Zero-miss Phenomenon in Offshore Wind Farms

Sridhar Sahukari 12 August 2015

- 1)Overview of zero-miss
 - phenomenon
- 2)General introduction to the project
- 3)Zero-miss at 220kV in Burbo
 - Extension
- 4) Mitigation for 220kV
- 5)400kV zero-miss issue
- 6)Discussion

1)Overview of zero-miss phenomenon

2)General introduction to the project

3)Zero-miss at 220kV in

- **Burbo Extension**
- 4) Mitigation for 220kV
- 5)400kV zero-miss issue

What is Zero-miss?

- Zero-miss is a phenomenon that occurs during simultaneous energisation of inductive and capacitive equipment. The inductive equipment can be a shunt reactor and capacitive equipment can be cable or harmonic filter.
- If energized at voltage zero (current max), the high DC component of the inductive equipment makes the current flowing through the circuit breaker (CB used for energisation) not see a zero-crossing for several seconds.

When does this occur?

- Theoretically, this occurs during simultaneous energisation of cable and reactor when reactor compensates for >50% of the cable
- Also occurs during simultaneous energisation of harmonic filter (capacitive component) and reactor where reactor compensates for more than 50% of the harmonic filter

Theory behind zero-miss

A simple RLC circuit illustrating zeromiss

Currents when cable is 100% compensated and switched in at voltage zero (current maximum)

Is there a problem due to zero-miss?

- Zero-miss itself is NOT a problem if we don't need to operate the breaker after energisation until the system reaches steady-state
- Also, for a 3-ph fault on the equipment (cable, reactor or filter), this is again not a problem because the ac fault current will be more dominant than the DC component making the current to cross zero. Hence, the breakers can be opened
- If there is a unbalanced fault on equipment (e.g. L-G, L-L-G, L-L), we are able to open the breaker pole for the faulty phases but may not be possible to open healthy phase poles as they may not see a zero-crossing
- If we still try to open, there is a possibility of damage to the circuit breakers and also to any personnel if precautions are not taken.

Output currents through the circuit breaker for B-C fault

Reactive power compliance requirement (UK Grid Code: CC.6.3.2)

- As per the Grid Code, we are supposed to be operating at Unity Power Factory (zero Q transfer) at the PCC with an allowed tolerance of ±5% of transfer capacity
- We should be compliant with this requirement also during energisation, otherwise we need to seek derogation from TSO

Voltage Fluctuation requirement (UK Grid Code: CC.6.1.7)

In case of long export cables there is a high possibility that, we exceed the allowed 3% voltage fluctuation if we energize cable alone. Hence, cable and reactor are energized together to reduce the voltage fluctuation

Possibility of reducing number of circuit breakers

• If we can manage the risk of zero-miss (or have a mitigation measure in place), we can reduce the number of circuit breakers required

1)Overview of zero-miss phenomenon

2)General introduction to the project

3)Zero-miss at 220kV in

Burbo Extension

4) Mitigation for 220kV

5)400kV zero-miss issue

Burbo Extension - Transmission assets

General	 • 256MW (32x8MW) rated generation • NGET connection – Bodelwyddan 400kV substation, Wales 		
Offshore Substation (Platform)	 One 220kV Offshore platform structure Two 220/34kV 200MVA transformers Two 220kV circuit breaker bays 		
Export Cable	 One 220kV AC subsea cable ~23km long from offshore platform to beach near Rhyl One 220kV AC underground cable ~12km from Rhyl beach 400kV onshore substation 		
Onshore Substation 400 kV	 Two 200/200/80 MVA 400/220/7-13.9kV transformers One 220kV double busbar One 50MVAr STATCOM One 60MVAr reactor at 400kV and 125-55MVAr variable reactor at 220kV One 400kV double busbar and one 400kV generator bay One 60MVAr harmonic filter at 400kV and one 25MVAr harmonic filter at 220kV 		

1)Overview of zero-miss

phenomenon

2)General introduction to the project

3)Zero-miss at 220kV in

Burbo Extension

4) Mitigation for 220kV

5)400kV zero-miss issue

Shunt Reactor: 55-125 MVAr

220kV Export Cable: ~35km, ~100MVAr

Results of Simultaneous energisation

1)Overview of zero-miss

phenomenon

2)General introduction to the project

3)Zero-miss at 220kV in

Burbo Extension

4) Mitigation for 220kV

5)400kV zero-miss issue6)Discussion

Mitigation Options

Option	Description	Advantage	Disadvantage
1	POW or controlled switching.	 Minimises the current by allowing to switch at maximum voltage. 	 Higher tolerance and not a fully reliable solution Need to be used along with sequential switching for best benefit
2	Pre Insertion Resistors.	• The resistance in series with CB damps out the DC component and eliminates the zero miss.	 PIRs are not available as standard design at 220kV GIS and thus make it an expensive option.
3	 Delayed switched of reactor and cable Energise cable first and few seconds of delay (to trip the cable if required) and energise the reactor 	 Faults on the cable (or filter) will be taken care by cable CB as primary protection. No issue with zero-miss 	 Exceeds the reactive power spillage at TIP (onshore) for few seconds Needs an agreement with NGET on energisation sequence
4	Reactor tee'd into cable with additional CB	 Enables sequential switching without risk of loss of wind farm. Minimises the voltage fluctuations during energisation No problem of excess MVAr spillage to Grid 	 Requires a rather complex protection scheme.

What is sequential switching

For an A-G fault of the cable

Step 1: Trip command to open the faulty phases of the common breaker used for energisation and hence clearing the fault in shortest possible time.

Step 2: Trip command to open the healthy phase poles of the reactor

Step 3: Trip command to open the healthy phase poles of the common breaker

Step 4: Trip command to open the faulty phase pole of the shunt reactor breaker

Step 5: Complete the switching sequence by opening the faulty phase pole of reactor breaker

energy

Zero miss – Lessons learnt from simulations and implementation

Reactor Currents

- In some cases, it was observed that the reactor currents of the healthy phases does not have a zero crossing by step 2
- Due to this, an additional delay is implemented for opening of healthy phase of Reactor.
- Identification of fault
 - Sometimes it is not straightforward to identify the type of fault to initiate sequential tripping
 - It was also highlighted that certain mechanical protections of the reactor might pick-up and cause an unwanted three pole operation potentially causing damage to circuit breaker and could also be a HSE hazard.

1)Overview of zero-miss

phenomenon

2)General introduction to the project

3)Zero-miss at 220kV in

Burbo Extension

4) Mitigation for 220kV

5)400kV zero-miss issue

1)Overview of zero-miss

phenomenon

2)General introduction to the project

3)Zero-miss at 220kV in

- **Burbo Extension**
- 4) Mitigation for 220kV
- 5)400kV zero-miss issue

- What impacts does NGET see for reactive power non-compliance for few seconds to avoid this HSE hazard and technical issue?
- Can we raise GC modification to CC.6.3.2 to overcome this problem?

Thank you for your attention.

Questions?

srisa@dongenergy.co.uk

