

Grid Code Progress Tracker

	Summary	Proposer	Owner	External Engagement		Internal Engagement		Stages						
Code Modification				GCDF	Workshop	EISG	TRaCC	Mod raised at GCRP	Workgroup	Draft Rep to GCRP	Industry Consultation	Report to Authority	Ofgem Decision	Implementat date
GC0023 Protection Fault Clearance Times and Back-up Protection	This modification addresses two protection issues which were first brought to the attention of the GCRP in 2008. The first issue refers to clarification of the wording associated with fault clearance times in CC.6.2.2.2(a) and CC.6.2.3.1.1(a). The second relates to provision of Generator Back-Up Protection defined within CC.6.2.2.2.2(b) and co-ordination with NG backup protection.	NG	Franklin R					19/03/2015			28/08/2015			
GC0088 Voltage Unbalance	The Grid Code sets limits for negative phase sequence (NPS) on the transmission networks of 2% in Scotland and 1% in England and Wales. NPS levels in E&W are now such that this is very close to driving major investment decisions. This issue is to examine the costs, risks and benefits of changing the Grid Code voltage unbalance limits to single GB values of 1.5% for 400kV and 275kV and 2% for 132kV.	NG	Graham S					19/11/2014			01/07/2015	16/11/2015		
GC0028 Constant Terminal Voltage	A number of generators seeking connection to and use of the NETS have expressed concern over National Grid's interpretation of "constant terminal voltage control" as referred to within CC.6.3.8 together with the requirements of CC.6.3.4.	NG	Franklin R					19/11/2009	29/01/2014	20/05/2015	03/07/2015	30/09/2015		
GC0048 ENC - RfG	The Requirements for Generators (RfG) European Network Code, once complete will become EU law and take precedence over GB law and associated Industry Codes. The establishment of a joint GCRP/DCRP workgroup is required to progress national application/implementation of RfG including necessary code changes. There are complex structural issues to consider in incorporating RfG into the GB codes.	NG	Rob W					18/09/2013	28/01/2014		01/01/2016	01/04/2016		
GC0062 Fault Ride Through	The Grid Code sets out the requirements applicable to Generators and DC Convertors to remain connected to the Transmission System for long duration voltage dips (ie longer than 140ms) and resume the export of Active Power as system voltage recovers. The issue is currently being investigated at a series of workshops	NG	Graham S					16/01/2012	03/12/2013	18/11/2015	15/01/2016	15/02/2016		
GC0075 Hybrid Static Compensators	Power Park Module developers have been installing Hybrid STATCOM / SVC's, which provide a portion (typically 50% to 75%) of their reactive capability from switched reactors and capacitors. Some of these devices have restrictions preventing repeated switching in a short period which can be seen as inconsistent with the concept of 'continuously-acting' control which is required by the Grid Code. Interested parties believe clarification is required of the Grid Code requirements on these devices and that it would be beneficial to form a Workgroup to develop proposals for clearer and more appropriate requirements on Hybrid STATCOM / SVC performance.	NG	Graham S					20/11/2013	15/05/2014	15/07/2015	01/12/2015	01/02/2016		
GC0079 Frequency Changes during large disturbances and their effect on the total system	As a result of the work carried out by the Frequency Response Technical Subgroup, report published in December 2011, the maximum rate of change of frequency (RoCoF) settings need consideration in the context of the loss of mains protection deployed on embedded generation. Phase 1 (GC0035) looked at generators of over 5MW in size; phase 2 is looking at sub 5MW generators.	NG	Scott B						22/06/2014	18/11/2015	10/12/2015	15/01/2015		
GC0077 Suppression of Sub- Synchronous Resonance from Series Capacitive Compensation	It is proposed that the Grid Code is changed to provide clarity that Transmission Licensees installing Series Capactivie Compensation devices or HVDC Convertors will ensure that Sub-synchronous Resonance and Sub-synchronous Torsional Interaction risks are appropriately mitigated.	NG	Graham S					18/09/2013						
GC0086 Open Governance	At the July 2014 GCRP meeting, the panel agreed to establish a workgroup to consider the application of open governance principles to the Grid Code, similarly to those employed by the CUSC. This would include proposer ownership, an independent chair, workgroup timescales, self-governance/fast- track/urgency, GCRP panel membership and voting, election process and set- up of an advisory forum	Customer / NG	Alex T					18/07/2014	10/09/2014		16/07/2015	01/10/2015		
GC0087 Frequency Response - outstanding issues	A number of additional issues relating to Grid Code requirements were highlighted in the Frequency Response workgroup which remain outstanding. These included the suppression of the inertial effect of synchronous generators, the provisions of frequency response by generators at low loads and the provisions of frequency response from on-site sources other than generators.	NG	Graham S		03/03/2015			20/05/2015	02/07/2015					
GC0036 Review of Harmonics Assessment Standards and Processes	The Review of Harmonics Assessment Standards and Processes Workgroup was established to examine and make recommendations to review the standards and processes employed by electricity transmission and distribution network owners to assess harmonics and, in particular, produce a report describing any changes that are considered necessary to Engineering Recommendation G5/4-1 (Planning Levels for harmonic Voltage Distortion and the Connection of Non-Linear Equipment to Transmission Systems and Distribution Networks in the UK).	NG	Mark P					17/09/2009	01/11/2015					
GC0090 HVDC ENC	High Voltage Direct Current (HVDC) is the next of the three European Network Codes for grid connections after RIG expected to conclude drafting ('Comitology')and EU member state voling. Its focus is setting consistent functional requirements for HVDC connections, including offshore HVDC networks, which connect Offshore generation schemes.	NG	Richard W					15/07/2015	18/09/2015					

				External Engagement		Internal Engagement		Stages								
Workgroups		Proposer	Owner	GCDF	Workshop	EISG	TRaCC	Mod raised at GCRP	Workgroup	Draft Rep to GCRP	Industry Consultation	Report to Authority	Ofgem Decision	Implementation date	Implementation Plan	Duration of Open Mods (Months)
GC0064 Revision of Engineering Recommendation P28	Electricity North West has proposed that a review of ER P28 'Planning Limits for Voltage Fluctuations Caused by Industrial, Commercial and Domestic Equipment in the United Kingdom' should be performed. ERP28 deals with the assessment of voltage fluctuations and associated light flicker produced by potentially disturbing equipment. ER P28 is referenced in both the Grid and Distribution Codes.	NG	Graham S					20/11/2012								NA
Stage Complete	On Track At Risk No mitigation pl	an			Not required											

ItonImplementation PlanDuration of Open Modes (Months)Image: Strain			
Image: Second			
Image: Second	tion	Implementation	Duration of Open
Image: Constraint of the second se		Plan	Mods (Months)
Image: select			NA
Image: select			
Image: state stat			NA
Image: state stat			
Image: Constraint of the second se			21
Image: Constraint of the second se			
17 17 16 NA 13			21
17 17 16 NA 13			
16 NA 13			22
16 NA 13			
NA 13			17
NA 13			
NA 13			
13			16
13			
			NA
3			13
3			
			3