ESO Demand Flexibility Service
Industry Show & Listen Workshop
8th February 2023
Agenda

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00 – 10:30</td>
<td>Arrival – continental breakfast on arrival</td>
<td></td>
</tr>
<tr>
<td>10:30 – 10:45</td>
<td>Setting the scene</td>
<td></td>
</tr>
<tr>
<td>10:45 – 11:00</td>
<td>Industry Feedback so far</td>
<td></td>
</tr>
<tr>
<td>11:00 – 12:15</td>
<td>Event Insights & Flexibility Future Operability</td>
<td></td>
</tr>
<tr>
<td>12:15 – 13:00</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>13:00 – 13:10</td>
<td>Moving towards next winter</td>
<td></td>
</tr>
<tr>
<td>13:10 – 15:30</td>
<td>Collaboration and future development</td>
<td></td>
</tr>
<tr>
<td>15:30</td>
<td>Close</td>
<td></td>
</tr>
</tbody>
</table>
The Demand Flexibility Service (DFS) has been developed to allow the ESO to access additional flexibility when the national demand is at its highest – during peak winter days – which is not currently accessible to the ESO in real time. This new innovative service will allow consumers, as well as some industrial and commercial users (through suppliers/aggregators), to be incentivised for voluntarily flexing the time when they use their electricity.
Demand Flexibility Reach

We’ve had an unprecedented amount of interest from the media.
And a big thanks for all the support from our providers too.
What we’ve heard
What we’ve heard from providers so far

DFS engagement
MPAN checks & process
Baseline Methodology
Revenue Certainty
Customer Communications
What we’ve heard from providers

"just one MPAN can make a big difference."
"we feel we have had a voice and a point of contact"
"we are looking at what product we might do ourselves"
"complicated processes consumers must follow to give consent and the documents to access the data"
"1:1 calls were very welcomed"
"can non suppliers get involved in the EUK working group"
"how will this work with HH settled meters and time of use tariffs?"
"Love DFS (no penalties, day ahead, email, no intrusive metering)."
"How do we define who owns the MPAN. Some think it should be whoever had it first and others think it should be whoever had it last."
"can data transfer be done via API with instant validation"
"customers like the fact they are helping the system"
"long term flex as automated delivery rather than humans"
What we’ve heard from consumers

Largely public response has been positive with lots of social media
Direct feedback from consumer enquiries can be grouped in the following areas:

Consumer Participation
- How do I join the service?
- I don’t have a smart meter
- My smart meter doesn’t work
- It’s not fair – everyone should be able to join

Incentive
- How much will I get paid
- Why didn’t I save any money
- Why is this not an automatic payment?

Provider participation
- My supplier isn’t on the list
- I’ve not been invited by my supplier
- Why is this not mandatory for all suppliers to participate

Protection
- What if there’s a power cut
- Please don’t disconnect me
- I’m elderly/disabled/vulnerable
Evaluating consumer response

Research is underway to provide valuable insights

- Consumer experiences, motivations, perceived benefits and challenges through the DFS
- Analyse the energy impacts of the DFS
- Explore the relationship between household characteristics and the volume of demand flexibility delivered

Findings published in summer
Event insights
Appetite for participation has been high (23 of 26 providers signed up in first two weeks)

There is ongoing interest from new participants

Some smaller providers (who can't make 1MW) are coming on board via aggregators but slightly slower to market.

MPAN numbers have fluctuated significantly, with 1.1m unique MPANs as of 16th January. These figures have been inflated by inclusions of potential customers by providers rather than just those signed up.

MPAN duplicates have also varied – peak of 6.3k on 25th Nov reduced to 262 on 16th Jan. The number of duplicates has been increased by provider approaches (e.g. using auto-opt ins)

The ESO has worked with providers on their customer journeys to improve clarity for end consumers - resulting in a reduction in these duplicate MPANs over time
DFS Tests Insights

- Providers have over delivered significantly across the first 6 tests (c38% on average*).
- Over-delivery has reduced over time (c49% Nov to c26% Dec*) as providers learn more about their customers.
- End-consumers are additionally reducing their consumption before and after the contracted window**.
- End-consumers sustained their reduction over the course of 2-hours in the tests carried out on 12th December.
- Volumes quickly reached c200 MW but have plateaued since 9th Dec.

*Tests on the 21st and 23rd Dec were targeted to a subset of providers so have been excluded from this analysis.
**OFGEM analysis
DFS Tests Insights

- Figures on the left show the number of bids from DFS Units for each event.
- For **Test events**, only a few providers have submitted prices higher than the GAP of £3000/MWh. For **Tests events**, we could accept units priced higher than the GAP depending on the price of the marginal unit in the BM.
- For **Live events**, we have accepted bids ranging from £3000/MWh to £6500/MWh.
DFS Tests Insights

Perfect forecast

- This figure shows the average difference between forecast and delivery across all units and providers.
- It appears as if the error is decreasing over subsequent test events, however, with the existing data it cannot be established whether it is due to providers having improved their forecast process or due to random fluctuations.

Perfect delivery

- This figure shows the procured vs delivered values for all DFS test events grouped by contracted period.
- There is a slight trend towards over-delivery as most points fall above the dashed line representing a perfect delivery.
DFS Live Activation

VOLUMES

- Combined delivery for the 23rd of Jan was **271.6 MWh** across the period from 17:00 to 18:00. The procured amount of DFS for that same period was **330.3 MWh**.

- Therefore, the ratio of delivery to procured quantities was around 0.82 (or an under-delivery of around 17.8% with respect to procurement).

- For the 24th of Jan, the combined delivery was **372.9 MWh** between 16:30 and 18:00. The procured amount of DFS was **465 MWh**.

- Delivery to procured ratio of around 0.8. Or, under-delivery of 20% with respect to procurement.

Note: These are preliminary numbers, subject to change.
Next steps beyond DFS for winter 2022-23
Energy balancing 101

- One of the most fundamental requirements of an electricity system is that supply and demand are always balanced.
- For us to achieve this energy balancing we need flexibility, in both supply and demand, adjusting both sides to ensure they always match.
- The wholesale market currently provides the majority of system balancing during the day, with the ESO performing the residual balancing and balancing on a second-by-second basis.

Generation < Demand
- Frequency falls

Generation = Demand
- Frequency is steady

Generation > Demand
- Frequency rises
Energy balancing over different timescales

- **Real-time Frequency (< 30 minutes)**
 Managing imbalances second by second, mainly acting within a settlement period

- **Within-day Flexibility (< 24 hours)**
 Managing daily peaks and troughs of supply and demand, lasting a few hours

- **Flexibility for Adequacy (> 24 hours)**
 Managing periods of over and undersupply from renewables lasting for days, weeks and months

- **TWh**
- **GWh**
- **MWh**

- **Minutes**
- **Hours**
- **Days to Years**

Dynamic Regulation

- **Pre-fault:**
 - Assist in keeping frequency near to 50Hz during normal conditions.

- **Dynamic:**
 - 10 seconds to full delivery.
 - Sustain for at least 15 minutes.
 - Frequency range: 49.8 to 50.2 Hz.

Quick Reserve

- **Pre-fault:**
 - Recovery frequency back towards 50Hz, mainly during normal conditions.

- **Dynamic:**
 - 1 second to full delivery.
 - Sustain for at least 15 minutes.
 - Ramping envelope.
 - Frequency range: 49.8 to 50.2 Hz.

Slow Reserve

- **Pre-fault:**
 - Recover frequency from to 0.2Hz within 15 minutes.

- **Dynamic:**
 - 10 seconds to full delivery.
 - Sustain for at least 120 minutes.
 - Ramping envelope.
 - Frequency range: 49.8 to 50.5 Hz.

Dynamic Containment

- **Pre-fault:**
 - Prevent frequency deviations outside -0.8Hz / +0.5Hz following large losses.

- **Dynamic:**
 - 1 second to full delivery.
 - Sustain for at least 120 minutes.
 - Ramping envelope.
 - Frequency range: 49.5 to 50.2 Hz.

Dynamic Moderation

- **Pre-fault:**
 - Assist in keeping frequency within 0.2Hz, especially during more volatile conditions.

- **Dynamic:**
 - 1 second to full delivery.
 - Frequency range: 49.8 to 50.1 Hz.

Balancing Reserve

- **Pre-fault:**
 - Manage real-time imbalances, and replace activated reserves.

- **Dynamic:**
 - ≤ 2 minutes.
 - Instructed via BOA.
 - ≥ 15MW/min ramp-rate.
 - MFR capability.

Static Recovery

- **Pre-fault:**
 - Recover frequency to 0.5Hz within 60 seconds following large losses.

- **Dynamic:**
 - 30 seconds to full delivery.
 - Sustain for at least 120 minutes.

- **Technical:**
 - TBC Hz.

MFR capability

- **Institution:**
 - ≤ 2 minutes.
 - ≥ 15MW/min ramp-rate.
Managing real-time frequency

Dynamic Regulation assists with keeping frequency near to 50Hz during normal conditions.

Quick Reserve used to recover frequency back towards 50Hz.

Dynamic Moderation assists with keeping frequency within 0.2Hz, especially during more volatile conditions.

Balancing Reserve replace activated reserves, and recover frequency to 50Hz.

Dynamic Containment prevents frequency deviations outside -0.8Hz / +0.5Hz following large losses.

Balancing Reserve replace activated reserves, and recover frequency to 50Hz.

Static Recovery recover frequency to 0.5Hz within 60 seconds following large losses.

Balancing Reserve replace activated reserves, and recover frequency to 50Hz.

Slow Reserve recover frequency to 0.2Hz within 15 minutes.
Energy balancing over different timescales

Within-Day Flexibility

- Supply
 - Means being able to adjust the flexible parts of supply and demand as the inflexible parts vary over the day
 - The main source of inflexible, variable supply is wind and solar generation, which is growing as we decarbonise
- Demand
 - Varies through the day based on consumer behaviour
 - Some demand is needed at specific times and is largely non-negotiable
 - e.g. cooking and lighting
 - Electrification of heat and transport will cause a rapid increase in electrical demand and the parts of this that do not behave flexibly will add to the variability that needs balancing

Achieving zero carbon

- Dispatchable generation currently provides most within-day flexibility
- We will have to replace this fossil fuelled flexibility with new, zero carbon solutions that move supply and demand through time.
- Examples of this include:
 - Shifting Domestic, Industrial and Commercial demand away from higher cost peaks to lower cost troughs
 - Storing excess wind and solar power to use overnight or in still periods
Where can Within-Day Flexibility help?

These are some of our key operability challenges where demand flexibility can play a role:

Peak Demands
Reducing demand at peak times

- The demand peaks last for a few hours and occur day after day, which is an ideal pattern for Within-Day Flexibility.
- Reducing peak demand can also help with other operability challenges; lower daily peaks can make longer duration adequacy challenges easier to manage and reduce the urgency of transmission and distribution network reinforcements.

Minimum Demands
Increasing demand off-peak

- With solar PV and energy efficiency measures continuing to grow, minimum demands seen on the transmission system will continue to fall.
- When transmission system demand is very low it can cause multiple operability challenges including with reactive power, inertia, and short circuit levels.
- During the summer of 2020, when Covid lockdown took summer minimum demand to previously unseen lows, the ESO had to take actions to ensure the security of the system through curtailment of renewables.

Other areas

Further into the future, operability challenges that Within-Day Flexibility could help with could include:

- Following renewable generation through the day to reduce curtailment
- Reducing forecast errors in supply and demand
- Reducing the steepness of supply or demand ramp rates caused by other parts of the system
Reducing demand at peak times

- Peak demand
- Most scarcity
- Least efficient generation running
- Highest prices

- Lower peak demand
- Less scarcity
- Demand met by more efficient generation
- Lower prices
Increasing off-peak demand

- Minimum demand
- Excess of generation
- Lowest prices

- More demand off-peak demand
- Uses cheaper electricity
- Benefits from lower prices
- More efficient

Lower demand at other times
Unlocking Within-day Flexibility

Allowing the market to deliver

- Changes to market arrangements are key to unlocking within-day flexibility
- In the future, we want energy balancing to continue to be mainly delivered by price signals and markets, with the ESO acting as a "residual balancer"

Sources of Within-Day Flexibility growing over time

Consumer Transformation scenario
Next steps
• The timelines for the market arrangements, consumer incentives, technology roll-outs and data provisioning are not currently clear.

• The system need for this capability might arise before the market is fully able to provide it.

• If necessary, the ESO will bridge gaps between stages by creating temporary alternative mechanisms to help price signals get through to new providers of flexibility.

• We will also continue to run trials so that we, and future participants in flexibility markets, can continually learn, informing more appropriate enduring arrangements.

The recently developed Demand Flexibility Service is an example of this. It creates a price signal for demand side flexibility, allowing the ESO to use capacity that would otherwise be inaccessible, lowering the cost of managing generation margins for system security over the winter.
Where are we now?

Where were we last summer?

• There were risks and uncertainties this winter (2022/23) as a direct result of possible shortfalls in Europe’s gas supply.

• As a prudent system operator, we are took steps to ensure we were well prepared to maintain safe and secure operation of the electricity system. Those steps included actions to build our resilience and mitigate the potential impact to electricity customers in Great Britain.

• One of those steps was to explore options to incentivise greater participation of demand side response from energy consumers. This would see consumers voluntarily reducing their demand at peak times by using less energy and / or using energy at different times of the day.

What was the outlook for last winter?

• Our operational modelling showed that there may be some tight periods that we expected to be able to manage using our standard operational tools.

• As an enhanced action, our new Demand Flexibility Service would allow the ESO to access new flexibility that is not currently accessible through existing services and market incentives, in the event that insufficient upwards flexibility is forecast at the day ahead stage.

• Our requirements paper for overall flexibility (winter contingency units + DFS) showed different scenarios:

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Number of days with potential requirement</th>
<th>Volume (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base case</td>
<td>0-5 days</td>
<td>1,000MW (up to 1,500MW)</td>
</tr>
<tr>
<td>Scenario 1</td>
<td>10-35 days</td>
<td>2,000MW (up to 5,500MW)</td>
</tr>
<tr>
<td>Scenario 2</td>
<td>additional 10-14 days</td>
<td>3,500MW (up to 12,000MW)</td>
</tr>
</tbody>
</table>

Implementation for last winter

• Due to the speed we developed the Demand Flexibility Service, and the maturity of the concept, the service was not setup as an every day action due to concerns on the following areas:
 • Day ahead dispatch
 • User fatigue
 • Non-firm service
 • Market distortion
 • ABSVD imperfections

• We said we would like to continue to develop the benefits we will have created for passive users who have become active participants in the electricity market, and that our ongoing plan will include support accessing our other ancillary services, the BM, and through suppliers.
What is the next stepping stone?

Next winter is already not too far away

- There are both known changes and uncertainties for next winter, such as:
 - Specific impact on peak demand of significant changes to TRIAD charges
 - Introduction of balancing reserve, changing the procurement of reserves and sharpening market signals
 - General changes in demand, including the momentum from this winter’s service
 - Availability of coal-fired generation
 - New generation capacity

There’s areas we’d like to improve

- Due to the speed we developed the Demand Flexibility Service, and the maturity of the concept, the service was not setup as an every day action
- We said we would like to continue to develop the benefits we will have created for passive users who have become active participants in the electricity market, and that our ongoing plan will include support accessing our other ancillary services, the BM, and through suppliers.

And we want your views and input too

- We know that all of the current and potential providers have their own opportunity areas and issues they’d like to raise and address
- This session is the first big opportunity to do that to help set the direction for the next stepping stone
Timelines
What could a timeline look like for next winter?

Service design, industry engagement
Feb – Mar 23
- Make improvements that we can, develop service design further, industry engagement and co-collaboration – Feb to March

Internal sign-off
Mar – Apr 23
- Final contract documents drafted, consultation documents finalised, internal readiness processes – April

Industry Article 18 consultation
Apr – May 23
- Industry have 1 month to review and input to consultation - April, ESO 1 month to review responses and make updates – May

Ofgem review & approval of Article 18 documents
June – Aug 23
- Send Article 18 consultation documents to Ofgem by end of May, they have 3 months to review as per regulatory requirements

On-board providers
Aug – Oct 23
- Begin provider on-boarding by end of August 2023 (2 months)

Go-live 1 Nov 23
- Service go-live 1 Nov 2023
Collaboration

Topics
Future Flexibility - Industry Collaboration

<table>
<thead>
<tr>
<th>Wider ESO Flexibility Opportunities</th>
<th>Supplier/Market Led Opportunities</th>
<th>DFS 2.0 Evolution</th>
<th>Maintaining Consumer Engagement</th>
<th>Innovative Options Ideal Future State</th>
<th>Regulation Standards Codes Permits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market opportunities available</td>
<td>Insights and plans from industry</td>
<td>What worked well for DFS 2022/23?</td>
<td>What has worked well to drive engagement?</td>
<td>Blue sky thinking</td>
<td>Blockers for 22/23 participation & delivery?</td>
</tr>
<tr>
<td>Barriers to unlock participation</td>
<td>Barriers to unlock progress</td>
<td>What improvements could be made for an enhanced service?</td>
<td>What will drive increased volume? (incentive, tech, process)</td>
<td>Innovation linked learning</td>
<td>Unlocking additional technologies & volume</td>
</tr>
<tr>
<td>Commercial viability</td>
<td>What value can directly managed flexibility offer providers?</td>
<td>What would a commercial service look like to you?</td>
<td>How do we protect/provide a good experience?</td>
<td>What can ESO do to support?</td>
<td>Future risk & opportunities</td>
</tr>
</tbody>
</table>
Thank you

Please share your feedback or additional comments using the QR code or link: https://forms.office.com/r/Xv7XHDQKKa

Get involved in the debate on the future of energy and join our LinkedIn group Future of Energy by National Grid ESO

For further information on ESO publications please visit: nationalgrideso.com
<table>
<thead>
<tr>
<th>ESO Attendee</th>
<th>Role</th>
<th>ESO Attendee</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>David Wildash</td>
<td>Market Operations Senior Manager</td>
<td>Michael Coldwell</td>
<td>Market Requirements Future Design & Development Manager</td>
</tr>
<tr>
<td>Kyle Martin</td>
<td>Market Change Delivery Senior Manager</td>
<td>Rob Westmancoat</td>
<td>Senior Strategy Analyst</td>
</tr>
<tr>
<td>Richard Hanson</td>
<td>Flexibility Services Development Manager</td>
<td>Laura Parkes</td>
<td>Consumer Strategy Manager</td>
</tr>
<tr>
<td>Hannah Rochford</td>
<td>Senior Balancing Markets Development Officer</td>
<td>James Kerr</td>
<td>Consumer Strategy Lead</td>
</tr>
<tr>
<td>Callum Wright</td>
<td>Power Responsive Manager</td>
<td>Iris Hau</td>
<td>Market Services Senior Contract Manager</td>
</tr>
<tr>
<td>Calum McCarroll</td>
<td>Power Responsive Lead</td>
<td>Elliot Leighton</td>
<td>Market Services Contract Manager</td>
</tr>
<tr>
<td>Vanessa Jones</td>
<td>Power Responsive Officer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>