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Glossary 
AC Alternating Current 

CHIL Controller Hardware-In-the-Loop 

DC Direct Current 

DFT Discrete Fourier Transform 

𝐸𝑎𝑏𝑐  Voltages at the (virtual) rotor of the (V)SM 

GF Grid Forming 

NFP Network Frequency Perturbation Plot 

PHIL Power Hardware-In-the-Loop 

PLL Phase Locked Loop 

PWM Pulse Width Modulation 

ROCOF Rate of Change of Frequency 

RSCAD RTDS model-creation and execution development environment 

RTDS Real-Time Digital Simulator 

SCR Short Circuit Ratio 

SGRE Siemens Gamesa Renewable Energy 

𝑉𝑎𝑏𝑐  Voltages at distant upstream “infinite bus” 

VSM Virtual Synchronous Machine 

 

See also Table 3-1. 
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1 Introduction 
This document describes the production and interpretation of, principally, the Network Frequency Perturbation (NFP) 
plot. The NFP plot indicates the closed loop transfer function of the device, to a specific type of excitation, applied at 
the distant grid “infinite bus”. The NFP plot graphically shows the amplitude and phase of the active-power response 
of a device within an AC power network, when the distant upstream “infinite bus” voltage waveforms are frequency-
modulated with sub-harmonic frequencies, from 0 Hz to the fundamental. 
 
A frequency modulation of the distant grid voltages is also equivalent to, and can be thought of, a phase modulation. 
 
The NFP plot therefore shows how the active-power output of a device responds to an upstream voltage 
frequency/phase modulation. By sweeping the frequency of the frequency/phase modulation from zero towards the 
fundamental AC frequency, it is possible to build up the NFP plot. 
 
The NFP plot shows both the amplitude and phase of the active power response, for the applied amplitude and phase 
of the to frequency/phase modulated grid voltage waveforms. Therefore the NFP plot can show peaks (i.e. 
resonances) and troughs of the amplitude of the response, and also whether the active-power response is in-phase or 
out-of-phase with the distant grid voltage perturbation. Several properties of a Grid Forming (GF) device can be 
identified and quantified by examining, or reverse engineering, the NFP plot for a device: 

• The lowest modulation frequencies allow the frequency/power droop response to be evaluated/estimated. 

• The low-mid range modulation frequencies allow rolloff of droop response to be evaluated, i.e. if the primary 
response power is bandwidth-limited, for example due to the use of a steam or gas turbine with a slow 
response. 

• The mid-range modulation frequencies allow the inertia and damping response to be evaluated, along with 
any rotor resonance effects 

• The upper frequencies allow the response of the device to grid phase steps, via the total impedance between 
the (virtual) rotor and the distant upstream grid (“infinite bus”), to be evaluated.  

• “Odd” behavious at the upper frequencies, i.e. phase wrapping, can also be used as a tool to identify non Grid 
Forming (GF) devices, that do not provide the same responses to grid phase steps, and can provide responses 
that are 180° to those that a GF device might provide. 

 
The NFP plot was initially developed during ~2011-2012, and applied to the work described in the paper [1]. This was 
to support an industrial project. The NFP plot was used to tune the performance of a GF Virtual Synchronous Machine 
(VSM) (called “Voltage Drive Mode” in [1]) , coupled to a DC bus with stored energy available, such that it matched the 
dynamic performance of a turbo-diesel powered Synchronous Machine (SM), in terms of droop and prime mover 
response, inertia, and damping. [Interestingly, the GF VSM developed in [1] contains a PLL, but is grid forming, due to 
the way the control loops and PLL are configured. “Use of a PLL” does not necessarily mean that a device is non-GF!]. 
The NFP plot was first introduced in literature in the paper [2], when it was used to compare the performance of Grid 
Forming (GF) and non-grid-forming devices. 
 
The NFP plot was then further introduced in the National Grid workgroup GC0137 document from SGRE [3]. 

1.1 The “family” of four network-stimulated response plots, of which NFP is 
one. 

The Network Frequency Perturbation (NFP) plot is the most important of a family of 4 plots [3]. This document 
focusses on the production and interpreteation of the NFP plot. However, the other three plots in the “family” may be 
useful in future, although they have not been explored yet, to the author’s knowledge: 

1) NFP plot showing active power responses to grid frequency/phase modulations 

2) NFPxQ plot showing cross-linkage of reactive power responses to grid frequency/phase modulations 

and 

3) NVP (Network Voltage Perturbation) plot showing reactive power responses to grid voltage modulations 

4) NVPxP plot showing cross-linkage of active power responses to grid voltage modulations 

The “other three” plots are briefly discussed in sections 4.2.1.1, 4.2.2.1 and 4.2.2.2. 
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2 The Network Frequency Perturbation (NFP) plot 
The NFP plot [2][3] relates a grid frequency/phase perturbation to an active power response at the device terminals. 
There are 3 other plots in the family of responses (see section 1.1, and [3]), but the NFP plot is considered to be the 
most important. 

2.1 NFP plot  : context 
Figure 2-1 shows the context of a SM or VSM embedded within the power system. In this analysis, the SM rotor or 
VSM bridge is separated from the stator (or virtual stator) by a pu reactance 𝑋. This is the pu transient reactance 𝑋𝑑

′  in 
a SM, or the primary filter reactance in a VSM. However, the total impedance to the grid also includes other upstream 
elements including transformers and transmission lines. In this analysis, only the dominant inductive series elements 
are considered, and both (V)SM induced rotor and grid voltage magnitudes are considered to be nominal at 1pu. 
Angle 𝛿𝑅𝑆 describes the angle between the (virtual) rotor and the (virtual) stator, while 𝛿𝑅𝐺  describes the angle 
between the (virtual) rotor and the distant upstream grid. Figure 2-1 also shows a parallel current and power path via 
a squirrel-cage icon. This represents, in a real SM, the damper windings which introduce an additional real power flow 
that is proportional to the slip frequency between 𝜙𝑅 and 𝜙𝑆. 

 

Figure 2-1 : Context for SM or VSM embedded within power system 

2.2 NFP plot : details 
To generate the NFP plot the real or simulated device is placed within a hypothetical or ‘test’ (e.g. “Power Hardware 
in-the-Loop” PHIL or “Controller Hardware in-the-Loop” CHIL) power system, such as Figure 2-1, in which the grid 
frequency is forced and modulated in a sinusoidal fashion, centered on the nominal frequency 𝑓0, with a small 
frequency deviation, amplitude ∆𝑓 applied at frequency 𝑓𝑁𝐹𝑃𝑚𝑜𝑑 . This can be expressed as: 

The value of  𝑓𝑁𝐹𝑃𝑚𝑜𝑑  is swept across a broad range, from ~10-3 Hz to ~20 Hz or optionally up to ~50 Hz or ~60 Hz, 
whatever the fundamental frequency of the AC network is. The arbitrary angle 𝜙∆𝑓 represents a “random” 

steady-state angle offset, which should remain constant. 

The frequency modulation given by (2-1) can also be expressed, and thought of, as a phase modulation. This is 
demonstrated and quantified in section 4.1. 

The device responds to this changing frequency/phase with a modulated active power output: 

 

The amplitude of the frequency modulation ∆𝑓 is kept small enough that no unnatural saturation of device control 
loops occur. 

• Inertia power saturation limit: if the suspected device inertia is 𝐻 s, then to keep peak output power 
modulation amplitude below ∆𝑃𝑚𝑎𝑥  pu (i.e. 0.25 pu), accounting for the approximate expected power output 
∆𝑃 = −2𝐻 (𝑑𝑓 𝑑𝑡⁄ ) 𝑓0⁄  and the differentiation of frequency to 𝑑𝑓 𝑑𝑡⁄  

• Droop response limit: if the suspected device droop slope (pu frequency drop for 1 pu active power output) is 
𝐷𝑓, then ∆𝑓 < ∆𝑃𝑚𝑎𝑥𝐷𝑓𝑓0 

𝑓(𝑡) = 𝑓0 + ∆𝑓cos (2𝜋𝑓𝑁𝐹𝑃𝑚𝑜𝑑𝑡 + 𝜙∆𝑓) (2-1) 

 𝑃𝑠𝑒𝑡 + ∆𝑃 cos (2𝜋𝑓𝑁𝐹𝑃𝑚𝑜𝑑𝑡 + 𝜙∆𝑃) (2-2) 
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This would, for example, limit ∆𝑓 to ~0.5 Hz at low values of modulation frequency, dropping to ~0.01 Hz at a 10 Hz 
modulation frequency for an 𝐻 = 8 device. 

 

∆P and 𝜙∆𝑃 can be found either by: 

• Placement of the actual or simulated device and its transformer impedance(s), including its control system, 
within a real or simulated test environment (Figure 2-1), and carrying out the modulated sweep described 
above. In this case, it is important to perform Fourier analysis of both the generated frequency deviation and 
measured power outputs using coherent sample sets of the frequency (2-1) used to generate the waveform, 
and the measured power. The same window lengths and parameters must be used for the pair of Fourier 
analyses so that not only the magnitude of ∆𝑃 is correctly determined, but also its phase 𝜙∆𝑃 which must be 
determined accurately, relative to the phase of the frequency modulation cosine waveform defined by (2-1). 

• It is possible to obtain the NFP plot on-site, for a large-scale multi-MW device and without a test 
environment. The modulating frequency sweep can be injected as small open-loop adjustments to real-time 
PWM patterns (voltage angles). Fourier analyses of the frequency offsets applied at the bridge, and the 
power output, can reveal the NFP plot, on the assumption that the distant upstream grid phase/frequency is 
relatively steady throughout the test. Essentially the perturbations are applied at the rotor, while the grid 
frequency/phase deviations remain at zero, compared to the opposite scenario of Figure 2-1. There is a risk 
of locally elevated levels of flicker and voltage (inter)harmonics during the test period, if the device has a high 
power rating compared to the local grid stiffness. 

• It might also be possible to reverse engineer the NFP plot from natural variations of grid phase/frequency 
over a long test period, if the test period contains suitable grid frequency/phase events to allow the 
responses to be determined above the background noise. No method to practically achieve this is claimed 
nor presented in this report. 

• Classical analysis of the device transfer functions. For instance, the (V)SM equations (3-11) & (3-12) describe 
the NFP plot shape for a Generic VSMInt (3-12) described with a simple model. These only consider the 
simplest power-to-angle control loop, and do not account for additional control loops and interactions with 
voltage magnitude controls. Therefore, for a real device with a complex control system, potentially 
incorporating Park and Clarke transformations, more advanced state-space models may be required to reveal 
a truly accurate NFP plot, that accounts for all interacting control loops and linearisations. 

 

In all cases, the amplitudes of the voltages are kept (or assumed to remain) constant at 1 pu, so that the analysis is 
purely an examination of the interaction between active power and frequency/phase at the grid. 

The NFP response calculation requires: 

• The stimulus amplitude ∆𝑓 from the Fourier analysis of the stimulus 

• The response amplitude ∆𝑃 (where ∆𝑃 is in per-unit (pu) from the Fourier analysis of the response 

• The stimulus phase 𝜙∆𝑓 from the Fourier analysis of the stimulus 

• The response phase 𝜙∆𝑃 from the Fourier analysis of the response. 

 

Essentially, the NFP plot of 𝑅𝑁𝐹𝑃 (2-4) shows the amplitude of the power response of the device, in pu, to a 
cosinusoidally modulated grid frequency, with the frequency of the modulation swept and plotted as the x axis. The 
grid frequency modulation amplitudes ∆𝑓 must in practice be small compared with 𝑓0, and the results are normalised 
by (2-4) to a pu modulation amplitude ∆𝑓 𝑓0⁄  to ensure consistency of plotting. 

∆𝑓 <
∆𝑃𝑚𝑎𝑥

2𝐻

𝑓0

2𝜋𝑓𝑁𝐹𝑃𝑚𝑜𝑑
  Hz   (Inertial limit) 

∆𝑓 < ∆𝑃𝑚𝑎𝑥𝐷𝑓𝑓0 Hz   (Droop limit) 

(whichever is smaller) (2-3) 

𝑅𝑁𝐹𝑃  =  
∆𝑃∠𝜙∆𝑃

(
∆𝑓∠𝜙∆𝑓
𝑓0

)

   
(2-4) 



 

NFP and related frequency-domain plots 8 Andrew Roscoe 

 

The NFP amplitude plot shows |𝑅𝑁𝐹𝑃  | on the y axis against modulation frequency 𝑓𝑁𝐹𝑃𝑚𝑜𝑑  (Hz) on the x axis. The plot 

is best made by plotting both axes using logarithmic scales. The y axis can either be interpreted as: 

• the amplitude of the cosinusoidally varying power response of the device, in pu, to a 1 pu amplitude 
cosinusoidal grid frequency variation at 𝑓𝑁𝐹𝑃𝑚𝑜𝑑  

• OR, (with the same values on the x and y axes, and conceptually slightly more meaningful), the amplitude of 
the cosinusoidally varying power response of the device, in % pu, to a 1 % pu amplitude cosinusoidal grid 
frequency variation at 𝒇𝑵𝑭𝑷𝒎𝒐𝒅 . This second format essentially applies a x100 scaling to both numerator and 

denominator of (2-4), which cancel out. 

 

The NFP phase plot shows ∠𝑅𝑁𝐹𝑃  , in degrees on the y axis, against modulation frequency 𝑓𝑁𝐹𝑃𝑚𝑜𝑑  (Hz) on the x axis. 

The plot is made by plotting the x axis using the same logarithmic scale as the amplitude plot, but with a linear y scale. 
The y axis is best ranged from -90° to +27°, with +90° in the middle of the plotted y range. 

2.3 NFP plot : example 
As a visual example, Figure 2-2 and Figure 2-3 show the NFP plot, plus reverse-engineered overlays and asymptotes, 
for a GF VSM. 

• The GF VSM has internal damping [4], and a damping coefficient of 𝜁=1 in the considered grid scenario. In 
those respects, it is different to a conventional SM, which has external damping [4], and normally has a 
damping coefficient 𝜁 that is significantly less than 1. 

• However, in other respects the example VSM has been configured to behave very like a real SM, with H = 4 s,  
coupled to a prime mover, operating on a 4 % frequency (to 1 pu power) droop slope, with the prime mover 
having a response with a time constant 𝜏𝑃=1s. This would provide a response similar to that of a SM coupled 
to a turbo-diesel genset, for example. 

 
The magnitude and phase plots, Figure 2-2 and Figure 2-3, show a number of typical and useful features that will be 
described throughout the rest of this guide. 
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Figure 2-2 : Example NFP plot (magnitude), with reverse engineering overlay, for a VSM configured to operate similarly to a real 
SM with inertia H=4s, damping coefficient 𝜻=1, coupled to a prime mover with a response time constant 𝝉𝑷=1s. 



 

NFP and related frequency-domain plots 10 Andrew Roscoe 

 
Figure 2-3 : Example NFP plot (phase), with reverse engineering overlay, for a VSM configured to operate similarly to a real SM 

with inertia H=4s, damping coefficient 𝜻=1, coupled to a prime mover with a response time constant 𝝉𝑷=1s. 

2.4 NFP plot : asymptotes 
There are 3 important asymptotes on the NFP plot, plus a general rule concerning the right-hand side of the plot. 
Some of the mathematical derivation of these asymptotes requires use of a Generic VSM model, which is described 
later in section 3. However, in terms of generally describing the NFP plot, introducing the asymptotes first may suit 
many readers. Optionally, reading section 3 before reading the remainder of section 2 may suit some readers. 

2.4.1 NFP plot : asymptotes : droop response asymptote 
In the most basic case, with a steady-state frequency deviation of ∆𝑓 Hz, at a zero or very low value of modulated 
frequency 𝑓𝑁𝐹𝑃𝑚𝑜𝑑 , the expected power output will be ∆𝑃 = (∆𝑓 𝑓0⁄ ) 𝐷𝑓⁄  and 𝜙∆𝑃 = 𝜋 (i.e. 180°) as the device 

responds on a droop slope of 𝐷𝑓  pu frequency to 1 pu power. The 180° is important here since as frequency goes 

down, power output should increase. In this basic case, only the drooped response is acting, and all other mechanisms 
are inactive since the modulation frequency is so low and there are no transient events occurring, just a steady-state 
frequency offset. Therefore by (2-4): 

 

This defines an asymptote on the left-hand side of the NFP plot. For every device providing a drooped power response 
to frequency, the NPF plot should merge with this asymptote which is a horizontal line intercepting: 

• |𝑅𝑁𝐹𝑃| = 1 𝐷𝑓⁄  on the y axis  (𝑓𝑁𝐹𝑃𝑚𝑜𝑑 ⟶ 0) of the amplitude plot 

• ∠𝑅𝑁𝐹𝑃  = 180° on the y axis (𝑓𝑁𝐹𝑃𝑚𝑜𝑑 ⟶ 0) of the phase plot 

 

𝑅𝑁𝐹𝑃 = −1 𝐷𝑓⁄  (2-5) 
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The droop asymptote is shown on Figure 2-2 and Figure 2-3 as a horizontal brown dotted trace, towards the left hand 
side. 

 

For a traditional SM coupled to a mechanical prime mover and governor system, the droop response has a finite 
response time and phase lag. Therefore, for all these traditional generators, the amplitude of the droop response 
|𝑅𝑁𝐹𝑃| is expected to fall below 1 𝐷𝑓⁄  as 𝑓𝑁𝐹𝑃𝑚𝑜𝑑  rises above 0 Hz and the prime mover response become “cut off”. 

Likewise it is expected that the phase of the response ∠𝑅𝑁𝐹𝑃   will increasingly lag behind 180 ° as 𝑓𝑁𝐹𝑃𝑚𝑜𝑑  rises above 

0 Hz. 

2.4.2 NFP plot : asymptotes : inertia asymptote 
The second key asymptote is that of inertial response. This is defined using the simplistic approximation equation 
linking electrical frequency and the expected power output during a constant-ROCOF event. It should be remembered 
that this equation ignores all the effects of rotor resonance and damping, and can only be truly accurate during 
established and linear frequency ramps with a completely constant ROCOF. 
 

ΔP = −(
2𝐻

𝑓0
)
𝑑𝑓

𝑑𝑡
 (2-6) 

 
Accounting for the frequency modulation 𝑓𝑁𝐹𝑃𝑚𝑜𝑑  applied during the NFP process (2-1) and the differentiation of 

frequency in (2-6), the predicted asymptote will be:  
 

ΔP = −(
2𝐻

𝑓0
) ∆𝑓2𝜋𝑓𝑁𝐹𝑃𝑚𝑜𝑑 ∙ −𝑠𝑖𝑛(2𝜋𝑓𝑁𝐹𝑃𝑚𝑜𝑑𝑡) = (

2𝐻

𝑓0
) ∆𝑓2𝜋𝑓𝑁𝐹𝑃𝑚𝑜𝑑𝑠𝑖𝑛(2𝜋𝑓𝑁𝐹𝑃𝑚𝑜𝑑𝑡) (2-7) 

 
This has a phase which is only 90° behind the cosine waveform of (2-1), i.e. 90° advanced compared to the 180° phase 

of |𝑅𝑁𝐹𝑃| for a droop response (section 2.4.1), and a peak amplitude of (
2𝐻

𝑓0
)∆𝑓2𝜋𝑓𝑁𝐹𝑃𝑚𝑜𝑑 . 

 
This leads via (2-4) to another straight line asymptote on the NFP plot (both amplitude and phase plots): 

𝑅𝑁𝐹𝑃 = 2𝐻 ∙ 2𝜋𝑓𝑁𝐹𝑃𝑚𝑜𝑑∠270° (2-8) 

• |𝑅𝑁𝐹𝑃| = 2𝐻 ∙ 2𝜋𝑓𝑁𝐹𝑃𝑚𝑜𝑑  on the y axis of the amplitude plot, which crosses the plot diagonally from bottom-

left to top-right. 

• ∠𝑅𝑁𝐹𝑃  = 270° on the y axis of the phase plot, i.e. 90° advanced compared to the 180° phase of the |𝑅𝑁𝐹𝑃| 
asymptote for a droop response (section 2.4.1). 

 
The inertia asymptote is shown on Figure 2-2 and Figure 2-3 as a thick solid green line. 
 
The inertia asymptote line defines an idealistic response expected from a generator during a sustained 
constant-ROCOF frequency ramp. It ignores the effects of droop response, rotor resonance, and damping. Every 
device that is claiming to implement an inertial response should provide a response which approaches this line, both 
in amplitude and phase, over a range of modulation frequencies 𝑓𝑁𝐹𝑃𝑚𝑜𝑑  at which the rotor response is dominant over 

drooped and damping responses. The approach of the phase, i.e. a noticeable shift from the “default” 180° drooped 
phase response to a more advanced phase towards 270°, is a particularly important criteria for demonstrating 
dominance of an inertial response over the relevant range of 𝑓𝑁𝐹𝑃𝑚𝑜𝑑  frequencies. It is possible, over the relevant 

range of 𝑓𝑁𝐹𝑃𝑚𝑜𝑑  frequencies, to provide a boosted magnitude of response |𝑅𝑁𝐹𝑃|, but without a clear phase advance 

relative to a drooped response at 180 °. This should be interpreted as an enhanced droop/damping response, not as 
an inertial response. 
 
Likewise, it is possible for a device to offer both inertia and a fast-responding droop response such that the droop 
response is still significant at higher 𝑓𝑁𝐹𝑃𝑚𝑜𝑑  where (conventionally) inertia and rotor resonance is dominant. In such a 

case, the phase may rise above 180° but not reach all the way to 270°. This can indicate a mix of significant inertia 
PLUS fast-acting drooped/damping response. 

2.4.3 NFP plot : asymptotes : zero-damping phase-step response asymptote 
The third asymptote is a phase-step response asymptote, which relates to only the most rapid-responding power 
outputs. This response line, as opposed to the inertia asymptote, has, on the amplitude plot, a negative gradient, i.e. 
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the power output magnitude decreases with increasing modulation frequency. Also, on the phase plot, ∠𝑅𝑁𝐹𝑃   tends 
to become more lagged with increasing modulation frequency, although, for a GF device, the gradient of ∠𝑅𝑁𝐹𝑃   
normally flattens as the modulation frequency approaches nominal frequency. The response can be written down by 
examination of a simple (V)SM model (described later in section 3) as shown in Figure 3-1, to only the 
highest-frequency components of 𝑓𝐺, which directly cause a power output, as the simplest open-loop path from 𝑓𝐺  to 
𝑃𝑉𝑆𝑀  or 𝑃𝑆𝑀, without any closed-loop action through the filtering effects of inertia or the 1/s terms in the closed loop. 
 

Firstly, from (3-12), the expected response for a VSM with internal damping, or a SM with zero damping: 

𝑅𝑁𝐹𝑃  =
Δ𝑃𝑉𝑆𝑀𝑖𝑛𝑡
𝑓𝐺

= −(
𝜔0
𝑠
) (

𝑋

(𝑋 + 𝑋𝐺)
) 𝐹𝛿(𝑠)

1

𝑋
 (2-9) 

If 𝐹𝛿(𝑠) is ignored, this simplifies to: 

𝑅𝑁𝐹𝑃  =
Δ𝑃𝑉𝑆𝑀𝑖𝑛𝑡
𝑓𝐺

≈ −(
𝜔0
𝑠
) (

1

(𝑋 + 𝑋𝐺)
) (2-10) 

 
 
Secondly, from (3-11), the expected response for a SM with external damping: 

𝑅𝑁𝐹𝑃  =
Δ𝑃𝑆𝑀
𝑓𝐺

= −(
𝜔0
𝑠
) (

𝑋

(𝑋 + 𝑋𝐺)
) 𝐹𝛿(𝑠) {

1

𝑋
+ 𝐹𝑆(𝑠)

𝑘𝑆 ∙ 𝑠

𝜔0
} (2-11) 

 
Both asymptotes intercept the inertia asymptote.  
 
The first (VSM with internal damping, or a SM with zero damping) expression is easier to analyse, and, if the effect of 
𝐹𝛿(𝑠) is ignored, becomes a straight-line asymptote that intercepts the inertia asymptote (in amplitude, not phase) 
near the point of resonance. This turns out to be a really useful asymptote, and can later be used as a tool to 
reverse-engineer the damping coefficient from an NFP plot. This first expression still has meaning for a SM with finite 
external damping, since for both VSM and SM it represents the zero-damping phase-step response asymptote. 
 

𝑅𝑁𝐹𝑃  ≈ −(
2𝜋𝑓0

𝑗2𝜋𝑓𝑁𝐹𝑃𝑚𝑜𝑑
) (

1

(𝑋 + 𝑋𝐺)
) ≈ 𝑗 (

𝑓0
𝑓𝑁𝐹𝑃𝑚𝑜𝑑

) (
1

(𝑋 + 𝑋𝐺)
) (2-12) 

 

• |𝑅𝑁𝐹𝑃| = (
𝑓0

𝑓𝑁𝐹𝑃𝑚𝑜𝑑
) (

1

(𝑋+𝑋𝐺)
) on the y axis of the amplitude plot, which crosses the plot diagonally from the 

middle to the bottom-right. 

• ∠𝑅𝑁𝐹𝑃  = 90° on the y axis of the phase plot, i.e. 90° lags compared to the 180° phase of the |𝑅𝑁𝐹𝑃| 
asymptote for a droop response (section 2.4.1). It’s phase is 180 degrees different to the inertial asymptote. 

 

The “High bandwidth zero-damping phase-step (excluding 𝐹𝛿(𝑠))” response asymptote is shown on Figure 2-2 and 
Figure 2-3 as a thick, dashed, purple line. 

2.4.4 NFP plot : asymptotes : intercept of inertia and zero-damping phase-step 
asymptote on NFP amplitude plot at the natural frequency 

While the phases of the inertia and zero-damping phase-step asymptotes are different by 180 degrees, the amplitudes 
of the zero-damping phase-step asymptote (2-12) and inertia asymptotes (2-8) intercept each other on the amplitude 
plot at the undamped resonance frequency! This is a handy relationship. It can be shown by equating the magnitude 
components of the inertia (2-8) and zero-damping phase step (2-12) asymptotes: 

|𝑅𝑁𝐹𝑃| = (
𝑓0

𝑓𝑁𝐹𝑃𝑚𝑜𝑑
) (

1

(𝑋 + 𝑋𝐺)
) = 2𝐻 ∙ 2𝜋𝑓𝑁𝐹𝑃𝑚𝑜𝑑  (2-13) 

i.e. 

2𝜋𝑓𝑁𝐹𝑃𝑚𝑜𝑑 = √(
2𝜋𝑓0
2𝐻

) (
1

(𝑋 + 𝑋𝐺)
) = 𝜔𝑛 (2-14) 

Hence the interept of the two asymptotes happens at the undamped resonance frequency where  2𝜋𝑓𝑁𝐹𝑃𝑚𝑜𝑑 = 𝜔𝑛. 

 
It also implies that the magnitude of the asymptotes where this happens can be easily determined from the inertia 
asymptote slope and the natural frequency: 
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|𝑅𝑁𝐹𝑃_𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝐴𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑒𝐴𝑡𝑈𝑛𝑑𝑎𝑚𝑝𝑒𝑑𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦| = 2𝐻 ∙ 𝜔𝑛 = 2𝐻 ∙ 2𝜋. 𝑓𝑛 (2-15) 

which can also be expressed (by resubstitution of 𝜔𝑛 from (3-4): 

|𝑅𝑁𝐹𝑃_𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝐴𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑒𝐴𝑡𝑈𝑛𝑑𝑎𝑚𝑝𝑒𝑑𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 | = 2𝐻 ∙ √
𝜔0

2𝐻(𝑋 + 𝑋𝐺)
= √

2𝐻𝜔0
(𝑋 + 𝑋𝐺)

 (2-16) 

 

This also implies that, in the absence of any knowledge of a VSM from its parameters, with only access to a graphical 
NFP plot or the numerical trace of it, one might guess at the natural undamped resonance frequency by fitting/laying 
straight lines against the NFP plot and estimating their crossing point. 

 

The intercept of the two asymptotes, in magnitude, is shown on Figure 2-2. It can be seen that (roughly) this aligns 
with the peak of the actual (damped) NFP magnitude plot. It also aligns (exactly in this simple case) with the (in this 
case known) undamped natural frequency of the example device in its environment, 𝑓𝑛=1.85 Hz. 

 

This intercept point also provides another important function. It allows the damping coefficient to be determined. This 
is described in section 2.4.5 

2.4.5 NFP plot : asymptotes : estimation of damping coefficient zeta 𝜻 from the NFP 
plot 

The damping coefficient can be determined from the NFP plot, assuming that the device conforms approximately to 
the Generic VSM model described in section 3. To explain how this is done, requires the mathematics of section 3, in 
particular section 3.2.1 and 3.2.2. The overall result is that: 
 
Finally this extremely helpful equation drops out from (3-23): 

𝜻 ≈
|𝑹𝑵𝑭𝑷_𝑰𝒏𝒆𝒓𝒕𝒊𝒂𝑨𝒔𝒚𝒎𝒑𝒕𝒐𝒕𝒆𝑨𝒕𝑼𝒏𝒅𝒂𝒎𝒑𝒆𝒅𝑹𝒆𝒔𝒐𝒏𝒂𝒏𝒄𝒆𝑭𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚|

𝟐|𝑹𝑵𝑭𝑷_𝒎𝒂𝒙|
 (2-17) 

 
This means that the damping coefficient zeta, 𝜻 is related very simply to the ratio between the peak NFP amplitude 
response and the amplitude at the point at which the inertia and the zero-damping phase-step asymptotes cross. 
The peak NFP amplitude response and the asymptote crossing should both occur roughly at the undamped 
resonant frequency at 𝟐𝝅𝒇𝑵𝑭𝑷𝒎𝒐𝒅 = 𝝎𝒏 = 𝟐𝝅. 𝒇𝒏. If the zero-damping phase-step asymptote is not available or is 

unclear, then the inertia asymptote line can be used alone, with its amplitude sampled at the undamped resonant 
frequency. 

2.5 NFP plot : overlay mask lines 
In addition to the asymptotes, mask lines can be placed on the NFP plot, against which devices might be assessed for 
compliance. For example, if a device claims to have certain characteristics that match those of the example device 
shown in Figure 2-2 and Figure 2-3, then mask lines can be generated that allow certain percentage deviations from 
each of the key parameters. These can be generated using a Monte-Carlo approach, using the frequency domain 
model of section 3, analysing all the worst-case combinations of deviations of parameter values. 
 
Examples of these masks are shown on Figure 2-2 and Figure 2-3, with ±10 % deviations allowed on several 
parameters, and 0-200 % on 𝜏𝛿 . Even with 10 % deviations allowed, the mask lines appear relatively tight on Figure 
2-2 and Figure 2-3. This suggests that a significant deviation from a “target” NFP plot shape probably represents quite 
a large deviation in actual parameterisation. The technique therefore ought to be a reasonable way of assessing 
whether a device is operating with (roughly) the published parameterisation, or not. 
 
Also shown on Figure 2-3, the phase NFP plot, are two thick black lines to the right-hand side of the plot. These are 
based on typical trajectories of the phase of the NFP plots, for GF devices. The concept is that ALL GF devices ought to 
provide responses that fit between these lines, whatever the parameterisation. The lines trend towards more negative 
phases as the modulation frequency approaches fundamental. The lines should also trend towards the zero-damping 
phase-step inertia asymptote (section 2.4.3), which, in theory, is horizontal on this plot, by (2-12). The exact 
placement of these phase mask lines is still a matter for further research/discussion, and needs to be corroborated 
against typical results recorded from real devices, not just theoretical example plots. However, the general principle is 
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probably sound; that GF devices can be recognised by their distinctive amplitude and phase trajectories over this 
“upper frequency” region of the NFP plot. The NFP plot phase for a GF device tends to drop towards 0-90°, but then 
levels off and does not exhibit phase wrapping. This compares with typical NFP plot trajectories for grid-following 
devices that tend to exhibit phase-wrapping over this “upper frequency” region of the NFP plot [2]. 
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3 Simple Generic(V)SM model example 
The context for this model is described in section 2.1 and Figure 2-1.  

3.1 Simple Generic(V)SM model example : analysis 
This model was originally developed for the GC0137 input [3], and also presented in the IET journal paper [4] which 
contains distilled information describing the effect of damping, and how a GF device usually provides “internal” 
(virtual) damping, which is different to the “external” damping that appears as real power at a SM terminals. The 
“external” damping is due to the induction-machine slip-related power due to damper windings and/or parasitic 
effects in the SM. In contrast, there is no such natural “slip related” power output in a converter device, so the 
damping is by default provided “internally” and does correspond to an actual slip-related power exchange. Initial 
investigations suggest that adding “external” damping to a GF VSM might introduce or require high-frequency 
dynamics that could be undesirable from both a manufacturer and network perspective. In particular, relationships for 
a VSM with internal damping were derived and presented in [3] and [4]. These are the basis for the sections which 
follow, although some improvements have subsequently been made. 
 
Figure 3-1 shows simplest possible linear control diagram that can be drawn that encompasses both a real SM, and a 
VSM behaviour, in terms of active-power response to upstream grid frequency (and hence phase). This model makes 
no attempt to account for resistive elements in a network. The assumed relationship is that power flow is proportional 
to the angle across the inductive reactance of the key components, and that angles are small enough that 𝑠𝑖𝑛(𝛿) ≈ 𝛿. 
 
It must be appreciated that a real GF converter system, particularly one that uses Park/Clarke transforms within the 
control loops, will potentially require a MUCH more complex control diagram than Figure 3-1 shows, in order to 
represent it accurately, especially if the response needs to be linearised for analysis. Nevertheless, the simple Generic 
(V)SM model allows a number of the key expected GF VSM features to be quantified, and produces some important 
results in the context of the NFP plot. 
 

 

Figure 3-1 : Simplified linearised model of Generic SM or VSM embedded within power system, assuming voltage ~1pu, 
frequency ~1pu, and 𝒔𝒊𝒏(𝜹) ≈ 𝜹. Adapted from [3] and [5]. 
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𝐷𝑓  Frequency/power droop slope, pu frequency per pu power 

𝛿𝑅𝐺  Angle between virtual rotor and distant stiff grid 

𝛿𝑅𝑆 Angle (radians) between (virtual) rotor voltage and (virtual) stator terminals in a (V)SM 

𝐹𝛿(𝑠) A small-time-constant filter on the perception of 𝛿𝑅𝑆 , added to the models of both SM and VSM, but 
not part of the VSM control software. This tiny filter rationalises the phasor nature of the Figure 3-1 
loop representation, with time-domain behaviour of actual 50 Hz waveforms. It may also be used to 
partly represent the use of Park/Clarke transform algorithmic approaches, although detailed analysis of 
a GF converter system that uses Park/Clarke transforms requires a significantly more complex 
frequency-domain model than Figure 3-1 shows. 

𝑓𝐺  Frequency at distant (stiff) grid, in pu 

𝑓𝑆𝑒𝑡 Frequency setpoint, in pu 

𝐹𝑅(𝑠) An optional filter applied within a VSM control system, which applies additional filtering in series with 
the rotor inertia dynamics. For example, filter zeros placed at all integer multiples of actual frequency 
stop the VSM virtual rotor from oscillating at all, during the presence of harmonics and unbalance. 

𝐹𝑆(𝑠) A small-time-constant filter on the evaluation of the damping power 𝑃𝑆, added to both the real VSM 
control system, and the system model for SM 

𝑘𝑠 Damping power (pu) per pu slip 

𝑃𝑚 (Virtual) mechanical power input to a (V)SM rotor, from a (virtual) prime mover/governor 

𝑃𝑆 Damping power (real/external or virtual/internal) due to the slip of 𝜙𝑅 against 𝜙𝑆 

𝑃𝑆𝑒𝑡 Active power setpoint, in pu 

𝑃(𝑉)𝑆𝑀 The total real transient power output (pu) of the device, from (3-11), (3-12) or  
(3-26) as appropriate. 

𝑃(𝑠) Governor and prime mover response 

𝜙𝐺  Electrical angle (radians) at distant (stiff) grid 

𝜙𝑅 Electrical angle (radians) of the (virtual) rotor in a (V)SM 

𝜙𝑆 Electrical angle (radians) of the (virtual) stator terminals in a (V)SM 

𝑠 Laplace operator 𝑠 = 𝑗𝜔 

𝜔0 Nominal system frequency (radians/second) 

𝑋 The primary reactance of the SM or VSM device, in pu. For a real SM, this is 𝑋𝑑
′ , the transient reactance. 

For a converter, this is normally considered to be the impedance of the primary filter inductor. This can 
be thought of as the reactance between the (virtual) rotor and (virtual) stator in a (virtual) synchronous 
machine. 

𝑋𝐺  The additional reactance, in pu, between the (virtual) stator and a convenient grid ”point of common 
coupling” (e.g. a point on the HV grid) that i considered to be a stiff source 

𝜁 Damping ratio of the SM or VSM rotor dynamics. 𝜁 = 1 corresponds to critical damping. 

Table 3-1  Nomenclature for Figure 3-1 

From Figure 3-1 the response of the (virtual) rotor can be deduced: 

 

𝜙𝑅
𝜙𝐺
=

(
𝜔0
𝑠
) (

𝑋
(𝑋 + 𝑋𝐺)

) 𝐹𝛿(𝑠)𝐹𝑅(𝑠) {
1
𝑋
+ 𝐹𝑆(𝑠)

𝑘𝑆 ∙ 𝑠
𝜔0

}

(2𝐻𝑠 + [(
𝜔0
𝑠
) (

𝑋
(𝑋 + 𝑋𝐺)

)𝐹𝛿(𝑠)𝐹𝑅(𝑠) {
1
𝑋
+ 𝐹𝑆(𝑠)

𝑘𝑆 ∙ 𝑠
𝜔0

}] +
𝑃(𝑠)𝐹𝑅(𝑠)

𝐷𝑓
)

 (3-1) 

 

In its full form this is difficult to analyse or understand. However, if the simplifications are made that 𝐹𝛿(𝑠) ≈ 1, 
𝐹𝑅(𝑠) ≈ 1 and 𝐹𝑆(𝑠) ≈ 1 (both reasonably approximate for analysis << 50 Hz), and in the absence of a prime mover 
response (𝐷𝑓 → ∞), then (3-1) reduces to:  

𝜙𝑅
𝜙𝐺
≈

(
𝑘𝑠𝑋

2𝐻(𝑋 + 𝑋𝐺)
𝑠) + (

𝜔0
2𝐻(𝑋 + 𝑋𝐺)

)

(𝑠2 +
𝑘𝑠𝑋

2𝐻(𝑋 + 𝑋𝐺)
𝑠 +

𝜔0
2𝐻(𝑋 + 𝑋𝐺)

)
 (3-2) 

This represents a 2nd-order bandpass filter plus a 2nd-order lowpass filter. 

The denominator of these terms reveals a lot about the 2nd order transfer function behaviour [The full time-domain 
response, equivalent to (3-2) is derived in [3] (Appendix A) for reference ]. 
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𝑠2 +
𝑘𝑠𝑋

2𝐻(𝑋 + 𝑋𝐺)
𝑠 +

𝜔0
2𝐻(𝑋 + 𝑋𝐺)

⟺ 𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 (3-3) 

Where 𝜁 is the damping ratio (𝜁 = 1 corresponds to critical damping), and 𝜔𝑛 is the undamped resonant frequency in 
rads/s. Therefore the device will respond to phase steps on 𝜙𝐺  with decaying sinusoidal 𝜙𝑅 with: 

undamped resonance at 𝜔𝑛 = √
𝜔0

2𝐻(𝑋+𝑋𝐺)
 (3-4) 

damping ratio 𝜁 =
𝑘𝑠𝑋

4𝐻𝜔𝑛(𝑋+𝑋𝐺)
 (3-5) 

damped natural resonance at 𝜔𝑑 = 𝜔𝑛√(1 − 𝜁
2) (3-6) 

 

(3-4) and (3-5) can also be re-manipulated to reveal the following relationships, any of which can be used when they 
are convenient or useful: 

𝑘𝑠 =
4𝜁𝐻𝜔𝑛(𝑋+𝑋𝐺)

𝑋
      (inverse of (3-5)) (3-7) 

𝜁 =
𝑘𝑠𝑋

2√2𝐻𝜔0(𝑋+𝑋𝐺)
       (3-4) & (3-5) (3-8) 

𝑘𝑠 =
2𝜁√2𝐻𝜔0(𝑋+𝑋𝐺)

𝑋
      (inverse of (3-8)) (3-9) 

 

Equation (3-1) for a (V)SM is an important stage in determining the output power response to be determined, for a 
grid frequency disturbance 𝑓𝑔 that causes a phase disturbance 𝜙𝐺  (Figure 3-1). This will be the Network Frequency 

Perturbation plot [3]. 

3.2 Simple Generic(V)SM model example : Network Frequency Perturbation 
(NFP) plot 

The NFP plot [2][3] relates a grid frequency/phase perturbation to an active power response at the device terminals. 
There are 3 other plots in the family of responses (see section 1.1, and [3]), but the NFP plot is the most important. 

From Figure 3-1, for a real SM or VSMExt: 

𝑅𝑁𝐹𝑃 = (
𝑃𝑆𝑀𝑜𝑟 𝑃𝑉𝑆𝑀𝐸𝑥𝑡

𝑓𝑔
) =

(
𝑋

(𝑋 + 𝑋𝐺)
)𝐹𝛿(𝑠) {

1
𝑋
+ 𝐹𝑆(𝑠)

𝑘𝑆 ∙ 𝑠
𝜔0

} (𝜙𝑅 − 𝜙𝐺)

(
𝜙𝐺

(
𝜔0
𝑠
)
)

 
(3-10) 

which manipulates to (for a real SM or VSMExt):  

𝑅𝑁𝐹𝑃 = (
𝑃𝑆𝑀𝑜𝑟 𝑃𝑉𝑆𝑀𝐸𝑥𝑡

𝑓𝑔
) = (

𝜔0
𝑠
) (

𝑋

(𝑋 + 𝑋𝐺)
) 𝐹𝛿(𝑠) {

1

𝑋
+ 𝐹𝑆(𝑠)

𝑘𝑆 ∙ 𝑠

𝜔0
} (
𝜙𝑅
𝜙𝐺
− 1) (3-11) 

 

and similarly, from Figure 3-1, for a VSMInt: 

𝑅𝑁𝐹𝑃 = (
𝑃𝑉𝑆𝑀𝐼𝑛𝑡
𝑓𝑔

) = (
𝜔0
𝑠
) (

𝑋

(𝑋 + 𝑋𝐺)
) 𝐹𝛿(𝑠) {

1

𝑋
} (
𝜙𝑅
𝜙𝐺
− 1) (3-12) 

 

In both (3-11) & (3-12), the value 𝜙𝑅 𝜙𝐺⁄  is obtained via (3-1). Equations (3-11) & (3-12) can be used to evaluate the 
Network Frequency Perturbation (NFP) plot for a SM or VSMExt, or a VSMInt. These equations define the active-power 
responses of simple (V)SM devices to changes in grid frequency and phase. These equations are used to generate the 
actual response curve shown in Figure 2-2 and Figure 2-3. 

 

It is clear that the NFP plot for a device is dependent on, not only the device parameters, but ALSO the upstream grid 
impedance 𝑋𝐺. This means that the NFP plot for an individual unit in a power park varies with: 

• upstream impedance as it actually exists in Ohms (overhead lines, cables, transformers), in per unit on the 
basis of the park rating 
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• number of turbines operating in a power park, in a common-mode fashion. If only some of the units within a 
power park are operating, then the effective rating of the power park is lower, and the upstream impedance 
𝑋𝐺, as a per-unit value, is decreased. 
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3.2.1 Simple Generic(V)SM model example : Network Frequency Perturbation (NFP) plot : point of maximum amplitude 
(3-12) can be expanded as follows: 
 

(
𝑃𝑉𝑆𝑀𝐼𝑛𝑡
𝑓𝑔

) = (
𝜔0
𝑠
) (

𝑋

(𝑋 + 𝑋𝐺)
) 𝐹𝛿(𝑠) {

1

𝑋
}(

(
𝜔0
𝑠
) (

𝑋
(𝑋 + 𝑋𝐺)

)𝐹𝛿(𝑠)𝐹𝑅(𝑠) {
1
𝑋
+ 𝐹𝑆(𝑠)

𝑘𝑆 ∙ 𝑠
𝜔0

}

(2𝐻𝑠 + [(
𝜔0
𝑠
) (

𝑋
(𝑋 + 𝑋𝐺)

) 𝐹𝛿(𝑠)𝐹𝑅(𝑠) {
1
𝑋
+ 𝐹𝑆(𝑠)

𝑘𝑆 ∙ 𝑠
𝜔0

}] +
𝑃(𝑠)𝐹𝑅(𝑠)

𝐷𝑓
)
− 1) (3-13) 

(
𝑃𝑉𝑆𝑀𝐼𝑛𝑡
𝑓𝑔

) = (
𝜔0
𝑠
) (

𝑋

(𝑋 + 𝑋𝐺)
)𝐹𝛿(𝑠) {

1

𝑋
}(

(
𝜔0
𝑠
) (

𝑋
(𝑋 + 𝑋𝐺)

)𝐹𝛿(𝑠)𝐹𝑅(𝑠) {
1
𝑋
+ 𝐹𝑆(𝑠)

𝑘𝑆 ∙ 𝑠
𝜔0

} − (2𝐻𝑠 + [(
𝜔0
𝑠
) (

𝑋
(𝑋 + 𝑋𝐺)

) 𝐹𝛿(𝑠)𝐹𝑅(𝑠) {
1
𝑋
+ 𝐹𝑆(𝑠)

𝑘𝑆 ∙ 𝑠
𝜔0

}] +
𝑃(𝑠)𝐹𝑅(𝑠)

𝐷𝑓
)

(2𝐻𝑠 + [(
𝜔0
𝑠
) (

𝑋
(𝑋 + 𝑋𝐺)

) 𝐹𝛿(𝑠)𝐹𝑅(𝑠) {
1
𝑋
+ 𝐹𝑆(𝑠)

𝑘𝑆 ∙ 𝑠
𝜔0

}] +
𝑃(𝑠)𝐹𝑅(𝑠)

𝐷𝑓
)

) (3-14) 

(
𝑃𝑉𝑆𝑀𝐼𝑛𝑡
𝑓𝑔

) = (
𝜔0
𝑠
) (

𝑋

(𝑋 + 𝑋𝐺)
) 𝐹𝛿(𝑠) {

1

𝑋
}(

−(2𝐻𝑠 −
𝑃(𝑠)𝐹𝑅(𝑠)

𝐷𝑓
)

(2𝐻𝑠 + [(
𝜔0
𝑠
) (

𝑋
(𝑋 + 𝑋𝐺)

) 𝐹𝛿(𝑠)𝐹𝑅(𝑠) {
1
𝑋
+ 𝐹𝑆(𝑠)

𝑘𝑆 ∙ 𝑠
𝜔0

}] +
𝑃(𝑠)𝐹𝑅(𝑠)

𝐷𝑓
)
) (3-15) 

if the simplifications are made that 𝐹𝛿(𝑠) ≈ 1, 𝐹𝑅(𝑠) ≈ 1 and 𝐹𝑆(𝑠) ≈ 1 (both reasonably approximate for analysis << 50 Hz), and in the absence of a prime mover response (𝐷𝑓 → ∞), 

then (3-15) reduces to: 

(
𝑃𝑉𝑆𝑀𝐼𝑛𝑡
𝑓𝑔

) ≈ (
𝜔0
𝑠
) (

1

(𝑋 + 𝑋𝐺)
)(

−2𝐻𝑠

(2𝐻𝑠 + [(
𝜔0
𝑠
) (

𝑋
(𝑋 + 𝑋𝐺)

) {
1
𝑋
+
𝑘𝑆 ∙ 𝑠
𝜔0

}])
) (3-16) 

(
𝑃𝑉𝑆𝑀𝐼𝑛𝑡
𝑓𝑔

) ≈ (
𝜔0

(𝑋 + 𝑋𝐺)
)(

−2𝐻𝑠

(2𝐻𝑠2 + [𝜔0 (
𝑋

(𝑋 + 𝑋𝐺)
) {
1
𝑋
+
𝑘𝑆 ∙ 𝑠
𝜔0

}])
) (3-17) 

(
𝑃𝑉𝑆𝑀𝐼𝑛𝑡
𝑓𝑔

) ≈ −(
𝜔0

(𝑋 + 𝑋𝐺)
)

(

 
 𝑠

(𝑠2 + (
𝑘𝑆
2𝐻
) (

𝑋
(𝑋 + 𝑋𝐺)

) 𝑠 + (
𝜔0
2𝐻
) (

1
(𝑋 + 𝑋𝐺)

))
)

 
 

 (3-18) 
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This will have maximum amplitude when (roughly) the 𝑠2 term cancels with the (
𝜔0

2𝐻
) (

1

(𝑋+𝑋𝐺)
) term at a frequency of  

𝜔𝑛 as given by (3-4). 
 
The maximum amplitude will be roughly: 

|𝑅𝑁𝐹𝑃_𝑚𝑎𝑥| ≈ |(
𝑃𝑉𝑆𝑀𝐼𝑛𝑡
𝑓𝑔

)
𝑚𝑎𝑥

| ≈ (
𝜔0

(𝑋 + 𝑋𝐺)
)

(

 
 𝑠

((
𝑘𝑆
2𝐻
) (

𝑋
(𝑋 + 𝑋𝐺)

) 𝑠)
)

 
 
≈ 𝜔0 (

2𝐻

𝑘𝑆𝑋
) (3-19) 

A final step using (3-9) relates this to the damping coefficient zeta 𝜁: 

The maximum amplitude will be roughly: 

|𝑅𝑁𝐹𝑃_𝑚𝑎𝑥| ≈ |(
𝑃𝑉𝑆𝑀𝐼𝑛𝑡
𝑓𝑔

)
𝑚𝑎𝑥

| ≈ 𝜔0 (
2𝐻

𝑘𝑆𝑋
) ≈ 𝜔0

(

 
 2𝐻

(
2𝜁√2𝐻𝜔0(𝑋 + 𝑋𝐺)

𝑋
)𝑋
)

 
 

 (3-20) 

|𝑅𝑁𝐹𝑃_𝑚𝑎𝑥| ≈ |(
𝑃𝑉𝑆𝑀𝐼𝑛𝑡
𝑓𝑔

)
𝑚𝑎𝑥

| ≈
1

𝜁
√

𝜔0𝐻

2(𝑋 + 𝑋𝐺)
 (3-21) 

 

This final answer (3-21) for the (approximate) peak response can become very useful in interpreting the NFP plot and 
understanding how the damping coefficient shapes the response, relative to the intercept of the asymptotes, and 
where the inertia asymptote crosses the natural frequency 𝜔𝑛 

3.2.2 Simple Generic(V)SM model example : Network Frequency Perturbation (NFP) 
plot : estimation of damping coefficient zeta 𝜻 from the NFP plot 

There is another very useful relationship which can be determined from the NFP amplitude plot and its position 
relative to the crossing of the inertia and undamped phase step asymptotes. This can be applied after estimating 𝐻 
and (𝑋 + 𝑋𝐺) as described in sections 0 and 0. 
 
The NFP response for a VSM is given in (3-15). This was expanded and analysed, leading to an expression (3-21) for the 
approximate peak amplitude of the NFP plot, accounting for damping. 
 
Now this can be compared to the amplitude at which the inertia and zero-damping phase-step asymptotes intersect, 
given by (2-16). Combining (2-16) and (3-21) leads to: 
 

|𝑅𝑁𝐹𝑃_𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝐴𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑒𝐴𝑡𝑈𝑛𝑑𝑎𝑚𝑝𝑒𝑑𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 |

|𝑅𝑁𝐹𝑃_𝑚𝑎𝑥|
≈

√
2𝐻𝜔0
(𝑋 + 𝑋𝐺)

1
𝜁 √

𝜔0𝐻
2(𝑋 + 𝑋𝐺)

 (3-22) 

 
Finally this extremely helpful equation drops out: 

𝜻 ≈
|𝑹𝑵𝑭𝑷_𝑰𝒏𝒆𝒓𝒕𝒊𝒂𝑨𝒔𝒚𝒎𝒑𝒕𝒐𝒕𝒆𝑨𝒕𝑼𝒏𝒅𝒂𝒎𝒑𝒆𝒅𝑹𝒆𝒔𝒐𝒏𝒂𝒏𝒄𝒆𝑭𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚|

𝟐|𝑹𝑵𝑭𝑷_𝒎𝒂𝒙|
 (3-23) 

 
This means that the damping coefficient zeta, 𝜻 is related very simply to the ratio between the peak NFP amplitude 
response and the amplitude at the point at which the inertia and the zero-damping phase-step asymptotes cross. 
The peak NFP amplitude response and the asymptote crossing should both occur roughly at the undamped 
resonant frequency at 𝟐𝝅𝒇𝑵𝑭𝑷𝒎𝒐𝒅 = 𝝎𝒏 = 𝟐𝝅. 𝒇𝒏. If the zero-damping phase-step asymptote is not available or is 

unclear, then the inertia asymptote line can be used alone, with its amplitude sampled at the undamped resonant 
frequency. 
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3.3 Simple Generic(V)SM model example : Power output response to a 
reference command change 

While not important for the NFP plot generation, it is useful to also note the following relationship. For the generic VSM 
of (Figure 3-1), the output power response to a change in reference input power  𝑃𝑆𝑒𝑡  can be written as: 

𝑓𝑅 =
𝐹𝑅(𝑠)

2𝐻𝑠
[𝑃(𝑠) ( 𝑃𝑆𝑒𝑡 −

𝑓𝑅
𝐷𝑓
) − (

𝜔0
𝑠
) (

𝑋

(𝑋 + 𝑋𝐺)
)𝐹𝛿(𝑠) {

1

𝑋
+ 𝐹𝑆(𝑠)

𝑘𝑆 ∙ 𝑠

𝜔0
} 𝑓𝑅] (3-24) 

 

which evaluates as a relationship between 𝑓𝑅 and  𝑃𝑆𝑒𝑡: 

𝑓𝑅
 𝑃𝑆𝑒𝑡

=
𝐹𝑅(𝑠)𝑃(𝑠)

(2𝐻𝑠 + (
𝜔0
𝑠
) (

𝑋
(𝑋 + 𝑋𝐺)

)𝐹𝛿(𝑠)𝐹𝑅(𝑠) {
1
𝑋
+ 𝐹𝑆(𝑠)

𝑘𝑆 ∙ 𝑠
𝜔0

} +
𝐹𝑅(𝑠)𝑃(𝑠)

𝐷𝑓
)

 
(3-25) 

 

This can be taken on to the expression for 𝑃𝑉𝑆𝑀𝐼𝑛𝑡  in response to  𝑃𝑆𝑒𝑡: 

𝑃𝑉𝑆𝑀𝐼𝑛𝑡
 𝑃𝑆𝑒𝑡

= (
𝜔0
𝑠
) (

𝑋

(𝑋 + 𝑋𝐺)
) 𝐹𝛿(𝑠) {

1

𝑋
} (

𝑓𝑅
 𝑃𝑆𝑒𝑡

) 

 
(3-26) 
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4 Practical considerations 

4.1 Practical considerations : time domain considerations and test waveforms 
During the NFP sweep, the grid voltage frequency 𝑓(𝑡) is defined by (2-1), which defines a sinusoidal frequency 
modulation on the applied 𝑉𝑎𝑏𝑐  grid voltages at the distant “infinite bus”. It can also be thought of as a phase 
modulation, since frequency modulation and phase modulation are equivalent if the modulating signal is sinusoidal. 
For example: 

 

So, for example, in a time-domain environment when 𝑓𝑁𝐹𝑃𝑚𝑜𝑑  is held constant , the applied grid voltages could be 

generated by an expression such as: 

 

However in practice, if it is desired to sweep the NFP frequency 𝑓𝑁𝐹𝑃𝑚𝑜𝑑  across a number of values in a single 

simulation, such that 𝑓𝑁𝐹𝑃𝑚𝑜𝑑  is not constant against t, but only piecewise-constant, then the final equations are more 

complex than (2-1) and (4-1)-(4-3). In this case it is more practical in the simulation environment to create  𝑓(𝑡) from a 
rolling real-time integration of 𝑓𝑁𝐹𝑃𝑚𝑜𝑑  (which can be varied or stepped in real time). Then phase Φ(𝑡) can similarly be 

created with a dynamic numerical integrator from 𝑓(𝑡) and finally 𝑉𝑎𝑏𝑐(𝑡) dynamically created from Φ(𝑡) . 

4.1.1 Practical considerations : frequency spectra of grid voltages during an NFP plot 
During a time period where 𝑓𝑁𝐹𝑃𝑚𝑜𝑑  is held constant, the grid voltages are frequency/phase modulated signals, where 

the modulation is sinusoidal FM/PM, onto a sinusoidal carrier at 𝑓0. The frequency spectra of the grid voltages 𝑉𝑎𝑏𝑐(𝑡), 
thus modulated, are described by a Bessel function of the first kind. The modulation index for a generic sinusoidally-
modulated FM signal is defined by 

By comparing the form and details of this generic FM definition with (4-3), it can be determined that during the NFP 
plot the modulation index h is: 

 

During the NFP plot, the maximum frequency deviation ∆𝑓 is limited by the equations in (2-3). 
 
At low 𝑓𝑁𝐹𝑃𝑚𝑜𝑑  with  𝑓𝑁𝐹𝑃𝑚𝑜𝑑  down to 0.001 Hz for example,  these allow ∆𝑓 ≫ 𝑓𝑁𝐹𝑃𝑚𝑜𝑑  and therefore modulation 

index ℎ ≫ 1, in which case there are multiple FM sidebands in the spectra, it is considered to be “wideband FM” and 

the FM bandwidth can be considered to be ~2∆𝑓. At high 𝑓𝑁𝐹𝑃𝑚𝑜𝑑 , (2-3) restricts ∆𝑓 to: 

and therefore: 

Φ(𝑡) = ∫2𝜋𝑓(𝑡) ∙ 𝑑𝑡 = ∫2𝜋 (𝑓0 + ∆𝑓cos (2𝜋𝑓𝑁𝐹𝑃𝑚𝑜𝑑𝑡 + 𝜙∆𝑓)) ∙ 𝑑𝑡 (4-1) 

Φ(𝑡) = 2𝜋𝑓0𝑡 +
2𝜋∆𝑓

2𝜋𝑓𝑁𝐹𝑃𝑚𝑜𝑑
sin (2𝜋𝑓𝑁𝐹𝑃𝑚𝑜𝑑𝑡 + 𝜙∆𝑓) + 𝑐            (Assuming 𝑓𝑁𝐹𝑃𝑚𝑜𝑑  is constant) (4-2) 

𝑉𝑎𝑏𝑐(𝑡) = 𝑉𝑐𝑜𝑠 (2𝜋𝑓0𝑡 +
2𝜋∆𝑓

2𝜋𝑓𝑁𝐹𝑃𝑚𝑜𝑑
sin (2𝜋𝑓𝑁𝐹𝑃𝑚𝑜𝑑

𝑡+ 𝜙∆𝑓) + [
0

−2𝜋 3⁄

2𝜋 3⁄
]) (4-3) 

ℎ =
∆𝑓

𝑓𝑚
 in the context of a signal defined by 𝑦(𝑡) = 𝐴𝑐𝑜𝑠 (2𝜋𝑓𝑐𝑡 +

∆𝑓

𝑓𝑚
sin(2𝜋𝑓𝑚𝑡)) (4-4) 

ℎ =
∆𝑓

𝑓𝑚
=

∆𝑓

𝑓𝑁𝐹𝑃𝑚𝑜𝑑
 (4-5) 

∆𝑓 <
∆𝑃𝑚𝑎𝑥
2𝐻

𝑓0
2𝜋𝑓𝑁𝐹𝑃𝑚𝑜𝑑

 (4-6) 

ℎ <

(
∆𝑃𝑚𝑎𝑥
2𝐻

𝑓0
2𝜋𝑓𝑁𝐹𝑃𝑚𝑜𝑑

)

𝑓𝑁𝐹𝑃𝑚𝑜𝑑
 (4-7) 
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Since a sensible upper limit of exploration of 𝑓𝑁𝐹𝑃𝑚𝑜𝑑  is 𝑓0, this puts an upper bound on h, at the upper values of  

of 𝑓𝑁𝐹𝑃𝑚𝑜𝑑 , at: 

Depending on ∆𝑃𝑚𝑎𝑥   allowed during the NFP test (see (3-27)), and the setting of inertia H, this can allow values of h 

less than unity. If ℎ ≪ 1, then the FM is considered to be “narrowband FM” and the bandwidth can be considered to 

be ~2𝑓𝑁𝐹𝑃𝑚𝑜𝑑
. 

 

For intermediate values of h, it can be seen that the bandwidth of the FM spectra signal could be considered to be 
roughly the maximum of the two values: 2∆𝑓 or 2𝑓𝑁𝐹𝑃𝑚𝑜𝑑 . 

4.2 Practical considerations : carrying out response sweeps for NFP and NVP 
plots in simulation and real-world environments 

Within time-domain simulations and when real-world device implementations are involved, evaluation of the device 
responses to the modulated frequency/phase or voltage magnitudes need careful consideration. Here it is useful to 
recall that there are 4 possible plots in the NFP family (see section 1.1). The “NFP” pair of plots require a sinusoidal 
modulation of the frequency/phase of the voltage waveforms, while the “NVP” pair of plots require a sinusoidal 
modulation of voltage amplitude. 
 
Due to the assumed reciprocity of the total grid impedance, between the distant upstream “infinite bus” and the 
(virtual) device rotor (Figure 2-1), it is possible to either: 

• modulate the frequency/phase/voltage of either the distant upstream grid voltages 

• OR to instead artificially place the modulation at the (virtual) rotor. 
In theory, both will draw out the same active and reactive power flows, if the modulated deviations are applied 
oppositely at the (virtual) rotor to they were at the grid, or if the resulting P/Q values are negated. 
 
When the distant upstream grid voltages are modulated, then this requires either 

• the entire analysis to be done in simulation 

• OR, a CHIL environment can be used to directly test the device (controller) response 

• OR, a PHIL environment can be used to directly test the whole device response (including power hardware). 
In this case, the PHIL environment needs to be rated appropriately for the device. This requirement may 
preclude such PHIL testing for MW and multi-MW scale devices. 

 
The alternative, which is available for VSM devices, is to instead make a direct modulation of the voltages applied to 
the converter bridge virtual rotor, 𝐸𝑎𝑏𝑐 , Figure 2-1, using direct signal injection. For the test to have a meaningful 
result: 

• For NFP sweeps (see section 1.1), the frequency/phase modulation must be applied by injecting the required 
signal at 𝑓𝑅 (frequency modulation) or 𝜙𝑅 (phase modulation). The injected signals must not be routed 
anywhere within the device’s control system, apart from via the direct path to the modulated waveforms 
𝐸𝑎𝑏𝑐 . This means that if the signals 𝑓𝑅 or 𝜙𝑅 are part of feedback loops within the software, then the signal 
injection must be placed AFTER the fed-back signals are generated, but before the final PWM modulator. 

• For NVP sweeps (see section 1.1), the amplitude modulation must be applied by injecting the required signal 
at the point where the PWM modulator actually sets the virtual rotor modulation depth. The injected signals 
must not be routed anywhere within the device’s control system, apart from via the direct path to the 
modulated waveforms 𝐸𝑎𝑏𝑐 . The signal injection must be placed AFTER any fed-back signals are generated, 
but before the final PWM modulator. 

• Either the modulations need to be inverted, or the measured P/Q values negated, compared to the ”normal” 
test configuration, when the grid voltages are manipulated. 

• When using this method, consideration has to made about the effective grid stiffness. For example, if a 
power park contains many individual GF power units, then the Short Circuit Ratio (SCR) and grid impedance 
𝑋𝐺  (see section 3.2) are usually assessed on the basis that all units operated in an aggregated, common-
mode, fashion. However, if the individual power units within that park operate with different modulating 
power/phase/voltage profiles, then the effective grid stiffness, as ”perceived” by each individual power unit, 
can be much stiffer than the quoted park SCR suggests, in terms of the reaction at that modulation 

ℎ <
∆𝑃𝑚𝑎𝑥
4𝜋𝐻

𝑓0

𝑓𝑁𝐹𝑃𝑚𝑜𝑑
2 (4-8) 

ℎ <
∆𝑃𝑚𝑎𝑥
4𝜋𝐻

 (4-9) 
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frequency. This is because the operation of the individual units become decorrelated, and there are increased 
differential-mode but decreased common-mode actions. In particular, if an NFP sweep is done, using internal 
signal injection, using just a single unit within a large power park, then the grid will appear very stiff to that 
particular unit, at each modulation frequency used. This is especially true if the units are all GF units, as each 
other GF unit will tend to make the local grid stiffer, unless it ALSO has the same modulated NFP injections 
made. It will not be possible to create the NFP plot for the whole park operating in an aggregated fashion, 
without either: 

o injecting the same NFP modulation signals to the bridges, in a time-synchronised manner, to all 
power units, simultaneously.  

o OR, inserting an additional impedance upstream of a single unit, so that the per-unit impedance 
value of that additional impedance (on the rating of that single unit) matches the per-unit value of 
the normal park upstream impedance, on the rating of the whole park. 

o OR, accepting that the above two options are not trivial, and this may mean that practical on-site 
testing of such units within power parks only feasibly represents stiff grid scenarios, and that to 
investigate weak-grid common-mode reactions to NFP stimuli at the grid side, practically requires 
simulation rather than on-site testing. 

4.2.1 Practical considerations : NFP sweeps in practice 
The following are guidelines or items to consider when carrying out an NFP type plot. 
 
The value of  𝑓𝑁𝐹𝑃𝑚𝑜𝑑  is swept across a broad range, from (ideally) 0.001 Hz to 50 Hz, while 𝜙∆𝑓 should generally be 

kept constant. In practice a range of 0.02 Hz <𝑓𝑁𝐹𝑃𝑚𝑜𝑑  < 50 Hz is more appropriate, due to the excessively long periods 
of 𝑓𝑁𝐹𝑃𝑚𝑜𝑑  at frequencies below 0.02 Hz. 

 
The saturation limits listed in (2-3) must be considered. 
 
It is important that the acquisition system be able to sample the disturbance signal 𝑓(𝑡) (2-1) coherently with the 
signal 𝑃𝑜𝑢𝑡(𝑡) (2-2), without filtering effects or unequal time latency/lag in either acquisition channel that skew or 
colour the data. 

 

It is also important that the duration of the signal generation and signal acquisition, for each value of 𝑓𝑁𝐹𝑃𝑚𝑜𝑑 , is long 

enough to capture at least 2 or more periods of 𝑓𝑁𝐹𝑃𝑚𝑜𝑑 , preferable 5 or more. Where 𝑓𝑁𝐹𝑃𝑚𝑜𝑑  is small and the period 

becomes large so that only a few periods can be captured, it becomes important also to ensure that the data capture 
length is an integer multiple of the 𝑓𝑁𝐹𝑃𝑚𝑜𝑑  period, to reduce spectral leakage in the subsequent DFT operations. 

 

As a target the channels must be aligned within: 

to achieve a phase accuracy of 2 degrees. For example this is approx 100 µs (equivalent to 1 sample at 10 kHz), to give 
a ~2 degree accuracy in NFP phase response accuracy at 50 Hz. Larger errors are tolerable at lower values of 𝑓𝑁𝐹𝑃𝑚𝑜𝑑 , 

and is useful for those low values of 𝑓𝑁𝐹𝑃𝑚𝑜𝑑  where acquisition times need to be extended. This means that as 

acquisition times are extended, the sample rates can be reduced and the coherence tolerance increases by (4-10). 

 

So (as an example): 

1) Calculate the integer number of periods which are required to fill 5 seconds 

o 𝑁5 = 𝑐𝑒𝑖𝑙(5𝑓𝑁𝐹𝑃𝑚𝑜𝑑) 

2) If 𝑁5 > 2 then set 𝑡𝐴𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 =
𝑁5

𝑓𝑁𝐹𝑃𝑚𝑜𝑑
 

3) Otherwise, set  𝑡𝐴𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 =
2

𝑓𝑁𝐹𝑃𝑚𝑜𝑑
 

4) Configure the signal generation and acquisition (plot) devices to 𝑡𝐴𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛  so that an integer number of 

periods of 𝑓𝑁𝐹𝑃𝑚𝑜𝑑  are captured. 

∆𝑡 <
2

360∙𝑓𝑁𝐹𝑃𝑚𝑜𝑑
 seconds (4-10) 
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The acquisition system must, for each frequency point 𝑓𝑁𝐹𝑃𝑚𝑜𝑑 , 

• Generate the frequency disturbance by (2-1) and/or the principles outlined in section 4.1 

• Apply the signal and allow a suitable settling period, e.g. 10 seconds or 𝑡𝐴𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 , whichever is the shorter. 

• Capture the time-domain samples of 𝑓(𝑡) and 𝑃𝑜𝑢𝑡(𝑡) for a period of at least 𝑡𝐴𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 , and then 

(rectangular) window them to 𝑡𝐴𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛  seconds if necessary. 

o Note, in this context, 𝑃𝑜𝑢𝑡  should not contain any filtering and should be taken directly from 𝑃𝑖𝑛𝑠𝑡 , 
the instantaneous active power. 

• remove DC bias 

• perform DFTs on the AC residues, using suitable (e.g. Hanning) windows (length  𝑡𝐴𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛) revealing 

o ∆𝑓∠𝜙∆𝑓, the input frequency disturbance, extracted from the DFT of 𝑃𝑜𝑢𝑡  at the spot frequency 

𝑓𝑁𝐹𝑃𝑚𝑜𝑑  

o ∆𝑃∠𝜙∆𝑃, the output power response component, extracted from the DFT of 𝑃𝑜𝑢𝑡  at the spot 
frequency 𝑓𝑁𝐹𝑃𝑚𝑜𝑑  

o The required spot frequency may not correspond exactly to a DFT “bin”, so in this case a suitable 
interpolation algorithm should be used over the nearest DFT “bin” frequency points.   

• calculate the response 𝑅𝑁𝐹𝑃  : 

4.2.1.1 The NFPxQ plot 

The NFPxQ plot (see section 1.1) can be gathered in exactly the same way as the NFP plot, using the same stimulus 
waveform, applied to either grid frequency/phase, or injected via virtual rotor frequency/phase. However, the 
measured power will be 𝑄𝑜𝑢𝑡 , reactive power, instead of 𝑃𝑜𝑢𝑡 , active power. 
 
In this context, 𝑄𝑜𝑢𝑡  should ideally not contain any filtering and therefore should perhaps be taken from 𝑄𝑖𝑛𝑠𝑡 ,an 
“instantaneous” reactive power. However, an unfiltered 𝑄𝑜𝑢𝑡  measurand has debateable physical significance, and it 
may make more sense to accept a 𝑄𝑜𝑢𝑡  perception over (for example) single-cycle periods, and limit the upper 
frequency shown on the NVP plot to (for example) half the fundamental frequency. 
 
 
The NFPxQ response will be : 

 

4.2.2 Practical considerations : NVP sweeps in practice 
To create the stimulus, the grid (or virtual rotor) voltage magnitude should be modulated: 

where 

 
𝑓𝑁𝑉𝑃𝑚𝑜𝑑  should be swept as for the NFP plot. 

 
The magnitude of ∆𝑉 should be selected for each 𝑓𝑁𝑉𝑃𝑚𝑜𝑑  point, so that 𝑑𝑉𝐷𝑖𝑠𝑡 𝑑𝑡⁄  does not exceed 1.0 pu/s (this is a 

somewhat arbitrary value chosen by the author at the time of writing, based solely on engineering judgement). The 
magnitude of ∆𝑉 should also be small enough that it cannot push the device into current limit, accounting for 
aggressive droop slopes that may be in place. 
 
This means that (as an example guide): 

𝑅𝑁𝐹𝑃  = |𝑅𝑁𝐹𝑃|∠𝑅𝑁𝐹𝑃  =  
∆𝑃∠𝜙∆𝑃

(
∆𝑓∠𝜙∆𝑓
𝑓0

)

   
(4-11) 

𝑅𝑁𝐹𝑃𝑥𝑄 = |𝑅𝑁𝐹𝑃𝑥𝑄|∠𝑅𝑁𝐹𝑃𝑥𝑄 =  
∆𝑄∠𝜙∆𝑄

(
∆𝑓∠𝜙∆𝑓
𝑓0

)

   
(4-12) 

 |𝑉| = 1 + 𝑉𝐷𝑖𝑠𝑡    (in pu) (4-13) 

𝑉𝐷𝑖𝑠𝑡 = ∆𝑉cos (2𝜋𝑓𝑁𝑉𝑃𝑚𝑜𝑑𝑡 + 𝜙∆𝑉) (4-14) 
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The same considerations about signal injection and data acquisition should be applied, as described for the NFP plots 
in sections 4.2 and 4.2.1. 

4.2.2.1 The NVP plot 

The NVP response assesses the reactive power modulation at frequency 𝑓𝑁𝑉𝑃𝑚𝑜𝑑, the the voltage change: 

 
In this context, 𝑄𝑜𝑢𝑡  should ideally not contain any filtering and therefore should perhaps be taken from 𝑄𝑖𝑛𝑠𝑡 , an 
“instantaneous” reactive power. However, an unfiltered 𝑄𝑜𝑢𝑡  measurand has debateable physical significance, and it 
may make more sense to accept a 𝑄𝑜𝑢𝑡  perception over (for example) single-cycle periods, and limit the upper 
frequency shown on the NVP plot to (for example) half the fundamental frequency. 

4.2.2.2 The NVPxP plot 

The cross-product response from voltage disturbance to active power response can be gathered and plotted in exactly 
the same way as the NVP plot, as described in sections 4.2.2 and 4.2.2.1, except that the measured power will be 𝑃𝑜𝑢𝑡 , 
active power, instead of 𝑄𝑜𝑢𝑡 , reactive power. 
 
In this context, 𝑃𝑜𝑢𝑡  should not contain any filtering and therefore should be taken directly from 𝑃𝑖𝑛𝑠𝑡 , the 
instantaneous active power. 
 
The NVPxP response will be : 

 

∆𝑉 <
1.0

2𝜋𝑓𝑁𝑉𝑃𝑚𝑜𝑑
 pu 

(whichever is smaller). (4-15) 
∆𝑉 < 0.05 pu 

𝑅𝑁𝑉𝑃 = |𝑅𝑁𝑉𝑃|∠𝑅𝑁𝑉𝑃 =  
∆𝑄∠𝜙∆𝑄
∆𝑉∠𝜙∆𝑉

   (4-16) 

𝑅𝑁𝑉𝑃𝑥𝑃 = |𝑅𝑁𝑉𝑃𝑥𝑃|∠𝑅𝑁𝑉𝑃𝑥𝑃 =  
∆𝑃∠𝜙∆𝑃
∆𝑉∠𝜙∆𝑉

   (4-17) 
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5 Reverse engineering an NFP plot to determine (V)SM parameters 

5.1 Deducing VSM parameters 𝑯, 𝜻, etc. from the NFP plot 
Given an NFP plot, it is possible to determine the parameters for a generic VSM model (Figure 3-1) from the NFP plot 
(e.g. Figure 2-2 & Figure 2-3), with good accuracy, if the NFP plot belongs to a device that is a good match for the 
generic VSM model (Figure 3-1), placed within a grid, test, or simulation scenario which is also a good match for the 
generic VSM model (Figure 3-1). 
 
There are several procedures of varying complexity which allow reverse-engineering of the generic VSM model 
parameters from the NFP plot. The below sections give examples, but there will be other ways and methods to be 
discovered. 

5.1.1 Basic estimation of droop response from the NFP plot 
The droop response (if present) can be estimated from the reciprocal of the magnitude of the NFP plot as modulation 
frequency approaches zero. The NFP plot phase should approach 180° in this case, at that part of the NFP plot. 

5.1.2 Basic estimation of 𝑯 from the NFP plot inertia asymptote 
The most basic reverse-engineering of 𝐻 is to estimate 𝐻 from the part of the NFP plot that approaches the inertia 
asymptote (see section 2.4.2). The hard part is: 

• To pick the correct frequency range of the NFP plot, which might (roughly) match the inertia asymptote. 

• Even the ideal generic VSM NFP plot does not exactly overlay the inertia asymptote, so the fit can only ever 
be approximate with this simple analysis 

 
Nevertheless, a relatively basic curve-fitting technique and gradient estimation, over a restricted frequency range, can 
yield reasonable results, as shown by the example of the thin yellow dotted line, deduced in Figure 2-2. This estimates 
an intertia 𝐻=4.41 s, against an actual value of 𝐻=4.0 s, in the example shown. 

5.1.3 Basic estimation of total bridge-grid impedance (𝑿 + 𝑿𝑮) 
It is also possible to estimate (𝑋 + 𝑋𝐺) from the NFP plot by fitting a “downslope” to the NFP plot, over the upper part 
of the frequency range from the peak of the NFP plot (amplitudes) to the highest frequency point on the NFP plot. 
This is where the phase-step response asymptote (see section 2.4.3) is dominant. 

The key equation is (2-12) which gives: 

𝑅𝑁𝐹𝑃  ≈ 𝑗 (
𝑓0

𝑓𝑁𝐹𝑃𝑚𝑜𝑑
) (

1

(𝑋 + 𝑋𝐺)
) (5-1) 

 

Because this expression is proportional to the reciprocal of 𝑓𝑁𝐹𝑃𝑚𝑜𝑑 , the easiest curve fit is obtained by fitting to the 

reciprocal of  |𝑅𝑁𝐹𝑃  |. 

 

This means that: 

1

|𝑅𝑁𝐹𝑃  |
≈ 𝑓𝑁𝐹𝑃𝑚𝑜𝑑 (

(𝑋 + 𝑋𝐺)

𝑓0
) (5-2) 

𝑑 (
1

|𝑅𝑁𝐹𝑃  |
)

𝑑𝑓
≈ (

(𝑋 + 𝑋𝐺)

𝑓0
) (5-3) 

 

The hard part of this is: 

• To pick the correct frequency range of the NFP plot, which might (roughly) match the phase-step asymptote. 

• Even the ideal generic VSM NFP plot does not exactly overlay the phase-step asymptote, so the fit can only 
ever be approximate with this simple analysis 

 
On the example Figure 2-2, this procedure led to an estimated (𝑋 + 𝑋𝐺) of 0.30 pu, against an actual modelled value 
of 0.29 pu. By combining this value with the estimated inertia 𝐻=4.41 s, the undamped natural frequency was also 
estimated on  Figure 2-2, using (2-14), at 𝑓𝑛=1.73 Hz, against an actual modelled value of 1.85 Hz. 
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5.1.4 Basic estimation of 𝜻 : How to determine |𝑹𝑵𝑭𝑷_𝒎𝒂𝒙| and 𝝎𝒏 = 𝟐𝝅. 𝒇𝒏 

The tricky part is how to determine |𝑅𝑁𝐹𝑃_𝑚𝑎𝑥| and 𝜔𝑛 = 2𝜋. 𝑓𝑛 from the NFP plot. 

 

A first guess would be literally to extract the maximum response  |𝑅𝑁𝐹𝑃_𝑚𝑎𝑥| and assign 𝜔𝑛 = 2𝜋. 𝑓𝑛 to be the 

frequency at which that appears on this plot. However, if this approach is taken, it is relatively inaccurate. The yellow 
asterisk markers on Figure 2-2 show how using this method could work 
 
To estimate the damping this way you still also need to guess at the inertia 𝐻 or estimate it using section 5.1.2 
In the example shown, even with a perfectly guessed 𝐻, the estimated . 𝑓𝑛 and 𝜁 values are in error by 35-40 % 
 
Of course if you already know 𝐻, (𝑋 + 𝑋𝐺), and therefore  𝜔𝑛 = 2𝜋. 𝑓𝑛 by (3-4), then you can place different markers 
on the example  Figure 2-2, i.e. the yellow ‘+’ markers at the exactly correct 𝑓𝑛. (On Figure 2-2 they are mostly 
obscured behind the circle markers). This leads to an exact determination of the correct 𝜁 value, which is more a test 
of the equation (3-23) than anything else. 
 
What is more useful is to follow the procedures in sections 5.1.2 and 5.1.3 to estimate 𝐻, (𝑋 + 𝑋𝐺), and therefore  
𝜔𝑛 = 2𝜋. 𝑓𝑛 by (3-4), all done from the NFP plot itself. This gives a reasonable estimate, without cheating, of 𝑓𝑛 and 
allows equation (3-23) to be evaluated with the estimated values. The example markers on Figure 2-2 are the yellow 
circles 
 
This procedure can ultimately lead to quite accurate results. In the example of Figure 2-2: 

• 𝐻 estimates as 4.40 (actual was 4.00) 

• (𝑋 + 𝑋𝐺) estimates as 0.30 (actual was 0.29) 

• 𝑓𝑛 estimates as 1.73 (actual was 1.85) 

• 𝜁 estimates as 1.07 (actual was 1.00) 

5.1.5 Estimation of all parameters from NFP plot using multi-parameter fit 
As an alternative, or as a follow-on to the estimation procedures described in sections 5.1.1 to 5.1.4, a more complex 
fitting process can be carried out. This could be achieved using one of a number of “optimisation” techniques that 
allow minimisation of an error function so that the closest possible match of model parameterised by a number of 
parameters, to a set of data, can be found. 
 
For example, in the example there are 7 parameters that are fitted to attempt to match the Generic VSM model 
performance shown in Figure 2-2 & Figure 2-3: 

• 𝐻  
• (𝑋 + 𝑋𝐺) 
• 𝜁 
• 𝜏𝑆 which sets the time constant for 𝐹𝑆(𝑠) 

• 𝐷𝑓  droop slope 

• 𝜏𝑃 which sets the time constant for 𝑃(𝑠) 

• 𝜏𝛿  which sets the time constant for 𝐹𝛿(𝑠) 
 
These can be initially populated (seeded) with initial guesses, optionally including data obtained from prior basic 
estimations described in sections 5.1.1 to 5.1.4.  
 
By creating a suitable error function, and operating the optimisation in a suitable manner, it is possible to obtain a 
very good match to an NFP plot that was created with the Generic VSM model. This is mostly a test of the fitting 
process since the same model is being used for both NFP plot generation and the fitting process, so the fit can get very 
close if it works properly. 
 
An example is shown in the “Full parameter fit” trace (black dashed line) on Figure 2-2 & Figure 2-3 which overlies the 
original data almost exactly, and the deduced parameters are an almost exact match with the original parameters 
used to generate the data. 
 
When using such a “Full parameter fit”, and using the Generic VSM model as a basis, if an NFP plot trace from a device 
which has a significantly different or more complex control system than the Generic VSM model is input to the fitting 
process, then the output results may deviate from the published/target/expected values. However, the general 
assessment of inertia, damping, droop response, etc., should still be correct within some reasonable degree of 
approximation. 
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Appendix A Derivation of time-domain response of (V)SM rotor 
Equation (3-2) is repeated here as (4), the simplified rotor response, ignoring the additional filters. 

𝜙𝑅
𝜙𝐺
≈

𝑘𝑠𝑋
2𝐻(𝑋 + 𝑋𝐺)

𝑠 +
𝜔0

2𝐻(𝑋 + 𝑋𝐺)

𝑠2 +
𝑘𝑠𝑋

2𝐻(𝑋 + 𝑋𝐺)
𝑠 +

𝜔0
2𝐻(𝑋 + 𝑋𝐺)

 (4) 

 
This can be rewritten using (3-3) as: 
 

𝜙𝑅
𝜙𝐺
≈

2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2
 (5) 

in which (3-4)-(3-9) can all be applied where useful. 
 
If a phase step function of size ∆ radians, i.e. ∆ 𝑠⁄  is applied at 𝜙𝐺 , then the response at 𝜙𝑅 will be: 

𝜙𝑅 ≈
∆

𝑠
[
2𝜁𝜔𝑛𝑠 + 𝜔𝑛

2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2
] (6) 

 
This can be split into two parts: 

𝜙𝑅 ≈ ∆ [
2𝜁𝜔𝑛

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2
+

𝜔𝑛
2

𝑠(𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2)
] (7) 

 
A final short set of manipulations allows the two parts to be put into forms that can be applied directly to a table of 
inverse Laplace transforms: 

𝜙𝑅 ≈ ∆ [
2𝜁𝜔𝑛

(𝑠 + 𝜁𝜔𝑛)
2 − (𝜁𝜔𝑛)

2 + 𝜔𝑛
2
+

𝜔𝑛
2

𝑠(𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2)
] (8) 

 
where we can define: 

𝜔𝑑
2 = 𝜔𝑛

2(1 − 𝜁2)   ⟹  𝜔𝑑 = 𝜔𝑛√(1 − 𝜁
2) (9) 

which is essentially where the equation for the damped natural resonance stems from. 
 
therefore: 

𝜙𝑅 ≈ ∆ [
2𝜁𝜔𝑛

(𝑠 + 𝜁𝜔𝑛)
2 − 𝜔𝑑

2 +
𝜔𝑛
2

𝑠(𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2)
] (10) 

 
This expression can now be applied to a standard table of inverse Laplace transforms, assuming 𝜁 < 1: 

𝜙𝑅(𝑡) ≈ ∆ [(
2𝜁𝜔𝑛
𝜔𝑑

) 𝑒(−𝜁𝜔𝑛𝑡)𝑠𝑖𝑛(𝜔𝑑𝑡) + (1 −
𝑒(−𝜁𝜔𝑛𝑡)

√(1 − 𝜁2)
𝑠𝑖𝑛(𝜔𝑑𝑡 + acos(𝜁) ))] (11) 

 


