HVDC

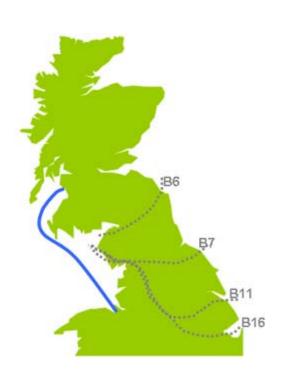
Adelle McGill

Parallel HVDC - Defect

- Existing charging model based on passive network elements
 - HVDC represents an active component
 - High relative £/MWkm cost
 - Some precedent offshore
 - Which costs go into EF calculation?
 - 2 Where does incremental MW flow?

Expansion Factor - Original

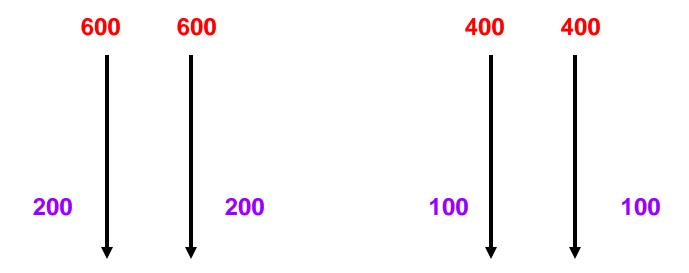
- Annuitised, unit capital cost £/MWkm/year
- Includes all cable and converter costs
- Consistent with existing treatment of radial HVDC circuits; appropriate for parallel links?



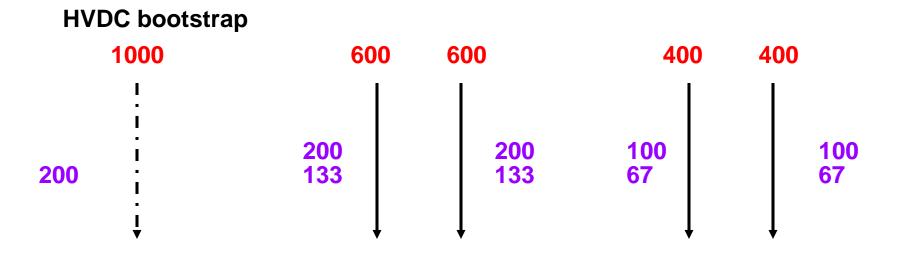
Expansion Factor – Converter stations

Alternatives to remove:

- AC equivalent costs (generic)
 - ■50% removal
 - Based on Cigre cost breakdown
- Quadrature Booster capability costs (generic)
 - Additional 10% removal
 - Based on WG analysis
- AC equivalent costs (specific)
 - Specific % removal for each link
 - Better information / more cost reflective?


Incremental MW flow

- HVDC no fixed impedance (flows controllable)
- Model HVDC as pseudo-AC → need impedance
- Obtained by calculating power flow in base case
 - Average across relevant boundaries


Calculating flows – example

Total capacity: 2000

Total flows: 600

Calculating flows – example 2

Total capacity: 3000 Total flows: 600

To calculate flow down bootstrap: Bootstrap capacity x Total flow

Total capacity

Example calculation: $1000 \times 600 = 200$ (flow down bootstrap)

3000

HVDC - Potential alternative elements

Parallel HVDC Single boundary impedance Specific EF 100% Conv+100%Cable (original) Specific EF 90% Conv+100%Cable (QB) Specific EF 50% Conv+100%Cable (AC sub) Specific EF; generic 40% Conv+100%Cable (AC sub + QB) Specific EF; generic 0% Conv+100%Cable (fixed asset) Specific EF; generic onshore Equiv. Specific EF; generic 50% Conv+100%Cable (AC sub) Specific EF; specific x% Conv. cost reduction (AC sub) T - 4 EF calculation

Islands

Adelle McGill

Western Isles

Scottish Island Connections – Defect

- Circuits proposed comprised of sub-sea cable technology
- Not accommodated in onshore charging methodology
- Configuration not envisaged when 'local circuit' charging was introduced

Orkney

Which costs go into EF calculation?

Revise MITS (local/wider) definition?

Security factor (1.8) for MITS nodes?

Islands

nationalgrid

Expansion factor

- Different network technology proposed for each island
- Calculate technology specific expansion factors
- Based on annuitised, capital unit costs
- Treat consistently with HVDC bootstraps

Expansion Factor – Island converter stations

Alternatives to remove:

- Consistent with solutions for HVDC
 - AC equivalent costs (50% generic or specific)
- No QB element for Islands
- Voltage Source Converter costs
 - Additional 20% (generic) removal
 - Based on post-WG consultation analysis

Islands

nationalgrid

Security Factor for MITS nodes

- MITS definition in Original changed to classify radial circuits (including island connections) as 'local'
- Some WACMs not including definition change
- Circuit spans of lower redundancy would have adjusted Expansion Factor calculation (i.e. multiply by 1.0/1.8)
 - for all radial circuits
- Tariff commensurate with access rights

Islands – Potential alternative elements

Islands

Specific EF 100% Conv+100% Cable (original)

Specific EF; generic 30% Conv+100% Cable (AC sub + STATCOM)

Specific EF; generic 50% Conv+100%Cable (AC sub)

Specific EF; generic 0% Conv+100% Cable (fixed asset)

Specific EF; specific x% specific Conv. cost reduction (AC sub)

T - 4 EF calculation (AC + DC)

Deriving illustrative tariffs

- Capacity information
 - based on RIIO-T1 final proposals for SHE-T
- Project Cost information
 - Latest publicly available information
 - Where no data available then use generic cost data
 - Source: 2011 ODIS (inflated to 2012 prices) and discussions with SHE-T
- Converter / AC Substation Cost information
 - Use generic cost data
 - Source: 2011 ODIS (inflated to 2012 prices) and discussions with SHE-T

Illustrative local island link circuit tariffs

Original	Western Isles	Shet	land O	rkney AC	Orkney HVDC
Local Circuit Tariff	102.	51	71.04	42.96	54.
Expansion factor	53.	95	19.64	48.32	37.
50% converters	Western Isles	Shetlan	Orkne d AC	y Orkne HVDC	•
Local Circuit Tariff	82.48	63.5	3 42.	.96 39.	32
Expansion factor	43.41	17.5	6 48.	.32 26.	90
30% converters	Western Isles	Shetland	Orkney AC	Orkney HVDC	
Local Circuit Tariff Expansion factor	74.46 39.19	60.52 16.73	42.96 48.32	33.31 22.79	

- Do not include wider, local substation or residual tariff elements
- Island connections may also have on-island local circuits which are not included