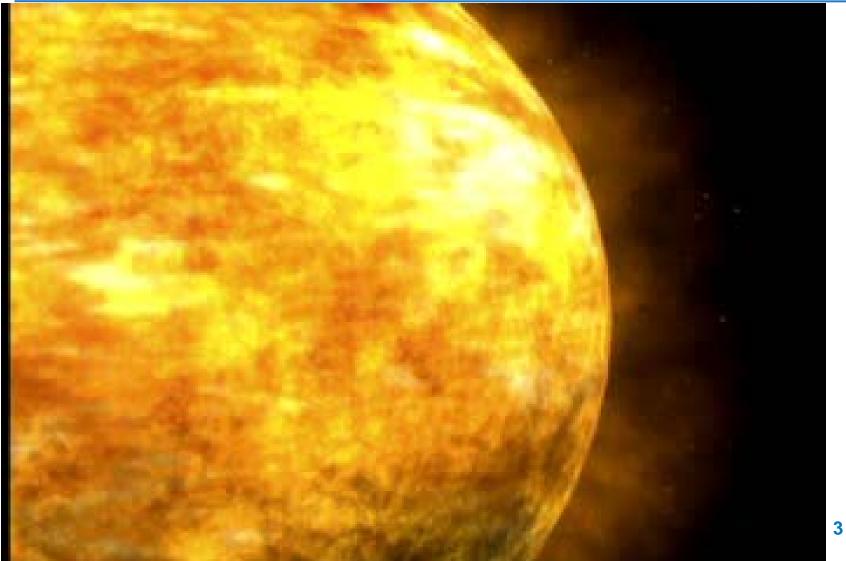
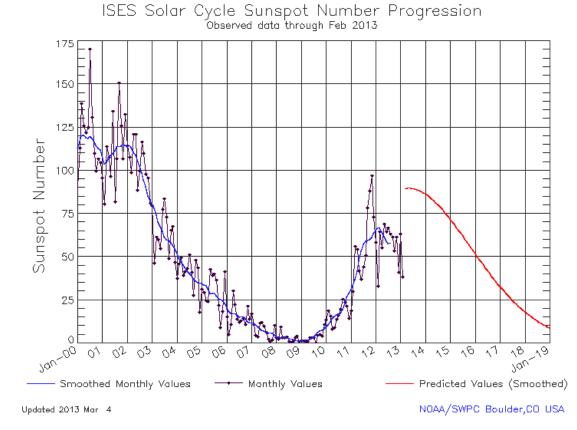

Space Weather

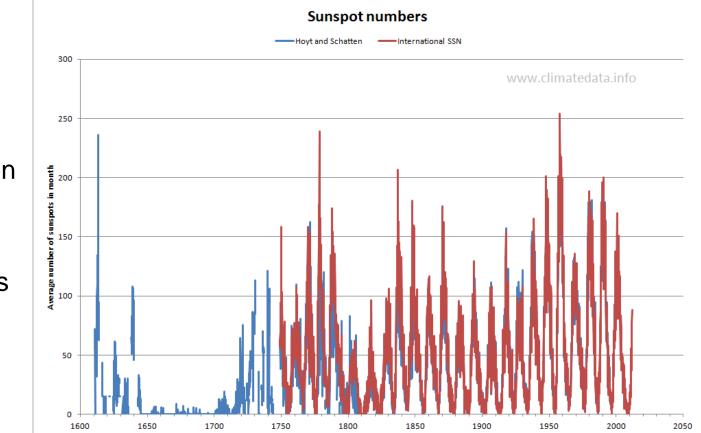


Andrew Richards – Severe Risk Analyst April 2013

Coronal Mass Ejection - CME



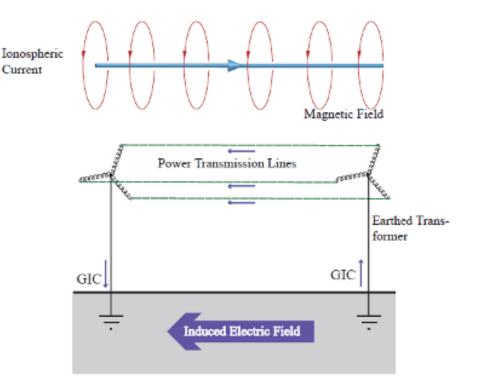
CME propagation


Solar Cycles

- Sun follows a cycle, roughly 11 years
- Cycle 24 much lower than predicted
- Cycle 24 maximum possibly during 2012
- 2 to 4 years after maximum most active for solar storms
- Large storms not strongly correlated with the cycle

Sunspot Numbers 1600 onwards

- Cycle 24 was predicted to be weakest for 100 years
- It's turned out even weaker than predicted
- Low activity cycles have occurred before



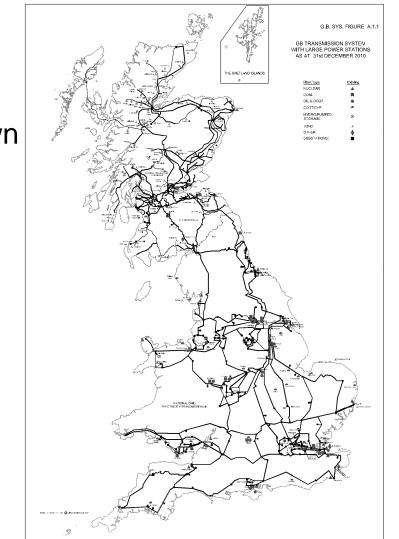
Past Events affecting Electrical Networks

- 1859 Carrington Event: Largest known storm
- 1921 New York Railroad Storm: Damaged equipment and fires
- 1940 Easter Sunday Storm: First Power Grid effects
- 1989 Quebec Blackout: First major storm of the Electricity Grid Age
- 2003 Halloween Storm: Malmö, Sweden blackout. Transformers in South Africa damaged

Geomagnetically Induced Current - GIC

- Geomagnetic Disturbance
- Induce Electric fields inside Earth's crust
- GICs flow out of earth, along transmission lines
- Earth themselves again through transformer neutrals
- Slowly varying, quasi-DC currents

Effects on the system


- Magnetic flux leakage from core
 - Overheating, gassing, shutdown
 - Potentially catastrophic failure
- Increased reactive power consumption
 - Voltage instability
 - Power outages
- Distorted output waveform
 - Higher harmonics present
 - Protective relays triggered
 - Control assets switched out

9

Risk Factors

- Geographic Location
 - Further north
 - Geological structure down to 800km
 - Coastal effects
 - Edge of system
- Longer lines
- Higher voltage
- Transformer design

- Widespread damage/destruction of high voltage transformers
 - Major disruption to electricity network
 - Recovery time of years

- Widespread damage/destruction of high voltage transformers
 - Major disruption to electricity network Effectively zero chance
 - Recovery time of years

Risk Levels of Possible Effects

- Widespread damage/destruction of high voltage transformers
 - Major disruption to electricity network Effectively zero chance
 - Recovery time of years

Damage to small number of high voltage transformers

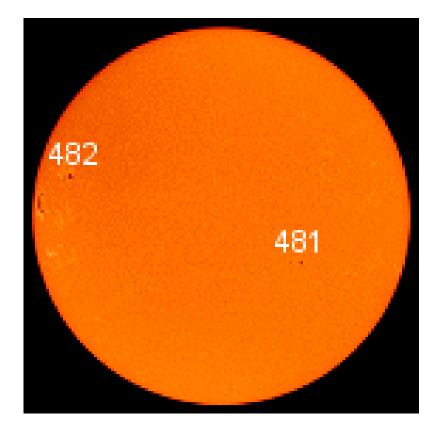
- Little or no effect on end users
- Possibly one or two nodes disconnected for some weeks

- Widespread damage/destruction of high voltage transformers
 - Major disruption to electricity network Effectively zero chance
 - Recovery time of years
- Damage to small number of high voltage transformers
 - Little or no effect on end users 1 in 100 years
 - Possibly one or two nodes disconnected for some weeks

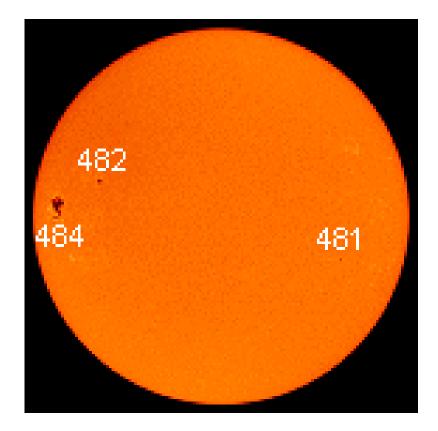
- Widespread damage/destruction of high voltage transformers
 - Major disruption to electricity network Effectively zero chance
 - Recovery time of years
- Damage to small number of high voltage transformers
 - Little or no effect on end users 1 in 100 years
 - Possibly one node disconnected for some weeks
- Reactive Power demands lead to widespread voltage disturbances

- Widespread damage/destruction of high voltage transformers
 - Major disruption to electricity network Effectively zero chance
 - Recovery time of years
- Damage to small number of high voltage transformers
 - Little or no effect on end users 1 in 100 years
 - Possibly one node disconnected for some weeks
- Reactive Power demands lead to widespread voltage disturbances
 1 in 30 years

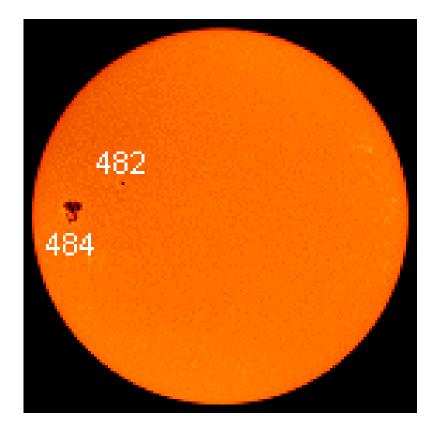
- Widespread damage/destruction of high voltage transformers
 - Major disruption to electricity network Effectively zero chance
 - Recovery time of years
- Damage to small number of high voltage transformers
 - Little or no effect on end users 1 in 100 years
 - Possibly one node disconnected for some weeks
- Reactive Power demands lead to widespread voltage disturbances
 1 in 30 years
 - Possible local power outages

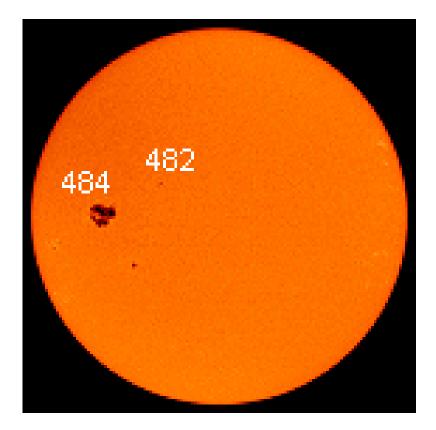

- Widespread damage/destruction of high voltage transformers
 - Major disruption to electricity network Effectively zero chance
 - Recovery time of years
- Damage to small number of high voltage transformers
 - Little or no effect on end users 1 in 100 years
 - Possibly one node disconnected for some weeks
- Reactive Power demands lead to widespread voltage disturbances
 1 in 30 years
 - Possible local power outages

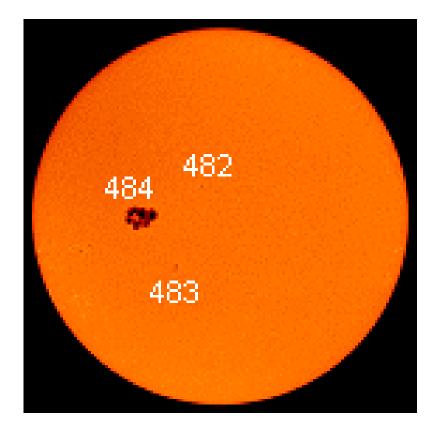
Categorisation of Disturbances

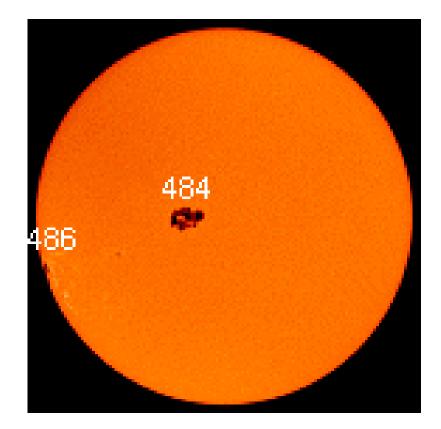

Category	Frequency	Description	Action
Category 1	4 or 5 per 11 year cycle	Media Interest. No effects on system	None
Category 2	2 or 3 per 11 year cycle	Minor Disturbance. Small voltage fluctuations seen on system.	MAGIC deployed. Heightened Awareness. Within NG normal working parameters
Category 3	1 per 11 year cycle	Storm. Voltage disturbances needing to be managed.	MAGIC deployed. Notice of system disturbance issued. Extra reactive power support. All transformers at high risk substations swithched in.
Category 4	1 in 30 year event	Major Storm. Very high reactice power demands. Likelihood of high voltage disturbance. Possibility of Bucholtz alarms on a few high risk transformers	DECC informed. Silver Command convened. All-in procedure. Circuits returned to service. All transformers connected. Extra generation synchronised. Extra reactive support. Interconnectors set to float.
Category 5	1 in 100 year event	Extreme storm. Carrington-like. Very high reactice power demands. Possibility of local voltage collapse. Likelihood of thermal damage to 10 - 20 transformers	DECC informed. Silver Command convened. All-in procedure. Circuits returned to service. All transformers connected. Extra generation synchronised. Extra reactive support. Interconnectors set to float.

18


Sunspots

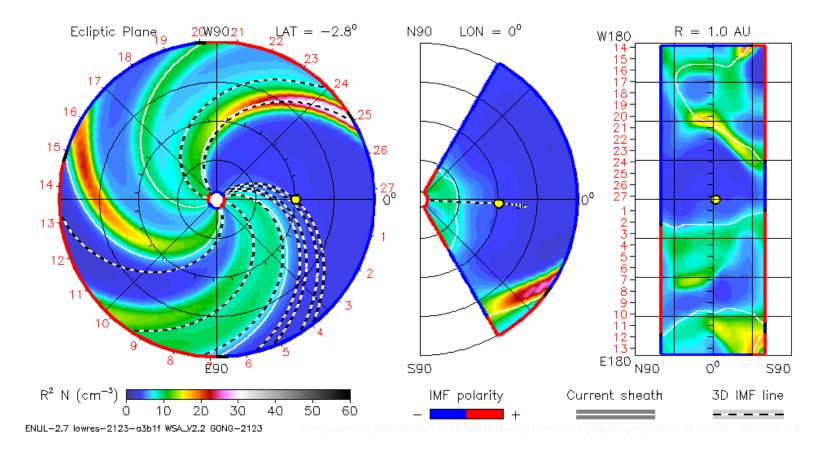

Sunspots


Sunspots

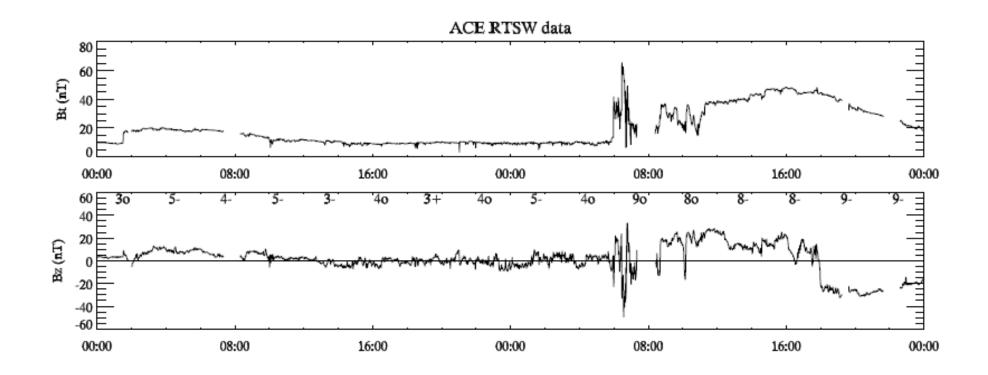

Sunspots

Sunspots

Sunspots



ENLIL Model


2012-05-13T00:00

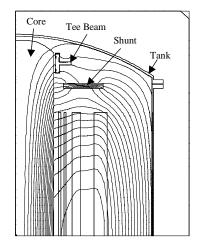
2012-05-13T00 +0.00 day

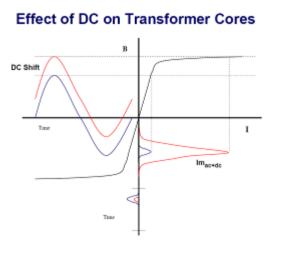
🗢 Earth

Arrival at ACE satellite

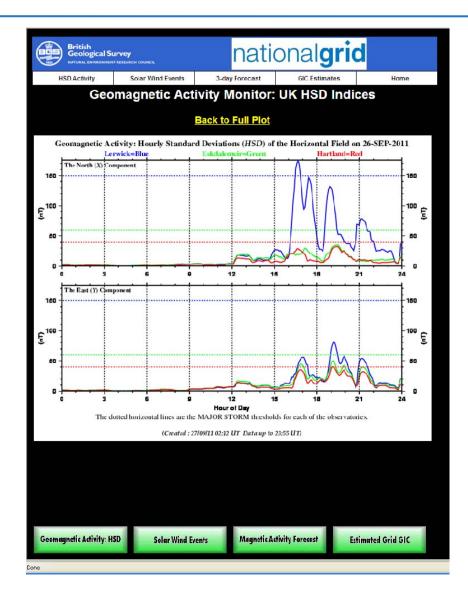
26

Mitigating the Risk: Operational


- Forecasting and Monitoring
- Increase reserves: more generation on line
- Stability of network: greater connectivity
- Share stress: utilise all available transformers
- Identify problem areas: specially designed tools

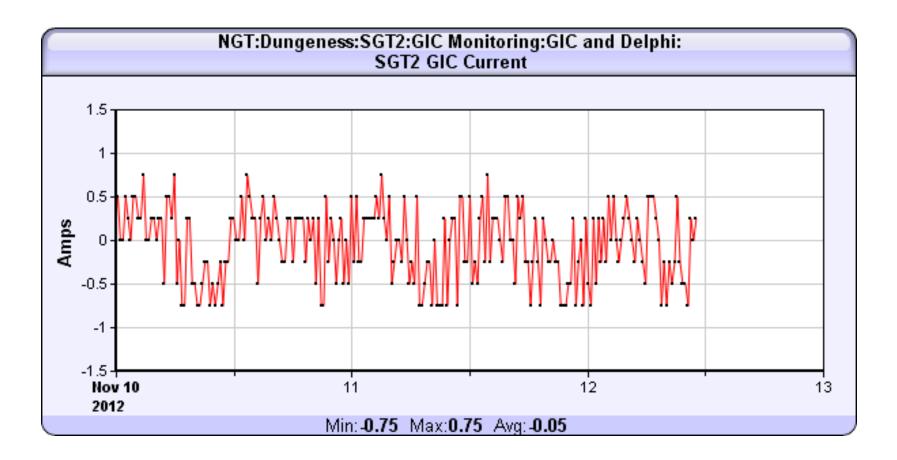


Mitigating the Risk: Design


- New transformers since 1999 have high GIC tolerance
- Increased transformer spares
- Highly connected network
- Redundancy of transformers at substations
- Short transmission line lengths

No voltages above 400 kV

National Grid / BGS MAGIC Webtool nationalgrid Magnetometer records



National Grid / BGS MAGIC Webtool nationalgrid Network Model display

→ C D www.geomag.bgs.ac.uk	British Geological Surve	зy	MÂGIC	na	tiona	al gri	d		☆ =
	Magnetic Activity	ARCH COUNCIL Solar Wind	3-day Forecast			Home			
*	A			ast time map upd			39 UT		
• • •	A A		Largest 5 (minutes:	HC in last 15	Largest 5 (HC in the last	hour:		
	The A	P)	Short code	GIC (A)	Time	Short code	GIC (A)		
			PEMB41	3.8	13:54	PEMB41	3.8		
	Still Still	R	ECCL11	3.5	13:39	PEMB41	3.7		
	I ST F	K	JUNB1A CLYS21	2.8	13:39	ECCL11 ECCL11	3.5		
			ELVA2B	2.8	13:54	PEMB41	3.5		
Point Dub Nilternity		er Riph an Surgesphasen Surgesphasen accorrent an United International	Hull		v 🦲 5.	IC < 5A A < GIC < 2 IC > 25A <u>4 hours</u>	ίA		
Wateroo	St David's Swart op Gain Bin	Worcester and monose en and a Aure	orpige	м	lap Contr	rols			
	1 August	Salisbury Data CC-BY-SA-by Op		different levels o p right corner of		e selected by	clicking on the		
	Trure Hymosth		Hover ove	r any node to dis	splay the tra	nsformer code	and GIC valu	e	
				WARNING: Currently VERY slow in Internet Explorer. Firefox and Chrome are much faster.					~
	Geomagnetic Activity	Solar Wind	l Events Magnetic A	activity Forecast	Estin	nated Grid Gl	с		
lational Grid Demandcdf								-	vnloads 🗙

30

Monitoring of Transformers

Cooperation for Cycle 24

ELECTRIC POWER RESEARCH INSTITUTE

NOAA NASA NERC (UK) NERC (US)

National Grid UK (4 SUNBURST sensors) National Grid US (2 SUNBURST sensors)

Lancaster University Manchester University Cardiff University

Scottish Power DECC Cabinet Office 32

andrew.richards@nationalgrid.com