15,138 As a result of the factors above, in order to ensure adequate revenue recovery, a constant non-locational **Residual Tariff** for generation and demand is calculated, which includes infrastructure substation asset costs. It is added to the initial transport tariffs for both Peak Security and Year Round backgrounds so that the correct generation / demand revenue split is maintained and the total revenue recovery is achieved.

$$RT_D = \frac{(p \times TR)}{p}$$

Deleted: 130

Deleted: 131

Deleted: 132

Deleted:

$$RT_{D} = \frac{(p \times TRR) - ITRR_{DPS} - ITRR_{DYR} - ITRR_{EEA} - ITTR_{EEG}}{\sum_{Di=1}^{14} D_{Di}}$$

$$RT_{G} = \frac{\left[(1-p) \times TRR\right] - ITRR_{GPS} - ITRR_{GYRS} - ITRR_{GYRS} - LCRR_{G}}{\sum_{Gi=1}^{n} G_{Gi}}$$

Where RT

р

Residual Tariff (£/MW)
 Proportion of revenue to be recovered from

= Proportion of revenue to be recovered from demand

Page 32 of 64

Final £/kW Tariff

14.15,139 The effective Transmission Network Use of System tariff (TNUoS) for generation and gross demand can now be calculated as the sum of the initial transport wider tariffs for Peak Security and Year Round backgrounds, the non-locational residual tariff and the local tariff:

$$ET_{Gi} = \frac{ITT_{GiPS} + ITT_{GiYRNS} + ITT_{GiYRS} + RT_{G}}{1000} + LT_{Gi}$$
$$ET_{Di} = \frac{ITT_{DiPS} + ITT_{DiYR} + RT_{D}}{1000}$$

Where

- ET_{Di} = Effective Gross Demand TNUoS Tariff expressed in £/kW

The effective Transmission Network Use of System tariff (TNUoS) for affected embedded exports and grandfathered embedded exports can now be calculated by expressing the embedded export tariff in £/kW values:

 $ET_{EEAi} = \frac{EETA_{Di}}{1000}$

$$ET_{EEGi} = \frac{EETG_{Di}}{1000}$$

Where

ET_{EEAI} = Effective Affected Embedded Export TNUoS Tariff expressed in £/kW ET_{EEGI} = Effective Grandfathered Embedded Export TNUoS Tariff expressed in £/kW

For the purposes of the annual Statement of Use of System Charges ET_{Gi} will be published as ITT_{GiPS} ; ITT_{GiPRS} , ITT_{GiPRS} , RT_G and LT_{Gi}

14.15,140 Where tariffs do not change mid way through a charging year, final demand and generation tariffs will be the same as the effective tariffs.

$$FT_{Gi} = ET_{Gi}$$

$$FT_{Di} = ET_{Di}$$

$$F\overline{T_{EEAi}} = ET_{EEAi}$$

$$FT_{FEGi} = ET_{FEGi}$$

14.15,141 Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

Deleted: 134

Deleted: 135

Deleted: 133

Page 33 of 64

$$FT_{Gi} = \frac{12 \times \left(ET_{Gi} \times \sum_{Gi=1}^{20} G_{Gi} - FL_{Gi}\right)}{b \times \sum_{Gi=1}^{27} G_{Gi}} \text{ and } FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{14} D_{Di}}$$

$$FT_{EEAi} = \frac{12 \times (ET_{EEAi} \times \sum_{Di=1}^{14} EETA_{Di} - FL_{Di})}{b \times \sum_{Di=1}^{14} EETA_{Di} - FL_{Di}} \text{ and } FT_{EEGi} = \frac{12 \times (ET_{EEGi} \times \sum_{Di=1}^{14} EETG_{Di} - FL_{Di})}{b \times \sum_{Di=1}^{14} EETG_{Di} - FL_{Di}}$$

Where:

b = number of months the revised tariff is applicable for FL = Forecast liability incurred over the period that the original tariff is applicable for

Note: The ET_{Gi} element used in the formula above will be based on an individual Power Stations PS flag and ALF for Power Station G_{Gi} , aggregated to ensure overall correct revenue recovery.

14.15,142 If the final gross demand TNUoS Tariff results in a negative number then this is collared to £0/kW with the resultant non-recovered revenue smeared over the remaining demand zones:

 $NRRT_{D} = \frac{\sum_{i=1}^{z} \left(FT_{Di} \times D_{Di} \right)}{\sum_{i=1}^{14} D_{Di}}$

If
$$FT_{Di} < 0$$
, then $i = 1$ to z

Therefore,

Therefore the revised Final Tariff for the <u>gross</u> demand zones with positive Final tariffs is given by:

 $RFT_{Di} = FT_{Di} + NRRT_{Di}$

For
$$i= 1$$
 to z: $RFT_{Di} = 0$

For *i*=z+1 to 14:

Where

1

- $NRRT_{D} = Non Recovered Revenue Tariff (\pounds/kW)$ RFT_{Di} = Revised Final Tariff (\pounds/kW)
- 14.15,143 The tariffs applicable for any particular year are detailed in The Company's Statement of Use of System Charges, which is available from the Charging website. Archived tariff information may also be obtained from the Charging website.
 - 14.15,144 The zonal maps referenced in The Company's Statement of Use of System Charges and available on the Charging website contain detailed information for the charging year in question of which Grid Supply Points fall into which TNUoS zones.

14.15,145 New Grid Supply Points will be classified into zones on the following basis:

Page 34 of 64

V1.12-01 April 2016

Deleted: 136

Deleted: 137

Deleted: 138

- For demand zones, according to the GSP Group to which the Grid Supply Point is allocated for energy market settlement purposes.
- For generation zones, with reference to the geographic proximity to existing zones and, where close to a boundary between existing zones, with reference to the marginal costs arising from transport model studies. The GSP will then be allocated to the zone, which contains the most similar marginal costs.
- 14.15,146 The Company has available, upon request, the DCLF ICRP transport model, tariff model template and data necessary to run the model, consisting of nodal values of generation and demand connection points to the NETS. The model and data will enable the basic nodal charges to be determined and will also allow sensitivity analysis concerning alternative developments of generation and demand to be undertaken. The model is available from the Charging Team and whilst it is free of charge, it is provided under licence to restrict its distribution and commercial use.
- 14.15,147 The Company will be pleased to run specific sensitivity studies for Users under a separate study contract in line with the fees set out in the **Statement of Use** of **System Charges**. Please contact the **Charging Team**.
- 14.15,148 The factors which will affect the level of TNUoS charges from year to year include-;
 - the forecast level of peak demand on the system
 - the Price Control formula (including the effect of any under/over recovery from the previous year),
 - the expansion constant,
 - the locational security factor,
 - the PS flag
 - the ALF of a generator
 - changes in the transmission network
 - HVDC circuit impedance calculation
 - changes in the pattern of generation capacity and demand.
 - changes in the pattern of embedded exports

14.15,149 In accordance with Standard Licence Condition C13, generation directly connected to the NETS 132kV transmission network which would normally be subject to generation TNUoS charges but would not, on the basis of generating capacity, be liable for charges if it were connected to a licensed distribution network qualifies for a reduction in transmission charges by a designated sum, determined by the Authority. Any shortfall in recovery will result in a unit amount increase in gross demand charges to compensate for the deficit. Further information is provided in the Statement of the Use of System Charges.

Stability & Predictability of TNUoS tariffs

I

14.15,<u>150</u> A number of provisions are included within the methodology to promote the stability and predictability of TNUoS tariffs. These are described in 14.29.

Deleted: 143

Deleted: 140

Deleted: 141

Deleted: 142

Deleted: 144

Page 35 of 64

14.16 Derivation of the Transmission Network Use of System Energy Consumption Tariff and Short Term Capacity Tariffs

- 14.16.1 For the purposes of this section, Lead Parties of Balancing Mechanism (BM) Units that are liable for Transmission Network Use of System Demand Charges are termed Suppliers.
- 14.16.2 Following calculation of the Transmission Network Use of System £/kW Gross Demand Tariff (as outlined in Chapter 2: Derivation of the TNUoS Tariff) for each GSP Group is calculated as follows:

$$p/kWh Tariff = (NHHD_F * £/kW Tariff - FL_G) *100$$

NHHC_G

Where:

 \pounds/kW Tariff = The \pounds/kW Effective <u>Gross</u> Demand Tariff (\pounds/kW), as calculated previously, for the GSP Group concerned.

 \mathbf{NHHD}_{F} = The Company's forecast of Suppliers' non-half-hourly metered Triad Demand (kW) for the GSP Group concerned. The forecast is based on historical data.

 FL_{G} = Forecast Liability incurred for the GSP Group concerned.

 $\rm NHHC_{G}$ = The Company's forecast of GSP Group non-half-hourly metered total energy consumption (kWh) for the period 16:00 hrs to 19:00hrs inclusive (i.e. settlement periods 33 to 38) inclusive over the period the tariff is applicable for the GSP Group concerned.

Short Term Transmission Entry Capacity (STTEC) Tariff

14.16.3 The Short Term Transmission Entry Capacity (STTEC) tariff for positive zones is derived from the Effective Tariff (ET_{Gi}) annual TNUoS £/kW tariffs (14.15.112). If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the STTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (i.e. over the whole financial year, not just the period that the STTEC is applicable for). STTECs will not be reconciled following a mid year charge change. The premium associated with the flexible product is associated with the analysis that 90% of the annual charge is linked to the system peak. The system peak is likely to occur in the period of November to February inclusive (120 days, irrespective of leap years). The calculation for positive generation zones is as follows:

$$\frac{FT_{Gi} \times 0.9 \times STTEC \ Period}{120} = STTEC \ tariff \ (\pounds/kW/period)$$

Where:

FT	=	Final annual TNUoS Tariff expressed in £/kW
Gi	=	Generation zone
STTEC Period	=	A period applied for in days as defined in the CUSC

Page 36 of 64

- 14.16.4 For the avoidance of doubt, the charge calculated under 14.16.3 above will represent each single period application for STTEC. Requests for multiple /STTEC periods will result in each STTEC period being calculated and invoiced separately.
- 14.16.5 The STTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.

Limited Duration Transmission Entry Capacity (LDTEC) Tariffs

14.16.6 The Limited Duration Transmission Entry Capacity (LDTEC) tariff for positive zones is derived from the equivalent zonal STTEC tariff for up to the initial 17 weeks of LDTEC in a given charging year (whether consecutive or not). For the remaining weeks of the year, the LDTEC tariff is set to collect the balance of the annual TNUoS liability over the maximum duration of LDTEC that can be granted in a single application. If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the LDTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (ie over the whole financial year, not just the period that the STTEC is applicable for). LDTECs will not be reconciled following a mid year charge change:

Initial 17 weeks (high rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.9 \times 7}{120}$$

Remaining weeks (low rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.1075 \times 7}{316 - 120} \times (1 + P)$$

where FT is the final annual TNUoS tariff expressed in £/kW; G_i is the generation TNUoS zone; and P is the premium in % above the annual equivalent TNUoS charge as determined by The Company, which shall have the value 0.

- 14.16.7 The LDTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.
- 14.16.8 The tariffs applicable for any particular year are detailed in The Company's **Statement of Use of System Charges** which is available from the **Charging website.** Historical tariffs are also available on the **Charging website.**

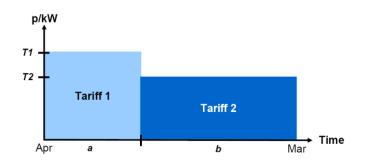
14.17 Demand Charges

Parties Liable for Demand Charges

- 14.17.1 <u>Demand charges are subdivided into charges for gross demand, energy and</u> <u>embedded export.</u> The following parties shall be liable for <u>some or all of the</u> <u>categories of</u> demand charges:
 - The Lead Party of a Supplier BM Unit;
 - Power Stations with a Bilateral Connection Agreement;
 - Parties with a Bilateral Embedded Generation Agreement
- 14.17.2 Classification of parties for charging purposes, section 14.26, provides an illustration of how a party is classified in the context of Use of System charging and refers to the paragraphs most pertinent to each party.

Basis of Gross Demand Charges

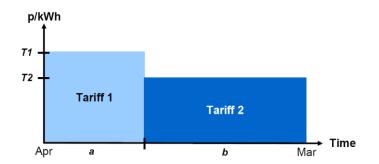
- 14.17.3 <u>Gross d</u>emand charges are based on a de-<u>minimis</u> £0/kW charge for Half Hourly and £0/kWh for Non Half Hourly metered demand.
 - 14.17.4 Chargeable <u>Gross</u> Demand Capacity is the value of Triad <u>gross</u> demand (kW). Chargeable Energy Capacity is the energy consumption (kWh). The definition of both these terms is set out below.
 - 14.17.5 If there is a single set of <u>gross</u> demand tariffs within a charging year, the Chargeable <u>Gross</u> Demand Capacity is multiplied by the relevant <u>gross</u> demand tariff, for the calculation of <u>gross</u> demand charges.
 - 14.17.6 If there is a single set of energy tariffs within a charging year, the Chargeable Energy Capacity is multiplied by the relevant energy consumption tariff for the calculation of energy charges..
 - 14.17.7 If multiple sets of <u>gross</u> demand tariffs are applicable within a single charging year, <u>gross</u> demand charges will be calculated by multiplying the Chargeable <u>Gross</u> Demand Capacity by the relevant tariffs pro rated across the months that they are applicable for, as below,


V		
Annual Liability	$y_{Demand} = \frac{Chargeable \ Gross}{Demand \ Capacity} \times \left(\frac{(a \times Tariff \ 1) + (b \times Tariff \ 2)}{12}\right)$	
where:		
Tariff 1 =	Original tariff,	
Tariff 2 =	Revised tariff,	

a = Number of months over which the original tariff is applicable,
 b = Number of months over which the revised tariff is applicable.

Deleted: minimus

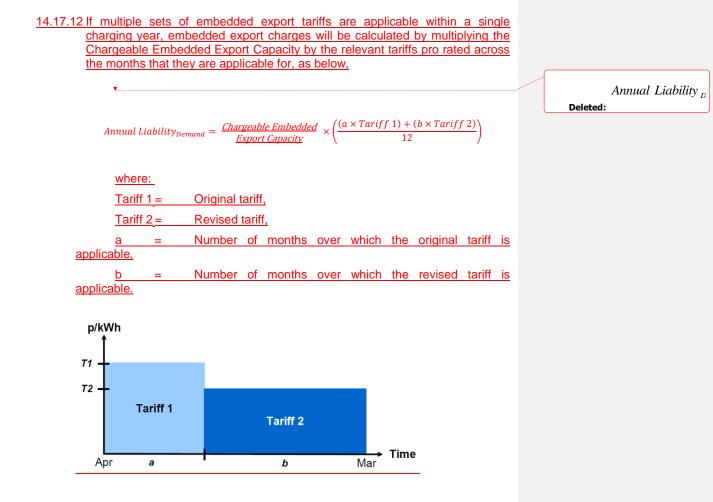
Deleted: Annual Liability _D


Page 38 of 64

14.17.8 If multiple sets of energy tariffs are applicable within a single charging year, energy charges will be calculated by multiplying relevant Tariffs by the Chargeable Energy Capacity over the period that that the tariffs are applicable for and summing over the year.

Annual Liability $_{Energy} = Tariff \ 1 \times \sum_{TI_s}^{TI_E} Chargeable Energy Capacity + Tariff \ 2 \times \sum_{TZ_s}^{TI_E} Chargeable Energy Capacity$

Where: T1s Start date for the period for which the original tariff is = applicable, End date for the period for which the original tariff is T1_E = applicable, Start date for the period for which the revised tariff is T2s _ applicable, End date for the period for which the revised tariff is T2_E = applicable.



Basis of Embedded Export Charges

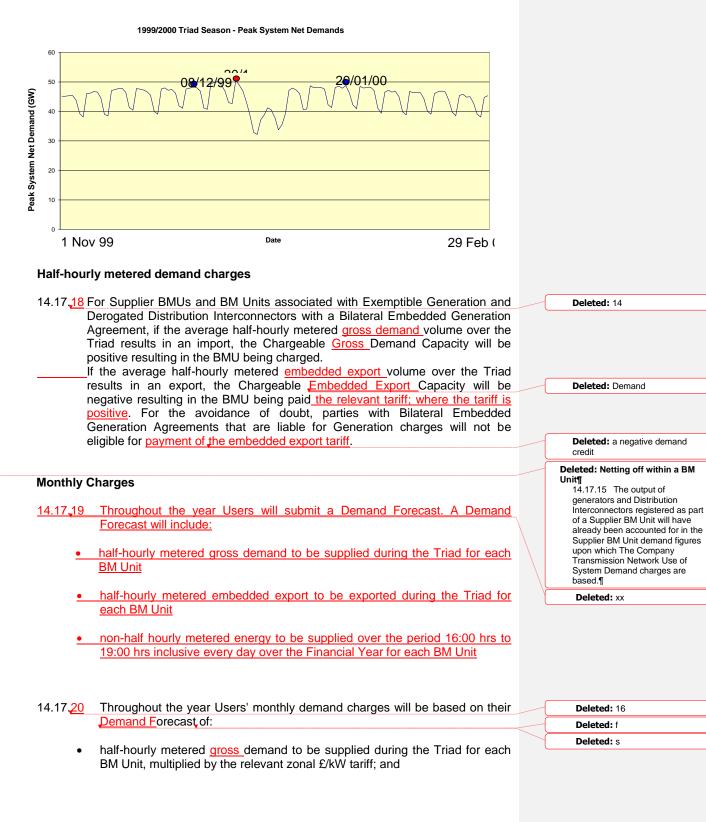
- 14.17.9 Embedded export charges are based on a £/kW charge for Half Hourly metered embedded export.
- <u>14.17.10 Chargeable Embedded Export Capacity is the value of Embedded Export at</u> <u>Triad (kW). The definition of this term is set out below.</u>

If there is a single set of embedded export tariffs within a charging year, the Chargeable Embedded Export Capacity is multiplied by the relevant embedded export tariff, for the calculation of embedded export charges. Deleted: 14.17.11

Page	39	of	64
------	----	----	----

Supplier BM Unit

14.17,<u>13</u> A Supplier BM Unit charges will be the sum of its energy, <u>gross</u> demand <u>and</u> <u>embedded export</u> liabilities where:


- The Chargeable <u>Gross</u> Demand Capacity will be the average of the Supplier BM Unit's half-hourly metered <u>gross</u> demand during the Triad (and the £/kW tariff),
- The Chargeable Embedded Export Capacity will be the average of the Supplier BM Unit's half-hourly metered embedded export during the Triad (and the £/kW tariff), and
- The Chargeable Energy Capacity will be the Supplier BM Unit's non halfhourly metered energy consumption over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year (and the p/kWh tariff).

Power Stations with a Bilateral Connection Agreement and Licensable Generation with a Bilateral Embedded Generation Agreement

Page 40 of 64

V1.12-01 April 2016

	CUSC v1.12			
1	14.17,14 The Chargeable Gross Demand Capacity for a Power Station with a Bilateral	_	Deleted: 10	
I	Connection Agreement or Licensable Generation with a Bilateral Embedded)
	Generation Agreement will be based on the average of the gross import over		Deleted: net	
	each Triad leg of the BM Units associated with the Power Station (in Appendix			
	C of its Bilateral Connection Agreement or Bilateral Embedded Generation Agreement, including metered additional load) during the Triad.			
	Agreement, including metered additional load) during the Thad.			
	Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement			
1	14.17,15 The demand charges for Exemptible Generation and Derogated Distribution	\square	Deleted: 11	
	Interconnector with a Bilateral Embedded Generation Agreement will be the			
	sum of its gross demand and embedded export liabilities where:			
	The Observable Organ Demond Opperity for Every title Opperation and			
	 The Chargeable <u>Gross</u> Demand Capacity for Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation 			
1	Agreement will be based on the average of the metered gross demand of	-	Deleted: volume	
	each BM Unit specified in Appendix C of the Bilateral Embedded Generation)
	Agreement during the Triad.			
	 <u>The Chargeable Embedded Export Capacity for Exemptible Generation and</u> Derogated Distribution Interconnectors with a Bilateral Embedded Generation 			
	Agreement will be based on the average of the metered embedded export of			
	each BM Unit specified in Appendix C of the Bilateral Embedded Generation			
	Agreement during the Triad.			
	Small Generators Tariffs			
1	14.17,16 In accordance with Standard Licence Condition C13, any under recovery from		Deleted: 12	
1	the MAR arising from the small generators discount will result in a unit amount	_ (
	of increase to all GB gross demand tariffs.			
	The Triad			
I	14.17,17 The Triad is used as a short hand way to describe the three settlement periods	_	Deleted: 13	
1	of highest transmission system demand within a Financial Year, namely the	_ ()
	half hour settlement period of system peak net demand and the two half hour			
	settlement periods of next highest net demand, which are separated from the			
	system peak_net demand and from each other by at least 10 Clear Days,			
	between November and February of the Financial Year inclusive. Exports on directly connected Interconnectors and Interconnectors capable of exporting			
	more than 100MW to the Total System shall be excluded when determining the			
I	system peak net demand. An illustration is shown below.			
ı	·/····			

- half-hourly metered embedded export to be supplied during the Triad for each BM Unit, multiplied by the relevant zonal £/kW tariff; and
- non-half hourly metered energy to be supplied over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year for each BM Unit, multiplied by the relevant zonal p/kWh tariff

Users' annual TNUoS demand charges are based on these forecasts and are split evenly over the 12 months of the year. Users have the opportunity to vary their demand forecasts on a quarterly basis over the course of the year, with the demand forecast requested in February relating to the next Financial Year. Users will be notified of the timescales and process for each of the quarterly updates. The Company will revise the monthly Transmission Network Use of System demand charges by calculating the annual charge based on the new forecast, subtracting the amount paid to date, and splitting the remainder evenly over the remaining months. For the avoidance of doubt, only positive demand forecasts (i.e. representing <u>a net</u> import from the system) will be <u>used in the calculation of charges</u>.

Demand forecasts for a User will be considered positive where:

- The sum of the gross demand forecast and embedded export forecast is positive; and
- The non-half hourly metered energy forecast is positive.

14.17.21 Users should submit reasonable forecasts of gross demand, embedded export and energy in accordance with the CUSC. The Company shall use the following methodology to derive a forecast to be used in determining whether a User's forecast is reasonable, in accordance with the CUSC, and this will be used as a replacement forecast if the User's total forecast is deemed unreasonable. The Company will, at all times, use the latest available Settlement data.

For existing Users:

- i) The User's Triad <u>gross</u> demand<u>and embedded export</u> for the preceding Financial Year will be used where User settlement data is available and where The Company calculates its forecast before the Financial Year. Otherwise, the User's average weekday settlement period 35 half-hourly metered (HH) <u>gross</u> demand <u>and embedded export</u> in the Financial Year to date is compared to the equivalent average <u>gross</u> demand<u>and</u> <u>embedded export</u> for the corresponding days in the preceding year. The percentage difference is then applied to the User's HH <u>gross</u> demand<u>and</u> <u>embedded export</u> at Triad in the preceding Financial Year to derive a forecast of the User's HH <u>gross</u> demand<u>and embedded export</u> at Triad for this Financial Year.
- ii) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day in the Financial Year to date is compared to the equivalent energy consumption over the corresponding days in the preceding year. The percentage difference is then applied to the User's total NHH energy consumption in the preceding Financial Year to derive a forecast of the User's NHH energy consumption for this Financial Year.

For new Users who have completed a Use of System Supply Confirmation Notice in the current Financial Year:

Page 43 of 64

V1.12-01 April 2016

Deleted: accepted

Deleted: 17

1

iii) The User's average weekday settlement period 35 half-hourly metered (HH) gross demand and embedded export over the last complete month for which The Company has settlement data is calculated. Total system average HH gross demand and embedded export for weekday settlement period 35 for the corresponding month in the previous year is compared to total system HH_gross demand and embedded export at Triad in that year and a percentage difference is calculated. This percentage is then applied to the User's average HH gross demand and embedded export for weekday settlement period 35 over the last month to derive a forecast of the User's HH gross demand and embedded export at Triad for this Financial Year.

- iv) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day over the last complete month for which The Company has settlement data is noted. Total system NHH energy consumption over the corresponding month in the previous year is compared to total system NHH energy consumption over the remaining months of that Financial Year and a percentage difference is calculated. This percentage is then applied to the User's NHH energy consumption over the month described above, and all NHH energy consumption in previous months is added, in order to derive a forecast of the User's NHH metered energy consumption for this Financial Year.
- 14.17,22 14.28 Determination of The Company's Forecast for Demand Charge Purposes illustrates how the demand forecast will be calculated by The Company.

Reconciliation of Demand Charges

14.17,23 The reconciliation process is set out in the CUSC. The demand reconciliation process compares the monthly charges paid by Users against actual outturn charges. Due to the Settlements process, reconciliation of demand charges is carried out in two stages; initial reconciliation and final reconciliation.

Initial Reconciliation of demand charges

14.17,24 The initial reconciliation process compares Users' demand forecasts and corresponding monthly charges paid over the year against actual outturn data (using latest Settlement data available at the time) and corresponding charges. Initial reconciliation is carried out in two parts; Initial Reconciliation Part 1 deals with the reconciliation of half-hourly metered demand charges and Initial Reconciliation Part 2 deals with the reconciliation of non-half-hourly metered demand charges.

Initial Reconciliation Part 1– Half-hourly metered demand

- 14.17,25 The Company will identify the periods forming the Triad once it has received Central Volume Allocation data from the Settlement Administration Agent for all days up to and including the last day of February. Once The Company has notified Users of the periods forming the Triad they will not be changed even if disputes are subsequently resolved which would change the periods forming the Triad.
- 14.17,<u>26</u> Initial outturn charges for half-hourly metered <u>gross</u> demand will be determined using the latest available data of actual average Triad <u>gross</u> demand (kW) multiplied by the zonal <u>gross</u> demand tariff(s) (£/kW) applicable to the months

Page 44 of 64

Deleted: 18

Deleted: 19

Deleted: 20

Deleted: 21

Deleted: 22

С

I

I

I

I

1.12	
concerned for each zone for that Financial Year. These actual values are then reconciled against the monthly charges paid in respect of half-hourly gross demand.	
14.17.27 Initial outturn charges for half-hourly metered embedded export will be determined using the latest available data of actual average Triad embedded	
export (kW) multiplied by the zonal embedded export tariff(s) (£/kW) applicable to the months concerned for each zone for that Financial Year. These actual values are then reconciled against the monthly charges paid in respect of half-	
hourly embedded exports.	
Initial Reconciliation Part 2 – Non-half-hourly metered demand	
14.17,28 Actual payments for non-half-hourly metered demand will be determined using	Deleted: 23
the latest available actual energy consumption data (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) over the year multiplied by the energy consumption tariff(s) (p/kWh) applicable to the months concerned for each zone. These actual values are then reconciled against the monthly charges paid in respect of non-half-hourly energy consumption.	
Final Reconciliation of demand charges	
14.17,29 The final reconciliation process compares Users' charges (as calculated during	Deleted: 24
the initial reconciliation process using the latest available data) against final outturn demand charges (based on final settlement data <u>of half-hourly gross</u> <u>demand, embedded exports and non-half-hourly energy consumption).</u>	
14.17.30 Final actual charges will be determined using the final demand reconciliation data taken from the Final Reconciliation Settlement Run or the Final Reconciliation Volume Allocation Run.	Deleted: 25
Reconciliation of manifest errors	
14.17, <u>31</u> In the event that a manifest error, or multiple errors in the calculation of TNUoS tariffs results in a material discrepancy in aUsers TNUoS tariff, the	Deleted: 26
reconciliation process for all Users qualifying under Section 14.17,33 will be in	Deleted: 28
accordance with Sections 14.17,24 to 14.17,50. The reconciliation process shall be carried out using recalculated TNUoS tariffs. Where such	Deleted: 20
reconciliation is not practicable, a post-year reconciliation will be undertaken in the form of a one-off payment.	Deleted: 25
14.17. <u>32 A manifest error shall be defined as any of the following:</u>	Deleted: 27
 a) an error in the transfer of relevant data between the Transmission Licensees or Distribution Network Operators; 	
b) an error in the population of the Transport Model with relevant data;	
c) an error in the function of the Transport Model; ord) an error in the inputs or function of the Tariff Model.	
14.17,33 A manifest error shall be considered material in the event that such an error or, the net effect of multiple errors, has an impact of the lesser of either:	Deleted: 28
a) an error in a User's TNUoS tariff of at least +/-£0.50/kW; or	

Page 45 of 64

b) an error in a User's TNUoS tariff which results in an error in the annual TNUoS charge of a User in excess of +/-£250,000.

14.17,<u>34</u> A manifest error shall only be reconciled if it has been identified within the charging year for which the error has an effect. Errors identified outside of this period will not be eligible for reconciliation retrospectively.

Implementation of P272

- 14.17,<u>35</u>.1 BSC modification P272 requires Suppliers to move Profile Classes 5-8 to Measurement Class E - G (i.e. moving from NHH to HH settlement) by April 2016. The majority of these meters are expected to transfer during the preceding Charging Years up until the implementation date of P272 and some meters will have been transferred before the start of 1ST April 2015. A change from NHH to HH within a Charging Year would normally result in Suppliers being liable for TNUoS for part of the year as NHH and also being subject to HH charging. This section describes how the Company will treat this situation in the transition to P272 implementation for the purposes of TNUoS charging; and the forecasts that Suppliers should provide to the Company.
- 14.17,35.2 Notwithstanding 14.17,13, for each Charging Year which begins after 31 March 2015 and prior to implementation of BSC Modification P272, all demand associated with meters that are in NHH Profile Classes 5 to 8 at the start of that charging year as well as all meters in Measurement Classes E G will be treated as Chargeable Energy Capacity (NHH) for the purposes of TNUoS charging for the full Charging Year unless 14.17,35.3 applies.
 - 14.17,35.3 Where prior to 1st April 2015 a Profile Class meter has already transferred to Measurement Class settlement (HH) the associated Supplier may opt to treat the demand volume as Chargeable Demand Capacity (HH) for the purposes of TNUoS charging up until implementation of P272, subject to meeting conditions in 14.17,35.6. If the associated Supplier does not opt to treat the demand volume as Demand Capacity (HH) it will be treated by default as Chargeable Energy Capacity (NHH) for each full Charging Year up until implementation of P272.
 - 14.17,35.4 The Company will calculate the Chargeable Energy Capacity associated with meters that have transferred to HH settlement but are still treated as NHH for the purposes of TNUoS charging from Settlement data provided directly from Elexon i.e. Suppliers need not Supply any additional information if they accept this default position.
- 14.17,35.5 The forecasts that Suppliers submit to the Company under CUSC 3.10, 3.11 and 3.12 for the purpose of TNUoS monthly billing referred to in 14.17,20 and 14.17,21 for both Chargeable Demand Capacity and Chargeable Energy Capacity should reflect this position i.e. volumes associated those Metering Systems that have transferred from a Profile Class to a Measurement Class in the BSC (NHH to HH settlement) but are to be treated as NHH for the purposes of TNUoS charging should be included in the forecast of Chargeable Energy Capacity and not Chargeable Demand Capacity, unless 14.17,35.3 applies.
 - 14.17,<u>35</u>.6 Where a Supplier wishes for Metering Systems that have transferred from Profile Class to Measurement Class in the BSC (NHH to HH settlement) prior to 1st April 2015, to be treated as Chargeable Demand Capacity (HH/

Page 46 of 64

V1.12-01 April 2016

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 9

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 16

Deleted: 17

Deleted: 29

Deleted: 29

I

Measurement Class settled) it must inform the Company prior to October 2015. The Company will treat these as Chargeable Demand Capacity (HH / Measurement Class settled) for the purposes of calculating the actual annual liability for the Charging Years up until implementation of P272. For these cases only, the Supplier should notify the Company of the Meter Point Administration Number(s) (MPAN). For these notified meters the Supplier shall provide the Company with verified metered demand data for the hours between 4pm and 7pm of each day of each Charging Year up to implementation of P272 and for each Triad half hour as notified by the Company prior to May of the following Charging Year up until two years after the implementation of P272 to allow reconciliation (e.g. Mav 2017 and May 2018 for the Charging Year 2016/17). Where the Supplier fails to provide the data or the data is incomplete for a Charging Year TNUoS charges for that MPAN will be reconciled as part of the Supplier's NHH BMU (Chargeable Energy Capacity). Where a Supplier opts, if eligible, for TNUoS liability to be calculated on Chargeable Demand Capacity it shall submit the forecasts referred to in 14.17,35.5 taking account of this.

14.17,35.7 The Company will maintain a list of all MPANs that Suppliers have elected to be treated as HH. This list will be updated monthly and will be provided to registered Suppliers upon request.

Further Information

- 14.17,<u>36</u> 14.25 Reconciliation of Demand Related Transmission Network Use of System Charges of this statement illustrates how the monthly charges are reconciled against the actual values for <u>gross</u> demand, <u>embedded export</u> and consumption for half-hourly <u>gross demand</u>, <u>embedded export</u> and non-halfhourly metered demand respectively.
- 14.17,<u>37</u> **The Statement of Use of System Charges** contains the £/kW zonal gross demand tariffs, <u>the £/kW zonal embedded export tariffs</u>, and the p/kWh energy consumption tariffs for the current Financial Year.
- 14.17,<u>38</u>14.27 Transmission Network Use of System Charging Flowcharts of this statement contains flowcharts demonstrating the calculation of these charges for those parties liable.

Deleted: 30

Deleted: 29

Deleted: 29

Deleted: 31

Deleted: 32

....

14.24 Example: Calculation of Zonal Gross Demand Tariff

Let us consider all nodes in a demand zone in this example

The table below shows a sample output of the transport model comprising the node, the Peak Security and Year Round marginal km of an injection at the node with a consequent withdrawal at the distributed reference node, the generation sited at the node, scaled to ensure total national generation = total national <u>net</u> demand and the <u>net</u> demand sited at the node.

Demand Zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	<u>Net</u> Demand (MW)
14	ABHA4A	-77.25	-230.25	127
14	ABHA4B	-77.27	-230.12	127
14	ALVE4A	-82.28	-197.18	100
14	ALVE4B	-82.28	-197.15	100
14	AXMI40_SWEB	-125.58	-176.19	97
14	BRWA2A	-46.55	-182.68	96
14	BRWA2B	-46.55	-181.12	96
14	EXET40	-87.69	-164.42	340
14	HINP20	-46.55	-147.14	0
14	HINP40	-46.55	-147.14	0
14	INDQ40	-102.02	-262.50	444
14	IROA20_SWEB	-109.05	-141.92	462
14	LAND40	-62.54	-246.16	262
14	MELK40_SWEB	18.67	-140.75	83
14	SEAB40	65.33	-140.97	304
14	TAUN4A	-66.65	-149.11	55
14	TAUN4B	-66.66	-149.11	55
		Totals		2748

In order to calculate the <u>gross</u> demand tariff we would carry out the following steps:

(i) calculate the demand weighted nodal shadow costs

For this example zone this would be as follows:

Demand zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	Net Demand (MW)	Peak Security Demand Weighted Nodal Marginal km	Year Round Demand Weighted Nodal Marginal km
14	ABHA4A	-77.25	-230.25	127	-3.57	-10.64
14	ABHA4B	-77.27	-230.12	127	-3.57	-10.64
14	ALVE4A	-82.28	-197.18	100	-2.99	-7.17
14	ALVE4B	-82.28	-197.15	100	-2.99	-7.17
14	AXMI40_SWEB	-125.58	-176.19	97	-4.43	-6.22
14	BRWA2A	-46.55	-182.68	96	-1.63	-6.38
14	BRWA2B	-46.55	-181.12	96	-1.63	-6.33
14	EXET40	-87.69	-164.42	340	-10.85	-20.34
14	INDQ40	-102.02	-262.50	444	-16.48	-42.41
14	IROA20_SWEB	-109.05	-141.92	462	-18.33	-23.86
14	LAND40	-62.54	-246.16	262	-5.96	-23.47
14	MELK40_SWEB	18.67	-140.75	83	0.56	-4.25
14	SEAB40	65.33	-140.97	304	7.23	-15.59
14	TAUN4A	-66.65	-149.11	55	-1.33	-2.98
14	TAUN4B	-66.66	-149.11	55	-1.33	-2.98
		Totals		2748	-49.19	-190.43

(ii) sum the Peak Security and Year Round demand weighted nodal shadow costs to give zonal figures. For this example zone this is shown in the above table and is 49.19km for Peak Security background and 190.43km for Year Round background.

(iii) calculate the transport tariffs by multiplying the figures in (ii) above by the expansion constant (& dividing by 1000 to put into units of £/kW):

For this example zone, assuming an expansion constant of ± 10.07 /MWkm and a locational security factor of 1.80:

a) Peak Security tariff – 49.19km <u>* £10.07/MWkm * 1.8</u> = <u>£0.89/kW</u> 1000

Page 50 of 64

b) Year Round tariff -<u>190.43km * £10.07/MWkm * 1.8</u> = <u>£3.45/kW</u> 1000

(iv) We now need to calculate the residual tariff. This is calculated by taking the total revenue to be recovered from demand (calculated as c.73% of total The Company TNUoS target revenue for the year), less the revenue which would be recovered through the demand transport tariffs and revenue recovery through embedded export tariffs, divided by total expected gross GSP group demand.

Assuming the total revenue to be recovered from TNUoS is £1067m, the total recovery from <u>gross GSP group</u> demand would be (73% x £1067m) = £779m. Assuming the total recovery from <u>gross GSP group</u> demand transport tariffs is £<u>140m</u>, total recovery from <u>embedded export tariffs is -£10m</u> and total forecast chargeable <u>gross GSP group</u> demand capacity is 50000MW, the demand residual tariff would be as follows:

 $\frac{\pounds779m - \pounds140m - -\pounds10m}{50,000MW} = \pounds12.98/kW$

 (v) to get to the final tariff, we simply add on the demand residual tariff calculated in (v) to the zonal transport tariffs calculated in (iii(a)) and (iii(b))

For zone 14:

 $\pounds 0.89/kW + \pounds 3.45/kW + \pounds 12.98/kW =$ $\pounds 17.32/kW$

- To summarise, in order to calculate the <u>gross</u> demand tariffs, we evaluate a <u>net</u> demand weighted zonal marginal km cost multiply by the expansion constant and locational security factor then we add a constant (termed the residual cost) to give the overall tariff.
- (vii) The final demand tariff is subject to further adjustment to allow for the minimum £0/kW gross_demand charge. The application of a discount for small generators pursuant to Licence Condition C13 will also affect the final gross_demand tariff.

Deleted: gross

Deleted: 130m

Deleted: $\frac{\pounds 779m - \pounds 130m}{2}$			
50000MW	_		
¶ <u>£779m - £140m£10m</u> = £12.98/kW¶			
50,000MW			

14.25 Reconciliation of <u>Gross</u> Demand Related Transmission Network Use of System Charges

This appendix illustrates the methodology used by The Company in the reconciliation of Transmission Network Use of System charges for <u>gross</u> demand. The example highlights the different stages of the calculations from the monthly invoiced amounts, right through to Final Reconciliation.

Monthly Charges

Suppliers provide half-hourly (HH) gross demand and embedded export forecasts and non-halfhourly (NHH) demand forecasts by BM Unit every quarter. An example of such forecasts and the corresponding monthly invoiced amounts, based on tariffs of £10.00/kW for gross demand, £5.00/kW for embedded export and 1.20p/kWh for energy consumption, is as follows:

	Forecast HH Triad <u>Gross</u> Demand <u>HHD_E (</u> kW)	HH <u>Gross</u> <u>Demand</u> Monthly Invoiced Amount (£)	Forecast <u>HH</u> <u>Triad</u> <u>Embedded</u> <u>Export</u> <u>HHEE_E (kW)</u>	<u>HH</u> <u>Embedded</u> <u>Generation</u> <u>Monthly</u> <u>Invoiced</u> <u>Amount (£)</u>	Forecast NHH Energy Consumpti on NHHC _F (kW h)	NHH Monthly Invoiced Amount (£)	Net Monthly Invoiced Amount (£)
Apr	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
May	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jun	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jul	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Aug	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Sep	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Oct	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Nov	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Dec	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Jan	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Feb	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Mar	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Total		72,000		<u>(3,000)</u>		216,000	<u>297</u> ,000

As shown, for the first nine months the Supplier provided a 12,000kW HH triad <u>gross</u> demand forecast, and hence paid HH <u>gross demand</u> monthly charges of £10,000 ((12,000kW x £10.00/kW)/12) for that BM Unit. In January the Supplier provided a revised forecast of 7,200kW, implying a forecast annual charge reduced to £72,000 (7,200kW x £10.00/kW). The Supplier had already paid £90,000, so the excess of £18,000 was credited back to the supplier in three £6,000 instalments over the last three months of the year.

The Supplier provided an embedded export triad forecast of -600kW and hence was paid an embedded export credit of £250 ((600kW x £5.00/kW)/12) for that BM Unit (For the avoidance of doubt, if the embedded export tariff is negative this will result in a debit).

The Supplier also initially provided a 15,000,000kWh NHH energy consumption forecast, and hence paid NHH monthly charges of £15,000 ((15,000,000kWh x 1.2p/kWh)/12) for that BM Unit. In July the Supplier provided a revised forecast of 18,000,000kWh, implying a forecast annual charge increased to £216,000 (18,000,000kWh x 1.2p/kWh). The Supplier had already

Page 52 of 64

paid £45,000, so the remaining £171,000 was split into payments of £19,000 for the last nine months of the year.

The right hand column shows the net monthly charges for the BM Unit.

Initial Reconciliation (Part 1a)

The Supplier's outturn HH triad <u>gross</u> demand, based on <u>initial</u> settlement data (and therefore subject to change in subsequent settlement runs), was 9,000kW. The HH triad <u>gross</u> demand reconciliation charge is therefore calculated as follows:

HHD Reconciliation Charge = $(HHD_A - HHD_F) \times \pounds/kW$ Tariff

= (9,000kW - 7,200kW) x £10.00/kW

= 1,800kW x £10.00/kW

= £18,000

To calculate monthly interest charges, the outturn HHD charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHD charge less the HH <u>gross demand</u> monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 1b)

The Supplier's outturn HH triad embedded export, based on initial settlement data (and therefore subject to change in subsequent settlement runs), was 700kW. The HH triad embedded export reconciliation charge is therefore calculated as follows:

HHEE Reconciliation Charge = (HHEE_A – HHEE_E) x £/kW Tariff

 $= (-500 \text{kW} - -600 \text{kW}) \times \text{\pounds}5.00/\text{kW}$

 $= 100 \text{kW} \times \text{\pounds}5.00/\text{kW}$

= **£500**

To calculate monthly interest charges, the outturn HHEE charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHEE charge less the HH embedded generation monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 2)

The Supplier's outturn NHH energy consumption, based on initial settlement data, was 17,000,000kWh. The NHH energy consumption reconciliation charge is therefore calculated as follows:

Deleted: Please note that payments made to BM Units with a net export over the Triad, based on initial settlement data, will also be reconciled at this stage.¶ As monthly payments will not be made on the basis of a negative forecast, the HHD Reconciliation Charge for an exporting BM Unit will represent the full actual payment owed to that BM Unit (subject to adjustment by subsequent settlement runs). Interest will be calculated as described above.¶

NHHC Reconciliation Charge = $(NHHC_A - NHHC_F) \times p/kWh$ Tariff

100

= <u>(17,000,000kWh - 18,000,000kWh) x 1.20p/kWh</u>

100

= <u>-1,000,000kWh x 1.20p/kWh</u> 100 = **-£12,000**

worked example 4.xls - Initial!J104

The monthly reconciliation amount is equal to the outturn energy consumption charge for that month less the NHH monthly invoiced amount. Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

The net initial TNUoS demand reconciliation charge is therefore $\pounds 6,500$ (£18,000 + $\pounds 500$ - $\pounds 12,000$).

Final Reconciliation

Finally, let us now suppose that after all <u>final</u> Settlement data has been received (up to 14 months after the relevant dates), the outturn HH triad <u>gross</u> demand, <u>HH triad embedded export</u> and NHH energy consumption values were 9,500kW, <u>-550kW</u> and 16,500,000kWh, respectively.

Final HH <u>Gross Demand</u>	= (9,500kW - 9,000kW) x £10.00/kW
<u>Reconciliation Charge</u>	= £5,000
Final HH Embedded Export	= (-550kW500kW) x £5.00/kW
Reconciliation Charge	= -£250

Final NHH Reconciliation Charge = $(16,700,000kWh - 17,000,000kWh) \times 1.20p/kWh$ 100 = -£3,600

Consequently, the net final TNUoS demand reconciliation charge will be $\pounds 1, \underline{150} (\pounds 5,000 + -\pounds 250 + -\pounds 3,600)$.

Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

Outturn data for BM Units with a net export over the Triad will be received at this stage and final reconciliation will be carried out, as required. Interest will be calculated as described above.

Terminology:

 HHD_A = The Supplier's outturn half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

Page 54 of 64

Deleted: 000

I

 HHD_F = The Supplier's forecast half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

<u>HHEE_A = The Supplier's outturn half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

<u>HHEE_E = The Supplier's forecast half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

NHHC_A = The Supplier's outturn non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1^{st} to March 31^{st} , for the demand zone concerned.

NHHC_F = The Supplier's forecast non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1st to March 31st, for the demand zone concerned.

£/kW Tariff = The £/kW <u>Gross</u> Demand <u>or Embedded Export</u> Tariff as shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

p/kWh Tariff = The Energy Consumption Tariff shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

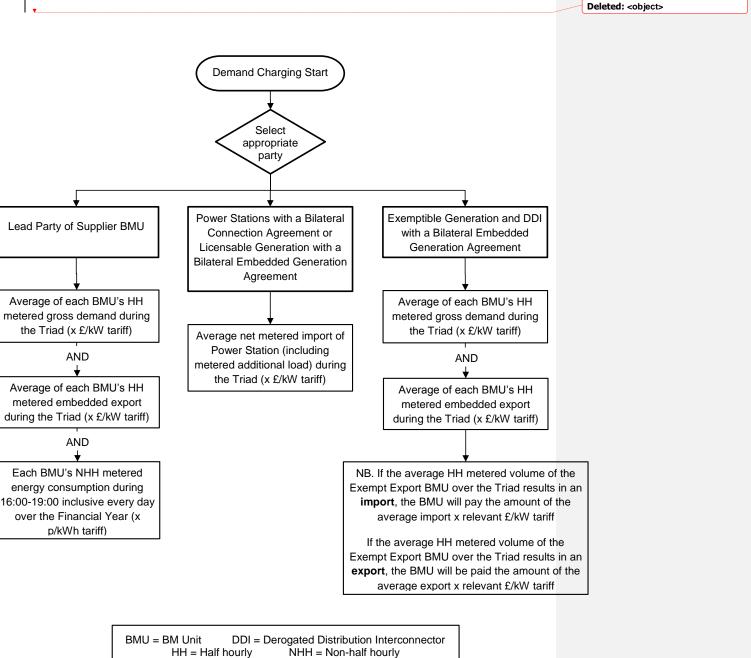
14.26 Classification of parties for charging purposes

In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precendence.

In the following diagrams, the parties liable for Transmission Network Use of System charges are outlined in red.

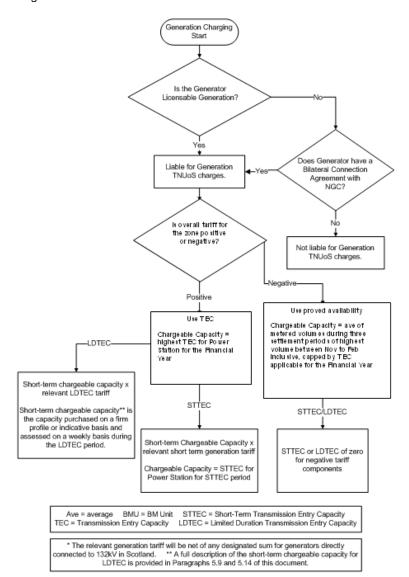
SUPPLIER		
Supplier Use of System Agreem	ent	
Supplier Supplier BMU1 BMUn		
Demand Charges	Generation Charges	
See 14.17, <mark>13</mark> and 14.17, <u>18</u> .	None.	Deleted: 9
		Deleted: 14
Bilateral Connection Agreement Gen Unit BMU1 Gen Unit BMUn	Appendix C Station Load BMU Load BMU	
Demand Charges	Generation Charges	
See 14.17, <mark>14</mark> .	See 14.18.1 i) and 14.18.3 to 14.18.9 and 14.18.18. For generators in positive zones, see 14.18.10 to	Deleted: 10
	14.18.12.For generators in negative zones, see 14.18.13 to14.18.17.	

Bilateral Embedded Generation Agreement Appendix C				
Gen Unit BMU1	Gen Unit BMUn	Station Load BMU	Additional Load BMU	
Demand ChargesGeneration ChargesSee 14.17,14, 14.17,15 and 14.17,18.See 14.18.1 ii).				
See 14.17, <u>14, 14.17,15</u> and 14.17, <u>18</u> .		For generator 14.18.12 and	s in positive zone 14.18.18.	es, see 14.18.3 to es, see 14.18.3 to


-{	Deleted: 10
-	Deleted: 11
Y	Deleted: 14

14.27 Transmission Network Use of System Charging Flowcharts

The following flowcharts illustrate the parties liable for Demand and Generation TNUoS charges and the calculation of those charges.


In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precedence.

Page 58 of 64

Generation Charges

14.28 Example: Determination of The Company's Forecast for Demand Charge Purposes

The Company will use the latest available settlement data for calculation of HH demand and NHH energy consumption forecasts for the Financial Year.

The Financial Year runs from 1st April to 31st March inclusive and for the purpose of these examples the year April 2005 to March 2006 is used.

Where the preceding year's settlement data is not available at the time that The Company needs to calculate its forecast, The Company will use settlement data from the corresponding period in Financial Year minus two unless indicated otherwise.

All values used with the examples are purely for illustrative purposes only.

i) Half-Hourly (HH) Metered Demand Forecast – Existing User

At the time of calculation of a HH demand forecast before the relevant Financial Year (approximately 10th March), The Company will be aware at a system level which dates will be used for the determination of Triad. However, The Company may not have settlement data at a User level if the Triad dates were to span a period that includes the latter half of February.

When undertaking forecasting before the relevant Financial Year, The Company will use the User's Triad demand for the previous year for its forecast providing it holds User settlement data for this period, thus:

F = T

where:

F = Forecast of User's HH demand at Triad for the Financial Year

T = User's HH gross_demand and embedded export_at Triad in Financial Year minus one

Where The Company determines its forecast within a Financial Year:

F = T * D/P

where:

- F = Forecast of User's HH demand at Triad for the Financial Year
- T = User's HH gross demand and embedded export at Triad in the preceding Financial Year
- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the preceding Financial Year

Where The Company determines its forecast before the relevant Financial Year and User settlement data for the Triad period is not available, The Company shall apply the formula immediately above (within year forecast) but substitute the following definitions for the values T, D, and P:

T = User's HH gross demand and embedded export at Triad in the Financial Year minus two

Page 60 of 64

- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year minus one, to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the Financial Year minus two

Example (where User settlement data is not yet available for the Triad period):

The Company calculates a HH demand forecast on the above methodology at 10th March 2005 for the period 1st April 2005 to 31st March 2006.

Gross demand:

F = 10,000 * 13,200 / 12,000

F = 11,000 kW,Deleted: hwhere:T = 10,000 kW, (period November 2003 to February 2004)Deleted: hD = 13,200 kW, (period 1st April 2004 to 15th February 2005#)Deleted: hP = 12,000 kW, (period 1st April 2003 to 15th February 2004)Deleted: h

Latest date for which settlement data is available.

Embedded export:

F = -280 * -300 / -350

<u>F = -240 kW</u>

where:

T = -280 kW (period November 2003 to February 2004)

D = -300 kW (period 1st April 2004 to 15th February 2005#)

P = -350 kW (period 1st April 2003 to 15th February 2004)

<u># Latest date for which settlement data is available.</u>

ii) Non Half-Hourly (NHH) Metered Energy Consumption Forecast – Existing User

F = E * D/P

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- E = User's summed NHH energy consumption over the hours 16:00 to 19:00 for each day in the preceding Financial Year

Page 61 of 64

- D = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the Financial Year to date
- P = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the period corresponding to D in the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th June 2005 for the period 1st April 2005 to 31st March 2006.

- F = 50,000,000 * 4,400,000 / 4,000,000
- F = 55,000,000 kWh

where:

- E = 50,000,000 kWh (period 1st April 2004 to 31st March 2005)
- D = 4,400,000 kWh (period 1st April 2005 to 15th May 2005#)
- P = 4,000,000 kWh (period 1st April 2004 to 15th May 2004)
- # Latest date for which settlement data is available

Where forecasting before the relevant Financial Year concerned, The Company would in the above example use values for E and P from Financial Year 2003/04 and D from Financial Year 2004/05.

iii) Half-Hourly (HH) Metered Demand Forecast – New User

F = M * T/W

where:

- F = Forecast of User's HH metered <u>gross</u> demand <u>and embedded export</u> at Triad for the Financial Year
 - M = User's HH average weekday period 35 demand for the last complete month for which settlement data is available
- T = Total system HH <u>gross</u> demand <u>and embedded export</u> at Triad in the preceding Financial Year
 - W = Total system HH average weekday settlement period 35 metered demand for the corresponding period to M for the preceding year

Example:

The Company calculates a HH demand forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2004 to 31st March 2006.

Gross demand:

F = 1,000 * 17,000,000 / 18,888,888

	0000 0	1.12		
I	F =	900 kW,	(Deleted: h
	where			
ļ	M =	1,000 kW _• (period 1 st July 2005 to 31 st July 2005)	(Deleted: h
ļ	T =	17,000,000 kW, (period November 2004 to February 2005)	(Deleted: h
I	W =	18,888,888 kW _v (period 1 st July 2004 to 31 st July 2004)	(Deleted: h
	Embeo	Ided export:		
	<u>F =</u>	<u>150 * 7,200,000 / 6,000,000</u>		
	<u>F = </u>	<u>180 kW</u>		
	where			

- M = 150 kW (period 1st July 2005 to 31st July 2005)
- T = 7,200,000 kW (period November 2004 to February 2005)
- <u>W = 6,000,000 kW (period 1^{st} July 2004 to 31^{st} July 2004)</u>

iv) Non Half Hourly (NHH) Metered Energy Consumption Forecast – <u>New User</u>

 $\mathsf{F} = \mathsf{J} + (\mathsf{M} * \mathsf{R}/\mathsf{W})$

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- J = Residual part month summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day where new User registration takes place other than on the first of a month
- M = User's summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the last complete month for which settlement data is available
- R = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period from the start of that defined under M but for the preceding year and until the end of that preceding Financial Year
- W = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period identified in M but for the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2005 to 31st March 2006.

- F = 500 + (1,000 * 20,000,000,000 / 2,000,000,000)
- F = 10,500 kWh

where:

- J = 500 kWh (period 10th June 2005 to 30th June 2005)
- M = 1,000 kWh (period 1st July 2005 to 31st July 2005)
- R = 20,000,000,000 kWh (period 1st July 2004 to 31st March 2005)
- W = 2,000,000,000 kWh (period 1st July 2004 to 31st July 2004)

CMP265 WACM14

14.15 Derivation of the Transmission Network Use of System Tariff

- 14.15.1 The Transmission Network Use of System (TNUoS) Tariff comprises two separate elements. Firstly, a locationally varying element derived from the DCLF ICRP transport model to reflect the costs of capital investment in, and the maintenance and operation of, a transmission system to provide bulk transport of power to and from different locations. Secondly, a non-locationally varying element related to the provision of residual revenue recovery. The combination of both these elements forms the TNUoS tariff.
- 14.15.2 For generation TNUoS tariffs the locational element itself is comprised of five separate components. Three wider components
 - o Wider Peak Security Component
 - Wider Year Round Not-shared component
 - Wider Year Round component

These components reflect the costs of the wider network under the different generation backgrounds set out in the Demand Security Criterion (for Peak Security component) and Economy Criterion (for both Year Round components) of the Security Standard. The two Year Round components reflect the unshared and shared costs of the wider network based on the diversity of generation plant types.

Two local components -

- o Local substation, and
- Local circuit

These components reflect the costs of the local network.

Accordingly, the wider tariff represents the combined effect of the three wider locational tariff components and the residual element; and the local tariff represents the combination of the two local locational tariff components.

14.15.3 The process for calculating the TNUoS tariff is described below.

The Transport Model

Model Inputs

14.15.4 The DCLF ICRP transport model calculates the marginal costs of investment in the transmission system which would be required as a consequence of an increase in demand or generation at each connection point or node on the transmission system, based on a study of peak demand conditions using both Peak Security and Year Round generation backgrounds on the transmission system. One measure of the investment costs is in terms of MWkm. This is the concept that ICRP uses to calculate marginal costs of investment. Hence, marginal costs are estimated initially in terms of increases or decreases in units of kilometres (km) of the transmission system for a 1 MW injection to the system.

- 14.15.5 The transport model requires a set of inputs representative of the Demand Security and Economy Criterion set out in the Security Standards. These conditions on the transmission system are represented in the Peak Security and Year Round background respectively as follows:
- Nodal generation information per node (TEC, plant type and SQSS scaling factors)
- Nodal <u>net</u> demand information
- Transmission circuits between these nodes
- The associated lengths of these routes, the proportion of which is overhead line or cable and the respective voltage level
- The cost ratio of each of 132kV overhead line, 132kV underground cable, 275kV overhead line, 275kV underground cable and 400kV underground cable to 400kV overhead line to give circuit expansion factors
- The cost ratio of each separate sub-sea AC circuit and HVDC circuit to 400kV overhead line to give circuit expansion factors
- 132kV overhead circuit capacity and single/double route construction information is used in the calculation of a generator's local charge.
- Offshore transmission cost and circuit/substation data
- 14.15.6 For a given charging year "t", the nodal generation TEC figure and generation plant types at each node will be based on the Applicable Value for year "t" in the NETS Seven Year Statement in year "t-1" plus updates to the October of year "t-1". The contracted TECs and generation plant types in the NETS Seven Year Statement include all plant belonging to generators who have a Bilateral Agreement with the TOs. For example, for 2010/11 charges, the nodal generation data is based on the forecast for 2010/11 in the 2009 NETS Seven Year Statement plus any data included in the quarterly updates in October 2009.
- 14.15.7 Scaling factors for different generation plant types are applied on their aggregated capacity for both Peak Security and Year Round backgrounds. The scaling is either Fixed or Variable (depending on the total demand level) in line with the factors used in the Security Standard, for example as shown in the table below.

Generation Plant Type	Peak Security Background	Year Round Background
Intermittent	Fixed (0%)	Fixed (70%)
Nuclear & CCS	Variable	Fixed (85%)
Interconnectors	Fixed (0%)	Fixed (100%)
Hydro	Variable	Variable
Pumped Storage	Variable	Fixed (50%)
Peaking	Variable	Fixed (0%)
Other (Conventional)	Variable	Variable

These scaling factors and generation plant types are set out in the Security Standard. These may be reviewed from time to time. The latest version will be used in the calculation of TNUoS tariffs and is published in the Statement of Use of System Charges

14.15.8 National Grid will categorise plant based on the categorisations described in the Security Standard. Peaking plant will include oil and OCGT technologies and Other (Conv.) represents all remaining conventional plant not explicitly stated elsewhere in the table In the event that a power station is made up of more than one technology type, the type of the higher Transmission Entry Capacity (TEC) would apply.

I

- 14.15.9 Nodal <u>net</u> demand data for the transport model will be based upon the GSP <u>net</u> demand that Users have forecast to occur at the time of National Grid Peak Average Cold Spell (ACS) Demand for year "t" in the April Seven Year Statement for year "t-1" plus updates to the October of year "t-1".
- 14.15.10 Subject to paragraphs 14.15.15 to 14.15.22, Transmission circuits for charging year "t" will be defined as those with existing wayleaves for the year "t" with the associated lengths based on the circuit lengths indicated for year "t" in the April NETS Seven Year Statement for year "t-1" plus updates to October of year "t-1". If certain circuit information is not explicitly contained in the NETS Seven Year Statement, The Company will use the best information available.
- 14.15.11 The circuit lengths included in the transport model are solely those, which relate to assets defined as 'Use of System' assets.
- 14.15.12 For HVDC circuits, the impedance will be calculated to provide flows based on a ratio of the capacity provided by the HVDC link relative to the capacities on all major transmission system boundaries that it parallels.
- 14.15.13 The transport model employs the use of circuit expansion factors to reflect the difference in cost between (i) AC Circuits and HVDC circuits. (ii) underground and sub-sea circuits, (iii) cabled circuits and overhead line circuits, (iv) 132kV and 275kV circuits, (v) 275kV circuits and 400kV circuits, and (vi) uses 400kV overhead line (i.e. the 400kV overhead line expansion factor is 1). As the transport model expresses cost as marginal km (irrespective of cables or overhead lines), some account needs to be made of the fact that investment in these other types of circuit (specifically HVDC and sub-sea cables of various voltages, 400kV underground cable, 275kV overhead line, 275kV underground cable, 132kV overhead line and 132kV underground cable) is more expensive than for 400kV overhead line. This is done by effectively 'expanding' these more expensive circuits by the relevant circuit expansion factor, thereby producing a larger marginal kilometre to reflect the additional cost of investing in these circuits compared to 400kV overhead line. When calculating the local circuit tariff for a generator, alternative 132kV and offshore expansion factors to those used in the remainder of the tariff calculation are applied to the generator's local circuits.
- 14.15.14 The circuit expansion factors for HVDC circuits and AC subsea cables are determined on a case by case basis using the costs which are specific to individual projects containing HVDC or AC subsea circuits.

Adjustments to Model Inputs associated with One-off Works

- 14.15.15 Where, following the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge that related to One-off Works carried out on an onshore circuit, and such One-off Works would affect the value of a TNUoS tariff paid by the User, the transport model inputs associated with the onshore circuit shall be adjusted by The Company to reflect the asset value that would have been modelled if the works had been undertaken on the basis of the original asset design rather than the One-off Works.
- 14.15.16 Subject to paragraphs 14.15.17 to 14.15.19, where, prior to the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge (or has paid a charge to the relevant TO prior to 1st April 2005 on the same principles as a

Page 3 of 64

One-Off Charge) that related to works equivalent to those described under paragraph 14.15.15, an adjustment equivalent to that under paragraph 14.15.15 shall be made to the transport model inputs as follows.

- 14.15.17 Such adjustment shall be made following a User's request, which must be received by The Company no later than the second occurrence of 31st December following the implementation of CUSC Modification CMP203.
- 14.15.18 The Company shall only make an adjustment to the transport model inputs, under paragraph 14.15.16 where the charge was paid to the relevant TO prior to 1st April 2005 where evidence has been provided by the User that satisfies The Company that works equivalent to those under paragraph 14.15.15 were funded by the User.
- 14.15.19 Where a User has sufficient reason to believe that adjustments under paragraph 14.15.18 should be made in relation to specific assets that affect a TNUoS tariff that applies to one of its sites and outlines its reasoning to The Company, The Company shall (upon the User's request and subject to the User's payment of reasonable costs incurred by The Company in doing so) use its reasonable endeavours to assist the User in obtaining any evidence The Company or a TO may have to support its position.
- 14.15.20 Where a request is made under paragraph 14.15.16 on or prior to 31st December in a charging year, and The Company is satisfied based on the accompanying evidence provided to The Company under paragraph 14.15.17 that it is a valid request, the transport model inputs shall be adjusted accordingly and taken into account in the calculation of TNUoS tariffs effective from the year commencing on the 1st April following this and otherwise from the next subsequent 1st April.
- 14.15.21 The following table provides examples of works for which adjustments to transport model inputs would typically apply:

Ref	Description of works	Adjustments
1	Undergrounding - A User requests to underground an overhead line at a greater cost.	As the cable cost will be more expensive than the overhead line (OHL) equivalent, the circuit will be modelled as an OHL.
2	Substation Siting Decision - A User requests to move the existing or a planned substation location to a place that means that the works cannot be justified as economic by the TO.	As the revised substation location may result in circuits being extended. If this is the case, the originally designed circuit lengths (as per the originally designed substation location) would be used in the transport model.
3	Circuit Routing Decision - A User asks to move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	As any circuit route changes that extend circuits are likely to result in a greater TNUoS tariff, the originally designed circuit lengths would be used in the transport model.

Ref	Description of works	Adjustments
4	Building circuits at lower voltages - A User requests lower tower height and therefore a different voltage.	As lower voltage circuits result in a higher expansion factor being used, the circuits would be modelled at the originally designed higher voltage.

14.15.22 The following table provides examples of works for which adjustments to transport model typically would not apply:

Ref	Description of works	Reasoning
1	Undergrounding - A User chooses to have a cable installed via a tunnel rather than buried.	Cable expansion factors are applied in the transport model regardless of whether a cable is tunnelled and buried, so there is no increased TNUoS cost.
2	Additional circuit route works - A User asks for screening to be provided around a new or existing circuit route.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
3	Additional circuit route works - A User requests that a planned overhead line route is built using alternative transmission tower designs.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
4	Additional substation works - A User asks for screening to be provided around a new or existing substation.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
5	Additional substation works - Changes to connection assets (e.g. HV-LV transformers and associated switchgear), metering, additional LV supplies, additional protection equipment, additional building works, etc.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
6	Diversion - A User asks to temporarily move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	The temporary circuit changes will not be incorporated into the transport model.

7	Connection Entry Capacity (CEC) before Transmission Entry Capacity (TEC). A User asks for a connection in a year prior to the relating TEC; i.e. physical connection without capacity.	No additional works are being undertaken, works are simply being completed well in advance of the generator commissioning. The One-Off Charge reflects the depreciated value of the assets prior to commissioning (and any TNUOS being charged).
8	Early asset replacement - An asset is replaced prior to the end of its expected life.	As the asset is simply replaced, no data in the transport model is expected to change.
9	Additional Engineering/ Mobilisation costs - A User requests changes to the planned works, that results in additional operational costs.	The data in the transport model is unaffected.
10	Offshore (Generator Build) - Any of the works described above or under paragraph 14.15.18.	The value of the works will not form part of the asset transfer value therefore will not be used as part of the offshore tariff calculation.
11	Offshore (Offshore Transmission Owner (OFTO) Build) - Any of the works described above or under paragraph 14.15.18.	As part of determining the TNUoS revenue associated with each asset, the value of the One-Off Works would be excluded when pro-rating the OFTO's allowed revenue against assets by asset value.

14.15.23 The Company shall publish any adjusted transport model inputs that it intends to use in the calculation of TNUoS tariffs effective from the year commencing on the following 1st April in the NETS Seven Year Statement October Update. Any further adjustments that The Company makes shall be published by The Company upon the publication of the final TNUoS tariffs for the year concerned.

Model Outputs

- 14.15.24 The transport model takes the inputs described above and carries out the following steps individually for Peak Security and Year Round backgrounds.
- 14.15.25 Depending on the background, the TEC of the relevant generation plant types are scaled by a percentage as described in 14.15.7, above. The TEC of the remaining generation plant types in each background are uniformly scaled such that total national generation (scaled sum of contracted TECs) equals total national ACS Demand.
- 14.15.26 For each background, the model then uses a DCLF ICRP transport algorithm to derive the resultant pattern of flows based on the network impedance required to meet the nodal <u>net</u> demand using the scaled nodal generation, assuming every circuit has infinite capacity. Flows on individual transmission circuits are compared for both backgrounds and the background giving rise to

Page 6 of 64

the highest flow is considered as the triggering criterion for future investment of that circuit for the purposes of the charging methodology. Therefore all circuits will be tagged as Peak Security or Year Round depending upon the background resulting in the highest flow. In the event that both backgrounds result in the same flow, the circuit will be tagged as Peak Security. Then it calculates the resultant total network Peak Security MWkm and Year Round MWkm, using the relevant circuit expansion factors as appropriate.

- 14.15.27 Using these baseline networks for Peak Security and Year Round backgrounds, the model then calculates for a given injection of 1MW of generation at each node, with a corresponding 1MW offtake (<u>net_demand</u>) distributed across all demand nodes in the network, the increase or decrease in total MWkm of the whole Peak Security and Year Round networks. The proportion of the 1MW offtake allocated to any given demand node will be based on total background nodal <u>net</u> demand in the model. For example, with a total GB <u>net_demand</u> of 60GW in the model, a node with a <u>net_demand</u> of 600MW would contain 1% of the offtake i.e. 0.01MW.
- 14.15.28 Given the assumption of a 1MW injection, for simplicity the marginal costs are expressed solely in km. This gives a Peak Security marginal km cost and a Year Round marginal km cost for generation at each node (although not that used to calculate generation tariffs which considers local and wider cost components). The Peak Security and Year Round marginal km costs for demand at each node are equal and opposite to the Peak Security and Year Round nodal marginal km respectively for generation and this is used to calculate demand tariffs. Note the marginal km costs can be positive or negative depending on the impact the injection of 1MW of generation has on the total circuit km.
- 14.15.29 Using a similar methodology as described above in 14.15.27, the local and wider marginal km costs used to determine generation TNUoS tariffs are calculated by injecting 1MW of generation against the node(s) the generator is modelled at and increasing by 1MW the offtake across the distributed reference node. It should be noted that although the wider marginal km costs are calculated for both Peak Security and Year Round backgrounds, the local marginal km costs are calculated on the Year Round background.
- 14.15.30 In addition, any circuits in the model, identified as local assets to a node will have the local circuit expansion factors which are applied in calculating that particular node's marginal km. Any remaining circuits will have the TO specific wider circuit expansion factors applied.
- 14.15.31 An example is contained in 14.21 Transport Model Example.

Calculation of local nodal marginal km

14.15.32 In order to ensure assets local to generation are charged in a cost reflective manner, a generation local circuit tariff is calculated. The nodal specific charge provides a financial signal reflecting the security and construction of the infrastructure circuits that connect the node to the transmission system.

14.15.33 Main Interconnected Transmission System (MITS) nodes are defined as:

- Grid Supply Point connections with 2 or more transmission circuits connecting at the site; or
- connections with more than 4 transmission circuits connecting at the site.

Page 7 of 64

- 14.15.34 Where a Grid Supply Point is defined as a point of supply from the National Electricity Transmission System to network operators or non-embedded customers excluding generator or interconnector load alone. For the avoidance of doubt, generator or interconnector load would be subject to the circuit component of its Local Charge. A transmission circuit is part of the National Electricity Transmission System between two or more circuit-breakers which includes transformers, cables and overhead lines but excludes busbars and generation circuits.
- 14.15.35 Generators directly connected to a MITS node will have a zero local circuit tariff.
- 14.15.36 Generators not connected to a MITS node will have a local circuit tariff derived from the local nodal marginal km for the generation node i.e. the increase or decrease in marginal km along the transmission circuits connecting it to all adjacent MITS nodes (local assets).

Calculation of zonal marginal km

- 14.15.37 Given the requirement for relatively stable cost messages through the ICRP methodology and administrative simplicity, nodes are assigned to zones. Typically, generation zones will be reviewed at the beginning of each price control period with another review only undertaken in exceptional circumstances. Any rezoning required during a price control period will be undertaken with the intention of minimal disruption to the established zonal boundaries. The full criteria for determining generation zones are outlined in paragraph 14.15.42. The number of generation zones set for 2010/11 is 20.
- 14.15.38 Demand zone boundaries have been fixed and relate to the GSP Groups used for energy market settlement purposes.
- 14.15.39 The nodal marginal km are amalgamated into zones by weighting them by their relevant generation or demand capacity.
- 14.15.40 Generators will have zonal tariffs derived from both, the wider Peak Security nodal marginal km; and the wider Year Round nodal marginal km for the generation node calculated as the increase or decrease in marginal km along all transmission circuits except those classified as local assets.

The zonal Peak Security marginal km for generation is calculated as:

$$WNMkm_{j_{PS}} = \frac{NMkm_{j_{PS}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiPS} = \sum_{j \in Gi} WNMkm_{jPS}$$

Where

Gi	=	Generation zone
j	=	Node
NMkm _{PS}	=	Peak Security Wider nodal marginal km from transport model
WNMkm _{PS}	=	Peak Security Weighted nodal marginal km
ZMkm _{PS}	=	Peak Security Zonal Marginal km

Gen = Nodal Generation (scaled by the appropriate Peak Security Scaling factor) from the transport model Similarly, the zonal Year Round marginal km for generation is calculated as

$$WNMkm_{j_{YR}} = \frac{NMkm_{j_{YR}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiYR} = \sum_{j \in Gi} WNMkm_{jYR}$$

Where

NMkm _{YR}	=	Year Round Wider nodal marginal km from transport model
WNMkm _{YR}	=	Year Round Weighted nodal marginal km
ZMkm _{YR}	=	Year Round Zonal Marginal km
Gen	=	Nodal Generation (scaled by the appropriate Year Round Scaling
		factor) from the transport model

14.15.41 The zonal Peak Security marginal km for demand zones are calculated as follows:

$$WNMkm_{j_{PS}} = \frac{-1 * NMkm_{j_{PS}} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{Di_{PS}} = \sum_{j \in Di} WNMkm_{j_{PS}}$$

Where:

I

Di	=	Demand zone
Dem	=	Nodal <u>Net</u> Demand from transport model

Similarly, the zonal Year Round marginal km for demand zones are calculated as follows:

$$WNMkm_{jYR} = \frac{-1 * NMkm_{jYR} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{DiYR} = \sum_{j \in Di} WNMkm_{jYR}$$

- 14.15.42 A number of criteria are used to determine the definition of the generation zones. Whilst it is the intention of The Company that zones are fixed for the duration of a price control period, it may become necessary in exceptional circumstances to review the boundaries having been set. In both circumstances, the following criteria are used to determine the zonal boundaries:
- i.) Zoning is determined using the generation background with the most MWkm of circuits. Zones should contain relevant nodes whose total wider marginal costs

from the relevant generation background (as determined from the output from the transport model, the relevant expansion constant and the locational security factor, see below) are all within +/-£1.00/kW (nominal prices) across the zone. This means a maximum spread of £2.00/kW in nominal prices across the zone.

- ii.) The nodes within zones should be geographically and electrically proximate.
- iii.) Relevant nodes are considered to be those with generation connected to them as these are the only ones, which contribute to the calculation of the zonal generation tariff.
- 14.15.43 The process behind the criteria in 14.15.42 is driven by initially applying the nodal marginal costs from the relevant generation background within the DCLF Transport model onto the appropriate areas of a substation line diagram. Generation nodes are grouped into initial zones using the +/- £1.00/kW range. All nodes within each zone are then checked to ensure the geographically and electrically proximate criteria have been met using the substation line diagram. The established zones are inspected to ensure the least number of zones are used with minimal change from previously established zonal boundaries. The zonal boundaries are finally confirmed using the demand nodal costs from the relevant generation background for guidance.
- 14.15.44 The zoning criteria are applied to a reasonable range of DCLF ICRP transport model scenarios, the inputs to which are determined by The Company to create appropriate TNUoS generation zones. The minimum number of zones, which meet the stated criteria, are used. If there is more than one feasible zonal definition of a certain number of zones, The Company determines and uses the one that best reflects the physical system boundaries.
- 14.15.45 Zones will typically not be reviewed more frequently than once every price control period to provide some stability. However, in exceptional circumstances, it may be necessary to review zoning more frequently to maintain appropriate, cost reflective, locational cost signals. For example, if a new generator connecting to the transmission system would cause the creation of a new generation zone for that generator alone, it may not be appropriate from a cost reflective perspective to wait until the next price control period to undertake this rezoning. If any such rezoning is required, it will be undertaken against a background of minimal change to existing generation zones and in line with the notification process set out in the Transmission Licence and CUSC.

Accounting for Sharing of Transmission by Generators

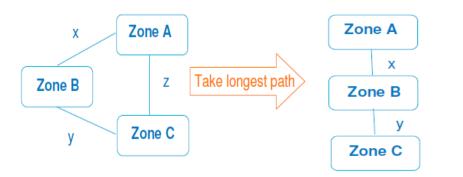
- 14.15.46 A proportion of the marginal km costs for generation are shared incremental km reflecting the ability of differing generation technologies to share transmission investment. This is reflected in charges through the splitting of Year Round marginal km costs for generation into Year Round Shared marginal km costs and Year Round Not-Shared marginal km which are then used in the calculation of the wider £/kW generation tariff.
- 14.15.47 The sharing between different generation types is accounted for by (a) using transmission network boundaries between generation zones set by connectivity between generation charging zones, and (b) the proportion of Low Carbon and Carbon generation behind these boundaries.

Page 10 of 64

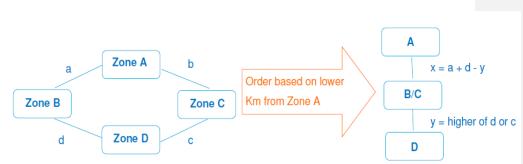
14.15.48 The zonal incremental km for each generation charging zone is split into each boundary component by considering the difference between it and the neighbouring generation charging zone using the formula below;

$$BIkm_{ab} = ZIkm_b - ZIkm_a$$

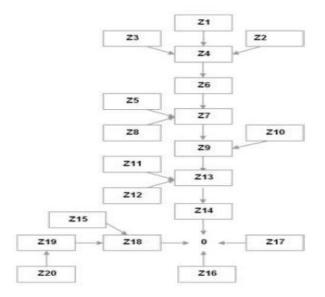
Where;


Blkm_{ab} = boundary incremental km between generation charging zone A and generation charging zone B Zlkm = generation charging zone incremental km.

14.15.49 The table below shows the categorisation of Low Carbon and Carbon generation. This table will be updated by National Grid in the Statement of Use of System Charges as new generation technologies are developed.


Carbon	Low Carbon
Coal	Wind
Gas	Hydro (excl. Pumped Storage)
Biomass	Nuclear
Oil	Marine
Pumped Storage	Tidal
Interconnectors	

Determination of Connectivity


- 14.15.50 Connectivity is based on the existence of electrical circuits between TNUoS generation charging zones that are represented in the Transport model. Where such paths exist, generation charging zones will be effectively linked via an incremental km transmission boundary length. These paths will be simplified through in the case of;
 - Parallel paths the longest path will be taken. An illustrative example is shown below with x, y and z representing the incremental km between zones.

 Parallel zones – parallel zones will be amalgamated with the incremental km immediately beyond the amalgamated zones being the greater of those existing prior to the amalgamation. An illustrative example is shown below with a, b, c, and d representing the the initial incremental km between zones, and x and y representing the final incremental km following zonal amalgamation.

14.15.51 An illustrative Connectivity diagram is shown below:

The arrows connecting generation charging zones and amalgamated generation charging zones represent the incremental km transmission boundary lengths towards the notional centre of the system. Generation located in charging zones behind arrows is considered to share based on the ratio of Low Carbon to Carbon cumulative generation TEC within those zones.

14.15.52 The Company will review Connectivity at the beginning of a new price control period, and under exceptional circumstances such as major system reconfigurations or generation rezoning. If any such reassessment is required, it will be undertaken against a background of minimal change to existing Connectivity and in line with the notification process set out in the Transmission Licence and the CUSC.

Calculation of Boundary Sharing Factors

14.15.53 Boundary sharing factors (BSFs) are derived from the comparison of the cumulative proportion of Low Carbon and Carbon generation TEC behind each of the incremental MWkm boundary lengths using the following formulae –

Page 12 of 64

If $\frac{LC}{LC+C} \le 0.5$, then all Year round marginal km costs are shared i.e. the BSF is 100%.

Where:

LC = Cumulative Low Carbon generation TEC behind the relevant transmission boundary C = Cumulative Carbon generation TEC behind the relevant transmission

C = Cumulative Carbon generation TEC behind the relevant transmission boundary

If
$$\frac{LC}{LC+C}$$
 > 0.5 then the BSF is calculated using the following formula: -

$$BSF = \left(-2 \times \left(\frac{LC}{LC+C}\right)\right) + 2$$

Where:

BSF = boundary sharing factor.

14.15.54 The shared incremental km for each boundary are derived from the multiplication of the boundary sharing factor by the incremental km for that boundary;

$$SBIkm_{ab} = BIIkm_{ab} \ x \ BSF_{ab}$$

Where;

 $SBIkm_{ab}$ = shared boundary incremental km between generation charging zone A and generation charging zone B

 BSF_{ab} = generation charging zone boundary sharing factor.

14.15.55 The shared incremental km is discounted from the incremental km for that boundary to establish the not-shared boundary incremental km. The not-shared boundary incremental km reflects the cost of transmission investment on that boundary accounting for the sharing of power stations behind that boundary.

$$NSBIkm_{ab} = BIkm_{ab} - SBIkm_{ab}$$

Where;

 $NSBIkm_{ab}$ = not shared boundary incremental km between generation charging zone A and generation charging zone B.

14.15.56 The shared incremental km for a generation charging zone is the sum of the appropriate shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRS}$$

Where;

 $ZMkm_{nYRS}$ = Year Round Shared Zonal Marginal km for generation charging zone n.

Page 13 of 64

14.15.57 The not-shared incremental km for a generation charging zone is the sum of the appropriate not-shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRNS}$$

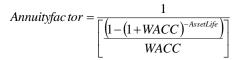
Where;

ZMkm_{nYRNS} = Year Round Not-Shared Zonal Marginal km for generation zone n.

Deriving the Final Local £/kW Tariff and the Wider £/kW Tariff

14.15.58 The zonal marginal km (ZMkm_{Gi}) are converted into costs and hence a tariff by multiplying by the Expansion Constant and the Locational Security Factor (see below). The nodal local marginal km (NLMkm^L) are converted into costs and hence a tariff by multiplying by the Expansion Constant and a Local Security Factor.

The Expansion Constant


- 14.15.59 The expansion constant, expressed in £/MWkm, represents the annuitised value of the transmission infrastructure capital investment required to transport 1 MW over 1 km. Its magnitude is derived from the projected cost of 400kV overhead line, including an estimate of the cost of capital, to provide for future system expansion.
- 14.15.60 In the methodology, the expansion constant is used to convert the marginal km figure derived from the transport model into a £/MW signal. The tariff model performs this calculation, in accordance with 14.15.95 14.15.117, and also then calculates the residual element of the overall tariff (to ensure correct revenue recovery in accordance with the price control), in accordance with 14.15.133.
- 14.15.61 The transmission infrastructure capital costs used in the calculation of the expansion constant are provided via an externally audited process. They also include information provided from all onshore Transmission Owners (TOs). They are based on historic costs and tender valuations adjusted by a number of indices (e.g. global price of steel, labour, inflation, etc.). The objective of these adjustments is to make the costs reflect current prices, making the tariffs as forward looking as possible. This cost data represents The Company's best view; however it is considered as commercially sensitive and is therefore treated as confidential. The calculation of the expansion constant also relies on a significant amount of transmission asset information, much of which is provided in the Seven Year Statement.
- 14.15.62 For each circuit type and voltage used onshore, an individual calculation is carried out to establish a £/MWkm figure, normalised against the 400KV overhead line (OHL) figure, these provide the basis of the onshore circuit expansion factors discussed in 14.15.70 14.15.77. In order to simplify the calculation a unity power factor is assumed, converting £/MVAkm to £/MWkm. This reflects that the fact tariffs and charges are based on real power.
- 14.15.63 The table below shows the first stage in calculating the onshore expansion constant. A range of overhead line types is used and the types are weighted by recent usage on the transmission system. This is a simplified calculation for 400kV OHL using example data:

Page 14 of 64

400kV	400kV OHL expansion constant calculation				
MW	Туре	£(000)/k	Circuit km*	£/MWkm	Weight
А	В	С	D	E = C/A	F=E*D
6500	La	700	500	107.69	53846
6500	Lb	780	0	120.00	0
3500	La/b	600	200	171.43	34286
3600	Lc	400	300	111.11	33333
4000	Lc/a	450	1100	112.50	123750
5000	Ld	500	300	100.00	30000
5400	Ld/a	550	100	101.85	10185
Sum			2500 (G)		285400 (H)
				Weighted Average (J= H/G):	114.160 (J)

*These are circuit km of types that have been provided in the previous 10 years. If no information is available for a particular category the best forecast will be used.

14.15.64 The weighted average £/MWkm (J in the example above) is then converted in to an annual figure by multiplying it by an annuity factor. The formula used to calculate of the annuity factor is shown below:

- 14.15.65 The Weighted Average Cost of Capital (WACC) and asset life are established at the start of a price control and remain constant throughout a price control period. The WACC used in the calculation of the annuity factor is the The Company regulated rate of return, this assumes that it will be reasonably representative of all licensees. The asset life used in the calculation is 50 years; the appropriateness of this is reviewed when the annuity factor is recalculated at the start of a price control period. These assumptions provide a current annuity factor of 0.066.
- 14.15.66 The final step in calculating the expansion constant is to add a share of the annual transmission overheads (maintenance, rates etc). This is done by multiplying the average weighted cost (J) by an 'overhead factor'. The 'overhead factor' represents the total business overhead in any year divided by the total Gross Asset Value (GAV) of the transmission system. This is recalculated at the start of each price control period. The overhead factor used in the calculation of the expansion constant for 2009/10 is 1.8%. The overhead and annuitised costs are then added to give the expansion constant.
- 14.15.67 Using the previous example, the final steps in establishing the expansion constant are demonstrated below:

400kV OHL expansion constant calculation	Ave £/MWkm
OHL	114.160

Page 15 of 64

Final	9.589
Overhead	2.055
Annuitised	7.535

- 14.15.68 This process is carried out for each voltage onshore, along with other adjustments to take account of upgrade options, see 14.15.73, and normalised against the 400KV overhead line cost (the expansion constant) the resulting ratios provide the basis of the onshore expansion factors. The process used to derive circuit expansion factors for Offshore Transmission Owner networks is described in 14.15.78.
- 14.15.69 This process of calculating the incremental cost of capacity for a 400kV OHL, along with calculating the onshore expansion factors is carried out for the first year of the price control and is increased by inflation, RPI, (May–October average increase, as defined in The Company's Transmission Licence) each subsequent year of the price control period. The expansion constant for 2010/11 is 10.633.

Onshore Wider Circuit Expansion Factors

- 14.15.70 Base onshore expansion factors are calculated by deriving individual expansion constants for the various types of circuit, following the same principles used to calculate the 400kV overhead line expansion constant. The factors are then derived by dividing the calculated expansion constant by the 400kV overhead line expansion constant. The factors will be fixed for each respective price control period.
- 14.15.71 In calculating the onshore underground cable factors, the forecast costs are weighted equally between urban and rural installation, and direct burial has been assumed. The operating costs for cable are aligned with those for overhead line. An allowance for overhead costs has also been included in the calculations.
- 14.15.72 The 132kV onshore circuit expansion factor is applied on a TO basis. This is to reflect the regional variation of plans to rebuild circuits at a lower voltage capacity to 400kV. The 132kV cable and line factor is calculated on the proportion of 132kV circuits likely to be uprated to 400kV. The 132kV expansion factor is then calculated by weighting the 132kV cable and overhead line costs with the relevant 400kV expansion factor, based on the proportion of 132kV circuitry to be uprated to 400kV. For example, in the TO areas of National Grid and Scottish Power where there are no plans to uprate any 132kV circuits, the full cable and overhead line costs of 132kV circuit are reflected in the 132kV expansion factor calculation.
- 14.15.73 The 275kV onshore circuit expansion factor is applied on a GB basis and includes a weighting of 83% of the relevant 400kV cable and overhead line factor. This is to reflect the averaged proportion of circuits across all three Transmission Licensees which are likely to be uprated from 275kV to 400kV across GB within a price control period.
- 14.15.74 The 400kV onshore circuit expansion factor is applied on a GB basis and reflects the full costs for 400kV cable and overhead lines.
- 14.15.75 AC sub-sea cable and HVDC circuit expansion factors are calculated on a case by case basis using actual project costs (Specific Circuit Expansion Factors).

Page 16 of 64

- 14.15.76 For HVDC circuit expansion factors both the cost of the converters and the cost of the cable are included in the calculation.
- 14.15.77 The TO specific onshore circuit expansion factors calculated for 2008/9 (and rounded to 2 decimal places) are:

Scottish Hydro Region

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	27.79
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.24	

Scottish Power & National Grid Regions

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	30.22
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.80	

Onshore Local Circuit Expansion Factors

- 14.15.78 The local onshore circuit tariff is calculated using local onshore circuit expansion factors. These expansion factors are calculated using the same methodology as the onshore wider expansion factor but without taking into account the proportion of circuit kms that are planned to be uprated.
- 14.15.79 In addition, the 132kV onshore overhead line circuit expansion factor is sub divided into four more specific expansion factors. This is based upon maximum (winter) circuit continuous rating (MVA) and route construction whether double or single circuit.

400kV underground cable factor:	22.39
275kV underground cable factor:	22.39
132kV underground cable factor:	30.22
400kV line factor:	1.00
275kV line factor:	1.14
132kV line factor (single; <200MVA):	10.00
132kV line factor (double; <200MVA):	8.32
132kV line factor (single; >=200MVA):	7.13
132kV line factor (double; >=200MVA):	4.42

Offshore Circuit Expansion Factors

14.15.80 Offshore expansion factors (£/MWkm) are derived from information provided by Offshore Transmission Owners for each offshore circuit. Offshore expansion factors are Offshore Transmission Owner and circuit specific. Each Offshore Transmission Owner will periodically provide, via the STC, information to derive an annual circuit revenue requirement. The offshore circuit revenue shall include revenues associated with the Offshore Transmission Owner's reactive compensation equipment, harmonic filtering equipment, asset spares and HVDC converter stations.

14.15.81 In the first year of connection, the offshore circuit expansion factor would be calculated as follows:

$\frac{CRevOFTO1}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$

Where:

CRevOFTO1	=	The offshore circuit revenue in £ for Year 1
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

14.15.82 In all subsequent years, the offshore circuit expansion factor would be calculated as follows:

Where:

AvCRevOFTO	=	The annual offshore circuit revenue averaged over the
		remaining years of the onshore National Electricity
		Transmission System Operator (NETSO) price control
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

- 14.15.83 For the avoidance of doubt, the offshore circuit revenue values, *CRevOFTO1* and *AvCRevOFTO* shall be determined using asset values after the removal of any One-Off Charges.
- 14.15.84 Prevailing OFFSHORE TRANSMISSION OWNER specific expansion factors will be published in this statement. These shall be recalculated at the start of each price control period using the formula in paragraph 14.15.71. For each subsequent year within the price control period, these expansion factors will be adjusted by the annual Offshore Transmission Owner specific indexation factor, *OFTOInd*, calculated as follows;

$$OFTOInd_{t,f} = \frac{OFTO \operatorname{Rev}Ind_{t,f}}{RPI_{t}}$$

where:

OFTOInd _{t,f}	=	the indexation factor for Offshore Transmission Owner <i>f</i> in respect of charging year <i>t</i> ;
OFTORevInd _{tf}	=	the indexation rate applied to the revenue of Offshore Transmission Owner f under the terms of its Transmission Licence in respect of charging year t ; and
<i>RPI</i> _t	=	the indexation rate applied to the expansion constant in respect of charging year <i>t</i> .

Offshore Interlinks

14.15.85 The revenue associated with an Offshore Interlink shall be divided entirely between those generators benefiting from the installation of that Offshore Interlink. Each of these Users will be responsible for their charge from their charging date, meaning that a proportion of the Offshore Interlink revenue may be socialised prior to all relevant Users being chargeable. The proportion associated with each User will be based on the Measure of Capacity to the MITS using the Offshore Interlink(s) in the event of a single circuit fault on the User's circuit from their offshore substation towards the shore, compared to the Measure of Capacity of the other Users.

Where:

An *Offshore Interlink* is a circuit which connects two offshore substations that are connected to a Single Common Substation. It is held in open standby until there is a transmission fault that limits the User's ability to export power to the Single Common Substation. In the Transport Model, they are to be modelled in open standby.

A Single Common Substation is a substation where:

- i. each substation that is connected by an Offshore Interlink is connected via at least one circuit without passing through another substation; and
- ii. all routes connecting each substation that is connected by an Offshore Interlink to the MITS pass through.

The Measure of Capacity to the MITS for each Offshore substation is the result of the following formula or zero whichever is larger. For the situation with only one interlink, all terms relating to C should be set to zero:

```
For Substation A:
min { Cap_{IAB}, ILF_A \times TEC_A - RCap_A, Cap_B - ILF_B \times TEC_B + min (Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation B:

min { ILF_B \times TEC_B - RCap_B, min (Cap_{IAB}, Cap_A - ILF_A \times TEC_A)

+ min ( Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation C:

min { Cap_{IBC}, ILF_{C} \times TEC_{C} - RCap_{C}, Cap_{B} - ILF_{B} \times TEC_{B} + min (Cap_{IAB}, Cap_{A} - ILF_{A} \times TEC_{A}) }

and
```

Cap _{IAB} = B	total capacity of the Offshore Interlink between substations A and
Cap _{IBC} = C	total capacity of the Offshore Interlink between substations B and
Cap _X =	total capacity of the circuit between offshore substation X and the Single Common Substation, where X is A, B or C.
RCap _x =	remaining capacity of the circuit between offshore substation X and the Single Common Substation in the event of a single cable fault, where X is A, B or C.
TEC _x =	the sum of the TEC for the Users connected, or contracted to connect, to offshore substation X, where X is A, B or C, where the value of TEC will be the maximum TEC that each User has held since the initial charging date, or is contracted to hold if prior to the initial charging date.

- ILF_x = Offshore Interlink Load Factor, where X is A, B or C. The Offshore Interlink Load Factor (ILF) is based on the Annual Load Factor (ALF). Until all the Users connected to a Single Common Substation have a station specific Annual Load Factor based on five years of data, the generic ALF for the fuel type will be used as the ILF for all stations. When all Users have a station specific ALF, the value of the ALF in the first such year will be used as the ILF in the calculation for all subsequent charging years.
- 14.15.86 The apportionment of revenue associated with Offshore Interlink(s) in 14.15.85 applies in situations where the Offshore Interlink was included in the design phase, or if one or more User(s) has already financially committed or been commissioned then only where that User(s) agrees to the Offshore Interlink.
- 14.15.87 Alternatively to the formula specified in 14.15.85 the proportion of the OFTO revenue associated with the Offshore Interlink allocated to each generator benefiting from the installation of an Offshore Interlink may be agreed between these Users. In this event:
- a. All relevant Users shall notify The Company of its respective proportions three months prior the OTSDUW asset transfer in the case of a generator build, or the charging date of the first generator, in the case of an OFTO build.
- b. All relevant Users may agree to vary the proportions notified under (a) by each writing to The Company three months prior to the charges being set for a given charging year.
- c. Once a set of proportions of the OFTO revenue associated with the Offshore Interlink has been provided to The Company, these will apply for the next and future charging years unless and until The Company is informed otherwise in accordance with (b) by all of the relevant Users.
- d. If all relevant Users are unable to reach agreement on the proportioning of the OFTO revenue associated with the Offshore Interlink they can raise a dispute. Any dispute between two or more Users as to the proportioning of such revenue shall be managed in accordance with CUSC Section 7 Paragraph 7.4.1 but the reference to the 'Electricity Arbitration Association' shall instead be to the 'Authority' and the Authority's determination of such dispute shall, without prejudice to apply for judicial review of any determination, be final and binding on the Users.

The Locational Onshore Security Factor

14.15.88 The locational onshore security factor is derived by running a secure DCLF ICRP transport study based on the same market background as used for Zoning in the DCLF ICRP transport model. This calculates the nodal marginal costs where peak <u>net</u> demand can be met despite the Security and Quality of Supply Standard contingencies (simulating single and double circuit faults) on the network. Essentially the calculation of secured nodal marginal costs is identical to the process outlined above except that the secure DCLF study additionally calculates a nodal marginal cost taking into account the requirement to be secure against a set of worse case contingencies in terms of maximum flow for each circuit.

- 14.15.89 The secured nodal cost differential is compared to that produced by the DCLF ICRP transport model and the resultant ratio of the two determines the locational security factor using the Least Squares Fit method. Further information may be obtained from the charging website¹.
- 14.15.90 The locational onshore security factor derived for 2010/11 is 1.8 and is based on an average from a number of studies conducted by The Company to account for future network developments. The security factor is reviewed for each price control period and fixed for the duration.

Local Security Factors

- 14.15.91 Local onshore security factors are generator specific and are applied to a generator's local onshore circuits. If the loss of any one of the local circuits prevents the export of power from the generator to the MITS then a local security factor of 1.0 is applied. For generation with circuit redundancy, a local security factor is applied that is equal to the locational security factor, currently 1.8.
- 14.15.92 Where a Transmission Owner has designed a local onshore circuit (or otherwise that circuit once built) to a capacity lower than the aggregated TEC of the generation using that circuit, then the local security factor of 1.0 will be multiplied by a Counter Correlation Factor (CCF) as described in the formula below;

$$CCF = \frac{D_{\min} + T_{cap}}{G_{cap}}$$

Where; D_{min} = minimum annual net demand (MW) supplied via that circuit in the absence of that generation using the circuit

 T_{cap} = transmission capacity built (MVA)

G_{cap} = aggregated TEC of generation using that circuit

CCF cannot be greater than 1.0.

14.15.93 A specific offshore local security factor (LocalSF) will be calculated for each offshore connection using the following methodology:

$$LocalSF = \frac{NetworkExportCapacity}{\sum_{k} Gen_{k}}$$

Where:

 NetworkExportCapacity =
 the total export capacity of the network disregarding any Offshore Interlinks

 k
 =
 the generation connected to the offshore network

1 http://www.nationalgrid.com/uk/Electricity/Charges/

Page 21 of 64

- 14.15.94 The offshore security factor for single circuits with a single cable will be 1.0 and for multiple circuit connections will be capped at the locational onshore security factor, derived as 1.8 for 2010/11.
- 14.15.95 The offshore local security factor for configurations with one or more Offshore Interlinks is updated so that the offshore circuit tariff will include the proportion of revenue associated with the Offshore Interlink(s). The specific offshore local security factor for configurations involving an Offshore Interlink, which may be greater than 1.8, will be calculated for each offshore connection using the following methodology:

 $LocalSF = \frac{IRevOFTO \times NetworkExportCapacity}{CRevOFTO \times \sum_{k}Gen_{k}} + LocalSF_{initial}$

Where:

The appropriate proportion of the Offshore Interlink(s) revenue in £
associated with the offshore connection calculated in 14.15.85
The offshore circuit revenue in £ associated with the circuit(s) from the
offshore substation to the Single Common Substation.
Initial Local Security Factor calculated in 14.15.80 and 14.15.81
And other definitions as in 14.15.80.

Initial Transport Tariff

14.15.96 First an Initial Transport Tariff (ITT) must be calculated for both Peak Security and Year Round backgrounds. For Generation, the Peak Security zonal marginal km (ZMkm_{PS}), Year Round Not-Shared zonal marginal km (ZMkm_{YRNS}) and Year Round Shared zonal marginal km (ZMkm_{YRS}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT, Year Round Not-Shared ITT and Year Round Shared ITT respectively:

 $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$

Where ZMkm _{GiPS} ZMkm _{GiYRNS} charging zone	= = e	Peak Security Zonal Marginal km for each generation zone Year Round Not-Shared Zonal Marginal km for each generation
ZMkm _{GiYRS}	=	Year Round Shared Zonal Marginal km for each generation
charging zon	е	
EC	=	Expansion Constant
LSF	=	Locational Security Factor
	=	Peak Security Initial Transport Tariff (£/MW) for each generation
zone		
ITT _{GiYRNS}	=	Year Round Not-Shared Initial Transport Tariff (£/MW) for each
generation ch	narging	zone
ITT _{GiYRS}	=	Year Round Shared Initial Transport Tariff (£/MW) for each
generation ch	narging	zone.

14.15.97 Similarly, for demand the Peak Security zonal marginal km (ZMkm_{PS}) and Year Round zonal marginal km (ZMkm_{YR}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT and Year Round ITT respectively:

		$ZMkm_{DiPS} \times EC \times LSF = ITT_{DiPS}$
		$ZMkm_{DiYR} \times EC \times LSF = ITT_{DiYR}$
Where ZMkm _{DiP} ZMkm _{DiY}	0	Peak Security Zonal Marginal km for each demand zone Year Round Zonal Marginal km for each demand zone
ITT _{DiPS}	=	Peak Security Initial Transport Tariff (£/MW) for each demand one
ITT_{DiYR}	=	Year Round Initial Transport Tariff (£/MW) for each demand zone
14.15.98	GSP group revenue red metered tria	tep is to multiply these ITTs by the expected metered triad <u>gross</u> demand and generation capacity to gain an estimate of the initial covery for both Peak Security and Year Round backgrounds. The ad <u>gross GSP group</u> demand and generation capacity are based on forecasts provided by Users and are confidential.
	affected em	ad gross GSP group demand is net demand for all GSP groups less bedded exports and grandfathered embedded exports for all GSP
a.	<u>groups.</u>	

Where

ITRR _G =	Initial Transport Revenue Recovery for generation				
G _{Gi} =	Total forecast Generation for each generation zone (based				
	on analysis of confidential User forecasts)				
ITRR _D =	Initial Transport Revenue Recovery for gross GSP group				
_	demand				
D _{Di} = each	Total forecast Metered Triad gross GSP group Demand for				
	demand zone (based on <u>analysis of</u> confidential User forecasts).				

In addition, the initial tariffs for generation are also multiplied by the **Peak Security flag** when calculating the initial revenue recovery component for the Peak Security background. Similarly, when calculating the initial revenue recovery for the Shared component of the Year Round background, the initial tariffs are multiplied by the **Annual Load Factor** (see below).

Peak Security (PS) Flag

14.15.99 The revenue from a specific generator due to the Peak Security locational tariff needs to be multiplied by the appropriate Peak Security (PS) flag. The PS flags indicate the extent to which a generation plant type contributes to the

Page 23 of 64

need for transmission network investment at peak demand conditions. The PS flag is derived from the contribution of differing generation sources to the demand security criterion as described in the Security Standard. In the event of a significant change to the demand security assumptions in the Security Standard, National Grid will review the use of the PS flag.

Generation Plant Type	PS flag
Intermittent	0
Other	1

Annual Load Factor (ALF)

- 14.15.100 The ALF for each individual Power Station is calculated using the relevant TEC (MW) and corresponding output data. Where output data is not available for a Power Station, including for new Power Stations and emerging Power Station technologies, generic data for the appropriate generation plant type will be used.
- 14.15.101 For a given charging year "t" the Power Station ALF will be based on information from the previous five charging years, calculated for each charging year as set out below.

$$ALF = \frac{\sum_{p=1}^{17520} GMWh_p}{\sum_{p=1}^{17520} TECp \times 0.5}$$

Where:

 $GMWh_p$ is the maximum of FPN or actual metered output in a Settlement Period related to the power station TEC (MW); and

 TEC_{p} is the TEC (MW) applicable to that Power Station for that Settlement Period including any STTEC and LDTEC, accounting for any trading of TEC.

- 14.15.102 The appropriate output (FPN or actual metered) figure is derived from **BM Unit** data available to National Grid and relates to the total TEC of the Power Station.
- 14.15.103 Once all five charging year ALFs have been calculated for the individual Power Station they are compared, and the highest and lowest figures are discarded. The final ALF, to be used for transmission charging purposes, is calculated as the average of the remaining three ALFs.
- 14.15.104 In the event that only four charging years of complete output (FPN or actual metered) data are available for an individual Power Station then the higher three charging years ALF would be used in the calculation of the final ALF. In the event that only three charging years of complete output (FPN or actual metered) data are available then these three charging years would be used.
- 14.15.105 Due to the aggregation of output (FPN or actual metered) data for dispersed generation (e.g. cascade hydro schemes), where a single generator BMU consists of geographically separated power stations, the ALF would be calculated based on the total output of the BMU and the overall TEC of those Power Stations.

Page 24 of 64

- 14.15.106 In the event that there are not three full charging years of an individual power station's output available, missing output (FPN or actual metered) data would be replaced by generic data for that generation plant type to ensure three charging years of information are available for the Power Station. The derivation of the generic data is described in paragraphs 14.15.111-14.15.114.
- 14.15.107 Users will receive draft ALFs before 25th December of the charging year (t-1) for the charging year (t) and will have a period of 15 working days from date of publishing to notify the Company of any errors. Failure to agree changes relating to errors will be treated as a charging dispute under the CUSC.
- 14.15.108 The ALFs used in the setting of final tariffs will be published in the annual Statement of Use of System Charges. Changes to ALFs after this publication will not result in changes to published tariffs (e.g. following dispute resolution).

Derivation of Generic ALFs

14.15.109 The generic ALF is derived from the average annual output of the ten most recently commissioned GB generation of a particular generation plant type that have at least five charging years' data, using an identical methodology to that used for the Power Station specific calculation described above. Where less than ten GB generators of a particular generation plant type exist, then data from all existing generators of that particular generation plant type will be used. Example generation plant type categories are listed below;

Fuel Type
Biomass
Coal
Gas
Hydro
Nuclear (by reactor
type)
Oil & OCGTs
Pumped Storage
Onshore Wind
Offshore Wind
CHP

- 14.15.110 The Company will keep these categories under review and update as necessary. Where within a category there is a significant locational difference consideration will be given to zonal generic factors. The factors used will be published in the Statement of Use of System Charges and will be reviewed annually.
- 14.15.111 If a User can demonstrate that the generation plant type of a Power Station has changed, consideration will be given to the use of relevant generic ALF information in the calculation of their charges until sufficient specific data is available.
- 14.15.112 For new and emerging generation plant types, where insufficient data is available to allow a generic ALF to be developed, The Company will use the best information available e.g. from manufactuers and data from use of similar technologies outside GB. The factor will be agreed with the relevant Generator. In the event of a disagreement the standard provisions for dispute in the CUSC will apply.

Page 25 of 64

TNUoS Embedded Export Tariffs

<u>14.15.113</u>	Embedded exports are exports measured on a half-hourly basis by Metering Systems, in accordance with the BSC, that are not subject to generation TNUoS. The tariff to be applied in respect of embedded exports is different depending on whether the embedded exports are affected embedded exports or grandfathered embedded exports		
TNUoS Emb	edded Export Tariff for Affected Embedded Exports		
<u>14.15.114</u>	Affected Embedded Exports are embedded exports other than Grandfathered Embedded Exports.		
<u>14.15.115</u>	The embedded export tariff will be applied to the metered Triad volumes of Affected Embedded Exports for each demand zone as follows:		
	$EETA_{Di} = ITT_{DiPS} + ITT_{DiYR} + AEX$		
Where			
ITT _{DIF} ITT _{DIY} AEX	R_{R} = Year Round Initial Transport Tariff for the demand zone, and		

Where

 RT_G = Generation Residual Tariff with the inverse sign. For clarity, this means that if the Generation Residual is negative, the generation residual will be applied as a positive number for embedded exports.

AGIC= The Avoided GSP Infrastructure Credit (AGIC) which represents the unit cost of infrastructure reinforcement at GSPs which is avoided as a consequence of embedded generation connected to the distribution networks served by those GSPs. It is calculated from the average annuitised cost of that infrastructure reinforcement divided by the average capacity delivered by a supergrid transformer.

The Avoided GSP Infrastructure Credit is calculated at the beginning of each price control period and in the first applicable charging year following the implementation date of CMP264/265 using data submitted by onshore TSOs as part of the price control process. The data used is from the most recent [20] schemes submitted under the price control process and indexed each year by the RPI formula set out in 14.3.6 until the end of the price control. For the avoidance of doubt, this approach does not include the cost of the supergrid transformers or any other connection assets as they are paid for by the relevant DNOs thorough their connection charges.

<u>The Value of $EETA_{Di}$ will be floored at zero, so that $EETA_{Di}$ is always zero or positive.</u>

TNUoS Embedded Export Tariff for Grandfathered Embedded Exports

14.15.116 Grandfathered Embedded Exports are embedded exports measured by metering systems where all associated generation either:

Page 26 of 64

•	Has a Contract for Difference Agreement that was awarded in allocation
	rounds prior to 01/01/2016 which has not been terminated; or
•	Has a Capacity Agreement that is recorded on the T-4 Auction Capacity
	Market Register 2014 or T-4 Auction Capacity Market Register 2015 as an agreement:
•	In respect of a 'new build generating CMU'
•	Having more than one delivery year
•	And which has not been terminated
<u>14.15.117</u>	The embedded export tariff will be applied to the metered Triad volumes of Grandfathered Embedded Exports for each demand zone as follows:
	$EETG_{Di} = ITT_{DiPS} + ITT_{DiYR} + GEX$
	Where
ITT _{DiP}	<u>S = Peak Security Initial Transport Tariff for the demand zone;</u>
<u>ITT_{DIYF} GEX</u>	
	PI formula set out in 14.3.6.
<u>,</u>	
	The Value of EETG _{Di} will be floored at zero, so that EETG _{Di} is always zero or positive.
Initial Reven	ue Recovery
14.15. <mark>118</mark> For	the Peak Security background the initial tariff for generation is multiplied by
	total forecast generation capacity and the PS flag to give the initial revenue overy:
	$\sum_{Gi=1}^{n} (ITT_{GiPS} \times G_{Gi} \times F_{PS}) = ITRR_{GPS}$

Where

l

ITRRGPS=Peak Security Initial Transport Revenue Recovery for generationGGi=Total forecast Generation for each generation zone (based on
analysis of confidential User forecasts)

F _{PS}	=	Peak Security flag appropriate to that generator type
n	=	Number of generation zones

The initial revenue recovery for <u>gross GSP group</u> demand for the Peak Security background is calculated by multiplying the initial tariff by the total forecast metered triad <u>gross GSP group</u> demand:

$$\sum_{Di=1}^{14} (ITT_{DiPS} \times D_{Di}) = ITRR_{DPS}$$

Page 27 of 64

V1.12-01 April 2016

Where:

ITRRDPS	=	Peak Security Initial Transport Revenue Recovery for gross GSP			
		group demand			
D _{Di}	=	Total forecast Metered Triad gross GSP group Demand for each			

 Total forecast Metered Triad gross GSP group Demand for each demand zone (based on <u>analysis of</u> confidential User forecasts)

14.15,119 For the Year Round background, the initial tariff for generation is multiplied by the total forecast generation capacity whilst calculating Initial Recovery for Not-Shared component whereas the initial tariff for Shared component is multiplied by both, the total forecast generation capacity and the ALF to give the initial revenue recovery:

$$\sum_{Gi=1}^{n} (ITT_{GiYRNS} \times G_{Gi}) = ITRR_{GYRNS}$$
$$\sum_{Gi=1}^{n} (ITT_{GiYRS} \times G_{Gi} \times ALF) = ITRR_{GYRS}$$

Where:

ITRR
generation=Year Round Not-Shared Initial Transport Revenue Recovery for
Year Round Shared Initial Transport Revenue Recovery for
generation
ALFALF=Annual Load Factor appropriate to that generator.

14.15.115 Similar to the Peak Security background, the initial revenue recovery for gross <u>GSP group</u> demand for the Year Round background is calculated by multiplying the initial tariff by the total forecast metered triad gross GSP group demand:

$$\sum_{Di=1}^{14} \left(ITT_{DiYR} \times D_{Di} \right) = ITRR_{DYR}$$

=

Where:

Year Round Initial Transport Revenue Recovery for gross GSP group demand

14.15.120The initial revenue recovery for Affected Embedded Exports is the Affected Embedded Export Tariff multiplied by the total forecast volume of Affected Embedded Export at triad:

$$ITRR_{EEA} = \sum_{Di=1}^{14} (EETA_{Di} \times EEVA_{Di})$$

<u>Where</u>

	= Initial Revenue impact for Affected Embedded Exports
EEVA _{Di}	= Forecast Affected Embedded Export metered volume at
Triad (MW)	

Page 28 of 64

V1.12-01 April 2016

For the avoidance of doubt, the initial revenue recovery for affected embedded exports can be positive or negative.

<u>14.15.121The initial revenue recovery for Grandfathered Embedded Exports is the</u> Grandfathered Embedded Export Tariff multiplied by the total forecast volume of Grandfathered Embedded Export at triad:

$$ITRR_{EEG} = \sum_{Di=1}^{14} (EETG_{Di} \times EEVG_{Di})$$

Where

For the avoidance of doubt, the initial revenue recovery for grandfathered embedded exports can be positive or negative.

Deriving the Final Local Tariff (£/kW)

Local Circuit Tariff

14.15,122 Generation with a local circuit tariff is calculated by multiplying the Year Round nodal marginal km along the local circuit by the expansion constant and the relevant local security factor (whether onshore or offshore) and summing across local circuits to give the local circuit tariff:

$$\sum_{k} \frac{NLMkm_{Gj}^{L} \times EC \times LocalSF_{k}}{1000} = CLT_{Gi}$$

Where

k	=	Local circuit k for generator
NLMkm _{Gj} ^L	=	Year Round Nodal marginal km along local circuit k using local
		circuit expansion factor.
EC	=	Expansion Constant
LocalSF _k	=	Local Security Factor for circuit k
CLT _{Gi}	=	Circuit Local Tariff (£/kW)

Onshore Local Substation Tariff

14.15,<u>123</u> All chargeable generation is subject to the local substation tariff component which is determined by assessing the generation substation type which is the substation at the connection charging boundary, against three cost determining factors:

Deleted: 117

Deleted: 116

Page 29 of 64

- (a) HV connection voltage the voltage at the boundary between the User's connection assets and the transmission system;
- (b) Sum of TEC at the generation substation the combined TEC of all generation at the connecting substation; and
- (c) The level of redundancy at the generation substation single busbar / single switch mesh connections are examples of no redundancy connections, whereas examples of connections with redundancy include double busbar and mesh sub station designs.
- 14.15,124 Using the above factors, the corresponding £/kW tariffs (quoted to 3dp) that will be applied during 2010/11 are:

Substation	Connection	Substation Voltage (a)		
Rating (b)	Type (c)	132kV	275kV	400kV
<1320MW	No redundancy	0.133	0.081	0.065
<1320MW	Redundancy	0.301	0.192	0.155
>=1320MW	No redundancy	n/a	0.257	0.208
>=1320MW	Redundancy	n/a	0.417	0.336

- 14.15,125 The process for calculating Local Substation Tariffs will be carried out for the first year of the price control and will subsequently be indexed by RPI for each subsequent year of the price control period.
- 14.15,<u>126</u> The effective Local Tariff (£/kW) is calculated as the sum of the circuit and substation onshore and/or offshore components:

$$ELT_{Gi} = CLT_{Gi} + SLT_{Gi}$$

Where

 ELT_{Gi} = Effective Local Tariff (£/kW) SLT_{Gi} = Substation Local Tariff (£/kW)

14.15,<u>127</u> Where tariffs do not change mid way through a charging year, final local tariffs will be the same as the effective tariffs:

14.15,<u>128</u> Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$LT_{Gi} = \frac{12 \times \left(ELT_{Gi} \times \sum_{Gi=1}^{21} G_{Gi} - FLL_{Gi}\right)}{b \times \sum_{Gi=1}^{21} G_{Gi}} \quad \text{and} \quad FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{21} D_{Di}}$$

Where:

b = number of months the revised tariff is applicable for

FLL = Forecast local liability incurred over the period that the original tariff is applicable for

Page 30 of 64

V1.12-01 April 2016

Deleted: 119

Deleted: 118

Deleted: 120

Deleted: 121

CUSC v1.12 14.15,129 For the purposes of charge setting, the total local charge revenue is calculated Deleted: 123 by: $\mathrm{LCRR}_{\mathrm{G}} = \sum_{i=Gi} \mathrm{LT}_{\mathrm{Gi}} * G_{i}$ Where LCRR_G Local Charge Revenue Recovery = = Forecast chargeable Generation or Transmission Entry Capacity Gi in kW (as applicable) for each generator (based on analysis of confidential information received from Users) Offshore substation local tariff 14.15,130 All offshore chargeable generation is subject to an offshore substation tariff. Deleted: 124 The offshore substation tariff shall be the sum of transformer, switchgear and platform components. 14.15,131 Each tariff component, expressed in £/kW, shall be the ratio of the Offshore Deleted: 125 Transmission Owner revenue (£) and rating associated with the transformers, switchgear or platform (kW) at each offshore substation. The Offshore Transmission Owner revenue of each tariff component shall include that associated with asset spares. In the case of the platform component, the relevant rating shall be the lower of the transformer or switchgear ratings. As with the offshore circuit expansion factors, the Offshore Transmission Owner revenue associated with each tariff component shall be averaged over the remaining years of the NETSO price control. 14.15,132 Offshore Transmission Owner revenue associated with interest during Deleted: 126 construction and project development overheads will be attributed to the relevant asset category with which it is associated. If these or any other costs included in the Offshore Transmission Owner revenue are not readily attributable to a given asset category, they will be pro-rated across the various asset categories based on their relative cost. 14.15,133 For 2010/11 a discount of £0.345590/kW shall be provided to the offshore Deleted: 127 substation tariff to reflect the average cost of civil engineering for onshore substations. This will be inflated by RPI each year and reviewed every price control period. 14.15,134 Offshore substation tariffs shall be reviewed at the start of every onshore price Deleted: 128 control period. For each subsequent year within the price control period, these shall be inflated in the same manner as the associated Offshore Transmission Owner Revenue. 14.15,135 The revenue from the offshore substation local tariff is calculated by: Deleted: 129 $SLTR = \sum_{All offshore} \left(SLT_k \times \sum_k Gen_k \right)$ Where: the offshore substation tariff for substation k SLT_k = the generation connected to offshore substation k Gen⊭ = Page 31 of 64 V1.12-01 April 2016

The Residual Tariff

14.15,136 The total revenue to be recovered through TNUoS charges is determined each year with reference to the Transmission Licensees' Price Control formulas less the costs expected to be recovered through Pre-Vesting connection charges. Hence in any given year t, a target revenue figure for TNUoS charges (TRR_t) is set after adjusting for any under or over recovery for and including, the small generators discount is as follows:

$$TRR_t = R_t - PVC_t - SG_{t-1}$$

Where

I

- TRRt = TNUoS Revenue Recovery target for year t
 Rt = Forecast Revenue allowed under The Company's RPI-X Price Control Formula for year t (this term includes a number of adjustments, including for over/under recovery from the previous year). For further information, refer to Special Condition D2 of The Company's Transmission Licence.
- PVC_t = Forecast Revenue from Pre-Vesting connection charges for year t
- SG_{t-1} = The proportion of the under/over recovery included within R_t which relates to the operation of statement C13 of the The Company Transmission Licence. Should the operation of statement C13 result in an under recovery in year t 1, the SG figure will be positive and vice versa for an over recovery.
- 14.15,137 In normal circumstances, the revenue forecast to be recovered from the initial transport tariffs will not equate to the total revenue target. This is due to a number of factors. For example, the transport model assumes, for simplicity, smooth incremental transmission investments can be made. In reality, transmission investment can only be made in discrete 'lumps'. The transmission system has been planned and developed over a long period of time. Forecasts and assessments used for planning purposes will not have been borne out precisely by events and therefore some distinction between an optimal system for one year and the actual system can be expected.
- 14.15,138 As a result of the factors above, in order to ensure adequate revenue recovery, a constant non-locational **Residual Tariff** for generation and demand is calculated, which includes infrastructure substation asset costs. It is added to the initial transport tariffs for both Peak Security and Year Round backgrounds so that the correct generation / demand revenue split is maintained and the total revenue recovery is achieved.

$$RT_D = \frac{(p \times TR)}{p}$$

Deleted: 130

Deleted: 131

Deleted: 132

Deleted:

$$RT_{D} = \frac{(p \times TRR) - ITRR_{DPS} - ITRR_{DYR} - ITRR_{EEA} - ITTR_{EEG}}{\sum_{Di=1}^{14} D_{Di}}$$

$$RT_{G} = \frac{\left[(1-p) \times TRR\right] - ITRR_{GPS} - ITRR_{GYRS} - ITRR_{GYRS} - LCRR_{G}}{\sum_{Gi=1}^{n} G_{Gi}}$$

Where RT

р

Residual Tariff (£/MW)
 Proportion of revenue to be recovered from

= Proportion of revenue to be recovered from demand

Page 32 of 64

Final £/kW Tariff

14.15,139 The effective Transmission Network Use of System tariff (TNUoS) for generation and gross demand can now be calculated as the sum of the initial transport wider tariffs for Peak Security and Year Round backgrounds, the non-locational residual tariff and the local tariff:

$$ET_{Gi} = \frac{ITT_{GiPS} + ITT_{GiYRNS} + ITT_{GiYRS} + RT_{G}}{1000} + LT_{Gi}$$
$$ET_{Di} = \frac{ITT_{DiPS} + ITT_{DiYR} + RT_{D}}{1000}$$

Where

- ET_{Gi} = Effective Generation TNUoS Tariff expressed in £/kW (ET_{Gi} would only be applicable to a Power Station with a PS flag of 1 and ALF of 1; in all other circumstances ITT_{GiPS}, ITT_{GiPRNS} and ITT_{GiPRS} will be applied using Power Station specific data)
- ET_{Di} = Effective Gross Demand TNUoS Tariff expressed in £/kW

The effective Transmission Network Use of System tariff (TNUoS) for affected embedded exports and grandfathered embedded exports can now be calculated by expressing the embedded export tariff in £/kW values:

 $ET_{EEAi} = \frac{EETA_{Di}}{1000}$

$$ET_{EEGi} = \frac{EETG_{Di}}{1000}$$

Where **Where**

ET_{EEAi} = Effective Affected Embedded Export TNUoS Tariff expressed in £/kW ET_{EEGI} = Effective Grandfathered Embedded Export TNUoS Tariff expressed in £/kW

For the purposes of the annual Statement of Use of System Charges ET_{Gi} will be published as ITT_{GiPS} ; ITT_{GiPRS} , ITT_{GiPRS} , RT_G and LT_{Gi}

14.15,140 Where tariffs do not change mid way through a charging year, final demand and generation tariffs will be the same as the effective tariffs.

$$FT_{Gi} = ET_{Gi}$$

$$FT_{Di} = ET_{Di}$$

$$F\overline{T_{EEAi}} = ET_{EEAi}$$

$$FT_{FEGi} = ET_{FEGi}$$

14.15,141 Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

Deleted: 134

Deleted: 135

Deleted: 133

Page 33 of 64

$$FT_{Gi} = \frac{12 \times \left(ET_{Gi} \times \sum_{Gi=1}^{20} G_{Gi} - FL_{Gi}\right)}{b \times \sum_{Gi=1}^{27} G_{Gi}} \text{ and } FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{14} D_{Di}}$$

$$FT_{EEAi} = \frac{12 \times (ET_{EEAi} \times \sum_{Di=1}^{14} EETA_{Di} - FL_{Di})}{b \times \sum_{Di=1}^{14} EETA_{Di} - FL_{Di}} \text{ and } FT_{EEGi} = \frac{12 \times (ET_{EEGi} \times \sum_{Di=1}^{14} EETG_{Di} - FL_{Di})}{b \times \sum_{Di=1}^{14} EETG_{Di} - FL_{Di}}$$

Where:

b = number of months the revised tariff is applicable for FL = Forecast liability incurred over the period that the original tariff is applicable for

Note: The ET_{Gi} element used in the formula above will be based on an individual Power Stations PS flag and ALF for Power Station G_{Gi} , aggregated to ensure overall correct revenue recovery.

14.15,142 If the final gross demand TNUoS Tariff results in a negative number then this is collared to £0/kW with the resultant non-recovered revenue smeared over the remaining demand zones:

 $NRRT_{D} = \frac{\sum_{i=1}^{z} \left(FT_{Di} \times D_{Di} \right)}{\sum_{i=1}^{14} D_{Di}}$

If
$$FT_{Di} < 0$$
, then $i = 1$ to z

Therefore,

Therefore the revised Final Tariff for the <u>gross</u> demand zones with positive Final tariffs is given by:

 $RFT_{Di} = FT_{Di} + NRRT_{Di}$

For
$$i= 1$$
 to z: $RFT_{Di} = 0$

For *i*=z+1 to 14:

Where

1

- $NRRT_{D} = Non Recovered Revenue Tariff (\pounds/kW)$ RFT_{Di} = Revised Final Tariff (\pounds/kW)
- 14.15,143 The tariffs applicable for any particular year are detailed in The Company's Statement of Use of System Charges, which is available from the Charging website. Archived tariff information may also be obtained from the Charging website.
 - 14.15,144 The zonal maps referenced in The Company's Statement of Use of System Charges and available on the Charging website contain detailed information for the charging year in question of which Grid Supply Points fall into which TNUoS zones.

14.15,145 New Grid Supply Points will be classified into zones on the following basis:

Page 34 of 64

V1.12-01 April 2016

Deleted: 136

Deleted: 137

Deleted: 138

- For demand zones, according to the GSP Group to which the Grid Supply Point is allocated for energy market settlement purposes.
- For generation zones, with reference to the geographic proximity to existing zones and, where close to a boundary between existing zones, with reference to the marginal costs arising from transport model studies. The GSP will then be allocated to the zone, which contains the most similar marginal costs.
- 14.15,146 The Company has available, upon request, the DCLF ICRP transport model, tariff model template and data necessary to run the model, consisting of nodal values of generation and demand connection points to the NETS. The model and data will enable the basic nodal charges to be determined and will also allow sensitivity analysis concerning alternative developments of generation and demand to be undertaken. The model is available from the Charging Team and whilst it is free of charge, it is provided under licence to restrict its distribution and commercial use.
- 14.15,147 The Company will be pleased to run specific sensitivity studies for Users under a separate study contract in line with the fees set out in the **Statement of Use** of **System Charges**. Please contact the **Charging Team**.
- 14.15,<u>148</u> The factors which will affect the level of TNUoS charges from year to year include-;
 - the forecast level of peak demand on the system
 - the Price Control formula (including the effect of any under/over recovery from the previous year),
 - the expansion constant,
 - the locational security factor,
 - the PS flag
 - the ALF of a generator
 - changes in the transmission network
 - HVDC circuit impedance calculation
 - changes in the pattern of generation capacity and demand.
 - changes in the pattern of embedded exports

14.15,149 In accordance with Standard Licence Condition C13, generation directly connected to the NETS 132kV transmission network which would normally be subject to generation TNUoS charges but would not, on the basis of generating capacity, be liable for charges if it were connected to a licensed distribution network qualifies for a reduction in transmission charges by a designated sum, determined by the Authority. Any shortfall in recovery will result in a unit amount increase in gross demand charges to compensate for the deficit. Further information is provided in the Statement of the Use of System Charges.

Stability & Predictability of TNUoS tariffs

I

14.15,<u>150</u> A number of provisions are included within the methodology to promote the stability and predictability of TNUoS tariffs. These are described in 14.29.

Deleted: 143

Deleted: 140

Deleted: 141

Deleted: 142

Page	35	of	64
------	----	----	----

14.16 Derivation of the Transmission Network Use of System Energy Consumption Tariff and Short Term Capacity Tariffs

- 14.16.1 For the purposes of this section, Lead Parties of Balancing Mechanism (BM) Units that are liable for Transmission Network Use of System Demand Charges are termed Suppliers.
- 14.16.2 Following calculation of the Transmission Network Use of System £/kW Gross Demand Tariff (as outlined in Chapter 2: Derivation of the TNUoS Tariff) for each GSP Group is calculated as follows:

$$p/kWh Tariff = (NHHD_F * £/kW Tariff - FL_G) *100$$

NHHC_G

Where:

 \pounds/kW Tariff = The \pounds/kW Effective <u>Gross</u> Demand Tariff (\pounds/kW), as calculated previously, for the GSP Group concerned.

 \mathbf{NHHD}_{F} = The Company's forecast of Suppliers' non-half-hourly metered Triad Demand (kW) for the GSP Group concerned. The forecast is based on historical data.

 FL_{G} = Forecast Liability incurred for the GSP Group concerned.

 $\rm NHHC_{G}$ = The Company's forecast of GSP Group non-half-hourly metered total energy consumption (kWh) for the period 16:00 hrs to 19:00hrs inclusive (i.e. settlement periods 33 to 38) inclusive over the period the tariff is applicable for the GSP Group concerned.

Short Term Transmission Entry Capacity (STTEC) Tariff

14.16.3 The Short Term Transmission Entry Capacity (STTEC) tariff for positive zones is derived from the Effective Tariff (ET_{Gi}) annual TNUoS £/kW tariffs (14.15.112). If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the STTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (i.e. over the whole financial year, not just the period that the STTEC is applicable for). STTECs will not be reconciled following a mid year charge change. The premium associated with the flexible product is associated with the analysis that 90% of the annual charge is linked to the system peak. The system peak is likely to occur in the period of November to February inclusive (120 days, irrespective of leap years). The calculation for positive generation zones is as follows:

$$\frac{FT_{Gi} \times 0.9 \times STTEC \ Period}{120} = STTEC \ tariff \ (\pounds/kW/period)$$

Where:

FT	=	Final annual TNUoS Tariff expressed in £/kW
Gi	=	Generation zone
STTEC Period	=	A period applied for in days as defined in the CUSC

Page 36 of 64

- 14.16.4 For the avoidance of doubt, the charge calculated under 14.16.3 above will represent each single period application for STTEC. Requests for multiple /STTEC periods will result in each STTEC period being calculated and invoiced separately.
- 14.16.5 The STTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.

Limited Duration Transmission Entry Capacity (LDTEC) Tariffs

14.16.6 The Limited Duration Transmission Entry Capacity (LDTEC) tariff for positive zones is derived from the equivalent zonal STTEC tariff for up to the initial 17 weeks of LDTEC in a given charging year (whether consecutive or not). For the remaining weeks of the year, the LDTEC tariff is set to collect the balance of the annual TNUoS liability over the maximum duration of LDTEC that can be granted in a single application. If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the LDTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (ie over the whole financial year, not just the period that the STTEC is applicable for). LDTECs will not be reconciled following a mid year charge change:

Initial 17 weeks (high rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.9 \times 7}{120}$$

Remaining weeks (low rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.1075 \times 7}{316 - 120} \times (1 + P)$$

where FT is the final annual TNUoS tariff expressed in £/kW; G_i is the generation TNUoS zone; and P is the premium in % above the annual equivalent TNUoS charge as determined by The Company, which shall have the value 0.

- 14.16.7 The LDTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.
- 14.16.8 The tariffs applicable for any particular year are detailed in The Company's **Statement of Use of System Charges** which is available from the **Charging website**. Historical tariffs are also available on the **Charging website**.

14.17 Demand Charges

Parties Liable for Demand Charges

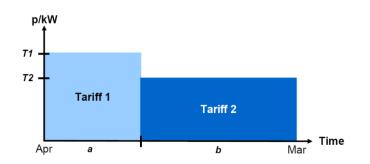
- 14.17.1 Demand charges are subdivided into charges for gross demand, energy and embedded export. The following parties shall be liable for some or all of the categories of demand charges:
 - The Lead Party of a Supplier BM Unit;
 - Power Stations with a Bilateral Connection Agreement;
 - Parties with a Bilateral Embedded Generation Agreement
- 14.17.2 Classification of parties for charging purposes, section 14.26, provides an illustration of how a party is classified in the context of Use of System charging and refers to the paragraphs most pertinent to each party.

Basis of Gross Demand Charges

- 14.17.3 Gross demand charges are based on a de-minimis £0/kW charge for Half Hourly and £0/kWh for Non Half Hourly metered demand.
 - 14.17.4 Chargeable Gross Demand Capacity is the value of Triad gross demand (kW). Chargeable Energy Capacity is the energy consumption (kWh). The definition of both these terms is set out below.
 - 14.17.5 If there is a single set of gross demand tariffs within a charging year, the Chargeable Gross Demand Capacity is multiplied by the relevant gross demand tariff, for the calculation of gross demand charges.
 - 14.17.6 If there is a single set of energy tariffs within a charging year, the Chargeable Energy Capacity is multiplied by the relevant energy consumption tariff for the calculation of energy charges..
 - 14.17.7 If multiple sets of gross demand tariffs are applicable within a single charging year, gross demand charges will be calculated by multiplying the Chargeable Gross Demand Capacity by the relevant tariffs pro rated across the months that they are applicable for, as below,

Demand Capacity

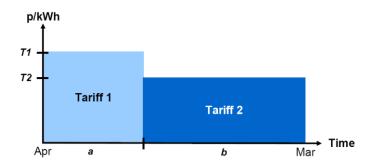
Deleted: Annual Liability n Annual Liability_{Demand} = $\frac{Chargeable Gross}{Demand Generative} \times \left(\frac{(a \times Tariff 1) + (b \times Tariff 2)}{12}\right)$


where:

Tariff	Tariff 1 =			Original tariff,							
Tariff 2 =		Revised tariff,									
a applicable,	=	Number	of	months	over	which	the	original	tariff	is	
b applicable.	=	Number	of	months	over	which	the	revised	tariff	is	

Page 38 of 64

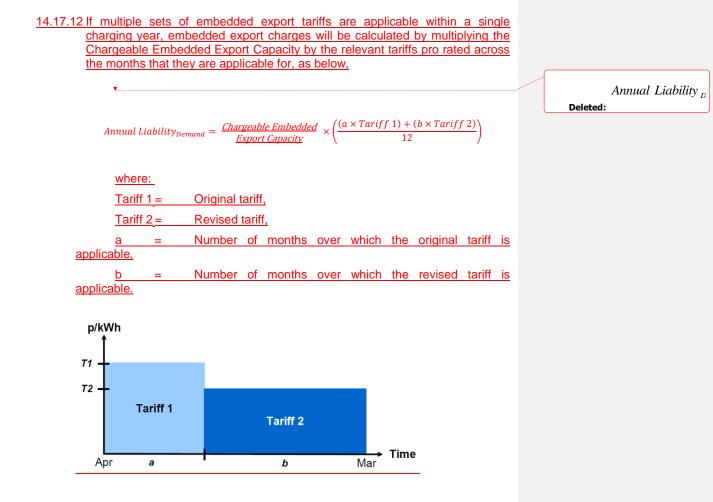
12


Deleted: minimus

14.17.8 If multiple sets of energy tariffs are applicable within a single charging year, energy charges will be calculated by multiplying relevant Tariffs by the Chargeable Energy Capacity over the period that that the tariffs are applicable for and summing over the year.

Annual Liability $_{Energy} = Tariff \ 1 \times \sum_{TI_s}^{TI_E} Chargeable Energy Capacity + Tariff \ 2 \times \sum_{TZ_s}^{TI_E} Chargeable Energy Capacity$

Where: T1s Start date for the period for which the original tariff is = applicable, End date for the period for which the original tariff is T1_E = applicable, Start date for the period for which the revised tariff is T2s _ applicable, End date for the period for which the revised tariff is T2_E = applicable.



Basis of Embedded Export Charges

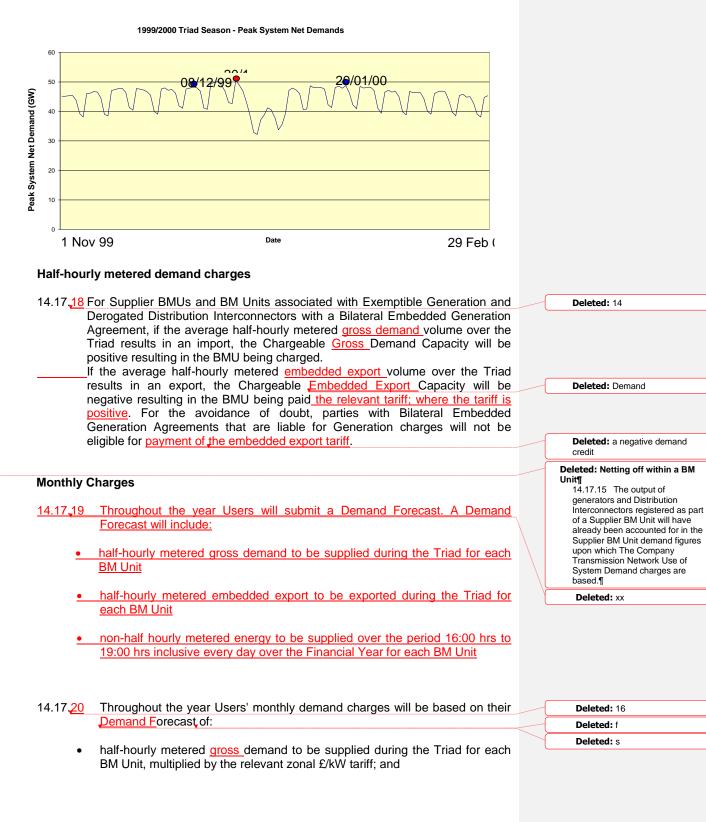
- 14.17.9 Embedded export charges are based on a £/kW charge for Half Hourly metered embedded export.
- <u>14.17.10 Chargeable Embedded Export Capacity is the value of Embedded Export at</u> <u>Triad (kW). The definition of this term is set out below.</u>

If there is a single set of embedded export tariffs within a charging year, the Chargeable Embedded Export Capacity is multiplied by the relevant embedded export tariff, for the calculation of embedded export charges. Deleted: 14.17.11

Page	39	of	64
------	----	----	----

Supplier BM Unit

14.17,<u>13</u> A Supplier BM Unit charges will be the sum of its energy, <u>gross</u> demand <u>and</u> <u>embedded export</u> liabilities where:


- The Chargeable <u>Gross</u> Demand Capacity will be the average of the Supplier BM Unit's half-hourly metered <u>gross</u> demand during the Triad (and the £/kW tariff),
- The Chargeable Embedded Export Capacity will be the average of the Supplier BM Unit's half-hourly metered embedded export during the Triad (and the £/kW tariff), and
- The Chargeable Energy Capacity will be the Supplier BM Unit's non halfhourly metered energy consumption over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year (and the p/kWh tariff).

Power Stations with a Bilateral Connection Agreement and Licensable Generation with a Bilateral Embedded Generation Agreement

Page 40 of 64

V1.12-01 April 2016

CUSC v1.12	
14.17,14 The Chargeable Gross Demand Capacity for a Power Station with a Bilateral	Deleted: 10
Connection Agreement or Licensable Generation with a Bilateral Embedded	
Generation Agreement will be based on the average of the gross import over	Deleted: net
each Triad leg of the BM Units associated with the Power Station (in Appendix	
C of its Bilateral Connection Agreement or Bilateral Embedded Generation	
Agreement, including metered additional load) during the Triad.	
Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement	
14.17,15 The demand charges for Exemptible Generation and Derogated Distribution	Deleted: 11
Interconnector with a Bilateral Embedded Generation Agreement will be the	
sum of its gross demand and embedded export liabilities where:	
The Chargeable Gross Demand Capacity for Exemptible Generation and	
Derogated Distribution Interconnectors with a Bilateral Embedded Generation	
Agreement will be based on the average of the metered gross demand of	Deleted: volume
each BM Unit specified in Appendix C of the Bilateral Embedded Generation	
Agreement during the Triad.	
The Chargeable Embedded Export Capacity for Exemptible Generation and	
Derogated Distribution Interconnectors with a Bilateral Embedded Generation	
Agreement will be based on the average of the metered embedded export of	
each BM Unit specified in Appendix C of the Bilateral Embedded Generation	
Agreement during the Triad.	
Small Generators Tariffs	
14.17. <u>16</u> In accordance with Standard Licence Condition C13, any under recovery from	
the MAR arising from the small generators discount will result in a unit amount	
of increase to all GB gross demand tariffs.	
The Triad	
14.17,17 The Triad is used as a short hand way to describe the three settlement periods	
of highest transmission system demand within a Financial Year, namely the	
half hour settlement period of system peak <u>net</u> demand and the two half hour	
settlement periods of next highest <u>net</u> demand, which are separated from the system peak <u>net</u> demand and from each other by at least 10 Clear Days,	
between November and February of the Financial Year inclusive. Exports on	
directly connected Interconnectors and Interconnectors capable of exporting	
more than 100MW to the Total System shall be excluded when determining the	
system peak <u>net</u> demand. An illustration is shown below.	

- half-hourly metered embedded export to be supplied during the Triad for each BM Unit, multiplied by the relevant zonal £/kW tariff; and
- non-half hourly metered energy to be supplied over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year for each BM Unit, multiplied by the relevant zonal p/kWh tariff

Users' annual TNUoS demand charges are based on these forecasts and are split evenly over the 12 months of the year. Users have the opportunity to vary their demand forecasts on a quarterly basis over the course of the year, with the demand forecast requested in February relating to the next Financial Year. Users will be notified of the timescales and process for each of the quarterly updates. The Company will revise the monthly Transmission Network Use of System demand charges by calculating the annual charge based on the new forecast, subtracting the amount paid to date, and splitting the remainder evenly over the remaining months. For the avoidance of doubt, only positive demand forecasts (i.e. representing <u>a net</u> import from the system) will be <u>used in the calculation of charges</u>.

Demand forecasts for a User will be considered positive where:

- The sum of the gross demand forecast and embedded export forecast is positive; and
- The non-half hourly metered energy forecast is positive.

14.17.21 Users should submit reasonable forecasts of gross demand, embedded export and energy in accordance with the CUSC. The Company shall use the following methodology to derive a forecast to be used in determining whether a User's forecast is reasonable, in accordance with the CUSC, and this will be used as a replacement forecast if the User's total forecast is deemed unreasonable. The Company will, at all times, use the latest available Settlement data.

For existing Users:

- i) The User's Triad <u>gross</u> demand<u>and embedded export</u> for the preceding Financial Year will be used where User settlement data is available and where The Company calculates its forecast before the Financial Year. Otherwise, the User's average weekday settlement period 35 half-hourly metered (HH) <u>gross</u> demand <u>and embedded export</u> in the Financial Year to date is compared to the equivalent average <u>gross</u> demand<u>and</u> <u>embedded export</u> for the corresponding days in the preceding year. The percentage difference is then applied to the User's HH <u>gross</u> demand<u>and</u> <u>embedded export</u> at Triad in the preceding Financial Year to derive a forecast of the User's HH <u>gross</u> demand <u>and embedded export</u> at Triad for this Financial Year.
- ii) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day in the Financial Year to date is compared to the equivalent energy consumption over the corresponding days in the preceding year. The percentage difference is then applied to the User's total NHH energy consumption in the preceding Financial Year to derive a forecast of the User's NHH energy consumption for this Financial Year.

For new Users who have completed a Use of System Supply Confirmation Notice in the current Financial Year:

Page 43 of 64

V1.12-01 April 2016

Deleted: accepted

1

iii) The User's average weekday settlement period 35 half-hourly metered (HH) gross demand and embedded export over the last complete month for which The Company has settlement data is calculated. Total system average HH gross demand and embedded export for weekday settlement period 35 for the corresponding month in the previous year is compared to total system HH_gross demand and embedded export at Triad in that year and a percentage difference is calculated. This percentage is then applied to the User's average HH gross demand and embedded export for weekday settlement period 35 over the last month to derive a forecast of the User's HH gross demand and embedded export at Triad for this Financial Year.

- iv) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day over the last complete month for which The Company has settlement data is noted. Total system NHH energy consumption over the corresponding month in the previous year is compared to total system NHH energy consumption over the remaining months of that Financial Year and a percentage difference is calculated. This percentage is then applied to the User's NHH energy consumption over the month described above, and all NHH energy consumption in previous months is added, in order to derive a forecast of the User's NHH metered energy consumption for this Financial Year.
- 14.17.22 14.28 Determination of The Company's Forecast for Demand Charge Purposes illustrates how the demand forecast will be calculated by The Company.

Reconciliation of Demand Charges

14.17,23 The reconciliation process is set out in the CUSC. The demand reconciliation process compares the monthly charges paid by Users against actual outturn charges. Due to the Settlements process, reconciliation of demand charges is carried out in two stages; initial reconciliation and final reconciliation.

Initial Reconciliation of demand charges

14.17,24 The initial reconciliation process compares Users' demand forecasts and corresponding monthly charges paid over the year against actual outturn data (using latest Settlement data available at the time) and corresponding charges. Initial reconciliation is carried out in two parts; Initial Reconciliation Part 1 deals with the reconciliation of half-hourly metered demand charges and Initial Reconciliation Part 2 deals with the reconciliation of non-half-hourly metered demand charges.

Initial Reconciliation Part 1– Half-hourly metered demand

- 14.17,25 The Company will identify the periods forming the Triad once it has received Central Volume Allocation data from the Settlement Administration Agent for all days up to and including the last day of February. Once The Company has notified Users of the periods forming the Triad they will not be changed even if disputes are subsequently resolved which would change the periods forming the Triad.
- 14.17,<u>26</u> Initial outturn charges for half-hourly metered <u>gross</u> demand will be determined using the latest available data of actual average Triad <u>gross</u> demand (kW) multiplied by the zonal <u>gross</u> demand tariff(s) (£/kW) applicable to the months

Page 44 of 64

Deleted: 18

Deleted: 19

Deleted: 20

Deleted: 21

С

I

I

I

I

1.12		
concerned for each zone for that Financial Year. These actual values are then reconciled against the monthly charges paid in respect of half-hourly gross demand.		
14.17.27 Initial outturn charges for half-hourly metered embedded export will be		
determined using the latest available data of actual average Triad embedded		
export (kW) multiplied by the zonal embedded export tariff(s) (£/kW) applicable		
to the months concerned for each zone for that Financial Year. These actual values are then reconciled against the monthly charges paid in respect of half-		
hourly embedded exports.		
Initial Reconciliation Part 2 – Non-half-hourly metered demand		
14.17,28 Actual payments for non-half-hourly metered demand will be determined using	Deleted: 23	
the latest available actual energy consumption data (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) over the year		
multiplied by the energy consumption tariff(s) (p/kWh) applicable to the months		
concerned for each zone. These actual values are then reconciled against the		
monthly charges paid in respect of non-half-hourly energy consumption.		
Final Reconciliation of demand charges		
14.17,29 The final reconciliation process compares Users' charges (as calculated during	Deleted: 24	
the initial reconciliation process using the latest available data) against final		
outturn demand charges (based on final settlement data of half-hourly gross		
demand, embedded exports and non-half-hourly energy consumption).		
14.17,30 Final actual charges will be determined using the final demand reconciliation	Deleted: 25	
data taken from the Final Reconciliation Settlement Run or the Final	Deleted: 25	
Reconciliation Volume Allocation Run.		
Reconciliation of manifest errors		
14.17,31 In the event that a manifest error, or multiple errors in the calculation of TNUoS	Deleted: 26	
tariffs results in a material discrepancy in aUsers TNUoS tariff, the		
reconciliation process for all Users qualifying under Section 14.17,33 will be in	Deleted: 28	
accordance with Sections 14.17,24 to 14.17,50. The reconciliation process	Deleted: 20	
shall be carried out using recalculated TNUoS tariffs. Where such	Deleted: 25	
reconciliation is not practicable, a post-year reconciliation will be undertaken in the form of a one-off payment.		
14.17.32 A manifest error shall be defined as any of the following:	Deleted: 27	
a) an error in the transfer of relevant data between the Transmission		
Licensees or Distribution Network Operators;		
b) an error in the population of the Transport Model with relevant data;		
c) an error in the function of the Transport Model; or		
d) an error in the inputs or function of the Tariff Model.		
14.17,33 A manifest error shall be considered material in the event that such an error or,	Deleted: 28	
the net effect of multiple errors, has an impact of the lesser of either:		
a) an error in a User's TNUoS tariff of at least +/-£0.50/kW; or		

Page 45 of 64

b) an error in a User's TNUoS tariff which results in an error in the annual TNUoS charge of a User in excess of +/-£250,000.

14.17,<u>34</u> A manifest error shall only be reconciled if it has been identified within the charging year for which the error has an effect. Errors identified outside of this period will not be eligible for reconciliation retrospectively.

Implementation of P272

- 14.17,<u>35</u>.1 BSC modification P272 requires Suppliers to move Profile Classes 5-8 to Measurement Class E - G (i.e. moving from NHH to HH settlement) by April 2016. The majority of these meters are expected to transfer during the preceding Charging Years up until the implementation date of P272 and some meters will have been transferred before the start of 1ST April 2015. A change from NHH to HH within a Charging Year would normally result in Suppliers being liable for TNUoS for part of the year as NHH and also being subject to HH charging. This section describes how the Company will treat this situation in the transition to P272 implementation for the purposes of TNUoS charging; and the forecasts that Suppliers should provide to the Company.
- 14.17,35.2 Notwithstanding 14.17,13, for each Charging Year which begins after 31 March 2015 and prior to implementation of BSC Modification P272, all demand associated with meters that are in NHH Profile Classes 5 to 8 at the start of that charging year as well as all meters in Measurement Classes E G will be treated as Chargeable Energy Capacity (NHH) for the purposes of TNUoS charging for the full Charging Year unless 14.17,35.3 applies.
 - 14.17,35.3 Where prior to 1st April 2015 a Profile Class meter has already transferred to Measurement Class settlement (HH) the associated Supplier may opt to treat the demand volume as Chargeable Demand Capacity (HH) for the purposes of TNUoS charging up until implementation of P272, subject to meeting conditions in 14.17,35.6. If the associated Supplier does not opt to treat the demand volume as Demand Capacity (HH) it will be treated by default as Chargeable Energy Capacity (NHH) for each full Charging Year up until implementation of P272.
 - 14.17,35.4 The Company will calculate the Chargeable Energy Capacity associated with meters that have transferred to HH settlement but are still treated as NHH for the purposes of TNUoS charging from Settlement data provided directly from Elexon i.e. Suppliers need not Supply any additional information if they accept this default position.
- 14.17,35.5 The forecasts that Suppliers submit to the Company under CUSC 3.10, 3.11 and 3.12 for the purpose of TNUoS monthly billing referred to in 14.17,20 and 14.17,21 for both Chargeable Demand Capacity and Chargeable Energy Capacity should reflect this position i.e. volumes associated those Metering Systems that have transferred from a Profile Class to a Measurement Class in the BSC (NHH to HH settlement) but are to be treated as NHH for the purposes of TNUoS charging should be included in the forecast of Chargeable Energy Capacity and not Chargeable Demand Capacity, unless 14.17,35.3 applies.
 - 14.17,<u>35</u>.6 Where a Supplier wishes for Metering Systems that have transferred from Profile Class to Measurement Class in the BSC (NHH to HH settlement) prior to 1st April 2015, to be treated as Chargeable Demand Capacity (HH/

Page 46 of 64

V1.12-01 April 2016

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 9

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 16

Deleted: 17

Deleted: 29

I

Measurement Class settled) it must inform the Company prior to October 2015. The Company will treat these as Chargeable Demand Capacity (HH / Measurement Class settled) for the purposes of calculating the actual annual liability for the Charging Years up until implementation of P272. For these cases only, the Supplier should notify the Company of the Meter Point Administration Number(s) (MPAN). For these notified meters the Supplier shall provide the Company with verified metered demand data for the hours between 4pm and 7pm of each day of each Charging Year up to implementation of P272 and for each Triad half hour as notified by the Company prior to May of the following Charging Year up until two years after the implementation of P272 to allow reconciliation (e.g. Mav 2017 and May 2018 for the Charging Year 2016/17). Where the Supplier fails to provide the data or the data is incomplete for a Charging Year TNUoS charges for that MPAN will be reconciled as part of the Supplier's NHH BMU (Chargeable Energy Capacity). Where a Supplier opts, if eligible, for TNUoS liability to be calculated on Chargeable Demand Capacity it shall submit the forecasts referred to in 14.17,35.5 taking account of this.

14.17,35.7 The Company will maintain a list of all MPANs that Suppliers have elected to be treated as HH. This list will be updated monthly and will be provided to registered Suppliers upon request.

Further Information

- 14.17,<u>36</u> 14.25 Reconciliation of Demand Related Transmission Network Use of System Charges of this statement illustrates how the monthly charges are reconciled against the actual values for <u>gross</u> demand, <u>embedded export</u> and consumption for half-hourly <u>gross demand</u>, <u>embedded export</u> and non-halfhourly metered demand respectively.
- 14.17,<u>37</u> **The Statement of Use of System Charges** contains the £/kW zonal gross demand tariffs, <u>the £/kW zonal embedded export tariffs</u>, and the p/kWh energy consumption tariffs for the current Financial Year.
- 14.17,<u>38</u>14.27 Transmission Network Use of System Charging Flowcharts of this statement contains flowcharts demonstrating the calculation of these charges for those parties liable.

Deleted: 30

Deleted: 29

Deleted: 29

Deleted: 31

....

14.24 Example: Calculation of Zonal Gross Demand Tariff

Let us consider all nodes in a demand zone in this example

The table below shows a sample output of the transport model comprising the node, the Peak Security and Year Round marginal km of an injection at the node with a consequent withdrawal at the distributed reference node, the generation sited at the node, scaled to ensure total national generation = total national <u>net</u> demand and the <u>net</u> demand sited at the node.

Demand Zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	<u>Net</u> Demand (MW)
14	ABHA4A	-77.25	-230.25	127
14	ABHA4B	-77.27	-230.12	127
14	ALVE4A	-82.28	-197.18	100
14	ALVE4B	-82.28	-197.15	100
14	AXMI40_SWEB	-125.58	-176.19	97
14	BRWA2A	-46.55	-182.68	96
14	BRWA2B	-46.55	-181.12	96
14	EXET40	-87.69	-164.42	340
14	HINP20	-46.55	-147.14	0
14	HINP40	-46.55	-147.14	0
14	INDQ40	-102.02	-262.50	444
14	IROA20_SWEB	-109.05	-141.92	462
14	LAND40	-62.54	-246.16	262
14	MELK40_SWEB	18.67	-140.75	83
14	SEAB40	65.33	-140.97	304
14	TAUN4A	-66.65	-149.11	55
14	TAUN4B	-66.66	-149.11	55
		Totals		2748

In order to calculate the <u>gross</u> demand tariff we would carry out the following steps:

(i) calculate the demand weighted nodal shadow costs

For this example zone this would be as follows:

Demand zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	Net Demand (MW)	Peak Security Demand Weighted Nodal Marginal km	Year Round Demand Weighted Nodal Marginal km
14	ABHA4A	-77.25	-230.25	127	-3.57	-10.64
14	ABHA4B	-77.27	-230.12	127	-3.57	-10.64
14	ALVE4A	-82.28	-197.18	100	-2.99	-7.17
14	ALVE4B	-82.28	-197.15	100	-2.99	-7.17
14	AXMI40_SWEB	-125.58	-176.19	97	-4.43	-6.22
14	BRWA2A	-46.55	-182.68	96	-1.63	-6.38
14	BRWA2B	-46.55	-181.12	96	-1.63	-6.33
14	EXET40	-87.69	-164.42	340	-10.85	-20.34
14	INDQ40	-102.02	-262.50	444	-16.48	-42.41
14	IROA20_SWEB	-109.05	-141.92	462	-18.33	-23.86
14	LAND40	-62.54	-246.16	262	-5.96	-23.47
14	MELK40_SWEB	18.67	-140.75	83	0.56	-4.25
14	SEAB40	65.33	-140.97	304	7.23	-15.59
14	TAUN4A	-66.65	-149.11	55	-1.33	-2.98
14	TAUN4B	-66.66	-149.11	55	-1.33	-2.98
		Totals		2748	-49.19	-190.43

(ii) sum the Peak Security and Year Round demand weighted nodal shadow costs to give zonal figures. For this example zone this is shown in the above table and is 49.19km for Peak Security background and 190.43km for Year Round background.

(iii) calculate the transport tariffs by multiplying the figures in (ii) above by the expansion constant (& dividing by 1000 to put into units of £/kW):

For this example zone, assuming an expansion constant of ± 10.07 /MWkm and a locational security factor of 1.80:

a) Peak Security tariff – 49.19km <u>* £10.07/MWkm * 1.8</u> = <u>£0.89/kW</u> 1000

Page 50 of 64

b) Year Round tariff -<u>190.43km * £10.07/MWkm * 1.8</u> = <u>£3.45/kW</u> 1000

(iv) We now need to calculate the residual tariff. This is calculated by taking the total revenue to be recovered from demand (calculated as c.73% of total The Company TNUoS target revenue for the year), less the revenue which would be recovered through the demand transport tariffs and revenue recovery through embedded export tariffs, divided by total expected gross GSP group demand.

Assuming the total revenue to be recovered from TNUoS is £1067m, the total recovery from <u>gross GSP group</u> demand would be (73% x £1067m) = £779m. Assuming the total recovery from <u>gross GSP group</u> demand transport tariffs is £<u>140m</u>, total recovery from <u>embedded export tariffs is -£10m</u> and total forecast chargeable <u>gross GSP group</u> demand capacity is 50000MW, the demand residual tariff would be as follows:

 $\frac{\pounds779m - \pounds140m - -\pounds10m}{50,000MW} = \pounds12.98/kW$

 (v) to get to the final tariff, we simply add on the demand residual tariff calculated in (v) to the zonal transport tariffs calculated in (iii(a)) and (iii(b))

For zone 14:

 $\pounds 0.89/kW + \pounds 3.45/kW + \pounds 12.98/kW =$ $\pounds 17.32/kW$

- To summarise, in order to calculate the <u>gross</u> demand tariffs, we evaluate a <u>net</u> demand weighted zonal marginal km cost multiply by the expansion constant and locational security factor then we add a constant (termed the residual cost) to give the overall tariff.
- (vii) The final demand tariff is subject to further adjustment to allow for the minimum £0/kW gross_demand charge. The application of a discount for small generators pursuant to Licence Condition C13 will also affect the final gross_demand tariff.

Deleted: gross

Deleted: 130m

Deleted: $\frac{\pounds779m - \pounds130m}{2}$	_
50000MW	_
¶ <u>£779m - £140m£10m</u> = £12.98/kW¶	
50,000MW	

14.25 Reconciliation of <u>Gross</u> Demand Related Transmission Network Use of System Charges

This appendix illustrates the methodology used by The Company in the reconciliation of Transmission Network Use of System charges for <u>gross</u> demand. The example highlights the different stages of the calculations from the monthly invoiced amounts, right through to Final Reconciliation.

Monthly Charges

Suppliers provide half-hourly (HH) gross demand and embedded export forecasts and non-halfhourly (NHH) demand forecasts by BM Unit every quarter. An example of such forecasts and the corresponding monthly invoiced amounts, based on tariffs of £10.00/kW for gross demand, £5.00/kW for embedded export and 1.20p/kWh for energy consumption, is as follows:

	Forecast HH Triad <u>Gross</u> Demand <u>HHD_E (</u> kW)	HH <u>Gross</u> <u>Demand</u> Monthly Invoiced Amount (£)	Forecast HH Triad Embedded Export HHEE _E (kW)	<u>HH</u> <u>Embedded</u> <u>Generation</u> <u>Monthly</u> <u>Invoiced</u> <u>Amount (£)</u>	Forecast NHH Energy Consumpti on NHHC _F (kW h)	NHH Monthly Invoiced Amount (£)	Net Monthly Invoiced Amount (£)
Apr	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
May	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jun	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jul	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Aug	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Sep	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Oct	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Nov	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Dec	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Jan	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Feb	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Mar	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Total		72,000		<u>(3,000)</u>		216,000	<u>297</u> ,000

As shown, for the first nine months the Supplier provided a 12,000kW HH triad <u>gross</u> demand forecast, and hence paid HH <u>gross demand</u> monthly charges of £10,000 ((12,000kW x £10.00/kW)/12) for that BM Unit. In January the Supplier provided a revised forecast of 7,200kW, implying a forecast annual charge reduced to £72,000 (7,200kW x £10.00/kW). The Supplier had already paid £90,000, so the excess of £18,000 was credited back to the supplier in three £6,000 instalments over the last three months of the year.

The Supplier provided an embedded export triad forecast of -600kW and hence was paid an embedded export credit of £250 ((600kW x £5.00/kW)/12) for that BM Unit (For the avoidance of doubt, if the embedded export tariff is negative this will result in a debit).

The Supplier also initially provided a 15,000,000kWh NHH energy consumption forecast, and hence paid NHH monthly charges of £15,000 ((15,000,000kWh x 1.2p/kWh)/12) for that BM Unit. In July the Supplier provided a revised forecast of 18,000,000kWh, implying a forecast annual charge increased to £216,000 (18,000,000kWh x 1.2p/kWh). The Supplier had already

Page 52 of 64

paid £45,000, so the remaining £171,000 was split into payments of £19,000 for the last nine months of the year.

The right hand column shows the net monthly charges for the BM Unit.

Initial Reconciliation (Part 1a)

The Supplier's outturn HH triad <u>gross</u> demand, based on <u>initial</u> settlement data (and therefore subject to change in subsequent settlement runs), was 9,000kW. The HH triad <u>gross</u> demand reconciliation charge is therefore calculated as follows:

HHD Reconciliation Charge = $(HHD_A - HHD_F) \times \pounds/kW$ Tariff

= (9,000kW - 7,200kW) x £10.00/kW

= 1,800kW x £10.00/kW

= £18,000

To calculate monthly interest charges, the outturn HHD charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHD charge less the HH <u>gross demand</u> monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 1b)

The Supplier's outturn HH triad embedded export, based on initial settlement data (and therefore subject to change in subsequent settlement runs), was 700kW. The HH triad embedded export reconciliation charge is therefore calculated as follows:

HHEE Reconciliation Charge = (HHEE_A – HHEE_E) x £/kW Tariff

 $= (-500 \text{kW} - -600 \text{kW}) \times \text{\pounds}5.00/\text{kW}$

 $= 100 \text{kW} \times \text{\pounds}5.00/\text{kW}$

= **£500**

To calculate monthly interest charges, the outturn HHEE charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHEE charge less the HH embedded generation monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 2)

The Supplier's outturn NHH energy consumption, based on initial settlement data, was 17,000,000kWh. The NHH energy consumption reconciliation charge is therefore calculated as follows:

Deleted: Please note that payments made to BM Units with a net export over the Triad, based on initial settlement data, will also be reconciled at this stage.¶ As monthly payments will not be made on the basis of a negative forecast, the HHD Reconciliation Charge for an exporting BM Unit will represent the full actual payment owed to that BM Unit (subject to adjustment by subsequent settlement runs). Interest will be calculated as described above.¶

NHHC Reconciliation Charge = $(NHHC_A - NHHC_F) \times p/kWh$ Tariff

100

= <u>(17,000,000kWh - 18,000,000kWh) x 1.20p/kWh</u>

100

= <u>-1,000,000kWh x 1.20p/kWh</u> 100 = **-£12,000**

worked example 4.xls - Initial!J104

The monthly reconciliation amount is equal to the outturn energy consumption charge for that month less the NHH monthly invoiced amount. Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

The net initial TNUoS demand reconciliation charge is therefore $\pounds 6,500$ (£18,000 + $\pounds 500$ - $\pounds 12,000$).

Final Reconciliation

Finally, let us now suppose that after all <u>final</u> Settlement data has been received (up to 14 months after the relevant dates), the outturn HH triad <u>gross</u> demand, <u>HH triad embedded export</u> and NHH energy consumption values were 9,500kW, <u>-550kW</u> and 16,500,000kWh, respectively.

Final HH <u>Gross Demand</u>	= (9,500kW - 9,000kW) x £10.00/kW
<u>Reconciliation Charge</u>	= £5,000
Final HH Embedded Export	= (-550kW500kW) x £5.00/kW
Reconciliation Charge	= -£250

Final NHH Reconciliation Charge = $(16,700,000kWh - 17,000,000kWh) \times 1.20p/kWh$ 100 = -£3,600

Consequently, the net final TNUoS demand reconciliation charge will be $\pounds 1, \underline{150} (\pounds 5,000 + -\pounds 250 + -\pounds 3,600)$.

Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

Outturn data for BM Units with a net export over the Triad will be received at this stage and final reconciliation will be carried out, as required. Interest will be calculated as described above.

Terminology:

 HHD_A = The Supplier's outturn half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

Page 54 of 64

Deleted: 000

I

 HHD_F = The Supplier's forecast half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

<u>HHEE_A = The Supplier's outturn half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

<u>HHEE_E = The Supplier's forecast half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

NHHC_A = The Supplier's outturn non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1^{st} to March 31^{st} , for the demand zone concerned.

NHHC_F = The Supplier's forecast non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1st to March 31st, for the demand zone concerned.

£/kW Tariff = The £/kW <u>Gross</u> Demand <u>or Embedded Export</u> Tariff as shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

p/kWh Tariff = The Energy Consumption Tariff shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

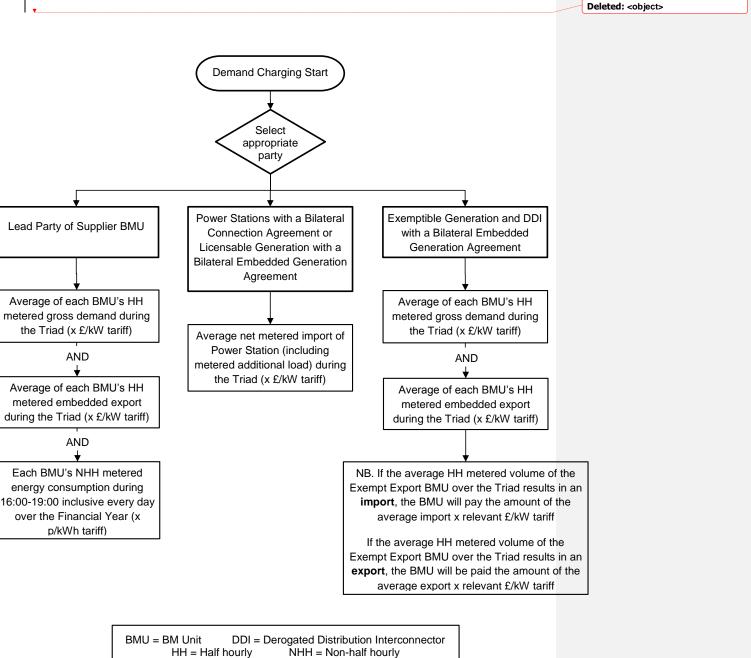
14.26 Classification of parties for charging purposes

In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precendence.

In the following diagrams, the parties liable for Transmission Network Use of System charges are outlined in red.

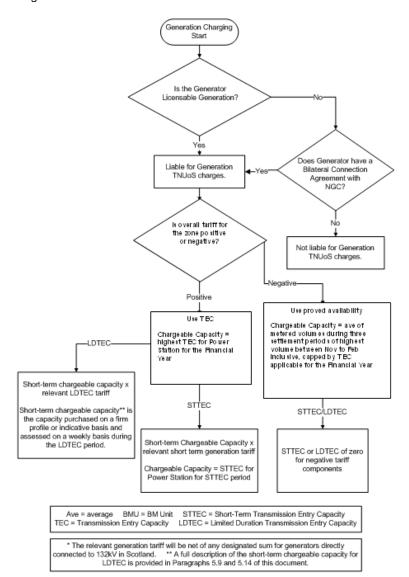
SUPPLIER		
Supplier Use of System Agreeme	ent	
Supplier BMU1 BMUn		
Demand Charges	Generation Charges	
See 14.17, <mark>13</mark> and 14.17, <mark>18</mark> .	None.	Deleted: 9
		Deleted: 14
Bilateral Connection Agreement Gen Unit BMU1 Gen Unit BMUn	Appendix C Station Load BMU Load BMU	
Demand Charges	Generation Charges	
See 14.17. <mark>,14</mark> .	See 14.18.1 i) and 14.18.3 to 14.18.9 and 14.18.18. For generators in positive zones, see 14.18.10 to	Deleted: 10
	14.18.12. For generators in negative zones, see 14.18.13 to 14.18.17.	

Bilateral Emb	edded Generation	Agreement Ap	pendix C	7
Gen Unit BMU1	Gen Unit BMUn	Station Load BMU	Additional Load BMU	
Demand Charges	7. <u>15</u> and 14.17. <u>18</u> .	Generation Cl	U	
Jee 14.17. <u>14</u> , 14.17	<u>, 10</u> and 14.17 <u>,10</u> .	 See 14.18.1 ii). For generators in positive zones, see 14.18.3 14.18.12 and 14.18.18. For generators in negative zones, see 14.18. 		


-{	Deleted: 10
-	Deleted: 11
Y	Deleted: 14

14.27 Transmission Network Use of System Charging Flowcharts

The following flowcharts illustrate the parties liable for Demand and Generation TNUoS charges and the calculation of those charges.


In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precedence.

Page 58 of 64

Generation Charges

14.28 Example: Determination of The Company's Forecast for Demand Charge Purposes

The Company will use the latest available settlement data for calculation of HH demand and NHH energy consumption forecasts for the Financial Year.

The Financial Year runs from 1st April to 31st March inclusive and for the purpose of these examples the year April 2005 to March 2006 is used.

Where the preceding year's settlement data is not available at the time that The Company needs to calculate its forecast, The Company will use settlement data from the corresponding period in Financial Year minus two unless indicated otherwise.

All values used with the examples are purely for illustrative purposes only.

i) Half-Hourly (HH) Metered Demand Forecast – Existing User

At the time of calculation of a HH demand forecast before the relevant Financial Year (approximately 10th March), The Company will be aware at a system level which dates will be used for the determination of Triad. However, The Company may not have settlement data at a User level if the Triad dates were to span a period that includes the latter half of February.

When undertaking forecasting before the relevant Financial Year, The Company will use the User's Triad demand for the previous year for its forecast providing it holds User settlement data for this period, thus:

F = T

where:

F = Forecast of User's HH demand at Triad for the Financial Year

T = User's HH gross_demand and embedded export_at Triad in Financial Year minus one

Where The Company determines its forecast within a Financial Year:

F = T * D/P

where:

- F = Forecast of User's HH demand at Triad for the Financial Year
- T = User's HH gross demand and embedded export at Triad in the preceding Financial Year
- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the preceding Financial Year

Where The Company determines its forecast before the relevant Financial Year and User settlement data for the Triad period is not available, The Company shall apply the formula immediately above (within year forecast) but substitute the following definitions for the values T, D, and P:

T = User's HH gross demand and embedded export at Triad in the Financial Year minus two

Page 60 of 64

- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year minus one, to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the Financial Year minus two

Example (where User settlement data is not yet available for the Triad period):

The Company calculates a HH demand forecast on the above methodology at 10th March 2005 for the period 1st April 2005 to 31st March 2006.

Gross demand:

F = 10,000 * 13,200 / 12,000

F = 11,000 kW,Deleted: hwhere:T = 10,000 kW, (period November 2003 to February 2004)Deleted: hD = 13,200 kW, (period 1st April 2004 to 15th February 2005#)Deleted: hP = 12,000 kW, (period 1st April 2003 to 15th February 2004)Deleted: h

Latest date for which settlement data is available.

Embedded export:

F = -280 * -300 / -350

<u>F = -240 kW</u>

where:

T = -280 kW (period November 2003 to February 2004)

D = -300 kW (period 1st April 2004 to 15th February 2005#)

P = -350 kW (period 1st April 2003 to 15th February 2004)

<u># Latest date for which settlement data is available.</u>

ii) Non Half-Hourly (NHH) Metered Energy Consumption Forecast – Existing User

F = E * D/P

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- E = User's summed NHH energy consumption over the hours 16:00 to 19:00 for each day in the preceding Financial Year

Page 61 of 64

- D = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the Financial Year to date
- P = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the period corresponding to D in the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th June 2005 for the period 1st April 2005 to 31st March 2006.

- F = 50,000,000 * 4,400,000 / 4,000,000
- F = 55,000,000 kWh

where:

- E = 50,000,000 kWh (period 1st April 2004 to 31st March 2005)
- D = 4,400,000 kWh (period 1st April 2005 to 15th May 2005#)
- P = 4,000,000 kWh (period 1st April 2004 to 15th May 2004)
- # Latest date for which settlement data is available

Where forecasting before the relevant Financial Year concerned, The Company would in the above example use values for E and P from Financial Year 2003/04 and D from Financial Year 2004/05.

iii) Half-Hourly (HH) Metered Demand Forecast – New User

F = M * T/W

where:

- F = Forecast of User's HH metered <u>gross</u> demand <u>and embedded export</u> at Triad for the Financial Year
 - M = User's HH average weekday period 35 demand for the last complete month for which settlement data is available
- T = Total system HH <u>gross</u> demand <u>and embedded export</u> at Triad in the preceding Financial Year
 - W = Total system HH average weekday settlement period 35 metered demand for the corresponding period to M for the preceding year

Example:

The Company calculates a HH demand forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2004 to 31st March 2006.

Gross demand:

F = 1,000 * 17,000,000 / 18,888,888

	0000 0	1.12		
I	F =	900 kW,	(Deleted: h
	where			
ļ	M =	1,000 kW _• (period 1 st July 2005 to 31 st July 2005)	(Deleted: h
ļ	T =	17,000,000 kW, (period November 2004 to February 2005)	(Deleted: h
I	W =	18,888,888 kW _v (period 1 st July 2004 to 31 st July 2004)	(Deleted: h
	Embeo	Ided export:		
	<u>F =</u>	<u>150 * 7,200,000 / 6,000,000</u>		
	<u>F = </u>	<u>180 kW</u>		
	where			

- M = 150 kW (period 1st July 2005 to 31st July 2005)
- T = 7,200,000 kW (period November 2004 to February 2005)
- <u>W = 6,000,000 kW (period 1^{st} July 2004 to 31^{st} July 2004)</u>

iv) Non Half Hourly (NHH) Metered Energy Consumption Forecast – <u>New User</u>

 $\mathsf{F} = \mathsf{J} + (\mathsf{M} * \mathsf{R}/\mathsf{W})$

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- J = Residual part month summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day where new User registration takes place other than on the first of a month
- M = User's summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the last complete month for which settlement data is available
- R = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period from the start of that defined under M but for the preceding year and until the end of that preceding Financial Year
- W = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period identified in M but for the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2005 to 31st March 2006.

- F = 500 + (1,000 * 20,000,000,000 / 2,000,000,000)
- F = 10,500 kWh

where:

- J = 500 kWh (period 10th June 2005 to 30th June 2005)
- M = 1,000 kWh (period 1st July 2005 to 31st July 2005)
- R = 20,000,000,000 kWh (period 1st July 2004 to 31st March 2005)
- W = 2,000,000,000 kWh (period 1st July 2004 to 31st July 2004)

CMP265 WACM15

14.15 Derivation of the Transmission Network Use of System Tariff

- 14.15.1 The Transmission Network Use of System (TNUoS) Tariff comprises two separate elements. Firstly, a locationally varying element derived from the DCLF ICRP transport model to reflect the costs of capital investment in, and the maintenance and operation of, a transmission system to provide bulk transport of power to and from different locations. Secondly, a non-locationally varying element related to the provision of residual revenue recovery. The combination of both these elements forms the TNUoS tariff.
- 14.15.2 For generation TNUoS tariffs the locational element itself is comprised of five separate components. Three wider components
 - o Wider Peak Security Component
 - Wider Year Round Not-shared component
 - Wider Year Round component

These components reflect the costs of the wider network under the different generation backgrounds set out in the Demand Security Criterion (for Peak Security component) and Economy Criterion (for both Year Round components) of the Security Standard. The two Year Round components reflect the unshared and shared costs of the wider network based on the diversity of generation plant types.

Two local components -

- o Local substation, and
- Local circuit

These components reflect the costs of the local network.

Accordingly, the wider tariff represents the combined effect of the three wider locational tariff components and the residual element; and the local tariff represents the combination of the two local locational tariff components.

14.15.3 The process for calculating the TNUoS tariff is described below.

The Transport Model

Model Inputs

14.15.4 The DCLF ICRP transport model calculates the marginal costs of investment in the transmission system which would be required as a consequence of an increase in demand or generation at each connection point or node on the transmission system, based on a study of peak demand conditions using both Peak Security and Year Round generation backgrounds on the transmission system. One measure of the investment costs is in terms of MWkm. This is the concept that ICRP uses to calculate marginal costs of investment. Hence, marginal costs are estimated initially in terms of increases or decreases in units of kilometres (km) of the transmission system for a 1 MW injection to the system.

- 14.15.5 The transport model requires a set of inputs representative of the Demand Security and Economy Criterion set out in the Security Standards. These conditions on the transmission system are represented in the Peak Security and Year Round background respectively as follows:
- Nodal generation information per node (TEC, plant type and SQSS scaling factors)
- Nodal <u>net</u> demand information
- Transmission circuits between these nodes
- The associated lengths of these routes, the proportion of which is overhead line or cable and the respective voltage level
- The cost ratio of each of 132kV overhead line, 132kV underground cable, 275kV overhead line, 275kV underground cable and 400kV underground cable to 400kV overhead line to give circuit expansion factors
- The cost ratio of each separate sub-sea AC circuit and HVDC circuit to 400kV overhead line to give circuit expansion factors
- 132kV overhead circuit capacity and single/double route construction information is used in the calculation of a generator's local charge.
- Offshore transmission cost and circuit/substation data
- 14.15.6 For a given charging year "t", the nodal generation TEC figure and generation plant types at each node will be based on the Applicable Value for year "t" in the NETS Seven Year Statement in year "t-1" plus updates to the October of year "t-1". The contracted TECs and generation plant types in the NETS Seven Year Statement include all plant belonging to generators who have a Bilateral Agreement with the TOs. For example, for 2010/11 charges, the nodal generation data is based on the forecast for 2010/11 in the 2009 NETS Seven Year Statement plus any data included in the quarterly updates in October 2009.
- 14.15.7 Scaling factors for different generation plant types are applied on their aggregated capacity for both Peak Security and Year Round backgrounds. The scaling is either Fixed or Variable (depending on the total demand level) in line with the factors used in the Security Standard, for example as shown in the table below.

Generation Plant Type	Peak Security Background	Year Round Background
Intermittent	Fixed (0%)	Fixed (70%)
Nuclear & CCS	Variable	Fixed (85%)
Interconnectors	Fixed (0%)	Fixed (100%)
Hydro	Variable	Variable
Pumped Storage	Variable	Fixed (50%)
Peaking	Variable	Fixed (0%)
Other (Conventional)	Variable	Variable

These scaling factors and generation plant types are set out in the Security Standard. These may be reviewed from time to time. The latest version will be used in the calculation of TNUoS tariffs and is published in the Statement of Use of System Charges

14.15.8 National Grid will categorise plant based on the categorisations described in the Security Standard. Peaking plant will include oil and OCGT technologies and Other (Conv.) represents all remaining conventional plant not explicitly stated elsewhere in the table In the event that a power station is made up of more than one technology type, the type of the higher Transmission Entry Capacity (TEC) would apply.

I

- 14.15.9 Nodal <u>net</u> demand data for the transport model will be based upon the GSP <u>net</u> demand that Users have forecast to occur at the time of National Grid Peak Average Cold Spell (ACS) Demand for year "t" in the April Seven Year Statement for year "t-1" plus updates to the October of year "t-1".
- 14.15.10 Subject to paragraphs 14.15.15 to 14.15.22, Transmission circuits for charging year "t" will be defined as those with existing wayleaves for the year "t" with the associated lengths based on the circuit lengths indicated for year "t" in the April NETS Seven Year Statement for year "t-1" plus updates to October of year "t-1". If certain circuit information is not explicitly contained in the NETS Seven Year Statement, The Company will use the best information available.
- 14.15.11 The circuit lengths included in the transport model are solely those, which relate to assets defined as 'Use of System' assets.
- 14.15.12 For HVDC circuits, the impedance will be calculated to provide flows based on a ratio of the capacity provided by the HVDC link relative to the capacities on all major transmission system boundaries that it parallels.
- 14.15.13 The transport model employs the use of circuit expansion factors to reflect the difference in cost between (i) AC Circuits and HVDC circuits. (ii) underground and sub-sea circuits, (iii) cabled circuits and overhead line circuits, (iv) 132kV and 275kV circuits, (v) 275kV circuits and 400kV circuits, and (vi) uses 400kV overhead line (i.e. the 400kV overhead line expansion factor is 1). As the transport model expresses cost as marginal km (irrespective of cables or overhead lines), some account needs to be made of the fact that investment in these other types of circuit (specifically HVDC and sub-sea cables of various voltages, 400kV underground cable, 275kV overhead line, 275kV underground cable, 132kV overhead line and 132kV underground cable) is more expensive than for 400kV overhead line. This is done by effectively 'expanding' these more expensive circuits by the relevant circuit expansion factor, thereby producing a larger marginal kilometre to reflect the additional cost of investing in these circuits compared to 400kV overhead line. When calculating the local circuit tariff for a generator, alternative 132kV and offshore expansion factors to those used in the remainder of the tariff calculation are applied to the generator's local circuits.
- 14.15.14 The circuit expansion factors for HVDC circuits and AC subsea cables are determined on a case by case basis using the costs which are specific to individual projects containing HVDC or AC subsea circuits.

Adjustments to Model Inputs associated with One-off Works

- 14.15.15 Where, following the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge that related to One-off Works carried out on an onshore circuit, and such One-off Works would affect the value of a TNUoS tariff paid by the User, the transport model inputs associated with the onshore circuit shall be adjusted by The Company to reflect the asset value that would have been modelled if the works had been undertaken on the basis of the original asset design rather than the One-off Works.
- 14.15.16 Subject to paragraphs 14.15.17 to 14.15.19, where, prior to the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge (or has paid a charge to the relevant TO prior to 1st April 2005 on the same principles as a

Page 3 of 64

One-Off Charge) that related to works equivalent to those described under paragraph 14.15.15, an adjustment equivalent to that under paragraph 14.15.15 shall be made to the transport model inputs as follows.

- 14.15.17 Such adjustment shall be made following a User's request, which must be received by The Company no later than the second occurrence of 31st December following the implementation of CUSC Modification CMP203.
- 14.15.18 The Company shall only make an adjustment to the transport model inputs, under paragraph 14.15.16 where the charge was paid to the relevant TO prior to 1st April 2005 where evidence has been provided by the User that satisfies The Company that works equivalent to those under paragraph 14.15.15 were funded by the User.
- 14.15.19 Where a User has sufficient reason to believe that adjustments under paragraph 14.15.18 should be made in relation to specific assets that affect a TNUoS tariff that applies to one of its sites and outlines its reasoning to The Company, The Company shall (upon the User's request and subject to the User's payment of reasonable costs incurred by The Company in doing so) use its reasonable endeavours to assist the User in obtaining any evidence The Company or a TO may have to support its position.
- 14.15.20 Where a request is made under paragraph 14.15.16 on or prior to 31st December in a charging year, and The Company is satisfied based on the accompanying evidence provided to The Company under paragraph 14.15.17 that it is a valid request, the transport model inputs shall be adjusted accordingly and taken into account in the calculation of TNUoS tariffs effective from the year commencing on the 1st April following this and otherwise from the next subsequent 1st April.
- 14.15.21 The following table provides examples of works for which adjustments to transport model inputs would typically apply:

Ref	Description of works	Adjustments
1	Undergrounding - A User requests to underground an overhead line at a greater cost.	As the cable cost will be more expensive than the overhead line (OHL) equivalent, the circuit will be modelled as an OHL.
2	Substation Siting Decision - A User requests to move the existing or a planned substation location to a place that means that the works cannot be justified as economic by the TO.	As the revised substation location may result in circuits being extended. If this is the case, the originally designed circuit lengths (as per the originally designed substation location) would be used in the transport model.
3	Circuit Routing Decision - A User asks to move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	As any circuit route changes that extend circuits are likely to result in a greater TNUoS tariff, the originally designed circuit lengths would be used in the transport model.

Ref	Description of works	Adjustments
4	Building circuits at lower voltages - A User requests lower tower height and therefore a different voltage.	As lower voltage circuits result in a higher expansion factor being used, the circuits would be modelled at the originally designed higher voltage.

14.15.22 The following table provides examples of works for which adjustments to transport model typically would not apply:

Ref	Description of works	Reasoning
1	Undergrounding - A User chooses to have a cable installed via a tunnel rather than buried.	Cable expansion factors are applied in the transport model regardless of whether a cable is tunnelled and buried, so there is no increased TNUoS cost.
2	Additional circuit route works - A User asks for screening to be provided around a new or existing circuit route.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
3	Additional circuit route works - A User requests that a planned overhead line route is built using alternative transmission tower designs.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
4	Additional substation works - A User asks for screening to be provided around a new or existing substation.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
5	Additional substation works - Changes to connection assets (e.g. HV-LV transformers and associated switchgear), metering, additional LV supplies, additional protection equipment, additional building works, etc.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
6	Diversion - A User asks to temporarily move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	The temporary circuit changes will not be incorporated into the transport model.

7	Connection Entry Capacity (CEC) before Transmission Entry Capacity (TEC). A User asks for a connection in a year prior to the relating TEC; i.e. physical connection without capacity.	No additional works are being undertaken, works are simply being completed well in advance of the generator commissioning. The One-Off Charge reflects the depreciated value of the assets prior to commissioning (and any TNUOS being charged).
8	Early asset replacement - An asset is replaced prior to the end of its expected life.	As the asset is simply replaced, no data in the transport model is expected to change.
9	Additional Engineering/ Mobilisation costs - A User requests changes to the planned works, that results in additional operational costs.	The data in the transport model is unaffected.
10	Offshore (Generator Build) - Any of the works described above or under paragraph 14.15.18.	The value of the works will not form part of the asset transfer value therefore will not be used as part of the offshore tariff calculation.
11	Offshore (Offshore Transmission Owner (OFTO) Build) - Any of the works described above or under paragraph 14.15.18.	As part of determining the TNUoS revenue associated with each asset, the value of the One-Off Works would be excluded when pro-rating the OFTO's allowed revenue against assets by asset value.

14.15.23 The Company shall publish any adjusted transport model inputs that it intends to use in the calculation of TNUoS tariffs effective from the year commencing on the following 1st April in the NETS Seven Year Statement October Update. Any further adjustments that The Company makes shall be published by The Company upon the publication of the final TNUoS tariffs for the year concerned.

Model Outputs

- 14.15.24 The transport model takes the inputs described above and carries out the following steps individually for Peak Security and Year Round backgrounds.
- 14.15.25 Depending on the background, the TEC of the relevant generation plant types are scaled by a percentage as described in 14.15.7, above. The TEC of the remaining generation plant types in each background are uniformly scaled such that total national generation (scaled sum of contracted TECs) equals total national ACS Demand.
- 14.15.26 For each background, the model then uses a DCLF ICRP transport algorithm to derive the resultant pattern of flows based on the network impedance required to meet the nodal <u>net</u> demand using the scaled nodal generation, assuming every circuit has infinite capacity. Flows on individual transmission circuits are compared for both backgrounds and the background giving rise to

Page 6 of 64

the highest flow is considered as the triggering criterion for future investment of that circuit for the purposes of the charging methodology. Therefore all circuits will be tagged as Peak Security or Year Round depending upon the background resulting in the highest flow. In the event that both backgrounds result in the same flow, the circuit will be tagged as Peak Security. Then it calculates the resultant total network Peak Security MWkm and Year Round MWkm, using the relevant circuit expansion factors as appropriate.

- 14.15.27 Using these baseline networks for Peak Security and Year Round backgrounds, the model then calculates for a given injection of 1MW of generation at each node, with a corresponding 1MW offtake (<u>net_demand</u>) distributed across all demand nodes in the network, the increase or decrease in total MWkm of the whole Peak Security and Year Round networks. The proportion of the 1MW offtake allocated to any given demand node will be based on total background nodal <u>net</u> demand in the model. For example, with a total GB <u>net_demand</u> of 60GW in the model, a node with a <u>net_demand</u> of 600MW would contain 1% of the offtake i.e. 0.01MW.
- 14.15.28 Given the assumption of a 1MW injection, for simplicity the marginal costs are expressed solely in km. This gives a Peak Security marginal km cost and a Year Round marginal km cost for generation at each node (although not that used to calculate generation tariffs which considers local and wider cost components). The Peak Security and Year Round marginal km costs for demand at each node are equal and opposite to the Peak Security and Year Round nodal marginal km respectively for generation and this is used to calculate demand tariffs. Note the marginal km costs can be positive or negative depending on the impact the injection of 1MW of generation has on the total circuit km.
- 14.15.29 Using a similar methodology as described above in 14.15.27, the local and wider marginal km costs used to determine generation TNUoS tariffs are calculated by injecting 1MW of generation against the node(s) the generator is modelled at and increasing by 1MW the offtake across the distributed reference node. It should be noted that although the wider marginal km costs are calculated for both Peak Security and Year Round backgrounds, the local marginal km costs are calculated on the Year Round background.
- 14.15.30 In addition, any circuits in the model, identified as local assets to a node will have the local circuit expansion factors which are applied in calculating that particular node's marginal km. Any remaining circuits will have the TO specific wider circuit expansion factors applied.
- 14.15.31 An example is contained in 14.21 Transport Model Example.

Calculation of local nodal marginal km

14.15.32 In order to ensure assets local to generation are charged in a cost reflective manner, a generation local circuit tariff is calculated. The nodal specific charge provides a financial signal reflecting the security and construction of the infrastructure circuits that connect the node to the transmission system.

14.15.33 Main Interconnected Transmission System (MITS) nodes are defined as:

- Grid Supply Point connections with 2 or more transmission circuits connecting at the site; or
- connections with more than 4 transmission circuits connecting at the site.

Page 7 of 64

- 14.15.34 Where a Grid Supply Point is defined as a point of supply from the National Electricity Transmission System to network operators or non-embedded customers excluding generator or interconnector load alone. For the avoidance of doubt, generator or interconnector load would be subject to the circuit component of its Local Charge. A transmission circuit is part of the National Electricity Transmission System between two or more circuit-breakers which includes transformers, cables and overhead lines but excludes busbars and generation circuits.
- 14.15.35 Generators directly connected to a MITS node will have a zero local circuit tariff.
- 14.15.36 Generators not connected to a MITS node will have a local circuit tariff derived from the local nodal marginal km for the generation node i.e. the increase or decrease in marginal km along the transmission circuits connecting it to all adjacent MITS nodes (local assets).

Calculation of zonal marginal km

- 14.15.37 Given the requirement for relatively stable cost messages through the ICRP methodology and administrative simplicity, nodes are assigned to zones. Typically, generation zones will be reviewed at the beginning of each price control period with another review only undertaken in exceptional circumstances. Any rezoning required during a price control period will be undertaken with the intention of minimal disruption to the established zonal boundaries. The full criteria for determining generation zones are outlined in paragraph 14.15.42. The number of generation zones set for 2010/11 is 20.
- 14.15.38 Demand zone boundaries have been fixed and relate to the GSP Groups used for energy market settlement purposes.
- 14.15.39 The nodal marginal km are amalgamated into zones by weighting them by their relevant generation or demand capacity.
- 14.15.40 Generators will have zonal tariffs derived from both, the wider Peak Security nodal marginal km; and the wider Year Round nodal marginal km for the generation node calculated as the increase or decrease in marginal km along all transmission circuits except those classified as local assets.

The zonal Peak Security marginal km for generation is calculated as:

$$WNMkm_{j_{PS}} = \frac{NMkm_{j_{PS}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiPS} = \sum_{j \in Gi} WNMkm_{jPS}$$

Where

Gi	=	Generation zone
j	=	Node
NMkm _{PS}	=	Peak Security Wider nodal marginal km from transport model
WNMkm _{PS}	=	Peak Security Weighted nodal marginal km
ZMkm _{PS}	=	Peak Security Zonal Marginal km

Gen = Nodal Generation (scaled by the appropriate Peak Security Scaling factor) from the transport model Similarly, the zonal Year Round marginal km for generation is calculated as

$$WNMkm_{j_{YR}} = \frac{NMkm_{j_{YR}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiYR} = \sum_{j \in Gi} WNMkm_{jYR}$$

Where

NMkm _{YR}	=	Year Round Wider nodal marginal km from transport model
WNMkm _{YR}	=	Year Round Weighted nodal marginal km
ZMkm _{YR}	=	Year Round Zonal Marginal km
Gen	=	Nodal Generation (scaled by the appropriate Year Round Scaling
		factor) from the transport model

14.15.41 The zonal Peak Security marginal km for demand zones are calculated as follows:

$$WNMkm_{j_{PS}} = \frac{-1 * NMkm_{j_{PS}} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{Di_{PS}} = \sum_{j \in Di} WNMkm_{j_{PS}}$$

Where:

I

Di	=	Demand zone
Dem	=	Nodal <u>Net</u> Demand from transport model

Similarly, the zonal Year Round marginal km for demand zones are calculated as follows:

$$WNMkm_{jYR} = \frac{-1 * NMkm_{jYR} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{DiYR} = \sum_{j \in Di} WNMkm_{jYR}$$

- 14.15.42 A number of criteria are used to determine the definition of the generation zones. Whilst it is the intention of The Company that zones are fixed for the duration of a price control period, it may become necessary in exceptional circumstances to review the boundaries having been set. In both circumstances, the following criteria are used to determine the zonal boundaries:
- i.) Zoning is determined using the generation background with the most MWkm of circuits. Zones should contain relevant nodes whose total wider marginal costs

from the relevant generation background (as determined from the output from the transport model, the relevant expansion constant and the locational security factor, see below) are all within +/-£1.00/kW (nominal prices) across the zone. This means a maximum spread of £2.00/kW in nominal prices across the zone.

- ii.) The nodes within zones should be geographically and electrically proximate.
- iii.) Relevant nodes are considered to be those with generation connected to them as these are the only ones, which contribute to the calculation of the zonal generation tariff.
- 14.15.43 The process behind the criteria in 14.15.42 is driven by initially applying the nodal marginal costs from the relevant generation background within the DCLF Transport model onto the appropriate areas of a substation line diagram. Generation nodes are grouped into initial zones using the +/- £1.00/kW range. All nodes within each zone are then checked to ensure the geographically and electrically proximate criteria have been met using the substation line diagram. The established zones are inspected to ensure the least number of zones are used with minimal change from previously established zonal boundaries. The zonal boundaries are finally confirmed using the demand nodal costs from the relevant generation background for guidance.
- 14.15.44 The zoning criteria are applied to a reasonable range of DCLF ICRP transport model scenarios, the inputs to which are determined by The Company to create appropriate TNUoS generation zones. The minimum number of zones, which meet the stated criteria, are used. If there is more than one feasible zonal definition of a certain number of zones, The Company determines and uses the one that best reflects the physical system boundaries.
- 14.15.45 Zones will typically not be reviewed more frequently than once every price control period to provide some stability. However, in exceptional circumstances, it may be necessary to review zoning more frequently to maintain appropriate, cost reflective, locational cost signals. For example, if a new generator connecting to the transmission system would cause the creation of a new generation zone for that generator alone, it may not be appropriate from a cost reflective perspective to wait until the next price control period to undertake this rezoning. If any such rezoning is required, it will be undertaken against a background of minimal change to existing generation zones and in line with the notification process set out in the Transmission Licence and CUSC.

Accounting for Sharing of Transmission by Generators

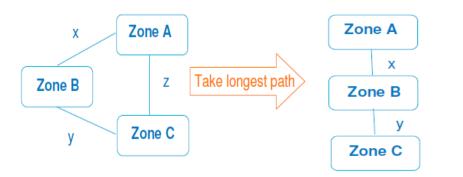
- 14.15.46 A proportion of the marginal km costs for generation are shared incremental km reflecting the ability of differing generation technologies to share transmission investment. This is reflected in charges through the splitting of Year Round marginal km costs for generation into Year Round Shared marginal km costs and Year Round Not-Shared marginal km which are then used in the calculation of the wider £/kW generation tariff.
- 14.15.47 The sharing between different generation types is accounted for by (a) using transmission network boundaries between generation zones set by connectivity between generation charging zones, and (b) the proportion of Low Carbon and Carbon generation behind these boundaries.

Page 10 of 64

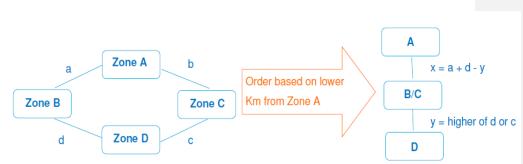
14.15.48 The zonal incremental km for each generation charging zone is split into each boundary component by considering the difference between it and the neighbouring generation charging zone using the formula below;

$$BIkm_{ab} = ZIkm_b - ZIkm_a$$

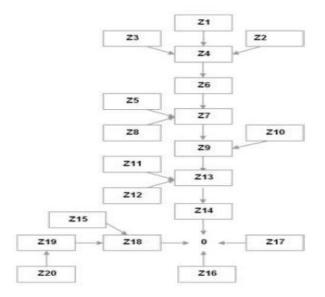
Where;


Blkm_{ab} = boundary incremental km between generation charging zone A and generation charging zone B Zlkm = generation charging zone incremental km.

14.15.49 The table below shows the categorisation of Low Carbon and Carbon generation. This table will be updated by National Grid in the Statement of Use of System Charges as new generation technologies are developed.


Carbon	Low Carbon
Coal	Wind
Gas	Hydro (excl. Pumped Storage)
Biomass	Nuclear
Oil	Marine
Pumped Storage	Tidal
Interconnectors	

Determination of Connectivity


- 14.15.50 Connectivity is based on the existence of electrical circuits between TNUoS generation charging zones that are represented in the Transport model. Where such paths exist, generation charging zones will be effectively linked via an incremental km transmission boundary length. These paths will be simplified through in the case of;
 - Parallel paths the longest path will be taken. An illustrative example is shown below with x, y and z representing the incremental km between zones.

 Parallel zones – parallel zones will be amalgamated with the incremental km immediately beyond the amalgamated zones being the greater of those existing prior to the amalgamation. An illustrative example is shown below with a, b, c, and d representing the the initial incremental km between zones, and x and y representing the final incremental km following zonal amalgamation.

14.15.51 An illustrative Connectivity diagram is shown below:

The arrows connecting generation charging zones and amalgamated generation charging zones represent the incremental km transmission boundary lengths towards the notional centre of the system. Generation located in charging zones behind arrows is considered to share based on the ratio of Low Carbon to Carbon cumulative generation TEC within those zones.

14.15.52 The Company will review Connectivity at the beginning of a new price control period, and under exceptional circumstances such as major system reconfigurations or generation rezoning. If any such reassessment is required, it will be undertaken against a background of minimal change to existing Connectivity and in line with the notification process set out in the Transmission Licence and the CUSC.

Calculation of Boundary Sharing Factors

14.15.53 Boundary sharing factors (BSFs) are derived from the comparison of the cumulative proportion of Low Carbon and Carbon generation TEC behind each of the incremental MWkm boundary lengths using the following formulae –

Page 12 of 64

If $\frac{LC}{LC+C} \le 0.5$, then all Year round marginal km costs are shared i.e. the BSF is 100%.

Where:

LC = Cumulative Low Carbon generation TEC behind the relevant transmission boundary C = Cumulative Carbon generation TEC behind the relevant transmission

C = Cumulative Carbon generation TEC behind the relevant transmission boundary

If
$$\frac{LC}{LC+C}$$
 > 0.5 then the BSF is calculated using the following formula: -

$$BSF = \left(-2 \times \left(\frac{LC}{LC+C}\right)\right) + 2$$

Where:

BSF = boundary sharing factor.

14.15.54 The shared incremental km for each boundary are derived from the multiplication of the boundary sharing factor by the incremental km for that boundary;

$$SBIkm_{ab} = BIIkm_{ab} \ x \ BSF_{ab}$$

Where;

 $SBIkm_{ab}$ = shared boundary incremental km between generation charging zone A and generation charging zone B

 BSF_{ab} = generation charging zone boundary sharing factor.

14.15.55 The shared incremental km is discounted from the incremental km for that boundary to establish the not-shared boundary incremental km. The not-shared boundary incremental km reflects the cost of transmission investment on that boundary accounting for the sharing of power stations behind that boundary.

$$NSBIkm_{ab} = BIkm_{ab} - SBIkm_{ab}$$

Where;

 $NSBIkm_{ab}$ = not shared boundary incremental km between generation charging zone A and generation charging zone B.

14.15.56 The shared incremental km for a generation charging zone is the sum of the appropriate shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRS}$$

Where;

 $ZMkm_{nYRS}$ = Year Round Shared Zonal Marginal km for generation charging zone n.

Page 13 of 64

14.15.57 The not-shared incremental km for a generation charging zone is the sum of the appropriate not-shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRNS}$$

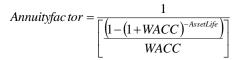
Where;

ZMkm_{nYRNS} = Year Round Not-Shared Zonal Marginal km for generation zone n.

Deriving the Final Local £/kW Tariff and the Wider £/kW Tariff

14.15.58 The zonal marginal km (ZMkm_{Gi}) are converted into costs and hence a tariff by multiplying by the Expansion Constant and the Locational Security Factor (see below). The nodal local marginal km (NLMkm^L) are converted into costs and hence a tariff by multiplying by the Expansion Constant and a Local Security Factor.

The Expansion Constant


- 14.15.59 The expansion constant, expressed in £/MWkm, represents the annuitised value of the transmission infrastructure capital investment required to transport 1 MW over 1 km. Its magnitude is derived from the projected cost of 400kV overhead line, including an estimate of the cost of capital, to provide for future system expansion.
- 14.15.60 In the methodology, the expansion constant is used to convert the marginal km figure derived from the transport model into a £/MW signal. The tariff model performs this calculation, in accordance with 14.15.95 14.15.117, and also then calculates the residual element of the overall tariff (to ensure correct revenue recovery in accordance with the price control), in accordance with 14.15.133.
- 14.15.61 The transmission infrastructure capital costs used in the calculation of the expansion constant are provided via an externally audited process. They also include information provided from all onshore Transmission Owners (TOs). They are based on historic costs and tender valuations adjusted by a number of indices (e.g. global price of steel, labour, inflation, etc.). The objective of these adjustments is to make the costs reflect current prices, making the tariffs as forward looking as possible. This cost data represents The Company's best view; however it is considered as commercially sensitive and is therefore treated as confidential. The calculation of the expansion constant also relies on a significant amount of transmission asset information, much of which is provided in the Seven Year Statement.
- 14.15.62 For each circuit type and voltage used onshore, an individual calculation is carried out to establish a £/MWkm figure, normalised against the 400KV overhead line (OHL) figure, these provide the basis of the onshore circuit expansion factors discussed in 14.15.70 14.15.77. In order to simplify the calculation a unity power factor is assumed, converting £/MVAkm to £/MWkm. This reflects that the fact tariffs and charges are based on real power.
- 14.15.63 The table below shows the first stage in calculating the onshore expansion constant. A range of overhead line types is used and the types are weighted by recent usage on the transmission system. This is a simplified calculation for 400kV OHL using example data:

Page 14 of 64

400kV	400kV OHL expansion constant calculation				
MW	Туре	£(000)/k	Circuit km*	£/MWkm	Weight
А	В	С	D	E = C/A	F=E*D
6500	La	700	500	107.69	53846
6500	Lb	780	0	120.00	0
3500	La/b	600	200	171.43	34286
3600	Lc	400	300	111.11	33333
4000	Lc/a	450	1100	112.50	123750
5000	Ld	500	300	100.00	30000
5400	Ld/a	550	100	101.85	10185
Sum			2500 (G)		285400 (H)
				Weighted Average (J= H/G):	114.160 (J)

*These are circuit km of types that have been provided in the previous 10 years. If no information is available for a particular category the best forecast will be used.

14.15.64 The weighted average £/MWkm (J in the example above) is then converted in to an annual figure by multiplying it by an annuity factor. The formula used to calculate of the annuity factor is shown below:

- 14.15.65 The Weighted Average Cost of Capital (WACC) and asset life are established at the start of a price control and remain constant throughout a price control period. The WACC used in the calculation of the annuity factor is the The Company regulated rate of return, this assumes that it will be reasonably representative of all licensees. The asset life used in the calculation is 50 years; the appropriateness of this is reviewed when the annuity factor is recalculated at the start of a price control period. These assumptions provide a current annuity factor of 0.066.
- 14.15.66 The final step in calculating the expansion constant is to add a share of the annual transmission overheads (maintenance, rates etc). This is done by multiplying the average weighted cost (J) by an 'overhead factor'. The 'overhead factor' represents the total business overhead in any year divided by the total Gross Asset Value (GAV) of the transmission system. This is recalculated at the start of each price control period. The overhead factor used in the calculation of the expansion constant for 2009/10 is 1.8%. The overhead and annuitised costs are then added to give the expansion constant.
- 14.15.67 Using the previous example, the final steps in establishing the expansion constant are demonstrated below:

400kV OHL expansion constant calculation	Ave £/MWkm
OHL	114.160

Page 15 of 64

Final	9.589
Overhead	2.055
Annuitised	7.535

- 14.15.68 This process is carried out for each voltage onshore, along with other adjustments to take account of upgrade options, see 14.15.73, and normalised against the 400KV overhead line cost (the expansion constant) the resulting ratios provide the basis of the onshore expansion factors. The process used to derive circuit expansion factors for Offshore Transmission Owner networks is described in 14.15.78.
- 14.15.69 This process of calculating the incremental cost of capacity for a 400kV OHL, along with calculating the onshore expansion factors is carried out for the first year of the price control and is increased by inflation, RPI, (May–October average increase, as defined in The Company's Transmission Licence) each subsequent year of the price control period. The expansion constant for 2010/11 is 10.633.

Onshore Wider Circuit Expansion Factors

- 14.15.70 Base onshore expansion factors are calculated by deriving individual expansion constants for the various types of circuit, following the same principles used to calculate the 400kV overhead line expansion constant. The factors are then derived by dividing the calculated expansion constant by the 400kV overhead line expansion constant. The factors will be fixed for each respective price control period.
- 14.15.71 In calculating the onshore underground cable factors, the forecast costs are weighted equally between urban and rural installation, and direct burial has been assumed. The operating costs for cable are aligned with those for overhead line. An allowance for overhead costs has also been included in the calculations.
- 14.15.72 The 132kV onshore circuit expansion factor is applied on a TO basis. This is to reflect the regional variation of plans to rebuild circuits at a lower voltage capacity to 400kV. The 132kV cable and line factor is calculated on the proportion of 132kV circuits likely to be uprated to 400kV. The 132kV expansion factor is then calculated by weighting the 132kV cable and overhead line costs with the relevant 400kV expansion factor, based on the proportion of 132kV circuitry to be uprated to 400kV. For example, in the TO areas of National Grid and Scottish Power where there are no plans to uprate any 132kV circuits, the full cable and overhead line costs of 132kV circuit are reflected in the 132kV expansion factor calculation.
- 14.15.73 The 275kV onshore circuit expansion factor is applied on a GB basis and includes a weighting of 83% of the relevant 400kV cable and overhead line factor. This is to reflect the averaged proportion of circuits across all three Transmission Licensees which are likely to be uprated from 275kV to 400kV across GB within a price control period.
- 14.15.74 The 400kV onshore circuit expansion factor is applied on a GB basis and reflects the full costs for 400kV cable and overhead lines.
- 14.15.75 AC sub-sea cable and HVDC circuit expansion factors are calculated on a case by case basis using actual project costs (Specific Circuit Expansion Factors).

Page 16 of 64

- 14.15.76 For HVDC circuit expansion factors both the cost of the converters and the cost of the cable are included in the calculation.
- 14.15.77 The TO specific onshore circuit expansion factors calculated for 2008/9 (and rounded to 2 decimal places) are:

Scottish Hydro Region

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	27.79
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.24	

Scottish Power & National Grid Regions

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	30.22
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.80	

Onshore Local Circuit Expansion Factors

- 14.15.78 The local onshore circuit tariff is calculated using local onshore circuit expansion factors. These expansion factors are calculated using the same methodology as the onshore wider expansion factor but without taking into account the proportion of circuit kms that are planned to be uprated.
- 14.15.79 In addition, the 132kV onshore overhead line circuit expansion factor is sub divided into four more specific expansion factors. This is based upon maximum (winter) circuit continuous rating (MVA) and route construction whether double or single circuit.

400kV underground cable factor:	22.39
275kV underground cable factor:	22.39
132kV underground cable factor:	30.22
400kV line factor:	1.00
275kV line factor:	1.14
132kV line factor (single; <200MVA):	10.00
132kV line factor (double; <200MVA):	8.32
132kV line factor (single; >=200MVA):	7.13
132kV line factor (double; >=200MVA):	4.42

Offshore Circuit Expansion Factors

14.15.80 Offshore expansion factors (£/MWkm) are derived from information provided by Offshore Transmission Owners for each offshore circuit. Offshore expansion factors are Offshore Transmission Owner and circuit specific. Each Offshore Transmission Owner will periodically provide, via the STC, information to derive an annual circuit revenue requirement. The offshore circuit revenue shall include revenues associated with the Offshore Transmission Owner's reactive compensation equipment, harmonic filtering equipment, asset spares and HVDC converter stations.

14.15.81 In the first year of connection, the offshore circuit expansion factor would be calculated as follows:

$\frac{CRevOFTO1}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$

Where:

CRevOFTO1	=	The offshore circuit revenue in £ for Year 1
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

14.15.82 In all subsequent years, the offshore circuit expansion factor would be calculated as follows:

Where:

AvCRevOFTO	=	The annual offshore circuit revenue averaged over the
		remaining years of the onshore National Electricity
		Transmission System Operator (NETSO) price control
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

- 14.15.83 For the avoidance of doubt, the offshore circuit revenue values, *CRevOFTO1* and *AvCRevOFTO* shall be determined using asset values after the removal of any One-Off Charges.
- 14.15.84 Prevailing OFFSHORE TRANSMISSION OWNER specific expansion factors will be published in this statement. These shall be recalculated at the start of each price control period using the formula in paragraph 14.15.71. For each subsequent year within the price control period, these expansion factors will be adjusted by the annual Offshore Transmission Owner specific indexation factor, *OFTOInd*, calculated as follows;

$$OFTOInd_{t,f} = \frac{OFTO \operatorname{Rev}Ind_{t,f}}{RPI_{t}}$$

where:

OFTOInd _{t,f}	=	the indexation factor for Offshore Transmission Owner <i>f</i> in respect of charging year <i>t</i> ;
OFTORevInd _{tf}	=	the indexation rate applied to the revenue of Offshore Transmission Owner f under the terms of its Transmission Licence in respect of charging year t ; and
<i>RPI</i> _t	=	the indexation rate applied to the expansion constant in respect of charging year <i>t</i> .

Offshore Interlinks

14.15.85 The revenue associated with an Offshore Interlink shall be divided entirely between those generators benefiting from the installation of that Offshore Interlink. Each of these Users will be responsible for their charge from their charging date, meaning that a proportion of the Offshore Interlink revenue may be socialised prior to all relevant Users being chargeable. The proportion associated with each User will be based on the Measure of Capacity to the MITS using the Offshore Interlink(s) in the event of a single circuit fault on the User's circuit from their offshore substation towards the shore, compared to the Measure of Capacity of the other Users.

Where:

An *Offshore Interlink* is a circuit which connects two offshore substations that are connected to a Single Common Substation. It is held in open standby until there is a transmission fault that limits the User's ability to export power to the Single Common Substation. In the Transport Model, they are to be modelled in open standby.

A Single Common Substation is a substation where:

- i. each substation that is connected by an Offshore Interlink is connected via at least one circuit without passing through another substation; and
- ii. all routes connecting each substation that is connected by an Offshore Interlink to the MITS pass through.

The Measure of Capacity to the MITS for each Offshore substation is the result of the following formula or zero whichever is larger. For the situation with only one interlink, all terms relating to C should be set to zero:

```
For Substation A:
min { Cap_{IAB}, ILF_A \times TEC_A - RCap_A, Cap_B - ILF_B \times TEC_B + min (Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation B:

min { ILF_B \times TEC_B - RCap_B, min (Cap_{IAB}, Cap_A - ILF_A \times TEC_A)

+ min ( Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation C:

min { Cap_{IBC}, ILF_{C} \times TEC_{C} - RCap_{C}, Cap_{B} - ILF_{B} \times TEC_{B} + min (Cap_{IAB}, Cap_{A} - ILF_{A} \times TEC_{A}) }

and
```

Cap _{IAB} = B	total capacity of the Offshore Interlink between substations A and
Cap _{IBC} = C	total capacity of the Offshore Interlink between substations B and
Cap _X =	total capacity of the circuit between offshore substation X and the Single Common Substation, where X is A, B or C.
RCap _x =	remaining capacity of the circuit between offshore substation X and the Single Common Substation in the event of a single cable fault, where X is A, B or C.
TEC _x =	the sum of the TEC for the Users connected, or contracted to connect, to offshore substation X, where X is A, B or C, where the value of TEC will be the maximum TEC that each User has held since the initial charging date, or is contracted to hold if prior to the initial charging date.

- ILF_x = Offshore Interlink Load Factor, where X is A, B or C. The Offshore Interlink Load Factor (ILF) is based on the Annual Load Factor (ALF). Until all the Users connected to a Single Common Substation have a station specific Annual Load Factor based on five years of data, the generic ALF for the fuel type will be used as the ILF for all stations. When all Users have a station specific ALF, the value of the ALF in the first such year will be used as the ILF in the calculation for all subsequent charging years.
- 14.15.86 The apportionment of revenue associated with Offshore Interlink(s) in 14.15.85 applies in situations where the Offshore Interlink was included in the design phase, or if one or more User(s) has already financially committed or been commissioned then only where that User(s) agrees to the Offshore Interlink.
- 14.15.87 Alternatively to the formula specified in 14.15.85 the proportion of the OFTO revenue associated with the Offshore Interlink allocated to each generator benefiting from the installation of an Offshore Interlink may be agreed between these Users. In this event:
- a. All relevant Users shall notify The Company of its respective proportions three months prior the OTSDUW asset transfer in the case of a generator build, or the charging date of the first generator, in the case of an OFTO build.
- b. All relevant Users may agree to vary the proportions notified under (a) by each writing to The Company three months prior to the charges being set for a given charging year.
- c. Once a set of proportions of the OFTO revenue associated with the Offshore Interlink has been provided to The Company, these will apply for the next and future charging years unless and until The Company is informed otherwise in accordance with (b) by all of the relevant Users.
- d. If all relevant Users are unable to reach agreement on the proportioning of the OFTO revenue associated with the Offshore Interlink they can raise a dispute. Any dispute between two or more Users as to the proportioning of such revenue shall be managed in accordance with CUSC Section 7 Paragraph 7.4.1 but the reference to the 'Electricity Arbitration Association' shall instead be to the 'Authority' and the Authority's determination of such dispute shall, without prejudice to apply for judicial review of any determination, be final and binding on the Users.

The Locational Onshore Security Factor

14.15.88 The locational onshore security factor is derived by running a secure DCLF ICRP transport study based on the same market background as used for Zoning in the DCLF ICRP transport model. This calculates the nodal marginal costs where peak <u>net</u> demand can be met despite the Security and Quality of Supply Standard contingencies (simulating single and double circuit faults) on the network. Essentially the calculation of secured nodal marginal costs is identical to the process outlined above except that the secure DCLF study additionally calculates a nodal marginal cost taking into account the requirement to be secure against a set of worse case contingencies in terms of maximum flow for each circuit.

- 14.15.89 The secured nodal cost differential is compared to that produced by the DCLF ICRP transport model and the resultant ratio of the two determines the locational security factor using the Least Squares Fit method. Further information may be obtained from the charging website¹.
- 14.15.90 The locational onshore security factor derived for 2010/11 is 1.8 and is based on an average from a number of studies conducted by The Company to account for future network developments. The security factor is reviewed for each price control period and fixed for the duration.

Local Security Factors

- 14.15.91 Local onshore security factors are generator specific and are applied to a generator's local onshore circuits. If the loss of any one of the local circuits prevents the export of power from the generator to the MITS then a local security factor of 1.0 is applied. For generation with circuit redundancy, a local security factor is applied that is equal to the locational security factor, currently 1.8.
- 14.15.92 Where a Transmission Owner has designed a local onshore circuit (or otherwise that circuit once built) to a capacity lower than the aggregated TEC of the generation using that circuit, then the local security factor of 1.0 will be multiplied by a Counter Correlation Factor (CCF) as described in the formula below;

$$CCF = \frac{D_{\min} + T_{cap}}{G_{cap}}$$

Where; D_{min} = minimum annual net demand (MW) supplied via that circuit in the absence of that generation using the circuit

 T_{cap} = transmission capacity built (MVA)

 G_{cap} = aggregated TEC of generation using that circuit

CCF cannot be greater than 1.0.

14.15.93 A specific offshore local security factor (LocalSF) will be calculated for each offshore connection using the following methodology:

$$LocalSF = \frac{NetworkExportCapacity}{\sum_{k} Gen_{k}}$$

Where:

 NetworkExportCapacity =
 the total export capacity of the network disregarding any Offshore Interlinks

 k
 =
 the generation connected to the offshore network

1 http://www.nationalgrid.com/uk/Electricity/Charges/

Page 21 of 64

- 14.15.94 The offshore security factor for single circuits with a single cable will be 1.0 and for multiple circuit connections will be capped at the locational onshore security factor, derived as 1.8 for 2010/11.
- 14.15.95 The offshore local security factor for configurations with one or more Offshore Interlinks is updated so that the offshore circuit tariff will include the proportion of revenue associated with the Offshore Interlink(s). The specific offshore local security factor for configurations involving an Offshore Interlink, which may be greater than 1.8, will be calculated for each offshore connection using the following methodology:

 $LocalSF = \frac{IRevOFTO \times NetworkExportCapacity}{CRevOFTO \times \sum_{k}Gen_{k}} + LocalSF_{initial}$

Where:

The appropriate proportion of the Offshore Interlink(s) revenue in £
associated with the offshore connection calculated in 14.15.85
The offshore circuit revenue in £ associated with the circuit(s) from the
offshore substation to the Single Common Substation.
Initial Local Security Factor calculated in 14.15.80 and 14.15.81
And other definitions as in 14.15.80.

Initial Transport Tariff

14.15.96 First an Initial Transport Tariff (ITT) must be calculated for both Peak Security and Year Round backgrounds. For Generation, the Peak Security zonal marginal km (ZMkm_{PS}), Year Round Not-Shared zonal marginal km (ZMkm_{YRNS}) and Year Round Shared zonal marginal km (ZMkm_{YRS}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT, Year Round Not-Shared ITT and Year Round Shared ITT respectively:

 $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$

Where ZMkm _{GiPS} ZMkm _{GiYRNS} charging zone	= = e	Peak Security Zonal Marginal km for each generation zone Year Round Not-Shared Zonal Marginal km for each generation	
ZMkm _{GiYRS}	=	Year Round Shared Zonal Marginal km for each generation	
charging zon	е		
EC	=	Expansion Constant	
LSF	=	Locational Security Factor	
	=	Peak Security Initial Transport Tariff (£/MW) for each generation	
zone			
ITT _{GiYRNS}	=	Year Round Not-Shared Initial Transport Tariff (£/MW) for each	
generation charging zone			
ITT _{GiYRS}	=	Year Round Shared Initial Transport Tariff (£/MW) for each	
generation charging zone.			

14.15.97 Similarly, for demand the Peak Security zonal marginal km (ZMkm_{PS}) and Year Round zonal marginal km (ZMkm_{YR}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT and Year Round ITT respectively:

		$ZMkm_{DiPS} \times EC \times LSF = ITT_{DiPS}$
		$ZMkm_{DiYR} \times EC \times LSF = ITT_{DiYR}$
Where ZMkm _{DiP} ZMkm _{DiY}	0	Peak Security Zonal Marginal km for each demand zone Year Round Zonal Marginal km for each demand zone
ITT _{DiPS}	=	Peak Security Initial Transport Tariff (£/MW) for each demand one
ITT_{DiYR}	=	Year Round Initial Transport Tariff (£/MW) for each demand zone
14.15.98	GSP group revenue red metered tria	tep is to multiply these ITTs by the expected metered triad <u>gross</u> demand and generation capacity to gain an estimate of the initial covery for both Peak Security and Year Round backgrounds. The ad <u>gross GSP group</u> demand and generation capacity are based on forecasts provided by Users and are confidential.
	affected em	ad gross GSP group demand is net demand for all GSP groups less bedded exports and grandfathered embedded exports for all GSP
a.	<u>groups.</u>	

Where

ITRR _G =	Initial Transport Revenue Recovery for generation
G _{Gi} =	Total forecast Generation for each generation zone (based
	on analysis of confidential User forecasts)
ITRR _D =	Initial Transport Revenue Recovery for gross GSP group
_	demand
D _{Di} = each	Total forecast Metered Triad gross GSP group Demand for
	demand zone (based on <u>analysis of</u> confidential User forecasts).

In addition, the initial tariffs for generation are also multiplied by the **Peak Security flag** when calculating the initial revenue recovery component for the Peak Security background. Similarly, when calculating the initial revenue recovery for the Shared component of the Year Round background, the initial tariffs are multiplied by the **Annual Load Factor** (see below).

Peak Security (PS) Flag

14.15.99 The revenue from a specific generator due to the Peak Security locational tariff needs to be multiplied by the appropriate Peak Security (PS) flag. The PS flags indicate the extent to which a generation plant type contributes to the

Page 23 of 64

need for transmission network investment at peak demand conditions. The PS flag is derived from the contribution of differing generation sources to the demand security criterion as described in the Security Standard. In the event of a significant change to the demand security assumptions in the Security Standard, National Grid will review the use of the PS flag.

Generation Plant Type	PS flag
Intermittent	0
Other	1

Annual Load Factor (ALF)

- 14.15.100 The ALF for each individual Power Station is calculated using the relevant TEC (MW) and corresponding output data. Where output data is not available for a Power Station, including for new Power Stations and emerging Power Station technologies, generic data for the appropriate generation plant type will be used.
- 14.15.101 For a given charging year "t" the Power Station ALF will be based on information from the previous five charging years, calculated for each charging year as set out below.

$$ALF = \frac{\sum_{p=1}^{17520} GMWh_p}{\sum_{p=1}^{17520} TECp \times 0.5}$$

Where:

 $GMWh_p$ is the maximum of FPN or actual metered output in a Settlement Period related to the power station TEC (MW); and

 TEC_{p} is the TEC (MW) applicable to that Power Station for that Settlement Period including any STTEC and LDTEC, accounting for any trading of TEC.

- 14.15.102 The appropriate output (FPN or actual metered) figure is derived from **BM Unit** data available to National Grid and relates to the total TEC of the Power Station.
- 14.15.103 Once all five charging year ALFs have been calculated for the individual Power Station they are compared, and the highest and lowest figures are discarded. The final ALF, to be used for transmission charging purposes, is calculated as the average of the remaining three ALFs.
- 14.15.104 In the event that only four charging years of complete output (FPN or actual metered) data are available for an individual Power Station then the higher three charging years ALF would be used in the calculation of the final ALF. In the event that only three charging years of complete output (FPN or actual metered) data are available then these three charging years would be used.
- 14.15.105 Due to the aggregation of output (FPN or actual metered) data for dispersed generation (e.g. cascade hydro schemes), where a single generator BMU consists of geographically separated power stations, the ALF would be calculated based on the total output of the BMU and the overall TEC of those Power Stations.

Page 24 of 64

- 14.15.106 In the event that there are not three full charging years of an individual power station's output available, missing output (FPN or actual metered) data would be replaced by generic data for that generation plant type to ensure three charging years of information are available for the Power Station. The derivation of the generic data is described in paragraphs 14.15.111-14.15.114.
- 14.15.107 Users will receive draft ALFs before 25th December of the charging year (t-1) for the charging year (t) and will have a period of 15 working days from date of publishing to notify the Company of any errors. Failure to agree changes relating to errors will be treated as a charging dispute under the CUSC.
- 14.15.108 The ALFs used in the setting of final tariffs will be published in the annual Statement of Use of System Charges. Changes to ALFs after this publication will not result in changes to published tariffs (e.g. following dispute resolution).

Derivation of Generic ALFs

14.15.109 The generic ALF is derived from the average annual output of the ten most recently commissioned GB generation of a particular generation plant type that have at least five charging years' data, using an identical methodology to that used for the Power Station specific calculation described above. Where less than ten GB generators of a particular generation plant type exist, then data from all existing generators of that particular generation plant type will be used. Example generation plant type categories are listed below;

Fuel Type
Biomass
Coal
Gas
Hydro
Nuclear (by reactor
type)
Oil & OCGTs
Pumped Storage
Onshore Wind
Offshore Wind
CHP

- 14.15.110 The Company will keep these categories under review and update as necessary. Where within a category there is a significant locational difference consideration will be given to zonal generic factors. The factors used will be published in the Statement of Use of System Charges and will be reviewed annually.
- 14.15.111 If a User can demonstrate that the generation plant type of a Power Station has changed, consideration will be given to the use of relevant generic ALF information in the calculation of their charges until sufficient specific data is available.
- 14.15.112 For new and emerging generation plant types, where insufficient data is available to allow a generic ALF to be developed, The Company will use the best information available e.g. from manufactuers and data from use of similar technologies outside GB. The factor will be agreed with the relevant Generator. In the event of a disagreement the standard provisions for dispute in the CUSC will apply.

Page 25 of 64

14.15.113	Embedded exports are exports measured on a half-hourly basis by
	Metering Systems, in accordance with the BSC, that are not subject to
	generation TNUoS. The tariff to be applied in respect of embedded exports is different depending on whether the embedded exports are
	affected embedded exports or grandfathered embedded exports
TNUoS Emb	edded Export Tariff for Affected Embedded Exports
14.15.114	Affected Embedded Exports are embedded exports other than
	Grandfathered Embedded Exports.
14.15.115	The embedded export tariff will be applied to the metered Triad volumes
14.13.113	of Affected Embedded Exports for each demand zone as follows:
	$EETA_{Di} = ITT_{DiPS} + ITT_{DiYR} + AEX$
	Where
<u>ITT_{Dif} ITT_{Di}</u>	
AEX	$= ABs (Min_{Di}(ITT_{DiPS} + ITT_{DiVR}))$ The Value of EETA _{Pi} will be floored at zero, so that EETA _{Pi} is always zero
AEX	
AEX	The Value of EETA _{DI} will be floored at zero, so that EETA _{DI} is always zero
	<u>The Value of EETA_{pi} will be floored at zero, so that EETA_{pi} is always zero or positive.</u>
TNUoS Emb	The Value of EETA _{DI} will be floored at zero, so that EETA _{DI} is always zero
TNUoS Emb	<u>The Value of EETA_{pi} will be floored at zero, so that EETA_{pi} is always zero or positive.</u> <u>edded Export Tariff for Grandfathered Embedded Exports</u> <u>Grandfathered Embedded Exports are embedded exports measured by</u>
TNUoS Emb	<u>The Value of EETA_{pi} will be floored at zero, so that EETA_{pi} is always zero or positive.</u> edded Export Tariff for Grandfathered Embedded Exports
TNUoS Emb 14.15.116 • <u>Has a</u>	The Value of EETA _{pi} will be floored at zero, so that EETA _{pi} is always zero or positive. edded Export Tariff for Grandfathered Embedded Exports Grandfathered Embedded Exports are embedded exports measured by metering systems where all associated generation either: a Contract for Difference Agreement that was awarded in allocation rounds
TNUoS Emb 14.15.116 • <u>Has a</u>	<u>The Value of EETA_{pi} will be floored at zero, so that EETA_{pi} is always zero or positive.</u> <u>edded Export Tariff for Grandfathered Embedded Exports</u> <u>Grandfathered Embedded Exports are embedded exports measured by</u> <u>metering systems where all associated generation either:</u>
TNUoS Emb 14.15.116 • Has a prior • Has a	<u>The Value of EETA_{Di} will be floored at zero, so that EETA_{Di} is always zero or positive.</u> edded Export Tariff for Grandfathered Embedded Exports <u>Grandfathered Embedded Exports are embedded exports measured by</u> metering systems where all associated generation either: <u>a Contract for Difference Agreement that was awarded in allocation rounds</u> to 01/01/2016 which has not been terminated; or <u>a Capacity Agreement that is recorded on the T-4 Auction Capacity Market</u>
TNUoS Emb 14.15.116 • Has a prior • Has a	The Value of EETA _D will be floored at zero, so that EETA _D is always zero or positive. edded Export Tariff for Grandfathered Embedded Exports Grandfathered Embedded Exports are embedded exports measured by metering systems where all associated generation either: a Contract for Difference Agreement that was awarded in allocation rounds to 01/01/2016 which has not been terminated; or
TNUoS Emb 14.15.116 • Has a prior • Has a Regis	<u>The Value of EETA_{Di} will be floored at zero, so that EETA_{Di} is always zero or positive.</u> edded Export Tariff for Grandfathered Embedded Exports <u>Grandfathered Embedded Exports are embedded exports measured by</u> metering systems where all associated generation either: <u>a Contract for Difference Agreement that was awarded in allocation rounds</u> to 01/01/2016 which has not been terminated; or <u>a Capacity Agreement that is recorded on the T-4 Auction Capacity Market</u>
TNUoS Emb 14.15.116 • Has a prior • Has a Regis • Ir	The Value of EETA _{pi} will be floored at zero, so that EETA _{pi} is always zero or positive. edded Export Tariff for Grandfathered Embedded Exports Grandfathered Embedded Exports are embedded exports measured by metering systems where all associated generation either: a Contract for Difference Agreement that was awarded in allocation rounds to 01/01/2016 which has not been terminated; or a Capacity Agreement that is recorded on the T-4 Auction Capacity Market ster 2014 or T-4 Auction Capacity Market Register 2015 as an agreement:
TNUoS Emb 14.15.116 • Has a prior • Has a Regis • Ir • H	The Value of EETA _D will be floored at zero, so that EETA _D is always zero or positive. edded Export Tariff for Grandfathered Embedded Exports Grandfathered Embedded Exports are embedded exports measured by metering systems where all associated generation either: a Contract for Difference Agreement that was awarded in allocation rounds to 01/01/2016 which has not been terminated; or a Capacity Agreement that is recorded on the T-4 Auction Capacity Market ster 2014 or T-4 Auction Capacity Market Register 2015 as an agreement: a respect of a 'new build generating CMU'
TNUoS Emb 14.15.116 • Has a prior • Has a Regis • Ir • H	The Value of EETA _{pi} will be floored at zero, so that EETA _{pi} is always zero or positive. edded Export Tariff for Grandfathered Embedded Exports Grandfathered Embedded Exports are embedded exports measured by metering systems where all associated generation either: a Contract for Difference Agreement that was awarded in allocation rounds to 01/01/2016 which has not been terminated; or a Capacity Agreement that is recorded on the T-4 Auction Capacity Market ster 2014 or T-4 Auction Capacity Market Register 2015 as an agreement: respect of a 'new build generating CMU' aving more than one delivery year
TNUoS Emb 14.15.116 • Has a prior • Has a Regis • Ir • H	The Value of EETA _{Di} will be floored at zero, so that EETA _{Di} is always zero or positive. edded Export Tariff for Grandfathered Embedded Exports Grandfathered Embedded Exports are embedded exports measured by metering systems where all associated generation either: a Contract for Difference Agreement that was awarded in allocation rounds to 01/01/2016 which has not been terminated; or a Capacity Agreement that is recorded on the T-4 Auction Capacity Market ster 2014 or T-4 Auction Capacity Market Register 2015 as an agreement: respect of a 'new build generating CMU' aving more than one delivery year

Deleted: 113

Deleted: 114

Page 27 of 64

revenue recovery:

$$\sum_{Gi=1}^{n} (ITT_{GiYRNS} \times G_{Gi}) = ITRR_{GYRNS}$$
$$\sum_{Gi=1}^{n} (ITT_{GiYRS} \times G_{Gi} \times ALF) = ITRR_{GYRS}$$

Where:

ITRR _{GYRNS}	=	Year Round Not-Shared Initial Transport Revenue Recovery for			
ITRR _{GYRS} generation	=	Year Round Shared Initial Transport Revenue Recovery for			
ALF	=	Annual Load Factor appropriate to that generator.			

14.15.115 Similar to the Peak Security background, the initial revenue recovery for <u>gross</u> <u>GSP group</u> demand for the Year Round background is calculated by multiplying the initial tariff by the total forecast metered triad <u>gross GSP group</u> demand:

$$\sum_{Di=1}^{14} \left(ITT_{DiYR} \times D_{Di} \right) = ITRR_{DYR}$$

Where:

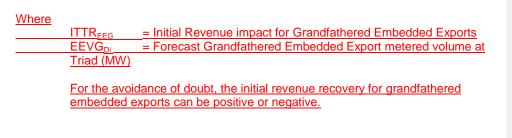
 $\mathsf{ITRR}_{\mathsf{DYR}}$

= Year Round Initial Transport Revenue Recovery for <u>gross GSP</u> <u>group</u> demand

14.15.120The initial revenue recovery for Affected Embedded Exports is the Affected Embedded Export Tariff multiplied by the total forecast volume of Affected Embedded Export at triad:

$$ITRR_{EEA} = \sum_{Di=1}^{14} (EETA_{Di} \times EEVA_{Di})$$

Where


	= Initial Revenue impact for Affected Embedded Exports
EEVA _{Di}	= Forecast Affected Embedded Export metered volume at
<u>Triad (MW)</u>	

For the avoidance of doubt, the initial revenue recovery for affected embedded exports can be positive or negative.

14.15.121The initial revenue recovery for Grandfathered Embedded Exports is the Grandfathered Embedded Export Tariff multiplied by the total forecast volume of Grandfathered Embedded Export at triad:

$$ITRR_{EEG} = \sum_{Di=1}^{14} (EETG_{Di} \times EEVG_{Di})$$

Page 28 of 64

Deriving the Final Local Tariff (£/kW)

Local Circuit Tariff

14.15,<u>122</u> Generation with a local circuit tariff is calculated by multiplying the Year Round nodal marginal km along the local circuit by the expansion constant and the relevant local security factor (whether onshore or offshore) and summing across local circuits to give the local circuit tariff:

$$\sum_{k} \frac{NLMkm_{Gj}^{L} \times EC \times LocalSF_{k}}{1000} = CLT_{Gi}$$

Where

k	=	Local circuit k for generator
	_	Local circuit k for generator
NLMkm _{Gj} L	=	Year Round Nodal marginal km along local circuit k using local
		circuit expansion factor.
EC	=	Expansion Constant
$LocalSF_k$	=	Local Security Factor for circuit k
CLT _{Gi}	=	Circuit Local Tariff (£/kW)

Onshore Local Substation Tariff

- 14.15,<u>123</u> All chargeable generation is subject to the local substation tariff component which is determined by assessing the generation substation type which is the substation at the connection charging boundary, against three cost determining factors:
 - (a) HV connection voltage the voltage at the boundary between the User's connection assets and the transmission system;
 - (b) Sum of TEC at the generation substation the combined TEC of all generation at the connecting substation; and
 - (c) The level of redundancy at the generation substation single busbar / single switch mesh connections are examples of no redundancy connections, whereas examples of connections with redundancy include double busbar and mesh sub station designs.
- 14.15,<u>124</u> Using the above factors, the corresponding £/kW tariffs (quoted to 3dp) that will be applied during 2010/11 are:

Substation Connection		Substation Voltage (a)		
Rating (b)	Type (c)	132kV	275kV	400kV
<1320MW	No redundancy	0.133	0.081	0.065

Page 29 of 64

Deleted: 116

Deleted: 117

I

1

1

<1320MW	Redundancy	0.301	0.192	0.155
>=1320MW	No redundancy	n/a	0.257	0.208
>=1320MW	Redundancy	n/a	0.417	0.336

- 14.15,<u>125</u> The process for calculating Local Substation Tariffs will be carried out for the first year of the price control and will subsequently be indexed by RPI for each subsequent year of the price control period.
- 14.15,<u>126</u> The effective **Local Tariff** (£/kW) is calculated as the sum of the circuit and substation onshore and/or offshore components:

$$ELT_{Gi} = CLT_{Gi} + SLT_{Gi}$$

Where

ELT _{Gi}	=	Effective Local Tariff (£/kW)
SLT_{Gi}	=	Substation Local Tariff (£/kW)

14.15,127 Where tariffs do not change mid way through a charging year, final local tariffs will be the same as the effective tariffs: ELT_{Gi} = LT_{Gi}

ELT _{Gi}	=	Ľ
Where		
LT _{Gi}	=	Fi

i

= Final Local Tariff (£/kW)

14.15,<u>128</u> Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$LT_{Gi} = \frac{12 \times \left(ELT_{Gi} \times \sum_{Gi=1}^{21} G_{Gi} - FLL_{Gi}\right)}{b \times \sum_{Gi=1}^{21} G_{Gi}} \quad \text{and} \quad FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{21} D_{Di}}$$

Where:

b = number of months the revised tariff is applicable for

FLL = Forecast local liability incurred over the period that the original tariff is applicable for

14.15,<u>129</u> For the purposes of charge setting, the total local charge revenue is calculated by:

$$LCRR_{G} = \sum_{j=Gi} LT_{Gi} * G_{j}$$

$$= Local Charge Revenue Recon
$$= Forecast chargeable General$$$$

Where LCRR_G

Gi

Local Charge Revenue Recovery Forecast chargeable Generation or Transmission Entry Capacity in kW (as applicable) for each generator (based on <u>analysis of</u> confidential information received from Users)

Offshore substation local tariff

14.15<u>130</u> All offshore chargeable generation is subject to an offshore substation tariff. The offshore substation tariff shall be the sum of transformer, switchgear and platform components. Deleted: 124

Deleted: 119

Deleted: 120

Deleted: 121

Deleted: 122

Deleted: 123

Page 30 of 64

I

I

- 14.15,131 Each tariff component, expressed in £/kW, shall be the ratio of the Offshore Transmission Owner revenue (£) and rating associated with the transformers, switchgear or platform (kW) at each offshore substation. The Offshore Transmission Owner revenue of each tariff component shall include that associated with asset spares. In the case of the platform component, the relevant rating shall be the lower of the transformer or switchgear ratings. As with the offshore circuit expansion factors, the Offshore Transmission Owner revenue associated with each tariff component shall be averaged over the remaining years of the NETSO price control.
- 14.15,132 Offshore Transmission Owner revenue associated with interest during construction and project development overheads will be attributed to the relevant asset category with which it is associated. If these or any other costs included in the Offshore Transmission Owner revenue are not readily attributable to a given asset category, they will be pro-rated across the various asset categories based on their relative cost.
 - 14.15,133 For 2010/11 a discount of £0.345590/kW shall be provided to the offshore substation tariff to reflect the average cost of civil engineering for onshore substations. This will be inflated by RPI each year and reviewed every price control period.
 - 14.15,134 Offshore substation tariffs shall be reviewed at the start of every onshore price control period. For each subsequent year within the price control period, these shall be inflated in the same manner as the associated Offshore Transmission Owner Revenue.
- 14.15,<u>135</u> The revenue from the offshore substation local tariff is calculated by:

$$SLTR = \sum_{\substack{All \text{ offshore}\\ \text{substatios}}} \left(SLT_k \times \sum_k Gen_k \right)$$

Where:

SLT _k	=	the offshore substation tariff for substation k
Gen _k	=	the generation connected to offshore substation k

The Residual Tariff

14.15,136 The total revenue to be recovered through TNUoS charges is determined each year with reference to the Transmission Licensees' Price Control formulas less the costs expected to be recovered through Pre-Vesting connection charges. Hence in any given year t, a target revenue figure for TNUoS charges (TRR_t) is set after adjusting for any under or over recovery for and including, the small generators discount is as follows:

$$TRR_t = R_t - PVC_t - SG_{t-1}$$

Where

- TRRt = TNUoS Revenue Recovery target for year t
 Rt = Forecast Revenue allowed under The Company's RPI-X Price Control Formula for year t (this term includes a number of adjustments, including for over/under recovery from the previous year). For further information, refer to Special Condition D2 of The Company's Transmission Licence.
 PVCt = Forecast Revenue from Pre-Vesting connection charges for year t
- SG_{t-1} = The proportion of the under/over recovery included within R_t which relates to the operation of statement C13 of the The Company Transmission Licence. Should the operation of statement C13 result in an under

Page 31 of 64

V1.12-01 April 2016

Deleted: 125

Deleted: 126

Deleted: 127

Deleted: 128

Deleted: 129

recovery in year t – 1, the SG figure will be positive and vice versa for an over recovery.

14.15,137 In normal circumstances, the revenue forecast to be recovered from the initial transport tariffs will not equate to the total revenue target. This is due to a number of factors. For example, the transport model assumes, for simplicity, smooth incremental transmission investments can be made. In reality, transmission investment can only be made in discrete 'lumps'. The transmission system has been planned and developed over a long period of time. Forecasts and assessments used for planning purposes will not have been borne out precisely by events and therefore some distinction between an optimal system for one year and the actual system can be expected.

14.15,138 As a result of the factors above, in order to ensure adequate revenue recovery, a constant non-locational **Residual Tariff** for generation and demand is calculated, which includes infrastructure substation asset costs. It is added to the initial transport tariffs for both Peak Security and Year Round backgrounds so that the correct generation / demand revenue split is maintained and the total revenue recovery is achieved.

$$RT_{D} = \frac{(p \times TRR) - ITRR_{DPS} - ITRR_{DYR} - ITRR_{EEA} - ITTR_{EEG}}{\sum_{bi=1}^{14} D_{bi}}$$

$$RT_{G} = \frac{\left[\left(1-p\right) \times TRR\right] - ITRR_{GPS} - ITRR_{GYRNS} - ITRR_{GYRNS} - LCRR_{G}}{\sum_{Gi=1}^{n} G_{Gi}}$$

Where RT

Residual Tariff (£/MW)

= Proportion of revenue to be recovered from demand

Final £/kW Tariff

р

14.15,139 The effective Transmission Network Use of System tariff (TNUoS) for generation and gross demand can now be calculated as the sum of the initial transport wider tariffs for Peak Security and Year Round backgrounds, the nonlocational residual tariff and the local tariff:

$$ET_{Gi} = \frac{ITT_{GiPS} + ITT_{GiYRNS} + ITT_{GiYRS} + RT_{G}}{1000} + LT_{Gi}$$
$$ET_{Di} = \frac{ITT_{DiPS} + ITT_{DiYR} + RT_{D}}{1000}$$

Where

ET_{Gi} = Effective Generation TNUoS Tariff expressed in £/kW (ET_{Gi} would only be applicable to a Power Station with a PS flag of 1 and ALF of 1; in all other circumstances ITT_{GiPS}, ITT_{GiYRNS} and ITT_{GiYRS} will be applied using Power Station specific data)

ET_{Di} = Effective Gross Demand TNUoS Tariff expressed in £/kW

Page 32 of 64

Deleted: 131

Deleted: 132

Deleted:

Deleted: 133

 $RT_D = \frac{\left(p \times TR\right)}{TR}$

The effective Transmission Network Use of System tariff (TNUoS) for affected embedded exports and grandfathered embedded exports can now be calculated by expressing the embedded export tariff in £/kW values:

$$ET_{EEAi} = \frac{EETA_{Di}}{1000}$$

$$ET_{EEGi} = \frac{EETG_{Di}}{1000}$$

Where

 $\frac{WHOLC}{ET_{EEAi}} = Effective Affected Embedded Export TNUoS Tariff expressed in £/kW$ $ET_{EEGI} = Effective Grandfathered Embedded Export TNUoS Tariff expressed in £/kW$

For the purposes of the annual Statement of Use of System Charges ET_{Gi} will be published as ITT_{GIPS} ; ITT_{GIYRS} , ITT_{GIYRS} , RT_G and LT_{Gi}

14.15,140 Where tariffs do not change mid way through a charging year, final demand and generation tariffs will be the same as the effective tariffs.

$$FT_{Gi} = ET_{Gi}$$

$$FT_{Di} = ET_{Di}$$

$$FT_{EEAi} = ET_{EEA}$$

$$FT_{EEGi} = ET_{EEG}$$

14.15,141 Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$FT_{Gi} = \frac{12 \times \left(ET_{Gi} \times \sum_{Gi=1}^{20} G_{Gi} - FL_{Gi}\right)}{b \times \sum_{Gi=1}^{27} G_{Gi}} \text{ and } FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{27} D_{Di}}$$

$$FT_{EEAi} = \frac{12 \times (ET_{EEAi} \times \sum_{Di=1}^{14} EETA_{Di} - FL_{Di})}{b \times \sum_{Di=1}^{14} EETA_{Di}} \quad \text{and} \quad FT_{EEGi} = \frac{12 \times (ET_{EEGi} \times \sum_{Di=1}^{14} EETG_{Di} - FL_{Di})}{b \times \sum_{Di=1}^{14} EETG_{Di}}$$

Where:

b = number of months the revised tariff is applicable for

FL = Forecast liability incurred over the period that the original tariff is applicable for

Note: The ET_{Gi} element used in the formula above will be based on an individual Power Stations PS flag and ALF for Power Station G_{Gi} , aggregated to ensure overall correct revenue recovery.

14.15,<u>142</u> If the final <u>gross</u> demand TNUoS Tariff results in a negative number then this is collared to £0/kW with the resultant non-recovered revenue smeared over the remaining demand zones:

If $FT_{Di} < 0$, then i = 1 to z

Page 33 of 64

Deleted: 134

Deleted: 135

$$NRRT_{D} = \frac{\sum_{i=1}^{z} (FT_{Di} \times D_{Di})}{\sum_{i=z+1}^{14} D_{Di}}$$

Therefore,

Therefore the revised Final Tariff for the <u>gross</u> demand zones with positive Final tariffs is given by:

For i= 1 to z: $RFT_{Di} = 0$

For *i*=z+1 to 14:

 $RFT_{Di} = FT_{Di} + NRRT_{D}$

Where

I

1

I

 $NRRT_D = Non Recovered Revenue Tariff (£/kW)$ $RFT_{Di} = Revised Final Tariff (£/kW)$

- 14.15,143 The tariffs applicable for any particular year are detailed in The Company's Statement of Use of System Charges, which is available from the Charging website. Archived tariff information may also be obtained from the Charging website.
- 14.15,<u>144</u> The zonal maps referenced in The Company's **Statement of Use of System Charges** and available on the **Charging website** contain detailed information for the charging year in question of which Grid Supply Points fall into which TNUoS zones.

14.15,145 New Grid Supply Points will be classified into zones on the following basis:

- For demand zones, according to the GSP Group to which the Grid Supply Point is allocated for energy market settlement purposes.
- For generation zones, with reference to the geographic proximity to existing zones and, where close to a boundary between existing zones, with reference to the marginal costs arising from transport model studies. The GSP will then be allocated to the zone, which contains the most similar marginal costs.
- 14.15,146 The Company has available, upon request, the DCLF ICRP transport model, tariff model template and data necessary to run the model, consisting of nodal values of generation and demand connection points to the NETS. The model and data will enable the basic nodal charges to be determined and will also allow sensitivity analysis concerning alternative developments of generation and demand to be undertaken. The model is available from the Charging Team and whilst it is free of charge, it is provided under licence to restrict its distribution and commercial use.
 - 14.15,147 The Company will be pleased to run specific sensitivity studies for Users under a separate study contract in line with the fees set out in the **Statement of Use** of System Charges. Please contact the **Charging Team**.
 - 14.15,148 The factors which will affect the level of TNUoS charges from year to year include-;

Page 34 of 64

Deleted: 137

Deleted: 138

Deleted: 139

Deleted: 140

Deleted: 141

- the forecast level of peak demand on the system
- the Price Control formula (including the effect of any under/over recovery from the previous year),
- the expansion constant,
- the locational security factor,
- the PS flag
- the ALF of a generator
- changes in the transmission network
- HVDC circuit impedance calculation
- changes in the pattern of generation capacity and demand.
- changes in the pattern of embedded exports

14.15,149 In accordance with Standard Licence Condition C13, generation directly connected to the NETS 132kV transmission network which would normally be subject to generation TNUoS charges but would not, on the basis of generating capacity, be liable for charges if it were connected to a licensed distribution network qualifies for a reduction in transmission charges by a designated sum, determined by the Authority. Any shortfall in recovery will result in a unit amount increase in gross demand charges to compensate for the deficit. Further information is provided in the Statement of the Use of System Charges.

Stability & Predictability of TNUoS tariffs

14.15,150 A number of provisions are included within the methodology to promote the stability and predictability of TNUoS tariffs. These are described in 14.29.

Deleted: 143

14.16 Derivation of the Transmission Network Use of System Energy Consumption Tariff and Short Term Capacity Tariffs

- 14.16.1 For the purposes of this section, Lead Parties of Balancing Mechanism (BM) Units that are liable for Transmission Network Use of System Demand Charges are termed Suppliers.
- 14.16.2 Following calculation of the Transmission Network Use of System £/kW Gross Demand Tariff (as outlined in Chapter 2: Derivation of the TNUoS Tariff) for each GSP Group is calculated as follows:

$$p/kWh Tariff = (NHHD_F * £/kW Tariff - FL_G) *100$$

NHHC_G

Where:

 \pounds/kW Tariff = The \pounds/kW Effective <u>Gross</u> Demand Tariff (\pounds/kW), as calculated previously, for the GSP Group concerned.

 \mathbf{NHHD}_{F} = The Company's forecast of Suppliers' non-half-hourly metered Triad Demand (kW) for the GSP Group concerned. The forecast is based on historical data.

 FL_{G} = Forecast Liability incurred for the GSP Group concerned.

 $\rm NHHC_{G}$ = The Company's forecast of GSP Group non-half-hourly metered total energy consumption (kWh) for the period 16:00 hrs to 19:00hrs inclusive (i.e. settlement periods 33 to 38) inclusive over the period the tariff is applicable for the GSP Group concerned.

Short Term Transmission Entry Capacity (STTEC) Tariff

14.16.3 The Short Term Transmission Entry Capacity (STTEC) tariff for positive zones is derived from the Effective Tariff (ET_{Gi}) annual TNUoS £/kW tariffs (14.15.112). If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the STTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (i.e. over the whole financial year, not just the period that the STTEC is applicable for). STTECs will not be reconciled following a mid year charge change. The premium associated with the flexible product is associated with the analysis that 90% of the annual charge is linked to the system peak. The system peak is likely to occur in the period of November to February inclusive (120 days, irrespective of leap years). The calculation for positive generation zones is as follows:

$$\frac{FT_{Gi} \times 0.9 \times STTEC \ Period}{120} = STTEC \ tariff \ (\pounds/kW/period)$$

Where:

FT	=	Final annual TNUoS Tariff expressed in £/kW
Gi	=	Generation zone
STTEC Period	=	A period applied for in days as defined in the CUSC

Page 36 of 64

- 14.16.4 For the avoidance of doubt, the charge calculated under 14.16.3 above will represent each single period application for STTEC. Requests for multiple /STTEC periods will result in each STTEC period being calculated and invoiced separately.
- 14.16.5 The STTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.

Limited Duration Transmission Entry Capacity (LDTEC) Tariffs

14.16.6 The Limited Duration Transmission Entry Capacity (LDTEC) tariff for positive zones is derived from the equivalent zonal STTEC tariff for up to the initial 17 weeks of LDTEC in a given charging year (whether consecutive or not). For the remaining weeks of the year, the LDTEC tariff is set to collect the balance of the annual TNUoS liability over the maximum duration of LDTEC that can be granted in a single application. If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the LDTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (ie over the whole financial year, not just the period that the STTEC is applicable for). LDTECs will not be reconciled following a mid year charge change:

Initial 17 weeks (high rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.9 \times 7}{120}$$

Remaining weeks (low rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.1075 \times 7}{316 - 120} \times (1 + P)$$

where FT is the final annual TNUoS tariff expressed in £/kW; G_i is the generation TNUoS zone; and P is the premium in % above the annual equivalent TNUoS charge as determined by The Company, which shall have the value 0.

- 14.16.7 The LDTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.
- 14.16.8 The tariffs applicable for any particular year are detailed in The Company's **Statement of Use of System Charges** which is available from the **Charging website.** Historical tariffs are also available on the **Charging website.**

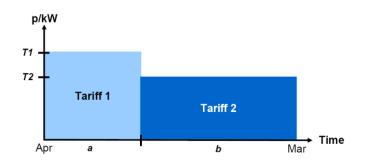
14.17 Demand Charges

Parties Liable for Demand Charges

- 14.17.1 <u>Demand charges are subdivided into charges for gross demand, energy and</u> <u>embedded export.</u> The following parties shall be liable for <u>some or all of the</u> <u>categories of</u> demand charges:
 - The Lead Party of a Supplier BM Unit;
 - Power Stations with a Bilateral Connection Agreement;
 - Parties with a Bilateral Embedded Generation Agreement
- 14.17.2 Classification of parties for charging purposes, section 14.26, provides an illustration of how a party is classified in the context of Use of System charging and refers to the paragraphs most pertinent to each party.

Basis of Gross Demand Charges

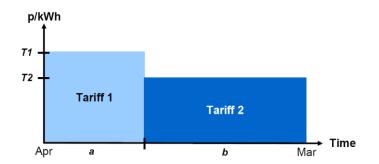
- 14.17.3 <u>Gross d</u>emand charges are based on a de-<u>minimis</u> £0/kW charge for Half Hourly and £0/kWh for Non Half Hourly metered demand.
 - 14.17.4 Chargeable <u>Gross</u> Demand Capacity is the value of Triad <u>gross</u> demand (kW). Chargeable Energy Capacity is the energy consumption (kWh). The definition of both these terms is set out below.
 - 14.17.5 If there is a single set of <u>gross</u> demand tariffs within a charging year, the Chargeable <u>Gross</u> Demand Capacity is multiplied by the relevant <u>gross</u> demand tariff, for the calculation of <u>gross</u> demand charges.
 - 14.17.6 If there is a single set of energy tariffs within a charging year, the Chargeable Energy Capacity is multiplied by the relevant energy consumption tariff for the calculation of energy charges..
 - 14.17.7 If multiple sets of <u>gross</u> demand tariffs are applicable within a single charging year, <u>gross</u> demand charges will be calculated by multiplying the Chargeable <u>Gross</u> Demand Capacity by the relevant tariffs pro rated across the months that they are applicable for, as below,


▼		
Annual Liability	$y_{Demand} = \frac{Chargeable \ Gross}{Demand \ Capacity} \times \left(\frac{(a \times Tariff \ 1) + (b \times Tariff \ 2)}{12}\right)$	
where:		
Tariff 1 =	Original tariff,	
Tariff 2 =	Revised tariff,	

a = Number of months over which the original tariff is applicable,
 b = Number of months over which the revised tariff is applicable.

Deleted: minimus

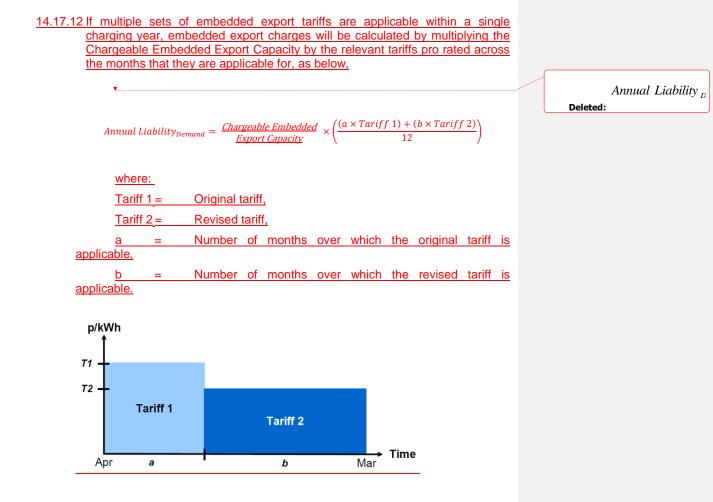
Deleted: Annual Liability _D


Page 38 of 64

14.17.8 If multiple sets of energy tariffs are applicable within a single charging year, energy charges will be calculated by multiplying relevant Tariffs by the Chargeable Energy Capacity over the period that that the tariffs are applicable for and summing over the year.

Annual Liability $_{Energy} = Tariff \ 1 \times \sum_{TI_s}^{TI_E} Chargeable Energy Capacity + Tariff \ 2 \times \sum_{TZ_s}^{TI_E} Chargeable Energy Capacity$

Where: T1s Start date for the period for which the original tariff is = applicable, End date for the period for which the original tariff is T1_E = applicable, Start date for the period for which the revised tariff is T2s _ applicable, End date for the period for which the revised tariff is T2_E = applicable.



Basis of Embedded Export Charges

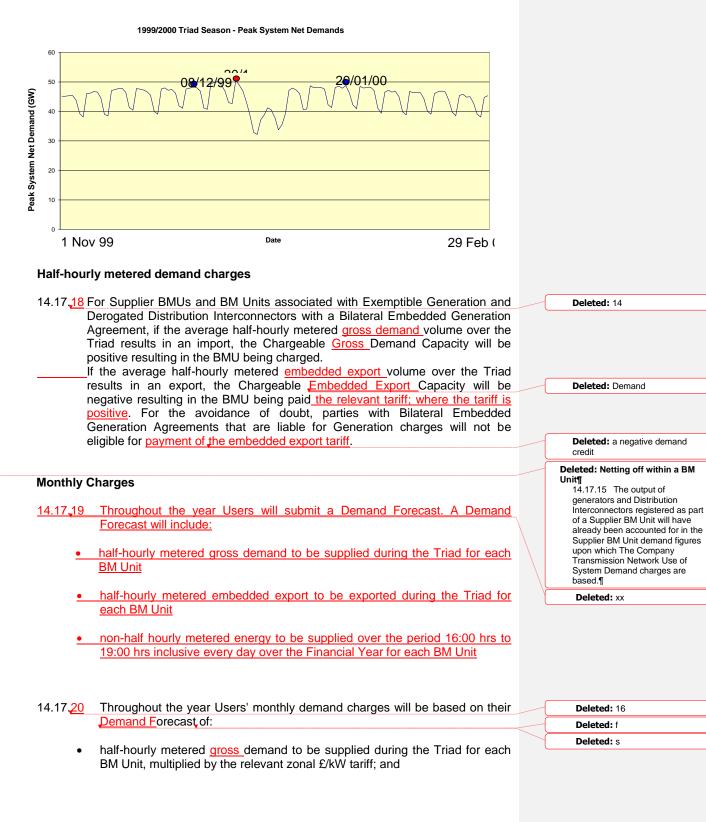
- 14.17.9 Embedded export charges are based on a £/kW charge for Half Hourly metered embedded export.
- <u>14.17.10 Chargeable Embedded Export Capacity is the value of Embedded Export at</u> <u>Triad (kW). The definition of this term is set out below.</u>

If there is a single set of embedded export tariffs within a charging year, the Chargeable Embedded Export Capacity is multiplied by the relevant embedded export tariff, for the calculation of embedded export charges. Deleted: 14.17.11

Page	39	of	64
------	----	----	----

Supplier BM Unit

14.17,<u>13</u> A Supplier BM Unit charges will be the sum of its energy, <u>gross</u> demand <u>and</u> <u>embedded export</u> liabilities where:


- The Chargeable <u>Gross</u> Demand Capacity will be the average of the Supplier BM Unit's half-hourly metered <u>gross</u> demand during the Triad (and the £/kW tariff),
- The Chargeable Embedded Export Capacity will be the average of the Supplier BM Unit's half-hourly metered embedded export during the Triad (and the £/kW tariff), and
- The Chargeable Energy Capacity will be the Supplier BM Unit's non halfhourly metered energy consumption over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year (and the p/kWh tariff).

Power Stations with a Bilateral Connection Agreement and Licensable Generation with a Bilateral Embedded Generation Agreement

Page 40 of 64

V1.12-01 April 2016

	CUSC v1.12			
1	14.17,14 The Chargeable Gross Demand Capacity for a Power Station with a Bilateral	_	Deleted: 10	
I	Connection Agreement or Licensable Generation with a Bilateral Embedded)
	Generation Agreement will be based on the average of the gross import over		Deleted: net	
	each Triad leg of the BM Units associated with the Power Station (in Appendix			
	C of its Bilateral Connection Agreement or Bilateral Embedded Generation Agreement, including metered additional load) during the Triad.			
	Agreement, including metered additional load) during the Thad.			
	Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement			
1	14.17,15 The demand charges for Exemptible Generation and Derogated Distribution		Deleted: 11	
	Interconnector with a Bilateral Embedded Generation Agreement will be the			
	sum of its gross demand and embedded export liabilities where:			
	The Observable Organ Demond Opperity for Every title Opperation and			
	 The Chargeable <u>Gross</u> Demand Capacity for Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation 			
	Agreement will be based on the average of the metered gross demand of	-	Deleted: volume	
	each BM Unit specified in Appendix C of the Bilateral Embedded Generation)
	Agreement during the Triad.			
	 <u>The Chargeable Embedded Export Capacity for Exemptible Generation and</u> Derogated Distribution Interconnectors with a Bilateral Embedded Generation 			
	Agreement will be based on the average of the metered embedded export of			
	each BM Unit specified in Appendix C of the Bilateral Embedded Generation			
	Agreement during the Triad.			
	Small Generators Tariffs			
	14.17,16 In accordance with Standard Licence Condition C13, any under recovery from		Deleted: 12	
	the MAR arising from the small generators discount will result in a unit amount	- (
	of increase to all GB gross demand tariffs.			
	The Triad			
	The Triad			
1	14.17,17 The Triad is used as a short hand way to describe the three settlement periods		Deleted: 13	
	of highest transmission system demand within a Financial Year, namely the)
	half hour settlement period of system peak <u>net</u> demand and the two half hour			
	settlement periods of next highest <u>net</u> demand, which are separated from the			
	system peak <u>net</u> demand and from each other by at least 10 Clear Days, between November and February of the Financial Year inclusive. Exports on			
	directly connected Interconnectors and Interconnectors capable of exporting			
	more than 100MW to the Total System shall be excluded when determining the			
	system peak <u>net</u> demand. An illustration is shown below.			
-				

- half-hourly metered embedded export to be supplied during the Triad for each BM Unit, multiplied by the relevant zonal £/kW tariff; and
- non-half hourly metered energy to be supplied over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year for each BM Unit, multiplied by the relevant zonal p/kWh tariff

Users' annual TNUoS demand charges are based on these forecasts and are split evenly over the 12 months of the year. Users have the opportunity to vary their demand forecasts on a quarterly basis over the course of the year, with the demand forecast requested in February relating to the next Financial Year. Users will be notified of the timescales and process for each of the quarterly updates. The Company will revise the monthly Transmission Network Use of System demand charges by calculating the annual charge based on the new forecast, subtracting the amount paid to date, and splitting the remainder evenly over the remaining months. For the avoidance of doubt, only positive demand forecasts (i.e. representing <u>a net</u> import from the system) will be <u>used in the calculation of charges</u>.

Demand forecasts for a User will be considered positive where:

- The sum of the gross demand forecast and embedded export forecast is positive; and
- The non-half hourly metered energy forecast is positive.

14.17.21 Users should submit reasonable forecasts of gross demand, embedded export and energy in accordance with the CUSC. The Company shall use the following methodology to derive a forecast to be used in determining whether a User's forecast is reasonable, in accordance with the CUSC, and this will be used as a replacement forecast if the User's total forecast is deemed unreasonable. The Company will, at all times, use the latest available Settlement data.

For existing Users:

- i) The User's Triad <u>gross</u> demand<u>and embedded export</u> for the preceding Financial Year will be used where User settlement data is available and where The Company calculates its forecast before the Financial Year. Otherwise, the User's average weekday settlement period 35 half-hourly metered (HH) <u>gross</u> demand <u>and embedded export</u> in the Financial Year to date is compared to the equivalent average <u>gross</u> demand<u>and</u> <u>embedded export</u> for the corresponding days in the preceding year. The percentage difference is then applied to the User's HH <u>gross</u> demand<u>and</u> <u>embedded export</u> at Triad in the preceding Financial Year to derive a forecast of the User's HH <u>gross</u> demand<u>and embedded export</u> at Triad for this Financial Year.
- ii) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day in the Financial Year to date is compared to the equivalent energy consumption over the corresponding days in the preceding year. The percentage difference is then applied to the User's total NHH energy consumption in the preceding Financial Year to derive a forecast of the User's NHH energy consumption for this Financial Year.

For new Users who have completed a Use of System Supply Confirmation Notice in the current Financial Year:

Page 43 of 64

V1.12-01 April 2016

Deleted: accepted

1

iii) The User's average weekday settlement period 35 half-hourly metered (HH) gross demand and embedded export over the last complete month for which The Company has settlement data is calculated. Total system average HH gross demand and embedded export for weekday settlement period 35 for the corresponding month in the previous year is compared to total system HH_gross demand and embedded export at Triad in that year and a percentage difference is calculated. This percentage is then applied to the User's average HH gross demand and embedded export for weekday settlement period 35 over the last month to derive a forecast of the User's HH gross demand and embedded export at Triad for this Financial Year.

- iv) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day over the last complete month for which The Company has settlement data is noted. Total system NHH energy consumption over the corresponding month in the previous year is compared to total system NHH energy consumption over the remaining months of that Financial Year and a percentage difference is calculated. This percentage is then applied to the User's NHH energy consumption over the month described above, and all NHH energy consumption in previous months is added, in order to derive a forecast of the User's NHH metered energy consumption for this Financial Year.
- 14.17,22 14.28 Determination of The Company's Forecast for Demand Charge Purposes illustrates how the demand forecast will be calculated by The Company.

Reconciliation of Demand Charges

14.17,23 The reconciliation process is set out in the CUSC. The demand reconciliation process compares the monthly charges paid by Users against actual outturn charges. Due to the Settlements process, reconciliation of demand charges is carried out in two stages; initial reconciliation and final reconciliation.

Initial Reconciliation of demand charges

14.17,24 The initial reconciliation process compares Users' demand forecasts and corresponding monthly charges paid over the year against actual outturn data (using latest Settlement data available at the time) and corresponding charges. Initial reconciliation is carried out in two parts; Initial Reconciliation Part 1 deals with the reconciliation of half-hourly metered demand charges and Initial Reconciliation Part 2 deals with the reconciliation of non-half-hourly metered demand charges.

Initial Reconciliation Part 1– Half-hourly metered demand

- 14.17,25 The Company will identify the periods forming the Triad once it has received Central Volume Allocation data from the Settlement Administration Agent for all days up to and including the last day of February. Once The Company has notified Users of the periods forming the Triad they will not be changed even if disputes are subsequently resolved which would change the periods forming the Triad.
- 14.17,<u>26</u> Initial outturn charges for half-hourly metered <u>gross</u> demand will be determined using the latest available data of actual average Triad <u>gross</u> demand (kW) multiplied by the zonal <u>gross</u> demand tariff(s) (£/kW) applicable to the months

Page 44 of 64

Deleted: 18

Deleted: 19

Deleted: 20

Deleted: 21

С

I

I

I

I

1.12	
concerned for each zone for that Financial Year. These actual values are then reconciled against the monthly charges paid in respect of half-hourly gross demand.	
14.17.27 Initial outturn charges for half-hourly metered embedded export will be determined using the latest available data of actual average Triad embedded	
export (kW) multiplied by the zonal embedded export tariff(s) (£/kW) applicable to the months concerned for each zone for that Financial Year. These actual values are then reconciled against the monthly charges paid in respect of half-	
hourly embedded exports.	
Initial Reconciliation Part 2 – Non-half-hourly metered demand	
14.17,28 Actual payments for non-half-hourly metered demand will be determined using	Deleted: 23
the latest available actual energy consumption data (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) over the year multiplied by the energy consumption tariff(s) (p/kWh) applicable to the months concerned for each zone. These actual values are then reconciled against the monthly charges paid in respect of non-half-hourly energy consumption.	
Final Reconciliation of demand charges	
14.17,29 The final reconciliation process compares Users' charges (as calculated during	Deleted: 24
the initial reconciliation process using the latest available data) against final outturn demand charges (based on final settlement data <u>of half-hourly gross</u> <u>demand, embedded exports and non-half-hourly energy consumption).</u>	
14.17.30 Final actual charges will be determined using the final demand reconciliation data taken from the Final Reconciliation Settlement Run or the Final Reconciliation Volume Allocation Run.	Deleted: 25
Reconciliation of manifest errors	
14.17, <u>31</u> In the event that a manifest error, or multiple errors in the calculation of TNUoS tariffs results in a material discrepancy in aUsers TNUoS tariff, the	Deleted: 26
reconciliation process for all Users qualifying under Section 14.17,33 will be in	Deleted: 28
accordance with Sections 14.17,24 to 14.17,50. The reconciliation process shall be carried out using recalculated TNUoS tariffs. Where such	Deleted: 20
reconciliation is not practicable, a post-year reconciliation will be undertaken in the form of a one-off payment.	Deleted: 25
14.17. <u>32 A manifest error shall be defined as any of the following:</u>	Deleted: 27
 a) an error in the transfer of relevant data between the Transmission Licensees or Distribution Network Operators; 	
b) an error in the population of the Transport Model with relevant data;	
c) an error in the function of the Transport Model; ord) an error in the inputs or function of the Tariff Model.	
14.17,33 A manifest error shall be considered material in the event that such an error or, the net effect of multiple errors, has an impact of the lesser of either:	Deleted: 28
a) an error in a User's TNUoS tariff of at least +/-£0.50/kW; or	

Page 45 of 64

b) an error in a User's TNUoS tariff which results in an error in the annual TNUoS charge of a User in excess of +/-£250,000.

14.17,<u>34</u> A manifest error shall only be reconciled if it has been identified within the charging year for which the error has an effect. Errors identified outside of this period will not be eligible for reconciliation retrospectively.

Implementation of P272

- 14.17,<u>35</u>.1 BSC modification P272 requires Suppliers to move Profile Classes 5-8 to Measurement Class E - G (i.e. moving from NHH to HH settlement) by April 2016. The majority of these meters are expected to transfer during the preceding Charging Years up until the implementation date of P272 and some meters will have been transferred before the start of 1ST April 2015. A change from NHH to HH within a Charging Year would normally result in Suppliers being liable for TNUoS for part of the year as NHH and also being subject to HH charging. This section describes how the Company will treat this situation in the transition to P272 implementation for the purposes of TNUoS charging; and the forecasts that Suppliers should provide to the Company.
- 14.17,35.2 Notwithstanding 14.17,13, for each Charging Year which begins after 31 March 2015 and prior to implementation of BSC Modification P272, all demand associated with meters that are in NHH Profile Classes 5 to 8 at the start of that charging year as well as all meters in Measurement Classes E G will be treated as Chargeable Energy Capacity (NHH) for the purposes of TNUoS charging for the full Charging Year unless 14.17,35.3 applies.
 - 14.17,35.3 Where prior to 1st April 2015 a Profile Class meter has already transferred to Measurement Class settlement (HH) the associated Supplier may opt to treat the demand volume as Chargeable Demand Capacity (HH) for the purposes of TNUoS charging up until implementation of P272, subject to meeting conditions in 14.17,35.6. If the associated Supplier does not opt to treat the demand volume as Demand Capacity (HH) it will be treated by default as Chargeable Energy Capacity (NHH) for each full Charging Year up until implementation of P272.
 - 14.17,35.4 The Company will calculate the Chargeable Energy Capacity associated with meters that have transferred to HH settlement but are still treated as NHH for the purposes of TNUoS charging from Settlement data provided directly from Elexon i.e. Suppliers need not Supply any additional information if they accept this default position.
- 14.17,35.5 The forecasts that Suppliers submit to the Company under CUSC 3.10, 3.11 and 3.12 for the purpose of TNUoS monthly billing referred to in 14.17,20 and 14.17,21 for both Chargeable Demand Capacity and Chargeable Energy Capacity should reflect this position i.e. volumes associated those Metering Systems that have transferred from a Profile Class to a Measurement Class in the BSC (NHH to HH settlement) but are to be treated as NHH for the purposes of TNUoS charging should be included in the forecast of Chargeable Energy Capacity and not Chargeable Demand Capacity, unless 14.17,35.3 applies.
 - 14.17,<u>35</u>.6 Where a Supplier wishes for Metering Systems that have transferred from Profile Class to Measurement Class in the BSC (NHH to HH settlement) prior to 1st April 2015, to be treated as Chargeable Demand Capacity (HH/

Page 46 of 64

V1.12-01 April 2016

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 9

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 16

Deleted: 17

Deleted: 29

I

Measurement Class settled) it must inform the Company prior to October 2015. The Company will treat these as Chargeable Demand Capacity (HH / Measurement Class settled) for the purposes of calculating the actual annual liability for the Charging Years up until implementation of P272. For these cases only, the Supplier should notify the Company of the Meter Point Administration Number(s) (MPAN). For these notified meters the Supplier shall provide the Company with verified metered demand data for the hours between 4pm and 7pm of each day of each Charging Year up to implementation of P272 and for each Triad half hour as notified by the Company prior to May of the following Charging Year up until two years after the implementation of P272 to allow reconciliation (e.g. Mav 2017 and May 2018 for the Charging Year 2016/17). Where the Supplier fails to provide the data or the data is incomplete for a Charging Year TNUoS charges for that MPAN will be reconciled as part of the Supplier's NHH BMU (Chargeable Energy Capacity). Where a Supplier opts, if eligible, for TNUoS liability to be calculated on Chargeable Demand Capacity it shall submit the forecasts referred to in 14.17,35.5 taking account of this.

14.17,35.7 The Company will maintain a list of all MPANs that Suppliers have elected to be treated as HH. This list will be updated monthly and will be provided to registered Suppliers upon request.

Further Information

- 14.17,<u>36</u> 14.25 Reconciliation of Demand Related Transmission Network Use of System Charges of this statement illustrates how the monthly charges are reconciled against the actual values for <u>gross</u> demand, <u>embedded export</u> and consumption for half-hourly <u>gross demand</u>, <u>embedded export</u> and non-halfhourly metered demand respectively.
- 14.17,<u>37</u> **The Statement of Use of System Charges** contains the £/kW zonal gross demand tariffs, <u>the £/kW zonal embedded export tariffs</u>, and the p/kWh energy consumption tariffs for the current Financial Year.
- 14.17.<u>38</u> 14.27 Transmission Network Use of System Charging Flowcharts of this statement contains flowcharts demonstrating the calculation of these charges for those parties liable.

Deleted: 30

Deleted: 29

Deleted: 29

Deleted: 31

....

14.24 Example: Calculation of Zonal Gross Demand Tariff

Let us consider all nodes in a demand zone in this example

The table below shows a sample output of the transport model comprising the node, the Peak Security and Year Round marginal km of an injection at the node with a consequent withdrawal at the distributed reference node, the generation sited at the node, scaled to ensure total national generation = total national <u>net</u> demand and the <u>net</u> demand sited at the node.

Demand Zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	<u>Net</u> Demand (MW)
14	ABHA4A	-77.25	-230.25	127
14	ABHA4B	-77.27	-230.12	127
14	ALVE4A	-82.28	-197.18	100
14	ALVE4B	-82.28	-197.15	100
14	AXMI40_SWEB	-125.58	-176.19	97
14	BRWA2A	-46.55	-182.68	96
14	BRWA2B	-46.55	-181.12	96
14	EXET40	-87.69	-164.42	340
14	HINP20	-46.55	-147.14	0
14	HINP40	-46.55	-147.14	0
14	INDQ40	-102.02	-262.50	444
14	IROA20_SWEB	-109.05	-141.92	462
14	LAND40	-62.54	-246.16	262
14	MELK40_SWEB	18.67	-140.75	83
14	SEAB40	65.33	-140.97	304
14	TAUN4A	-66.65	-149.11	55
14	TAUN4B	-66.66	-149.11	55
		Totals		2748

In order to calculate the <u>gross</u> demand tariff we would carry out the following steps:

(i) calculate the demand weighted nodal shadow costs

For this example zone this would be as follows:

Demand zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	Net Demand (MW)	Peak Security Demand Weighted Nodal Marginal km	Year Round Demand Weighted Nodal Marginal km
14	ABHA4A	-77.25	-230.25	127	-3.57	-10.64
14	ABHA4B	-77.27	-230.12	127	-3.57	-10.64
14	ALVE4A	-82.28	-197.18	100	-2.99	-7.17
14	ALVE4B	-82.28	-197.15	100	-2.99	-7.17
14	AXMI40_SWEB	-125.58	-176.19	97	-4.43	-6.22
14	BRWA2A	-46.55	-182.68	96	-1.63	-6.38
14	BRWA2B	-46.55	-181.12	96	-1.63	-6.33
14	EXET40	-87.69	-164.42	340	-10.85	-20.34
14	INDQ40	-102.02	-262.50	444	-16.48	-42.41
14	IROA20_SWEB	-109.05	-141.92	462	-18.33	-23.86
14	LAND40	-62.54	-246.16	262	-5.96	-23.47
14	MELK40_SWEB	18.67	-140.75	83	0.56	-4.25
14	SEAB40	65.33	-140.97	304	7.23	-15.59
14	TAUN4A	-66.65	-149.11	55	-1.33	-2.98
14	TAUN4B	-66.66	-149.11	55	-1.33	-2.98
		Totals		2748	-49.19	-190.43

(ii) sum the Peak Security and Year Round demand weighted nodal shadow costs to give zonal figures. For this example zone this is shown in the above table and is 49.19km for Peak Security background and 190.43km for Year Round background.

(iii) calculate the transport tariffs by multiplying the figures in (ii) above by the expansion constant (& dividing by 1000 to put into units of £/kW):

For this example zone, assuming an expansion constant of ± 10.07 /MWkm and a locational security factor of 1.80:

a) Peak Security tariff – 49.19km <u>* £10.07/MWkm * 1.8</u> = <u>£0.89/kW</u> 1000

Page 50 of 64

b) Year Round tariff -<u>190.43km * £10.07/MWkm * 1.8</u> = <u>£3.45/kW</u> 1000

(iv) We now need to calculate the residual tariff. This is calculated by taking the total revenue to be recovered from demand (calculated as c.73% of total The Company TNUoS target revenue for the year), less the revenue which would be recovered through the demand transport tariffs and revenue recovery through embedded export tariffs, divided by total expected gross GSP group demand.

Assuming the total revenue to be recovered from TNUoS is £1067m, the total recovery from <u>gross GSP group</u> demand would be (73% x £1067m) = £779m. Assuming the total recovery from <u>gross GSP group</u> demand transport tariffs is £<u>140m</u>, total recovery from <u>embedded export tariffs is -£10m</u> and total forecast chargeable <u>gross GSP group</u> demand capacity is 50000MW, the demand residual tariff would be as follows:

 $\frac{\pounds779m - \pounds140m - -\pounds10m}{50,000MW} = \pounds12.98/kW$

 (v) to get to the final tariff, we simply add on the demand residual tariff calculated in (v) to the zonal transport tariffs calculated in (iii(a)) and (iii(b))

For zone 14:

 $\pounds 0.89/kW + \pounds 3.45/kW + \pounds 12.98/kW =$ $\pounds 17.32/kW$

- To summarise, in order to calculate the <u>gross</u> demand tariffs, we evaluate a <u>net</u> demand weighted zonal marginal km cost multiply by the expansion constant and locational security factor then we add a constant (termed the residual cost) to give the overall tariff.
- (vii) The final demand tariff is subject to further adjustment to allow for the minimum £0/kW gross_demand charge. The application of a discount for small generators pursuant to Licence Condition C13 will also affect the final gross_demand tariff.

Deleted: gross

Deleted: 130m

Deleted: $\frac{\pounds779m - \pounds130m}{2}$	_
50000MW	_
¶ <u>£779m - £140m£10m</u> = £12.98/kW¶	
50,000MW	

14.25 Reconciliation of <u>Gross</u> Demand Related Transmission Network Use of System Charges

This appendix illustrates the methodology used by The Company in the reconciliation of Transmission Network Use of System charges for <u>gross</u> demand. The example highlights the different stages of the calculations from the monthly invoiced amounts, right through to Final Reconciliation.

Monthly Charges

Suppliers provide half-hourly (HH) gross demand and embedded export forecasts and non-halfhourly (NHH) demand forecasts by BM Unit every quarter. An example of such forecasts and the corresponding monthly invoiced amounts, based on tariffs of £10.00/kW for gross demand, £5.00/kW for embedded export and 1.20p/kWh for energy consumption, is as follows:

	Forecast HH Triad <u>Gross</u> Demand <u>HHD_E (</u> kW)	HH <u>Gross</u> <u>Demand</u> Monthly Invoiced Amount (£)	Forecast <u>HH</u> <u>Triad</u> <u>Embedded</u> <u>Export</u> <u>HHEE_E (kW)</u>	<u>HH</u> <u>Embedded</u> <u>Generation</u> <u>Monthly</u> <u>Invoiced</u> <u>Amount (£)</u>	Forecast NHH Energy Consumpti on NHHC _F (kW h)	NHH Monthly Invoiced Amount (£)	Net Monthly Invoiced Amount (£)
Apr	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
May	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jun	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jul	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Aug	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Sep	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Oct	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Nov	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Dec	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Jan	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Feb	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Mar	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Total		72,000		<u>(3,000)</u>		216,000	<u>297</u> ,000

As shown, for the first nine months the Supplier provided a 12,000kW HH triad <u>gross</u> demand forecast, and hence paid HH <u>gross demand</u> monthly charges of £10,000 ((12,000kW x £10.00/kW)/12) for that BM Unit. In January the Supplier provided a revised forecast of 7,200kW, implying a forecast annual charge reduced to £72,000 (7,200kW x £10.00/kW). The Supplier had already paid £90,000, so the excess of £18,000 was credited back to the supplier in three £6,000 instalments over the last three months of the year.

The Supplier provided an embedded export triad forecast of -600kW and hence was paid an embedded export credit of £250 ((600kW x £5.00/kW)/12) for that BM Unit (For the avoidance of doubt, if the embedded export tariff is negative this will result in a debit).

The Supplier also initially provided a 15,000,000kWh NHH energy consumption forecast, and hence paid NHH monthly charges of £15,000 ((15,000,000kWh x 1.2p/kWh)/12) for that BM Unit. In July the Supplier provided a revised forecast of 18,000,000kWh, implying a forecast annual charge increased to £216,000 (18,000,000kWh x 1.2p/kWh). The Supplier had already

Page 52 of 64

paid £45,000, so the remaining £171,000 was split into payments of £19,000 for the last nine months of the year.

The right hand column shows the net monthly charges for the BM Unit.

Initial Reconciliation (Part 1a)

The Supplier's outturn HH triad <u>gross</u> demand, based on <u>initial</u> settlement data (and therefore subject to change in subsequent settlement runs), was 9,000kW. The HH triad <u>gross</u> demand reconciliation charge is therefore calculated as follows:

HHD Reconciliation Charge = $(HHD_A - HHD_F) \times \pounds/kW$ Tariff

= (9,000kW - 7,200kW) x £10.00/kW

= 1,800kW x £10.00/kW

= £18,000

To calculate monthly interest charges, the outturn HHD charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHD charge less the HH <u>gross demand</u> monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 1b)

The Supplier's outturn HH triad embedded export, based on initial settlement data (and therefore subject to change in subsequent settlement runs), was 700kW. The HH triad embedded export reconciliation charge is therefore calculated as follows:

HHEE Reconciliation Charge = (HHEE_A – HHEE_E) x £/kW Tariff

 $= (-500 \text{kW} - -600 \text{kW}) \times \text{\pounds}5.00/\text{kW}$

 $= 100 \text{kW} \times \text{\pounds}5.00/\text{kW}$

= **£500**

To calculate monthly interest charges, the outturn HHEE charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHEE charge less the HH embedded generation monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 2)

The Supplier's outturn NHH energy consumption, based on initial settlement data, was 17,000,000kWh. The NHH energy consumption reconciliation charge is therefore calculated as follows:

Deleted: Please note that payments made to BM Units with a net export over the Triad, based on initial settlement data, will also be reconciled at this stage.¶ As monthly payments will not be made on the basis of a negative forecast, the HHD Reconciliation Charge for an exporting BM Unit will represent the full actual payment owed to that BM Unit (subject to adjustment by subsequent settlement runs). Interest will be calculated as described above.¶

NHHC Reconciliation Charge = $(NHHC_A - NHHC_F) \times p/kWh$ Tariff

100

= <u>(17,000,000kWh - 18,000,000kWh) x 1.20p/kWh</u>

100

= <u>-1,000,000kWh x 1.20p/kWh</u> 100 = **-£12,000**

worked example 4.xls - Initial!J104

The monthly reconciliation amount is equal to the outturn energy consumption charge for that month less the NHH monthly invoiced amount. Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

The net initial TNUoS demand reconciliation charge is therefore $\pounds 6,500$ (£18,000 + $\pounds 500$ - $\pounds 12,000$).

Final Reconciliation

Finally, let us now suppose that after all <u>final</u> Settlement data has been received (up to 14 months after the relevant dates), the outturn HH triad <u>gross</u> demand, <u>HH triad embedded export</u> and NHH energy consumption values were 9,500kW, <u>-550kW</u> and 16,500,000kWh, respectively.

Final HH <u>Gross Demand</u>	= (9,500kW - 9,000kW) x £10.00/kW
<u>Reconciliation Charge</u>	= £5,000
Final HH Embedded Export	= (-550kW500kW) x £5.00/kW
Reconciliation Charge	= -£250

Final NHH Reconciliation Charge = $(16,700,000kWh - 17,000,000kWh) \times 1.20p/kWh$ 100 = -£3,600

Consequently, the net final TNUoS demand reconciliation charge will be $\pounds 1, \underline{150} (\pounds 5,000 + -\pounds 250 + -\pounds 3,600)$.

Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

Outturn data for BM Units with a net export over the Triad will be received at this stage and final reconciliation will be carried out, as required. Interest will be calculated as described above.

Terminology:

 HHD_A = The Supplier's outturn half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

Page 54 of 64

I

 HHD_{F} = The Supplier's forecast half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

<u>HHEE_A = The Supplier's outturn half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

<u>HHEE_E = The Supplier's forecast half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

NHHC_A = The Supplier's outturn non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1^{st} to March 31^{st} , for the demand zone concerned.

NHHC_F = The Supplier's forecast non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1st to March 31st, for the demand zone concerned.

£/kW Tariff = The £/kW <u>Gross</u> Demand <u>or Embedded Export</u> Tariff as shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

p/kWh Tariff = The Energy Consumption Tariff shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

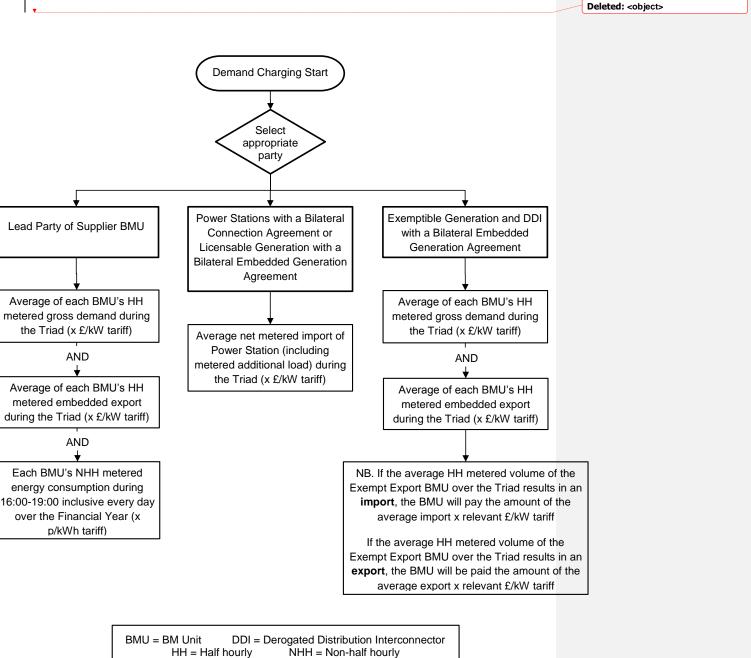
14.26 Classification of parties for charging purposes

In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precendence.

In the following diagrams, the parties liable for Transmission Network Use of System charges are outlined in red.

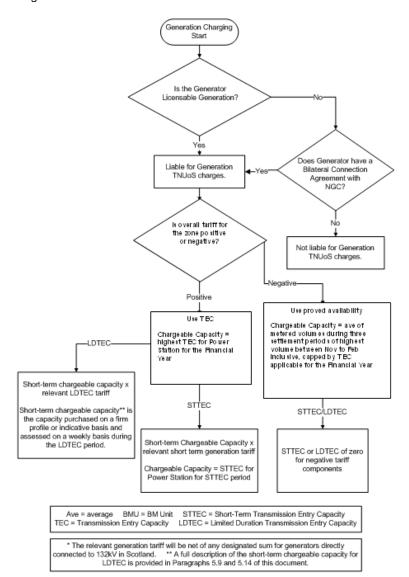
SUPPLIER		
Supplier Use of System Agreem	ent	
Supplier Supplier BMU1 BMUn		
Demand Charges	Generation Charges	
See 14.17, <mark>13</mark> and 14.17, <u>18</u> .	None.	Deleted: 9
		Deleted: 14
Bilateral Connection Agreement Gen Unit BMU1 Gen Unit BMUn	Appendix C Station Load BMU Load BMU	
Demand Charges	Generation Charges	
See 14.17, <mark>14</mark> .	See 14.18.1 i) and 14.18.3 to 14.18.9 and 14.18.18. For generators in positive zones, see 14.18.10 to	Deleted: 10
	14.18.12.For generators in negative zones, see 14.18.13 to14.18.17.	

Bilateral Emb	edded Generation	Agreement Ap	pendix C	7
Gen Unit BMU1	Gen Unit BMUn	Station Load BMU	Additional Load BMU	
Demand Charges See 14.17, <u>14</u> , 14.17, <u>15</u> and 14.17, <u>18</u> .		Generation Cl See 14.18.1 ii	U	
000 14.11. <u>14</u> , 14.11. <u>10</u> and 14.11. <u>10</u> .		For generators in positive zones, see 14.18.3 to 14.18.12 and 14.18.18 . For generators in negative zones, see 14.18.3 to		


-{	Deleted: 10
-	Deleted: 11
Y	Deleted: 14

14.27 Transmission Network Use of System Charging Flowcharts

The following flowcharts illustrate the parties liable for Demand and Generation TNUoS charges and the calculation of those charges.


In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precedence.

Page 58 of 64

Generation Charges

14.28 Example: Determination of The Company's Forecast for Demand Charge Purposes

The Company will use the latest available settlement data for calculation of HH demand and NHH energy consumption forecasts for the Financial Year.

The Financial Year runs from 1st April to 31st March inclusive and for the purpose of these examples the year April 2005 to March 2006 is used.

Where the preceding year's settlement data is not available at the time that The Company needs to calculate its forecast, The Company will use settlement data from the corresponding period in Financial Year minus two unless indicated otherwise.

All values used with the examples are purely for illustrative purposes only.

i) Half-Hourly (HH) Metered Demand Forecast – Existing User

At the time of calculation of a HH demand forecast before the relevant Financial Year (approximately 10th March), The Company will be aware at a system level which dates will be used for the determination of Triad. However, The Company may not have settlement data at a User level if the Triad dates were to span a period that includes the latter half of February.

When undertaking forecasting before the relevant Financial Year, The Company will use the User's Triad demand for the previous year for its forecast providing it holds User settlement data for this period, thus:

F = T

where:

F = Forecast of User's HH demand at Triad for the Financial Year

T = User's HH gross_demand and embedded export_at Triad in Financial Year minus one

Where The Company determines its forecast within a Financial Year:

F = T * D/P

where:

- F = Forecast of User's HH demand at Triad for the Financial Year
- T = User's HH gross demand and embedded export at Triad in the preceding Financial Year
- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the preceding Financial Year

Where The Company determines its forecast before the relevant Financial Year and User settlement data for the Triad period is not available, The Company shall apply the formula immediately above (within year forecast) but substitute the following definitions for the values T, D, and P:

T = User's HH gross demand and embedded export at Triad in the Financial Year minus two

Page 60 of 64

- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year minus one, to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the Financial Year minus two

Example (where User settlement data is not yet available for the Triad period):

The Company calculates a HH demand forecast on the above methodology at 10th March 2005 for the period 1st April 2005 to 31st March 2006.

Gross demand:

F = 10,000 * 13,200 / 12,000

F = 11,000 kW,Deleted: hwhere:T = 10,000 kW, (period November 2003 to February 2004)Deleted: hD = 13,200 kW, (period 1st April 2004 to 15th February 2005#)Deleted: hP = 12,000 kW, (period 1st April 2003 to 15th February 2004)Deleted: h

Latest date for which settlement data is available.

Embedded export:

F = -280 * -300 / -350

<u>F = -240 kW</u>

where:

T = -280 kW (period November 2003 to February 2004)

D = -300 kW (period 1st April 2004 to 15th February 2005#)

P = -350 kW (period 1st April 2003 to 15th February 2004)

<u># Latest date for which settlement data is available.</u>

ii) Non Half-Hourly (NHH) Metered Energy Consumption Forecast – Existing User

F = E * D/P

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- E = User's summed NHH energy consumption over the hours 16:00 to 19:00 for each day in the preceding Financial Year

Page 61 of 64

- D = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the Financial Year to date
- P = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the period corresponding to D in the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th June 2005 for the period 1st April 2005 to 31st March 2006.

- F = 50,000,000 * 4,400,000 / 4,000,000
- F = 55,000,000 kWh

where:

- E = 50,000,000 kWh (period 1st April 2004 to 31st March 2005)
- D = 4,400,000 kWh (period 1st April 2005 to 15th May 2005#)
- P = 4,000,000 kWh (period 1st April 2004 to 15th May 2004)
- # Latest date for which settlement data is available

Where forecasting before the relevant Financial Year concerned, The Company would in the above example use values for E and P from Financial Year 2003/04 and D from Financial Year 2004/05.

iii) Half-Hourly (HH) Metered Demand Forecast – New User

F = M * T/W

where:

- F = Forecast of User's HH metered <u>gross</u> demand <u>and embedded export</u> at Triad for the Financial Year
 - M = User's HH average weekday period 35 demand for the last complete month for which settlement data is available
- T = Total system HH <u>gross</u> demand <u>and embedded export</u> at Triad in the preceding Financial Year
 - W = Total system HH average weekday settlement period 35 metered demand for the corresponding period to M for the preceding year

Example:

The Company calculates a HH demand forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2004 to 31st March 2006.

Gross demand:

F = 1,000 * 17,000,000 / 18,888,888

	0000 0	1.12		
I	F =	900 kW,	(Deleted: h
	where			
ļ	M =	1,000 kW _• (period 1 st July 2005 to 31 st July 2005)	(Deleted: h
ļ	T =	17,000,000 kW, (period November 2004 to February 2005)	(Deleted: h
I	W =	18,888,888 kW _v (period 1 st July 2004 to 31 st July 2004)	(Deleted: h
	Embeo	Ided export:		
	<u>F =</u>	<u>150 * 7,200,000 / 6,000,000</u>		
	<u>F = </u>	<u>180 kW</u>		
	where			

- M = 150 kW (period 1st July 2005 to 31st July 2005)
- T = 7,200,000 kW (period November 2004 to February 2005)
- <u>W = 6,000,000 kW (period 1^{st} July 2004 to 31^{st} July 2004)</u>

iv) Non Half Hourly (NHH) Metered Energy Consumption Forecast – <u>New User</u>

 $\mathsf{F} = \mathsf{J} + (\mathsf{M} * \mathsf{R}/\mathsf{W})$

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- J = Residual part month summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day where new User registration takes place other than on the first of a month
- M = User's summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the last complete month for which settlement data is available
- R = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period from the start of that defined under M but for the preceding year and until the end of that preceding Financial Year
- W = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period identified in M but for the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2005 to 31st March 2006.

- F = 500 + (1,000 * 20,000,000,000 / 2,000,000,000)
- F = 10,500 kWh

where:

- J = 500 kWh (period 10th June 2005 to 30th June 2005)
- M = 1,000 kWh (period 1st July 2005 to 31st July 2005)
- R = 20,000,000,000 kWh (period 1st July 2004 to 31st March 2005)
- W = 2,000,000,000 kWh (period 1st July 2004 to 31st July 2004)

CMP265 WACM16

14.15 Derivation of the Transmission Network Use of System Tariff

- 14.15.1 The Transmission Network Use of System (TNUoS) Tariff comprises two separate elements. Firstly, a locationally varying element derived from the DCLF ICRP transport model to reflect the costs of capital investment in, and the maintenance and operation of, a transmission system to provide bulk transport of power to and from different locations. Secondly, a non-locationally varying element related to the provision of residual revenue recovery. The combination of both these elements forms the TNUoS tariff.
- 14.15.2 For generation TNUoS tariffs the locational element itself is comprised of five separate components. Three wider components
 - o Wider Peak Security Component
 - Wider Year Round Not-shared component
 - Wider Year Round component

These components reflect the costs of the wider network under the different generation backgrounds set out in the Demand Security Criterion (for Peak Security component) and Economy Criterion (for both Year Round components) of the Security Standard. The two Year Round components reflect the unshared and shared costs of the wider network based on the diversity of generation plant types.

Two local components -

- o Local substation, and
- Local circuit

These components reflect the costs of the local network.

Accordingly, the wider tariff represents the combined effect of the three wider locational tariff components and the residual element; and the local tariff represents the combination of the two local locational tariff components.

14.15.3 The process for calculating the TNUoS tariff is described below.

The Transport Model

Model Inputs

14.15.4 The DCLF ICRP transport model calculates the marginal costs of investment in the transmission system which would be required as a consequence of an increase in demand or generation at each connection point or node on the transmission system, based on a study of peak demand conditions using both Peak Security and Year Round generation backgrounds on the transmission system. One measure of the investment costs is in terms of MWkm. This is the concept that ICRP uses to calculate marginal costs of investment. Hence, marginal costs are estimated initially in terms of increases or decreases in units of kilometres (km) of the transmission system for a 1 MW injection to the system.

- 14.15.5 The transport model requires a set of inputs representative of the Demand Security and Economy Criterion set out in the Security Standards. These conditions on the transmission system are represented in the Peak Security and Year Round background respectively as follows:
- Nodal generation information per node (TEC, plant type and SQSS scaling factors)
- Nodal <u>net</u> demand information
- Transmission circuits between these nodes
- The associated lengths of these routes, the proportion of which is overhead line or cable and the respective voltage level
- The cost ratio of each of 132kV overhead line, 132kV underground cable, 275kV overhead line, 275kV underground cable and 400kV underground cable to 400kV overhead line to give circuit expansion factors
- The cost ratio of each separate sub-sea AC circuit and HVDC circuit to 400kV overhead line to give circuit expansion factors
- 132kV overhead circuit capacity and single/double route construction information is used in the calculation of a generator's local charge.
- Offshore transmission cost and circuit/substation data
- 14.15.6 For a given charging year "t", the nodal generation TEC figure and generation plant types at each node will be based on the Applicable Value for year "t" in the NETS Seven Year Statement in year "t-1" plus updates to the October of year "t-1". The contracted TECs and generation plant types in the NETS Seven Year Statement include all plant belonging to generators who have a Bilateral Agreement with the TOs. For example, for 2010/11 charges, the nodal generation data is based on the forecast for 2010/11 in the 2009 NETS Seven Year Statement plus any data included in the quarterly updates in October 2009.
- 14.15.7 Scaling factors for different generation plant types are applied on their aggregated capacity for both Peak Security and Year Round backgrounds. The scaling is either Fixed or Variable (depending on the total demand level) in line with the factors used in the Security Standard, for example as shown in the table below.

Generation Plant Type	Peak Security Background	Year Round Background
Intermittent	Fixed (0%)	Fixed (70%)
Nuclear & CCS	Variable	Fixed (85%)
Interconnectors	Fixed (0%)	Fixed (100%)
Hydro	Variable	Variable
Pumped Storage	Variable	Fixed (50%)
Peaking	Variable	Fixed (0%)
Other (Conventional)	Variable	Variable

These scaling factors and generation plant types are set out in the Security Standard. These may be reviewed from time to time. The latest version will be used in the calculation of TNUoS tariffs and is published in the Statement of Use of System Charges

14.15.8 National Grid will categorise plant based on the categorisations described in the Security Standard. Peaking plant will include oil and OCGT technologies and Other (Conv.) represents all remaining conventional plant not explicitly stated elsewhere in the table In the event that a power station is made up of more than one technology type, the type of the higher Transmission Entry Capacity (TEC) would apply.

I

- 14.15.9 Nodal <u>net</u> demand data for the transport model will be based upon the GSP <u>net</u> demand that Users have forecast to occur at the time of National Grid Peak Average Cold Spell (ACS) Demand for year "t" in the April Seven Year Statement for year "t-1" plus updates to the October of year "t-1".
- 14.15.10 Subject to paragraphs 14.15.15 to 14.15.22, Transmission circuits for charging year "t" will be defined as those with existing wayleaves for the year "t" with the associated lengths based on the circuit lengths indicated for year "t" in the April NETS Seven Year Statement for year "t-1" plus updates to October of year "t-1". If certain circuit information is not explicitly contained in the NETS Seven Year Statement, The Company will use the best information available.
- 14.15.11 The circuit lengths included in the transport model are solely those, which relate to assets defined as 'Use of System' assets.
- 14.15.12 For HVDC circuits, the impedance will be calculated to provide flows based on a ratio of the capacity provided by the HVDC link relative to the capacities on all major transmission system boundaries that it parallels.
- 14.15.13 The transport model employs the use of circuit expansion factors to reflect the difference in cost between (i) AC Circuits and HVDC circuits. (ii) underground and sub-sea circuits, (iii) cabled circuits and overhead line circuits, (iv) 132kV and 275kV circuits, (v) 275kV circuits and 400kV circuits, and (vi) uses 400kV overhead line (i.e. the 400kV overhead line expansion factor is 1). As the transport model expresses cost as marginal km (irrespective of cables or overhead lines), some account needs to be made of the fact that investment in these other types of circuit (specifically HVDC and sub-sea cables of various voltages, 400kV underground cable, 275kV overhead line, 275kV underground cable, 132kV overhead line and 132kV underground cable) is more expensive than for 400kV overhead line. This is done by effectively 'expanding' these more expensive circuits by the relevant circuit expansion factor, thereby producing a larger marginal kilometre to reflect the additional cost of investing in these circuits compared to 400kV overhead line. When calculating the local circuit tariff for a generator, alternative 132kV and offshore expansion factors to those used in the remainder of the tariff calculation are applied to the generator's local circuits.
- 14.15.14 The circuit expansion factors for HVDC circuits and AC subsea cables are determined on a case by case basis using the costs which are specific to individual projects containing HVDC or AC subsea circuits.

Adjustments to Model Inputs associated with One-off Works

- 14.15.15 Where, following the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge that related to One-off Works carried out on an onshore circuit, and such One-off Works would affect the value of a TNUoS tariff paid by the User, the transport model inputs associated with the onshore circuit shall be adjusted by The Company to reflect the asset value that would have been modelled if the works had been undertaken on the basis of the original asset design rather than the One-off Works.
- 14.15.16 Subject to paragraphs 14.15.17 to 14.15.19, where, prior to the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge (or has paid a charge to the relevant TO prior to 1st April 2005 on the same principles as a

Page 3 of 64

One-Off Charge) that related to works equivalent to those described under paragraph 14.15.15, an adjustment equivalent to that under paragraph 14.15.15 shall be made to the transport model inputs as follows.

- 14.15.17 Such adjustment shall be made following a User's request, which must be received by The Company no later than the second occurrence of 31st December following the implementation of CUSC Modification CMP203.
- 14.15.18 The Company shall only make an adjustment to the transport model inputs, under paragraph 14.15.16 where the charge was paid to the relevant TO prior to 1st April 2005 where evidence has been provided by the User that satisfies The Company that works equivalent to those under paragraph 14.15.15 were funded by the User.
- 14.15.19 Where a User has sufficient reason to believe that adjustments under paragraph 14.15.18 should be made in relation to specific assets that affect a TNUoS tariff that applies to one of its sites and outlines its reasoning to The Company, The Company shall (upon the User's request and subject to the User's payment of reasonable costs incurred by The Company in doing so) use its reasonable endeavours to assist the User in obtaining any evidence The Company or a TO may have to support its position.
- 14.15.20 Where a request is made under paragraph 14.15.16 on or prior to 31st December in a charging year, and The Company is satisfied based on the accompanying evidence provided to The Company under paragraph 14.15.17 that it is a valid request, the transport model inputs shall be adjusted accordingly and taken into account in the calculation of TNUoS tariffs effective from the year commencing on the 1st April following this and otherwise from the next subsequent 1st April.
- 14.15.21 The following table provides examples of works for which adjustments to transport model inputs would typically apply:

Ref	Description of works	Adjustments
1	Undergrounding - A User requests to underground an overhead line at a greater cost.	As the cable cost will be more expensive than the overhead line (OHL) equivalent, the circuit will be modelled as an OHL.
2	Substation Siting Decision - A User requests to move the existing or a planned substation location to a place that means that the works cannot be justified as economic by the TO.	As the revised substation location may result in circuits being extended. If this is the case, the originally designed circuit lengths (as per the originally designed substation location) would be used in the transport model.
3	Circuit Routing Decision - A User asks to move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	As any circuit route changes that extend circuits are likely to result in a greater TNUoS tariff, the originally designed circuit lengths would be used in the transport model.

Ref	Description of works	Adjustments
4	Building circuits at lower voltages - A User requests lower tower height and therefore a different voltage.	As lower voltage circuits result in a higher expansion factor being used, the circuits would be modelled at the originally designed higher voltage.

14.15.22 The following table provides examples of works for which adjustments to transport model typically would not apply:

Ref	Description of works	Reasoning
1	Undergrounding - A User chooses to have a cable installed via a tunnel rather than buried.	Cable expansion factors are applied in the transport model regardless of whether a cable is tunnelled and buried, so there is no increased TNUoS cost.
2	Additional circuit route works - A User asks for screening to be provided around a new or existing circuit route.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
3	Additional circuit route works - A User requests that a planned overhead line route is built using alternative transmission tower designs.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
4	Additional substation works - A User asks for screening to be provided around a new or existing substation.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
5	Additional substation works - Changes to connection assets (e.g. HV-LV transformers and associated switchgear), metering, additional LV supplies, additional protection equipment, additional building works, etc.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
6	Diversion - A User asks to temporarily move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	The temporary circuit changes will not be incorporated into the transport model.

7	Connection Entry Capacity (CEC) before Transmission Entry Capacity (TEC). A User asks for a connection in a year prior to the relating TEC; i.e. physical connection without capacity.	No additional works are being undertaken, works are simply being completed well in advance of the generator commissioning. The One-Off Charge reflects the depreciated value of the assets prior to commissioning (and any TNUOS being charged).
8	Early asset replacement - An asset is replaced prior to the end of its expected life.	As the asset is simply replaced, no data in the transport model is expected to change.
9	Additional Engineering/ Mobilisation costs - A User requests changes to the planned works, that results in additional operational costs.	The data in the transport model is unaffected.
10	Offshore (Generator Build) - Any of the works described above or under paragraph 14.15.18.	The value of the works will not form part of the asset transfer value therefore will not be used as part of the offshore tariff calculation.
11	Offshore (Offshore Transmission Owner (OFTO) Build) - Any of the works described above or under paragraph 14.15.18.	As part of determining the TNUoS revenue associated with each asset, the value of the One-Off Works would be excluded when pro-rating the OFTO's allowed revenue against assets by asset value.

14.15.23 The Company shall publish any adjusted transport model inputs that it intends to use in the calculation of TNUoS tariffs effective from the year commencing on the following 1st April in the NETS Seven Year Statement October Update. Any further adjustments that The Company makes shall be published by The Company upon the publication of the final TNUoS tariffs for the year concerned.

Model Outputs

- 14.15.24 The transport model takes the inputs described above and carries out the following steps individually for Peak Security and Year Round backgrounds.
- 14.15.25 Depending on the background, the TEC of the relevant generation plant types are scaled by a percentage as described in 14.15.7, above. The TEC of the remaining generation plant types in each background are uniformly scaled such that total national generation (scaled sum of contracted TECs) equals total national ACS Demand.
- 14.15.26 For each background, the model then uses a DCLF ICRP transport algorithm to derive the resultant pattern of flows based on the network impedance required to meet the nodal <u>net</u> demand using the scaled nodal generation, assuming every circuit has infinite capacity. Flows on individual transmission circuits are compared for both backgrounds and the background giving rise to

Page 6 of 64

the highest flow is considered as the triggering criterion for future investment of that circuit for the purposes of the charging methodology. Therefore all circuits will be tagged as Peak Security or Year Round depending upon the background resulting in the highest flow. In the event that both backgrounds result in the same flow, the circuit will be tagged as Peak Security. Then it calculates the resultant total network Peak Security MWkm and Year Round MWkm, using the relevant circuit expansion factors as appropriate.

- 14.15.27 Using these baseline networks for Peak Security and Year Round backgrounds, the model then calculates for a given injection of 1MW of generation at each node, with a corresponding 1MW offtake (<u>net_demand</u>) distributed across all demand nodes in the network, the increase or decrease in total MWkm of the whole Peak Security and Year Round networks. The proportion of the 1MW offtake allocated to any given demand node will be based on total background nodal <u>net</u> demand in the model. For example, with a total GB <u>net_demand of 60GW</u> in the model, a node with a <u>net_demand of 600MW</u> would contain 1% of the offtake i.e. 0.01MW.
- 14.15.28 Given the assumption of a 1MW injection, for simplicity the marginal costs are expressed solely in km. This gives a Peak Security marginal km cost and a Year Round marginal km cost for generation at each node (although not that used to calculate generation tariffs which considers local and wider cost components). The Peak Security and Year Round marginal km costs for demand at each node are equal and opposite to the Peak Security and Year Round nodal marginal km respectively for generation and this is used to calculate demand tariffs. Note the marginal km costs can be positive or negative depending on the impact the injection of 1MW of generation has on the total circuit km.
- 14.15.29 Using a similar methodology as described above in 14.15.27, the local and wider marginal km costs used to determine generation TNUoS tariffs are calculated by injecting 1MW of generation against the node(s) the generator is modelled at and increasing by 1MW the offtake across the distributed reference node. It should be noted that although the wider marginal km costs are calculated for both Peak Security and Year Round backgrounds, the local marginal km costs are calculated on the Year Round background.
- 14.15.30 In addition, any circuits in the model, identified as local assets to a node will have the local circuit expansion factors which are applied in calculating that particular node's marginal km. Any remaining circuits will have the TO specific wider circuit expansion factors applied.
- 14.15.31 An example is contained in 14.21 Transport Model Example.

Calculation of local nodal marginal km

14.15.32 In order to ensure assets local to generation are charged in a cost reflective manner, a generation local circuit tariff is calculated. The nodal specific charge provides a financial signal reflecting the security and construction of the infrastructure circuits that connect the node to the transmission system.

14.15.33 Main Interconnected Transmission System (MITS) nodes are defined as:

- Grid Supply Point connections with 2 or more transmission circuits connecting at the site; or
- connections with more than 4 transmission circuits connecting at the site.

Page 7 of 64

- 14.15.34 Where a Grid Supply Point is defined as a point of supply from the National Electricity Transmission System to network operators or non-embedded customers excluding generator or interconnector load alone. For the avoidance of doubt, generator or interconnector load would be subject to the circuit component of its Local Charge. A transmission circuit is part of the National Electricity Transmission System between two or more circuit-breakers which includes transformers, cables and overhead lines but excludes busbars and generation circuits.
- 14.15.35 Generators directly connected to a MITS node will have a zero local circuit tariff.
- 14.15.36 Generators not connected to a MITS node will have a local circuit tariff derived from the local nodal marginal km for the generation node i.e. the increase or decrease in marginal km along the transmission circuits connecting it to all adjacent MITS nodes (local assets).

Calculation of zonal marginal km

- 14.15.37 Given the requirement for relatively stable cost messages through the ICRP methodology and administrative simplicity, nodes are assigned to zones. Typically, generation zones will be reviewed at the beginning of each price control period with another review only undertaken in exceptional circumstances. Any rezoning required during a price control period will be undertaken with the intention of minimal disruption to the established zonal boundaries. The full criteria for determining generation zones are outlined in paragraph 14.15.42. The number of generation zones set for 2010/11 is 20.
- 14.15.38 Demand zone boundaries have been fixed and relate to the GSP Groups used for energy market settlement purposes.
- 14.15.39 The nodal marginal km are amalgamated into zones by weighting them by their relevant generation or demand capacity.
- 14.15.40 Generators will have zonal tariffs derived from both, the wider Peak Security nodal marginal km; and the wider Year Round nodal marginal km for the generation node calculated as the increase or decrease in marginal km along all transmission circuits except those classified as local assets.

The zonal Peak Security marginal km for generation is calculated as:

$$WNMkm_{j_{PS}} = \frac{NMkm_{j_{PS}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiPS} = \sum_{j \in Gi} WNMkm_{jPS}$$

Where

Gi	=	Generation zone
j	=	Node
NMkm _{PS}	=	Peak Security Wider nodal marginal km from transport model
WNMkm _{PS}	=	Peak Security Weighted nodal marginal km
ZMkm _{PS}	=	Peak Security Zonal Marginal km

Gen = Nodal Generation (scaled by the appropriate Peak Security Scaling factor) from the transport model Similarly, the zonal Year Round marginal km for generation is calculated as

$$WNMkm_{j_{YR}} = \frac{NMkm_{j_{YR}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiYR} = \sum_{j \in Gi} WNMkm_{jYR}$$

Where

NMkm _{YR}	=	Year Round Wider nodal marginal km from transport model
WNMkm _{YR}	=	Year Round Weighted nodal marginal km
ZMkm _{YR}	=	Year Round Zonal Marginal km
Gen	=	Nodal Generation (scaled by the appropriate Year Round Scaling
		factor) from the transport model

14.15.41 The zonal Peak Security marginal km for demand zones are calculated as follows:

$$WNMkm_{j_{PS}} = \frac{-1 * NMkm_{j_{PS}} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{Di_{PS}} = \sum_{j \in Di} WNMkm_{j_{PS}}$$

Where:

I

Di	=	Demand zone
Dem	=	Nodal <u>Net</u> Demand from transport model

Similarly, the zonal Year Round marginal km for demand zones are calculated as follows:

$$WNMkm_{jYR} = \frac{-1 * NMkm_{jYR} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{DiYR} = \sum_{j \in Di} WNMkm_{jYR}$$

- 14.15.42 A number of criteria are used to determine the definition of the generation zones. Whilst it is the intention of The Company that zones are fixed for the duration of a price control period, it may become necessary in exceptional circumstances to review the boundaries having been set. In both circumstances, the following criteria are used to determine the zonal boundaries:
- i.) Zoning is determined using the generation background with the most MWkm of circuits. Zones should contain relevant nodes whose total wider marginal costs

from the relevant generation background (as determined from the output from the transport model, the relevant expansion constant and the locational security factor, see below) are all within +/-£1.00/kW (nominal prices) across the zone. This means a maximum spread of £2.00/kW in nominal prices across the zone.

- ii.) The nodes within zones should be geographically and electrically proximate.
- iii.) Relevant nodes are considered to be those with generation connected to them as these are the only ones, which contribute to the calculation of the zonal generation tariff.
- 14.15.43 The process behind the criteria in 14.15.42 is driven by initially applying the nodal marginal costs from the relevant generation background within the DCLF Transport model onto the appropriate areas of a substation line diagram. Generation nodes are grouped into initial zones using the +/- £1.00/kW range. All nodes within each zone are then checked to ensure the geographically and electrically proximate criteria have been met using the substation line diagram. The established zones are inspected to ensure the least number of zones are used with minimal change from previously established zonal boundaries. The zonal boundaries are finally confirmed using the demand nodal costs from the relevant generation background for guidance.
- 14.15.44 The zoning criteria are applied to a reasonable range of DCLF ICRP transport model scenarios, the inputs to which are determined by The Company to create appropriate TNUoS generation zones. The minimum number of zones, which meet the stated criteria, are used. If there is more than one feasible zonal definition of a certain number of zones, The Company determines and uses the one that best reflects the physical system boundaries.
- 14.15.45 Zones will typically not be reviewed more frequently than once every price control period to provide some stability. However, in exceptional circumstances, it may be necessary to review zoning more frequently to maintain appropriate, cost reflective, locational cost signals. For example, if a new generator connecting to the transmission system would cause the creation of a new generation zone for that generator alone, it may not be appropriate from a cost reflective perspective to wait until the next price control period to undertake this rezoning. If any such rezoning is required, it will be undertaken against a background of minimal change to existing generation zones and in line with the notification process set out in the Transmission Licence and CUSC.

Accounting for Sharing of Transmission by Generators

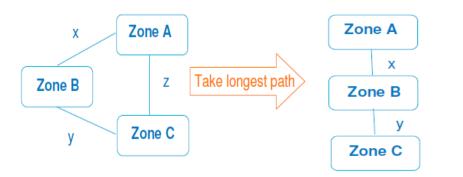
- 14.15.46 A proportion of the marginal km costs for generation are shared incremental km reflecting the ability of differing generation technologies to share transmission investment. This is reflected in charges through the splitting of Year Round marginal km costs for generation into Year Round Shared marginal km costs and Year Round Not-Shared marginal km which are then used in the calculation of the wider £/kW generation tariff.
- 14.15.47 The sharing between different generation types is accounted for by (a) using transmission network boundaries between generation zones set by connectivity between generation charging zones, and (b) the proportion of Low Carbon and Carbon generation behind these boundaries.

Page 10 of 64

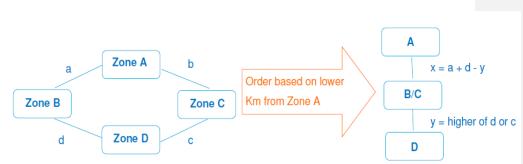
14.15.48 The zonal incremental km for each generation charging zone is split into each boundary component by considering the difference between it and the neighbouring generation charging zone using the formula below;

$$BIkm_{ab} = ZIkm_b - ZIkm_a$$

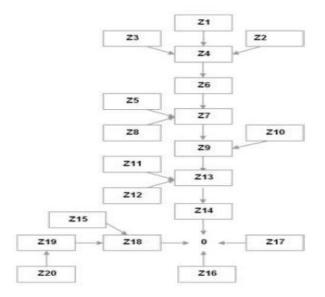
Where;


Blkm_{ab} = boundary incremental km between generation charging zone A and generation charging zone B Zlkm = generation charging zone incremental km.

14.15.49 The table below shows the categorisation of Low Carbon and Carbon generation. This table will be updated by National Grid in the Statement of Use of System Charges as new generation technologies are developed.


Carbon	Low Carbon
Coal	Wind
Gas	Hydro (excl. Pumped Storage)
Biomass	Nuclear
Oil	Marine
Pumped Storage	Tidal
Interconnectors	

Determination of Connectivity


- 14.15.50 Connectivity is based on the existence of electrical circuits between TNUoS generation charging zones that are represented in the Transport model. Where such paths exist, generation charging zones will be effectively linked via an incremental km transmission boundary length. These paths will be simplified through in the case of;
 - Parallel paths the longest path will be taken. An illustrative example is shown below with x, y and z representing the incremental km between zones.

 Parallel zones – parallel zones will be amalgamated with the incremental km immediately beyond the amalgamated zones being the greater of those existing prior to the amalgamation. An illustrative example is shown below with a, b, c, and d representing the the initial incremental km between zones, and x and y representing the final incremental km following zonal amalgamation.

14.15.51 An illustrative Connectivity diagram is shown below:

The arrows connecting generation charging zones and amalgamated generation charging zones represent the incremental km transmission boundary lengths towards the notional centre of the system. Generation located in charging zones behind arrows is considered to share based on the ratio of Low Carbon to Carbon cumulative generation TEC within those zones.

14.15.52 The Company will review Connectivity at the beginning of a new price control period, and under exceptional circumstances such as major system reconfigurations or generation rezoning. If any such reassessment is required, it will be undertaken against a background of minimal change to existing Connectivity and in line with the notification process set out in the Transmission Licence and the CUSC.

Calculation of Boundary Sharing Factors

14.15.53 Boundary sharing factors (BSFs) are derived from the comparison of the cumulative proportion of Low Carbon and Carbon generation TEC behind each of the incremental MWkm boundary lengths using the following formulae –

Page 12 of 64

If $\frac{LC}{LC+C} \le 0.5$, then all Year round marginal km costs are shared i.e. the BSF is 100%.

Where:

LC = Cumulative Low Carbon generation TEC behind the relevant transmission boundary C = Cumulative Carbon generation TEC behind the relevant transmission

C = Cumulative Carbon generation TEC behind the relevant transmission boundary

If
$$\frac{LC}{LC+C}$$
 > 0.5 then the BSF is calculated using the following formula: -

$$BSF = \left(-2 \times \left(\frac{LC}{LC+C}\right)\right) + 2$$

Where:

BSF = boundary sharing factor.

14.15.54 The shared incremental km for each boundary are derived from the multiplication of the boundary sharing factor by the incremental km for that boundary;

$$SBIkm_{ab} = BIIkm_{ab} \ x \ BSF_{ab}$$

Where;

 $SBIkm_{ab}$ = shared boundary incremental km between generation charging zone A and generation charging zone B

 BSF_{ab} = generation charging zone boundary sharing factor.

14.15.55 The shared incremental km is discounted from the incremental km for that boundary to establish the not-shared boundary incremental km. The not-shared boundary incremental km reflects the cost of transmission investment on that boundary accounting for the sharing of power stations behind that boundary.

$$NSBIkm_{ab} = BIkm_{ab} - SBIkm_{ab}$$

Where;

 $NSBIkm_{ab}$ = not shared boundary incremental km between generation charging zone A and generation charging zone B.

14.15.56 The shared incremental km for a generation charging zone is the sum of the appropriate shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRS}$$

Where;

 $ZMkm_{nYRS}$ = Year Round Shared Zonal Marginal km for generation charging zone n.

Page 13 of 64

14.15.57 The not-shared incremental km for a generation charging zone is the sum of the appropriate not-shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRNS}$$

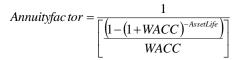
Where;

ZMkm_{nYRNS} = Year Round Not-Shared Zonal Marginal km for generation zone n.

Deriving the Final Local £/kW Tariff and the Wider £/kW Tariff

14.15.58 The zonal marginal km (ZMkm_{Gi}) are converted into costs and hence a tariff by multiplying by the Expansion Constant and the Locational Security Factor (see below). The nodal local marginal km (NLMkm^L) are converted into costs and hence a tariff by multiplying by the Expansion Constant and a Local Security Factor.

The Expansion Constant


- 14.15.59 The expansion constant, expressed in £/MWkm, represents the annuitised value of the transmission infrastructure capital investment required to transport 1 MW over 1 km. Its magnitude is derived from the projected cost of 400kV overhead line, including an estimate of the cost of capital, to provide for future system expansion.
- 14.15.60 In the methodology, the expansion constant is used to convert the marginal km figure derived from the transport model into a £/MW signal. The tariff model performs this calculation, in accordance with 14.15.95 14.15.117, and also then calculates the residual element of the overall tariff (to ensure correct revenue recovery in accordance with the price control), in accordance with 14.15.133.
- 14.15.61 The transmission infrastructure capital costs used in the calculation of the expansion constant are provided via an externally audited process. They also include information provided from all onshore Transmission Owners (TOs). They are based on historic costs and tender valuations adjusted by a number of indices (e.g. global price of steel, labour, inflation, etc.). The objective of these adjustments is to make the costs reflect current prices, making the tariffs as forward looking as possible. This cost data represents The Company's best view; however it is considered as commercially sensitive and is therefore treated as confidential. The calculation of the expansion constant also relies on a significant amount of transmission asset information, much of which is provided in the Seven Year Statement.
- 14.15.62 For each circuit type and voltage used onshore, an individual calculation is carried out to establish a £/MWkm figure, normalised against the 400KV overhead line (OHL) figure, these provide the basis of the onshore circuit expansion factors discussed in 14.15.70 14.15.77. In order to simplify the calculation a unity power factor is assumed, converting £/MVAkm to £/MWkm. This reflects that the fact tariffs and charges are based on real power.
- 14.15.63 The table below shows the first stage in calculating the onshore expansion constant. A range of overhead line types is used and the types are weighted by recent usage on the transmission system. This is a simplified calculation for 400kV OHL using example data:

Page 14 of 64

400kV	400kV OHL expansion constant calculation				
MW	Туре	£(000)/k	Circuit km*	£/MWkm	Weight
А	В	С	D	E = C/A	F=E*D
6500	La	700	500	107.69	53846
6500	Lb	780	0	120.00	0
3500	La/b	600	200	171.43	34286
3600	Lc	400	300	111.11	33333
4000	Lc/a	450	1100	112.50	123750
5000	Ld	500	300	100.00	30000
5400	Ld/a	550	100	101.85	10185
Sum			2500 (G)		285400 (H)
				Weighted Average (J= H/G):	114.160 (J)

*These are circuit km of types that have been provided in the previous 10 years. If no information is available for a particular category the best forecast will be used.

14.15.64 The weighted average £/MWkm (J in the example above) is then converted in to an annual figure by multiplying it by an annuity factor. The formula used to calculate of the annuity factor is shown below:

- 14.15.65 The Weighted Average Cost of Capital (WACC) and asset life are established at the start of a price control and remain constant throughout a price control period. The WACC used in the calculation of the annuity factor is the The Company regulated rate of return, this assumes that it will be reasonably representative of all licensees. The asset life used in the calculation is 50 years; the appropriateness of this is reviewed when the annuity factor is recalculated at the start of a price control period. These assumptions provide a current annuity factor of 0.066.
- 14.15.66 The final step in calculating the expansion constant is to add a share of the annual transmission overheads (maintenance, rates etc). This is done by multiplying the average weighted cost (J) by an 'overhead factor'. The 'overhead factor' represents the total business overhead in any year divided by the total Gross Asset Value (GAV) of the transmission system. This is recalculated at the start of each price control period. The overhead factor used in the calculation of the expansion constant for 2009/10 is 1.8%. The overhead and annuitised costs are then added to give the expansion constant.
- 14.15.67 Using the previous example, the final steps in establishing the expansion constant are demonstrated below:

400kV OHL expansion constant calculation	Ave £/MWkm
OHL	114.160

Page 15 of 64

Final	9.589
Overhead	2.055
Annuitised	7.535

- 14.15.68 This process is carried out for each voltage onshore, along with other adjustments to take account of upgrade options, see 14.15.73, and normalised against the 400KV overhead line cost (the expansion constant) the resulting ratios provide the basis of the onshore expansion factors. The process used to derive circuit expansion factors for Offshore Transmission Owner networks is described in 14.15.78.
- 14.15.69 This process of calculating the incremental cost of capacity for a 400kV OHL, along with calculating the onshore expansion factors is carried out for the first year of the price control and is increased by inflation, RPI, (May–October average increase, as defined in The Company's Transmission Licence) each subsequent year of the price control period. The expansion constant for 2010/11 is 10.633.

Onshore Wider Circuit Expansion Factors

- 14.15.70 Base onshore expansion factors are calculated by deriving individual expansion constants for the various types of circuit, following the same principles used to calculate the 400kV overhead line expansion constant. The factors are then derived by dividing the calculated expansion constant by the 400kV overhead line expansion constant. The factors will be fixed for each respective price control period.
- 14.15.71 In calculating the onshore underground cable factors, the forecast costs are weighted equally between urban and rural installation, and direct burial has been assumed. The operating costs for cable are aligned with those for overhead line. An allowance for overhead costs has also been included in the calculations.
- 14.15.72 The 132kV onshore circuit expansion factor is applied on a TO basis. This is to reflect the regional variation of plans to rebuild circuits at a lower voltage capacity to 400kV. The 132kV cable and line factor is calculated on the proportion of 132kV circuits likely to be uprated to 400kV. The 132kV expansion factor is then calculated by weighting the 132kV cable and overhead line costs with the relevant 400kV expansion factor, based on the proportion of 132kV circuitry to be uprated to 400kV. For example, in the TO areas of National Grid and Scottish Power where there are no plans to uprate any 132kV circuits, the full cable and overhead line costs of 132kV circuit are reflected in the 132kV expansion factor calculation.
- 14.15.73 The 275kV onshore circuit expansion factor is applied on a GB basis and includes a weighting of 83% of the relevant 400kV cable and overhead line factor. This is to reflect the averaged proportion of circuits across all three Transmission Licensees which are likely to be uprated from 275kV to 400kV across GB within a price control period.
- 14.15.74 The 400kV onshore circuit expansion factor is applied on a GB basis and reflects the full costs for 400kV cable and overhead lines.
- 14.15.75 AC sub-sea cable and HVDC circuit expansion factors are calculated on a case by case basis using actual project costs (Specific Circuit Expansion Factors).

Page 16 of 64

- 14.15.76 For HVDC circuit expansion factors both the cost of the converters and the cost of the cable are included in the calculation.
- 14.15.77 The TO specific onshore circuit expansion factors calculated for 2008/9 (and rounded to 2 decimal places) are:

Scottish Hydro Region

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	27.79
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.24	

Scottish Power & National Grid Regions

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	30.22
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.80	

Onshore Local Circuit Expansion Factors

- 14.15.78 The local onshore circuit tariff is calculated using local onshore circuit expansion factors. These expansion factors are calculated using the same methodology as the onshore wider expansion factor but without taking into account the proportion of circuit kms that are planned to be uprated.
- 14.15.79 In addition, the 132kV onshore overhead line circuit expansion factor is sub divided into four more specific expansion factors. This is based upon maximum (winter) circuit continuous rating (MVA) and route construction whether double or single circuit.

400kV underground cable factor:	22.39
275kV underground cable factor:	22.39
132kV underground cable factor:	30.22
400kV line factor:	1.00
275kV line factor:	1.14
132kV line factor (single; <200MVA):	10.00
132kV line factor (double; <200MVA):	8.32
132kV line factor (single; >=200MVA):	7.13
132kV line factor (double; >=200MVA):	4.42

Offshore Circuit Expansion Factors

14.15.80 Offshore expansion factors (£/MWkm) are derived from information provided by Offshore Transmission Owners for each offshore circuit. Offshore expansion factors are Offshore Transmission Owner and circuit specific. Each Offshore Transmission Owner will periodically provide, via the STC, information to derive an annual circuit revenue requirement. The offshore circuit revenue shall include revenues associated with the Offshore Transmission Owner's reactive compensation equipment, harmonic filtering equipment, asset spares and HVDC converter stations.

14.15.81 In the first year of connection, the offshore circuit expansion factor would be calculated as follows:

$\frac{CRevOFTO1}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$

Where:

CRevOFTO1	=	The offshore circuit revenue in £ for Year 1
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

14.15.82 In all subsequent years, the offshore circuit expansion factor would be calculated as follows:

Where:

AvCRevOFTO	=	The annual offshore circuit revenue averaged over the
		remaining years of the onshore National Electricity
		Transmission System Operator (NETSO) price control
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

- 14.15.83 For the avoidance of doubt, the offshore circuit revenue values, *CRevOFTO1* and *AvCRevOFTO* shall be determined using asset values after the removal of any One-Off Charges.
- 14.15.84 Prevailing OFFSHORE TRANSMISSION OWNER specific expansion factors will be published in this statement. These shall be recalculated at the start of each price control period using the formula in paragraph 14.15.71. For each subsequent year within the price control period, these expansion factors will be adjusted by the annual Offshore Transmission Owner specific indexation factor, *OFTOInd*, calculated as follows;

$$OFTOInd_{t,f} = \frac{OFTO \operatorname{Rev}Ind_{t,f}}{RPI_{t}}$$

where:

OFTOInd _{t,f}	=	the indexation factor for Offshore Transmission Owner <i>f</i> in respect of charging year <i>t</i> ;
OFTORevInd _{tf}	=	the indexation rate applied to the revenue of Offshore Transmission Owner f under the terms of its Transmission Licence in respect of charging year t ; and
<i>RPI</i> _t	=	the indexation rate applied to the expansion constant in respect of charging year <i>t</i> .

Offshore Interlinks

14.15.85 The revenue associated with an Offshore Interlink shall be divided entirely between those generators benefiting from the installation of that Offshore Interlink. Each of these Users will be responsible for their charge from their charging date, meaning that a proportion of the Offshore Interlink revenue may be socialised prior to all relevant Users being chargeable. The proportion associated with each User will be based on the Measure of Capacity to the MITS using the Offshore Interlink(s) in the event of a single circuit fault on the User's circuit from their offshore substation towards the shore, compared to the Measure of Capacity of the other Users.

Where:

An *Offshore Interlink* is a circuit which connects two offshore substations that are connected to a Single Common Substation. It is held in open standby until there is a transmission fault that limits the User's ability to export power to the Single Common Substation. In the Transport Model, they are to be modelled in open standby.

A Single Common Substation is a substation where:

- i. each substation that is connected by an Offshore Interlink is connected via at least one circuit without passing through another substation; and
- ii. all routes connecting each substation that is connected by an Offshore Interlink to the MITS pass through.

The Measure of Capacity to the MITS for each Offshore substation is the result of the following formula or zero whichever is larger. For the situation with only one interlink, all terms relating to C should be set to zero:

```
For Substation A:
min { Cap_{IAB}, ILF_A \times TEC_A - RCap_A, Cap_B - ILF_B \times TEC_B + min (Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation B:

min { ILF_B \times TEC_B - RCap_B, min (Cap_{IAB}, Cap_A - ILF_A \times TEC_A)

+ min ( Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation C:

min { Cap_{IBC}, ILF_{C} \times TEC_{C} - RCap_{C}, Cap_{B} - ILF_{B} \times TEC_{B} + min (Cap_{IAB}, Cap_{A} - ILF_{A} \times TEC_{A}) }

and
```

Cap _{IAB} = B	total capacity of the Offshore Interlink between substations A and
Cap _{IBC} = C	total capacity of the Offshore Interlink between substations B and
Cap _X =	total capacity of the circuit between offshore substation X and the Single Common Substation, where X is A, B or C.
RCap _x =	remaining capacity of the circuit between offshore substation X and the Single Common Substation in the event of a single cable fault, where X is A, B or C.
TEC _x =	the sum of the TEC for the Users connected, or contracted to connect, to offshore substation X, where X is A, B or C, where the value of TEC will be the maximum TEC that each User has held since the initial charging date, or is contracted to hold if prior to the initial charging date.

- ILF_x = Offshore Interlink Load Factor, where X is A, B or C. The Offshore Interlink Load Factor (ILF) is based on the Annual Load Factor (ALF). Until all the Users connected to a Single Common Substation have a station specific Annual Load Factor based on five years of data, the generic ALF for the fuel type will be used as the ILF for all stations. When all Users have a station specific ALF, the value of the ALF in the first such year will be used as the ILF in the calculation for all subsequent charging years.
- 14.15.86 The apportionment of revenue associated with Offshore Interlink(s) in 14.15.85 applies in situations where the Offshore Interlink was included in the design phase, or if one or more User(s) has already financially committed or been commissioned then only where that User(s) agrees to the Offshore Interlink.
- 14.15.87 Alternatively to the formula specified in 14.15.85 the proportion of the OFTO revenue associated with the Offshore Interlink allocated to each generator benefiting from the installation of an Offshore Interlink may be agreed between these Users. In this event:
- a. All relevant Users shall notify The Company of its respective proportions three months prior the OTSDUW asset transfer in the case of a generator build, or the charging date of the first generator, in the case of an OFTO build.
- b. All relevant Users may agree to vary the proportions notified under (a) by each writing to The Company three months prior to the charges being set for a given charging year.
- c. Once a set of proportions of the OFTO revenue associated with the Offshore Interlink has been provided to The Company, these will apply for the next and future charging years unless and until The Company is informed otherwise in accordance with (b) by all of the relevant Users.
- d. If all relevant Users are unable to reach agreement on the proportioning of the OFTO revenue associated with the Offshore Interlink they can raise a dispute. Any dispute between two or more Users as to the proportioning of such revenue shall be managed in accordance with CUSC Section 7 Paragraph 7.4.1 but the reference to the 'Electricity Arbitration Association' shall instead be to the 'Authority' and the Authority's determination of such dispute shall, without prejudice to apply for judicial review of any determination, be final and binding on the Users.

The Locational Onshore Security Factor

14.15.88 The locational onshore security factor is derived by running a secure DCLF ICRP transport study based on the same market background as used for Zoning in the DCLF ICRP transport model. This calculates the nodal marginal costs where peak <u>net</u> demand can be met despite the Security and Quality of Supply Standard contingencies (simulating single and double circuit faults) on the network. Essentially the calculation of secured nodal marginal costs is identical to the process outlined above except that the secure DCLF study additionally calculates a nodal marginal cost taking into account the requirement to be secure against a set of worse case contingencies in terms of maximum flow for each circuit.

- 14.15.89 The secured nodal cost differential is compared to that produced by the DCLF ICRP transport model and the resultant ratio of the two determines the locational security factor using the Least Squares Fit method. Further information may be obtained from the charging website¹.
- 14.15.90 The locational onshore security factor derived for 2010/11 is 1.8 and is based on an average from a number of studies conducted by The Company to account for future network developments. The security factor is reviewed for each price control period and fixed for the duration.

Local Security Factors

- 14.15.91 Local onshore security factors are generator specific and are applied to a generator's local onshore circuits. If the loss of any one of the local circuits prevents the export of power from the generator to the MITS then a local security factor of 1.0 is applied. For generation with circuit redundancy, a local security factor is applied that is equal to the locational security factor, currently 1.8.
- 14.15.92 Where a Transmission Owner has designed a local onshore circuit (or otherwise that circuit once built) to a capacity lower than the aggregated TEC of the generation using that circuit, then the local security factor of 1.0 will be multiplied by a Counter Correlation Factor (CCF) as described in the formula below;

$$CCF = \frac{D_{\min} + T_{cap}}{G_{cap}}$$

Where; D_{min} = minimum annual net demand (MW) supplied via that circuit in the absence of that generation using the circuit

 T_{cap} = transmission capacity built (MVA)

G_{cap} = aggregated TEC of generation using that circuit

CCF cannot be greater than 1.0.

14.15.93 A specific offshore local security factor (LocalSF) will be calculated for each offshore connection using the following methodology:

$$LocalSF = \frac{NetworkExportCapacity}{\sum_{k} Gen_{k}}$$

Where:

 NetworkExportCapacity =
 the total export capacity of the network disregarding any Offshore Interlinks

 k
 =
 the generation connected to the offshore network

1 http://www.nationalgrid.com/uk/Electricity/Charges/

Page 21 of 64

- 14.15.94 The offshore security factor for single circuits with a single cable will be 1.0 and for multiple circuit connections will be capped at the locational onshore security factor, derived as 1.8 for 2010/11.
- 14.15.95 The offshore local security factor for configurations with one or more Offshore Interlinks is updated so that the offshore circuit tariff will include the proportion of revenue associated with the Offshore Interlink(s). The specific offshore local security factor for configurations involving an Offshore Interlink, which may be greater than 1.8, will be calculated for each offshore connection using the following methodology:

 $LocalSF = \frac{IRevOFTO \times NetworkExportCapacity}{CRevOFTO \times \sum_{k}Gen_{k}} + LocalSF_{initial}$

Where:

The appropriate proportion of the Offshore Interlink(s) revenue in £
associated with the offshore connection calculated in 14.15.85
The offshore circuit revenue in £ associated with the circuit(s) from the
offshore substation to the Single Common Substation.
Initial Local Security Factor calculated in 14.15.80 and 14.15.81
And other definitions as in 14.15.80.

Initial Transport Tariff

14.15.96 First an Initial Transport Tariff (ITT) must be calculated for both Peak Security and Year Round backgrounds. For Generation, the Peak Security zonal marginal km (ZMkm_{PS}), Year Round Not-Shared zonal marginal km (ZMkm_{YRNS}) and Year Round Shared zonal marginal km (ZMkm_{YRS}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT, Year Round Not-Shared ITT and Year Round Shared ITT respectively:

 $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$

Where ZMkm _{GiPS} ZMkm _{GiYRNS} charging zone	= = e	Peak Security Zonal Marginal km for each generation zone Year Round Not-Shared Zonal Marginal km for each generation	
ZMkm _{GiYRS}	=	Year Round Shared Zonal Marginal km for each generation	
charging zon	е		
EC	=	Expansion Constant	
LSF	=	Locational Security Factor	
	=	Peak Security Initial Transport Tariff (£/MW) for each generation	
zone			
ITT _{GiYRNS}	=	Year Round Not-Shared Initial Transport Tariff (£/MW) for each	
generation charging zone			
ITT _{GiYRS}	=	Year Round Shared Initial Transport Tariff (£/MW) for each	
generation ch	narging	zone.	

14.15.97 Similarly, for demand the Peak Security zonal marginal km (ZMkm_{PS}) and Year Round zonal marginal km (ZMkm_{YR}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT and Year Round ITT respectively:

		$ZMkm_{DiPS} \times EC \times LSF = ITT_{DiPS}$
		$ZMkm_{DiYR} \times EC \times LSF = ITT_{DiYR}$
Where ZMkm _{DiP} ZMkm _{DiY}	0	Peak Security Zonal Marginal km for each demand zone Year Round Zonal Marginal km for each demand zone
ITT _{DiPS}	=	Peak Security Initial Transport Tariff (£/MW) for each demand one
ITT_{DiYR}	=	Year Round Initial Transport Tariff (£/MW) for each demand zone
14.15.98	GSP group revenue red metered tria	tep is to multiply these ITTs by the expected metered triad <u>gross</u> demand and generation capacity to gain an estimate of the initial covery for both Peak Security and Year Round backgrounds. The ad <u>gross GSP group</u> demand and generation capacity are based on forecasts provided by Users and are confidential.
	affected em	ad gross GSP group demand is net demand for all GSP groups less bedded exports and grandfathered embedded exports for all GSP
a.	<u>groups.</u>	

Where

ITRR _G =	Initial Transport Revenue Recovery for generation
G _{Gi} =	Total forecast Generation for each generation zone (based
	on analysis of confidential User forecasts)
ITRR _D =	Initial Transport Revenue Recovery for gross GSP group
_	demand
D _{Di} = each	Total forecast Metered Triad gross GSP group Demand for
	demand zone (based on <u>analysis of</u> confidential User forecasts).

In addition, the initial tariffs for generation are also multiplied by the **Peak Security flag** when calculating the initial revenue recovery component for the Peak Security background. Similarly, when calculating the initial revenue recovery for the Shared component of the Year Round background, the initial tariffs are multiplied by the **Annual Load Factor** (see below).

Peak Security (PS) Flag

14.15.99 The revenue from a specific generator due to the Peak Security locational tariff needs to be multiplied by the appropriate Peak Security (PS) flag. The PS flags indicate the extent to which a generation plant type contributes to the

Page 23 of 64

need for transmission network investment at peak demand conditions. The PS flag is derived from the contribution of differing generation sources to the demand security criterion as described in the Security Standard. In the event of a significant change to the demand security assumptions in the Security Standard, National Grid will review the use of the PS flag.

Generation Plant Type	PS flag
Intermittent	0
Other	1

Annual Load Factor (ALF)

- 14.15.100 The ALF for each individual Power Station is calculated using the relevant TEC (MW) and corresponding output data. Where output data is not available for a Power Station, including for new Power Stations and emerging Power Station technologies, generic data for the appropriate generation plant type will be used.
- 14.15.101 For a given charging year "t" the Power Station ALF will be based on information from the previous five charging years, calculated for each charging year as set out below.

$$ALF = \frac{\sum_{p=1}^{17520} GMWh_p}{\sum_{p=1}^{17520} TECp \times 0.5}$$

Where:

 $GMWh_p$ is the maximum of FPN or actual metered output in a Settlement Period related to the power station TEC (MW); and

 TEC_{p} is the TEC (MW) applicable to that Power Station for that Settlement Period including any STTEC and LDTEC, accounting for any trading of TEC.

- 14.15.102 The appropriate output (FPN or actual metered) figure is derived from **BM Unit** data available to National Grid and relates to the total TEC of the Power Station.
- 14.15.103 Once all five charging year ALFs have been calculated for the individual Power Station they are compared, and the highest and lowest figures are discarded. The final ALF, to be used for transmission charging purposes, is calculated as the average of the remaining three ALFs.
- 14.15.104 In the event that only four charging years of complete output (FPN or actual metered) data are available for an individual Power Station then the higher three charging years ALF would be used in the calculation of the final ALF. In the event that only three charging years of complete output (FPN or actual metered) data are available then these three charging years would be used.
- 14.15.105 Due to the aggregation of output (FPN or actual metered) data for dispersed generation (e.g. cascade hydro schemes), where a single generator BMU consists of geographically separated power stations, the ALF would be calculated based on the total output of the BMU and the overall TEC of those Power Stations.

Page 24 of 64

- 14.15.106 In the event that there are not three full charging years of an individual power station's output available, missing output (FPN or actual metered) data would be replaced by generic data for that generation plant type to ensure three charging years of information are available for the Power Station. The derivation of the generic data is described in paragraphs 14.15.111-14.15.114.
- 14.15.107 Users will receive draft ALFs before 25th December of the charging year (t-1) for the charging year (t) and will have a period of 15 working days from date of publishing to notify the Company of any errors. Failure to agree changes relating to errors will be treated as a charging dispute under the CUSC.
- 14.15.108 The ALFs used in the setting of final tariffs will be published in the annual Statement of Use of System Charges. Changes to ALFs after this publication will not result in changes to published tariffs (e.g. following dispute resolution).

Derivation of Generic ALFs

14.15.109 The generic ALF is derived from the average annual output of the ten most recently commissioned GB generation of a particular generation plant type that have at least five charging years' data, using an identical methodology to that used for the Power Station specific calculation described above. Where less than ten GB generators of a particular generation plant type exist, then data from all existing generators of that particular generation plant type will be used. Example generation plant type categories are listed below;

Fuel Type
Biomass
Coal
Gas
Hydro
Nuclear (by reactor
type)
Oil & OCGTs
Pumped Storage
Onshore Wind
Offshore Wind
CHP

- 14.15.110 The Company will keep these categories under review and update as necessary. Where within a category there is a significant locational difference consideration will be given to zonal generic factors. The factors used will be published in the Statement of Use of System Charges and will be reviewed annually.
- 14.15.111 If a User can demonstrate that the generation plant type of a Power Station has changed, consideration will be given to the use of relevant generic ALF information in the calculation of their charges until sufficient specific data is available.
- 14.15.112 For new and emerging generation plant types, where insufficient data is available to allow a generic ALF to be developed, The Company will use the best information available e.g. from manufactuers and data from use of similar technologies outside GB. The factor will be agreed with the relevant Generator. In the event of a disagreement the standard provisions for dispute in the CUSC will apply.

Page 25 of 64

TNUoS Embedded Export Tariffs

14.15.113 Embedded exports are exports measured on a half-hourly basis by Metering Systems, in accordance with the BSC, that are not subject to generation TNUoS. The tariff to be applied in respect of embedded exports is different depending on whether the embedded exports are affected embedded exports or grandfathered embedded exports

TNUoS Embedded Export Tariff for Affected Embedded Exports

 14.15.114
 Affected Embedded Exports are embedded exports other than Grandfathered Embedded Exports.

14.15.115 The embedded export tariff will be applied to the metered Triad volumes of Affected Embedded Exports for each demand zone as follows:

$EETA_{Di} = ITT_{DiPS} + ITT_{DiYR} + AEX$

Where

_		ITT _{DiPS}	; =	P	Peak Security Initial Transport Tariff for the demand zone;										
_	ITT _{DIVR} = Year Round Initial Transport Tariff for the demand zone, and					Ind									
A	EX	=	AGIC	+	(£18.50	in	April	2019	prices;	indexed	each	year	by	the	RPI
formula set out in 14.3.6).															

Where

AGIC= The Avoided GSP Infrastructure Credit (AGIC) which represents the unit cost of infrastructure reinforcement at GSPs which is avoided as a consequence of embedded generation connected to the distribution networks served by those GSPs. It is calculated from the average annuitised cost of that infrastructure reinforcement divided by the average capacity delivered by a supergrid transformer.

The Avoided GSP Infrastructure Credit is calculated at the beginning of each price control period and in the first applicable charging year following the implementation date of CMP264/265 using data submitted by onshore TSOs as part of the price control process. The data used is from the most recent [20] schemes submitted under the price control process and indexed each year by the RPI formula set out in 14.3.6 until the end of the price control. For the avoidance of doubt, this approach does not include the cost of the supergrid transformers or any other connection assets as they are paid for by the relevant DNOs thorough their connection charges.

The Value of EETA_{Di} will be floored at zero, so that EETA_{Di} is always zero or positive.

TNUoS Embedded Export Tariff for Grandfathered Embedded Exports

 14.15.116
 Grandfathered Embedded Exports are embedded exports measured by metering systems where all associated generation either:

• <u>Has a Contract for Difference Agreement that was awarded in allocation rounds</u> prior to 01/01/2016 which has not been terminated; or

- Has a Capacity Agreement that is recorded on the T-4 Auction Capacity Market Register 2014 or T-4 Auction Capacity Market Register 2015 as an agreement:
 - In respect of a 'new build generating CMU'
 - Having more than one delivery year
 - And which has not been terminated

14.15.117 The embedded export tariff will be applied to the metered Triad volumes of Grandfathered Embedded Exports for each demand zone as follows:

$$EETG_{Di} = ITT_{DiPS} + ITT_{DiYR} + GEX$$

Where

 $\begin{array}{c|c} |TT_{\text{DIPS}} = & Peak \ \text{Security Initial Transport Tariff for the demand zone;} \\ \hline |TT_{\text{DIPR}} = & Year \ \text{Round Initial Transport Tariff for the demand zone, and} \\ \hline GEX = & \pounds 45.33 \ \text{in prices of first applicable charging year; indexed each} \\ \hline year \ by \ the \ RPI \ formula \ set \ out \ in \ 14.3.6. \end{array}$

The Value of EETG_{D1} will be floored at zero, so that EETG_{D1} is always zero or positive.

Initial Revenue Recovery

14.15,<u>118</u> For the Peak Security background the initial tariff for generation is multiplied by the total forecast generation capacity and the PS flag to give the initial revenue recovery:

$$\sum_{Gi=1}^{n} (ITT_{GiPS} \times G_{Gi} \times F_{PS}) = ITRR_{GPS}$$

Where

ITRR _{GPS}	=	Peak Security Initial Transport Revenue Recovery for generation
G_{Gi}	=	Total forecast Generation for each generation zone (based on
		analysis of confidential User forecasts)

F _{PS}	=	Peak Security flag appropriate to that generator type
n	=	Number of generation zones

The initial revenue recovery for <u>gross GSP group</u> demand for the Peak Security background is calculated by multiplying the initial tariff by the total forecast metered triad <u>gross GSP group</u> demand:

$$\sum_{Di=1}^{14} (ITT_{DiPS} \times D_{Di}) = ITRR_{DPS}$$

Where:

Page 27 of 64

V1.12-01 April 2016

ITRRDPS = Peak Security Initial Transport Revenue Recovery for <u>gross GSP</u> <u>group</u> demand

$$\mathsf{D}_{\mathsf{Di}}$$

=

Total forecast Metered Triad gross GSP group Demand for each demand zone (based on <u>analysis of</u> confidential User forecasts)

14.15,119 For the Year Round background, the initial tariff for generation is multiplied by the total forecast generation capacity whilst calculating Initial Recovery for Not-Shared component whereas the initial tariff for Shared component is multiplied by both, the total forecast generation capacity and the ALF to give the initial revenue recovery:

$$\sum_{G_{i=1}}^{n} (ITT_{G_{iYRNS}} \times G_{G_{i}}) = ITRR_{GYRNS}$$
$$\sum_{G_{i=1}}^{n} (ITT_{G_{iYRS}} \times G_{G_{i}} \times ALF) = ITRR_{GYRS}$$

Where:

ITRR _{GYRNS}	=	Year Round Not-Shared Initial Transport Revenue Recovery for
ITRR _{GYRS} generation	=	Year Round Shared Initial Transport Revenue Recovery for
ALF	=	Annual Load Factor appropriate to that generator.

14.15.115 Similar to the Peak Security background, the initial revenue recovery for <u>gross</u> <u>GSP group</u> demand for the Year Round background is calculated by multiplying the initial tariff by the total forecast metered triad<u>gross GSP group</u> demand:

$$\sum_{Di=1}^{14} (ITT_{DiYR} \times D_{Di}) = ITRR_{DYR}$$

Where:

ITRR

 Year Round Initial Transport Revenue Recovery for <u>gross GSP</u> group demand

14.15.120The initial revenue recovery for Affected Embedded Exports is the Affected Embedded Export Tariff multiplied by the total forecast volume of Affected Embedded Export at triad:

$$ITRR_{EEA} = \sum_{Di=1}^{14} (EETA_{Di} \times EEVA_{Di})$$

<u>Where</u>

	= Initial Revenue impact for Affected Embedded Exports
EEVA _{Di}	= Forecast Affected Embedded Export metered volume at
Triad (MW)	

For the avoidance of doubt, the initial revenue recovery for affected embedded exports can be positive or negative.

Page 28 of 64

V1.12-01 April 2016

14.15.121The initial revenue recovery for Grandfathered Embedded Exports is the Grandfathered Embedded Export Tariff multiplied by the total forecast volume of Grandfathered Embedded Export at triad:

$$ITRR_{EEG} = \sum_{Di=1}^{14} (EETG_{Di} \times EEVG_{Di})$$

Where

For the avoidance of doubt, the initial revenue recovery for grandfathered embedded exports can be positive or negative.

Deriving the Final Local Tariff (£/kW)

Local Circuit Tariff

14.15,<u>122</u> Generation with a local circuit tariff is calculated by multiplying the Year Round nodal marginal km along the local circuit by the expansion constant and the relevant local security factor (whether onshore or offshore) and summing across local circuits to give the local circuit tariff:

$$\sum_{k} \frac{NLMkm_{Gj}^{L} \times EC \times LocalSF_{k}}{1000} = CLT_{Gi}$$

Where

k	=	Local circuit k for generator
NLMkm _{Gj} L	=	Year Round Nodal marginal km along local circuit k using local
		circuit expansion factor.
EC	=	Expansion Constant
LocalSF _k	=	Local Security Factor for circuit k
CLT _{Gi}	=	Circuit Local Tariff (£/kW)

Onshore Local Substation Tariff

14.15,123 All chargeable generation is subject to the local substation tariff component which is determined by assessing the generation substation type which is the substation at the connection charging boundary, against three cost determining factors: Deleted: 116

- (a) HV connection voltage the voltage at the boundary between the User's connection assets and the transmission system;
- (b) Sum of TEC at the generation substation the combined TEC of all generation at the connecting substation; and
- (c) The level of redundancy at the generation substation single busbar / single switch mesh connections are examples of no redundancy connections, whereas examples of connections with redundancy include double busbar and mesh sub station designs.
- 14.15,<u>124</u> Using the above factors, the corresponding £/kW tariffs (quoted to 3dp) that will be applied during 2010/11 are:

Substation	Connection	Substation Voltage (a)					
Rating (b)	Type (c)	132kV	275kV	400kV			
<1320MW	No redundancy	0.133	0.081	0.065			
<1320MW	Redundancy	0.301	0.192	0.155			
>=1320MW	No redundancy	n/a	0.257	0.208			
>=1320MW	Redundancy	n/a	0.417	0.336			

- 14.15,125 The process for calculating Local Substation Tariffs will be carried out for the first year of the price control and will subsequently be indexed by RPI for each subsequent year of the price control period.
- 14.15,<u>126</u> The effective Local Tariff (£/kW) is calculated as the sum of the circuit and substation onshore and/or offshore components:

$$ELT_{Gi} = CLT_{Gi} + SLT_{Gi}$$

Where

 ELT_{Gi} = Effective Local Tariff (£/kW) SLT_{Gi} = Substation Local Tariff (£/kW)

14.15,<u>127</u> Where tariffs do not change mid way through a charging year, final local tariffs will be the same as the effective tariffs:

14.15,<u>128</u> Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$LT_{Gi} = \frac{12 \times \left(ELT_{Gi} \times \sum_{Gi=1}^{21} G_{Gi} - FLL_{Gi}\right)}{b \times \sum_{Gi=1}^{21} G_{Gi}} \quad \text{and} \quad FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{21} D_{Di}}$$

Where:

b = number of months the revised tariff is applicable for

FLL = Forecast local liability incurred over the period that the original tariff is applicable for

Page 30 of 64

V1.12-01 April 2016

Deleted: 118

Deleted: 119

Deleted: 120

Deleted: 121

CUSC v1.12 14.15,129 For the purposes of charge setting, the total local charge revenue is calculated Deleted: 123 by: $\mathrm{LCRR}_{\mathrm{G}} = \sum_{i=Gi} \mathrm{LT}_{\mathrm{Gi}} * G_{i}$ Where LCRR_G Local Charge Revenue Recovery = = Forecast chargeable Generation or Transmission Entry Capacity Gi in kW (as applicable) for each generator (based on analysis of confidential information received from Users) Offshore substation local tariff 14.15,130 All offshore chargeable generation is subject to an offshore substation tariff. Deleted: 124 The offshore substation tariff shall be the sum of transformer, switchgear and platform components. 14.15,131 Each tariff component, expressed in £/kW, shall be the ratio of the Offshore Deleted: 125 Transmission Owner revenue (£) and rating associated with the transformers, switchgear or platform (kW) at each offshore substation. The Offshore Transmission Owner revenue of each tariff component shall include that associated with asset spares. In the case of the platform component, the relevant rating shall be the lower of the transformer or switchgear ratings. As with the offshore circuit expansion factors, the Offshore Transmission Owner revenue associated with each tariff component shall be averaged over the remaining years of the NETSO price control. 14.15,132 Offshore Transmission Owner revenue associated with interest during Deleted: 126 construction and project development overheads will be attributed to the relevant asset category with which it is associated. If these or any other costs included in the Offshore Transmission Owner revenue are not readily attributable to a given asset category, they will be pro-rated across the various asset categories based on their relative cost. 14.15,133 For 2010/11 a discount of £0.345590/kW shall be provided to the offshore Deleted: 127 substation tariff to reflect the average cost of civil engineering for onshore substations. This will be inflated by RPI each year and reviewed every price control period. 14.15,134 Offshore substation tariffs shall be reviewed at the start of every onshore price Deleted: 128 control period. For each subsequent year within the price control period, these shall be inflated in the same manner as the associated Offshore Transmission Owner Revenue. 14.15,135 The revenue from the offshore substation local tariff is calculated by: Deleted: 129 $SLTR = \sum_{All offshore} \left(SLT_k \times \sum_k Gen_k \right)$ Where: the offshore substation tariff for substation k SLT_k = the generation connected to offshore substation k Gen⊭ = Page 31 of 64 V1.12-01 April 2016

The Residual Tariff

14.15,136 The total revenue to be recovered through TNUoS charges is determined each year with reference to the Transmission Licensees' Price Control formulas less the costs expected to be recovered through Pre-Vesting connection charges. Hence in any given year t, a target revenue figure for TNUoS charges (TRR_t) is set after adjusting for any under or over recovery for and including, the small generators discount is as follows:

$$TRR_t = R_t - PVC_t - SG_{t-1}$$

Where

I

- TRRt = TNUoS Revenue Recovery target for year t
 Rt = Forecast Revenue allowed under The Company's RPI-X Price Control Formula for year t (this term includes a number of adjustments, including for over/under recovery from the previous year). For further information, refer to Special Condition D2 of The Company's Transmission Licence.
- PVC_t = Forecast Revenue from Pre-Vesting connection charges for year t
- SG_{t-1} = The proportion of the under/over recovery included within R_t which relates to the operation of statement C13 of the The Company Transmission Licence. Should the operation of statement C13 result in an under recovery in year t 1, the SG figure will be positive and vice versa for an over recovery.
- 14.15,137 In normal circumstances, the revenue forecast to be recovered from the initial transport tariffs will not equate to the total revenue target. This is due to a number of factors. For example, the transport model assumes, for simplicity, smooth incremental transmission investments can be made. In reality, transmission investment can only be made in discrete 'lumps'. The transmission system has been planned and developed over a long period of time. Forecasts and assessments used for planning purposes will not have been borne out precisely by events and therefore some distinction between an optimal system for one year and the actual system can be expected.
- 14.15,138 As a result of the factors above, in order to ensure adequate revenue recovery, a constant non-locational **Residual Tariff** for generation and demand is calculated, which includes infrastructure substation asset costs. It is added to the initial transport tariffs for both Peak Security and Year Round backgrounds so that the correct generation / demand revenue split is maintained and the total revenue recovery is achieved.

$$RT_D = \frac{(p \times TR)}{p}$$

Deleted: 130

Deleted: 131

Deleted: 132

Deleted:

$$RT_{D} = \frac{(p \times TRR) - ITRR_{DPS} - ITRR_{DYR} - ITRR_{EEA} - ITTR_{EEG}}{\sum_{Di=1}^{14} D_{Di}}$$

$$RT_{G} = \frac{\left[(1-p) \times TRR\right] - ITRR_{GPS} - ITRR_{GYRS} - ITRR_{GYRS} - LCRR_{G}}{\sum_{Gi=1}^{n} G_{Gi}}$$

Where RT

р

Residual Tariff (£/MW)
 Proportion of revenue to be recovered from

= Proportion of revenue to be recovered from demand

Page 32 of 64

Final £/kW Tariff

14.15,139 The effective Transmission Network Use of System tariff (TNUoS) for generation and gross demand can now be calculated as the sum of the initial transport wider tariffs for Peak Security and Year Round backgrounds, the non-locational residual tariff and the local tariff:

$$ET_{Gi} = \frac{ITT_{GiPS} + ITT_{GiYRNS} + ITT_{GiYRS} + RT_{G}}{1000} + LT_{Gi}$$
$$ET_{Di} = \frac{ITT_{DiPS} + ITT_{DiYR} + RT_{D}}{1000}$$

Where

- ET_{Di} = Effective Gross Demand TNUoS Tariff expressed in £/kW

The effective Transmission Network Use of System tariff (TNUoS) for affected embedded exports and grandfathered embedded exports can now be calculated by expressing the embedded export tariff in £/kW values:

 $ET_{EEAi} = \frac{EETA_{Di}}{1000}$

$$ET_{EEGi} = \frac{EETG_{Di}}{1000}$$

Where

ET_{EEAI} = Effective Affected Embedded Export TNUoS Tariff expressed in £/kW ET_{EEGI} = Effective Grandfathered Embedded Export TNUoS Tariff expressed in £/kW

For the purposes of the annual Statement of Use of System Charges ET_{Gi} will be published as ITT_{GiPS} ; ITT_{GiPRS} , ITT_{GiPRS} , RT_G and LT_{Gi}

14.15,140 Where tariffs do not change mid way through a charging year, final demand and generation tariffs will be the same as the effective tariffs.

$$FT_{Gi} = ET_{Gi}$$

$$FT_{Di} = ET_{Di}$$

$$F\overline{T_{EEAi}} = ET_{EEAi}$$

$$FT_{FEGi} = ET_{FEGi}$$

14.15,141 Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

Deleted: 134

Deleted: 135

Deleted: 133

Page 33 of 64

$$FT_{Gi} = \frac{12 \times \left(ET_{Gi} \times \sum_{Gi=1}^{20} G_{Gi} - FL_{Gi}\right)}{b \times \sum_{Gi=1}^{27} G_{Gi}} \text{ and } FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{14} D_{Di}}$$

$$FT_{EEAi} = \frac{12 \times (ET_{EEAi} \times \sum_{Di=1}^{14} EETA_{Di} - FL_{Di})}{b \times \sum_{Di=1}^{14} EETA_{Di} - FL_{Di}} \text{ and } FT_{EEGi} = \frac{12 \times (ET_{EEGi} \times \sum_{Di=1}^{14} EETG_{Di} - FL_{Di})}{b \times \sum_{Di=1}^{14} EETG_{Di} - FL_{Di}}$$

Where:

b = number of months the revised tariff is applicable for FL = Forecast liability incurred over the period that the original tariff is applicable for

Note: The ET_{Gi} element used in the formula above will be based on an individual Power Stations PS flag and ALF for Power Station G_{Gi} , aggregated to ensure overall correct revenue recovery.

14.15,142 If the final gross demand TNUoS Tariff results in a negative number then this is collared to £0/kW with the resultant non-recovered revenue smeared over the remaining demand zones:

 $NRRT_{D} = \frac{\sum_{i=1}^{z} \left(FT_{Di} \times D_{Di} \right)}{\sum_{i=1}^{14} D_{Di}}$

If
$$FT_{Di} < 0$$
, then $i = 1$ to z

Therefore,

Therefore the revised Final Tariff for the <u>gross</u> demand zones with positive Final tariffs is given by:

 $RFT_{Di} = FT_{Di} + NRRT_{Di}$

For
$$i= 1$$
 to z: $RFT_{Di} = 0$

For *i*=z+1 to 14:

Where

1

- $NRRT_{D} = Non Recovered Revenue Tariff (\pounds/kW)$ RFT_{Di} = Revised Final Tariff (\pounds/kW)
- 14.15,143 The tariffs applicable for any particular year are detailed in The Company's Statement of Use of System Charges, which is available from the Charging website. Archived tariff information may also be obtained from the Charging website.
 - 14.15,144 The zonal maps referenced in The Company's Statement of Use of System Charges and available on the Charging website contain detailed information for the charging year in question of which Grid Supply Points fall into which TNUoS zones.

14.15,145 New Grid Supply Points will be classified into zones on the following basis:

Page 34 of 64

V1.12-01 April 2016

Deleted: 136

Deleted: 137

Deleted: 138

- For demand zones, according to the GSP Group to which the Grid Supply Point is allocated for energy market settlement purposes.
- For generation zones, with reference to the geographic proximity to existing zones and, where close to a boundary between existing zones, with reference to the marginal costs arising from transport model studies. The GSP will then be allocated to the zone, which contains the most similar marginal costs.
- 14.15,146 The Company has available, upon request, the DCLF ICRP transport model, tariff model template and data necessary to run the model, consisting of nodal values of generation and demand connection points to the NETS. The model and data will enable the basic nodal charges to be determined and will also allow sensitivity analysis concerning alternative developments of generation and demand to be undertaken. The model is available from the Charging Team and whilst it is free of charge, it is provided under licence to restrict its distribution and commercial use.
- 14.15,147 The Company will be pleased to run specific sensitivity studies for Users under a separate study contract in line with the fees set out in the **Statement of Use** of **System Charges**. Please contact the **Charging Team**.
- 14.15,148 The factors which will affect the level of TNUoS charges from year to year include-;
 - the forecast level of peak demand on the system
 - the Price Control formula (including the effect of any under/over recovery from the previous year),
 - the expansion constant,
 - the locational security factor,
 - the PS flag
 - the ALF of a generator
 - changes in the transmission network
 - HVDC circuit impedance calculation
 - changes in the pattern of generation capacity and demand.
 - changes in the pattern of embedded exports

14.15,149 In accordance with Standard Licence Condition C13, generation directly connected to the NETS 132kV transmission network which would normally be subject to generation TNUoS charges but would not, on the basis of generating capacity, be liable for charges if it were connected to a licensed distribution network qualifies for a reduction in transmission charges by a designated sum, determined by the Authority. Any shortfall in recovery will result in a unit amount increase in gross demand charges to compensate for the deficit. Further information is provided in the Statement of the Use of System Charges.

Stability & Predictability of TNUoS tariffs

I

14.15,<u>150</u> A number of provisions are included within the methodology to promote the stability and predictability of TNUoS tariffs. These are described in 14.29.

Deleted: 143

Deleted: 140

Deleted: 141

Deleted: 142

Deleted: 144

Page 35 of 64

14.16 Derivation of the Transmission Network Use of System Energy Consumption Tariff and Short Term Capacity Tariffs

- 14.16.1 For the purposes of this section, Lead Parties of Balancing Mechanism (BM) Units that are liable for Transmission Network Use of System Demand Charges are termed Suppliers.
- 14.16.2 Following calculation of the Transmission Network Use of System £/kW Gross Demand Tariff (as outlined in Chapter 2: Derivation of the TNUoS Tariff) for each GSP Group is calculated as follows:

$$p/kWh Tariff = (NHHD_F * £/kW Tariff - FL_G) *100$$

NHHC_G

Where:

 \pounds/kW Tariff = The \pounds/kW Effective <u>Gross</u> Demand Tariff (\pounds/kW), as calculated previously, for the GSP Group concerned.

 \mathbf{NHHD}_{F} = The Company's forecast of Suppliers' non-half-hourly metered Triad Demand (kW) for the GSP Group concerned. The forecast is based on historical data.

 FL_{G} = Forecast Liability incurred for the GSP Group concerned.

 $\rm NHHC_{G}$ = The Company's forecast of GSP Group non-half-hourly metered total energy consumption (kWh) for the period 16:00 hrs to 19:00hrs inclusive (i.e. settlement periods 33 to 38) inclusive over the period the tariff is applicable for the GSP Group concerned.

Short Term Transmission Entry Capacity (STTEC) Tariff

14.16.3 The Short Term Transmission Entry Capacity (STTEC) tariff for positive zones is derived from the Effective Tariff (ET_{Gi}) annual TNUoS £/kW tariffs (14.15.112). If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the STTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (i.e. over the whole financial year, not just the period that the STTEC is applicable for). STTECs will not be reconciled following a mid year charge change. The premium associated with the flexible product is associated with the analysis that 90% of the annual charge is linked to the system peak. The system peak is likely to occur in the period of November to February inclusive (120 days, irrespective of leap years). The calculation for positive generation zones is as follows:

$$\frac{FT_{Gi} \times 0.9 \times STTEC \ Period}{120} = STTEC \ tariff \ (\pounds/kW/period)$$

Where:

FT	=	Final annual TNUoS Tariff expressed in £/kW
Gi	=	Generation zone
STTEC Period	=	A period applied for in days as defined in the CUSC

Page 36 of 64

- 14.16.4 For the avoidance of doubt, the charge calculated under 14.16.3 above will represent each single period application for STTEC. Requests for multiple /STTEC periods will result in each STTEC period being calculated and invoiced separately.
- 14.16.5 The STTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.

Limited Duration Transmission Entry Capacity (LDTEC) Tariffs

14.16.6 The Limited Duration Transmission Entry Capacity (LDTEC) tariff for positive zones is derived from the equivalent zonal STTEC tariff for up to the initial 17 weeks of LDTEC in a given charging year (whether consecutive or not). For the remaining weeks of the year, the LDTEC tariff is set to collect the balance of the annual TNUoS liability over the maximum duration of LDTEC that can be granted in a single application. If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the LDTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (ie over the whole financial year, not just the period that the STTEC is applicable for). LDTECs will not be reconciled following a mid year charge change:

Initial 17 weeks (high rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.9 \times 7}{120}$$

Remaining weeks (low rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.1075 \times 7}{316 - 120} \times (1 + P)$$

where FT is the final annual TNUoS tariff expressed in £/kW; G_i is the generation TNUoS zone; and P is the premium in % above the annual equivalent TNUoS charge as determined by The Company, which shall have the value 0.

- 14.16.7 The LDTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.
- 14.16.8 The tariffs applicable for any particular year are detailed in The Company's **Statement of Use of System Charges** which is available from the **Charging website.** Historical tariffs are also available on the **Charging website.**

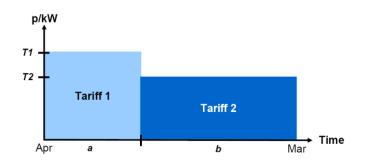
14.17 Demand Charges

Parties Liable for Demand Charges

- 14.17.1 <u>Demand charges are subdivided into charges for gross demand, energy and</u> <u>embedded export.</u> The following parties shall be liable for <u>some or all of the</u> <u>categories of</u> demand charges:
 - The Lead Party of a Supplier BM Unit;
 - Power Stations with a Bilateral Connection Agreement;
 - Parties with a Bilateral Embedded Generation Agreement
- 14.17.2 Classification of parties for charging purposes, section 14.26, provides an illustration of how a party is classified in the context of Use of System charging and refers to the paragraphs most pertinent to each party.

Basis of Gross Demand Charges

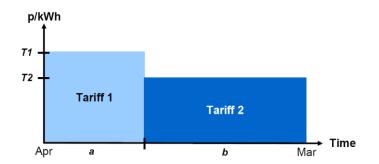
- 14.17.3 <u>Gross d</u>emand charges are based on a de-<u>minimis</u> £0/kW charge for Half Hourly and £0/kWh for Non Half Hourly metered demand.
 - 14.17.4 Chargeable <u>Gross</u> Demand Capacity is the value of Triad <u>gross</u> demand (kW). Chargeable Energy Capacity is the energy consumption (kWh). The definition of both these terms is set out below.
 - 14.17.5 If there is a single set of <u>gross</u> demand tariffs within a charging year, the Chargeable <u>Gross</u> Demand Capacity is multiplied by the relevant <u>gross</u> demand tariff, for the calculation of <u>gross</u> demand charges.
 - 14.17.6 If there is a single set of energy tariffs within a charging year, the Chargeable Energy Capacity is multiplied by the relevant energy consumption tariff for the calculation of energy charges..
 - 14.17.7 If multiple sets of <u>gross</u> demand tariffs are applicable within a single charging year, <u>gross</u> demand charges will be calculated by multiplying the Chargeable <u>Gross</u> Demand Capacity by the relevant tariffs pro rated across the months that they are applicable for, as below,


▼		
Annual Liability	$y_{Demand} = \frac{Chargeable \ Gross}{Demand \ Capacity} \times \left(\frac{(a \times Tariff \ 1) + (b \times Tariff \ 2)}{12}\right)$	
where:		
Tariff 1 =	Original tariff,	
Tariff 2 =	Revised tariff,	

a = Number of months over which the original tariff is applicable,
 b = Number of months over which the revised tariff is applicable.

Deleted: minimus

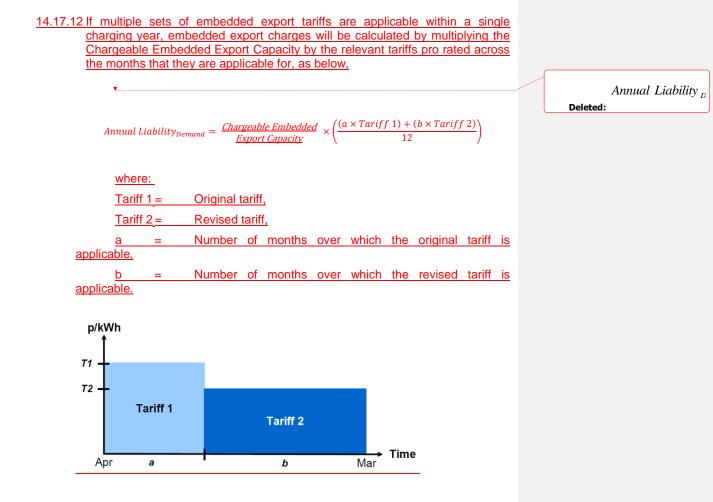
Deleted: Annual Liability _D


Page 38 of 64

14.17.8 If multiple sets of energy tariffs are applicable within a single charging year, energy charges will be calculated by multiplying relevant Tariffs by the Chargeable Energy Capacity over the period that that the tariffs are applicable for and summing over the year.

Annual Liability $_{Energy} = Tariff \ 1 \times \sum_{TI_s}^{TI_E} Chargeable Energy Capacity + Tariff \ 2 \times \sum_{TZ_s}^{TI_E} Chargeable Energy Capacity$

Where: T1_s Start date for the period for which the original tariff is = applicable, End date for the period for which the original tariff is T1_E = applicable, Start date for the period for which the revised tariff is T2s _ applicable, End date for the period for which the revised tariff is T2_E = applicable.



Basis of Embedded Export Charges

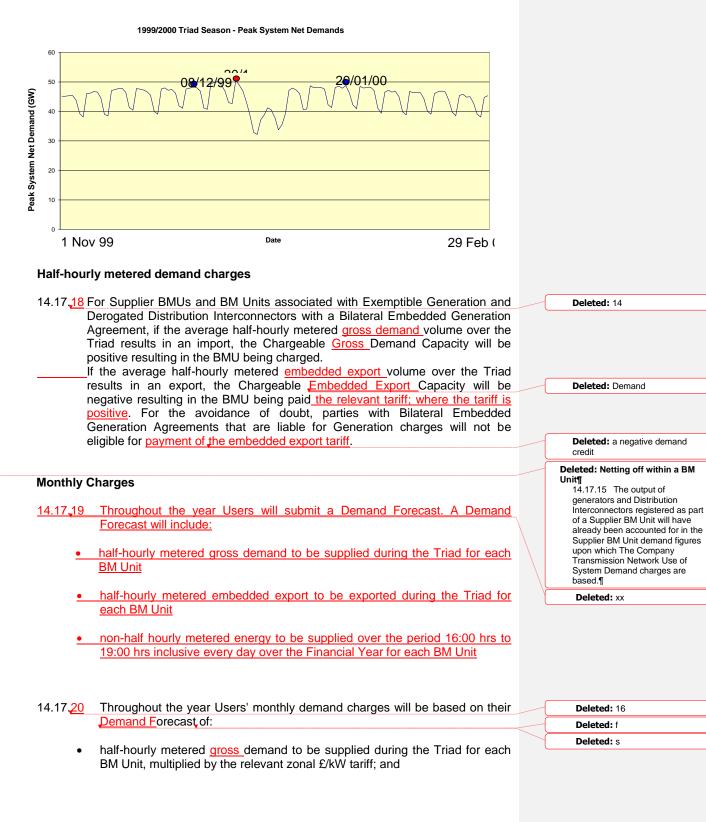
- 14.17.9 Embedded export charges are based on a £/kW charge for Half Hourly metered embedded export.
- <u>14.17.10 Chargeable Embedded Export Capacity is the value of Embedded Export at</u> <u>Triad (kW). The definition of this term is set out below.</u>

If there is a single set of embedded export tariffs within a charging year, the Chargeable Embedded Export Capacity is multiplied by the relevant embedded export tariff, for the calculation of embedded export charges. Deleted: 14.17.11

Page	39	of	64
------	----	----	----

Supplier BM Unit

14.17,<u>13</u> A Supplier BM Unit charges will be the sum of its energy, <u>gross</u> demand <u>and</u> <u>embedded export</u> liabilities where:


- The Chargeable <u>Gross</u> Demand Capacity will be the average of the Supplier BM Unit's half-hourly metered <u>gross</u> demand during the Triad (and the £/kW tariff),
- The Chargeable Embedded Export Capacity will be the average of the Supplier BM Unit's half-hourly metered embedded export during the Triad (and the £/kW tariff), and
- The Chargeable Energy Capacity will be the Supplier BM Unit's non halfhourly metered energy consumption over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year (and the p/kWh tariff).

Power Stations with a Bilateral Connection Agreement and Licensable Generation with a Bilateral Embedded Generation Agreement

Page 40 of 64

V1.12-01 April 2016

	CUSC v1.12			
1	14.17,14 The Chargeable Gross Demand Capacity for a Power Station with a Bilateral	_	Deleted: 10	
I	Connection Agreement or Licensable Generation with a Bilateral Embedded)
	Generation Agreement will be based on the average of the gross import over		Deleted: net	
	each Triad leg of the BM Units associated with the Power Station (in Appendix			
	C of its Bilateral Connection Agreement or Bilateral Embedded Generation Agreement, including metered additional load) during the Triad.			
	Agreement, including metered additional load) during the Thad.			
	Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement			
1	14.17,15 The demand charges for Exemptible Generation and Derogated Distribution		Deleted: 11	
	Interconnector with a Bilateral Embedded Generation Agreement will be the			
	sum of its gross demand and embedded export liabilities where:			
	The Observable Organ Demond Opperity for Every title Opperation and			
	 The Chargeable <u>Gross</u> Demand Capacity for Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation 			
	Agreement will be based on the average of the metered gross demand of	-	Deleted: volume	
	each BM Unit specified in Appendix C of the Bilateral Embedded Generation)
	Agreement during the Triad.			
	 <u>The Chargeable Embedded Export Capacity for Exemptible Generation and</u> Derogated Distribution Interconnectors with a Bilateral Embedded Generation 			
	Agreement will be based on the average of the metered embedded export of			
	each BM Unit specified in Appendix C of the Bilateral Embedded Generation			
	Agreement during the Triad.			
	Small Generators Tariffs			
	14.17,16 In accordance with Standard Licence Condition C13, any under recovery from		Deleted: 12	
	the MAR arising from the small generators discount will result in a unit amount	- (
	of increase to all GB gross demand tariffs.			
	The Triad			
	The Triad			
1	14.17,17 The Triad is used as a short hand way to describe the three settlement periods		Deleted: 13	
	of highest transmission system demand within a Financial Year, namely the)
	half hour settlement period of system peak <u>net</u> demand and the two half hour			
	settlement periods of next highest <u>net</u> demand, which are separated from the			
	system peak <u>net</u> demand and from each other by at least 10 Clear Days, between November and February of the Financial Year inclusive. Exports on			
	directly connected Interconnectors and Interconnectors capable of exporting			
	more than 100MW to the Total System shall be excluded when determining the			
	system peak <u>net</u> demand. An illustration is shown below.			
-				

- half-hourly metered embedded export to be supplied during the Triad for each BM Unit, multiplied by the relevant zonal £/kW tariff; and
- non-half hourly metered energy to be supplied over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year for each BM Unit, multiplied by the relevant zonal p/kWh tariff

Users' annual TNUoS demand charges are based on these forecasts and are split evenly over the 12 months of the year. Users have the opportunity to vary their demand forecasts on a quarterly basis over the course of the year, with the demand forecast requested in February relating to the next Financial Year. Users will be notified of the timescales and process for each of the quarterly updates. The Company will revise the monthly Transmission Network Use of System demand charges by calculating the annual charge based on the new forecast, subtracting the amount paid to date, and splitting the remainder evenly over the remaining months. For the avoidance of doubt, only positive demand forecasts (i.e. representing <u>a net</u> import from the system) will be <u>used in the calculation of charges</u>.

Demand forecasts for a User will be considered positive where:

- The sum of the gross demand forecast and embedded export forecast is positive; and
- The non-half hourly metered energy forecast is positive.

14.17.21 Users should submit reasonable forecasts of gross demand, embedded export and energy in accordance with the CUSC. The Company shall use the following methodology to derive a forecast to be used in determining whether a User's forecast is reasonable, in accordance with the CUSC, and this will be used as a replacement forecast if the User's total forecast is deemed unreasonable. The Company will, at all times, use the latest available Settlement data.

For existing Users:

- i) The User's Triad <u>gross</u> demand<u>and embedded export</u> for the preceding Financial Year will be used where User settlement data is available and where The Company calculates its forecast before the Financial Year. Otherwise, the User's average weekday settlement period 35 half-hourly metered (HH) <u>gross</u> demand <u>and embedded export</u> in the Financial Year to date is compared to the equivalent average <u>gross</u> demand<u>and</u> <u>embedded export</u> for the corresponding days in the preceding year. The percentage difference is then applied to the User's HH <u>gross</u> demand<u>and</u> <u>embedded export</u> at Triad in the preceding Financial Year to derive a forecast of the User's HH <u>gross</u> demand<u>and embedded export</u> at Triad for this Financial Year.
- ii) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day in the Financial Year to date is compared to the equivalent energy consumption over the corresponding days in the preceding year. The percentage difference is then applied to the User's total NHH energy consumption in the preceding Financial Year to derive a forecast of the User's NHH energy consumption for this Financial Year.

For new Users who have completed a Use of System Supply Confirmation Notice in the current Financial Year:

Page 43 of 64

V1.12-01 April 2016

Deleted: accepted

1

iii) The User's average weekday settlement period 35 half-hourly metered (HH) gross demand and embedded export over the last complete month for which The Company has settlement data is calculated. Total system average HH gross demand and embedded export for weekday settlement period 35 for the corresponding month in the previous year is compared to total system HH_gross demand and embedded export at Triad in that year and a percentage difference is calculated. This percentage is then applied to the User's average HH gross demand and embedded export for weekday settlement period 35 over the last month to derive a forecast of the User's HH gross demand and embedded export at Triad for this Financial Year.

- iv) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day over the last complete month for which The Company has settlement data is noted. Total system NHH energy consumption over the corresponding month in the previous year is compared to total system NHH energy consumption over the remaining months of that Financial Year and a percentage difference is calculated. This percentage is then applied to the User's NHH energy consumption over the month described above, and all NHH energy consumption in previous months is added, in order to derive a forecast of the User's NHH metered energy consumption for this Financial Year.
- 14.17,22 14.28 Determination of The Company's Forecast for Demand Charge Purposes illustrates how the demand forecast will be calculated by The Company.

Reconciliation of Demand Charges

14.17,23 The reconciliation process is set out in the CUSC. The demand reconciliation process compares the monthly charges paid by Users against actual outturn charges. Due to the Settlements process, reconciliation of demand charges is carried out in two stages; initial reconciliation and final reconciliation.

Initial Reconciliation of demand charges

14.17,24 The initial reconciliation process compares Users' demand forecasts and corresponding monthly charges paid over the year against actual outturn data (using latest Settlement data available at the time) and corresponding charges. Initial reconciliation is carried out in two parts; Initial Reconciliation Part 1 deals with the reconciliation of half-hourly metered demand charges and Initial Reconciliation Part 2 deals with the reconciliation of non-half-hourly metered demand charges.

Initial Reconciliation Part 1– Half-hourly metered demand

- 14.17,25 The Company will identify the periods forming the Triad once it has received Central Volume Allocation data from the Settlement Administration Agent for all days up to and including the last day of February. Once The Company has notified Users of the periods forming the Triad they will not be changed even if disputes are subsequently resolved which would change the periods forming the Triad.
- 14.17,<u>26</u> Initial outturn charges for half-hourly metered <u>gross</u> demand will be determined using the latest available data of actual average Triad <u>gross</u> demand (kW) multiplied by the zonal <u>gross</u> demand tariff(s) (£/kW) applicable to the months

Page 44 of 64

Deleted: 18

Deleted: 19

Deleted: 20

Deleted: 21

С

I

I

I

I

1.12	
concerned for each zone for that Financial Year. These actual values are then reconciled against the monthly charges paid in respect of half-hourly gross demand.	
14.17.27 Initial outturn charges for half-hourly metered embedded export will be determined using the latest available data of actual average Triad embedded	
export (kW) multiplied by the zonal embedded export tariff(s) (£/kW) applicable to the months concerned for each zone for that Financial Year. These actual values are then reconciled against the monthly charges paid in respect of half-	
hourly embedded exports.	
Initial Reconciliation Part 2 – Non-half-hourly metered demand	
14.17,28 Actual payments for non-half-hourly metered demand will be determined using	Deleted: 23
the latest available actual energy consumption data (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) over the year multiplied by the energy consumption tariff(s) (p/kWh) applicable to the months concerned for each zone. These actual values are then reconciled against the monthly charges paid in respect of non-half-hourly energy consumption.	
Final Reconciliation of demand charges	
14.17,29 The final reconciliation process compares Users' charges (as calculated during	Deleted: 24
the initial reconciliation process using the latest available data) against final outturn demand charges (based on final settlement data <u>of half-hourly gross</u> <u>demand, embedded exports and non-half-hourly energy consumption).</u>	
14.17.30 Final actual charges will be determined using the final demand reconciliation data taken from the Final Reconciliation Settlement Run or the Final Reconciliation Volume Allocation Run.	Deleted: 25
Reconciliation of manifest errors	
14.17, <u>31</u> In the event that a manifest error, or multiple errors in the calculation of TNUoS tariffs results in a material discrepancy in aUsers TNUoS tariff, the	Deleted: 26
reconciliation process for all Users qualifying under Section 14.17,33 will be in	Deleted: 28
accordance with Sections 14.17,24 to 14.17,50. The reconciliation process shall be carried out using recalculated TNUoS tariffs. Where such	Deleted: 20
reconciliation is not practicable, a post-year reconciliation will be undertaken in the form of a one-off payment.	Deleted: 25
14.17. <u>32 A manifest error shall be defined as any of the following:</u>	Deleted: 27
 a) an error in the transfer of relevant data between the Transmission Licensees or Distribution Network Operators; 	
b) an error in the population of the Transport Model with relevant data;	
c) an error in the function of the Transport Model; ord) an error in the inputs or function of the Tariff Model.	
14.17,33 A manifest error shall be considered material in the event that such an error or, the net effect of multiple errors, has an impact of the lesser of either:	Deleted: 28
a) an error in a User's TNUoS tariff of at least +/-£0.50/kW; or	

Page 45 of 64

b) an error in a User's TNUoS tariff which results in an error in the annual TNUoS charge of a User in excess of +/-£250,000.

14.17,<u>34</u> A manifest error shall only be reconciled if it has been identified within the charging year for which the error has an effect. Errors identified outside of this period will not be eligible for reconciliation retrospectively.

Implementation of P272

- 14.17,<u>35</u>.1 BSC modification P272 requires Suppliers to move Profile Classes 5-8 to Measurement Class E - G (i.e. moving from NHH to HH settlement) by April 2016. The majority of these meters are expected to transfer during the preceding Charging Years up until the implementation date of P272 and some meters will have been transferred before the start of 1ST April 2015. A change from NHH to HH within a Charging Year would normally result in Suppliers being liable for TNUoS for part of the year as NHH and also being subject to HH charging. This section describes how the Company will treat this situation in the transition to P272 implementation for the purposes of TNUoS charging; and the forecasts that Suppliers should provide to the Company.
- 14.17,35.2 Notwithstanding 14.17,13, for each Charging Year which begins after 31 March 2015 and prior to implementation of BSC Modification P272, all demand associated with meters that are in NHH Profile Classes 5 to 8 at the start of that charging year as well as all meters in Measurement Classes E G will be treated as Chargeable Energy Capacity (NHH) for the purposes of TNUoS charging for the full Charging Year unless 14.17,35.3 applies.
 - 14.17,35.3 Where prior to 1st April 2015 a Profile Class meter has already transferred to Measurement Class settlement (HH) the associated Supplier may opt to treat the demand volume as Chargeable Demand Capacity (HH) for the purposes of TNUoS charging up until implementation of P272, subject to meeting conditions in 14.17,35.6. If the associated Supplier does not opt to treat the demand volume as Demand Capacity (HH) it will be treated by default as Chargeable Energy Capacity (NHH) for each full Charging Year up until implementation of P272.
 - 14.17,35.4 The Company will calculate the Chargeable Energy Capacity associated with meters that have transferred to HH settlement but are still treated as NHH for the purposes of TNUoS charging from Settlement data provided directly from Elexon i.e. Suppliers need not Supply any additional information if they accept this default position.
- 14.17,35.5 The forecasts that Suppliers submit to the Company under CUSC 3.10, 3.11 and 3.12 for the purpose of TNUoS monthly billing referred to in 14.17,20 and 14.17,21 for both Chargeable Demand Capacity and Chargeable Energy Capacity should reflect this position i.e. volumes associated those Metering Systems that have transferred from a Profile Class to a Measurement Class in the BSC (NHH to HH settlement) but are to be treated as NHH for the purposes of TNUoS charging should be included in the forecast of Chargeable Energy Capacity and not Chargeable Demand Capacity, unless 14.17,35.3 applies.
 - 14.17,<u>35</u>.6 Where a Supplier wishes for Metering Systems that have transferred from Profile Class to Measurement Class in the BSC (NHH to HH settlement) prior to 1st April 2015, to be treated as Chargeable Demand Capacity (HH/

Page 46 of 64

V1.12-01 April 2016

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 9

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 16

Deleted: 17

Deleted: 29

I

Measurement Class settled) it must inform the Company prior to October 2015. The Company will treat these as Chargeable Demand Capacity (HH / Measurement Class settled) for the purposes of calculating the actual annual liability for the Charging Years up until implementation of P272. For these cases only, the Supplier should notify the Company of the Meter Point Administration Number(s) (MPAN). For these notified meters the Supplier shall provide the Company with verified metered demand data for the hours between 4pm and 7pm of each day of each Charging Year up to implementation of P272 and for each Triad half hour as notified by the Company prior to May of the following Charging Year up until two years after the implementation of P272 to allow reconciliation (e.g. Mav 2017 and May 2018 for the Charging Year 2016/17). Where the Supplier fails to provide the data or the data is incomplete for a Charging Year TNUoS charges for that MPAN will be reconciled as part of the Supplier's NHH BMU (Chargeable Energy Capacity). Where a Supplier opts, if eligible, for TNUoS liability to be calculated on Chargeable Demand Capacity it shall submit the forecasts referred to in 14.17,35.5 taking account of this.

14.17,35.7 The Company will maintain a list of all MPANs that Suppliers have elected to be treated as HH. This list will be updated monthly and will be provided to registered Suppliers upon request.

Further Information

- 14.17,<u>36</u> 14.25 Reconciliation of Demand Related Transmission Network Use of System Charges of this statement illustrates how the monthly charges are reconciled against the actual values for <u>gross</u> demand, <u>embedded export</u> and consumption for half-hourly <u>gross demand</u>, <u>embedded export</u> and non-halfhourly metered demand respectively.
- 14.17,<u>37</u> **The Statement of Use of System Charges** contains the £/kW zonal gross demand tariffs, <u>the £/kW zonal embedded export tariffs</u>, and the p/kWh energy consumption tariffs for the current Financial Year.
- 14.17.<u>38</u> 14.27 Transmission Network Use of System Charging Flowcharts of this statement contains flowcharts demonstrating the calculation of these charges for those parties liable.

Deleted: 30

Deleted: 29

Deleted: 29

Deleted: 31

....

14.24 Example: Calculation of Zonal Gross Demand Tariff

Let us consider all nodes in a demand zone in this example

The table below shows a sample output of the transport model comprising the node, the Peak Security and Year Round marginal km of an injection at the node with a consequent withdrawal at the distributed reference node, the generation sited at the node, scaled to ensure total national generation = total national <u>net</u> demand and the <u>net</u> demand sited at the node.

Demand Zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	<u>Net</u> Demand (MW)
14	ABHA4A	-77.25	-230.25	127
14	ABHA4B	-77.27	-230.12	127
14	ALVE4A	-82.28	-197.18	100
14	ALVE4B	-82.28	-197.15	100
14	AXMI40_SWEB	-125.58	-176.19	97
14	BRWA2A	-46.55	-182.68	96
14	BRWA2B	-46.55	-181.12	96
14	EXET40	-87.69	-164.42	340
14	HINP20	-46.55	-147.14	0
14	HINP40	-46.55	-147.14	0
14	INDQ40	-102.02	-262.50	444
14	IROA20_SWEB	-109.05	-141.92	462
14	LAND40	-62.54	-246.16	262
14	MELK40_SWEB	18.67	-140.75	83
14	SEAB40	65.33	-140.97	304
14	TAUN4A	-66.65	-149.11	55
14	TAUN4B	-66.66	-149.11	55
		Totals		2748

In order to calculate the <u>gross</u> demand tariff we would carry out the following steps:

(i) calculate the demand weighted nodal shadow costs

For this example zone this would be as follows:

Demand zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	Net Demand (MW)	Peak Security Demand Weighted Nodal Marginal km	Year Round Demand Weighted Nodal Marginal km
14	ABHA4A	-77.25	-230.25	127	-3.57	-10.64
14	ABHA4B	-77.27	-230.12	127	-3.57	-10.64
14	ALVE4A	-82.28	-197.18	100	-2.99	-7.17
14	ALVE4B	-82.28	-197.15	100	-2.99	-7.17
14	AXMI40_SWEB	-125.58	-176.19	97	-4.43	-6.22
14	BRWA2A	-46.55	-182.68	96	-1.63	-6.38
14	BRWA2B	-46.55	-181.12	96	-1.63	-6.33
14	EXET40	-87.69	-164.42	340	-10.85	-20.34
14	INDQ40	-102.02	-262.50	444	-16.48	-42.41
14	IROA20_SWEB	-109.05	-141.92	462	-18.33	-23.86
14	LAND40	-62.54	-246.16	262	-5.96	-23.47
14	MELK40_SWEB	18.67	-140.75	83	0.56	-4.25
14	SEAB40	65.33	-140.97	304	7.23	-15.59
14	TAUN4A	-66.65	-149.11	55	-1.33	-2.98
14	TAUN4B	-66.66	-149.11	55	-1.33	-2.98
		Totals		2748	-49.19	-190.43

(ii) sum the Peak Security and Year Round demand weighted nodal shadow costs to give zonal figures. For this example zone this is shown in the above table and is 49.19km for Peak Security background and 190.43km for Year Round background.

(iii) calculate the transport tariffs by multiplying the figures in (ii) above by the expansion constant (& dividing by 1000 to put into units of £/kW):

For this example zone, assuming an expansion constant of ± 10.07 /MWkm and a locational security factor of 1.80:

a) Peak Security tariff – 49.19km <u>* £10.07/MWkm * 1.8</u> = <u>£0.89/kW</u> 1000

Page 50 of 64

b) Year Round tariff -<u>190.43km * £10.07/MWkm * 1.8</u> = <u>£3.45/kW</u> 1000

(iv) We now need to calculate the residual tariff. This is calculated by taking the total revenue to be recovered from demand (calculated as c.73% of total The Company TNUoS target revenue for the year), less the revenue which would be recovered through the demand transport tariffs and revenue recovery through embedded export tariffs, divided by total expected gross GSP group demand.

Assuming the total revenue to be recovered from TNUoS is £1067m, the total recovery from <u>gross GSP group</u> demand would be (73% x £1067m) = £779m. Assuming the total recovery from <u>gross GSP group</u> demand transport tariffs is £<u>140m</u>, total recovery from <u>embedded export tariffs is -£10m</u> and total forecast chargeable <u>gross GSP group</u> demand capacity is 50000MW, the demand residual tariff would be as follows:

 $\frac{\pounds779m - \pounds140m - -\pounds10m}{50,000MW} = \pounds12.98/kW$

 (v) to get to the final tariff, we simply add on the demand residual tariff calculated in (v) to the zonal transport tariffs calculated in (iii(a)) and (iii(b))

For zone 14:

 $\pounds 0.89/kW + \pounds 3.45/kW + \pounds 12.98/kW =$ $\pounds 17.32/kW$

- To summarise, in order to calculate the <u>gross</u> demand tariffs, we evaluate a <u>net</u> demand weighted zonal marginal km cost multiply by the expansion constant and locational security factor then we add a constant (termed the residual cost) to give the overall tariff.
- (vii) The final demand tariff is subject to further adjustment to allow for the minimum £0/kW gross_demand charge. The application of a discount for small generators pursuant to Licence Condition C13 will also affect the final gross_demand tariff.

Deleted: gross

Deleted: 130m

Deleted: $\frac{\pounds779m - \pounds130m}{2}$	_
50000MW	_
¶ <u>£779m - £140m£10m</u> = £12.98/kW¶	
50,000MW	

14.25 Reconciliation of <u>Gross</u> Demand Related Transmission Network Use of System Charges

This appendix illustrates the methodology used by The Company in the reconciliation of Transmission Network Use of System charges for <u>gross</u> demand. The example highlights the different stages of the calculations from the monthly invoiced amounts, right through to Final Reconciliation.

Monthly Charges

Suppliers provide half-hourly (HH) gross demand and embedded export forecasts and non-halfhourly (NHH) demand forecasts by BM Unit every quarter. An example of such forecasts and the corresponding monthly invoiced amounts, based on tariffs of £10.00/kW for gross demand, £5.00/kW for embedded export and 1.20p/kWh for energy consumption, is as follows:

	Forecast HH Triad <u>Gross</u> Demand <u>HHD_E (</u> kW)	HH <u>Gross</u> <u>Demand</u> Monthly Invoiced Amount (£)	Forecast <u>HH</u> <u>Triad</u> <u>Embedded</u> <u>Export</u> <u>HHEE_E (kW)</u>	<u>HH</u> <u>Embedded</u> <u>Generation</u> <u>Monthly</u> <u>Invoiced</u> <u>Amount (£)</u>	Forecast NHH Energy Consumpti on NHHC _F (kW h)	NHH Monthly Invoiced Amount (£)	Net Monthly Invoiced Amount (£)
Apr	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
May	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jun	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jul	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Aug	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Sep	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Oct	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Nov	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Dec	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Jan	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Feb	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Mar	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Total		72,000		<u>(3,000)</u>		216,000	<u>297</u> ,000

As shown, for the first nine months the Supplier provided a 12,000kW HH triad <u>gross</u> demand forecast, and hence paid HH <u>gross demand</u> monthly charges of £10,000 ((12,000kW x £10.00/kW)/12) for that BM Unit. In January the Supplier provided a revised forecast of 7,200kW, implying a forecast annual charge reduced to £72,000 (7,200kW x £10.00/kW). The Supplier had already paid £90,000, so the excess of £18,000 was credited back to the supplier in three £6,000 instalments over the last three months of the year.

The Supplier provided an embedded export triad forecast of -600kW and hence was paid an embedded export credit of £250 ((600kW x £5.00/kW)/12) for that BM Unit (For the avoidance of doubt, if the embedded export tariff is negative this will result in a debit).

The Supplier also initially provided a 15,000,000kWh NHH energy consumption forecast, and hence paid NHH monthly charges of £15,000 ((15,000,000kWh x 1.2p/kWh)/12) for that BM Unit. In July the Supplier provided a revised forecast of 18,000,000kWh, implying a forecast annual charge increased to £216,000 (18,000,000kWh x 1.2p/kWh). The Supplier had already

Page 52 of 64

paid £45,000, so the remaining £171,000 was split into payments of £19,000 for the last nine months of the year.

The right hand column shows the net monthly charges for the BM Unit.

Initial Reconciliation (Part 1a)

The Supplier's outturn HH triad <u>gross</u> demand, based on <u>initial</u> settlement data (and therefore subject to change in subsequent settlement runs), was 9,000kW. The HH triad <u>gross</u> demand reconciliation charge is therefore calculated as follows:

HHD Reconciliation Charge = $(HHD_A - HHD_F) \times \pounds/kW$ Tariff

= (9,000kW - 7,200kW) x £10.00/kW

= 1,800kW x £10.00/kW

= £18,000

To calculate monthly interest charges, the outturn HHD charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHD charge less the HH <u>gross demand</u> monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 1b)

The Supplier's outturn HH triad embedded export, based on initial settlement data (and therefore subject to change in subsequent settlement runs), was 700kW. The HH triad embedded export reconciliation charge is therefore calculated as follows:

HHEE Reconciliation Charge = (HHEE_A – HHEE_E) x £/kW Tariff

 $= (-500 \text{kW} - -600 \text{kW}) \times \text{\pounds}5.00/\text{kW}$

 $= 100 \text{kW} \times \text{\pounds}5.00/\text{kW}$

= **£500**

To calculate monthly interest charges, the outturn HHEE charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHEE charge less the HH embedded generation monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 2)

The Supplier's outturn NHH energy consumption, based on initial settlement data, was 17,000,000kWh. The NHH energy consumption reconciliation charge is therefore calculated as follows:

Deleted: Please note that payments made to BM Units with a net export over the Triad, based on initial settlement data, will also be reconciled at this stage.¶ As monthly payments will not be made on the basis of a negative forecast, the HHD Reconciliation Charge for an exporting BM Unit will represent the full actual payment owed to that BM Unit (subject to adjustment by subsequent settlement runs). Interest will be calculated as described above.¶

NHHC Reconciliation Charge = $(NHHC_A - NHHC_F) \times p/kWh Tariff$

100

= <u>(17,000,000kWh - 18,000,000kWh) x 1.20p/kWh</u>

100

= <u>-1,000,000kWh x 1.20p/kWh</u> 100 = **-£12,000**

worked example 4.xls - Initial!J104

The monthly reconciliation amount is equal to the outturn energy consumption charge for that month less the NHH monthly invoiced amount. Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

The net initial TNUoS demand reconciliation charge is therefore $\pounds 6,500$ (£18,000 + $\pounds 500$ - $\pounds 12,000$).

Final Reconciliation

Finally, let us now suppose that after all <u>final</u> Settlement data has been received (up to 14 months after the relevant dates), the outturn HH triad <u>gross</u> demand, <u>HH triad embedded export</u> and NHH energy consumption values were 9,500kW, <u>-550kW</u> and 16,500,000kWh, respectively.

Final HH <u>Gross Demand</u>	= (9,500kW - 9,000kW) x £10.00/kW
<u>Reconciliation Charge</u>	= £5,000
Final HH Embedded Export	= (-550kW500kW) x £5.00/kW
Reconciliation Charge	= -£250

Final NHH Reconciliation Charge = $(16,700,000kWh - 17,000,000kWh) \times 1.20p/kWh$ 100 = -£3,600

Consequently, the net final TNUoS demand reconciliation charge will be $\pounds 1, \underline{150} (\pounds 5,000 + -\pounds 250 + -\pounds 3,600)$.

Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

Outturn data for BM Units with a net export over the Triad will be received at this stage and final reconciliation will be carried out, as required. Interest will be calculated as described above.

Terminology:

 HHD_A = The Supplier's outturn half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

Page 54 of 64

I

 HHD_F = The Supplier's forecast half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

<u>HHEE_A = The Supplier's outturn half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

<u>HHEE_E = The Supplier's forecast half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

NHHC_A = The Supplier's outturn non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1^{st} to March 31^{st} , for the demand zone concerned.

NHHC_F = The Supplier's forecast non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1st to March 31st, for the demand zone concerned.

£/kW Tariff = The £/kW <u>Gross</u> Demand <u>or Embedded Export</u> Tariff as shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

p/kWh Tariff = The Energy Consumption Tariff shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

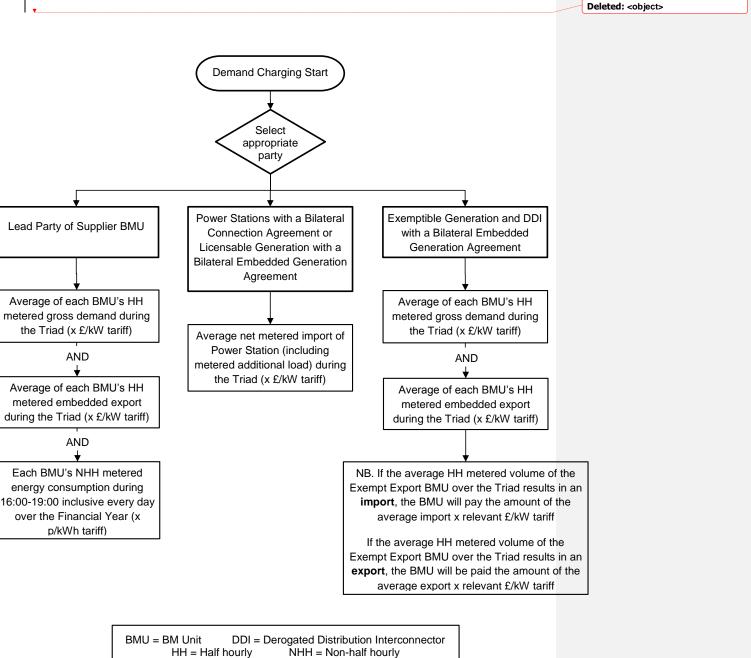
14.26 Classification of parties for charging purposes

In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precendence.

In the following diagrams, the parties liable for Transmission Network Use of System charges are outlined in red.

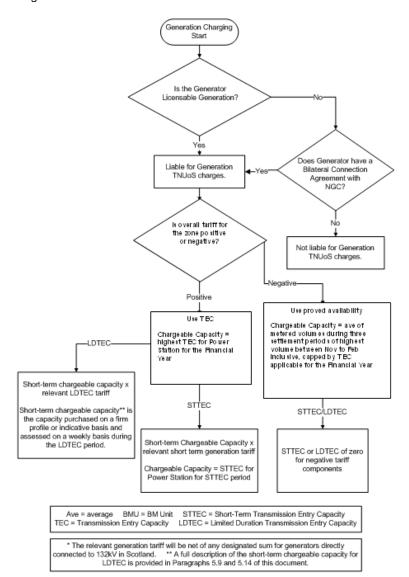
SUPPLIER		
Supplier Use of System Agreem	ent	
Supplier Supplier BMU1 BMUn		
Demand Charges	Generation Charges	
See 14.17, <mark>13</mark> and 14.17, <u>18</u> .	None.	Deleted: 9
		Deleted: 14
Bilateral Connection Agreement Gen Unit BMU1 Gen Unit BMUn	Appendix C Station Load BMU Load BMU	
Demand Charges	Generation Charges	
See 14.17, <mark>14</mark> .	See 14.18.1 i) and 14.18.3 to 14.18.9 and 14.18.18. For generators in positive zones, see 14.18.10 to	Deleted: 10
	14.18.12.For generators in negative zones, see 14.18.13 to14.18.17.	

Bilateral Emb	edded Generation	Agreement Ap	pendix C	7
Gen Unit BMU1	Gen Unit BMUn	Station Load BMU	Additional Load BMU	
Demand Charges	7. <u>15</u> and 14.17. <u>18</u> .	Generation Cl See 14.18.1 ii	U	
Jee 14.17. <u>14</u> , 14.17	<u>, 10</u> and 14.17, <u>10</u> .	For generator 14.18.12 and	s in positive zone 14.18.18.	es, see 14.18.3 to es, see 14.18.3 to


-{	Deleted: 10
-	Deleted: 11
Y	Deleted: 14

14.27 Transmission Network Use of System Charging Flowcharts

The following flowcharts illustrate the parties liable for Demand and Generation TNUoS charges and the calculation of those charges.


In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precedence.

Page 58 of 64

Generation Charges

14.28 Example: Determination of The Company's Forecast for Demand Charge Purposes

The Company will use the latest available settlement data for calculation of HH demand and NHH energy consumption forecasts for the Financial Year.

The Financial Year runs from 1st April to 31st March inclusive and for the purpose of these examples the year April 2005 to March 2006 is used.

Where the preceding year's settlement data is not available at the time that The Company needs to calculate its forecast, The Company will use settlement data from the corresponding period in Financial Year minus two unless indicated otherwise.

All values used with the examples are purely for illustrative purposes only.

i) Half-Hourly (HH) Metered Demand Forecast – Existing User

At the time of calculation of a HH demand forecast before the relevant Financial Year (approximately 10th March), The Company will be aware at a system level which dates will be used for the determination of Triad. However, The Company may not have settlement data at a User level if the Triad dates were to span a period that includes the latter half of February.

When undertaking forecasting before the relevant Financial Year, The Company will use the User's Triad demand for the previous year for its forecast providing it holds User settlement data for this period, thus:

F = T

where:

F = Forecast of User's HH demand at Triad for the Financial Year

T = User's HH gross_demand and embedded export_at Triad in Financial Year minus one

Where The Company determines its forecast within a Financial Year:

F = T * D/P

where:

- F = Forecast of User's HH demand at Triad for the Financial Year
- T = User's HH gross demand and embedded export at Triad in the preceding Financial Year
- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the preceding Financial Year

Where The Company determines its forecast before the relevant Financial Year and User settlement data for the Triad period is not available, The Company shall apply the formula immediately above (within year forecast) but substitute the following definitions for the values T, D, and P:

T = User's HH gross demand and embedded export at Triad in the Financial Year minus two

Page 60 of 64

- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year minus one, to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the Financial Year minus two

Example (where User settlement data is not yet available for the Triad period):

The Company calculates a HH demand forecast on the above methodology at 10th March 2005 for the period 1st April 2005 to 31st March 2006.

Gross demand:

F = 10,000 * 13,200 / 12,000

F = 11,000 kW,Deleted: hwhere:T = 10,000 kW, (period November 2003 to February 2004)Deleted: hD = 13,200 kW, (period 1st April 2004 to 15th February 2005#)Deleted: hP = 12,000 kW, (period 1st April 2003 to 15th February 2004)Deleted: h

Latest date for which settlement data is available.

Embedded export:

F = -280 * -300 / -350

<u>F = -240 kW</u>

where:

T = -280 kW (period November 2003 to February 2004)

D = -300 kW (period 1st April 2004 to 15th February 2005#)

P = -350 kW (period 1st April 2003 to 15th February 2004)

<u># Latest date for which settlement data is available.</u>

ii) Non Half-Hourly (NHH) Metered Energy Consumption Forecast – Existing User

F = E * D/P

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- E = User's summed NHH energy consumption over the hours 16:00 to 19:00 for each day in the preceding Financial Year

Page 61 of 64

- D = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the Financial Year to date
- P = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the period corresponding to D in the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th June 2005 for the period 1st April 2005 to 31st March 2006.

- F = 50,000,000 * 4,400,000 / 4,000,000
- F = 55,000,000 kWh

where:

- E = 50,000,000 kWh (period 1st April 2004 to 31st March 2005)
- D = 4,400,000 kWh (period 1st April 2005 to 15th May 2005#)
- P = 4,000,000 kWh (period 1st April 2004 to 15th May 2004)
- # Latest date for which settlement data is available

Where forecasting before the relevant Financial Year concerned, The Company would in the above example use values for E and P from Financial Year 2003/04 and D from Financial Year 2004/05.

iii) Half-Hourly (HH) Metered Demand Forecast – New User

F = M * T/W

where:

- F = Forecast of User's HH metered <u>gross</u> demand <u>and embedded export</u> at Triad for the Financial Year
 - M = User's HH average weekday period 35 demand for the last complete month for which settlement data is available
- T = Total system HH <u>gross</u> demand <u>and embedded export</u> at Triad in the preceding Financial Year
 - W = Total system HH average weekday settlement period 35 metered demand for the corresponding period to M for the preceding year

Example:

The Company calculates a HH demand forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2004 to 31st March 2006.

Gross demand:

F = 1,000 * 17,000,000 / 18,888,888

	0000 0	1.12		
I	F =	900 kW,	(Deleted: h
	where			
ļ	M =	1,000 kW _• (period 1 st July 2005 to 31 st July 2005)	(Deleted: h
ļ	T =	17,000,000 kW, (period November 2004 to February 2005)	(Deleted: h
I	W =	18,888,888 kW _v (period 1 st July 2004 to 31 st July 2004)	(Deleted: h
	Embeo	Ided export:		
	<u>F =</u>	<u>150 * 7,200,000 / 6,000,000</u>		
	<u>F = </u>	<u>180 kW</u>		
	where			

- M = 150 kW (period 1st July 2005 to 31st July 2005)
- T = 7,200,000 kW (period November 2004 to February 2005)
- <u>W = 6,000,000 kW (period 1^{st} July 2004 to 31^{st} July 2004)</u>

iv) Non Half Hourly (NHH) Metered Energy Consumption Forecast – <u>New User</u>

 $\mathsf{F} = \mathsf{J} + (\mathsf{M} * \mathsf{R}/\mathsf{W})$

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- J = Residual part month summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day where new User registration takes place other than on the first of a month
- M = User's summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the last complete month for which settlement data is available
- R = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period from the start of that defined under M but for the preceding year and until the end of that preceding Financial Year
- W = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period identified in M but for the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2005 to 31st March 2006.

- F = 500 + (1,000 * 20,000,000,000 / 2,000,000,000)
- F = 10,500 kWh

where:

- J = 500 kWh (period 10th June 2005 to 30th June 2005)
- M = 1,000 kWh (period 1st July 2005 to 31st July 2005)
- R = 20,000,000,000 kWh (period 1st July 2004 to 31st March 2005)
- W = 2,000,000,000 kWh (period 1st July 2004 to 31st July 2004)

CMP265 WACM17

14.15 Derivation of the Transmission Network Use of System Tariff

- 14.15.1 The Transmission Network Use of System (TNUoS) Tariff comprises two separate elements. Firstly, a locationally varying element derived from the DCLF ICRP transport model to reflect the costs of capital investment in, and the maintenance and operation of, a transmission system to provide bulk transport of power to and from different locations. Secondly, a non-locationally varying element related to the provision of residual revenue recovery. The combination of both these elements forms the TNUoS tariff.
- 14.15.2 For generation TNUoS tariffs the locational element itself is comprised of five separate components. Three wider components
 - o Wider Peak Security Component
 - Wider Year Round Not-shared component
 - Wider Year Round component

These components reflect the costs of the wider network under the different generation backgrounds set out in the Demand Security Criterion (for Peak Security component) and Economy Criterion (for both Year Round components) of the Security Standard. The two Year Round components reflect the unshared and shared costs of the wider network based on the diversity of generation plant types.

Two local components -

- o Local substation, and
- Local circuit

These components reflect the costs of the local network.

Accordingly, the wider tariff represents the combined effect of the three wider locational tariff components and the residual element; and the local tariff represents the combination of the two local locational tariff components.

14.15.3 The process for calculating the TNUoS tariff is described below.

The Transport Model

Model Inputs

14.15.4 The DCLF ICRP transport model calculates the marginal costs of investment in the transmission system which would be required as a consequence of an increase in demand or generation at each connection point or node on the transmission system, based on a study of peak demand conditions using both Peak Security and Year Round generation backgrounds on the transmission system. One measure of the investment costs is in terms of MWkm. This is the concept that ICRP uses to calculate marginal costs of investment. Hence, marginal costs are estimated initially in terms of increases or decreases in units of kilometres (km) of the transmission system for a 1 MW injection to the system.

- 14.15.5 The transport model requires a set of inputs representative of the Demand Security and Economy Criterion set out in the Security Standards. These conditions on the transmission system are represented in the Peak Security and Year Round background respectively as follows:
- Nodal generation information per node (TEC, plant type and SQSS scaling factors)
- Nodal <u>net</u> demand information
- Transmission circuits between these nodes
- The associated lengths of these routes, the proportion of which is overhead line or cable and the respective voltage level
- The cost ratio of each of 132kV overhead line, 132kV underground cable, 275kV overhead line, 275kV underground cable and 400kV underground cable to 400kV overhead line to give circuit expansion factors
- The cost ratio of each separate sub-sea AC circuit and HVDC circuit to 400kV overhead line to give circuit expansion factors
- 132kV overhead circuit capacity and single/double route construction information is used in the calculation of a generator's local charge.
- Offshore transmission cost and circuit/substation data
- 14.15.6 For a given charging year "t", the nodal generation TEC figure and generation plant types at each node will be based on the Applicable Value for year "t" in the NETS Seven Year Statement in year "t-1" plus updates to the October of year "t-1". The contracted TECs and generation plant types in the NETS Seven Year Statement include all plant belonging to generators who have a Bilateral Agreement with the TOs. For example, for 2010/11 charges, the nodal generation data is based on the forecast for 2010/11 in the 2009 NETS Seven Year Statement plus any data included in the quarterly updates in October 2009.
- 14.15.7 Scaling factors for different generation plant types are applied on their aggregated capacity for both Peak Security and Year Round backgrounds. The scaling is either Fixed or Variable (depending on the total demand level) in line with the factors used in the Security Standard, for example as shown in the table below.

Generation Plant Type	Peak Security Background	Year Round Background
Intermittent	Fixed (0%)	Fixed (70%)
Nuclear & CCS	Variable	Fixed (85%)
Interconnectors	Fixed (0%)	Fixed (100%)
Hydro	Variable	Variable
Pumped Storage	Variable	Fixed (50%)
Peaking	Variable	Fixed (0%)
Other (Conventional)	Variable	Variable

These scaling factors and generation plant types are set out in the Security Standard. These may be reviewed from time to time. The latest version will be used in the calculation of TNUoS tariffs and is published in the Statement of Use of System Charges

14.15.8 National Grid will categorise plant based on the categorisations described in the Security Standard. Peaking plant will include oil and OCGT technologies and Other (Conv.) represents all remaining conventional plant not explicitly stated elsewhere in the table In the event that a power station is made up of more than one technology type, the type of the higher Transmission Entry Capacity (TEC) would apply.

I

- 14.15.9 Nodal <u>net</u> demand data for the transport model will be based upon the GSP <u>net</u> demand that Users have forecast to occur at the time of National Grid Peak Average Cold Spell (ACS) Demand for year "t" in the April Seven Year Statement for year "t-1" plus updates to the October of year "t-1".
- 14.15.10 Subject to paragraphs 14.15.15 to 14.15.22, Transmission circuits for charging year "t" will be defined as those with existing wayleaves for the year "t" with the associated lengths based on the circuit lengths indicated for year "t" in the April NETS Seven Year Statement for year "t-1" plus updates to October of year "t-1". If certain circuit information is not explicitly contained in the NETS Seven Year Statement, The Company will use the best information available.
- 14.15.11 The circuit lengths included in the transport model are solely those, which relate to assets defined as 'Use of System' assets.
- 14.15.12 For HVDC circuits, the impedance will be calculated to provide flows based on a ratio of the capacity provided by the HVDC link relative to the capacities on all major transmission system boundaries that it parallels.
- 14.15.13 The transport model employs the use of circuit expansion factors to reflect the difference in cost between (i) AC Circuits and HVDC circuits. (ii) underground and sub-sea circuits, (iii) cabled circuits and overhead line circuits, (iv) 132kV and 275kV circuits, (v) 275kV circuits and 400kV circuits, and (vi) uses 400kV overhead line (i.e. the 400kV overhead line expansion factor is 1). As the transport model expresses cost as marginal km (irrespective of cables or overhead lines), some account needs to be made of the fact that investment in these other types of circuit (specifically HVDC and sub-sea cables of various voltages, 400kV underground cable, 275kV overhead line, 275kV underground cable, 132kV overhead line and 132kV underground cable) is more expensive than for 400kV overhead line. This is done by effectively 'expanding' these more expensive circuits by the relevant circuit expansion factor, thereby producing a larger marginal kilometre to reflect the additional cost of investing in these circuits compared to 400kV overhead line. When calculating the local circuit tariff for a generator, alternative 132kV and offshore expansion factors to those used in the remainder of the tariff calculation are applied to the generator's local circuits.
- 14.15.14 The circuit expansion factors for HVDC circuits and AC subsea cables are determined on a case by case basis using the costs which are specific to individual projects containing HVDC or AC subsea circuits.

Adjustments to Model Inputs associated with One-off Works

- 14.15.15 Where, following the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge that related to One-off Works carried out on an onshore circuit, and such One-off Works would affect the value of a TNUoS tariff paid by the User, the transport model inputs associated with the onshore circuit shall be adjusted by The Company to reflect the asset value that would have been modelled if the works had been undertaken on the basis of the original asset design rather than the One-off Works.
- 14.15.16 Subject to paragraphs 14.15.17 to 14.15.19, where, prior to the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge (or has paid a charge to the relevant TO prior to 1st April 2005 on the same principles as a

Page 3 of 64

One-Off Charge) that related to works equivalent to those described under paragraph 14.15.15, an adjustment equivalent to that under paragraph 14.15.15 shall be made to the transport model inputs as follows.

- 14.15.17 Such adjustment shall be made following a User's request, which must be received by The Company no later than the second occurrence of 31st December following the implementation of CUSC Modification CMP203.
- 14.15.18 The Company shall only make an adjustment to the transport model inputs, under paragraph 14.15.16 where the charge was paid to the relevant TO prior to 1st April 2005 where evidence has been provided by the User that satisfies The Company that works equivalent to those under paragraph 14.15.15 were funded by the User.
- 14.15.19 Where a User has sufficient reason to believe that adjustments under paragraph 14.15.18 should be made in relation to specific assets that affect a TNUoS tariff that applies to one of its sites and outlines its reasoning to The Company, The Company shall (upon the User's request and subject to the User's payment of reasonable costs incurred by The Company in doing so) use its reasonable endeavours to assist the User in obtaining any evidence The Company or a TO may have to support its position.
- 14.15.20 Where a request is made under paragraph 14.15.16 on or prior to 31st December in a charging year, and The Company is satisfied based on the accompanying evidence provided to The Company under paragraph 14.15.17 that it is a valid request, the transport model inputs shall be adjusted accordingly and taken into account in the calculation of TNUoS tariffs effective from the year commencing on the 1st April following this and otherwise from the next subsequent 1st April.
- 14.15.21 The following table provides examples of works for which adjustments to transport model inputs would typically apply:

Ref	Description of works	Adjustments
1	Undergrounding - A User requests to underground an overhead line at a greater cost.	As the cable cost will be more expensive than the overhead line (OHL) equivalent, the circuit will be modelled as an OHL.
2	Substation Siting Decision - A User requests to move the existing or a planned substation location to a place that means that the works cannot be justified as economic by the TO.	As the revised substation location may result in circuits being extended. If this is the case, the originally designed circuit lengths (as per the originally designed substation location) would be used in the transport model.
3	Circuit Routing Decision - A User asks to move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	As any circuit route changes that extend circuits are likely to result in a greater TNUoS tariff, the originally designed circuit lengths would be used in the transport model.

Ref	Description of works	Adjustments
4	Building circuits at lower voltages - A User requests lower tower height and therefore a different voltage.	As lower voltage circuits result in a higher expansion factor being used, the circuits would be modelled at the originally designed higher voltage.

14.15.22 The following table provides examples of works for which adjustments to transport model typically would not apply:

Ref	Description of works	Reasoning
1	Undergrounding - A User chooses to have a cable installed via a tunnel rather than buried.	Cable expansion factors are applied in the transport model regardless of whether a cable is tunnelled and buried, so there is no increased TNUoS cost.
2	Additional circuit route works - A User asks for screening to be provided around a new or existing circuit route.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
3	Additional circuit route works - A User requests that a planned overhead line route is built using alternative transmission tower designs.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
4	Additional substation works - A User asks for screening to be provided around a new or existing substation.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
5	Additional substation works - Changes to connection assets (e.g. HV-LV transformers and associated switchgear), metering, additional LV supplies, additional protection equipment, additional building works, etc.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
6	Diversion - A User asks to temporarily move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	The temporary circuit changes will not be incorporated into the transport model.

7	Connection Entry Capacity (CEC) before Transmission Entry Capacity (TEC). A User asks for a connection in a year prior to the relating TEC; i.e. physical connection without capacity.	No additional works are being undertaken, works are simply being completed well in advance of the generator commissioning. The One-Off Charge reflects the depreciated value of the assets prior to commissioning (and any TNUOS being charged).
8	Early asset replacement - An asset is replaced prior to the end of its expected life.	As the asset is simply replaced, no data in the transport model is expected to change.
9	Additional Engineering/ Mobilisation costs - A User requests changes to the planned works, that results in additional operational costs.	The data in the transport model is unaffected.
10	Offshore (Generator Build) - Any of the works described above or under paragraph 14.15.18.	The value of the works will not form part of the asset transfer value therefore will not be used as part of the offshore tariff calculation.
11	Offshore (Offshore Transmission Owner (OFTO) Build) - Any of the works described above or under paragraph 14.15.18.	As part of determining the TNUoS revenue associated with each asset, the value of the One-Off Works would be excluded when pro-rating the OFTO's allowed revenue against assets by asset value.

14.15.23 The Company shall publish any adjusted transport model inputs that it intends to use in the calculation of TNUoS tariffs effective from the year commencing on the following 1st April in the NETS Seven Year Statement October Update. Any further adjustments that The Company makes shall be published by The Company upon the publication of the final TNUoS tariffs for the year concerned.

Model Outputs

- 14.15.24 The transport model takes the inputs described above and carries out the following steps individually for Peak Security and Year Round backgrounds.
- 14.15.25 Depending on the background, the TEC of the relevant generation plant types are scaled by a percentage as described in 14.15.7, above. The TEC of the remaining generation plant types in each background are uniformly scaled such that total national generation (scaled sum of contracted TECs) equals total national ACS Demand.
- 14.15.26 For each background, the model then uses a DCLF ICRP transport algorithm to derive the resultant pattern of flows based on the network impedance required to meet the nodal <u>net</u> demand using the scaled nodal generation, assuming every circuit has infinite capacity. Flows on individual transmission circuits are compared for both backgrounds and the background giving rise to

Page 6 of 64

the highest flow is considered as the triggering criterion for future investment of that circuit for the purposes of the charging methodology. Therefore all circuits will be tagged as Peak Security or Year Round depending upon the background resulting in the highest flow. In the event that both backgrounds result in the same flow, the circuit will be tagged as Peak Security. Then it calculates the resultant total network Peak Security MWkm and Year Round MWkm, using the relevant circuit expansion factors as appropriate.

- 14.15.27 Using these baseline networks for Peak Security and Year Round backgrounds, the model then calculates for a given injection of 1MW of generation at each node, with a corresponding 1MW offtake (<u>net_demand</u>) distributed across all demand nodes in the network, the increase or decrease in total MWkm of the whole Peak Security and Year Round networks. The proportion of the 1MW offtake allocated to any given demand node will be based on total background nodal <u>net</u> demand in the model. For example, with a total GB <u>net_demand</u> of 60GW in the model, a node with a <u>net_demand</u> of 600MW would contain 1% of the offtake i.e. 0.01MW.
- 14.15.28 Given the assumption of a 1MW injection, for simplicity the marginal costs are expressed solely in km. This gives a Peak Security marginal km cost and a Year Round marginal km cost for generation at each node (although not that used to calculate generation tariffs which considers local and wider cost components). The Peak Security and Year Round marginal km costs for demand at each node are equal and opposite to the Peak Security and Year Round nodal marginal km respectively for generation and this is used to calculate demand tariffs. Note the marginal km costs can be positive or negative depending on the impact the injection of 1MW of generation has on the total circuit km.
- 14.15.29 Using a similar methodology as described above in 14.15.27, the local and wider marginal km costs used to determine generation TNUoS tariffs are calculated by injecting 1MW of generation against the node(s) the generator is modelled at and increasing by 1MW the offtake across the distributed reference node. It should be noted that although the wider marginal km costs are calculated for both Peak Security and Year Round backgrounds, the local marginal km costs are calculated on the Year Round background.
- 14.15.30 In addition, any circuits in the model, identified as local assets to a node will have the local circuit expansion factors which are applied in calculating that particular node's marginal km. Any remaining circuits will have the TO specific wider circuit expansion factors applied.
- 14.15.31 An example is contained in 14.21 Transport Model Example.

Calculation of local nodal marginal km

14.15.32 In order to ensure assets local to generation are charged in a cost reflective manner, a generation local circuit tariff is calculated. The nodal specific charge provides a financial signal reflecting the security and construction of the infrastructure circuits that connect the node to the transmission system.

14.15.33 Main Interconnected Transmission System (MITS) nodes are defined as:

- Grid Supply Point connections with 2 or more transmission circuits connecting at the site; or
- connections with more than 4 transmission circuits connecting at the site.

Page 7 of 64

- 14.15.34 Where a Grid Supply Point is defined as a point of supply from the National Electricity Transmission System to network operators or non-embedded customers excluding generator or interconnector load alone. For the avoidance of doubt, generator or interconnector load would be subject to the circuit component of its Local Charge. A transmission circuit is part of the National Electricity Transmission System between two or more circuit-breakers which includes transformers, cables and overhead lines but excludes busbars and generation circuits.
- 14.15.35 Generators directly connected to a MITS node will have a zero local circuit tariff.
- 14.15.36 Generators not connected to a MITS node will have a local circuit tariff derived from the local nodal marginal km for the generation node i.e. the increase or decrease in marginal km along the transmission circuits connecting it to all adjacent MITS nodes (local assets).

Calculation of zonal marginal km

- 14.15.37 Given the requirement for relatively stable cost messages through the ICRP methodology and administrative simplicity, nodes are assigned to zones. Typically, generation zones will be reviewed at the beginning of each price control period with another review only undertaken in exceptional circumstances. Any rezoning required during a price control period will be undertaken with the intention of minimal disruption to the established zonal boundaries. The full criteria for determining generation zones are outlined in paragraph 14.15.42. The number of generation zones set for 2010/11 is 20.
- 14.15.38 Demand zone boundaries have been fixed and relate to the GSP Groups used for energy market settlement purposes.
- 14.15.39 The nodal marginal km are amalgamated into zones by weighting them by their relevant generation or demand capacity.
- 14.15.40 Generators will have zonal tariffs derived from both, the wider Peak Security nodal marginal km; and the wider Year Round nodal marginal km for the generation node calculated as the increase or decrease in marginal km along all transmission circuits except those classified as local assets.

The zonal Peak Security marginal km for generation is calculated as:

$$WNMkm_{j_{PS}} = \frac{NMkm_{j_{PS}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiPS} = \sum_{j \in Gi} WNMkm_{jPS}$$

Where

Gi	=	Generation zone
j	=	Node
NMkm _{PS}	=	Peak Security Wider nodal marginal km from transport model
WNMkm _{PS}	=	Peak Security Weighted nodal marginal km
ZMkm _{PS}	=	Peak Security Zonal Marginal km

Gen = Nodal Generation (scaled by the appropriate Peak Security Scaling factor) from the transport model Similarly, the zonal Year Round marginal km for generation is calculated as

$$WNMkm_{j_{YR}} = \frac{NMkm_{j_{YR}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiYR} = \sum_{j \in Gi} WNMkm_{jYR}$$

Where

NMkm _{YR}	=	Year Round Wider nodal marginal km from transport model
WNMkm _{YR}	=	Year Round Weighted nodal marginal km
ZMkm _{YR}	=	Year Round Zonal Marginal km
Gen	=	Nodal Generation (scaled by the appropriate Year Round Scaling
		factor) from the transport model

14.15.41 The zonal Peak Security marginal km for demand zones are calculated as follows:

$$WNMkm_{j_{PS}} = \frac{-1 * NMkm_{j_{PS}} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{Di_{PS}} = \sum_{j \in Di} WNMkm_{j_{PS}}$$

Where:

I

Di	=	Demand zone
Dem	=	Nodal <u>Net</u> Demand from transport model

Similarly, the zonal Year Round marginal km for demand zones are calculated as follows:

$$WNMkm_{jYR} = \frac{-1 * NMkm_{jYR} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{DiYR} = \sum_{j \in Di} WNMkm_{jYR}$$

- 14.15.42 A number of criteria are used to determine the definition of the generation zones. Whilst it is the intention of The Company that zones are fixed for the duration of a price control period, it may become necessary in exceptional circumstances to review the boundaries having been set. In both circumstances, the following criteria are used to determine the zonal boundaries:
- i.) Zoning is determined using the generation background with the most MWkm of circuits. Zones should contain relevant nodes whose total wider marginal costs

from the relevant generation background (as determined from the output from the transport model, the relevant expansion constant and the locational security factor, see below) are all within +/-£1.00/kW (nominal prices) across the zone. This means a maximum spread of £2.00/kW in nominal prices across the zone.

- ii.) The nodes within zones should be geographically and electrically proximate.
- iii.) Relevant nodes are considered to be those with generation connected to them as these are the only ones, which contribute to the calculation of the zonal generation tariff.
- 14.15.43 The process behind the criteria in 14.15.42 is driven by initially applying the nodal marginal costs from the relevant generation background within the DCLF Transport model onto the appropriate areas of a substation line diagram. Generation nodes are grouped into initial zones using the +/- £1.00/kW range. All nodes within each zone are then checked to ensure the geographically and electrically proximate criteria have been met using the substation line diagram. The established zones are inspected to ensure the least number of zones are used with minimal change from previously established zonal boundaries. The zonal boundaries are finally confirmed using the demand nodal costs from the relevant generation background for guidance.
- 14.15.44 The zoning criteria are applied to a reasonable range of DCLF ICRP transport model scenarios, the inputs to which are determined by The Company to create appropriate TNUoS generation zones. The minimum number of zones, which meet the stated criteria, are used. If there is more than one feasible zonal definition of a certain number of zones, The Company determines and uses the one that best reflects the physical system boundaries.
- 14.15.45 Zones will typically not be reviewed more frequently than once every price control period to provide some stability. However, in exceptional circumstances, it may be necessary to review zoning more frequently to maintain appropriate, cost reflective, locational cost signals. For example, if a new generator connecting to the transmission system would cause the creation of a new generation zone for that generator alone, it may not be appropriate from a cost reflective perspective to wait until the next price control period to undertake this rezoning. If any such rezoning is required, it will be undertaken against a background of minimal change to existing generation zones and in line with the notification process set out in the Transmission Licence and CUSC.

Accounting for Sharing of Transmission by Generators

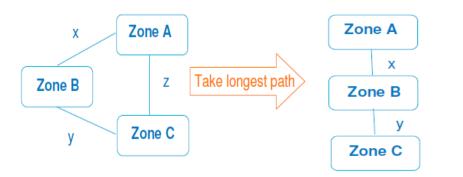
- 14.15.46 A proportion of the marginal km costs for generation are shared incremental km reflecting the ability of differing generation technologies to share transmission investment. This is reflected in charges through the splitting of Year Round marginal km costs for generation into Year Round Shared marginal km costs and Year Round Not-Shared marginal km which are then used in the calculation of the wider £/kW generation tariff.
- 14.15.47 The sharing between different generation types is accounted for by (a) using transmission network boundaries between generation zones set by connectivity between generation charging zones, and (b) the proportion of Low Carbon and Carbon generation behind these boundaries.

Page 10 of 64

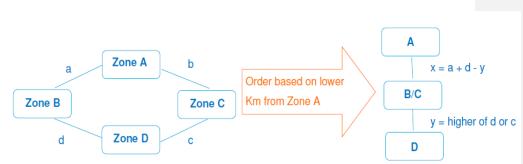
14.15.48 The zonal incremental km for each generation charging zone is split into each boundary component by considering the difference between it and the neighbouring generation charging zone using the formula below;

$$BIkm_{ab} = ZIkm_b - ZIkm_a$$

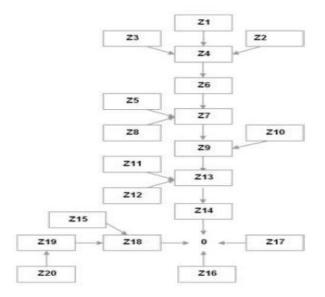
Where;


Blkm_{ab} = boundary incremental km between generation charging zone A and generation charging zone B Zlkm = generation charging zone incremental km.

14.15.49 The table below shows the categorisation of Low Carbon and Carbon generation. This table will be updated by National Grid in the Statement of Use of System Charges as new generation technologies are developed.


Carbon	Low Carbon
Coal	Wind
Gas	Hydro (excl. Pumped Storage)
Biomass	Nuclear
Oil	Marine
Pumped Storage	Tidal
Interconnectors	

Determination of Connectivity


- 14.15.50 Connectivity is based on the existence of electrical circuits between TNUoS generation charging zones that are represented in the Transport model. Where such paths exist, generation charging zones will be effectively linked via an incremental km transmission boundary length. These paths will be simplified through in the case of;
 - Parallel paths the longest path will be taken. An illustrative example is shown below with x, y and z representing the incremental km between zones.

 Parallel zones – parallel zones will be amalgamated with the incremental km immediately beyond the amalgamated zones being the greater of those existing prior to the amalgamation. An illustrative example is shown below with a, b, c, and d representing the the initial incremental km between zones, and x and y representing the final incremental km following zonal amalgamation.

14.15.51 An illustrative Connectivity diagram is shown below:

The arrows connecting generation charging zones and amalgamated generation charging zones represent the incremental km transmission boundary lengths towards the notional centre of the system. Generation located in charging zones behind arrows is considered to share based on the ratio of Low Carbon to Carbon cumulative generation TEC within those zones.

14.15.52 The Company will review Connectivity at the beginning of a new price control period, and under exceptional circumstances such as major system reconfigurations or generation rezoning. If any such reassessment is required, it will be undertaken against a background of minimal change to existing Connectivity and in line with the notification process set out in the Transmission Licence and the CUSC.

Calculation of Boundary Sharing Factors

14.15.53 Boundary sharing factors (BSFs) are derived from the comparison of the cumulative proportion of Low Carbon and Carbon generation TEC behind each of the incremental MWkm boundary lengths using the following formulae –

Page 12 of 64

If $\frac{LC}{LC+C} \le 0.5$, then all Year round marginal km costs are shared i.e. the BSF is 100%.

Where:

LC = Cumulative Low Carbon generation TEC behind the relevant transmission boundary C = Cumulative Carbon generation TEC behind the relevant transmission

C = Cumulative Carbon generation TEC behind the relevant transmission boundary

If
$$\frac{LC}{LC+C}$$
 > 0.5 then the BSF is calculated using the following formula: -

$$BSF = \left(-2 \times \left(\frac{LC}{LC+C}\right)\right) + 2$$

Where:

BSF = boundary sharing factor.

14.15.54 The shared incremental km for each boundary are derived from the multiplication of the boundary sharing factor by the incremental km for that boundary;

$$SBIkm_{ab} = BIIkm_{ab} \ x \ BSF_{ab}$$

Where;

 $SBIkm_{ab}$ = shared boundary incremental km between generation charging zone A and generation charging zone B

 BSF_{ab} = generation charging zone boundary sharing factor.

14.15.55 The shared incremental km is discounted from the incremental km for that boundary to establish the not-shared boundary incremental km. The not-shared boundary incremental km reflects the cost of transmission investment on that boundary accounting for the sharing of power stations behind that boundary.

$$NSBIkm_{ab} = BIkm_{ab} - SBIkm_{ab}$$

Where;

 $NSBIkm_{ab}$ = not shared boundary incremental km between generation charging zone A and generation charging zone B.

14.15.56 The shared incremental km for a generation charging zone is the sum of the appropriate shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRS}$$

Where;

 $ZMkm_{nYRS}$ = Year Round Shared Zonal Marginal km for generation charging zone n.

Page 13 of 64

14.15.57 The not-shared incremental km for a generation charging zone is the sum of the appropriate not-shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRNS}$$

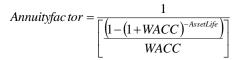
Where;

ZMkm_{nYRNS} = Year Round Not-Shared Zonal Marginal km for generation zone n.

Deriving the Final Local £/kW Tariff and the Wider £/kW Tariff

14.15.58 The zonal marginal km (ZMkm_{Gi}) are converted into costs and hence a tariff by multiplying by the Expansion Constant and the Locational Security Factor (see below). The nodal local marginal km (NLMkm^L) are converted into costs and hence a tariff by multiplying by the Expansion Constant and a Local Security Factor.

The Expansion Constant


- 14.15.59 The expansion constant, expressed in £/MWkm, represents the annuitised value of the transmission infrastructure capital investment required to transport 1 MW over 1 km. Its magnitude is derived from the projected cost of 400kV overhead line, including an estimate of the cost of capital, to provide for future system expansion.
- 14.15.60 In the methodology, the expansion constant is used to convert the marginal km figure derived from the transport model into a £/MW signal. The tariff model performs this calculation, in accordance with 14.15.95 14.15.117, and also then calculates the residual element of the overall tariff (to ensure correct revenue recovery in accordance with the price control), in accordance with 14.15.133.
- 14.15.61 The transmission infrastructure capital costs used in the calculation of the expansion constant are provided via an externally audited process. They also include information provided from all onshore Transmission Owners (TOs). They are based on historic costs and tender valuations adjusted by a number of indices (e.g. global price of steel, labour, inflation, etc.). The objective of these adjustments is to make the costs reflect current prices, making the tariffs as forward looking as possible. This cost data represents The Company's best view; however it is considered as commercially sensitive and is therefore treated as confidential. The calculation of the expansion constant also relies on a significant amount of transmission asset information, much of which is provided in the Seven Year Statement.
- 14.15.62 For each circuit type and voltage used onshore, an individual calculation is carried out to establish a £/MWkm figure, normalised against the 400KV overhead line (OHL) figure, these provide the basis of the onshore circuit expansion factors discussed in 14.15.70 14.15.77. In order to simplify the calculation a unity power factor is assumed, converting £/MVAkm to £/MWkm. This reflects that the fact tariffs and charges are based on real power.
- 14.15.63 The table below shows the first stage in calculating the onshore expansion constant. A range of overhead line types is used and the types are weighted by recent usage on the transmission system. This is a simplified calculation for 400kV OHL using example data:

Page 14 of 64

400kV	400kV OHL expansion constant calculation					
MW	Туре	£(000)/k	Circuit km*	£/MWkm	Weight	
А	В	С	D	E = C/A	F=E*D	
6500	La	700	500	107.69	53846	
6500	Lb	780	0	120.00	0	
3500	La/b	600	200	171.43	34286	
3600	Lc	400	300	111.11	33333	
4000	Lc/a	450	1100	112.50	123750	
5000	Ld	500	300	100.00	30000	
5400	Ld/a	550	100	101.85	10185	
Sum			2500 (G)		285400 (H)	
				Weighted Average (J= H/G):	114.160 (J)	

*These are circuit km of types that have been provided in the previous 10 years. If no information is available for a particular category the best forecast will be used.

14.15.64 The weighted average £/MWkm (J in the example above) is then converted in to an annual figure by multiplying it by an annuity factor. The formula used to calculate of the annuity factor is shown below:

- 14.15.65 The Weighted Average Cost of Capital (WACC) and asset life are established at the start of a price control and remain constant throughout a price control period. The WACC used in the calculation of the annuity factor is the The Company regulated rate of return, this assumes that it will be reasonably representative of all licensees. The asset life used in the calculation is 50 years; the appropriateness of this is reviewed when the annuity factor is recalculated at the start of a price control period. These assumptions provide a current annuity factor of 0.066.
- 14.15.66 The final step in calculating the expansion constant is to add a share of the annual transmission overheads (maintenance, rates etc). This is done by multiplying the average weighted cost (J) by an 'overhead factor'. The 'overhead factor' represents the total business overhead in any year divided by the total Gross Asset Value (GAV) of the transmission system. This is recalculated at the start of each price control period. The overhead factor used in the calculation of the expansion constant for 2009/10 is 1.8%. The overhead and annuitised costs are then added to give the expansion constant.
- 14.15.67 Using the previous example, the final steps in establishing the expansion constant are demonstrated below:

400kV OHL expansion constant calculation	Ave £/MWkm
OHL	114.160

Page 15 of 64

Final	9.589
Overhead	2.055
Annuitised	7.535

- 14.15.68 This process is carried out for each voltage onshore, along with other adjustments to take account of upgrade options, see 14.15.73, and normalised against the 400KV overhead line cost (the expansion constant) the resulting ratios provide the basis of the onshore expansion factors. The process used to derive circuit expansion factors for Offshore Transmission Owner networks is described in 14.15.78.
- 14.15.69 This process of calculating the incremental cost of capacity for a 400kV OHL, along with calculating the onshore expansion factors is carried out for the first year of the price control and is increased by inflation, RPI, (May–October average increase, as defined in The Company's Transmission Licence) each subsequent year of the price control period. The expansion constant for 2010/11 is 10.633.

Onshore Wider Circuit Expansion Factors

- 14.15.70 Base onshore expansion factors are calculated by deriving individual expansion constants for the various types of circuit, following the same principles used to calculate the 400kV overhead line expansion constant. The factors are then derived by dividing the calculated expansion constant by the 400kV overhead line expansion constant. The factors will be fixed for each respective price control period.
- 14.15.71 In calculating the onshore underground cable factors, the forecast costs are weighted equally between urban and rural installation, and direct burial has been assumed. The operating costs for cable are aligned with those for overhead line. An allowance for overhead costs has also been included in the calculations.
- 14.15.72 The 132kV onshore circuit expansion factor is applied on a TO basis. This is to reflect the regional variation of plans to rebuild circuits at a lower voltage capacity to 400kV. The 132kV cable and line factor is calculated on the proportion of 132kV circuits likely to be uprated to 400kV. The 132kV expansion factor is then calculated by weighting the 132kV cable and overhead line costs with the relevant 400kV expansion factor, based on the proportion of 132kV circuitry to be uprated to 400kV. For example, in the TO areas of National Grid and Scottish Power where there are no plans to uprate any 132kV circuits, the full cable and overhead line costs of 132kV circuit are reflected in the 132kV expansion factor calculation.
- 14.15.73 The 275kV onshore circuit expansion factor is applied on a GB basis and includes a weighting of 83% of the relevant 400kV cable and overhead line factor. This is to reflect the averaged proportion of circuits across all three Transmission Licensees which are likely to be uprated from 275kV to 400kV across GB within a price control period.
- 14.15.74 The 400kV onshore circuit expansion factor is applied on a GB basis and reflects the full costs for 400kV cable and overhead lines.
- 14.15.75 AC sub-sea cable and HVDC circuit expansion factors are calculated on a case by case basis using actual project costs (Specific Circuit Expansion Factors).

Page 16 of 64

- 14.15.76 For HVDC circuit expansion factors both the cost of the converters and the cost of the cable are included in the calculation.
- 14.15.77 The TO specific onshore circuit expansion factors calculated for 2008/9 (and rounded to 2 decimal places) are:

Scottish Hydro Region

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	27.79
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.24	

Scottish Power & National Grid Regions

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	30.22
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.80	

Onshore Local Circuit Expansion Factors

- 14.15.78 The local onshore circuit tariff is calculated using local onshore circuit expansion factors. These expansion factors are calculated using the same methodology as the onshore wider expansion factor but without taking into account the proportion of circuit kms that are planned to be uprated.
- 14.15.79 In addition, the 132kV onshore overhead line circuit expansion factor is sub divided into four more specific expansion factors. This is based upon maximum (winter) circuit continuous rating (MVA) and route construction whether double or single circuit.

400kV underground cable factor:	22.39
275kV underground cable factor:	22.39
132kV underground cable factor:	30.22
400kV line factor:	1.00
275kV line factor:	1.14
132kV line factor (single; <200MVA):	10.00
132kV line factor (double; <200MVA):	8.32
132kV line factor (single; >=200MVA):	7.13
132kV line factor (double; >=200MVA):	4.42

Offshore Circuit Expansion Factors

14.15.80 Offshore expansion factors (£/MWkm) are derived from information provided by Offshore Transmission Owners for each offshore circuit. Offshore expansion factors are Offshore Transmission Owner and circuit specific. Each Offshore Transmission Owner will periodically provide, via the STC, information to derive an annual circuit revenue requirement. The offshore circuit revenue shall include revenues associated with the Offshore Transmission Owner's reactive compensation equipment, harmonic filtering equipment, asset spares and HVDC converter stations.

14.15.81 In the first year of connection, the offshore circuit expansion factor would be calculated as follows:

$\frac{CRevOFTO1}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$

Where:

CRevOFTO1	=	The offshore circuit revenue in £ for Year 1
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

14.15.82 In all subsequent years, the offshore circuit expansion factor would be calculated as follows:

Where:

AvCRevOFTO	=	The annual offshore circuit revenue averaged over the
		remaining years of the onshore National Electricity
		Transmission System Operator (NETSO) price control
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

- 14.15.83 For the avoidance of doubt, the offshore circuit revenue values, *CRevOFTO1* and *AvCRevOFTO* shall be determined using asset values after the removal of any One-Off Charges.
- 14.15.84 Prevailing OFFSHORE TRANSMISSION OWNER specific expansion factors will be published in this statement. These shall be recalculated at the start of each price control period using the formula in paragraph 14.15.71. For each subsequent year within the price control period, these expansion factors will be adjusted by the annual Offshore Transmission Owner specific indexation factor, *OFTOInd*, calculated as follows;

$$OFTOInd_{t,f} = \frac{OFTO \operatorname{Rev}Ind_{t,f}}{RPI_{t}}$$

where:

OFTOInd _{t,f}	=	the indexation factor for Offshore Transmission Owner <i>f</i> in respect of charging year <i>t</i> ;
OFTORevInd _{tf}	=	the indexation rate applied to the revenue of Offshore Transmission Owner f under the terms of its Transmission Licence in respect of charging year t ; and
<i>RPI</i> _t	=	the indexation rate applied to the expansion constant in respect of charging year <i>t</i> .

Offshore Interlinks

14.15.85 The revenue associated with an Offshore Interlink shall be divided entirely between those generators benefiting from the installation of that Offshore Interlink. Each of these Users will be responsible for their charge from their charging date, meaning that a proportion of the Offshore Interlink revenue may be socialised prior to all relevant Users being chargeable. The proportion associated with each User will be based on the Measure of Capacity to the MITS using the Offshore Interlink(s) in the event of a single circuit fault on the User's circuit from their offshore substation towards the shore, compared to the Measure of Capacity of the other Users.

Where:

An *Offshore Interlink* is a circuit which connects two offshore substations that are connected to a Single Common Substation. It is held in open standby until there is a transmission fault that limits the User's ability to export power to the Single Common Substation. In the Transport Model, they are to be modelled in open standby.

A Single Common Substation is a substation where:

- i. each substation that is connected by an Offshore Interlink is connected via at least one circuit without passing through another substation; and
- ii. all routes connecting each substation that is connected by an Offshore Interlink to the MITS pass through.

The Measure of Capacity to the MITS for each Offshore substation is the result of the following formula or zero whichever is larger. For the situation with only one interlink, all terms relating to C should be set to zero:

```
For Substation A:
min { Cap_{IAB}, ILF_A \times TEC_A - RCap_A, Cap_B - ILF_B \times TEC_B + min (Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation B:

min { ILF_B \times TEC_B - RCap_B, min (Cap_{IAB}, Cap_A - ILF_A \times TEC_A)

+ min ( Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation C:

min { Cap_{IBC}, ILF_{C} \times TEC_{C} - RCap_{C}, Cap_{B} - ILF_{B} \times TEC_{B} + min (Cap_{IAB}, Cap_{A} - ILF_{A} \times TEC_{A}) }

and
```

Cap _{IAB} = B	total capacity of the Offshore Interlink between substations A and
Cap _{IBC} = C	total capacity of the Offshore Interlink between substations B and
Cap _X =	total capacity of the circuit between offshore substation X and the Single Common Substation, where X is A, B or C.
RCap _x =	remaining capacity of the circuit between offshore substation X and the Single Common Substation in the event of a single cable fault, where X is A, B or C.
TEC _x =	the sum of the TEC for the Users connected, or contracted to connect, to offshore substation X, where X is A, B or C, where the value of TEC will be the maximum TEC that each User has held since the initial charging date, or is contracted to hold if prior to the initial charging date.

- ILF_x = Offshore Interlink Load Factor, where X is A, B or C. The Offshore Interlink Load Factor (ILF) is based on the Annual Load Factor (ALF). Until all the Users connected to a Single Common Substation have a station specific Annual Load Factor based on five years of data, the generic ALF for the fuel type will be used as the ILF for all stations. When all Users have a station specific ALF, the value of the ALF in the first such year will be used as the ILF in the calculation for all subsequent charging years.
- 14.15.86 The apportionment of revenue associated with Offshore Interlink(s) in 14.15.85 applies in situations where the Offshore Interlink was included in the design phase, or if one or more User(s) has already financially committed or been commissioned then only where that User(s) agrees to the Offshore Interlink.
- 14.15.87 Alternatively to the formula specified in 14.15.85 the proportion of the OFTO revenue associated with the Offshore Interlink allocated to each generator benefiting from the installation of an Offshore Interlink may be agreed between these Users. In this event:
- a. All relevant Users shall notify The Company of its respective proportions three months prior the OTSDUW asset transfer in the case of a generator build, or the charging date of the first generator, in the case of an OFTO build.
- b. All relevant Users may agree to vary the proportions notified under (a) by each writing to The Company three months prior to the charges being set for a given charging year.
- c. Once a set of proportions of the OFTO revenue associated with the Offshore Interlink has been provided to The Company, these will apply for the next and future charging years unless and until The Company is informed otherwise in accordance with (b) by all of the relevant Users.
- d. If all relevant Users are unable to reach agreement on the proportioning of the OFTO revenue associated with the Offshore Interlink they can raise a dispute. Any dispute between two or more Users as to the proportioning of such revenue shall be managed in accordance with CUSC Section 7 Paragraph 7.4.1 but the reference to the 'Electricity Arbitration Association' shall instead be to the 'Authority' and the Authority's determination of such dispute shall, without prejudice to apply for judicial review of any determination, be final and binding on the Users.

The Locational Onshore Security Factor

14.15.88 The locational onshore security factor is derived by running a secure DCLF ICRP transport study based on the same market background as used for Zoning in the DCLF ICRP transport model. This calculates the nodal marginal costs where peak <u>net</u> demand can be met despite the Security and Quality of Supply Standard contingencies (simulating single and double circuit faults) on the network. Essentially the calculation of secured nodal marginal costs is identical to the process outlined above except that the secure DCLF study additionally calculates a nodal marginal cost taking into account the requirement to be secure against a set of worse case contingencies in terms of maximum flow for each circuit.

- 14.15.89 The secured nodal cost differential is compared to that produced by the DCLF ICRP transport model and the resultant ratio of the two determines the locational security factor using the Least Squares Fit method. Further information may be obtained from the charging website¹.
- 14.15.90 The locational onshore security factor derived for 2010/11 is 1.8 and is based on an average from a number of studies conducted by The Company to account for future network developments. The security factor is reviewed for each price control period and fixed for the duration.

Local Security Factors

- 14.15.91 Local onshore security factors are generator specific and are applied to a generator's local onshore circuits. If the loss of any one of the local circuits prevents the export of power from the generator to the MITS then a local security factor of 1.0 is applied. For generation with circuit redundancy, a local security factor is applied that is equal to the locational security factor, currently 1.8.
- 14.15.92 Where a Transmission Owner has designed a local onshore circuit (or otherwise that circuit once built) to a capacity lower than the aggregated TEC of the generation using that circuit, then the local security factor of 1.0 will be multiplied by a Counter Correlation Factor (CCF) as described in the formula below;

$$CCF = \frac{D_{\min} + T_{cap}}{G_{cap}}$$

Where; D_{min} = minimum annual net demand (MW) supplied via that circuit in the absence of that generation using the circuit

 T_{cap} = transmission capacity built (MVA)

G_{cap} = aggregated TEC of generation using that circuit

CCF cannot be greater than 1.0.

14.15.93 A specific offshore local security factor (LocalSF) will be calculated for each offshore connection using the following methodology:

$$LocalSF = \frac{NetworkExportCapacity}{\sum_{k} Gen_{k}}$$

Where:

 NetworkExportCapacity =
 the total export capacity of the network disregarding any Offshore Interlinks

 k
 =
 the generation connected to the offshore network

1 http://www.nationalgrid.com/uk/Electricity/Charges/

Page 21 of 64

- 14.15.94 The offshore security factor for single circuits with a single cable will be 1.0 and for multiple circuit connections will be capped at the locational onshore security factor, derived as 1.8 for 2010/11.
- 14.15.95 The offshore local security factor for configurations with one or more Offshore Interlinks is updated so that the offshore circuit tariff will include the proportion of revenue associated with the Offshore Interlink(s). The specific offshore local security factor for configurations involving an Offshore Interlink, which may be greater than 1.8, will be calculated for each offshore connection using the following methodology:

 $LocalSF = \frac{IRevOFTO \times NetworkExportCapacity}{CRevOFTO \times \sum_{k}Gen_{k}} + LocalSF_{initial}$

Where:

The appropriate proportion of the Offshore Interlink(s) revenue in £
associated with the offshore connection calculated in 14.15.85
The offshore circuit revenue in £ associated with the circuit(s) from the
offshore substation to the Single Common Substation.
Initial Local Security Factor calculated in 14.15.80 and 14.15.81
And other definitions as in 14.15.80.

Initial Transport Tariff

14.15.96 First an Initial Transport Tariff (ITT) must be calculated for both Peak Security and Year Round backgrounds. For Generation, the Peak Security zonal marginal km (ZMkm_{PS}), Year Round Not-Shared zonal marginal km (ZMkm_{YRNS}) and Year Round Shared zonal marginal km (ZMkm_{YRS}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT, Year Round Not-Shared ITT and Year Round Shared ITT respectively:

 $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$

Where ZMkm _{GiPS} ZMkm _{GiYRNS} charging zone	= = e	Peak Security Zonal Marginal km for each generation zone Year Round Not-Shared Zonal Marginal km for each generation
ZMkm _{GiYRS}	=	Year Round Shared Zonal Marginal km for each generation
charging zon	е	
EC	=	Expansion Constant
LSF	=	Locational Security Factor
	=	Peak Security Initial Transport Tariff (£/MW) for each generation
zone		
ITT _{GiYRNS}	=	Year Round Not-Shared Initial Transport Tariff (£/MW) for each
generation ch	narging	zone
ITT _{GiYRS}	=	Year Round Shared Initial Transport Tariff (£/MW) for each
generation ch	narging	zone.

14.15.97 Similarly, for demand the Peak Security zonal marginal km (ZMkm_{PS}) and Year Round zonal marginal km (ZMkm_{YR}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT and Year Round ITT respectively:

		$ZMkm_{DiPS} \times EC \times LSF = ITT_{DiPS}$
		$ZMkm_{DiYR} \times EC \times LSF = ITT_{DiYR}$
Where ZMkm _{DiP} ZMkm _{DiY}	0	Peak Security Zonal Marginal km for each demand zone Year Round Zonal Marginal km for each demand zone
ITT _{DiPS}	=	Peak Security Initial Transport Tariff (£/MW) for each demand one
ITT_{DiYR}	=	Year Round Initial Transport Tariff (£/MW) for each demand zone
14.15.98	GSP group revenue red metered tria	tep is to multiply these ITTs by the expected metered triad <u>gross</u> demand and generation capacity to gain an estimate of the initial covery for both Peak Security and Year Round backgrounds. The ad <u>gross GSP group</u> demand and generation capacity are based on forecasts provided by Users and are confidential.
	affected em	ad gross GSP group demand is net demand for all GSP groups less bedded exports and grandfathered embedded exports for all GSP
a.	<u>groups.</u>	

Where

ITRR _G =	Initial Transport Revenue Recovery for generation
G _{Gi} =	Total forecast Generation for each generation zone (based
	on analysis of confidential User forecasts)
ITRR _D =	Initial Transport Revenue Recovery for gross GSP group
_	demand
D _{Di} = each	Total forecast Metered Triad gross GSP group Demand for
	demand zone (based on <u>analysis of</u> confidential User forecasts).

In addition, the initial tariffs for generation are also multiplied by the **Peak Security flag** when calculating the initial revenue recovery component for the Peak Security background. Similarly, when calculating the initial revenue recovery for the Shared component of the Year Round background, the initial tariffs are multiplied by the **Annual Load Factor** (see below).

Peak Security (PS) Flag

14.15.99 The revenue from a specific generator due to the Peak Security locational tariff needs to be multiplied by the appropriate Peak Security (PS) flag. The PS flags indicate the extent to which a generation plant type contributes to the

Page 23 of 64

need for transmission network investment at peak demand conditions. The PS flag is derived from the contribution of differing generation sources to the demand security criterion as described in the Security Standard. In the event of a significant change to the demand security assumptions in the Security Standard, National Grid will review the use of the PS flag.

Generation Plant Type	PS flag
Intermittent	0
Other	1

Annual Load Factor (ALF)

- 14.15.100 The ALF for each individual Power Station is calculated using the relevant TEC (MW) and corresponding output data. Where output data is not available for a Power Station, including for new Power Stations and emerging Power Station technologies, generic data for the appropriate generation plant type will be used.
- 14.15.101 For a given charging year "t" the Power Station ALF will be based on information from the previous five charging years, calculated for each charging year as set out below.

$$ALF = \frac{\sum_{p=1}^{17520} GMWh_p}{\sum_{p=1}^{17520} TECp \times 0.5}$$

Where:

 $GMWh_p$ is the maximum of FPN or actual metered output in a Settlement Period related to the power station TEC (MW); and

 TEC_{p} is the TEC (MW) applicable to that Power Station for that Settlement Period including any STTEC and LDTEC, accounting for any trading of TEC.

- 14.15.102 The appropriate output (FPN or actual metered) figure is derived from **BM Unit** data available to National Grid and relates to the total TEC of the Power Station.
- 14.15.103 Once all five charging year ALFs have been calculated for the individual Power Station they are compared, and the highest and lowest figures are discarded. The final ALF, to be used for transmission charging purposes, is calculated as the average of the remaining three ALFs.
- 14.15.104 In the event that only four charging years of complete output (FPN or actual metered) data are available for an individual Power Station then the higher three charging years ALF would be used in the calculation of the final ALF. In the event that only three charging years of complete output (FPN or actual metered) data are available then these three charging years would be used.
- 14.15.105 Due to the aggregation of output (FPN or actual metered) data for dispersed generation (e.g. cascade hydro schemes), where a single generator BMU consists of geographically separated power stations, the ALF would be calculated based on the total output of the BMU and the overall TEC of those Power Stations.

Page 24 of 64

- 14.15.106 In the event that there are not three full charging years of an individual power station's output available, missing output (FPN or actual metered) data would be replaced by generic data for that generation plant type to ensure three charging years of information are available for the Power Station. The derivation of the generic data is described in paragraphs 14.15.111-14.15.114.
- 14.15.107 Users will receive draft ALFs before 25th December of the charging year (t-1) for the charging year (t) and will have a period of 15 working days from date of publishing to notify the Company of any errors. Failure to agree changes relating to errors will be treated as a charging dispute under the CUSC.
- 14.15.108 The ALFs used in the setting of final tariffs will be published in the annual Statement of Use of System Charges. Changes to ALFs after this publication will not result in changes to published tariffs (e.g. following dispute resolution).

Derivation of Generic ALFs

14.15.109 The generic ALF is derived from the average annual output of the ten most recently commissioned GB generation of a particular generation plant type that have at least five charging years' data, using an identical methodology to that used for the Power Station specific calculation described above. Where less than ten GB generators of a particular generation plant type exist, then data from all existing generators of that particular generation plant type will be used. Example generation plant type categories are listed below;

Fuel Type
Biomass
Coal
Gas
Hydro
Nuclear (by reactor
type)
Oil & OCGTs
Pumped Storage
Onshore Wind
Offshore Wind
CHP

- 14.15.110 The Company will keep these categories under review and update as necessary. Where within a category there is a significant locational difference consideration will be given to zonal generic factors. The factors used will be published in the Statement of Use of System Charges and will be reviewed annually.
- 14.15.111 If a User can demonstrate that the generation plant type of a Power Station has changed, consideration will be given to the use of relevant generic ALF information in the calculation of their charges until sufficient specific data is available.
- 14.15.112 For new and emerging generation plant types, where insufficient data is available to allow a generic ALF to be developed, The Company will use the best information available e.g. from manufactuers and data from use of similar technologies outside GB. The factor will be agreed with the relevant Generator. In the event of a disagreement the standard provisions for dispute in the CUSC will apply.

Page 25 of 64

TNUoS Embedded Export Tariffs

<u>14.15.113</u>	Embedded exports are exports measured on a half-hourly basis by Metering Systems, in accordance with the BSC, that are not subject to generation TNUoS. The tariff to be applied in respect of embedded
	exports is different depending on whether the embedded exports are affected embedded exports or grandfathered embedded exports
TNUoS Emb	edded Export Tariff for Affected Embedded Exports
<u>14.15.114</u>	Affected Embedded Exports are embedded exports other than Grandfathered Embedded Exports.
<u>14.15.115</u>	The embedded export tariff will be applied to the metered Triad volumes of Affected Embedded Exports for each demand zone as follows:
	$EETA_{Di} = ITT_{DiPS} + ITT_{DiYR} + AEX$
	Where
ITT _{Di} ITT _{Di} AEX	YR = Year Round Initial Transport Tariff for the demand zone, and
set out in 14	
	<u>The Value of EETA_{Di} will be floored at zero, so that EETA_{Di} is always zero or positive.</u>
TNUoS Emb	edded Export Tariff for Grandfathered Embedded Exports
<u>14.15.116</u>	Grandfathered Embedded Exports are embedded exports measured by metering systems where all associated generation either:
	a Contract for Difference Agreement that was awarded in allocation rounds to 01/01/2016 which has not been terminated; or
	a Capacity Agreement that is recorded on the T-4 Auction Capacity Market ster 2014 or T-4 Auction Capacity Market Register 2015 as an agreement:
• <u>Ir</u>	n respect of a 'new build generating CMU'
• <u>+</u>	laving more than one delivery year
• <u>A</u>	nd which has not been terminated
<u>14.15.117</u>	The embedded export tariff will be applied to the metered Triad volumes of Grandfathered Embedded Exports for each demand zone as follows:
	$EETG_{Di} = ITT_{DiPS} + ITT_{DiYR} + GEX$

Page 26 of 64

V1.12– 01 April 2016

		Where	2	
year b	ITT _{DiPS} ITT _{DiYR} GEX y the RI	=	<u>Peak Security Initial Transport Tariff for the demand zone:</u> Year Round Initial Transport Tariff for the demand zone, and £45.33 in prices of first applicable charging year; indexed each ula set out in 14.3.6.	
			<u>/alue of EETG_{Di} will be floored at zero, so that EETG_{Di} is always or positive.</u>	
Initial	Revenu	ue Rec	overy	
14.15 <mark>,1</mark>	the t		ak Security background the initial tariff for generation is multiplied by ecast generation capacity and the PS flag to give the initial revenue	Delete
			$\sum_{G_{i=1}}^{n} \left(ITT_{G_{i}PS} \times G_{G_{i}} \times F_{PS} \right) = ITRR_{GPS}$	
Where ITRR _G G _{Gi}		=	Peak Security Initial Transport Revenue Recovery for generation Total forecast Generation for each generation zone (based on analysis of confidential User forecasts)	
F _{PS} n		=	Peak Security flag appropriate to that generator type Number of generation zones	
	backgi	round i	venue recovery for <u>gross GSP group</u> demand for the Peak Security is calculated by multiplying the initial tariff by the total forecast <u>gross GSP group</u> demand:	
	$\sum_{Di=1}^{14} (IT$	$T_{DiPS} imes$	D_{Di}) = $ITRR_{DPS}$	
Where):			
ITRRD	PS	=	Peak Security Initial Transport Revenue Recovery for <u>gross GSP</u> <u>group</u> demand	
D _{Di}		=	Total forecast Metered Triad <u>gross GSP group</u> Demand for each demand zone (based on <u>analysis of</u> confidential User forecasts)	
14.15 <mark>,1</mark>	the t Shar by b	otal for red con	ar Round background, the initial tariff for generation is multiplied by ecast generation capacity whilst calculating Initial Recovery for Not- nponent whereas the initial tariff for Shared component is multiplied e total forecast generation capacity and the ALF to give the initial covery:	Delete
	$\sum_{Gi=1}^{n} (A$	ITT _{Giyrn}	$_{IS} \times G_{Gi} = ITRR_{GYRNS}$	

Deleted: 113

Deleted: 114

Page 27 of 64

$$\sum_{G_i=1}^{n} (ITT_{G_iYRS} \times G_{G_i} \times ALF) = ITRR_{GYRS}$$

Where:

ITRR _{GYRNS} generation ITRR _{GYRS} generation ALF	=	Year Round Not-Shared Initial Transport Revenue Recovery for
	=	Year Round Shared Initial Transport Revenue Recovery for
	=	Annual Load Factor appropriate to that generator.

14.15.115 Similar to the Peak Security background, the initial revenue recovery for <u>gross</u> <u>GSP group</u> demand for the Year Round background is calculated by multiplying the initial tariff by the total forecast metered triad<u>gross GSP group</u> demand:

$$\sum_{Di=1}^{14} (ITT_{DiYR} \times D_{Di}) = ITRR_{DYR}$$

=

Where:

Year Round Initial Transport Revenue Recovery for <u>gross GSP</u> <u>group</u> demand

<u>14.15.120The initial revenue recovery for Affected Embedded Exports is the Affected</u> <u>Embedded Export Tariff multiplied by the total forecast volume of Affected</u> <u>Embedded Export at triad:</u>

$$ITRR_{EEA} = \sum_{Di=1}^{14} (EETA_{Di} \times EEVA_{Di})$$

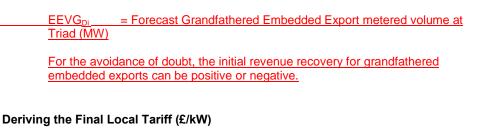
Where

 ITTR_{EEA}
 = Initial Revenue impact for Affected Embedded Exports

 EEVA_{Di}
 = Forecast Affected Embedded Export metered volume at

 Triad (MW)
 Triad (MW)

For the avoidance of doubt, the initial revenue recovery for affected embedded exports can be positive or negative.


14.15.121The initial revenue recovery for Grandfathered Embedded Exports is the Grandfathered Embedded Export Tariff multiplied by the total forecast volume of Grandfathered Embedded Export at triad:

$$ITRR_{EEG} = \sum_{Di=1}^{14} (EETG_{Di} \times EEVG_{Di})$$

Where

ITTR_{EEG} = Initial Revenue impact for Grandfathered Embedded Exports

Page 28 of 64

Local Circuit Tariff

14.15,122 Generation with a local circuit tariff is calculated by multiplying the Year Round nodal marginal km along the local circuit by the expansion constant and the relevant local security factor (whether onshore or offshore) and summing across local circuits to give the local circuit tariff:

$$\sum_{k} \frac{NLMkm_{Gj}^{L} \times EC \times LocalSF_{k}}{1000} = CLT_{Gi}$$

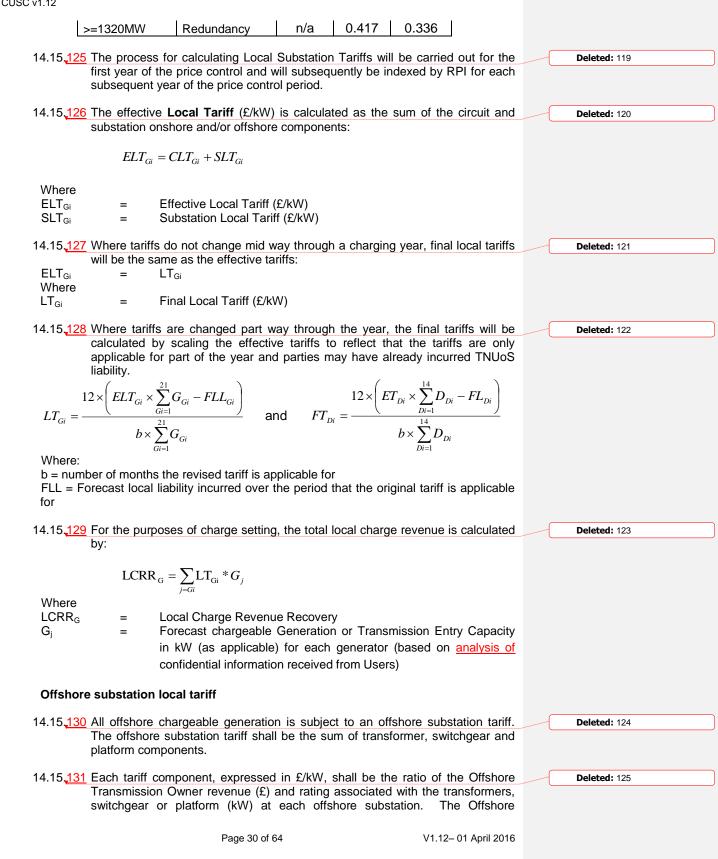
Where

k	=	Local circuit k for generator
NLMkm _{Gj} L	=	Year Round Nodal marginal km along local circuit k using local
		circuit expansion factor.
EC	=	Expansion Constant
LocalSF _k	=	Local Security Factor for circuit k
CLT_{Gi}	=	Circuit Local Tariff (£/kW)

Onshore Local Substation Tariff

- 14.15,123 All chargeable generation is subject to the local substation tariff component which is determined by assessing the generation substation type which is the substation at the connection charging boundary, against three cost determining factors:
 - (a) HV connection voltage the voltage at the boundary between the User's connection assets and the transmission system;
 - (b) Sum of TEC at the generation substation the combined TEC of all generation at the connecting substation; and
 - (c) The level of redundancy at the generation substation single busbar / single switch mesh connections are examples of no redundancy connections, whereas examples of connections with redundancy include double busbar and mesh sub station designs.
- 14.15,124 Using the above factors, the corresponding £/kW tariffs (quoted to 3dp) that will be applied during 2010/11 are:

Substation	Connection	Substation Voltage (a)		
Rating (b)	Type (c)	132kV	275kV	400kV
<1320MW	No redundancy	0.133	0.081	0.065
<1320MW	Redundancy	0.301	0.192	0.155
>=1320MW	No redundancy	n/a	0.257	0.208


Page 29 of 64

Deleted: 116

Deleted: 117

I

I

I

I

Transmission Owner revenue of each tariff component shall include that associated with asset spares. In the case of the platform component, the relevant rating shall be the lower of the transformer or switchgear ratings. As with the offshore circuit expansion factors, the Offshore Transmission Owner revenue associated with each tariff component shall be averaged over the remaining years of the NETSO price control.

- 14.15,<u>132</u> Offshore Transmission Owner revenue associated with interest during construction and project development overheads will be attributed to the relevant asset category with which it is associated. If these or any other costs included in the Offshore Transmission Owner revenue are not readily attributable to a given asset category, they will be pro-rated across the various asset categories based on their relative cost.
- 14.15,133 For 2010/11 a discount of £0.345590/kW shall be provided to the offshore substation tariff to reflect the average cost of civil engineering for onshore substations. This will be inflated by RPI each year and reviewed every price control period.
- 14.15,<u>134</u> Offshore substation tariffs shall be reviewed at the start of every onshore price control period. For each subsequent year within the price control period, these shall be inflated in the same manner as the associated Offshore Transmission Owner Revenue.

14.15,<u>135</u> The revenue from the offshore substation local tariff is calculated by:

$$SLTR = \sum_{\substack{All \ offshore\\ substation \\ m}} \left(SLT_k \times \sum_k Gen_k \right)$$

Where:

WHEIE.		
SLT _k	=	the offshore substation tariff for substation k
Gen _k	=	the generation connected to offshore substation k

The Residual Tariff

14.15,136 The total revenue to be recovered through TNUoS charges is determined each year with reference to the Transmission Licensees' Price Control formulas less the costs expected to be recovered through Pre-Vesting connection charges. Hence in any given year t, a target revenue figure for TNUoS charges (TRR_t) is set after adjusting for any under or over recovery for and including, the small generators discount is as follows:

$$TRR_t = R_t - PVC_t - SG_{t-1}$$

Where

- SG_{t-1} = The proportion of the under/over recovery included within R_t which relates to the operation of statement C13 of the The Company Transmission Licence. Should the operation of statement C13 result in an under recovery in year t 1, the SG figure will be positive and vice versa for an over recovery.

Deleted: 126

Deleted: 127

Deleted: 128

Deleted: 129

- 14.15,137 In normal circumstances, the revenue forecast to be recovered from the initial transport tariffs will not equate to the total revenue target. This is due to a number of factors. For example, the transport model assumes, for simplicity, smooth incremental transmission investments can be made. In reality, transmission investment can only be made in discrete 'lumps'. The transmission system has been planned and developed over a long period of time. Forecasts and assessments used for planning purposes will not have been borne out precisely by events and therefore some distinction between an optimal system for one year and the actual system can be expected.
- 14.15,138 As a result of the factors above, in order to ensure adequate revenue recovery, a constant non-locational **Residual Tariff** for generation and demand is calculated, which includes infrastructure substation asset costs. It is added to the initial transport tariffs for both Peak Security and Year Round backgrounds so that the correct generation / demand revenue split is maintained and the total revenue recovery is achieved.

 $RT_{D} = \frac{(p \times TRR) - ITRR_{DPS} - ITRR_{DYR} - ITRR_{EEA} - ITTR_{EEG}}{\sum_{Di=1}^{14} D_{Di}}$

$$RT_{G} = \frac{\left[(1-p) \times TRR \right] - ITRR_{GPS} - ITRR_{GYRNS} - ITRR_{GYRS} - LCRR_{G}}{\sum_{Gi=1}^{n} G_{Gi}}$$

Where

= Residual Tariff (£/MW)

= Proportion of revenue to be recovered from demand

Final £/kW Tariff

RT

р

14.15,139 The effective Transmission Network Use of System tariff (TNUoS) for generation and gross demand can now be calculated as the sum of the initial transport wider tariffs for Peak Security and Year Round backgrounds, the non-locational residual tariff and the local tariff:

$$ET_{Gi} = \frac{ITT_{GiPS} + ITT_{GiYRNS} + ITT_{GiYRS} + RT_{G}}{1000} + LT_{Gi}$$
$$ET_{Di} = \frac{ITT_{DiPS} + ITT_{DiYR} + RT_{D}}{1000}$$

Where

ET_{Gi} = Effective Generation TNUoS Tariff expressed in £/kW (ET_{Gi} would only be applicable to a Power Station with a PS flag of 1 and ALF of 1; in all other circumstances ITT_{GiPS}, ITT_{GiYRNS} and ITT_{GiYRS} will be applied using Power Station specific data)

ET_{Di} = Effective Gross Demand TNUoS Tariff expressed in £/kW

Page 32 of 64

Deleted: 131

Deleted: 132

Deleted:

Deleted: 133

 $RT_D = \frac{\left(p \times TR\right)}{2}$

$$\frac{\text{The effective Transmission Network Use of System tariff (TNUoS) for affected embedded exports and grandfathered embedded exports can now be calculated by expressing the embedded export tariff in £/kW values:
$$ET_{EEAi} = \frac{EETA_{Di}}{1000}$$

$$ET_{EEGi} = \frac{EETG_{Di}}{1000}$$

$$\frac{\text{Where}}{\text{ET}_{EEAi} = \text{Effective Affected Embedded Export TNUoS Tariff expressed in £/kW}}{\text{ET}_{EEGi} = \text{Effective Grandfathered Embedded Export TNUoS Tariff expressed in £/kW}}$$
For the purposes of the annual Statement of Use of System Charges ET_{Gi} will be published as ITT_{GiPS}; ITT_{GiPRS}, RT_G and LT_{Gi}$$

14.15,140 Where tariffs do not change mid way through a charging year, final demand and generation tariffs will be the same as the effective tariffs.

$$FT_{Gi} = ET_{Gi}$$

$$FT_{Di} = ET_{Di}$$

$$FT_{EEAi} = ET_{EEAi}$$

$$FT_{EEGi} = ET_{EEGi}$$

14.15,141 Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$FT_{Gi} = \frac{12 \times \left(ET_{Gi} \times \sum_{Gi=1}^{20} G_{Gi} - FL_{Gi}\right)}{b \times \sum_{Gi=1}^{27} G_{Gi}} \text{ and } FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{27} G_{Di}}$$

 $FT_{EEAi} = \frac{12 \times (ET_{EEAi} \times \sum_{Di=1}^{14} EETA_{Di} - FL_{Di})}{b \times \sum_{Di=1}^{14} EETA_{Di}} \quad \text{and} \quad FT_{EEGi} = \frac{12 \times (ET_{EEGi} \times \sum_{Di=1}^{14} EETG_{Di} - FL_{Di})}{b \times \sum_{Di=1}^{14} EETG_{Di}}$

Where:

b = number of months the revised tariff is applicable for

FL = Forecast liability incurred over the period that the original tariff is applicable for

Note: The ET_{Gi} element used in the formula above will be based on an individual Power Stations PS flag and ALF for Power Station G_{Gi} , aggregated to ensure overall correct revenue recovery.

14.15,142 If the final gross demand TNUoS Tariff results in a negative number then this is collared to £0/kW with the resultant non-recovered revenue smeared over the remaining demand zones:

If
$$FT_{Di} < 0$$
, then $i = 1$ to z

Page 33 of 64

Deleted: 134

Deleted: 135

$$NRRT_{D} = \frac{\sum_{i=1}^{z} (FT_{Di} \times D_{Di})}{\sum_{i=z+1}^{14} D_{Di}}$$

Therefore,

Therefore the revised Final Tariff for the <u>gross</u> demand zones with positive Final tariffs is given by:

For i= 1 to z: $RFT_{Di} = 0$

For *i*=z+1 to 14:

 $RFT_{Di} = FT_{Di} + NRRT_{D}$

Where

I

1

I

 $NRRT_D = Non Recovered Revenue Tariff (£/kW)$ $RFT_{Di} = Revised Final Tariff (£/kW)$

- 14.15,143 The tariffs applicable for any particular year are detailed in The Company's Statement of Use of System Charges, which is available from the Charging website. Archived tariff information may also be obtained from the Charging website.
- 14.15,<u>144</u> The zonal maps referenced in The Company's **Statement of Use of System Charges** and available on the **Charging website** contain detailed information for the charging year in question of which Grid Supply Points fall into which TNUoS zones.

14.15,145 New Grid Supply Points will be classified into zones on the following basis:

- For demand zones, according to the GSP Group to which the Grid Supply Point is allocated for energy market settlement purposes.
- For generation zones, with reference to the geographic proximity to existing zones and, where close to a boundary between existing zones, with reference to the marginal costs arising from transport model studies. The GSP will then be allocated to the zone, which contains the most similar marginal costs.
- 14.15,146 The Company has available, upon request, the DCLF ICRP transport model, tariff model template and data necessary to run the model, consisting of nodal values of generation and demand connection points to the NETS. The model and data will enable the basic nodal charges to be determined and will also allow sensitivity analysis concerning alternative developments of generation and demand to be undertaken. The model is available from the Charging Team and whilst it is free of charge, it is provided under licence to restrict its distribution and commercial use.
 - 14.15,147 The Company will be pleased to run specific sensitivity studies for Users under a separate study contract in line with the fees set out in the **Statement of Use** of System Charges. Please contact the **Charging Team**.
 - 14.15,148 The factors which will affect the level of TNUoS charges from year to year include-;

Page 34 of 64

Deleted: 137

Deleted: 138

Deleted: 139

Deleted: 140

Deleted: 141

- the forecast level of peak demand on the system
- the Price Control formula (including the effect of any under/over recovery from the previous year),
- the expansion constant,
- the locational security factor,
- the PS flag
- the ALF of a generator
- changes in the transmission network
- HVDC circuit impedance calculation
- changes in the pattern of generation capacity and demand.
- changes in the pattern of embedded exports

14.15,149 In accordance with Standard Licence Condition C13, generation directly connected to the NETS 132kV transmission network which would normally be subject to generation TNUoS charges but would not, on the basis of generating capacity, be liable for charges if it were connected to a licensed distribution network qualifies for a reduction in transmission charges by a designated sum, determined by the Authority. Any shortfall in recovery will result in a unit amount increase in gross demand charges to compensate for the deficit. Further information is provided in the Statement of the Use of System Charges.

Stability & Predictability of TNUoS tariffs

14.15,150 A number of provisions are included within the methodology to promote the stability and predictability of TNUoS tariffs. These are described in 14.29.

Deleted: 143

14.16 Derivation of the Transmission Network Use of System Energy Consumption Tariff and Short Term Capacity Tariffs

- 14.16.1 For the purposes of this section, Lead Parties of Balancing Mechanism (BM) Units that are liable for Transmission Network Use of System Demand Charges are termed Suppliers.
- 14.16.2 Following calculation of the Transmission Network Use of System £/kW Gross Demand Tariff (as outlined in Chapter 2: Derivation of the TNUoS Tariff) for each GSP Group is calculated as follows:

$$p/kWh Tariff = (NHHD_F * £/kW Tariff - FL_G) *100$$

NHHC_G

Where:

 \pounds/kW Tariff = The \pounds/kW Effective <u>Gross</u> Demand Tariff (\pounds/kW), as calculated previously, for the GSP Group concerned.

 \mathbf{NHHD}_{F} = The Company's forecast of Suppliers' non-half-hourly metered Triad Demand (kW) for the GSP Group concerned. The forecast is based on historical data.

 FL_{G} = Forecast Liability incurred for the GSP Group concerned.

 $\rm NHHC_{G}$ = The Company's forecast of GSP Group non-half-hourly metered total energy consumption (kWh) for the period 16:00 hrs to 19:00hrs inclusive (i.e. settlement periods 33 to 38) inclusive over the period the tariff is applicable for the GSP Group concerned.

Short Term Transmission Entry Capacity (STTEC) Tariff

14.16.3 The Short Term Transmission Entry Capacity (STTEC) tariff for positive zones is derived from the Effective Tariff (ET_{Gi}) annual TNUoS £/kW tariffs (14.15.112). If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the STTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (i.e. over the whole financial year, not just the period that the STTEC is applicable for). STTECs will not be reconciled following a mid year charge change. The premium associated with the flexible product is associated with the analysis that 90% of the annual charge is linked to the system peak. The system peak is likely to occur in the period of November to February inclusive (120 days, irrespective of leap years). The calculation for positive generation zones is as follows:

$$\frac{FT_{Gi} \times 0.9 \times STTEC \ Period}{120} = STTEC \ tariff \ (\pounds/kW/period)$$

Where:

FT	=	Final annual TNUoS Tariff expressed in £/kW
Gi	=	Generation zone
STTEC Period	=	A period applied for in days as defined in the CUSC

Page 36 of 64

- 14.16.4 For the avoidance of doubt, the charge calculated under 14.16.3 above will represent each single period application for STTEC. Requests for multiple /STTEC periods will result in each STTEC period being calculated and invoiced separately.
- 14.16.5 The STTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.

Limited Duration Transmission Entry Capacity (LDTEC) Tariffs

14.16.6 The Limited Duration Transmission Entry Capacity (LDTEC) tariff for positive zones is derived from the equivalent zonal STTEC tariff for up to the initial 17 weeks of LDTEC in a given charging year (whether consecutive or not). For the remaining weeks of the year, the LDTEC tariff is set to collect the balance of the annual TNUoS liability over the maximum duration of LDTEC that can be granted in a single application. If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the LDTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (ie over the whole financial year, not just the period that the STTEC is applicable for). LDTECs will not be reconciled following a mid year charge change:

Initial 17 weeks (high rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.9 \times 7}{120}$$

Remaining weeks (low rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.1075 \times 7}{316 - 120} \times (1 + P)$$

where FT is the final annual TNUoS tariff expressed in £/kW; G_i is the generation TNUoS zone; and P is the premium in % above the annual equivalent TNUoS charge as determined by The Company, which shall have the value 0.

- 14.16.7 The LDTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.
- 14.16.8 The tariffs applicable for any particular year are detailed in The Company's **Statement of Use of System Charges** which is available from the **Charging website.** Historical tariffs are also available on the **Charging website.**

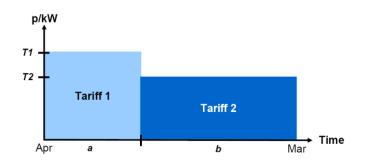
14.17 Demand Charges

Parties Liable for Demand Charges

- 14.17.1 <u>Demand charges are subdivided into charges for gross demand, energy and</u> <u>embedded export.</u> The following parties shall be liable for <u>some or all of the</u> <u>categories of</u> demand charges:
 - The Lead Party of a Supplier BM Unit;
 - Power Stations with a Bilateral Connection Agreement;
 - Parties with a Bilateral Embedded Generation Agreement
- 14.17.2 Classification of parties for charging purposes, section 14.26, provides an illustration of how a party is classified in the context of Use of System charging and refers to the paragraphs most pertinent to each party.

Basis of Gross Demand Charges

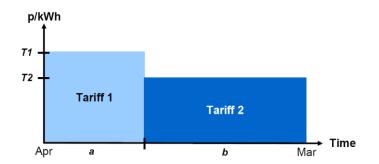
- 14.17.3 <u>Gross d</u>emand charges are based on a de-<u>minimis</u> £0/kW charge for Half Hourly and £0/kWh for Non Half Hourly metered demand.
 - 14.17.4 Chargeable <u>Gross</u> Demand Capacity is the value of Triad <u>gross</u> demand (kW). Chargeable Energy Capacity is the energy consumption (kWh). The definition of both these terms is set out below.
 - 14.17.5 If there is a single set of <u>gross</u> demand tariffs within a charging year, the Chargeable <u>Gross</u> Demand Capacity is multiplied by the relevant <u>gross</u> demand tariff, for the calculation of <u>gross</u> demand charges.
 - 14.17.6 If there is a single set of energy tariffs within a charging year, the Chargeable Energy Capacity is multiplied by the relevant energy consumption tariff for the calculation of energy charges..
 - 14.17.7 If multiple sets of <u>gross</u> demand tariffs are applicable within a single charging year, <u>gross</u> demand charges will be calculated by multiplying the Chargeable <u>Gross</u> Demand Capacity by the relevant tariffs pro rated across the months that they are applicable for, as below,


V		
Annual Liability	$y_{Demand} = \frac{Chargeable \ Gross}{Demand \ Capacity} \times \left(\frac{(a \times Tariff \ 1) + (b \times Tariff \ 2)}{12}\right)$	
where:		
Tariff 1 =	Original tariff,	
Tariff 2 =	Revised tariff,	

a = Number of months over which the original tariff is applicable,
 b = Number of months over which the revised tariff is applicable.

Deleted: minimus

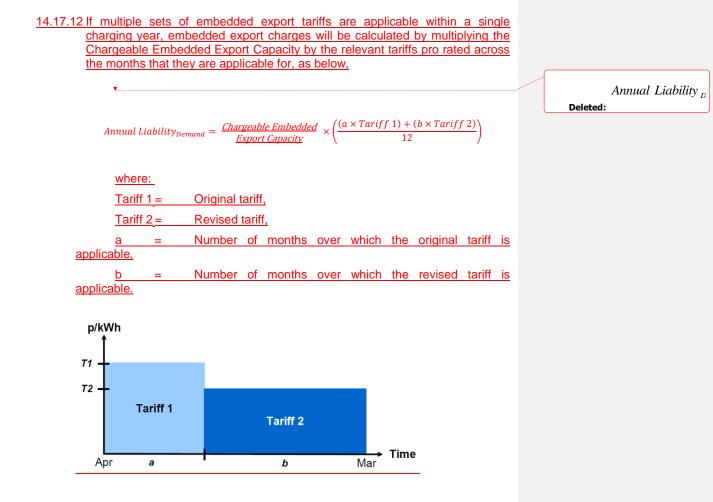
Deleted: Annual Liability _D


Page 38 of 64

14.17.8 If multiple sets of energy tariffs are applicable within a single charging year, energy charges will be calculated by multiplying relevant Tariffs by the Chargeable Energy Capacity over the period that that the tariffs are applicable for and summing over the year.

Annual Liability $_{Energy} = Tariff \ 1 \times \sum_{TI_s}^{TI_E} Chargeable Energy Capacity + Tariff \ 2 \times \sum_{TZ_s}^{TI_E} Chargeable Energy Capacity$

Where: T1_s Start date for the period for which the original tariff is = applicable, End date for the period for which the original tariff is T1_E = applicable, Start date for the period for which the revised tariff is T2s _ applicable, End date for the period for which the revised tariff is T2_E = applicable.



Basis of Embedded Export Charges

- 14.17.9 Embedded export charges are based on a £/kW charge for Half Hourly metered embedded export.
- <u>14.17.10 Chargeable Embedded Export Capacity is the value of Embedded Export at</u> <u>Triad (kW). The definition of this term is set out below.</u>

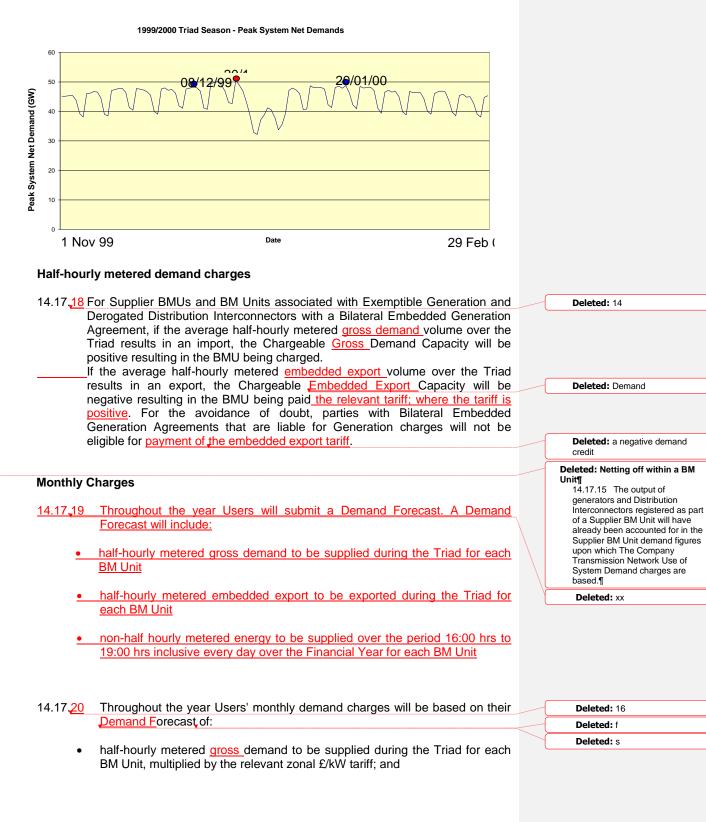
If there is a single set of embedded export tariffs within a charging year, the Chargeable Embedded Export Capacity is multiplied by the relevant embedded export tariff, for the calculation of embedded export charges. Deleted: 14.17.11

Page	39	of	64
------	----	----	----

Supplier BM Unit

14.17,<u>13</u> A Supplier BM Unit charges will be the sum of its energy, <u>gross</u> demand <u>and</u> <u>embedded export</u> liabilities where:

- The Chargeable <u>Gross</u> Demand Capacity will be the average of the Supplier BM Unit's half-hourly metered <u>gross</u> demand during the Triad (and the £/kW tariff),
- The Chargeable Embedded Export Capacity will be the average of the Supplier BM Unit's half-hourly metered embedded export during the Triad (and the £/kW tariff), and
- The Chargeable Energy Capacity will be the Supplier BM Unit's non halfhourly metered energy consumption over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year (and the p/kWh tariff).


Power Stations with a Bilateral Connection Agreement and Licensable Generation with a Bilateral Embedded Generation Agreement

Page 40 of 64

V1.12-01 April 2016

Deleted: 9

	CUSC v1.12			
1	14.17,14 The Chargeable Gross Demand Capacity for a Power Station with a Bilateral	_	Deleted: 10	
I	Connection Agreement or Licensable Generation with a Bilateral Embedded)
	Generation Agreement will be based on the average of the gross import over		Deleted: net	
	each Triad leg of the BM Units associated with the Power Station (in Appendix			
	C of its Bilateral Connection Agreement or Bilateral Embedded Generation Agreement, including metered additional load) during the Triad.			
	Agreement, including metered additional load) during the Thad.			
	Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement			
1	14.17,15 The demand charges for Exemptible Generation and Derogated Distribution		Deleted: 11	
	Interconnector with a Bilateral Embedded Generation Agreement will be the			
	sum of its gross demand and embedded export liabilities where:			
	The Observable Organ Demond Opperity for Every title Opperation and			
	 The Chargeable <u>Gross</u> Demand Capacity for Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation 			
	Agreement will be based on the average of the metered gross demand of	-	Deleted: volume	
	each BM Unit specified in Appendix C of the Bilateral Embedded Generation)
	Agreement during the Triad.			
	 <u>The Chargeable Embedded Export Capacity for Exemptible Generation and</u> Derogated Distribution Interconnectors with a Bilateral Embedded Generation 			
	Agreement will be based on the average of the metered embedded export of			
	each BM Unit specified in Appendix C of the Bilateral Embedded Generation			
	Agreement during the Triad.			
	Small Generators Tariffs			
	14.17,16 In accordance with Standard Licence Condition C13, any under recovery from		Deleted: 12	
	the MAR arising from the small generators discount will result in a unit amount	- (
	of increase to all GB gross demand tariffs.			
	The Triad			
	The Triad			
1	14.17,17 The Triad is used as a short hand way to describe the three settlement periods		Deleted: 13	
	of highest transmission system demand within a Financial Year, namely the)
	half hour settlement period of system peak <u>net</u> demand and the two half hour			
	settlement periods of next highest <u>net</u> demand, which are separated from the			
	system peak <u>net</u> demand and from each other by at least 10 Clear Days, between November and February of the Financial Year inclusive. Exports on			
	directly connected Interconnectors and Interconnectors capable of exporting			
	more than 100MW to the Total System shall be excluded when determining the			
	system peak <u>net</u> demand. An illustration is shown below.			
-				

- half-hourly metered embedded export to be supplied during the Triad for each BM Unit, multiplied by the relevant zonal £/kW tariff; and
- non-half hourly metered energy to be supplied over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year for each BM Unit, multiplied by the relevant zonal p/kWh tariff

Users' annual TNUoS demand charges are based on these forecasts and are split evenly over the 12 months of the year. Users have the opportunity to vary their demand forecasts on a quarterly basis over the course of the year, with the demand forecast requested in February relating to the next Financial Year. Users will be notified of the timescales and process for each of the quarterly updates. The Company will revise the monthly Transmission Network Use of System demand charges by calculating the annual charge based on the new forecast, subtracting the amount paid to date, and splitting the remainder evenly over the remaining months. For the avoidance of doubt, only positive demand forecasts (i.e. representing <u>a net</u> import from the system) will be <u>used in the calculation of charges</u>.

Demand forecasts for a User will be considered positive where:

- The sum of the gross demand forecast and embedded export forecast is positive; and
- The non-half hourly metered energy forecast is positive.

14.17.21 Users should submit reasonable forecasts of gross demand, embedded export and energy in accordance with the CUSC. The Company shall use the following methodology to derive a forecast to be used in determining whether a User's forecast is reasonable, in accordance with the CUSC, and this will be used as a replacement forecast if the User's total forecast is deemed unreasonable. The Company will, at all times, use the latest available Settlement data.

For existing Users:

- i) The User's Triad <u>gross</u> demand<u>and embedded export</u> for the preceding Financial Year will be used where User settlement data is available and where The Company calculates its forecast before the Financial Year. Otherwise, the User's average weekday settlement period 35 half-hourly metered (HH) <u>gross</u> demand <u>and embedded export</u> in the Financial Year to date is compared to the equivalent average <u>gross</u> demand<u>and</u> <u>embedded export</u> for the corresponding days in the preceding year. The percentage difference is then applied to the User's HH <u>gross</u> demand<u>and</u> <u>embedded export</u> at Triad in the preceding Financial Year to derive a forecast of the User's HH <u>gross</u> demand <u>and embedded export</u> at Triad for this Financial Year.
- ii) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day in the Financial Year to date is compared to the equivalent energy consumption over the corresponding days in the preceding year. The percentage difference is then applied to the User's total NHH energy consumption in the preceding Financial Year to derive a forecast of the User's NHH energy consumption for this Financial Year.

For new Users who have completed a Use of System Supply Confirmation Notice in the current Financial Year:

Page 43 of 64

V1.12-01 April 2016

Deleted: accepted

Deleted: 17

1

iii) The User's average weekday settlement period 35 half-hourly metered (HH) gross demand and embedded export over the last complete month for which The Company has settlement data is calculated. Total system average HH gross demand and embedded export for weekday settlement period 35 for the corresponding month in the previous year is compared to total system HH_gross demand and embedded export at Triad in that year and a percentage difference is calculated. This percentage is then applied to the User's average HH gross demand and embedded export for weekday settlement period 35 over the last month to derive a forecast of the User's HH gross demand and embedded export at Triad for this Financial Year.

- iv) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day over the last complete month for which The Company has settlement data is noted. Total system NHH energy consumption over the corresponding month in the previous year is compared to total system NHH energy consumption over the remaining months of that Financial Year and a percentage difference is calculated. This percentage is then applied to the User's NHH energy consumption over the month described above, and all NHH energy consumption in previous months is added, in order to derive a forecast of the User's NHH metered energy consumption for this Financial Year.
- 14.17,22 14.28 Determination of The Company's Forecast for Demand Charge Purposes illustrates how the demand forecast will be calculated by The Company.

Reconciliation of Demand Charges

14.17,23 The reconciliation process is set out in the CUSC. The demand reconciliation process compares the monthly charges paid by Users against actual outturn charges. Due to the Settlements process, reconciliation of demand charges is carried out in two stages; initial reconciliation and final reconciliation.

Initial Reconciliation of demand charges

14.17,24 The initial reconciliation process compares Users' demand forecasts and corresponding monthly charges paid over the year against actual outturn data (using latest Settlement data available at the time) and corresponding charges. Initial reconciliation is carried out in two parts; Initial Reconciliation Part 1 deals with the reconciliation of half-hourly metered demand charges and Initial Reconciliation Part 2 deals with the reconciliation of non-half-hourly metered demand charges.

Initial Reconciliation Part 1– Half-hourly metered demand

- 14.17,25 The Company will identify the periods forming the Triad once it has received Central Volume Allocation data from the Settlement Administration Agent for all days up to and including the last day of February. Once The Company has notified Users of the periods forming the Triad they will not be changed even if disputes are subsequently resolved which would change the periods forming the Triad.
- 14.17,<u>26</u> Initial outturn charges for half-hourly metered <u>gross</u> demand will be determined using the latest available data of actual average Triad <u>gross</u> demand (kW) multiplied by the zonal <u>gross</u> demand tariff(s) (£/kW) applicable to the months

Page 44 of 64

Deleted: 18

Deleted: 19

Deleted: 20

Deleted: 21

Deleted: 22

С

I

I

I

I

1.12	
concerned for each zone for that Financial Year. These actual values are then reconciled against the monthly charges paid in respect of half-hourly gross demand.	
14.17.27 Initial outturn charges for half-hourly metered embedded export will be determined using the latest available data of actual average Triad embedded	
export (kW) multiplied by the zonal embedded export tariff(s) (£/kW) applicable to the months concerned for each zone for that Financial Year. These actual values are then reconciled against the monthly charges paid in respect of half-	
hourly embedded exports.	
Initial Reconciliation Part 2 – Non-half-hourly metered demand	
14.17,28 Actual payments for non-half-hourly metered demand will be determined using	Deleted: 23
the latest available actual energy consumption data (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) over the year multiplied by the energy consumption tariff(s) (p/kWh) applicable to the months concerned for each zone. These actual values are then reconciled against the monthly charges paid in respect of non-half-hourly energy consumption.	
Final Reconciliation of demand charges	
14.17,29 The final reconciliation process compares Users' charges (as calculated during	Deleted: 24
the initial reconciliation process using the latest available data) against final outturn demand charges (based on final settlement data <u>of half-hourly gross</u> <u>demand, embedded exports and non-half-hourly energy consumption).</u>	
14.17.30 Final actual charges will be determined using the final demand reconciliation data taken from the Final Reconciliation Settlement Run or the Final Reconciliation Volume Allocation Run.	Deleted: 25
Reconciliation of manifest errors	
14.17, <u>31</u> In the event that a manifest error, or multiple errors in the calculation of TNUoS tariffs results in a material discrepancy in aUsers TNUoS tariff, the	Deleted: 26
reconciliation process for all Users qualifying under Section 14.17,33 will be in	Deleted: 28
accordance with Sections 14.17,24 to 14.17,50. The reconciliation process shall be carried out using recalculated TNUoS tariffs. Where such	Deleted: 20
reconciliation is not practicable, a post-year reconciliation will be undertaken in the form of a one-off payment.	Deleted: 25
14.17. <u>32 A manifest error shall be defined as any of the following:</u>	Deleted: 27
 a) an error in the transfer of relevant data between the Transmission Licensees or Distribution Network Operators; 	
b) an error in the population of the Transport Model with relevant data;	
c) an error in the function of the Transport Model; ord) an error in the inputs or function of the Tariff Model.	
14.17,33 A manifest error shall be considered material in the event that such an error or, the net effect of multiple errors, has an impact of the lesser of either:	Deleted: 28
a) an error in a User's TNUoS tariff of at least +/-£0.50/kW; or	

Page 45 of 64

b) an error in a User's TNUoS tariff which results in an error in the annual TNUoS charge of a User in excess of +/-£250,000.

14.17,<u>34</u> A manifest error shall only be reconciled if it has been identified within the charging year for which the error has an effect. Errors identified outside of this period will not be eligible for reconciliation retrospectively.

Implementation of P272

- 14.17,<u>35</u>.1 BSC modification P272 requires Suppliers to move Profile Classes 5-8 to Measurement Class E - G (i.e. moving from NHH to HH settlement) by April 2016. The majority of these meters are expected to transfer during the preceding Charging Years up until the implementation date of P272 and some meters will have been transferred before the start of 1ST April 2015. A change from NHH to HH within a Charging Year would normally result in Suppliers being liable for TNUoS for part of the year as NHH and also being subject to HH charging. This section describes how the Company will treat this situation in the transition to P272 implementation for the purposes of TNUoS charging; and the forecasts that Suppliers should provide to the Company.
- 14.17,35.2 Notwithstanding 14.17,13, for each Charging Year which begins after 31 March 2015 and prior to implementation of BSC Modification P272, all demand associated with meters that are in NHH Profile Classes 5 to 8 at the start of that charging year as well as all meters in Measurement Classes E G will be treated as Chargeable Energy Capacity (NHH) for the purposes of TNUoS charging for the full Charging Year unless 14.17,35.3 applies.
 - 14.17,35.3 Where prior to 1st April 2015 a Profile Class meter has already transferred to Measurement Class settlement (HH) the associated Supplier may opt to treat the demand volume as Chargeable Demand Capacity (HH) for the purposes of TNUoS charging up until implementation of P272, subject to meeting conditions in 14.17,35.6. If the associated Supplier does not opt to treat the demand volume as Demand Capacity (HH) it will be treated by default as Chargeable Energy Capacity (NHH) for each full Charging Year up until implementation of P272.
 - 14.17,35.4 The Company will calculate the Chargeable Energy Capacity associated with meters that have transferred to HH settlement but are still treated as NHH for the purposes of TNUoS charging from Settlement data provided directly from Elexon i.e. Suppliers need not Supply any additional information if they accept this default position.
- 14.17,35.5 The forecasts that Suppliers submit to the Company under CUSC 3.10, 3.11 and 3.12 for the purpose of TNUoS monthly billing referred to in 14.17,20 and 14.17,21 for both Chargeable Demand Capacity and Chargeable Energy Capacity should reflect this position i.e. volumes associated those Metering Systems that have transferred from a Profile Class to a Measurement Class in the BSC (NHH to HH settlement) but are to be treated as NHH for the purposes of TNUoS charging should be included in the forecast of Chargeable Energy Capacity and not Chargeable Demand Capacity, unless 14.17,35.3 applies.
 - 14.17,<u>35</u>.6 Where a Supplier wishes for Metering Systems that have transferred from Profile Class to Measurement Class in the BSC (NHH to HH settlement) prior to 1st April 2015, to be treated as Chargeable Demand Capacity (HH/

Page 46 of 64

V1.12-01 April 2016

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 9

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 16

Deleted: 17

Deleted: 29

Deleted: 29

I

Measurement Class settled) it must inform the Company prior to October 2015. The Company will treat these as Chargeable Demand Capacity (HH / Measurement Class settled) for the purposes of calculating the actual annual liability for the Charging Years up until implementation of P272. For these cases only, the Supplier should notify the Company of the Meter Point Administration Number(s) (MPAN). For these notified meters the Supplier shall provide the Company with verified metered demand data for the hours between 4pm and 7pm of each day of each Charging Year up to implementation of P272 and for each Triad half hour as notified by the Company prior to May of the following Charging Year up until two years after the implementation of P272 to allow reconciliation (e.g. Mav 2017 and May 2018 for the Charging Year 2016/17). Where the Supplier fails to provide the data or the data is incomplete for a Charging Year TNUoS charges for that MPAN will be reconciled as part of the Supplier's NHH BMU (Chargeable Energy Capacity). Where a Supplier opts, if eligible, for TNUoS liability to be calculated on Chargeable Demand Capacity it shall submit the forecasts referred to in 14.17,35.5 taking account of this.

14.17,35.7 The Company will maintain a list of all MPANs that Suppliers have elected to be treated as HH. This list will be updated monthly and will be provided to registered Suppliers upon request.

Further Information

- 14.17,<u>36</u> 14.25 Reconciliation of Demand Related Transmission Network Use of System Charges of this statement illustrates how the monthly charges are reconciled against the actual values for <u>gross</u> demand, <u>embedded export</u> and consumption for half-hourly <u>gross demand</u>, <u>embedded export</u> and non-halfhourly metered demand respectively.
- 14.17,<u>37</u> **The Statement of Use of System Charges** contains the £/kW zonal gross demand tariffs, <u>the £/kW zonal embedded export tariffs</u>, and the p/kWh energy consumption tariffs for the current Financial Year.
- 14.17,<u>38</u>14.27 Transmission Network Use of System Charging Flowcharts of this statement contains flowcharts demonstrating the calculation of these charges for those parties liable.

Deleted: 30

Deleted: 29

Deleted: 29

Deleted: 31

Deleted: 32

....

14.24 Example: Calculation of Zonal Gross Demand Tariff

Let us consider all nodes in a demand zone in this example

The table below shows a sample output of the transport model comprising the node, the Peak Security and Year Round marginal km of an injection at the node with a consequent withdrawal at the distributed reference node, the generation sited at the node, scaled to ensure total national generation = total national <u>net</u> demand and the <u>net</u> demand sited at the node.

Demand Zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	<u>Net</u> Demand (MW)
14	ABHA4A	-77.25	-230.25	127
14	ABHA4B	-77.27	-230.12	127
14	ALVE4A	-82.28	-197.18	100
14	ALVE4B	-82.28	-197.15	100
14	AXMI40_SWEB	-125.58	-176.19	97
14	BRWA2A	-46.55	-182.68	96
14	BRWA2B	-46.55	-181.12	96
14	EXET40	-87.69	-164.42	340
14	HINP20	-46.55	-147.14	0
14	HINP40	-46.55	-147.14	0
14	INDQ40	-102.02	-262.50	444
14	IROA20_SWEB	-109.05	-141.92	462
14	LAND40	-62.54	-246.16	262
14	MELK40_SWEB	18.67	-140.75	83
14	SEAB40	65.33	-140.97	304
14	TAUN4A	-66.65	-149.11	55
14	TAUN4B	-66.66	-149.11	55
		Totals		2748

In order to calculate the <u>gross</u> demand tariff we would carry out the following steps:

(i) calculate the demand weighted nodal shadow costs

For this example zone this would be as follows:

Demand zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	Net Demand (MW)	Peak Security Demand Weighted Nodal Marginal km	Year Round Demand Weighted Nodal Marginal km
14	ABHA4A	-77.25	-230.25	127	-3.57	-10.64
14	ABHA4B	-77.27	-230.12	127	-3.57	-10.64
14	ALVE4A	-82.28	-197.18	100	-2.99	-7.17
14	ALVE4B	-82.28	-197.15	100	-2.99	-7.17
14	AXMI40_SWEB	-125.58	-176.19	97	-4.43	-6.22
14	BRWA2A	-46.55	-182.68	96	-1.63	-6.38
14	BRWA2B	-46.55	-181.12	96	-1.63	-6.33
14	EXET40	-87.69	-164.42	340	-10.85	-20.34
14	INDQ40	-102.02	-262.50	444	-16.48	-42.41
14	IROA20_SWEB	-109.05	-141.92	462	-18.33	-23.86
14	LAND40	-62.54	-246.16	262	-5.96	-23.47
14	MELK40_SWEB	18.67	-140.75	83	0.56	-4.25
14	SEAB40	65.33	-140.97	304	7.23	-15.59
14	TAUN4A	-66.65	-149.11	55	-1.33	-2.98
14	TAUN4B	-66.66	-149.11	55	-1.33	-2.98
		Totals		2748	-49.19	-190.43

(ii) sum the Peak Security and Year Round demand weighted nodal shadow costs to give zonal figures. For this example zone this is shown in the above table and is 49.19km for Peak Security background and 190.43km for Year Round background.

(iii) calculate the transport tariffs by multiplying the figures in (ii) above by the expansion constant (& dividing by 1000 to put into units of £/kW):

For this example zone, assuming an expansion constant of ± 10.07 /MWkm and a locational security factor of 1.80:

a) Peak Security tariff – 49.19km <u>* £10.07/MWkm * 1.8</u> = <u>£0.89/kW</u> 1000

Page 50 of 64

b) Year Round tariff -<u>190.43km * £10.07/MWkm * 1.8</u> = <u>£3.45/kW</u> 1000

(iv) We now need to calculate the residual tariff. This is calculated by taking the total revenue to be recovered from demand (calculated as c.73% of total The Company TNUoS target revenue for the year), less the revenue which would be recovered through the demand transport tariffs and revenue recovery through embedded export tariffs, divided by total expected gross GSP group demand.

Assuming the total revenue to be recovered from TNUoS is £1067m, the total recovery from <u>gross GSP group</u> demand would be (73% x £1067m) = £779m. Assuming the total recovery from <u>gross GSP group</u> demand transport tariffs is £<u>140m</u>, total recovery from <u>embedded export tariffs is -£10m</u> and total forecast chargeable <u>gross GSP group</u> demand capacity is 50000MW, the demand residual tariff would be as follows:

 $\frac{\pounds779m - \pounds140m - -\pounds10m}{50,000MW} = \pounds12.98/kW$

 (v) to get to the final tariff, we simply add on the demand residual tariff calculated in (v) to the zonal transport tariffs calculated in (iii(a)) and (iii(b))

For zone 14:

 $\pounds 0.89/kW + \pounds 3.45/kW + \pounds 12.98/kW =$ $\pounds 17.32/kW$

- To summarise, in order to calculate the <u>gross</u> demand tariffs, we evaluate a <u>net</u> demand weighted zonal marginal km cost multiply by the expansion constant and locational security factor then we add a constant (termed the residual cost) to give the overall tariff.
- (vii) The final demand tariff is subject to further adjustment to allow for the minimum £0/kW gross_demand charge. The application of a discount for small generators pursuant to Licence Condition C13 will also affect the final gross_demand tariff.

Deleted: gross

Deleted: 130m

Deleted: $\frac{\pounds779m - \pounds130m}{2}$	_
50000MW	_
¶ <u>£779m - £140m£10m</u> = £12.98/kW¶	
50,000MW	

14.25 Reconciliation of <u>Gross</u> Demand Related Transmission Network Use of System Charges

This appendix illustrates the methodology used by The Company in the reconciliation of Transmission Network Use of System charges for <u>gross</u> demand. The example highlights the different stages of the calculations from the monthly invoiced amounts, right through to Final Reconciliation.

Monthly Charges

Suppliers provide half-hourly (HH) gross demand and embedded export forecasts and non-halfhourly (NHH) demand forecasts by BM Unit every quarter. An example of such forecasts and the corresponding monthly invoiced amounts, based on tariffs of £10.00/kW for gross demand, £5.00/kW for embedded export and 1.20p/kWh for energy consumption, is as follows:

	Forecast HH Triad <u>Gross</u> Demand <u>HHD_E (</u> kW)	HH <u>Gross</u> <u>Demand</u> Monthly Invoiced Amount (£)	Forecast <u>HH</u> <u>Triad</u> <u>Embedded</u> <u>Export</u> <u>HHEE_E (kW)</u>	<u>HH</u> <u>Embedded</u> <u>Generation</u> <u>Monthly</u> <u>Invoiced</u> <u>Amount (£)</u>	Forecast NHH Energy Consumpti on NHHC _F (kW h)	NHH Monthly Invoiced Amount (£)	Net Monthly Invoiced Amount (£)
Apr	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
May	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jun	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jul	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Aug	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Sep	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Oct	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Nov	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Dec	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Jan	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Feb	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Mar	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Total		72,000		<u>(3,000)</u>		216,000	<u>297</u> ,000

As shown, for the first nine months the Supplier provided a 12,000kW HH triad <u>gross</u> demand forecast, and hence paid HH <u>gross demand</u> monthly charges of £10,000 ((12,000kW x £10.00/kW)/12) for that BM Unit. In January the Supplier provided a revised forecast of 7,200kW, implying a forecast annual charge reduced to £72,000 (7,200kW x £10.00/kW). The Supplier had already paid £90,000, so the excess of £18,000 was credited back to the supplier in three £6,000 instalments over the last three months of the year.

The Supplier provided an embedded export triad forecast of -600kW and hence was paid an embedded export credit of £250 ((600kW x £5.00/kW)/12) for that BM Unit (For the avoidance of doubt, if the embedded export tariff is negative this will result in a debit).

The Supplier also initially provided a 15,000,000kWh NHH energy consumption forecast, and hence paid NHH monthly charges of £15,000 ((15,000,000kWh x 1.2p/kWh)/12) for that BM Unit. In July the Supplier provided a revised forecast of 18,000,000kWh, implying a forecast annual charge increased to £216,000 (18,000,000kWh x 1.2p/kWh). The Supplier had already

Page 52 of 64

paid £45,000, so the remaining £171,000 was split into payments of £19,000 for the last nine months of the year.

The right hand column shows the net monthly charges for the BM Unit.

Initial Reconciliation (Part 1a)

The Supplier's outturn HH triad <u>gross</u> demand, based on <u>initial</u> settlement data (and therefore subject to change in subsequent settlement runs), was 9,000kW. The HH triad <u>gross</u> demand reconciliation charge is therefore calculated as follows:

HHD Reconciliation Charge = $(HHD_A - HHD_F) \times \pounds/kW$ Tariff

= (9,000kW - 7,200kW) x £10.00/kW

= 1,800kW x £10.00/kW

= £18,000

To calculate monthly interest charges, the outturn HHD charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHD charge less the HH <u>gross demand</u> monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 1b)

The Supplier's outturn HH triad embedded export, based on initial settlement data (and therefore subject to change in subsequent settlement runs), was 700kW. The HH triad embedded export reconciliation charge is therefore calculated as follows:

HHEE Reconciliation Charge = (HHEE_A – HHEE_E) x £/kW Tariff

 $= (-500 \text{kW} - -600 \text{kW}) \times \text{\pounds}5.00/\text{kW}$

 $= 100 \text{kW} \times \text{\pounds}5.00/\text{kW}$

= **£500**

To calculate monthly interest charges, the outturn HHEE charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHEE charge less the HH embedded generation monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 2)

The Supplier's outturn NHH energy consumption, based on initial settlement data, was 17,000,000kWh. The NHH energy consumption reconciliation charge is therefore calculated as follows:

Deleted: Please note that payments made to BM Units with a net export over the Triad, based on initial settlement data, will also be reconciled at this stage.¶ As monthly payments will not be made on the basis of a negative forecast, the HHD Reconciliation Charge for an exporting BM Unit will represent the full actual payment owed to that BM Unit (subject to adjustment by subsequent settlement runs). Interest will be calculated as described above.¶

NHHC Reconciliation Charge = $(NHHC_A - NHHC_F) \times p/kWh$ Tariff

100

= <u>(17,000,000kWh - 18,000,000kWh) x 1.20p/kWh</u>

100

= <u>-1,000,000kWh x 1.20p/kWh</u> 100 = **-£12,000**

worked example 4.xls - Initial!J104

The monthly reconciliation amount is equal to the outturn energy consumption charge for that month less the NHH monthly invoiced amount. Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

The net initial TNUoS demand reconciliation charge is therefore $\pounds 6,500$ (£18,000 + $\pounds 500$ - $\pounds 12,000$).

Final Reconciliation

Finally, let us now suppose that after all <u>final</u> Settlement data has been received (up to 14 months after the relevant dates), the outturn HH triad <u>gross</u> demand, <u>HH triad embedded export</u> and NHH energy consumption values were 9,500kW, <u>-550kW</u> and 16,500,000kWh, respectively.

Final HH <u>Gross Demand</u>	= (9,500kW - 9,000kW) x £10.00/kW
<u>Reconciliation Charge</u>	= £5,000
Final HH Embedded Export	= (-550kW500kW) x £5.00/kW
Reconciliation Charge	= -£250

Final NHH Reconciliation Charge = $(16,700,000kWh - 17,000,000kWh) \times 1.20p/kWh$ 100 = -£3,600

Consequently, the net final TNUoS demand reconciliation charge will be $\pounds 1, \underline{150} (\pounds 5,000 + -\pounds 250 + -\pounds 3,600)$.

Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

Outturn data for BM Units with a net export over the Triad will be received at this stage and final reconciliation will be carried out, as required. Interest will be calculated as described above.

Terminology:

 HHD_A = The Supplier's outturn half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

Page 54 of 64

Deleted: 000

I

 HHD_F = The Supplier's forecast half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

<u>HHEE_A = The Supplier's outturn half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

<u>HHEE_E = The Supplier's forecast half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

NHHC_A = The Supplier's outturn non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1^{st} to March 31^{st} , for the demand zone concerned.

NHHC_F = The Supplier's forecast non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1st to March 31st, for the demand zone concerned.

£/kW Tariff = The £/kW <u>Gross</u> Demand <u>or Embedded Export</u> Tariff as shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

p/kWh Tariff = The Energy Consumption Tariff shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

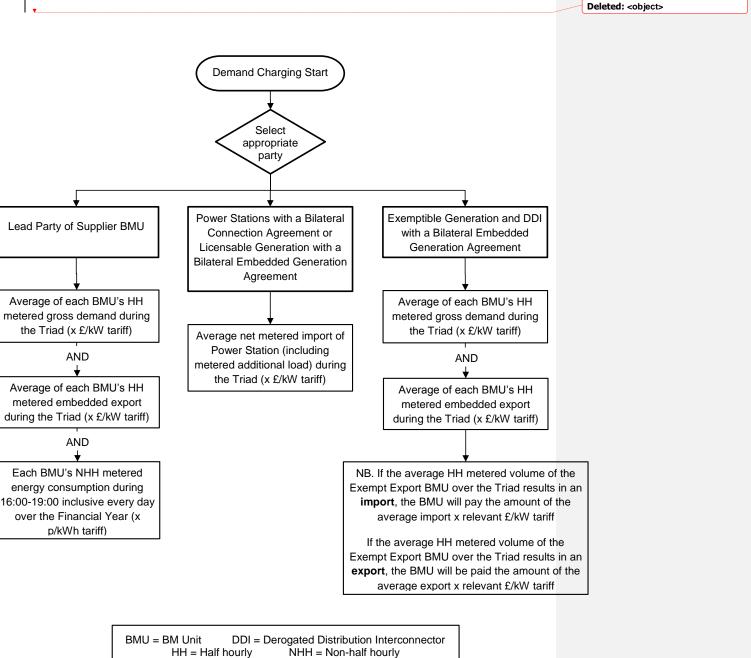
14.26 Classification of parties for charging purposes

In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precendence.

In the following diagrams, the parties liable for Transmission Network Use of System charges are outlined in red.

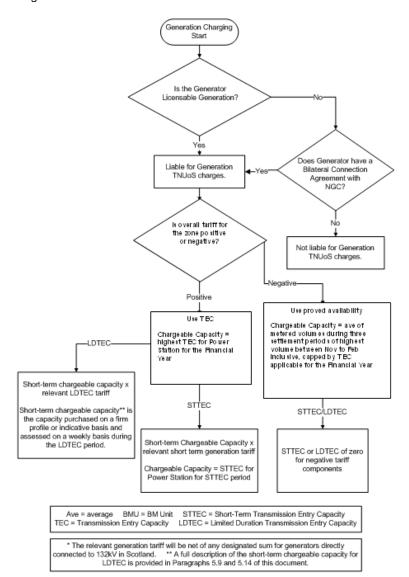
SUPPLIER		
Supplier Use of System Agreem		
Supplier Supplier BMU1 BMUn		
Demand Charges	Generation Charges	
See 14.17, <mark>13</mark> and 14.17, <u>18</u> .	None.	Deleted: 9
		Deleted: 14
Bilateral Connection Agreement Gen Unit BMU1 Gen Unit BMUn	Appendix C Station Load BMU Load BMU	
Demand Charges	Generation Charges	
See 14.17, <mark>14</mark> .	See 14.18.1 i) and 14.18.3 to 14.18.9 and 14.18.18. For generators in positive zones, see 14.18.10 to	Deleted: 10
	14.18.12.For generators in negative zones, see 14.18.13 to14.18.17.	

Bilateral Emb	edded Generation	Agreement Ap	pendix C	7
Gen Unit BMU1	Gen Unit BMUn	Station Load BMU	Additional Load BMU	
Demand Charges	7. <u>15</u> and 14.17. <u>18</u> .	Generation Cl See 14.18.1 ii	0	
Jee 14.17. <u>14</u> , 14.17	<u>, 10</u> and 14.17 <u>,10</u> .	For generator 14.18.12 and	s in positive zone 14.18.18.	es, see 14.18.3 to es, see 14.18.3 to


-{	Deleted: 10
-	Deleted: 11
Y	Deleted: 14

14.27 Transmission Network Use of System Charging Flowcharts

The following flowcharts illustrate the parties liable for Demand and Generation TNUoS charges and the calculation of those charges.


In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precedence.

Page 58 of 64

Generation Charges

14.28 Example: Determination of The Company's Forecast for Demand Charge Purposes

The Company will use the latest available settlement data for calculation of HH demand and NHH energy consumption forecasts for the Financial Year.

The Financial Year runs from 1st April to 31st March inclusive and for the purpose of these examples the year April 2005 to March 2006 is used.

Where the preceding year's settlement data is not available at the time that The Company needs to calculate its forecast, The Company will use settlement data from the corresponding period in Financial Year minus two unless indicated otherwise.

All values used with the examples are purely for illustrative purposes only.

i) Half-Hourly (HH) Metered Demand Forecast – Existing User

At the time of calculation of a HH demand forecast before the relevant Financial Year (approximately 10th March), The Company will be aware at a system level which dates will be used for the determination of Triad. However, The Company may not have settlement data at a User level if the Triad dates were to span a period that includes the latter half of February.

When undertaking forecasting before the relevant Financial Year, The Company will use the User's Triad demand for the previous year for its forecast providing it holds User settlement data for this period, thus:

F = T

where:

F = Forecast of User's HH demand at Triad for the Financial Year

T = User's HH gross_demand and embedded export_at Triad in Financial Year minus one

Where The Company determines its forecast within a Financial Year:

F = T * D/P

where:

- F = Forecast of User's HH demand at Triad for the Financial Year
- T = User's HH gross demand and embedded export at Triad in the preceding Financial Year
- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the preceding Financial Year

Where The Company determines its forecast before the relevant Financial Year and User settlement data for the Triad period is not available, The Company shall apply the formula immediately above (within year forecast) but substitute the following definitions for the values T, D, and P:

T = User's HH gross demand and embedded export at Triad in the Financial Year minus two

Page 60 of 64

- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year minus one, to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the Financial Year minus two

Example (where User settlement data is not yet available for the Triad period):

The Company calculates a HH demand forecast on the above methodology at 10th March 2005 for the period 1st April 2005 to 31st March 2006.

Gross demand:

F = 10,000 * 13,200 / 12,000

F = 11,000 kW,Deleted: hwhere:T = 10,000 kW, (period November 2003 to February 2004)Deleted: hD = 13,200 kW, (period 1st April 2004 to 15th February 2005#)Deleted: hP = 12,000 kW, (period 1st April 2003 to 15th February 2004)Deleted: h

Latest date for which settlement data is available.

Embedded export:

F = -280 * -300 / -350

<u>F = -240 kW</u>

where:

T = -280 kW (period November 2003 to February 2004)

D = -300 kW (period 1st April 2004 to 15th February 2005#)

P = -350 kW (period 1st April 2003 to 15th February 2004)

<u># Latest date for which settlement data is available.</u>

ii) Non Half-Hourly (NHH) Metered Energy Consumption Forecast – Existing User

F = E * D/P

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- E = User's summed NHH energy consumption over the hours 16:00 to 19:00 for each day in the preceding Financial Year

Page 61 of 64

- D = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the Financial Year to date
- P = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the period corresponding to D in the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th June 2005 for the period 1st April 2005 to 31st March 2006.

- F = 50,000,000 * 4,400,000 / 4,000,000
- F = 55,000,000 kWh

where:

- E = 50,000,000 kWh (period 1st April 2004 to 31st March 2005)
- D = 4,400,000 kWh (period 1st April 2005 to 15th May 2005#)
- P = 4,000,000 kWh (period 1st April 2004 to 15th May 2004)
- # Latest date for which settlement data is available

Where forecasting before the relevant Financial Year concerned, The Company would in the above example use values for E and P from Financial Year 2003/04 and D from Financial Year 2004/05.

iii) Half-Hourly (HH) Metered Demand Forecast – New User

F = M * T/W

where:

- F = Forecast of User's HH metered <u>gross</u> demand <u>and embedded export</u> at Triad for the Financial Year
 - M = User's HH average weekday period 35 demand for the last complete month for which settlement data is available
- T = Total system HH <u>gross</u> demand <u>and embedded export</u> at Triad in the preceding Financial Year
 - W = Total system HH average weekday settlement period 35 metered demand for the corresponding period to M for the preceding year

Example:

The Company calculates a HH demand forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2004 to 31st March 2006.

Gross demand:

F = 1,000 * 17,000,000 / 18,888,888

	0000 0	1.12		
I	F =	900 kW,	(Deleted: h
	where			
ļ	M =	1,000 kW _• (period 1 st July 2005 to 31 st July 2005)	(Deleted: h
ļ	T =	17,000,000 kW, (period November 2004 to February 2005)	(Deleted: h
I	W =	18,888,888 kW _v (period 1 st July 2004 to 31 st July 2004)	(Deleted: h
	Embeo	Ided export:		
	<u>F =</u>	<u>150 * 7,200,000 / 6,000,000</u>		
	<u>F = </u>	<u>180 kW</u>		
	where			

- M = 150 kW (period 1st July 2005 to 31st July 2005)
- T = 7,200,000 kW (period November 2004 to February 2005)
- <u>W = 6,000,000 kW (period 1^{st} July 2004 to 31^{st} July 2004)</u>

iv) Non Half Hourly (NHH) Metered Energy Consumption Forecast – <u>New User</u>

 $\mathsf{F} = \mathsf{J} + (\mathsf{M} * \mathsf{R}/\mathsf{W})$

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- J = Residual part month summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day where new User registration takes place other than on the first of a month
- M = User's summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the last complete month for which settlement data is available
- R = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period from the start of that defined under M but for the preceding year and until the end of that preceding Financial Year
- W = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period identified in M but for the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2005 to 31st March 2006.

- F = 500 + (1,000 * 20,000,000,000 / 2,000,000,000)
- F = 10,500 kWh

where:

- J = 500 kWh (period 10th June 2005 to 30th June 2005)
- M = 1,000 kWh (period 1st July 2005 to 31st July 2005)
- R = 20,000,000,000 kWh (period 1st July 2004 to 31st March 2005)
- W = 2,000,000,000 kWh (period 1st July 2004 to 31st July 2004)

CMP265 WACM18

14.15 Derivation of the Transmission Network Use of System Tariff

- 14.15.1 The Transmission Network Use of System (TNUoS) Tariff comprises two separate elements. Firstly, a locationally varying element derived from the DCLF ICRP transport model to reflect the costs of capital investment in, and the maintenance and operation of, a transmission system to provide bulk transport of power to and from different locations. Secondly, a non-locationally varying element related to the provision of residual revenue recovery. The combination of both these elements forms the TNUoS tariff.
- 14.15.2 For generation TNUoS tariffs the locational element itself is comprised of five separate components. Three wider components
 - o Wider Peak Security Component
 - Wider Year Round Not-shared component
 - Wider Year Round component

These components reflect the costs of the wider network under the different generation backgrounds set out in the Demand Security Criterion (for Peak Security component) and Economy Criterion (for both Year Round components) of the Security Standard. The two Year Round components reflect the unshared and shared costs of the wider network based on the diversity of generation plant types.

Two local components -

- o Local substation, and
- Local circuit

These components reflect the costs of the local network.

Accordingly, the wider tariff represents the combined effect of the three wider locational tariff components and the residual element; and the local tariff represents the combination of the two local locational tariff components.

14.15.3 The process for calculating the TNUoS tariff is described below.

The Transport Model

Model Inputs

14.15.4 The DCLF ICRP transport model calculates the marginal costs of investment in the transmission system which would be required as a consequence of an increase in demand or generation at each connection point or node on the transmission system, based on a study of peak demand conditions using both Peak Security and Year Round generation backgrounds on the transmission system. One measure of the investment costs is in terms of MWkm. This is the concept that ICRP uses to calculate marginal costs of investment. Hence, marginal costs are estimated initially in terms of increases or decreases in units of kilometres (km) of the transmission system for a 1 MW injection to the system.

- 14.15.5 The transport model requires a set of inputs representative of the Demand Security and Economy Criterion set out in the Security Standards. These conditions on the transmission system are represented in the Peak Security and Year Round background respectively as follows:
- Nodal generation information per node (TEC, plant type and SQSS scaling factors)
- Nodal <u>net</u> demand information
- Transmission circuits between these nodes
- The associated lengths of these routes, the proportion of which is overhead line or cable and the respective voltage level
- The cost ratio of each of 132kV overhead line, 132kV underground cable, 275kV overhead line, 275kV underground cable and 400kV underground cable to 400kV overhead line to give circuit expansion factors
- The cost ratio of each separate sub-sea AC circuit and HVDC circuit to 400kV overhead line to give circuit expansion factors
- 132kV overhead circuit capacity and single/double route construction information is used in the calculation of a generator's local charge.
- Offshore transmission cost and circuit/substation data
- 14.15.6 For a given charging year "t", the nodal generation TEC figure and generation plant types at each node will be based on the Applicable Value for year "t" in the NETS Seven Year Statement in year "t-1" plus updates to the October of year "t-1". The contracted TECs and generation plant types in the NETS Seven Year Statement include all plant belonging to generators who have a Bilateral Agreement with the TOs. For example, for 2010/11 charges, the nodal generation data is based on the forecast for 2010/11 in the 2009 NETS Seven Year Statement plus any data included in the quarterly updates in October 2009.
- 14.15.7 Scaling factors for different generation plant types are applied on their aggregated capacity for both Peak Security and Year Round backgrounds. The scaling is either Fixed or Variable (depending on the total demand level) in line with the factors used in the Security Standard, for example as shown in the table below.

Generation Plant Type	Peak Security Background	Year Round Background
Intermittent	Fixed (0%)	Fixed (70%)
Nuclear & CCS	Variable	Fixed (85%)
Interconnectors	Fixed (0%)	Fixed (100%)
Hydro	Variable	Variable
Pumped Storage	Variable	Fixed (50%)
Peaking	Variable	Fixed (0%)
Other (Conventional)	Variable	Variable

These scaling factors and generation plant types are set out in the Security Standard. These may be reviewed from time to time. The latest version will be used in the calculation of TNUoS tariffs and is published in the Statement of Use of System Charges

14.15.8 National Grid will categorise plant based on the categorisations described in the Security Standard. Peaking plant will include oil and OCGT technologies and Other (Conv.) represents all remaining conventional plant not explicitly stated elsewhere in the table In the event that a power station is made up of more than one technology type, the type of the higher Transmission Entry Capacity (TEC) would apply.

I

- 14.15.9 Nodal <u>net</u> demand data for the transport model will be based upon the GSP <u>net</u> demand that Users have forecast to occur at the time of National Grid Peak Average Cold Spell (ACS) Demand for year "t" in the April Seven Year Statement for year "t-1" plus updates to the October of year "t-1".
- 14.15.10 Subject to paragraphs 14.15.15 to 14.15.22, Transmission circuits for charging year "t" will be defined as those with existing wayleaves for the year "t" with the associated lengths based on the circuit lengths indicated for year "t" in the April NETS Seven Year Statement for year "t-1" plus updates to October of year "t-1". If certain circuit information is not explicitly contained in the NETS Seven Year Statement, The Company will use the best information available.
- 14.15.11 The circuit lengths included in the transport model are solely those, which relate to assets defined as 'Use of System' assets.
- 14.15.12 For HVDC circuits, the impedance will be calculated to provide flows based on a ratio of the capacity provided by the HVDC link relative to the capacities on all major transmission system boundaries that it parallels.
- 14.15.13 The transport model employs the use of circuit expansion factors to reflect the difference in cost between (i) AC Circuits and HVDC circuits. (ii) underground and sub-sea circuits, (iii) cabled circuits and overhead line circuits, (iv) 132kV and 275kV circuits, (v) 275kV circuits and 400kV circuits, and (vi) uses 400kV overhead line (i.e. the 400kV overhead line expansion factor is 1). As the transport model expresses cost as marginal km (irrespective of cables or overhead lines), some account needs to be made of the fact that investment in these other types of circuit (specifically HVDC and sub-sea cables of various voltages, 400kV underground cable, 275kV overhead line, 275kV underground cable, 132kV overhead line and 132kV underground cable) is more expensive than for 400kV overhead line. This is done by effectively 'expanding' these more expensive circuits by the relevant circuit expansion factor, thereby producing a larger marginal kilometre to reflect the additional cost of investing in these circuits compared to 400kV overhead line. When calculating the local circuit tariff for a generator, alternative 132kV and offshore expansion factors to those used in the remainder of the tariff calculation are applied to the generator's local circuits.
- 14.15.14 The circuit expansion factors for HVDC circuits and AC subsea cables are determined on a case by case basis using the costs which are specific to individual projects containing HVDC or AC subsea circuits.

Adjustments to Model Inputs associated with One-off Works

- 14.15.15 Where, following the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge that related to One-off Works carried out on an onshore circuit, and such One-off Works would affect the value of a TNUoS tariff paid by the User, the transport model inputs associated with the onshore circuit shall be adjusted by The Company to reflect the asset value that would have been modelled if the works had been undertaken on the basis of the original asset design rather than the One-off Works.
- 14.15.16 Subject to paragraphs 14.15.17 to 14.15.19, where, prior to the implementation of CUSC Modification CMP203, a User has paid a One-Off Charge (or has paid a charge to the relevant TO prior to 1st April 2005 on the same principles as a

Page 3 of 64

One-Off Charge) that related to works equivalent to those described under paragraph 14.15.15, an adjustment equivalent to that under paragraph 14.15.15 shall be made to the transport model inputs as follows.

- 14.15.17 Such adjustment shall be made following a User's request, which must be received by The Company no later than the second occurrence of 31st December following the implementation of CUSC Modification CMP203.
- 14.15.18 The Company shall only make an adjustment to the transport model inputs, under paragraph 14.15.16 where the charge was paid to the relevant TO prior to 1st April 2005 where evidence has been provided by the User that satisfies The Company that works equivalent to those under paragraph 14.15.15 were funded by the User.
- 14.15.19 Where a User has sufficient reason to believe that adjustments under paragraph 14.15.18 should be made in relation to specific assets that affect a TNUoS tariff that applies to one of its sites and outlines its reasoning to The Company, The Company shall (upon the User's request and subject to the User's payment of reasonable costs incurred by The Company in doing so) use its reasonable endeavours to assist the User in obtaining any evidence The Company or a TO may have to support its position.
- 14.15.20 Where a request is made under paragraph 14.15.16 on or prior to 31st December in a charging year, and The Company is satisfied based on the accompanying evidence provided to The Company under paragraph 14.15.17 that it is a valid request, the transport model inputs shall be adjusted accordingly and taken into account in the calculation of TNUoS tariffs effective from the year commencing on the 1st April following this and otherwise from the next subsequent 1st April.
- 14.15.21 The following table provides examples of works for which adjustments to transport model inputs would typically apply:

Ref	Description of works	Adjustments
1	Undergrounding - A User requests to underground an overhead line at a greater cost.	As the cable cost will be more expensive than the overhead line (OHL) equivalent, the circuit will be modelled as an OHL.
2	Substation Siting Decision - A User requests to move the existing or a planned substation location to a place that means that the works cannot be justified as economic by the TO.	As the revised substation location may result in circuits being extended. If this is the case, the originally designed circuit lengths (as per the originally designed substation location) would be used in the transport model.
3	Circuit Routing Decision - A User asks to move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	As any circuit route changes that extend circuits are likely to result in a greater TNUoS tariff, the originally designed circuit lengths would be used in the transport model.

Ref	Description of works	Adjustments
4	Building circuits at lower voltages - A User requests lower tower height and therefore a different voltage.	As lower voltage circuits result in a higher expansion factor being used, the circuits would be modelled at the originally designed higher voltage.

14.15.22 The following table provides examples of works for which adjustments to transport model typically would not apply:

Ref	Description of works	Reasoning
1	Undergrounding - A User chooses to have a cable installed via a tunnel rather than buried.	Cable expansion factors are applied in the transport model regardless of whether a cable is tunnelled and buried, so there is no increased TNUoS cost.
2	Additional circuit route works - A User asks for screening to be provided around a new or existing circuit route.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
3	Additional circuit route works - A User requests that a planned overhead line route is built using alternative transmission tower designs.	Circuit expansion factors are applied in the transport model irrespective of these works, so there is no increased TNUoS cost.
4	Additional substation works - A User asks for screening to be provided around a new or existing substation.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
5	Additional substation works - Changes to connection assets (e.g. HV-LV transformers and associated switchgear), metering, additional LV supplies, additional protection equipment, additional building works, etc.	The additional substation works will not affect the User's TNUoS charge as there is no effect on power flows or circuit costs within the transport model.
6	Diversion - A User asks to temporarily move an existing or a planned circuit route in a way in which the works cannot be justified as economic by the TO.	The temporary circuit changes will not be incorporated into the transport model.

7	Connection Entry Capacity (CEC) before Transmission Entry Capacity (TEC). A User asks for a connection in a year prior to the relating TEC; i.e. physical connection without capacity.	No additional works are being undertaken, works are simply being completed well in advance of the generator commissioning. The One-Off Charge reflects the depreciated value of the assets prior to commissioning (and any TNUOS being charged).
8	Early asset replacement - An asset is replaced prior to the end of its expected life.	As the asset is simply replaced, no data in the transport model is expected to change.
9	Additional Engineering/ Mobilisation costs - A User requests changes to the planned works, that results in additional operational costs.	The data in the transport model is unaffected.
10	Offshore (Generator Build) - Any of the works described above or under paragraph 14.15.18.	The value of the works will not form part of the asset transfer value therefore will not be used as part of the offshore tariff calculation.
11	Offshore (Offshore Transmission Owner (OFTO) Build) - Any of the works described above or under paragraph 14.15.18.	As part of determining the TNUoS revenue associated with each asset, the value of the One-Off Works would be excluded when pro-rating the OFTO's allowed revenue against assets by asset value.

14.15.23 The Company shall publish any adjusted transport model inputs that it intends to use in the calculation of TNUoS tariffs effective from the year commencing on the following 1st April in the NETS Seven Year Statement October Update. Any further adjustments that The Company makes shall be published by The Company upon the publication of the final TNUoS tariffs for the year concerned.

Model Outputs

- 14.15.24 The transport model takes the inputs described above and carries out the following steps individually for Peak Security and Year Round backgrounds.
- 14.15.25 Depending on the background, the TEC of the relevant generation plant types are scaled by a percentage as described in 14.15.7, above. The TEC of the remaining generation plant types in each background are uniformly scaled such that total national generation (scaled sum of contracted TECs) equals total national ACS Demand.
- 14.15.26 For each background, the model then uses a DCLF ICRP transport algorithm to derive the resultant pattern of flows based on the network impedance required to meet the nodal <u>net</u> demand using the scaled nodal generation, assuming every circuit has infinite capacity. Flows on individual transmission circuits are compared for both backgrounds and the background giving rise to

Page 6 of 64

the highest flow is considered as the triggering criterion for future investment of that circuit for the purposes of the charging methodology. Therefore all circuits will be tagged as Peak Security or Year Round depending upon the background resulting in the highest flow. In the event that both backgrounds result in the same flow, the circuit will be tagged as Peak Security. Then it calculates the resultant total network Peak Security MWkm and Year Round MWkm, using the relevant circuit expansion factors as appropriate.

- 14.15.27 Using these baseline networks for Peak Security and Year Round backgrounds, the model then calculates for a given injection of 1MW of generation at each node, with a corresponding 1MW offtake (<u>net_demand</u>) distributed across all demand nodes in the network, the increase or decrease in total MWkm of the whole Peak Security and Year Round networks. The proportion of the 1MW offtake allocated to any given demand node will be based on total background nodal <u>net</u> demand in the model. For example, with a total GB <u>net_demand</u> of 60GW in the model, a node with a <u>net_demand</u> of 600MW would contain 1% of the offtake i.e. 0.01MW.
- 14.15.28 Given the assumption of a 1MW injection, for simplicity the marginal costs are expressed solely in km. This gives a Peak Security marginal km cost and a Year Round marginal km cost for generation at each node (although not that used to calculate generation tariffs which considers local and wider cost components). The Peak Security and Year Round marginal km costs for demand at each node are equal and opposite to the Peak Security and Year Round nodal marginal km respectively for generation and this is used to calculate demand tariffs. Note the marginal km costs can be positive or negative depending on the impact the injection of 1MW of generation has on the total circuit km.
- 14.15.29 Using a similar methodology as described above in 14.15.27, the local and wider marginal km costs used to determine generation TNUoS tariffs are calculated by injecting 1MW of generation against the node(s) the generator is modelled at and increasing by 1MW the offtake across the distributed reference node. It should be noted that although the wider marginal km costs are calculated for both Peak Security and Year Round backgrounds, the local marginal km costs are calculated on the Year Round background.
- 14.15.30 In addition, any circuits in the model, identified as local assets to a node will have the local circuit expansion factors which are applied in calculating that particular node's marginal km. Any remaining circuits will have the TO specific wider circuit expansion factors applied.
- 14.15.31 An example is contained in 14.21 Transport Model Example.

Calculation of local nodal marginal km

14.15.32 In order to ensure assets local to generation are charged in a cost reflective manner, a generation local circuit tariff is calculated. The nodal specific charge provides a financial signal reflecting the security and construction of the infrastructure circuits that connect the node to the transmission system.

14.15.33 Main Interconnected Transmission System (MITS) nodes are defined as:

- Grid Supply Point connections with 2 or more transmission circuits connecting at the site; or
- connections with more than 4 transmission circuits connecting at the site.

Page 7 of 64

- 14.15.34 Where a Grid Supply Point is defined as a point of supply from the National Electricity Transmission System to network operators or non-embedded customers excluding generator or interconnector load alone. For the avoidance of doubt, generator or interconnector load would be subject to the circuit component of its Local Charge. A transmission circuit is part of the National Electricity Transmission System between two or more circuit-breakers which includes transformers, cables and overhead lines but excludes busbars and generation circuits.
- 14.15.35 Generators directly connected to a MITS node will have a zero local circuit tariff.
- 14.15.36 Generators not connected to a MITS node will have a local circuit tariff derived from the local nodal marginal km for the generation node i.e. the increase or decrease in marginal km along the transmission circuits connecting it to all adjacent MITS nodes (local assets).

Calculation of zonal marginal km

- 14.15.37 Given the requirement for relatively stable cost messages through the ICRP methodology and administrative simplicity, nodes are assigned to zones. Typically, generation zones will be reviewed at the beginning of each price control period with another review only undertaken in exceptional circumstances. Any rezoning required during a price control period will be undertaken with the intention of minimal disruption to the established zonal boundaries. The full criteria for determining generation zones are outlined in paragraph 14.15.42. The number of generation zones set for 2010/11 is 20.
- 14.15.38 Demand zone boundaries have been fixed and relate to the GSP Groups used for energy market settlement purposes.
- 14.15.39 The nodal marginal km are amalgamated into zones by weighting them by their relevant generation or demand capacity.
- 14.15.40 Generators will have zonal tariffs derived from both, the wider Peak Security nodal marginal km; and the wider Year Round nodal marginal km for the generation node calculated as the increase or decrease in marginal km along all transmission circuits except those classified as local assets.

The zonal Peak Security marginal km for generation is calculated as:

$$WNMkm_{j_{PS}} = \frac{NMkm_{j_{PS}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiPS} = \sum_{j \in Gi} WNMkm_{jPS}$$

Where

Gi	=	Generation zone
j	=	Node
NMkm _{PS}	=	Peak Security Wider nodal marginal km from transport model
WNMkm _{PS}	=	Peak Security Weighted nodal marginal km
ZMkm _{PS}	=	Peak Security Zonal Marginal km

Gen = Nodal Generation (scaled by the appropriate Peak Security Scaling factor) from the transport model Similarly, the zonal Year Round marginal km for generation is calculated as

$$WNMkm_{j_{YR}} = \frac{NMkm_{j_{YR}} * Gen_{j}}{\sum_{j \in Gi} Gen_{j}}$$

$$ZMkm_{GiYR} = \sum_{j \in Gi} WNMkm_{jYR}$$

Where

NMkm _{YR}	=	Year Round Wider nodal marginal km from transport model
WNMkm _{YR}	=	Year Round Weighted nodal marginal km
ZMkm _{YR}	=	Year Round Zonal Marginal km
Gen	=	Nodal Generation (scaled by the appropriate Year Round Scaling
		factor) from the transport model

14.15.41 The zonal Peak Security marginal km for demand zones are calculated as follows:

$$WNMkm_{j_{PS}} = \frac{-1 * NMkm_{j_{PS}} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{Di_{PS}} = \sum_{j \in Di} WNMkm_{j_{PS}}$$

Where:

I

Di	=	Demand zone
Dem	=	Nodal <u>Net</u> Demand from transport model

Similarly, the zonal Year Round marginal km for demand zones are calculated as follows:

$$WNMkm_{jYR} = \frac{-1 * NMkm_{jYR} * Dem_{j}}{\sum_{j \in Di} Dem_{j}}$$
$$ZMkm_{DiYR} = \sum_{j \in Di} WNMkm_{jYR}$$

- 14.15.42 A number of criteria are used to determine the definition of the generation zones. Whilst it is the intention of The Company that zones are fixed for the duration of a price control period, it may become necessary in exceptional circumstances to review the boundaries having been set. In both circumstances, the following criteria are used to determine the zonal boundaries:
- i.) Zoning is determined using the generation background with the most MWkm of circuits. Zones should contain relevant nodes whose total wider marginal costs

from the relevant generation background (as determined from the output from the transport model, the relevant expansion constant and the locational security factor, see below) are all within +/-£1.00/kW (nominal prices) across the zone. This means a maximum spread of £2.00/kW in nominal prices across the zone.

- ii.) The nodes within zones should be geographically and electrically proximate.
- iii.) Relevant nodes are considered to be those with generation connected to them as these are the only ones, which contribute to the calculation of the zonal generation tariff.
- 14.15.43 The process behind the criteria in 14.15.42 is driven by initially applying the nodal marginal costs from the relevant generation background within the DCLF Transport model onto the appropriate areas of a substation line diagram. Generation nodes are grouped into initial zones using the +/- £1.00/kW range. All nodes within each zone are then checked to ensure the geographically and electrically proximate criteria have been met using the substation line diagram. The established zones are inspected to ensure the least number of zones are used with minimal change from previously established zonal boundaries. The zonal boundaries are finally confirmed using the demand nodal costs from the relevant generation background for guidance.
- 14.15.44 The zoning criteria are applied to a reasonable range of DCLF ICRP transport model scenarios, the inputs to which are determined by The Company to create appropriate TNUoS generation zones. The minimum number of zones, which meet the stated criteria, are used. If there is more than one feasible zonal definition of a certain number of zones, The Company determines and uses the one that best reflects the physical system boundaries.
- 14.15.45 Zones will typically not be reviewed more frequently than once every price control period to provide some stability. However, in exceptional circumstances, it may be necessary to review zoning more frequently to maintain appropriate, cost reflective, locational cost signals. For example, if a new generator connecting to the transmission system would cause the creation of a new generation zone for that generator alone, it may not be appropriate from a cost reflective perspective to wait until the next price control period to undertake this rezoning. If any such rezoning is required, it will be undertaken against a background of minimal change to existing generation zones and in line with the notification process set out in the Transmission Licence and CUSC.

Accounting for Sharing of Transmission by Generators

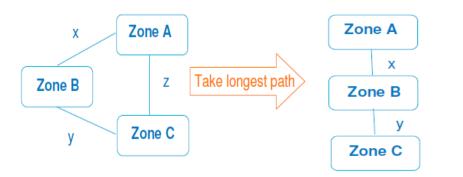
- 14.15.46 A proportion of the marginal km costs for generation are shared incremental km reflecting the ability of differing generation technologies to share transmission investment. This is reflected in charges through the splitting of Year Round marginal km costs for generation into Year Round Shared marginal km costs and Year Round Not-Shared marginal km which are then used in the calculation of the wider £/kW generation tariff.
- 14.15.47 The sharing between different generation types is accounted for by (a) using transmission network boundaries between generation zones set by connectivity between generation charging zones, and (b) the proportion of Low Carbon and Carbon generation behind these boundaries.

Page 10 of 64

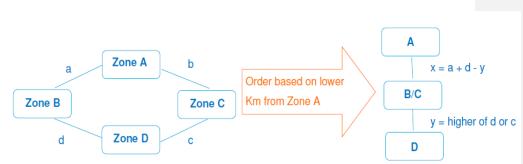
14.15.48 The zonal incremental km for each generation charging zone is split into each boundary component by considering the difference between it and the neighbouring generation charging zone using the formula below;

$$BIkm_{ab} = ZIkm_b - ZIkm_a$$

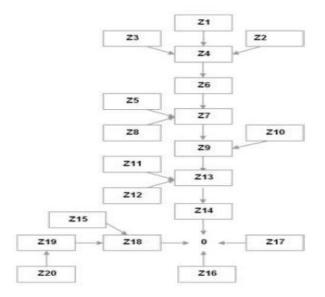
Where;


Blkm_{ab} = boundary incremental km between generation charging zone A and generation charging zone B Zlkm = generation charging zone incremental km.

14.15.49 The table below shows the categorisation of Low Carbon and Carbon generation. This table will be updated by National Grid in the Statement of Use of System Charges as new generation technologies are developed.


Carbon	Low Carbon
Coal	Wind
Gas	Hydro (excl. Pumped Storage)
Biomass	Nuclear
Oil	Marine
Pumped Storage	Tidal
Interconnectors	

Determination of Connectivity


- 14.15.50 Connectivity is based on the existence of electrical circuits between TNUoS generation charging zones that are represented in the Transport model. Where such paths exist, generation charging zones will be effectively linked via an incremental km transmission boundary length. These paths will be simplified through in the case of;
 - Parallel paths the longest path will be taken. An illustrative example is shown below with x, y and z representing the incremental km between zones.

 Parallel zones – parallel zones will be amalgamated with the incremental km immediately beyond the amalgamated zones being the greater of those existing prior to the amalgamation. An illustrative example is shown below with a, b, c, and d representing the the initial incremental km between zones, and x and y representing the final incremental km following zonal amalgamation.

14.15.51 An illustrative Connectivity diagram is shown below:

The arrows connecting generation charging zones and amalgamated generation charging zones represent the incremental km transmission boundary lengths towards the notional centre of the system. Generation located in charging zones behind arrows is considered to share based on the ratio of Low Carbon to Carbon cumulative generation TEC within those zones.

14.15.52 The Company will review Connectivity at the beginning of a new price control period, and under exceptional circumstances such as major system reconfigurations or generation rezoning. If any such reassessment is required, it will be undertaken against a background of minimal change to existing Connectivity and in line with the notification process set out in the Transmission Licence and the CUSC.

Calculation of Boundary Sharing Factors

14.15.53 Boundary sharing factors (BSFs) are derived from the comparison of the cumulative proportion of Low Carbon and Carbon generation TEC behind each of the incremental MWkm boundary lengths using the following formulae –

Page 12 of 64

If $\frac{LC}{LC+C} \le 0.5$, then all Year round marginal km costs are shared i.e. the BSF is 100%.

Where:

LC = Cumulative Low Carbon generation TEC behind the relevant transmission boundary C = Cumulative Carbon generation TEC behind the relevant transmission

C = Cumulative Carbon generation TEC behind the relevant transmission boundary

If
$$\frac{LC}{LC+C}$$
 > 0.5 then the BSF is calculated using the following formula: -

$$BSF = \left(-2 \times \left(\frac{LC}{LC+C}\right)\right) + 2$$

Where:

BSF = boundary sharing factor.

14.15.54 The shared incremental km for each boundary are derived from the multiplication of the boundary sharing factor by the incremental km for that boundary;

$$SBIkm_{ab} = BIIkm_{ab} \times BSF_{ab}$$

Where;

 $SBIkm_{ab}$ = shared boundary incremental km between generation charging zone A and generation charging zone B

 BSF_{ab} = generation charging zone boundary sharing factor.

14.15.55 The shared incremental km is discounted from the incremental km for that boundary to establish the not-shared boundary incremental km. The not-shared boundary incremental km reflects the cost of transmission investment on that boundary accounting for the sharing of power stations behind that boundary.

$$NSBIkm_{ab} = BIkm_{ab} - SBIkm_{ab}$$

Where;

 $NSBIkm_{ab}$ = not shared boundary incremental km between generation charging zone A and generation charging zone B.

14.15.56 The shared incremental km for a generation charging zone is the sum of the appropriate shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRS}$$

Where;

 $ZMkm_{nYRS}$ = Year Round Shared Zonal Marginal km for generation charging zone n.

Page 13 of 64

14.15.57 The not-shared incremental km for a generation charging zone is the sum of the appropriate not-shared boundary incremental km for that generation charging zone as derived from the connectivity diagram.

$$\sum_{a}^{n} NSBIkm_{ab} = ZMkm_{nYRNS}$$

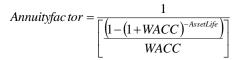
Where;

ZMkm_{nYRNS} = Year Round Not-Shared Zonal Marginal km for generation zone n.

Deriving the Final Local £/kW Tariff and the Wider £/kW Tariff

14.15.58 The zonal marginal km (ZMkm_{Gi}) are converted into costs and hence a tariff by multiplying by the Expansion Constant and the Locational Security Factor (see below). The nodal local marginal km (NLMkm^L) are converted into costs and hence a tariff by multiplying by the Expansion Constant and a Local Security Factor.

The Expansion Constant


- 14.15.59 The expansion constant, expressed in £/MWkm, represents the annuitised value of the transmission infrastructure capital investment required to transport 1 MW over 1 km. Its magnitude is derived from the projected cost of 400kV overhead line, including an estimate of the cost of capital, to provide for future system expansion.
- 14.15.60 In the methodology, the expansion constant is used to convert the marginal km figure derived from the transport model into a £/MW signal. The tariff model performs this calculation, in accordance with 14.15.95 14.15.117, and also then calculates the residual element of the overall tariff (to ensure correct revenue recovery in accordance with the price control), in accordance with 14.15.133.
- 14.15.61 The transmission infrastructure capital costs used in the calculation of the expansion constant are provided via an externally audited process. They also include information provided from all onshore Transmission Owners (TOs). They are based on historic costs and tender valuations adjusted by a number of indices (e.g. global price of steel, labour, inflation, etc.). The objective of these adjustments is to make the costs reflect current prices, making the tariffs as forward looking as possible. This cost data represents The Company's best view; however it is considered as commercially sensitive and is therefore treated as confidential. The calculation of the expansion constant also relies on a significant amount of transmission asset information, much of which is provided in the Seven Year Statement.
- 14.15.62 For each circuit type and voltage used onshore, an individual calculation is carried out to establish a £/MWkm figure, normalised against the 400KV overhead line (OHL) figure, these provide the basis of the onshore circuit expansion factors discussed in 14.15.70 14.15.77. In order to simplify the calculation a unity power factor is assumed, converting £/MVAkm to £/MWkm. This reflects that the fact tariffs and charges are based on real power.
- 14.15.63 The table below shows the first stage in calculating the onshore expansion constant. A range of overhead line types is used and the types are weighted by recent usage on the transmission system. This is a simplified calculation for 400kV OHL using example data:

Page 14 of 64

400kV	' OHL e	xpansion o	constant calcu	llation	
MW	Туре	£(000)/k	Circuit km*	£/MWkm	Weight
А	В	С	D	E = C/A	F=E*D
6500	La	700	500	107.69	53846
6500	Lb	780	0	120.00	0
3500	La/b	600	200	171.43	34286
3600	Lc	400	300	111.11	33333
4000	Lc/a	450	1100	112.50	123750
5000	Ld	500	300	100.00	30000
5400	Ld/a	550	100	101.85	10185
Sum			2500 (G)		285400 (H)
				Weighted Average (J= H/G):	114.160 (J)

*These are circuit km of types that have been provided in the previous 10 years. If no information is available for a particular category the best forecast will be used.

14.15.64 The weighted average £/MWkm (J in the example above) is then converted in to an annual figure by multiplying it by an annuity factor. The formula used to calculate of the annuity factor is shown below:

- 14.15.65 The Weighted Average Cost of Capital (WACC) and asset life are established at the start of a price control and remain constant throughout a price control period. The WACC used in the calculation of the annuity factor is the The Company regulated rate of return, this assumes that it will be reasonably representative of all licensees. The asset life used in the calculation is 50 years; the appropriateness of this is reviewed when the annuity factor is recalculated at the start of a price control period. These assumptions provide a current annuity factor of 0.066.
- 14.15.66 The final step in calculating the expansion constant is to add a share of the annual transmission overheads (maintenance, rates etc). This is done by multiplying the average weighted cost (J) by an 'overhead factor'. The 'overhead factor' represents the total business overhead in any year divided by the total Gross Asset Value (GAV) of the transmission system. This is recalculated at the start of each price control period. The overhead factor used in the calculation of the expansion constant for 2009/10 is 1.8%. The overhead and annuitised costs are then added to give the expansion constant.
- 14.15.67 Using the previous example, the final steps in establishing the expansion constant are demonstrated below:

400kV OHL expansion constant calculation	Ave £/MWkm
OHL	114.160

Page 15 of 64

Final	9.589
Overhead	2.055
Annuitised	7.535

- 14.15.68 This process is carried out for each voltage onshore, along with other adjustments to take account of upgrade options, see 14.15.73, and normalised against the 400KV overhead line cost (the expansion constant) the resulting ratios provide the basis of the onshore expansion factors. The process used to derive circuit expansion factors for Offshore Transmission Owner networks is described in 14.15.78.
- 14.15.69 This process of calculating the incremental cost of capacity for a 400kV OHL, along with calculating the onshore expansion factors is carried out for the first year of the price control and is increased by inflation, RPI, (May–October average increase, as defined in The Company's Transmission Licence) each subsequent year of the price control period. The expansion constant for 2010/11 is 10.633.

Onshore Wider Circuit Expansion Factors

- 14.15.70 Base onshore expansion factors are calculated by deriving individual expansion constants for the various types of circuit, following the same principles used to calculate the 400kV overhead line expansion constant. The factors are then derived by dividing the calculated expansion constant by the 400kV overhead line expansion constant. The factors will be fixed for each respective price control period.
- 14.15.71 In calculating the onshore underground cable factors, the forecast costs are weighted equally between urban and rural installation, and direct burial has been assumed. The operating costs for cable are aligned with those for overhead line. An allowance for overhead costs has also been included in the calculations.
- 14.15.72 The 132kV onshore circuit expansion factor is applied on a TO basis. This is to reflect the regional variation of plans to rebuild circuits at a lower voltage capacity to 400kV. The 132kV cable and line factor is calculated on the proportion of 132kV circuits likely to be uprated to 400kV. The 132kV expansion factor is then calculated by weighting the 132kV cable and overhead line costs with the relevant 400kV expansion factor, based on the proportion of 132kV circuitry to be uprated to 400kV. For example, in the TO areas of National Grid and Scottish Power where there are no plans to uprate any 132kV circuits, the full cable and overhead line costs of 132kV circuit are reflected in the 132kV expansion factor calculation.
- 14.15.73 The 275kV onshore circuit expansion factor is applied on a GB basis and includes a weighting of 83% of the relevant 400kV cable and overhead line factor. This is to reflect the averaged proportion of circuits across all three Transmission Licensees which are likely to be uprated from 275kV to 400kV across GB within a price control period.
- 14.15.74 The 400kV onshore circuit expansion factor is applied on a GB basis and reflects the full costs for 400kV cable and overhead lines.
- 14.15.75 AC sub-sea cable and HVDC circuit expansion factors are calculated on a case by case basis using actual project costs (Specific Circuit Expansion Factors).

Page 16 of 64

- 14.15.76 For HVDC circuit expansion factors both the cost of the converters and the cost of the cable are included in the calculation.
- 14.15.77 The TO specific onshore circuit expansion factors calculated for 2008/9 (and rounded to 2 decimal places) are:

Scottish Hydro Region

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	27.79
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.24	

Scottish Power & National Grid Regions

400kV underground	cable factor:	22.39
275kV underground	cable factor:	22.39
132kV underground	cable factor:	30.22
400kV line factor:	1.00	
275kV line factor:	1.14	
132kV line factor:	2.80	

Onshore Local Circuit Expansion Factors

- 14.15.78 The local onshore circuit tariff is calculated using local onshore circuit expansion factors. These expansion factors are calculated using the same methodology as the onshore wider expansion factor but without taking into account the proportion of circuit kms that are planned to be uprated.
- 14.15.79 In addition, the 132kV onshore overhead line circuit expansion factor is sub divided into four more specific expansion factors. This is based upon maximum (winter) circuit continuous rating (MVA) and route construction whether double or single circuit.

400kV underground cable factor:	22.39
275kV underground cable factor:	22.39
132kV underground cable factor:	30.22
400kV line factor:	1.00
275kV line factor:	1.14
132kV line factor (single; <200MVA):	10.00
132kV line factor (double; <200MVA):	8.32
132kV line factor (single; >=200MVA):	7.13
132kV line factor (double; >=200MVA):	4.42

Offshore Circuit Expansion Factors

14.15.80 Offshore expansion factors (£/MWkm) are derived from information provided by Offshore Transmission Owners for each offshore circuit. Offshore expansion factors are Offshore Transmission Owner and circuit specific. Each Offshore Transmission Owner will periodically provide, via the STC, information to derive an annual circuit revenue requirement. The offshore circuit revenue shall include revenues associated with the Offshore Transmission Owner's reactive compensation equipment, harmonic filtering equipment, asset spares and HVDC converter stations.

14.15.81 In the first year of connection, the offshore circuit expansion factor would be calculated as follows:

$\frac{CRevOFTO1}{L \times CircRat} \div Onshore \ 400 kV \ OHL \ Expansion \ Constant$

Where:

CRevOFTO1	=	The offshore circuit revenue in £ for Year 1
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

14.15.82 In all subsequent years, the offshore circuit expansion factor would be calculated as follows:

Where:

AvCRevOFTO	=	The annual offshore circuit revenue averaged over the
		remaining years of the onshore National Electricity
		Transmission System Operator (NETSO) price control
L	=	The total circuit length in km of the offshore circuit
CircRat	=	The continuous rating of the offshore circuit

- 14.15.83 For the avoidance of doubt, the offshore circuit revenue values, *CRevOFTO1* and *AvCRevOFTO* shall be determined using asset values after the removal of any One-Off Charges.
- 14.15.84 Prevailing OFFSHORE TRANSMISSION OWNER specific expansion factors will be published in this statement. These shall be recalculated at the start of each price control period using the formula in paragraph 14.15.71. For each subsequent year within the price control period, these expansion factors will be adjusted by the annual Offshore Transmission Owner specific indexation factor, *OFTOInd*, calculated as follows;

$$OFTOInd_{t,f} = \frac{OFTO \operatorname{Rev}Ind_{t,f}}{RPI_{t}}$$

where:

OFTOInd _{t,f}	=	the indexation factor for Offshore Transmission Owner <i>f</i> in respect of charging year <i>t</i> ;
OFTORevInd _{tf}	=	the indexation rate applied to the revenue of Offshore Transmission Owner f under the terms of its Transmission Licence in respect of charging year t ; and
<i>RPI</i> _t	=	the indexation rate applied to the expansion constant in respect of charging year <i>t</i> .

Offshore Interlinks

14.15.85 The revenue associated with an Offshore Interlink shall be divided entirely between those generators benefiting from the installation of that Offshore Interlink. Each of these Users will be responsible for their charge from their charging date, meaning that a proportion of the Offshore Interlink revenue may be socialised prior to all relevant Users being chargeable. The proportion associated with each User will be based on the Measure of Capacity to the MITS using the Offshore Interlink(s) in the event of a single circuit fault on the User's circuit from their offshore substation towards the shore, compared to the Measure of Capacity of the other Users.

Where:

An *Offshore Interlink* is a circuit which connects two offshore substations that are connected to a Single Common Substation. It is held in open standby until there is a transmission fault that limits the User's ability to export power to the Single Common Substation. In the Transport Model, they are to be modelled in open standby.

A Single Common Substation is a substation where:

- i. each substation that is connected by an Offshore Interlink is connected via at least one circuit without passing through another substation; and
- ii. all routes connecting each substation that is connected by an Offshore Interlink to the MITS pass through.

The Measure of Capacity to the MITS for each Offshore substation is the result of the following formula or zero whichever is larger. For the situation with only one interlink, all terms relating to C should be set to zero:

```
For Substation A:
min { Cap_{IAB}, ILF_A \times TEC_A - RCap_A, Cap_B - ILF_B \times TEC_B + min (Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation B:

min { ILF_B \times TEC_B - RCap_B, min (Cap_{IAB}, Cap_A - ILF_A \times TEC_A)

+ min ( Cap_{IBC}, Cap_C - ILF_C \times TEC_C) }
```

```
For Substation C:

min { Cap_{IBC}, ILF_{C} \times TEC_{C} - RCap_{C}, Cap_{B} - ILF_{B} \times TEC_{B} + min (Cap_{IAB}, Cap_{A} - ILF_{A} \times TEC_{A}) }

and
```

Cap _{IAB} = B	total capacity of the Offshore Interlink between substations A and
Cap _{IBC} = C	total capacity of the Offshore Interlink between substations B and
Cap _X =	total capacity of the circuit between offshore substation X and the Single Common Substation, where X is A, B or C.
RCap _x =	remaining capacity of the circuit between offshore substation X and the Single Common Substation in the event of a single cable fault, where X is A, B or C.
TEC _x =	the sum of the TEC for the Users connected, or contracted to connect, to offshore substation X, where X is A, B or C, where the value of TEC will be the maximum TEC that each User has held since the initial charging date, or is contracted to hold if prior to the initial charging date.

- ILF_x = Offshore Interlink Load Factor, where X is A, B or C. The Offshore Interlink Load Factor (ILF) is based on the Annual Load Factor (ALF). Until all the Users connected to a Single Common Substation have a station specific Annual Load Factor based on five years of data, the generic ALF for the fuel type will be used as the ILF for all stations. When all Users have a station specific ALF, the value of the ALF in the first such year will be used as the ILF in the calculation for all subsequent charging years.
- 14.15.86 The apportionment of revenue associated with Offshore Interlink(s) in 14.15.85 applies in situations where the Offshore Interlink was included in the design phase, or if one or more User(s) has already financially committed or been commissioned then only where that User(s) agrees to the Offshore Interlink.
- 14.15.87 Alternatively to the formula specified in 14.15.85 the proportion of the OFTO revenue associated with the Offshore Interlink allocated to each generator benefiting from the installation of an Offshore Interlink may be agreed between these Users. In this event:
- a. All relevant Users shall notify The Company of its respective proportions three months prior the OTSDUW asset transfer in the case of a generator build, or the charging date of the first generator, in the case of an OFTO build.
- b. All relevant Users may agree to vary the proportions notified under (a) by each writing to The Company three months prior to the charges being set for a given charging year.
- c. Once a set of proportions of the OFTO revenue associated with the Offshore Interlink has been provided to The Company, these will apply for the next and future charging years unless and until The Company is informed otherwise in accordance with (b) by all of the relevant Users.
- d. If all relevant Users are unable to reach agreement on the proportioning of the OFTO revenue associated with the Offshore Interlink they can raise a dispute. Any dispute between two or more Users as to the proportioning of such revenue shall be managed in accordance with CUSC Section 7 Paragraph 7.4.1 but the reference to the 'Electricity Arbitration Association' shall instead be to the 'Authority' and the Authority's determination of such dispute shall, without prejudice to apply for judicial review of any determination, be final and binding on the Users.

The Locational Onshore Security Factor

14.15.88 The locational onshore security factor is derived by running a secure DCLF ICRP transport study based on the same market background as used for Zoning in the DCLF ICRP transport model. This calculates the nodal marginal costs where peak <u>net</u> demand can be met despite the Security and Quality of Supply Standard contingencies (simulating single and double circuit faults) on the network. Essentially the calculation of secured nodal marginal costs is identical to the process outlined above except that the secure DCLF study additionally calculates a nodal marginal cost taking into account the requirement to be secure against a set of worse case contingencies in terms of maximum flow for each circuit.

- 14.15.89 The secured nodal cost differential is compared to that produced by the DCLF ICRP transport model and the resultant ratio of the two determines the locational security factor using the Least Squares Fit method. Further information may be obtained from the charging website¹.
- 14.15.90 The locational onshore security factor derived for 2010/11 is 1.8 and is based on an average from a number of studies conducted by The Company to account for future network developments. The security factor is reviewed for each price control period and fixed for the duration.

Local Security Factors

- 14.15.91 Local onshore security factors are generator specific and are applied to a generator's local onshore circuits. If the loss of any one of the local circuits prevents the export of power from the generator to the MITS then a local security factor of 1.0 is applied. For generation with circuit redundancy, a local security factor is applied that is equal to the locational security factor, currently 1.8.
- 14.15.92 Where a Transmission Owner has designed a local onshore circuit (or otherwise that circuit once built) to a capacity lower than the aggregated TEC of the generation using that circuit, then the local security factor of 1.0 will be multiplied by a Counter Correlation Factor (CCF) as described in the formula below;

$$CCF = \frac{D_{\min} + T_{cap}}{G_{cap}}$$

Where; D_{min} = minimum annual net demand (MW) supplied via that circuit in the absence of that generation using the circuit

 T_{cap} = transmission capacity built (MVA)

 G_{cap} = aggregated TEC of generation using that circuit

CCF cannot be greater than 1.0.

14.15.93 A specific offshore local security factor (LocalSF) will be calculated for each offshore connection using the following methodology:

$$LocalSF = \frac{NetworkExportCapacity}{\sum_{k} Gen_{k}}$$

Where:

 NetworkExportCapacity =
 the total export capacity of the network disregarding any Offshore Interlinks

 k
 =
 the generation connected to the offshore network

1 http://www.nationalgrid.com/uk/Electricity/Charges/

Page 21 of 64

- 14.15.94 The offshore security factor for single circuits with a single cable will be 1.0 and for multiple circuit connections will be capped at the locational onshore security factor, derived as 1.8 for 2010/11.
- 14.15.95 The offshore local security factor for configurations with one or more Offshore Interlinks is updated so that the offshore circuit tariff will include the proportion of revenue associated with the Offshore Interlink(s). The specific offshore local security factor for configurations involving an Offshore Interlink, which may be greater than 1.8, will be calculated for each offshore connection using the following methodology:

 $LocalSF = \frac{IRevOFTO \times NetworkExportCapacity}{CRevOFTO \times \sum_{k}Gen_{k}} + LocalSF_{initial}$

Where:

The appropriate proportion of the Offshore Interlink(s) revenue in £
associated with the offshore connection calculated in 14.15.85
The offshore circuit revenue in £ associated with the circuit(s) from the
offshore substation to the Single Common Substation.
Initial Local Security Factor calculated in 14.15.80 and 14.15.81
And other definitions as in 14.15.80.

Initial Transport Tariff

14.15.96 First an Initial Transport Tariff (ITT) must be calculated for both Peak Security and Year Round backgrounds. For Generation, the Peak Security zonal marginal km (ZMkm_{PS}), Year Round Not-Shared zonal marginal km (ZMkm_{YRNS}) and Year Round Shared zonal marginal km (ZMkm_{YRS}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT, Year Round Not-Shared ITT and Year Round Shared ITT respectively:

 $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$ $ZMkm_{GiPS} \times EC \times LSF = ITT_{GiPS}$

Where ZMkm _{GiPS} ZMkm _{GiYRNS} charging zone	= = e	Peak Security Zonal Marginal km for each generation zone Year Round Not-Shared Zonal Marginal km for each generation
ZMkm _{GiYRS}	=	Year Round Shared Zonal Marginal km for each generation
charging zon	е	
EC	=	Expansion Constant
LSF	=	Locational Security Factor
	=	Peak Security Initial Transport Tariff (£/MW) for each generation
zone		
ITT _{GiYRNS}	=	Year Round Not-Shared Initial Transport Tariff (£/MW) for each
generation ch	narging	zone
ITT _{GiYRS}	=	Year Round Shared Initial Transport Tariff (£/MW) for each
generation ch	narging	zone.

14.15.97 Similarly, for demand the Peak Security zonal marginal km (ZMkm_{PS}) and Year Round zonal marginal km (ZMkm_{YR}) are simply multiplied by the expansion constant and the locational security factor to give the Peak Security ITT and Year Round ITT respectively:

		$ZMkm_{DiPS} \times EC \times LSF = ITT_{DiPS}$
		$ZMkm_{DiYR} \times EC \times LSF = ITT_{DiYR}$
Where ZMkm _{DiP} ZMkm _{DiY}	0	Peak Security Zonal Marginal km for each demand zone Year Round Zonal Marginal km for each demand zone
ITT _{DiPS}	=	Peak Security Initial Transport Tariff (£/MW) for each demand one
ITT_{DiYR}	=	Year Round Initial Transport Tariff (£/MW) for each demand zone
14.15.98	GSP group revenue red metered tria	tep is to multiply these ITTs by the expected metered triad <u>gross</u> demand and generation capacity to gain an estimate of the initial covery for both Peak Security and Year Round backgrounds. The ad <u>gross GSP group</u> demand and generation capacity are based on forecasts provided by Users and are confidential.
	affected em	ad gross GSP group demand is net demand for all GSP groups less bedded exports and grandfathered embedded exports for all GSP
a.	<u>groups.</u>	

Where

ITRR _G =	Initial Transport Revenue Recovery for generation
G _{Gi} =	Total forecast Generation for each generation zone (based
	on analysis of confidential User forecasts)
ITRR _D =	Initial Transport Revenue Recovery for gross GSP group
_	demand
D _{Di} = each	Total forecast Metered Triad gross GSP group Demand for
	demand zone (based on <u>analysis of</u> confidential User forecasts).

In addition, the initial tariffs for generation are also multiplied by the **Peak Security flag** when calculating the initial revenue recovery component for the Peak Security background. Similarly, when calculating the initial revenue recovery for the Shared component of the Year Round background, the initial tariffs are multiplied by the **Annual Load Factor** (see below).

Peak Security (PS) Flag

14.15.99 The revenue from a specific generator due to the Peak Security locational tariff needs to be multiplied by the appropriate Peak Security (PS) flag. The PS flags indicate the extent to which a generation plant type contributes to the

Page 23 of 64

need for transmission network investment at peak demand conditions. The PS flag is derived from the contribution of differing generation sources to the demand security criterion as described in the Security Standard. In the event of a significant change to the demand security assumptions in the Security Standard, National Grid will review the use of the PS flag.

Generation Plant Type	PS flag
Intermittent	0
Other	1

Annual Load Factor (ALF)

- 14.15.100 The ALF for each individual Power Station is calculated using the relevant TEC (MW) and corresponding output data. Where output data is not available for a Power Station, including for new Power Stations and emerging Power Station technologies, generic data for the appropriate generation plant type will be used.
- 14.15.101 For a given charging year "t" the Power Station ALF will be based on information from the previous five charging years, calculated for each charging year as set out below.

$$ALF = \frac{\sum_{p=1}^{17520} GMWh_p}{\sum_{p=1}^{17520} TECp \times 0.5}$$

Where:

 $GMWh_p$ is the maximum of FPN or actual metered output in a Settlement Period related to the power station TEC (MW); and

 TEC_{p} is the TEC (MW) applicable to that Power Station for that Settlement Period including any STTEC and LDTEC, accounting for any trading of TEC.

- 14.15.102 The appropriate output (FPN or actual metered) figure is derived from **BM Unit** data available to National Grid and relates to the total TEC of the Power Station.
- 14.15.103 Once all five charging year ALFs have been calculated for the individual Power Station they are compared, and the highest and lowest figures are discarded. The final ALF, to be used for transmission charging purposes, is calculated as the average of the remaining three ALFs.
- 14.15.104 In the event that only four charging years of complete output (FPN or actual metered) data are available for an individual Power Station then the higher three charging years ALF would be used in the calculation of the final ALF. In the event that only three charging years of complete output (FPN or actual metered) data are available then these three charging years would be used.
- 14.15.105 Due to the aggregation of output (FPN or actual metered) data for dispersed generation (e.g. cascade hydro schemes), where a single generator BMU consists of geographically separated power stations, the ALF would be calculated based on the total output of the BMU and the overall TEC of those Power Stations.

Page 24 of 64

- 14.15.106 In the event that there are not three full charging years of an individual power station's output available, missing output (FPN or actual metered) data would be replaced by generic data for that generation plant type to ensure three charging years of information are available for the Power Station. The derivation of the generic data is described in paragraphs 14.15.111-14.15.114.
- 14.15.107 Users will receive draft ALFs before 25th December of the charging year (t-1) for the charging year (t) and will have a period of 15 working days from date of publishing to notify the Company of any errors. Failure to agree changes relating to errors will be treated as a charging dispute under the CUSC.
- 14.15.108 The ALFs used in the setting of final tariffs will be published in the annual Statement of Use of System Charges. Changes to ALFs after this publication will not result in changes to published tariffs (e.g. following dispute resolution).

Derivation of Generic ALFs

14.15.109 The generic ALF is derived from the average annual output of the ten most recently commissioned GB generation of a particular generation plant type that have at least five charging years' data, using an identical methodology to that used for the Power Station specific calculation described above. Where less than ten GB generators of a particular generation plant type exist, then data from all existing generators of that particular generation plant type will be used. Example generation plant type categories are listed below;

Fuel Type
Biomass
Coal
Gas
Hydro
Nuclear (by reactor
type)
Oil & OCGTs
Pumped Storage
Onshore Wind
Offshore Wind
CHP

- 14.15.110 The Company will keep these categories under review and update as necessary. Where within a category there is a significant locational difference consideration will be given to zonal generic factors. The factors used will be published in the Statement of Use of System Charges and will be reviewed annually.
- 14.15.111 If a User can demonstrate that the generation plant type of a Power Station has changed, consideration will be given to the use of relevant generic ALF information in the calculation of their charges until sufficient specific data is available.
- 14.15.112 For new and emerging generation plant types, where insufficient data is available to allow a generic ALF to be developed, The Company will use the best information available e.g. from manufactuers and data from use of similar technologies outside GB. The factor will be agreed with the relevant Generator. In the event of a disagreement the standard provisions for dispute in the CUSC will apply.

Page 25 of 64

1

TNUoS Embedded Export Tariffs

	<u>14.15.113</u> <u>TNUoS Embe</u> <u>14.15.114</u> 14.15.115	Embedded exports are exports measured on a half-hourly basis by Metering Systems, in accordance with the BSC, that are not subject to generation TNUoS. The tariff to be applied in respect of embedded exports is different depending on whether the embedded exports are affected embedded exports or grandfathered embedded exports edded Export Tariff for Affected Embedded Exports Affected Embedded Exports are embedded exports other than Grandfathered Embedded Exports. The embedded export tariff will be applied to the metered Triad volumes
		of Affected Embedded Exports for each demand zone as follows:
		$EETA_{Di} = ITT_{DiPS} + ITT_{DiYR} + AEX$
		Where
	<u>ITT_{DiP} ITT_{DiYI} AEX:</u>	R = Year Round Initial Transport Tariff for the demand zone, and
		$\underline{AEX} = \frac{(p \times TRR) - OC - ITRR_{DPS} - ITRR_{DYR}}{\sum_{i=1}^{14} (D_{Di} + EEV_{Di})}$
	Where	$\Delta D l = 1 \langle -D l \rangle + \cdot D l \rangle$
	AEX= Resid	ual Tariff for embedded Affected Embedded Exports
	<u>P =</u> OC =	Proportion of revenue to be recovered from demand Offshore Costs paid by demand
	ITRR _{DPS} =	Peak Security Initial Transport Revenue Recovery for demand
<u>D</u> _{Di}		<u>Year Round Initial Transport Revenue Recovery for demand</u> forecast Metered Triad Gross Demand for each demand zone EEV _{DI} =
	Forecast Em	bedded Export metered volume at Triad (MW)
		<u>The Value of EETA_{Di} will be floored at zero, so that EETA_{Di} is always zero or positive.</u>
	TNUoS Embe	edded Export Tariff for Grandfathered Embedded Exports
	<u>14.15.116</u>	Grandfathered Embedded Exports are embedded exports measured by metering systems where all associated generation either:
	•	Has a Contract for Difference Agreement that was awarded in allocation rounds prior to 01/01/2016 which has not been terminated; or
	•	Has a Capacity Agreement that is recorded on the T-4 Auction Capacity Market Register 2014 or T-4 Auction Capacity Market Register 2015 as an agreement:
	•	In respect of a 'new build generating CMU'

I

I

•	Havi	ng more than one delivery year	
•	And	which has not been terminated	
<u>14.15.117</u>		embedded export tariff will be applied to the metered Triad volumes andfathered Embedded Exports for each demand zone as follows:	
		$EETG_{Di} = ITT_{DiPS} + ITT_{DiYR} + GEX$	
	Whe	<u>re</u>	
ITT _D ITT _D GEX year by the	<u>iyr =</u>	Peak Security Initial Transport Tariff for the demand zone; Year Round Initial Transport Tariff for the demand zone, and £45.33 in prices of first applicable charging year; indexed each nula set out in 14.3.6.	
		Value of EETG _{Di} will be floored at zero, so that EETG _{Di} is always or positive.	
Initial Reve	nue Re	covery	
the		eak Security background the initial tariff for generation is multiplied by precast generation capacity and the PS flag to give the initial revenue	
		$\sum_{G_{i=1}}^{n} (ITT_{G_{i}PS} \times G_{G_{i}} \times F_{PS}) = ITRR_{GPS}$	
Where			
ITRR _{GPS} G _{Gi}	=	Peak Security Initial Transport Revenue Recovery for generation Total forecast Generation for each generation zone (based on <u>analysis of</u> confidential User forecasts)	
F _{PS} n	= =	Peak Security flag appropriate to that generator type Number of generation zones	
back	ground	evenue recovery for <u>gross GSP group</u> demand for the Peak Security is calculated by multiplying the initial tariff by the total forecast d <u>gross GSP group</u> demand:	
$\sum_{Di=1}^{14} ($	ITT _{DiPS} >	$(D_{Di}) = ITRR_{DPS}$	
Where:			
ITRRDPS	=	Peak Security Initial Transport Revenue Recovery for gross GSP group demand	
D _{Di}	=	Total forecast Metered Triad gross GSP group Demand for each demand zone (based on analysis of confidential User forecasts)	

Page 27 of 64

demand zone (based on analysis of confidential User forecasts)

V1.12-01 April 2016

14.15,119 For the Year Round background, the initial tariff for generation is multiplied by the total forecast generation capacity whilst calculating Initial Recovery for Not-Shared component whereas the initial tariff for Shared component is multiplied by both, the total forecast generation capacity and the ALF to give the initial revenue recovery:

$$\sum_{G_{i=1}}^{n} (ITT_{G_{i}YRNS} \times G_{G_{i}}) = ITRR_{G_{YRNS}}$$
$$\sum_{G_{i=1}}^{n} (ITT_{G_{i}YRS} \times G_{G_{i}} \times ALF) = ITRR_{GYRS}$$

Where:

ITRR
generation=Year Round Not-Shared Initial Transport Revenue Recovery for
Year Round Shared Initial Transport Revenue Recovery for
generationALF=Annual Load Factor appropriate to that generator.

14.15.115 Similar to the Peak Security background, the initial revenue recovery for gross <u>GSP group</u> demand for the Year Round background is calculated by multiplying the initial tariff by the total forecast metered triad gross GSP group demand:

$$\sum_{Di=1}^{14} \left(ITT_{DiYR} \times D_{Di} \right) = ITRR_{DYR}$$

=

Where:

ITRR

Year Round Initial Transport Revenue Recovery for gross GSP group demand

14.15.120The initial revenue recovery for Affected Embedded Exports is the Affected Embedded Export Tariff multiplied by the total forecast volume of Affected Embedded Export at triad:

$$ITRR_{EEA} = \sum_{Di=1}^{14} (EETA_{Di} \times EEVA_{Di})$$

Where

<u>where</u>		= Initial Revenue impact for Affected Embedded	Exports
	EEVA _{Di}	= Forecast Affected Embedded Export metered v	
	Triad (MW)		
		nce of doubt, the initial revenue recovery for affected er positive or negative.	<u>nbedded</u>
<u>14.15.12</u>	<u>1The initial re</u>	enue recovery for Grandfathered Embedded Expo	orts is the
	Grandfathara	Emboddod Export Tariff multiplied by the total forecast	volume of

14.15.121 The initial revenue recovery for Grandfathered Embedded Exports is the Grandfathered Embedded Export Tariff multiplied by the total forecast volume of Grandfathered Embedded Export at triad:

Page 28 of 64

V1.12-01 April 2016

$$ITRR_{EEG} = \sum_{Di=1}^{14} (EETG_{Di} \times EEVG_{Di})$$

<u>Where</u>

 ITTR_{EEG}
 = Initial Revenue impact for Grandfathered Embedded Exports

 EEVG_{Di}
 = Forecast Grandfathered Embedded Export metered volume at

 Triad (MW)

For the avoidance of doubt, the initial revenue recovery for grandfathered embedded exports can be positive or negative.

Deriving the Final Local Tariff (£/kW)

Local Circuit Tariff

14.15,<u>122</u> Generation with a local circuit tariff is calculated by multiplying the Year Round nodal marginal km along the local circuit by the expansion constant and the relevant local security factor (whether onshore or offshore) and summing across local circuits to give the local circuit tariff:

$$\sum_{k} \frac{NLMkm_{Gj}^{L} \times EC \times LocalSF_{k}}{1000} = CLT_{G}$$

Where

VIIICIC		
k	=	Local circuit k for generator
NLMkm _{Gj} L	=	Year Round Nodal marginal km along local circuit k using local
		circuit expansion factor.
EC	=	Expansion Constant
LocalSF _k	=	Local Security Factor for circuit k
CLT _{Gi}	=	Circuit Local Tariff (£/kW)

Onshore Local Substation Tariff

- 14.15,<u>123</u> All chargeable generation is subject to the local substation tariff component which is determined by assessing the generation substation type which is the substation at the connection charging boundary, against three cost determining factors:
 - (a) HV connection voltage the voltage at the boundary between the User's connection assets and the transmission system;
 - (b) Sum of TEC at the generation substation the combined TEC of all generation at the connecting substation; and
 - (c) The level of redundancy at the generation substation single busbar / single switch mesh connections are examples of no redundancy connections, whereas examples of connections with redundancy include double busbar and mesh sub station designs.

Page 29 of 64

V1.12-01 April 2016

Deleted: 116

CUSC v1.12 14.15,124 Using the above factors, the corresponding £/kW tariffs (quoted to 3dp) that will Deleted: 118 be applied during 2010/11 are: Substation Voltage (a) Substation Connection Rating (b) Type (c) 132kV 275kV 400kV <1320MW No redundancy 0.133 0.081 0.065 0.301 0.192 0.155 <1320MW Redundancy 0.257 0.208 >=1320MW No redundancy n/a 0.417 >=1320MW Redundancy n/a 0.336 I 14.15,125 The process for calculating Local Substation Tariffs will be carried out for the Deleted: 119 first year of the price control and will subsequently be indexed by RPI for each subsequent year of the price control period. 14.15,126 The effective Local Tariff (£/kW) is calculated as the sum of the circuit and I Deleted: 120 substation onshore and/or offshore components: $ELT_{Ci} = CLT_{Ci} + SLT_{Ci}$ Where ELT_{Gi} Effective Local Tariff (£/kW) = Substation Local Tariff (£/kW) SLT_{Gi} = I 14.15,127 Where tariffs do not change mid way through a charging year, final local tariffs Deleted: 121 will be the same as the effective tariffs: **ELT**_{Gi} LT_{Gi} = Where Final Local Tariff (£/kW) LT_{Gi} _ 14.15,128 Where tariffs are changed part way through the year, the final tariffs will be Deleted: 122 calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS $LT_{Gi} = \frac{12 \times \left(ELT_{Gi} \times \sum_{Gi=1}^{21} G_{Gi} - FLL_{Gi}\right)}{b \times \sum_{i=1}^{21} G_{Gi}} \quad \text{and} \quad FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{i=1}^{21} D_{Di}}$ Where: b = number of months the revised tariff is applicable for FLL = Forecast local liability incurred over the period that the original tariff is applicable for 14.15,129 For the purposes of charge setting, the total local charge revenue is calculated Deleted: 123 by: $\text{LCRR}_{\text{G}} = \sum_{j=Gi} \text{LT}_{\text{Gi}} * G_j$ Where **LCRR**_G Local Charge Revenue Recovery = Forecast chargeable Generation or Transmission Entry Capacity Gi in kW (as applicable) for each generator (based on analysis of confidential information received from Users) Offshore substation local tariff V1.12-01 April 2016 Page 30 of 64

- 14.15,<u>130</u> All offshore chargeable generation is subject to an offshore substation tariff. The offshore substation tariff shall be the sum of transformer, switchgear and platform components.
- 14.15,131 Each tariff component, expressed in £/kW, shall be the ratio of the Offshore Transmission Owner revenue (£) and rating associated with the transformers, switchgear or platform (kW) at each offshore substation. The Offshore Transmission Owner revenue of each tariff component shall include that associated with asset spares. In the case of the platform component, the relevant rating shall be the lower of the transformer or switchgear ratings. As with the offshore circuit expansion factors, the Offshore Transmission Owner revenue associated with each tariff component shall be averaged over the remaining years of the NETSO price control.
- 14.15,<u>132</u> Offshore Transmission Owner revenue associated with interest during construction and project development overheads will be attributed to the relevant asset category with which it is associated. If these or any other costs included in the Offshore Transmission Owner revenue are not readily attributable to a given asset category, they will be pro-rated across the various asset categories based on their relative cost.
 - 14.15,133 For 2010/11 a discount of £0.345590/kW shall be provided to the offshore substation tariff to reflect the average cost of civil engineering for onshore substations. This will be inflated by RPI each year and reviewed every price control period.
- 14.15,134 Offshore substation tariffs shall be reviewed at the start of every onshore price control period. For each subsequent year within the price control period, these shall be inflated in the same manner as the associated Offshore Transmission Owner Revenue.
- 14.15,<u>135</u> The revenue from the offshore substation local tariff is calculated by:

$$SLTR = \sum_{\substack{All offshore \\ substatios}} \left(SLT_k \times \sum_k Gen_k \right)$$

Where:

SLT _k	=	the offshore substation tariff for substation k
Gen _k	=	the generation connected to offshore substation k

The Residual Tariff

14.15,136 The total revenue to be recovered through TNUoS charges is determined each year with reference to the Transmission Licensees' Price Control formulas less the costs expected to be recovered through Pre-Vesting connection charges. Hence in any given year t, a target revenue figure for TNUoS charges (TRR_t) is set after adjusting for any under or over recovery for and including, the small generators discount is as follows:

$$TRR_t = R_t - PVC_t - SG_{t-1}$$

Where

TRR_t = TNUoS Revenue Recovery target for year t
 R_t = Forecast Revenue allowed under The Company's RPI-X Price Control Formula for year t (this term includes a number of adjustments, including for over/under recovery from the previous year). For further information,

refer to Special Condition D2 of The Company's Transmission Licence.

Page 31 of 64

V1.12-01 April 2016

Deleted: 130

Deleted: 127

Deleted: 128

Deleted: 129

Deleted: 126

Deleted: 124

- PVC_t = Forecast Revenue from Pre-Vesting connection charges for year t
- $SG_{t-1} =$ The proportion of the under/over recovery included within R_t which relates to the operation of statement C13 of the The Company Transmission Licence. Should the operation of statement C13 result in an under recovery in year t – 1, the SG figure will be positive and vice versa for an over recovery.
- 14.15,137 In normal circumstances, the revenue forecast to be recovered from the initial transport tariffs will not equate to the total revenue target. This is due to a number of factors. For example, the transport model assumes, for simplicity, smooth incremental transmission investments can be made. In reality, transmission investment can only be made in discrete 'lumps'. The transmission system has been planned and developed over a long period of time. Forecasts and assessments used for planning purposes will not have been borne out precisely by events and therefore some distinction between an optimal system for one year and the actual system can be expected.
 - 14.15,138 As a result of the factors above, in order to ensure adequate revenue recovery, a constant non-locational **Residual Tariff** for generation and demand is calculated, which includes infrastructure substation asset costs. It is added to the initial transport tariffs for both Peak Security and Year Round backgrounds so that the correct generation / demand revenue split is maintained and the total revenue recovery is achieved.

$$RT_{D} = \frac{(p \times TRR) - ITRR_{DPS} - ITRR_{DYR} - ITRR_{EEA} - ITTR_{EEG}}{\sum_{l=1}^{14} D_{li}}$$

$$RT_{G} = \frac{\left[(1-p) \times TRR\right] - ITRR_{GPS} - ITRR_{GYRNS} - ITRR_{GYRS} - LCRR_{G}}{\sum_{Gi=1}^{n} G_{Gi}}$$

Where RT

= Residual Tariff (£/MW)

Proportion of revenue to be recovered from demand

Final £/kW Tariff

р

14.15,139 The effective Transmission Network Use of System tariff (TNUoS) for generation and gross demand can now be calculated as the sum of the initial transport wider tariffs for Peak Security and Year Round backgrounds, the non-locational residual tariff and the local tariff:

$$ET_{Gi} = \frac{ITT_{GiPS} + ITT_{GiYRNS} + ITT_{GiYRNS} + RT_{G}}{1000} + LT_{Gi}$$
$$\underline{ET_{Di}} = \frac{ITT_{DiPS} + ITT_{DiYR} + RT_{D}}{1000}$$

Where

Page 32 of 64


Deleted: 131

Deleted: 132

Deleted:

Deleted: 133

 $RT_D = \frac{\left(p \times TR\right)}{TR}$

For the purposes of the annual Statement of Use of System Charges ET_{Gi} will be published as ITT_{GiPS} ; ITT_{GiYRS} , ITT_{GiYRS} , RT_G and LT_{Gi}

14.15,<u>140</u> Where tariffs do not change mid way through a charging year, final demand and generation tariffs will be the same as the effective tariffs.

$$FT_{Gi} = ET_{Gi}$$

$$FT_{Di} = ET_{Di}$$

$$FT_{EEAi} = ET_{EEAi}$$

$$FT_{EEGi} = ET_{EEGi}$$

14.15,141 Where tariffs are changed part way through the year, the final tariffs will be calculated by scaling the effective tariffs to reflect that the tariffs are only applicable for part of the year and parties may have already incurred TNUoS liability.

$$FT_{Gi} = \frac{12 \times \left(ET_{Gi} \times \sum_{Gi=1}^{20} G_{Gi} - FL_{Gi}\right)}{b \times \sum_{Gi=1}^{27} G_{Gi}} \text{ and } FT_{Di} = \frac{12 \times \left(ET_{Di} \times \sum_{Di=1}^{14} D_{Di} - FL_{Di}\right)}{b \times \sum_{Di=1}^{14} D_{Di}}$$

$$FT_{EEAi} = \frac{12 \times (ET_{EEAi} \times \sum_{Di=1}^{14} EETA_{Di} - FL_{Di})}{b \times \sum_{Di=1}^{14} EETA_{Di}} \quad \text{and} \quad FT_{EEGi} = \frac{12 \times (ET_{EEGi} \times \sum_{Di=1}^{14} EETG_{Di} - FL_{Di})}{b \times \sum_{Di=1}^{14} EETG_{Di}}$$

Where:

b = number of months the revised tariff is applicable for FL = Forecast liability incurred over the period that the original tariff is applicable for

Note: The ET_{Gi} element used in the formula above will be based on an individual Power Stations PS flag and ALF for Power Station G_{Gi} , aggregated to ensure overall correct revenue recovery.

Page 33 of 64

V1.12-01 April 2016

Deleted: 134

14.15,142 If the final gross demand TNUoS Tariff results in a negative number then this is collared to £0/kW with the resultant non-recovered revenue smeared over the remaining demand zones:

 $NRRT_{D} = \frac{\sum_{i=1}^{z} \left(FT_{Di} \times D_{Di} \right)}{\sum_{i=z+1}^{14} D_{Di}}$

If $FT_{Di} < 0$, then i = 1 to z

Therefore,

Therefore the revised Final Tariff for the <u>gross</u> demand zones with positive Final tariffs is given by:

For i=1 to z: $RFT_{Di} = 0$

For
$$i=z+1$$
 to 14: $RFT_{Di} = FT_{Di} + NRRT_D$

Where

I

 $NRRT_D = Non Recovered Revenue Tariff (\pounds/kW)$ RFT_{Di} = Revised Final Tariff (\pounds/kW)

- 14.15,143 The tariffs applicable for any particular year are detailed in The Company's Statement of Use of System Charges, which is available from the Charging website. Archived tariff information may also be obtained from the Charging website.
 - 14.15,144 The zonal maps referenced in The Company's **Statement of Use of System Charges** and available on the **Charging website** contain detailed information for the charging year in question of which Grid Supply Points fall into which TNUoS zones.

- For demand zones, according to the GSP Group to which the Grid Supply Point is allocated for energy market settlement purposes.
- For generation zones, with reference to the geographic proximity to existing zones and, where close to a boundary between existing zones, with reference to the marginal costs arising from transport model studies. The GSP will then be allocated to the zone, which contains the most similar marginal costs.

14.15,146 The Company has available, upon request, the DCLF ICRP transport model, tariff model template and data necessary to run the model, consisting of nodal values of generation and demand connection points to the NETS. The model and data will enable the basic nodal charges to be determined and will also allow sensitivity analysis concerning alternative developments of generation and demand to be undertaken. The model is available from the Charging Team and whilst it is free of charge, it is provided under licence to restrict its distribution and commercial use.

Page 34 of 64

Deleted: 136

Deleted: 139

Deleted: 137

Deleted: 138

CUSC v1.12	
14.15,147 The Company will be pleased to run specific sensitivity studies for Users unde a separate study contract in line with the fees set out in the Statement of Use of System Charges. Please contact the Charging Team.	
14.15,148 The factors which will affect the level of TNUoS charges from year to yea include-;	r Deleted: 142
 the forecast level of peak demand on the system the Price Control formula (including the effect of any under/ove recovery from the previous year), the expansion constant, the locational security factor, the PS flag the ALF of a generator changes in the transmission network HVDC circuit impedance calculation changes in the pattern of generation capacity and demand. changes in the pattern of embedded exports 	r
14.15,149 In accordance with Standard Licence Condition C13, generation directly connected to the NETS 132kV transmission network which would normally be	
subject to generation TNUoS charges but would not, on the basis of generating capacity, be liable for charges if it were connected to a licensed distribution	9
network qualifies for a reduction in transmission charges by a designated sum	,
determined by the Authority. Any shortfall in recovery will result in a uni amount increase in gross_demand charges to compensate for the deficit	

Stability & Predictability of TNUoS tariffs

1

14.15,150 A number of provisions are included within the methodology to promote the stability and predictability of TNUoS tariffs. These are described in 14.29.

Further information is provided in the Statement of the Use of System Charges.

Deleted: 144

14.16 Derivation of the Transmission Network Use of System Energy Consumption Tariff and Short Term Capacity Tariffs

- 14.16.1 For the purposes of this section, Lead Parties of Balancing Mechanism (BM) Units that are liable for Transmission Network Use of System Demand Charges are termed Suppliers.
- 14.16.2 Following calculation of the Transmission Network Use of System £/kW Gross Demand Tariff (as outlined in Chapter 2: Derivation of the TNUoS Tariff) for each GSP Group is calculated as follows:

$$p/kWh Tariff = (NHHD_F * £/kW Tariff - FL_G) *100$$

NHHC_G

Where:

 \pounds/kW Tariff = The \pounds/kW Effective <u>Gross</u> Demand Tariff (\pounds/kW), as calculated previously, for the GSP Group concerned.

 \mathbf{NHHD}_{F} = The Company's forecast of Suppliers' non-half-hourly metered Triad Demand (kW) for the GSP Group concerned. The forecast is based on historical data.

 FL_{G} = Forecast Liability incurred for the GSP Group concerned.

 $\rm NHHC_{G}$ = The Company's forecast of GSP Group non-half-hourly metered total energy consumption (kWh) for the period 16:00 hrs to 19:00hrs inclusive (i.e. settlement periods 33 to 38) inclusive over the period the tariff is applicable for the GSP Group concerned.

Short Term Transmission Entry Capacity (STTEC) Tariff

14.16.3 The Short Term Transmission Entry Capacity (STTEC) tariff for positive zones is derived from the Effective Tariff (ET_{Gi}) annual TNUoS £/kW tariffs (14.15.112). If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the STTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (i.e. over the whole financial year, not just the period that the STTEC is applicable for). STTECs will not be reconciled following a mid year charge change. The premium associated with the flexible product is associated with the analysis that 90% of the annual charge is linked to the system peak. The system peak is likely to occur in the period of November to February inclusive (120 days, irrespective of leap years). The calculation for positive generation zones is as follows:

$$\frac{FT_{Gi} \times 0.9 \times STTEC \ Period}{120} = STTEC \ tariff \ (\pounds/kW/period)$$

Where:

FT	=	Final annual TNUoS Tariff expressed in £/kW
Gi	=	Generation zone
STTEC Period	=	A period applied for in days as defined in the CUSC

Page 36 of 64

- 14.16.4 For the avoidance of doubt, the charge calculated under 14.16.3 above will represent each single period application for STTEC. Requests for multiple /STTEC periods will result in each STTEC period being calculated and invoiced separately.
- 14.16.5 The STTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.

Limited Duration Transmission Entry Capacity (LDTEC) Tariffs

14.16.6 The Limited Duration Transmission Entry Capacity (LDTEC) tariff for positive zones is derived from the equivalent zonal STTEC tariff for up to the initial 17 weeks of LDTEC in a given charging year (whether consecutive or not). For the remaining weeks of the year, the LDTEC tariff is set to collect the balance of the annual TNUoS liability over the maximum duration of LDTEC that can be granted in a single application. If multiple set of tariffs are applicable within a single charging year, the Final Tariff used in the LDTEC calculation will be prorated in an identical manner to that used when calculating a generators annual liability. The periods over which the tariff would be prorated would be identical to the periods used when calculating the wider tariff (ie over the whole financial year, not just the period that the STTEC is applicable for). LDTECs will not be reconciled following a mid year charge change:

Initial 17 weeks (high rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.9 \times 7}{120}$$

Remaining weeks (low rate):

LDTEC tariff (£/kW/w eek) =
$$\frac{FT_{Gi} \times 0.1075 \times 7}{316 - 120} \times (1 + P)$$

where FT is the final annual TNUoS tariff expressed in £/kW; G_i is the generation TNUoS zone; and P is the premium in % above the annual equivalent TNUoS charge as determined by The Company, which shall have the value 0.

- 14.16.7 The LDTEC tariff for generators with negative final tariffs is set to zero to prevent Users receiving greater than 100% of the annual TNUoS payment that would have been received for that capacity under a firm TEC.
- 14.16.8 The tariffs applicable for any particular year are detailed in The Company's **Statement of Use of System Charges** which is available from the **Charging website**. Historical tariffs are also available on the **Charging website**.

14.17 Demand Charges

Parties Liable for Demand Charges

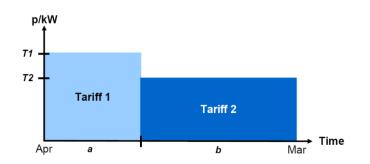
- 14.17.1 Demand charges are subdivided into charges for gross demand, energy and embedded export. The following parties shall be liable for some or all of the categories of demand charges:
 - The Lead Party of a Supplier BM Unit;
 - Power Stations with a Bilateral Connection Agreement;
 - Parties with a Bilateral Embedded Generation Agreement
- 14.17.2 Classification of parties for charging purposes, section 14.26, provides an illustration of how a party is classified in the context of Use of System charging and refers to the paragraphs most pertinent to each party.

Basis of Gross Demand Charges

- 14.17.3 Gross demand charges are based on a de-minimis £0/kW charge for Half Hourly and £0/kWh for Non Half Hourly metered demand.
 - 14.17.4 Chargeable Gross Demand Capacity is the value of Triad gross demand (kW). Chargeable Energy Capacity is the energy consumption (kWh). The definition of both these terms is set out below.
 - 14.17.5 If there is a single set of gross demand tariffs within a charging year, the Chargeable Gross Demand Capacity is multiplied by the relevant gross demand tariff, for the calculation of gross demand charges.
 - 14.17.6 If there is a single set of energy tariffs within a charging year, the Chargeable Energy Capacity is multiplied by the relevant energy consumption tariff for the calculation of energy charges..
 - 14.17.7 If multiple sets of gross_demand tariffs are applicable within a single charging year, gross demand charges will be calculated by multiplying the Chargeable Gross Demand Capacity by the relevant tariffs pro rated across the months that they are applicable for, as below,

Demand Capacity

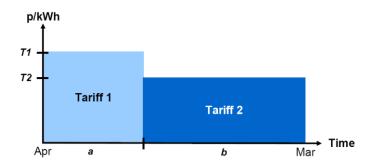
Deleted: Annual Liability n Annual Liability_{Demand} = $\frac{Chargeable Gross}{Demand Generative} \times \left(\frac{(a \times Tariff 1) + (b \times Tariff 2)}{12}\right)$


where:

Tariff	1=	Original t	ariff	,						
Tariff	2=	Revised	tarif	f,						
a applicable,	=	Number	of	months	over	which	the	original	tariff	is
b applicable.	=	Number	of	months	over	which	the	revised	tariff	is

Page 38 of 64

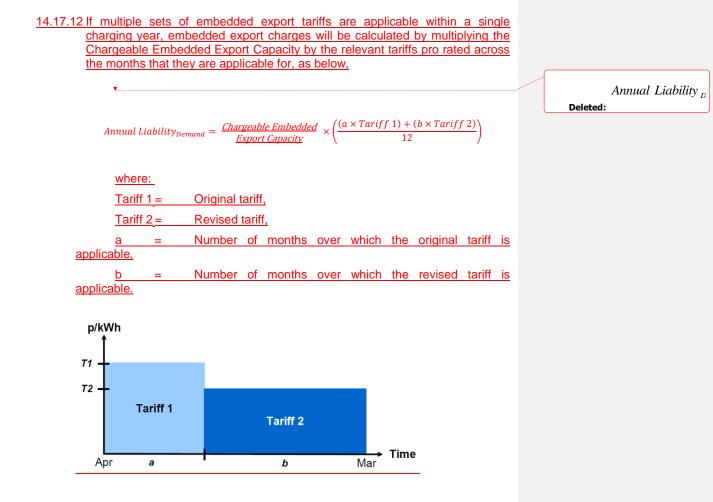
12


Deleted: minimus

14.17.8 If multiple sets of energy tariffs are applicable within a single charging year, energy charges will be calculated by multiplying relevant Tariffs by the Chargeable Energy Capacity over the period that that the tariffs are applicable for and summing over the year.

Annual Liability $_{Energy} = Tariff \ 1 \times \sum_{TI_s}^{TI_E} Chargeable Energy Capacity + Tariff \ 2 \times \sum_{TZ_s}^{TI_E} Chargeable Energy Capacity$

Where: T1s Start date for the period for which the original tariff is = applicable, End date for the period for which the original tariff is T1_E = applicable, Start date for the period for which the revised tariff is T2s _ applicable, End date for the period for which the revised tariff is T2_E = applicable.



Basis of Embedded Export Charges

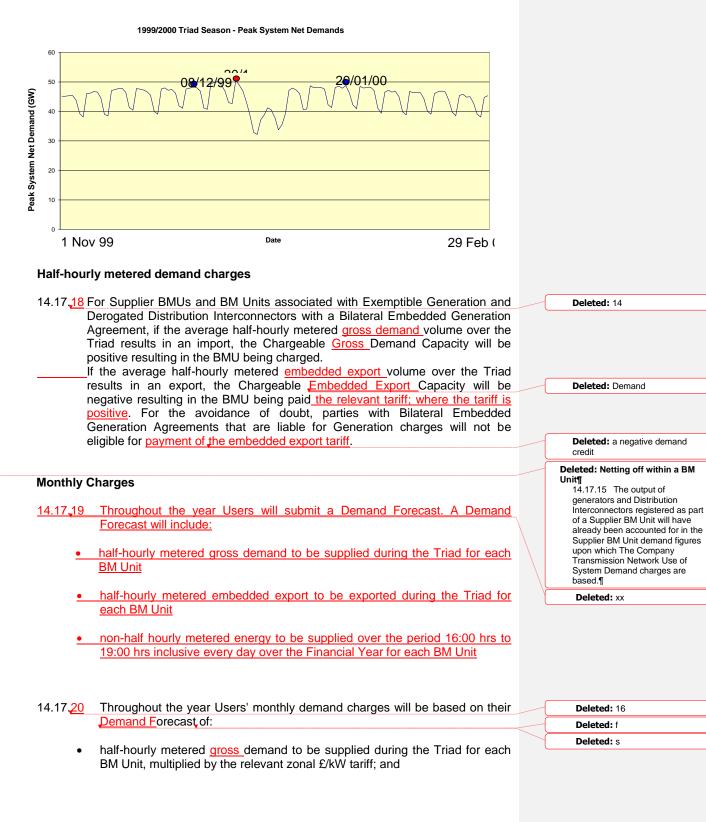
- 14.17.9 Embedded export charges are based on a £/kW charge for Half Hourly metered embedded export.
- <u>14.17.10 Chargeable Embedded Export Capacity is the value of Embedded Export at</u> <u>Triad (kW). The definition of this term is set out below.</u>

If there is a single set of embedded export tariffs within a charging year, the Chargeable Embedded Export Capacity is multiplied by the relevant embedded export tariff, for the calculation of embedded export charges. Deleted: 14.17.11

Page	39	of	64
------	----	----	----

Supplier BM Unit

14.17,<u>13</u> A Supplier BM Unit charges will be the sum of its energy, <u>gross</u> demand <u>and</u> <u>embedded export</u> liabilities where:


- The Chargeable <u>Gross</u> Demand Capacity will be the average of the Supplier BM Unit's half-hourly metered <u>gross</u> demand during the Triad (and the £/kW tariff),
- The Chargeable Embedded Export Capacity will be the average of the Supplier BM Unit's half-hourly metered embedded export during the Triad (and the £/kW tariff), and
- The Chargeable Energy Capacity will be the Supplier BM Unit's non halfhourly metered energy consumption over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year (and the p/kWh tariff).

Power Stations with a Bilateral Connection Agreement and Licensable Generation with a Bilateral Embedded Generation Agreement

Page 40 of 64

V1.12-01 April 2016

CUSC v1.12	
14.17,14 The Chargeable Gross Demand Capacity for a Power Station with a Bilateral	Deleted: 10
Connection Agreement or Licensable Generation with a Bilateral Embedded	
Generation Agreement will be based on the average of the gross import over	Deleted: net
each Triad leg of the BM Units associated with the Power Station (in Appendix	
C of its Bilateral Connection Agreement or Bilateral Embedded Generation	
Agreement, including metered additional load) during the Triad.	
Exemptible Generation and Derogated Distribution Interconnectors with a Bilateral Embedded Generation Agreement	
14.17,15 The demand charges for Exemptible Generation and Derogated Distribution	Deleted: 11
Interconnector with a Bilateral Embedded Generation Agreement will be the	
sum of its gross demand and embedded export liabilities where:	
The Chargeable Gross Demand Capacity for Exemptible Generation and	
Derogated Distribution Interconnectors with a Bilateral Embedded Generation	
Agreement will be based on the average of the metered gross demand of	Deleted: volume
each BM Unit specified in Appendix C of the Bilateral Embedded Generation	
Agreement during the Triad.	
The Chargeable Embedded Export Capacity for Exemptible Generation and	
Derogated Distribution Interconnectors with a Bilateral Embedded Generation	
Agreement will be based on the average of the metered embedded export of	
each BM Unit specified in Appendix C of the Bilateral Embedded Generation	
Agreement during the Triad.	
Small Generators Tariffs	
14.17. <u>16</u> In accordance with Standard Licence Condition C13, any under recovery from	
the MAR arising from the small generators discount will result in a unit amount	
of increase to all GB gross demand tariffs.	
The Triad	
14.17,17 The Triad is used as a short hand way to describe the three settlement periods	
of highest transmission system demand within a Financial Year, namely the	
half hour settlement period of system peak <u>net</u> demand and the two half hour	
settlement periods of next highest <u>net</u> demand, which are separated from the system peak <u>net</u> demand and from each other by at least 10 Clear Days,	
between November and February of the Financial Year inclusive. Exports on	
directly connected Interconnectors and Interconnectors capable of exporting	
more than 100MW to the Total System shall be excluded when determining the	
system peak <u>net</u> demand. An illustration is shown below.	

- half-hourly metered embedded export to be supplied during the Triad for each BM Unit, multiplied by the relevant zonal £/kW tariff; and
- non-half hourly metered energy to be supplied over the period 16:00 hrs to 19:00 hrs inclusive every day over the Financial Year for each BM Unit, multiplied by the relevant zonal p/kWh tariff

Users' annual TNUoS demand charges are based on these forecasts and are split evenly over the 12 months of the year. Users have the opportunity to vary their demand forecasts on a quarterly basis over the course of the year, with the demand forecast requested in February relating to the next Financial Year. Users will be notified of the timescales and process for each of the quarterly updates. The Company will revise the monthly Transmission Network Use of System demand charges by calculating the annual charge based on the new forecast, subtracting the amount paid to date, and splitting the remainder evenly over the remaining months. For the avoidance of doubt, only positive demand forecasts (i.e. representing <u>a net</u> import from the system) will be <u>used in the calculation of charges</u>.

Demand forecasts for a User will be considered positive where:

- The sum of the gross demand forecast and embedded export forecast is positive; and
- The non-half hourly metered energy forecast is positive.

14.17.21 Users should submit reasonable forecasts of gross demand, embedded export and energy in accordance with the CUSC. The Company shall use the following methodology to derive a forecast to be used in determining whether a User's forecast is reasonable, in accordance with the CUSC, and this will be used as a replacement forecast if the User's total forecast is deemed unreasonable. The Company will, at all times, use the latest available Settlement data.

For existing Users:

- i) The User's Triad <u>gross</u> demand<u>and embedded export</u> for the preceding Financial Year will be used where User settlement data is available and where The Company calculates its forecast before the Financial Year. Otherwise, the User's average weekday settlement period 35 half-hourly metered (HH) <u>gross</u> demand <u>and embedded export</u> in the Financial Year to date is compared to the equivalent average <u>gross</u> demand<u>and</u> <u>embedded export</u> for the corresponding days in the preceding year. The percentage difference is then applied to the User's HH <u>gross</u> demand<u>and</u> <u>embedded export</u> at Triad in the preceding Financial Year to derive a forecast of the User's HH <u>gross</u> demand<u>and embedded export</u> at Triad for this Financial Year.
- ii) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day in the Financial Year to date is compared to the equivalent energy consumption over the corresponding days in the preceding year. The percentage difference is then applied to the User's total NHH energy consumption in the preceding Financial Year to derive a forecast of the User's NHH energy consumption for this Financial Year.

For new Users who have completed a Use of System Supply Confirmation Notice in the current Financial Year:

Page 43 of 64

V1.12-01 April 2016

Deleted: accepted

1

iii) The User's average weekday settlement period 35 half-hourly metered (HH) gross demand and embedded export over the last complete month for which The Company has settlement data is calculated. Total system average HH gross demand and embedded export for weekday settlement period 35 for the corresponding month in the previous year is compared to total system HH_gross demand and embedded export at Triad in that year and a percentage difference is calculated. This percentage is then applied to the User's average HH gross demand and embedded export for weekday settlement period 35 over the last month to derive a forecast of the User's HH gross demand and embedded export_at Triad for this Financial Year.

- iv) The User's non half-hourly metered (NHH) energy consumption over the period 16:00 hrs to 19:00 hrs every day over the last complete month for which The Company has settlement data is noted. Total system NHH energy consumption over the corresponding month in the previous year is compared to total system NHH energy consumption over the remaining months of that Financial Year and a percentage difference is calculated. This percentage is then applied to the User's NHH energy consumption over the month described above, and all NHH energy consumption in previous months is added, in order to derive a forecast of the User's NHH metered energy consumption for this Financial Year.
- 14.17.22 14.28 Determination of The Company's Forecast for Demand Charge Purposes illustrates how the demand forecast will be calculated by The Company.

Reconciliation of Demand Charges

14.17,23 The reconciliation process is set out in the CUSC. The demand reconciliation process compares the monthly charges paid by Users against actual outturn charges. Due to the Settlements process, reconciliation of demand charges is carried out in two stages; initial reconciliation and final reconciliation.

Initial Reconciliation of demand charges

14.17,24 The initial reconciliation process compares Users' demand forecasts and corresponding monthly charges paid over the year against actual outturn data (using latest Settlement data available at the time) and corresponding charges. Initial reconciliation is carried out in two parts; Initial Reconciliation Part 1 deals with the reconciliation of half-hourly metered demand charges and Initial Reconciliation Part 2 deals with the reconciliation of non-half-hourly metered demand charges.

Initial Reconciliation Part 1– Half-hourly metered demand

- 14.17,25 The Company will identify the periods forming the Triad once it has received Central Volume Allocation data from the Settlement Administration Agent for all days up to and including the last day of February. Once The Company has notified Users of the periods forming the Triad they will not be changed even if disputes are subsequently resolved which would change the periods forming the Triad.
- 14.17,<u>26</u> Initial outturn charges for half-hourly metered <u>gross</u> demand will be determined using the latest available data of actual average Triad <u>gross</u> demand (kW) multiplied by the zonal <u>gross</u> demand tariff(s) (£/kW) applicable to the months

Page 44 of 64

Deleted: 18

Deleted: 19

Deleted: 20

Deleted: 21

С

I

I

I

I

1.12		
concerned for each zone for that Financial Year. These actual values are then reconciled against the monthly charges paid in respect of half-hourly gross demand.		
14.17.27 Initial outturn charges for half-hourly metered embedded export will be		
determined using the latest available data of actual average Triad embedded		
export (kW) multiplied by the zonal embedded export tariff(s) (£/kW) applicable		
to the months concerned for each zone for that Financial Year. These actual values are then reconciled against the monthly charges paid in respect of half-		
hourly embedded exports.		
Initial Reconciliation Part 2 – Non-half-hourly metered demand		
14.17,28 Actual payments for non-half-hourly metered demand will be determined using	Deleted: 23	
the latest available actual energy consumption data (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) over the year		
multiplied by the energy consumption tariff(s) (p/kWh) applicable to the months		
concerned for each zone. These actual values are then reconciled against the		
monthly charges paid in respect of non-half-hourly energy consumption.		
Final Reconciliation of demand charges		
14.17,29 The final reconciliation process compares Users' charges (as calculated during	Deleted: 24	
the initial reconciliation process using the latest available data) against final		
outturn demand charges (based on final settlement data of half-hourly gross		
demand, embedded exports and non-half-hourly energy consumption).		
14.17,30 Final actual charges will be determined using the final demand reconciliation	Deleted: 25	
data taken from the Final Reconciliation Settlement Run or the Final	Deleted: 25	
Reconciliation Volume Allocation Run.		
Reconciliation of manifest errors		
14.17, <u>31</u> In the event that a manifest error, or multiple errors in the calculation of TNUoS	Deleted: 26	
tariffs results in a material discrepancy in aUsers TNUoS tariff, the		
reconciliation process for all Users qualifying under Section 14.17,33 will be in	Deleted: 28	
accordance with Sections 14.17,24 to 14.17,50. The reconciliation process	Deleted: 20	
shall be carried out using recalculated TNUoS tariffs. Where such	Deleted: 25	
reconciliation is not practicable, a post-year reconciliation will be undertaken in the form of a one-off payment.		
14.17.32 A manifest error shall be defined as any of the following:	Deleted: 27	
a) an error in the transfer of relevant data between the Transmission		
Licensees or Distribution Network Operators;		
b) an error in the population of the Transport Model with relevant data;		
c) an error in the function of the Transport Model; or		
d) an error in the inputs or function of the Tariff Model.		
14.17,33 A manifest error shall be considered material in the event that such an error or,	Deleted: 28	
the net effect of multiple errors, has an impact of the lesser of either:		
a) an error in a User's TNUoS tariff of at least +/-£0.50/kW; or		

Page 45 of 64

b) an error in a User's TNUoS tariff which results in an error in the annual TNUoS charge of a User in excess of +/-£250,000.

14.17,<u>34</u> A manifest error shall only be reconciled if it has been identified within the charging year for which the error has an effect. Errors identified outside of this period will not be eligible for reconciliation retrospectively.

Implementation of P272

- 14.17,<u>35</u>.1 BSC modification P272 requires Suppliers to move Profile Classes 5-8 to Measurement Class E - G (i.e. moving from NHH to HH settlement) by April 2016. The majority of these meters are expected to transfer during the preceding Charging Years up until the implementation date of P272 and some meters will have been transferred before the start of 1ST April 2015. A change from NHH to HH within a Charging Year would normally result in Suppliers being liable for TNUoS for part of the year as NHH and also being subject to HH charging. This section describes how the Company will treat this situation in the transition to P272 implementation for the purposes of TNUoS charging; and the forecasts that Suppliers should provide to the Company.
- 14.17,35.2 Notwithstanding 14.17,13, for each Charging Year which begins after 31 March 2015 and prior to implementation of BSC Modification P272, all demand associated with meters that are in NHH Profile Classes 5 to 8 at the start of that charging year as well as all meters in Measurement Classes E G will be treated as Chargeable Energy Capacity (NHH) for the purposes of TNUoS charging for the full Charging Year unless 14.17,35.3 applies.
 - 14.17,35.3 Where prior to 1st April 2015 a Profile Class meter has already transferred to Measurement Class settlement (HH) the associated Supplier may opt to treat the demand volume as Chargeable Demand Capacity (HH) for the purposes of TNUoS charging up until implementation of P272, subject to meeting conditions in 14.17,35.6. If the associated Supplier does not opt to treat the demand volume as Demand Capacity (HH) it will be treated by default as Chargeable Energy Capacity (NHH) for each full Charging Year up until implementation of P272.
 - 14.17,35.4 The Company will calculate the Chargeable Energy Capacity associated with meters that have transferred to HH settlement but are still treated as NHH for the purposes of TNUoS charging from Settlement data provided directly from Elexon i.e. Suppliers need not Supply any additional information if they accept this default position.
- 14.17,35.5 The forecasts that Suppliers submit to the Company under CUSC 3.10, 3.11 and 3.12 for the purpose of TNUoS monthly billing referred to in 14.17,20 and 14.17,21 for both Chargeable Demand Capacity and Chargeable Energy Capacity should reflect this position i.e. volumes associated those Metering Systems that have transferred from a Profile Class to a Measurement Class in the BSC (NHH to HH settlement) but are to be treated as NHH for the purposes of TNUoS charging should be included in the forecast of Chargeable Energy Capacity and not Chargeable Demand Capacity, unless 14.17,35.3 applies.
 - 14.17,<u>35</u>.6 Where a Supplier wishes for Metering Systems that have transferred from Profile Class to Measurement Class in the BSC (NHH to HH settlement) prior to 1st April 2015, to be treated as Chargeable Demand Capacity (HH/

Page 46 of 64

V1.12-01 April 2016

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 9

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 16

Deleted: 17

Deleted: 29

I

Measurement Class settled) it must inform the Company prior to October 2015. The Company will treat these as Chargeable Demand Capacity (HH / Measurement Class settled) for the purposes of calculating the actual annual liability for the Charging Years up until implementation of P272. For these cases only, the Supplier should notify the Company of the Meter Point Administration Number(s) (MPAN). For these notified meters the Supplier shall provide the Company with verified metered demand data for the hours between 4pm and 7pm of each day of each Charging Year up to implementation of P272 and for each Triad half hour as notified by the Company prior to May of the following Charging Year up until two years after the implementation of P272 to allow reconciliation (e.g. Mav 2017 and May 2018 for the Charging Year 2016/17). Where the Supplier fails to provide the data or the data is incomplete for a Charging Year TNUoS charges for that MPAN will be reconciled as part of the Supplier's NHH BMU (Chargeable Energy Capacity). Where a Supplier opts, if eligible, for TNUoS liability to be calculated on Chargeable Demand Capacity it shall submit the forecasts referred to in 14.17,35.5 taking account of this.

14.17,35.7 The Company will maintain a list of all MPANs that Suppliers have elected to be treated as HH. This list will be updated monthly and will be provided to registered Suppliers upon request.

Further Information

- 14.17,<u>36</u> 14.25 Reconciliation of Demand Related Transmission Network Use of System Charges of this statement illustrates how the monthly charges are reconciled against the actual values for <u>gross</u> demand, <u>embedded export</u> and consumption for half-hourly <u>gross demand</u>, <u>embedded export</u> and non-halfhourly metered demand respectively.
- 14.17,<u>37</u> **The Statement of Use of System Charges** contains the £/kW zonal gross demand tariffs, <u>the £/kW zonal embedded export tariffs</u>, and the p/kWh energy consumption tariffs for the current Financial Year.
- 14.17,<u>38</u>14.27 Transmission Network Use of System Charging Flowcharts of this statement contains flowcharts demonstrating the calculation of these charges for those parties liable.

Deleted: 30

Deleted: 29

Deleted: 29

Deleted: 31

Deleted: 32

....

14.24 Example: Calculation of Zonal Gross Demand Tariff

Let us consider all nodes in a demand zone in this example

The table below shows a sample output of the transport model comprising the node, the Peak Security and Year Round marginal km of an injection at the node with a consequent withdrawal at the distributed reference node, the generation sited at the node, scaled to ensure total national generation = total national <u>net</u> demand and the <u>net</u> demand sited at the node.

Demand Zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	<u>Net</u> Demand (MW)
14	ABHA4A	-77.25	-230.25	127
14	ABHA4B	-77.27	-230.12	127
14	ALVE4A	-82.28	-197.18	100
14	ALVE4B	-82.28	-197.15	100
14	AXMI40_SWEB	-125.58	-176.19	97
14	BRWA2A	-46.55	-182.68	96
14	BRWA2B	-46.55	-181.12	96
14	EXET40	-87.69	-164.42	340
14	HINP20	-46.55	-147.14	0
14	HINP40	-46.55	-147.14	0
14	INDQ40	-102.02	-262.50	444
14	IROA20_SWEB	-109.05	-141.92	462
14	LAND40	-62.54	-246.16	262
14	MELK40_SWEB	18.67	-140.75	83
14	SEAB40	65.33	-140.97	304
14	TAUN4A	-66.65	-149.11	55
14	TAUN4B	-66.66	-149.11	55
		Totals		2748

In order to calculate the <u>gross</u> demand tariff we would carry out the following steps:

(i) calculate the demand weighted nodal shadow costs

For this example zone this would be as follows:

Demand zone	Node	Peak Security Nodal Marginal km	Year Round Nodal Marginal km	Net Demand (MW)	Peak Security Demand Weighted Nodal Marginal km	Year Round Demand Weighted Nodal Marginal km
14	ABHA4A	-77.25	-230.25	127	-3.57	-10.64
14	ABHA4B	-77.27	-230.12	127	-3.57	-10.64
14	ALVE4A	-82.28	-197.18	100	-2.99	-7.17
14	ALVE4B	-82.28	-197.15	100	-2.99	-7.17
14	AXMI40_SWEB	-125.58	-176.19	97	-4.43	-6.22
14	BRWA2A	-46.55	-182.68	96	-1.63	-6.38
14	BRWA2B	-46.55	-181.12	96	-1.63	-6.33
14	EXET40	-87.69	-164.42	340	-10.85	-20.34
14	INDQ40	-102.02	-262.50	444	-16.48	-42.41
14	IROA20_SWEB	-109.05	-141.92	462	-18.33	-23.86
14	LAND40	-62.54	-246.16	262	-5.96	-23.47
14	MELK40_SWEB	18.67	-140.75	83	0.56	-4.25
14	SEAB40	65.33	-140.97	304	7.23	-15.59
14	TAUN4A	-66.65	-149.11	55	-1.33	-2.98
14	TAUN4B	-66.66	-149.11	55	-1.33	-2.98
		Totals		2748	-49.19	-190.43

(ii) sum the Peak Security and Year Round demand weighted nodal shadow costs to give zonal figures. For this example zone this is shown in the above table and is 49.19km for Peak Security background and 190.43km for Year Round background.

(iii) calculate the transport tariffs by multiplying the figures in (ii) above by the expansion constant (& dividing by 1000 to put into units of £/kW):

For this example zone, assuming an expansion constant of ± 10.07 /MWkm and a locational security factor of 1.80:

a) Peak Security tariff – 49.19km <u>* £10.07/MWkm * 1.8</u> = <u>£0.89/kW</u> 1000

Page 50 of 64

b) Year Round tariff -<u>190.43km * £10.07/MWkm * 1.8</u> = <u>£3.45/kW</u> 1000

(iv) We now need to calculate the residual tariff. This is calculated by taking the total revenue to be recovered from demand (calculated as c.73% of total The Company TNUoS target revenue for the year), less the revenue which would be recovered through the demand transport tariffs and revenue recovery through embedded export tariffs, divided by total expected gross GSP group demand.

Assuming the total revenue to be recovered from TNUoS is £1067m, the total recovery from <u>gross GSP group</u> demand would be (73% x £1067m) = £779m. Assuming the total recovery from <u>gross GSP group</u> demand transport tariffs is £<u>140m</u>, total recovery from <u>embedded export tariffs is -£10m</u> and total forecast chargeable <u>gross GSP group</u> demand capacity is 50000MW, the demand residual tariff would be as follows:

 $\frac{\pounds779m - \pounds140m - -\pounds10m}{50,000MW} = \pounds12.98/kW$

 (v) to get to the final tariff, we simply add on the demand residual tariff calculated in (v) to the zonal transport tariffs calculated in (iii(a)) and (iii(b))

For zone 14:

 $\pounds 0.89/kW + \pounds 3.45/kW + \pounds 12.98/kW =$ $\pounds 17.32/kW$

- To summarise, in order to calculate the <u>gross</u> demand tariffs, we evaluate a <u>net</u> demand weighted zonal marginal km cost multiply by the expansion constant and locational security factor then we add a constant (termed the residual cost) to give the overall tariff.
- (vii) The final demand tariff is subject to further adjustment to allow for the minimum £0/kW gross_demand charge. The application of a discount for small generators pursuant to Licence Condition C13 will also affect the final gross_demand tariff.

Deleted: gross

Deleted: 130m

Deleted: $\frac{\pounds779m - \pounds130m}{2}$	_
50000MW	_
¶ <u>£779m - £140m£10m</u> = £12.98/kW¶	
50,000MW	

14.25 Reconciliation of <u>Gross</u> Demand Related Transmission Network Use of System Charges

This appendix illustrates the methodology used by The Company in the reconciliation of Transmission Network Use of System charges for <u>gross</u> demand. The example highlights the different stages of the calculations from the monthly invoiced amounts, right through to Final Reconciliation.

Monthly Charges

Suppliers provide half-hourly (HH) gross demand and embedded export forecasts and non-halfhourly (NHH) demand forecasts by BM Unit every quarter. An example of such forecasts and the corresponding monthly invoiced amounts, based on tariffs of £10.00/kW for gross demand, £5.00/kW for embedded export and 1.20p/kWh for energy consumption, is as follows:

	Forecast HH Triad <u>Gross</u> Demand <u>HHD_E (</u> kW)	HH <u>Gross</u> <u>Demand</u> Monthly Invoiced Amount (£)	Forecast HH Triad Embedded Export HHEE _E (kW)	<u>HH</u> <u>Embedded</u> <u>Generation</u> <u>Monthly</u> <u>Invoiced</u> <u>Amount (£)</u>	Forecast NHH Energy Consumpti on NHHC _F (kW h)	NHH Monthly Invoiced Amount (£)	Net Monthly Invoiced Amount (£)
Apr	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
May	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jun	12,000	10,000	<u>-600</u>	<u>(250)</u>	15,000,000	15,000	<u>24,750</u>
Jul	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Aug	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Sep	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Oct	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Nov	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Dec	12,000	10,000	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>28,750</u>
Jan	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Feb	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Mar	7,200	(6,000)	<u>-600</u>	<u>(250)</u>	18,000,000	19,000	<u>12,750</u>
Total		72,000		<u>(3,000)</u>		216,000	<u>297</u> ,000

As shown, for the first nine months the Supplier provided a 12,000kW HH triad <u>gross</u> demand forecast, and hence paid HH <u>gross demand</u> monthly charges of £10,000 ((12,000kW x £10.00/kW)/12) for that BM Unit. In January the Supplier provided a revised forecast of 7,200kW, implying a forecast annual charge reduced to £72,000 (7,200kW x £10.00/kW). The Supplier had already paid £90,000, so the excess of £18,000 was credited back to the supplier in three £6,000 instalments over the last three months of the year.

The Supplier provided an embedded export triad forecast of -600kW and hence was paid an embedded export credit of £250 ((600kW x £5.00/kW)/12) for that BM Unit (For the avoidance of doubt, if the embedded export tariff is negative this will result in a debit).

The Supplier also initially provided a 15,000,000kWh NHH energy consumption forecast, and hence paid NHH monthly charges of £15,000 ((15,000,000kWh x 1.2p/kWh)/12) for that BM Unit. In July the Supplier provided a revised forecast of 18,000,000kWh, implying a forecast annual charge increased to £216,000 (18,000,000kWh x 1.2p/kWh). The Supplier had already

Page 52 of 64

paid £45,000, so the remaining £171,000 was split into payments of £19,000 for the last nine months of the year.

The right hand column shows the net monthly charges for the BM Unit.

Initial Reconciliation (Part 1a)

The Supplier's outturn HH triad <u>gross</u> demand, based on <u>initial</u> settlement data (and therefore subject to change in subsequent settlement runs), was 9,000kW. The HH triad <u>gross</u> demand reconciliation charge is therefore calculated as follows:

HHD Reconciliation Charge = $(HHD_A - HHD_F) \times \pounds/kW$ Tariff

= (9,000kW - 7,200kW) x £10.00/kW

= 1,800kW x £10.00/kW

= £18,000

To calculate monthly interest charges, the outturn HHD charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHD charge less the HH <u>gross demand</u> monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 1b)

The Supplier's outturn HH triad embedded export, based on initial settlement data (and therefore subject to change in subsequent settlement runs), was 700kW. The HH triad embedded export reconciliation charge is therefore calculated as follows:

HHEE Reconciliation Charge = (HHEE_A – HHEE_E) x £/kW Tariff

 $= (-500 \text{kW} - -600 \text{kW}) \times \text{\pounds}5.00/\text{kW}$

 $= 100 \text{kW} \times \text{\pounds}5.00/\text{kW}$

= **£500**

To calculate monthly interest charges, the outturn HHEE charge is split equally over the 12month period. The monthly reconciliation amount is the monthly outturn HHEE charge less the HH embedded generation monthly invoiced amount. Interest payments are calculated based on these monthly reconciliation amounts using Barclays Base Rate.

Initial Reconciliation (Part 2)

The Supplier's outturn NHH energy consumption, based on initial settlement data, was 17,000,000kWh. The NHH energy consumption reconciliation charge is therefore calculated as follows:

Deleted: Please note that payments made to BM Units with a net export over the Triad, based on initial settlement data, will also be reconciled at this stage.¶ As monthly payments will not be made on the basis of a negative forecast, the HHD Reconciliation Charge for an exporting BM Unit will represent the full actual payment owed to that BM Unit (subject to adjustment by subsequent settlement runs). Interest will be calculated as described above.¶

NHHC Reconciliation Charge = $(NHHC_A - NHHC_F) \times p/kWh$ Tariff

100

= <u>(17,000,000kWh - 18,000,000kWh) x 1.20p/kWh</u>

100

= <u>-1,000,000kWh x 1.20p/kWh</u> 100 = **-£12,000**

worked example 4.xls - Initial!J104

The monthly reconciliation amount is equal to the outturn energy consumption charge for that month less the NHH monthly invoiced amount. Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

The net initial TNUoS demand reconciliation charge is therefore $\pounds 6,500$ (£18,000 + $\pounds 500$ - $\pounds 12,000$).

Final Reconciliation

Finally, let us now suppose that after all <u>final</u> Settlement data has been received (up to 14 months after the relevant dates), the outturn HH triad <u>gross</u> demand, <u>HH triad embedded export</u> and NHH energy consumption values were 9,500kW, <u>-550kW</u> and 16,500,000kWh, respectively.

Final HH <u>Gross Demand</u>	= (9,500kW - 9,000kW) x £10.00/kW
<u>Reconciliation Charge</u>	= £5,000
Final HH Embedded Export	= (-550kW500kW) x £5.00/kW
Reconciliation Charge	= -£250

Final NHH Reconciliation Charge = $(16,700,000kWh - 17,000,000kWh) \times 1.20p/kWh$ 100 = -£3,600

Consequently, the net final TNUoS demand reconciliation charge will be $\pounds 1, \underline{150} (\pounds 5,000 + -\pounds 250 + -\pounds 3,600)$.

Interest payments are calculated based on the monthly reconciliation amounts using Barclays Base Rate.

Outturn data for BM Units with a net export over the Triad will be received at this stage and final reconciliation will be carried out, as required. Interest will be calculated as described above.

Terminology:

 HHD_A = The Supplier's outturn half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

Page 54 of 64

Deleted: 000

I

 HHD_{F} = The Supplier's forecast half-hourly metered Triad <u>Gross</u> Demand (kW) for the demand zone concerned.

<u>HHEE_A = The Supplier's outturn half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

<u>HHEE_E = The Supplier's forecast half-hourly metered Triad Embedded Export (kW) for the demand zone concerned.</u>

NHHC_A = The Supplier's outturn non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1^{st} to March 31^{st} , for the demand zone concerned.

NHHC_F = The Supplier's forecast non-half-hourly metered daily Energy Consumption (kWh) for the period 16:00 hrs to 19:00 hrs inclusive (i.e. settlement periods 33 to 38) from April 1st to March 31st, for the demand zone concerned.

£/kW Tariff = The £/kW <u>Gross</u> Demand <u>or Embedded Export</u> Tariff as shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

p/kWh Tariff = The Energy Consumption Tariff shown in Schedule 1 of **The Statement of Use of System Charges** for the demand zone concerned.

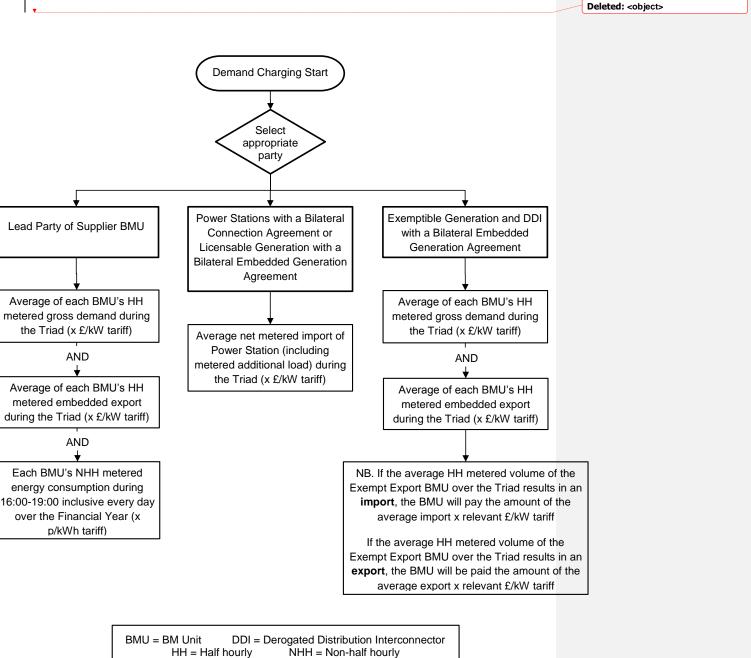
14.26 Classification of parties for charging purposes

In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precendence.

In the following diagrams, the parties liable for Transmission Network Use of System charges are outlined in red.

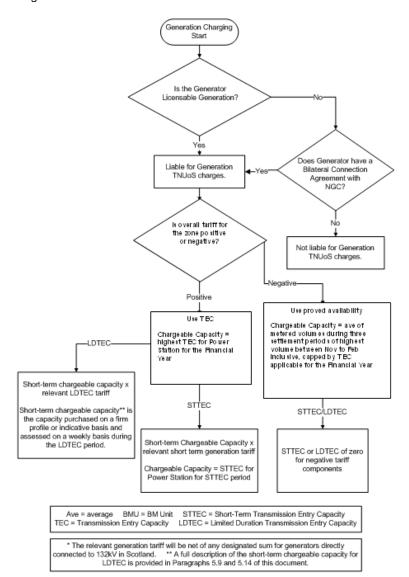
SUPPLIER		
Supplier Use of System Agreeme	ent	
Supplier BMU1 BMU1		
Demand Charges	Generation Charges	
See 14.17, <u>13 and 14.17,18</u> .	None.	Deleted: 9
		Deleted: 14
Bilateral Connection Agreement	Appendix C Station Load BMU Load BMU	
Demand Charges	Generation Charges	
See 14.17. <mark>,14</mark> .	See 14.18.1 i) and 14.18.3 to 14.18.9 and 14.18.18. For generators in positive zones, see 14.18.10 to	Deleted: 10
	14.18.12. For generators in negative zones, see 14.18.13 to 14.18.17.	

Bilateral Emb	edded Generation	Agreement Ap	pendix C	7	
Gen Unit BMU1	Gen Unit BMUn	Station Load BMU	Additional Load BMU		
Demand Charges	7. <u>15</u> and 14.17. <u>18</u> .	Generation Cl See 14.18.1 ii	U		
Jee 14.17 <u>14</u> , 14.17	<u>, 10</u> and 14.17, <u>10</u> .	For generators in positive zones, see 14.18.3 to 14.18.12 and 14.18.18. For generators in negative zones, see 14.18.3 t			


-{	Deleted: 10
-	Deleted: 11
Y	Deleted: 14

14.27 Transmission Network Use of System Charging Flowcharts

The following flowcharts illustrate the parties liable for Demand and Generation TNUoS charges and the calculation of those charges.


In the event of any conflict between this Appendix and the main text within this Statement, the main text within the Statement shall take precedence.

Page 58 of 64

Generation Charges

14.28 Example: Determination of The Company's Forecast for Demand Charge Purposes

The Company will use the latest available settlement data for calculation of HH demand and NHH energy consumption forecasts for the Financial Year.

The Financial Year runs from 1st April to 31st March inclusive and for the purpose of these examples the year April 2005 to March 2006 is used.

Where the preceding year's settlement data is not available at the time that The Company needs to calculate its forecast, The Company will use settlement data from the corresponding period in Financial Year minus two unless indicated otherwise.

All values used with the examples are purely for illustrative purposes only.

i) Half-Hourly (HH) Metered Demand Forecast – Existing User

At the time of calculation of a HH demand forecast before the relevant Financial Year (approximately 10th March), The Company will be aware at a system level which dates will be used for the determination of Triad. However, The Company may not have settlement data at a User level if the Triad dates were to span a period that includes the latter half of February.

When undertaking forecasting before the relevant Financial Year, The Company will use the User's Triad demand for the previous year for its forecast providing it holds User settlement data for this period, thus:

F = T

where:

F = Forecast of User's HH demand at Triad for the Financial Year

T = User's HH gross_demand and embedded export_at Triad in Financial Year minus one

Where The Company determines its forecast within a Financial Year:

F = T * D/P

where:

- F = Forecast of User's HH demand at Triad for the Financial Year
- T = User's HH gross demand and embedded export at Triad in the preceding Financial Year
- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the preceding Financial Year

Where The Company determines its forecast before the relevant Financial Year and User settlement data for the Triad period is not available, The Company shall apply the formula immediately above (within year forecast) but substitute the following definitions for the values T, D, and P:

T = User's HH gross demand and embedded export at Triad in the Financial Year minus two

Page 60 of 64

- D = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 in the Financial Year minus one, to date
- P = User's average half hourly metered <u>gross</u> demand <u>and embedded export</u> in settlement period 35 for the period corresponding to D in the Financial Year minus two

Example (where User settlement data is not yet available for the Triad period):

The Company calculates a HH demand forecast on the above methodology at 10th March 2005 for the period 1st April 2005 to 31st March 2006.

Gross demand:

F = 10,000 * 13,200 / 12,000

F = 11,000 kW,Deleted: hwhere:T = 10,000 kW, (period November 2003 to February 2004)Deleted: hD = 13,200 kW, (period 1st April 2004 to 15th February 2005#)Deleted: hP = 12,000 kW, (period 1st April 2003 to 15th February 2004)Deleted: h

Latest date for which settlement data is available.

Embedded export:

F = -280 * -300 / -350

<u>F = -240 kW</u>

where:

T = -280 kW (period November 2003 to February 2004)

D = -300 kW (period 1st April 2004 to 15th February 2005#)

P = -350 kW (period 1st April 2003 to 15th February 2004)

<u># Latest date for which settlement data is available.</u>

ii) Non Half-Hourly (NHH) Metered Energy Consumption Forecast – Existing User

F = E * D/P

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- E = User's summed NHH energy consumption over the hours 16:00 to 19:00 for each day in the preceding Financial Year

Page 61 of 64

- D = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the Financial Year to date
- P = User's summed NHH energy consumption for the hours 16:00 to 19:00 for each day for the period corresponding to D in the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th June 2005 for the period 1st April 2005 to 31st March 2006.

- F = 50,000,000 * 4,400,000 / 4,000,000
- F = 55,000,000 kWh

where:

- E = 50,000,000 kWh (period 1st April 2004 to 31st March 2005)
- D = 4,400,000 kWh (period 1st April 2005 to 15th May 2005#)
- P = 4,000,000 kWh (period 1st April 2004 to 15th May 2004)
- # Latest date for which settlement data is available

Where forecasting before the relevant Financial Year concerned, The Company would in the above example use values for E and P from Financial Year 2003/04 and D from Financial Year 2004/05.

iii) Half-Hourly (HH) Metered Demand Forecast – New User

F = M * T/W

where:

- F = Forecast of User's HH metered <u>gross</u> demand <u>and embedded export</u> at Triad for the Financial Year
 - M = User's HH average weekday period 35 demand for the last complete month for which settlement data is available
- T = Total system HH <u>gross</u> demand <u>and embedded export</u> at Triad in the preceding Financial Year
 - W = Total system HH average weekday settlement period 35 metered demand for the corresponding period to M for the preceding year

Example:

The Company calculates a HH demand forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2004 to 31st March 2006.

Gross demand:

F = 1,000 * 17,000,000 / 18,888,888

	0000 0	1.12		
I	F =	900 kW,	(Deleted: h
	where			
ļ	M =	1,000 kW _• (period 1 st July 2005 to 31 st July 2005)	(Deleted: h
ļ	T =	17,000,000 kW, (period November 2004 to February 2005)	(Deleted: h
I	W =	18,888,888 kW _v (period 1 st July 2004 to 31 st July 2004)	(Deleted: h
	Embeo	Ided export:		
	<u>F =</u>	<u>150 * 7,200,000 / 6,000,000</u>		
	<u>F = </u>	<u>180 kW</u>		
	where			

- M = 150 kW (period 1st July 2005 to 31st July 2005)
- T = 7,200,000 kW (period November 2004 to February 2005)
- <u>W = 6,000,000 kW (period 1^{st} July 2004 to 31^{st} July 2004)</u>

iv) Non Half Hourly (NHH) Metered Energy Consumption Forecast – <u>New User</u>

 $\mathsf{F} = \mathsf{J} + (\mathsf{M} * \mathsf{R}/\mathsf{W})$

where:

- F = Forecast of User's NHH metered energy consumption for the Financial Year
- J = Residual part month summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day where new User registration takes place other than on the first of a month
- M = User's summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the last complete month for which settlement data is available
- R = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period from the start of that defined under M but for the preceding year and until the end of that preceding Financial Year
- W = Total system summed NHH metered energy consumption for the hours 16:00 to 19:00 for each day for the period identified in M but for the preceding Financial Year

Example:

The Company calculates a NHH energy consumption forecast on the above methodology at 10th September 2005 for a new User registered from 10th June 2005 for the period 10th June 2005 to 31st March 2006.

- F = 500 + (1,000 * 20,000,000,000 / 2,000,000,000)
- F = 10,500 kWh

where:

- J = 500 kWh (period 10th June 2005 to 30th June 2005)
- M = 1,000 kWh (period 1st July 2005 to 31st July 2005)
- R = 20,000,000,000 kWh (period 1st July 2004 to 31st March 2005)
- W = 2,000,000,000 kWh (period 1st July 2004 to 31st July 2004)