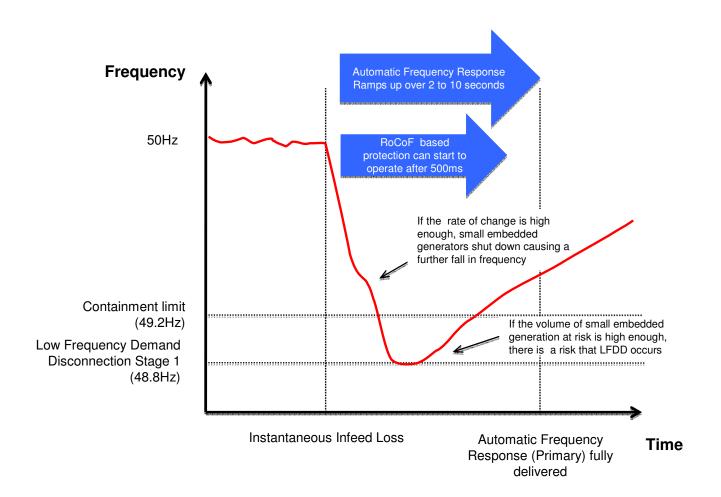
RoCoF – GCRP Update

16th January 2013

Introduction

- Rate of Change of Frequency (RoCoF) risks have been managed actively by the industry for over a decade
 - Potential RoCoF events are reported in an annual update to the Panel
 - Issues are under active Working Group consideration

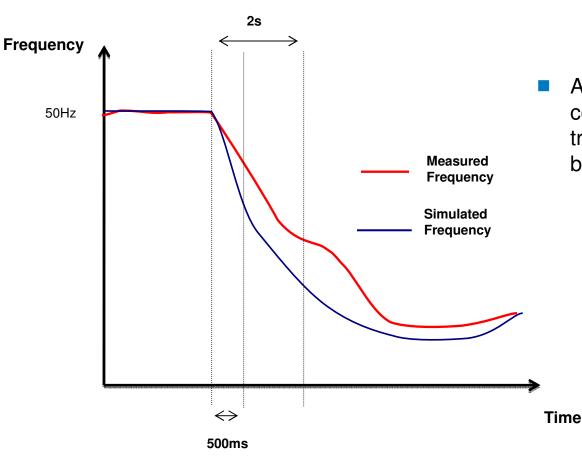

Working Group: Frequency Changes during Large System Disturbances

- National Grid has recently reviewed its methodology for assessing RoCoF related risks
- Panel Members have asked for additional information to be presented as part of the annual report
- These slides provide an update to the Panel and highlight the actions currently underway

Background to RoCoF

- The rate at which system frequency changes depends on
 - Size of the change in balance between supply and demand
 - Energy stored (predominantly in the form of rotating machines)
 - Natural response to frequency and control action taken in response to frequency
- In the event of a large instantaneous loss of generation or demand
 - If the rate of change of frequency is high enough, protection which is designed to prevent embedded generation operating in an island mode may operate
 - If the volume of embedded generation affected is high enough, there is a risk of involuntary demand control under Low Frequency Demand Disconnection (LFDD) as a result of cascading loss of generation
 - There have been no examples of this occurring on the GB networks to date
- 'Loss of Mains' protection is required to ensure safe operation of the distribution networks, as set out in Engineering Recommendations
 - A range of settings are prescribed, starting at 0.125Hz/s
 - Up to 8GW of generation capacity is estimated to be protected this way

Background to RoCoF


Background to RoCoF

- The maximum rate of change risk occurs when demand is low and there is a large instantaneous infeed or offtake risk to manage
- The maximum rate of change is rising because
 - Synchronous generation is being displaced by interconnectors and wind
 - Larger infeed losses in the future
 - There are trends within consumer demand which may exacerbate the problem (eg deployment of power electronics and decoupling motor loads directly connected to the system)
- The RoCoF risk has been re-evaluated as a consequence of work examining larger losses
 - Improved system monitoring and new analysis techniques have been used

Options for Managing the Risk

- 1. Limiting the largest loss limits the rate of change
- 2. Increasing inertia by synchronising additional plant reduces the rate of change
- *3.* Limiting the rate of change by control action is not currently feasible
 - Generator governor action is not fast enough to limit the rate of change of frequency within the RoCoF protection operation time
 - Can help to contain the subsequent fall in frequency in some circumstances
 - An absolute frequency trigger (eg 49.7Hz), would also not be effective
 - frequency would have been falling for long enough for RoCoF protection to operate before it could trigger: at 0.125Hz/s, it would take 2.4s to reach 49.7Hz from 50Hz)
 - A rate of change trigger, operating sufficiently rapidly (less than half a second) could limit the frequency rate of change if applied to a large enough demand block
 - no providers of such a service at this time
- 4. Changing or removing RoCoF based protection
 - Requirement under joint GCRP/GCRP Working Group consideration
 - Subject to an ongoing requirement for reliable Loss of Mains protection to ensure networks are safe in an islanding situation

Proposed Reporting and Assessment Enhancements

- RoCoF Reports reference the change over 2 seconds
 - a 500ms period is closer to relay characteristic
- Actual frequency can be compared to a simulated trace to evaluate the background or residual inertia
 - simulation makes use of generator data submitted under the Grid Code
 - residual represents the contribution of demand and smaller generators

Challenges for Historic Analysis

- Relatively few large disturbances occur which provide good information
 - Losses need to be instantaneous eg by circuit breaker operation
 - Period of concern are light system loads
 - Combination of low demand, high winds and/or high interconnector imports
 - Data available from 2010 onwards
- High resolution frequency measurements vary with location and measurement technique
- Changes in consumer demand are happening on a continuous basis
 - Trends may not be visible due to the limited number of relevant incidents

Actions In Progress

- RoCoF Risks are now considered as part of National Grid's routine frequency control requirement assessment
 - Impacts will be reported through normal industry processes (eg Operational Forums)
- The Joint DCRP/GCRP Working Group is
 - Exploring the scope for changes to relay settings
 - Taking tactical actions to improve the current risk assessment
- The information presented in recent RoCoF reports is under review
 - An update will be provided to the Panel prior to the March meeting