System Operability Framework 2015 (SOF) nationalgrid

Contractibility and Finance-ability of New Services

Vandad Hamidi & Patrick Cassels

SOF 2015 Development Process

SOF 2015 Development Process

Improvements to the Process

See next slide

SOF 2015 Future Operability Strategy

Short Term (0-2 Years):

Need for capabilities which are already available both technically and commercially or immediate requirement for code changes.

nationalgrid

Medium Term (2-5 years):

Need for services from new connections, use of existing investment processes, work on new code changes, highlight immediate innovation needs and influence future design.

Long Term (5+ Years):

Need to secure long term capability, influence new connections, ensure more innovative solutions are developed (e.g. NIA/NIC projects), carry out R&D, significant specification & capability requirements, strategy development.

SOF 2015 Topics

Торіс	Assessment	Impact				
Sustam	Whole System Minimum Inertia	Decreasing whole system minimum inertia in future years				
Junortia	RoCoF	Trip of embedded generators protected by RoCoF relays				
mertia	Frequency Containment	Increase in volume of response				
System Strength and Resilience	Protection	Difficulty detecting and clearing faults on weaker networks				
	Voltage Dips	Widespread voltage dips and disconnection of embedded generation				
	Voltage Management	Voltage containment and need for additional reactive compensation				
	Resonance and Harmonics	Power quality issues and need for additional filtering				
	LCC HVDC Commutation Failure	Inability to operate LCC HVDC links in weak network conditions				
	Demand Reduction by Voltage Control	Reduction in effectiveness of demand reduction by voltage control				
	Black Start	Reduction in black start plant and system restoration challenges				
	System Stability	Stability issues associated with increase in embedded generation				
Embedded	Low Frequency Demand Disconnect	Risk of cascade loss of generation should LFDD relays operate				
Generation	Active Network Management	Uncoordinated TSO/DSO actions in constraint management				
	Demand Forecasting	Increased demand forecasting error and increase in balancing actions				
	Interaction with Generator Shafts	Shaft fatigue if not mitigated				
New	Control Interaction	Potential oscillations and plant failure				
Technology	Compliance of New Nuclear Fleet	Increase in derogation cost				
	Electric Vehicles and Heat Pumps	New demand pick up times/volume				

SOF 2015 Headlines

Low Frequency Demand Disconnection (LFDD) Schemes require review Potential instability in load blocks used in system emergency restoration. Broader network restoration needs

Need for new capabilities on the transmission system to manage system stability as a result of embedded generation connection

Embedded Generation and Fault Ride Through Challenge
Change
Affected Subjects
Impact

Proportion of the stand of the stand

Fault level decline is both more pronounced and more extensive than previously seen. Review of protection system is required

Need for Fast Frequency Response and System Flexibility New nuclear generation fleet and other Synchronous technology capabilities

Timeline

Impact on System Services

Provision of Future System Services

Mandatory Requirements Market Solutions

Contractibility

Finance-ability

New Services and Potential Providers

Provider Service	Demand Side Services	Energy Storage	Flexible Synchronous Generation	Flexible non- Synchronous Generation	Interconnector Services	Synchronous Compensator	Support from Embedded Generation	DSO Services	New Services from Non- synchronous Generation
RoCoF Alternative									
Frequency Management									
Voltage Management									
Protection System Support									
System Restoration									
LFDD Alternative									
Commutation of HVDC links									

System Inertia - Background

- System inertia a measure of how strong the system is in response to transient changes
- System inertia has a direct effect on:
 - Rate of Change of Frequency (RoCoF)
 - Frequency containment and response requirement
 - System stability

You lose half your audience every time you use an equation!

Impact of Inertia on Frequency Control

The lower the system inertia -> the higher of rate of change of frequency and vice versa The higher the size of loss-> the higher the rate of change of frequency and vice versa

$H_{Total} = H_G + H_D + H_{EG}$

Topic 1 – Frequency Response

- The reduction of system inertia increases the response requirement -> 30-40% extra by 2020
- Having sufficient volume of response from "conventional" sources will become challenging
- In some scenarios none of the system response requirement can be provided by synchronous plants

Background – System Inertia Variations in 2020

Background – A day in 2020

Background – A day in 2020

Background – A day in 2020

Operability Strategy – Frequency Response nationalgrid

Background – A day in 2020

System line of the day

2500

Operability Strategy – Frequency Response

nationalgrid

Topic 2 – Reactive Power

Voltage Management

- High volts has evolved from a regional challenge to a national issue.
- Large volume of embedded solar generation offsets transmission MW and substantially increases transmission Mvar requirements.

Reactive Requirements

- 2.86Gvar of new reactors installed between now and 2017.
- Across all scenarios additional 4.8Gvar by 2025, 14Gvar by 2035.

Whole System Solutions

• Transmission options alone are not sustainable, efficient or effective against these projections.

Changing Daily Demand Profile

nationalgrid

Consumer Power 2035

Year

Falling Transmission Minimum Demand

nationalgrid

Minimum Demand by Scenario

- 🔰 Consumer Power (AM)
- Consumer Power (PM)
- Gone Green (AM)
- Gone Green (PM)
- Slow Progression (AM)
- ---- Slow Progression (PM)
- No Progression (AM)
 - No Progression (PM)

Increase in Embedded Generation

Increasing Constraint Cost of Mvar Provision nationalgrid

Cost to Constrain MW for Mvar Provision

Operability Strategy

Topic 3 – Black Start

Black Start Strategy and Providers

- Reduction in thermal plant driving review of future strategy
- Potential role for interconnectors and aggregated distributed generation

Changing System Requirements

- Greater electrical distances between generation and load
- Increasing network energisation challenge

Increased Demand Side Significance

- Certainty of load blocks
- Protection of distributed generation

• Decline in flexible thermal plant in merit at minimum demand periods will restrict black start plant availability in future years.

Operability Strategy

- Multiple-service approach
- Dependencies
- Consultation with the industry (early 2016)
- Extend technical assessments to economic assessment
- Workshop on New System Services Contracting (30th November)

SOF 2015 Launch Event

• 30th November at National Grid HQ in Warwick

[9:30 - 10:00]	Arrival, Registration and Coffee
[10:00 - 10:10]	Welcome and Brief Overview of the Day
[10:10 - 10:25]	SOF in the Context of Electricity Network Capability
[10:25 - 10:35]	Future Energy Scenarios (FES) 2015 Updates
[10:35 - 11:30]	System Operability Framework 2015
[11:30 - 12:30]	Industry Perspectives on Key Themes of SOF 2015
[12:30 - 13:15]	Break (Business Lunch) and General Q&A
[13:15 - 15:15]	Contracting for New Services Workshop
[15:15 - 15:30]	Next Steps and Future Engagement

nationalgrid

Thank you for your attention!

To provide further views on the themes discussed, please email: <u>box.transmission.sof@nationalgrid.com</u>