National Grid ESO Faraday House, Gallows Hill Warwick, CV34 6DA

nationalgridESO

All Recipients of the Serviced Grid Code

Rachel.Beaufoy@nationalgrideso.com Mob: 07970 992890 www.nationalgrideso.com

09 March 2022

Dear Sir/Madam

THE SERVICED GRID CODE - ISSUE 6 REVISION 12

Issue 6 Revision 12 of the Grid Code has been approved by the Authority for implementation on **9 March 2022.**

To ensure your copy of the Grid Code remains up to date, you will need to replace the section affected with the revised version available on the National Grid Electricity System Operator website.

The revisions document provides an overview of the changes made to the Grid Code since the previous issue.

Yours faithfully

Rachel Beaufoy

Frameworks Officer Code Administrator Markets nationalgridESO

M: 07970 992890

Faraday House, Warwick, CV34 6DA

THE GRID CODE - ISSUE 6 REVISION 12

INCLUSION OF REVISED SECTION

- Glossary Definitions
- Connection Conditions
- European Connection Conditions
- Operating Code 6
- Operating Code 8A
- Operating Code 8B
- Operating Code 12
- Balancing Code 2
- Governance Rules

SUMMARY OF CHANGES

The changes arise from the implementation of modifications proposed in the GC0153 Final Modification Report:

GC0153: Making the Grid Code Gender Neutral

Summary of GC0153 and Impact:

To remove any gender specific references or terminology within the Grid Code.

Impact:

Low impact - No parties should be impacted by these minor, non-material changes.

THE GRID CODE

ISSUE 6

REVISION 12

09 March 2022

© 2021 Copyright owned by National Grid Electricity System Operator Limited, all rights reserved.

No part of this publication may be reproduced in any material form (including photocopying and restoring in any medium or electronic means and whether or not transiently or incidentally) without the written permission of National Grid Electricity System Operator Limited, except:

- 1. to the extent that any party who is required to comply (or is exempt from complying) with the provisions under the Electricity Act 1989 reasonably needs to reproduce this publication to undertake its licence or statutory duties within Great Britain (or any agent appointed so to act on that party's behalf); and
- 2. in accordance with the provisions of the Copyright, Designs and Patents Act 1988.

GLOSSARY & DEFINITIONS

(GD)

GD.1 In the Grid Code the following words and expressions shall, unless the subject matter or context otherwise requires or is inconsistent therewith, bear the following meanings:

Access Group	A group of Connection Points within which a User declares under the Planning Code
	(a) An interconnection and/or
	(b) A need to redistribute Demand between those Connection Points either pre-fault or post-fault
	Where a single Connection Point does not form part of an Access Group in accordance with the above, that single Connection Point shall be considered to be an Access Group in its own right.
Access Period	A period of time in respect of which each Transmission Interface Circuit is to be assessed as whether or not it is capable of being maintained as derived in accordance with PC.A.4.1.4. The period shall commence and end on specified calendar weeks.
Act	The Electricity Act 1989 (as amended by the Utilities Act 2000 and the Energy Act 2004).
Active Control Based Droop Power	The Active Control Based Power output supplied by a Grid Forming Plant through controlled means (be it manual or automatic).
	For GBGF-I this is equivalent to a Synchronous Generating Unit with a traditional governor coupled to its prime mover.
	Active Control Based Droop Power is used by The Company to control System Frequency changes through the instruction of Primary Response and Secondary Response.

Active Control Based Power	The Active Power output supplied by a Grid Forming Plant through controlled means (be it manual or automatic) of the positive phase sequence Root Mean Square Active Power produced at fundamental System Frequency by the control system of a Grid Forming Unit.
	For GBGF-I , this is equivalent to a Synchronous Generating Unit with a traditional governor coupled to its prime mover.
	Active Control Based Power includes Active Power changes that results from a change to the Grid Forming Plant Owners available set points that have a 5 Hz limit on the bandwidth of the provided response.
	Active Control Based Power also includes Active Power components produced by the normal operation of a Grid Forming Plant that comply with the Engineering Recommendation P28 limits. These Active Power components do not have a 5 Hz limit on the bandwidth of the provided response.
	Active Control Based Power does not include Active Power components proportional to System Frequency, slip or deviation that provide damping power to emulate the natural damping function provided by a real Synchronous Generating Unit.
Active Damping Power	The Active Power naturally injected or absorbed by a Grid Forming Plant to reduce Active Power oscillations in the Total System.
	More specifically, Active Damping Power is the damped response of a Grid Forming Plant to an oscillation between the voltage at the Grid Entry Point or User System Entry Point and the voltage of the Internal Voltage Source of the Grid Forming Plant.
	For the avoidance of doubt, Active Damping Power is an inherent capability of a Grid Forming Plant that starts to respond naturally, within less than 5ms to low frequency oscillations in the System Frequency .
Active Energy	The electrical energy produced, flowing or supplied by an electric circuit during a time interval, being the integral with respect to time of the instantaneous power, measured in units of watt-hours or standard multiples thereof, ie:
	1000 Wh = 1 kWh
	1000 kWh = 1 MWh
	1000 MWh = 1 GWh
	1000 GWh = 1 TWh

Active Frequency Response Power	The injection or absorption of Active Power by a Grid Forming Plant to or from the Total System during a deviation of the System Frequency away from the Target Frequency .
	For a GBGF-I this is very similar to Primary Response but with a response time to achieve the declared service capability (which could be the Maximum Capacity or Registered Capacity) within 1 second.
	For GBGF-I this can rapidly inject or absorb Active Power in addition to the phase-based Active Inertia Power to provide a system with desirable NFP plot characteristics.
	Active Frequency Response Power can be produced by any viable control technology.
Active Inertia Power	The injection or absorption of Active Power by a Grid Forming Plant to or from the Total System during a System Frequency change.
	The transient injection or absorption of Active Power from a Grid Forming Plant to the Total System as a result of the ROCOF value at the Grid Entry Point or User System Entry Point. This requires a sufficient energy storage capacity of the Grid Forming Plant to meet the Grid Forming Capability requirements specified in ECC.6.3.19.
	For the avoidance of doubt, this includes the rotational inertial energy of the complete drive train of a Synchronous Generating Unit .
	Active Inertia Power is an inherent capability of a Grid Forming Plant to respond naturally, within less than 5ms, to changes in the System Frequency.
	For the avoidance of doubt, the Active Inertia Power has a slower frequency response compared with Active Phase Jump Power .
Active Phase Jump	The transient injection or absorption of Active Power from a Grid
Active Phase Jump Power	Forming Plant to the Total System as a result of changes in the phase angle between the Internal Voltage Source of the Grid Forming Plant and the Grid Entry Point or User System Entry Point.
-	angle between the Internal Voltage Source of the Grid Forming Plant
-	angle between the Internal Voltage Source of the Grid Forming Plant and the Grid Entry Point or User System Entry Point. In the event of a disturbance or fault on the Total System, a Grid Forming Plant will instantaneously (within 5ms) inject or absorb Active Phase
-	 angle between the Internal Voltage Source of the Grid Forming Plant and the Grid Entry Point or User System Entry Point. In the event of a disturbance or fault on the Total System, a Grid Forming Plant will instantaneously (within 5ms) inject or absorb Active Phase Jump Power to the Total System as a result of the phase angle change. For GBGF-I as a minimum value this is up to the Phase Jump Angle Limit
-	 angle between the Internal Voltage Source of the Grid Forming Plant and the Grid Entry Point or User System Entry Point. In the event of a disturbance or fault on the Total System, a Grid Forming Plant will instantaneously (within 5ms) inject or absorb Active Phase Jump Power to the Total System as a result of the phase angle change. For GBGF-I as a minimum value this is up to the Phase Jump Angle Limit Power. Active Phase Jump Power is an inherent capability of a Grid Forming Plant that starts to respond naturally, within less than 5 ms and can have
Power	 angle between the Internal Voltage Source of the Grid Forming Plant and the Grid Entry Point or User System Entry Point. In the event of a disturbance or fault on the Total System, a Grid Forming Plant will instantaneously (within 5ms) inject or absorb Active Phase Jump Power to the Total System as a result of the phase angle change. For GBGF-I as a minimum value this is up to the Phase Jump Angle Limit Power. Active Phase Jump Power is an inherent capability of a Grid Forming Plant that starts to respond naturally, within less than 5 ms and can have frequency components of over 1000 Hz. The product of voltage and the in-phase component of alternating current
Power	 angle between the Internal Voltage Source of the Grid Forming Plant and the Grid Entry Point or User System Entry Point. In the event of a disturbance or fault on the Total System, a Grid Forming Plant will instantaneously (within 5ms) inject or absorb Active Phase Jump Power to the Total System as a result of the phase angle change. For GBGF-I as a minimum value this is up to the Phase Jump Angle Limit Power. Active Phase Jump Power is an inherent capability of a Grid Forming Plant that starts to respond naturally, within less than 5 ms and can have frequency components of over 1000 Hz. The product of voltage and the in-phase component of alternating current measured in units of watts and standard multiples thereof, ie:
Power	 angle between the Internal Voltage Source of the Grid Forming Plant and the Grid Entry Point or User System Entry Point. In the event of a disturbance or fault on the Total System, a Grid Forming Plant will instantaneously (within 5ms) inject or absorb Active Phase Jump Power to the Total System as a result of the phase angle change. For GBGF-I as a minimum value this is up to the Phase Jump Angle Limit Power. Active Phase Jump Power is an inherent capability of a Grid Forming Plant that starts to respond naturally, within less than 5 ms and can have frequency components of over 1000 Hz. The product of voltage and the in-phase component of alternating current measured in units of watts and standard multiples thereof, ie: 1000 Watts = 1 kW

Active ROCOF Response Power	The Active Inertia Power developed from a Grid Forming Plant plus the Active Frequency Response Power that can be supplied by a Grid
	Forming Plant when subject to a rate of change of the System Frequency.

Additional BM Unit	Has the meaning as set out in the BSC
Affiliate	In relation to any person, any holding company or subsidiary of such person or any subsidiary of a holding company of such person, in each case within the meaning of Section 736, 736A and 736B of the Companies Act 1985 as substituted by section 144 of the Companies Act 1989 and, if that latter section is not in force at the Transfer Date , as if such section were in force at such date.
AF Rules	Has the meaning given to "allocation framework" in section 13(2) of the Energy Act 2013.
Agency	As defined in The Company's Transmission Licence.
Aggregator	A BM Participant who controls one or more Additional BM Units or Secondary BM Units.
Aggregator Impact Matrix	Defined for an Additional BM Unit or a Secondary BM Unit. Provides data allowing The Company to model the result of a Bid-Offer Acceptance on each of the Grid Supply Points within the GSP Group over which the Additional BM Unit or Secondary BM Unit is defined.
Alternate Member	Shall mean an alternate member for the Panel Members elected or appointed in accordance with this GR.7.2(a) or (b).
Ancillary Service	A System Ancillary Service and/or a Commercial Ancillary Service, as the case may be. An Ancillary Service may include one or more Demand Response Services.
Ancillary Services Agreement	An agreement between a User and The Company for the payment by The Company to that User in respect of the provision by such User of Ancillary Services .
Annual Average Cold Spell Conditions or ACS Conditions	A particular combination of weather elements which gives rise to a level of peak Demand within a Financial Year which has a 50% chance of being exceeded as a result of weather variation alone.
Apparatus	Other than in OC8 , means all equipment in which electrical conductors are used, supported or of which they may form a part. In OC8 , it means High Voltage electrical circuits forming part of a System on which Safety Precautions may be applied to allow work and/or testing to be carried out on a System .
Apparent Power	The product of voltage and of alternating current measured in units of voltamperes and standard multiples thereof, ie: 1000 VA = 1 kVA 1000 kVA = 1 MVA
Approved Fast Track Proposal	Has the meaning given in GR.26.7, provided that no objection is received pursuant to GR.26.12.

Approved Grid Code Self- Governance Proposal	Has the meaning given in GR.24.10.
Approved Modification	Has the meaning given in GR.22.7
Authorised Certifier	An entity that issues Equipment Certificates and Power Generating Module Documents and whose accreditation is given by the United Kingdom Accreditation Service or such other body as may be established from time to time to carry out the function of accreditation.
Authorised Electricity Operator	Any person (other than The Company) who is authorised under the Act to generate, participate in the transmission of, distribute or supply electricity which shall include any Interconnector Owner or Interconnector User .
Authority-Led Modification	A Grid Code Modification Proposal in respect of a Significant Code Review, raised by the Authority pursuant to GR.17
Authority-Led Modification Report	Has the meaning given in GR.17.4.
Authority for Access	An authority which grants the holder the right to unaccompanied access to sites containing exposed HV conductors.
Authority, The	The Authority established by section 1 (1) of the Utilities Act 2000.
Automatic Voltage Regulator or AVR	The continuously acting automatic equipment controlling the terminal voltage of a Synchronous Generating Unit or Synchronous Power Generating Module by comparing the actual terminal voltage with a reference value and controlling by appropriate means the output of an Exciter , depending on the deviations.
Auxiliaries	Any item of Plant and/or Apparatus not directly a part of the boiler plant or Power Generating Module or Generating Unit or DC Converter or HVDC Equipment or Power Park Module , but required for the boiler plant's or Power Generating Module's or Generating Unit's or DC Converter's or HVDC Equipment's or Power Park Module's functional operation.
Auxiliary Diesel Engine	A diesel engine driving a Power Generating Module or Generating Unit which can supply a Unit Board or Station Board , which can start without an electrical power supply from outside the Power Station within which it is situated.
Auxiliary Gas Turbine	A Gas Turbine Unit, which can supply a Unit Board or Station Board, which can start without an electrical power supply from outside the Power Station within which it is situated.
Average Conditions	That combination of weather elements within a period of time which is the average of the observed values of those weather elements during equivalent periods over many years (sometimes referred to as normal weather).
Back-Up Protection	A Protection system which will operate when a system fault is not cleared by other Protection .

Balancing and Settlement Code or BSC	The code of that title as from time to time amended.
Balancing Code or BC	That portion of the Grid Code which specifies the Balancing Mechanism process.
Balancing Mechanism	Has the meaning set out in The Company's Transmission Licence
Balancing Mechanism Reporting Agent or BMRA	Has the meaning set out in the BSC .
Balancing Mechanism Reporting Service or BMRS	Has the meaning set out in the BSC .
Balancing Principles Statement	A statement prepared by The Company in accordance with Condition C16 of The Company's Transmission Licence .
Baseline Forecast	Has the meaning given to the term 'baseline forecast' in Section G of the BSC .
Bid-Offer Acceptance	(a) A communication issued by The Company in accordance with BC2.7; or
	(b) an Emergency Instruction to the extent provided for in BC2.9.2.3.
Bid-Offer Data	Has the meaning set out in the BSC .
Bilateral Agreement	Has the meaning set out in the CUSC.
Black Start	The procedure necessary for a recovery from a Total Shutdown or Partial Shutdown .
Black Start Capability	In the case of a Black Start Station , is the ability for at least one of its Gensets to Start-Up from Shutdown and to energise a part of the System and be Synchronised to the System upon instruction from The Company , within two hours, without an external electrical power supply.
	In the case of a Black Start HVDC System is the ability of an HVDC System to Start-Up from Shutdown and to energise a part of the System and be Synchronised to the System upon instruction from The Company , within two hours, without an external electrical power supply from the GB Synchronous Area .
Black Start Contract	An agreement between a Black Start Service Provider and The Company under which the Black Start Service Provider provides Black Start Capability and other associated services;
Black Start HVDC System	An HVDC System or DC Converter Station which are registered, pursuant to the Bilateral Agreement with a User , as having a Black Start Capability .
Black Start HVDC Test	A Black Start Test carried out by an HVDC System Owner or DC Converter Station Owner with a Black Start HVDC System while the Black Start HVDC System is disconnected from all external electrical power supplies from the GB Synchronous Area.
Black Start Service Provider	A Generator with a Black Start Station or an HVDC System Owner or DC Converter Station Owner with a Black Start HVDC System.

Black Start Stations	Power Stations which are registered, pursuant to the Bilateral Agreement with a User, as having a Black Start Capability.
Black Start Station Test	A Black Start Test carried out by a Generator with a Black Start Station while the Black Start Station is disconnected from all external electrical power supplies from the GB Synchronous Area.
Black Start Test	A Black Start Test carried out by a Black Start Service Provider on the instructions of The Company, in order to demonstrate that a Black Start Station or a Black Start HVDC System has a Black Start Capability. For the avoidance of doubt, a Black Start Test could comprise a Black Start Station Test, a Black Start Unit Test or Black Start HVDC Test.
Black Start Unit Test	A Black Start Test carried out on a Generating Unit or a CCGT Unit or a Power Generating Module, as the case may be, at a Black Start Station while the Black Start Station remains connected to an external alternating current electrical supply.
Block Loading Capability	The incremental Active Power steps, from no load to Rated MW, which a Generating Unit or Power Generating Module or Power Park Module or HVDC System or DC Converter Station can instantaneously supply without causing it to trip or go outside the Frequency range of 47.5Hz – 52Hz (or an otherwise agreed Frequency range). The time between each incremental step shall also be provided.
BM Participant	A person who is responsible for and controls one or more BM Units or where a Bilateral Agreement specifies that a User is required to be treated as a BM Participant for the purposes of the Grid Code. For the avoidance of doubt, it does not imply that they must be active in the Balancing Mechanism .
BM Unit	Has the meaning set out in the BSC , except that for the purposes of the Grid Code the reference to "Party" in the BSC shall be a reference to User .
BM Unit Data	The collection of parameters associated with each BM Unit , as described in Appendix 1 of BC1 .
Boiler Time Constant	Determined at Registered Capacity or Maximum Capacity (as applicable), the boiler time constant will be construed in accordance with the principles of the IEEE Committee Report "Dynamic Models for Steam and Hydro Turbines in Power System Studies" published in 1973 which apply to such phrase.
British Standards or BS	Those standards and specifications approved by the British Standards Institution.
BSCCo	Has the meaning set out in the BSC .
BSC Panel	Has meaning set out for "Panel" in the BSC .
Black Start Unit Test	A Black Start Test carried out on a Generating Unit or a CCGT Unit or a Power Generating Module, as the case may be, at a Black Start Station while the Black Start Station remains connected to an external alternating current electrical supply.

Business Day	Any week day (other than a Saturday) on which banks are open for domestic business in the City of London.
Cancellation of National Electricity Transmission System Warning	The notification given to Users when a National Electricity Transmission System Warning is cancelled.
Capacity Market Documents	The Capacity Market Rules , The Electricity Capacity Regulations 2014 and any other Regulations made under Chapter 3 of Part 2 of the Energy Act 2013 which are in force from time to time.
Capacity Market Rules	The rules made under section 34 of the Energy Act 2013 as modified from time to time in accordance with that section and The Electricity Capacity Regulations 2014.
Cascade Hydro Scheme	Two or more hydro-electric Generating Units , owned or controlled by the same Generator , which are located in the same water catchment area and are at different ordnance datums and which depend upon a common source of water for their operation, known as:
	(a) Moriston
	(b) Killin
	I Garry
	(d) Conon
	(e) Clunie
	(f) Beauly
	which will comprise more than one Power Station .
Cascade Hydro Scheme Matrix	The matrix described in Appendix 1 to BC1 under the heading Cascade Hydro Scheme Matrix .
Category 1 Intertripping Scheme	A System to Generator Operational Intertripping Scheme arising from a Variation to Connection Design following a request from the relevant User which is consistent with the criteria specified in the Security and Quality of Supply Standard.
Category 2 Intertripping	A System to Generator Operational Intertripping Scheme which is:-
Scheme	 (i) required to alleviate an overload on a circuit which connects the Group containing the User's Connection Site to the National Electricity Transmission System; and
	 (ii) installed in accordance with the requirements of the planning criteria of the Security and Quality of Supply Standard in order that measures can be taken to permit maintenance access for each transmission circuit and for such measures to be economically justified,
	and the operation of which results in a reduction in Active Power on the overloaded circuits which connect the User's Connection Site to the rest of the National Electricity Transmission System which is equal to the reduction in Active Power from the Connection Site (once any system losses or third party system effects are discounted).

Category 3 Intertripping Scheme	A System to Generator Operational Intertripping Scheme which, where agreed by The Company and the User , is installed to alleviate an overload on, and as an alternative to, the reinforcement of a third party system, such as the Distribution System of a Public Distribution System Operator .
Category 4 Intertripping Scheme	A System to Generator Operational Intertripping Scheme installed to enable the disconnection of the Connection Site from the National Electricity Transmission System in a controlled and efficient manner in order to facilitate the timely restoration of the National Electricity Transmission System.
Caution Notice	A notice conveying a warning against interference.
CENELEC	European Committee for Electrotechnical Standardisation.
Citizens Advice	Means the National Association of Citizens Advice Bureaux.
Citizens Advice Scotland	Means the Scottish Association of Citizens Advice Bureaux.
CfD Counterparty	A person designated as a "CfD counterparty" under section 7(1) of the Energy Act 2013.
CfD Documents	The AF Rules , The Contracts for Difference (Allocation) Regulations 2014, The Contracts for Difference (Definition of Eligible Generator) Regulations 2014 and The Contracts for Difference (Electricity Supplier Obligations) Regulations 2014 and any other regulations made under Chapter 2 of Part 2 of the Energy Act 2013 which are in force from time to time.
CfD Settlement Services Provider	 means any person: (i) appointed for the time being and from time to time by a CfD Counterparty; or (ii) who is designated by virtue of Section C1.2.1B of the Balancing and Settlement Code, in either case to carry out any of the CFD settlement activities (or any successor entity performing CFD settlement activities).
CCGT Module Matrix	The matrix described in Appendix 1 to BC1 under the heading CCGT Module Matrix.
CCGT Module Planning Matrix	A matrix in the form set out in Appendix 3 of OC2 showing the combination of CCGT Units within a CCGT Module which would be running in relation to any given MW output.
Closed Distribution System or CDSO	A distribution system classified as a Closed Distribution System by the Authority which distributes electricity within a geographically confined industrial, commercial or shared services site and does not supply household Customers , without prejudice to incidental use by a small number of households located within the area served by the System and with employment or similar associations with the owner of the System .

CM Administrative Parties	The Secretary of State, the CM Settlement Body, and any CM Settlement Services Provider.
CM Settlement Body	the Electricity Settlements Company Ltd or such other person as may from time to time be appointed as Settlement Body under regulation 80 of the Electricity Capacity Regulations 2014.
CM Settlement Services Provider	any person with whom the CM Settlement Body has entered into a contract to provide services to it in relation to the performance of its functions under the Capacity Market Documents .
Code Administration Code	Means the code of practice approved by the Authority and:
of Practice	(a) developed and maintained by the code administrators in existence from time to time; and
	(b) amended subject to the Authority's approval from time to time; and
	(c) re-published from time to time;
Code Administrator	Means The Company carrying out the role of Code Administrator in accordance with the General Conditions.
Combined Cycle Gas Turbine Module or CCGT Module	A collection of Generating Units (registered as a CCGT Module (which could be within a Power Generating Module) under the PC) comprising one or more Gas Turbine Units (or other gas based engine units) and one or more Steam Units where, in normal operation, the waste heat from the Gas Turbines is passed to the water/steam system of the associated Steam Unit or Steam Units and where the component units within the CCGT Module are directly connected by steam or hot gas lines which enable those units to contribute to the efficiency of the combined cycle operation of the CCGT Module .
Combined Cycle Gas Turbine Unit or CCGT Unit	A Generating Unit within a CCGT Module.
Commercial Ancillary Services	Ancillary Services, other than System Ancillary Services, utilised by The Company in operating the Total System if a User (or other person such as a Demand Response Provider) has agreed to provide them under an Ancillary Services Agreement or under a Bilateral Agreement with payment being dealt with under an Ancillary Services Agreement or in the case of Externally Interconnected System Operators or Interconnector Users, under any other agreement (and in the case of Externally Interconnected System Operators and Interconnector Users includes Ancillary Services equivalent to or similar to System Ancillary Services).
Commercial Boundary	Has the meaning set out in the CUSC
Committed Level	The expected Active Power output from a BM Unit after accepting a Bid- Offer Acceptance or RR Instruction or a combination of Bid-Offer Acceptances and RR Instructions.
Committed Project Planning Data	Data relating to a User Development once the offer for a CUSC Contract is accepted.

Common Collection Busbar	A busbar within a Power Park Module to which the higher voltage side of two or more Power Park Unit generator transformers are connected.
Completion Date	Has the meaning set out in the Bilateral Agreement with each User to that term or in the absence of that term to such other term reflecting the date when a User is expected to connect to or start using the National Electricity Transmission System . In the case of an Embedded Medium Power Station or Embedded DC Converter Station or Embedded HVDC System having a similar meaning in relation to the Network Operator's System as set out in the Embedded Development Agreement .
Complex	A Connection Site together with the associated Power Station and/or Network Operator substation and/or associated Plant and/or Apparatus, as appropriate.
Compliance Processes or CP	That portion of the Grid Code which is identified as the Compliance Processes .
Compliance Statement	A statement completed by the relevant User confirming compliance with each of the relevant Grid Code provisions, and the supporting evidence in respect of such compliance, of its:
	Generating Unit(s); or,
	Power Generating Modules (including DC Connected Power Park Modules and/or Electricity Storage Modules); or,
	CCGT Module(s); or,
	Power Park Module(s); or,
	DC Converter(s); or
	HVDC Systems; or
	Plant and Apparatus at an EU Grid Supply Point owned or operated by a Network Operator; or
	Network Operator's entire distribution System where such Network Operator's distribution System comprises solely of Plant and Apparatus procured on or after 7 September 2018 and was connected to the National Electricity Transmission System on or after 18 August 2019. In this case, all connections to the National Electricity Transmission System would comprise only of EU Grid Supply Points; or
	Plant and Apparatus at an EU Grid Supply Point owned or operated by a Non-Embedded Customer where such Non-Embedded Customer is defined as an EU Code User;
	In the form provided by The Company to the relevant User or another format as agreed between the User and The Company .
Configuration 1 AC Connected Offshore Power Park Module	One or more Offshore Power Park Modules that are connected to an AC Offshore Transmission System and that AC Offshore Transmission System is connected to only one Onshore substation and which has one or more Transmission Interface Points.

Configuration 2 AC	One or more Offshore Power Park Modules that are connected to a			
Configuration 2 AC Connected Offshore Power Park Module	meshed AC Offshore Transmission System and that AC Offshore Transmission System is connected to two or more Onshore substations at its Transmission Interface Points.			
Configuration 1 DC Connected Power Park Module	One or more DC Connected Power Park Modules that are connected to an HVDC System or Transmission DC Converter and that HVDC System or Transmission DC Converter is connected to only one Onshore substation and which has one or more Transmission Interface Points.			
Configuration 2 DC Connected Power Park Module	One or more DC Connected Power Park Modules that are connected to an HVDC System or Transmission DC Converter and that HVDC System or Transmission DC Converter is connected to more than one Onshore substation at its Transmission Interface Points .			
Connection Conditions or CC	That portion of the Grid Code which is identified as the Connection Conditions being applicable to GB Code Users .			
Connection Entry Capacity	Has the meaning set out in the CUSC.			
Connected Planning Data	Data which replaces data containing estimated values assumed for planning purposes by validated actual values and updated estimates for the future and by updated forecasts for Forecast Data items such as Demand .			
Connection Point	A Grid Supply Point or Grid Entry Point, as the case may be.			
Connection Site	A Transmission Site or User Site, as the case may be.			
Construction Agreement	Has the meaning set out in the CUSC			
Consumer Representative	Means the person appointed by the Citizens Advice or the Citizens Advice Scotland (or any successor body) representing all categories of customers, appointed in accordance with GR.4.2(b)			
Contingency Reserve	The margin of generation over forecast Demand which is required in the period from 24 hours ahead down to real time to cover against uncertainties in Large Power Station availability and against both weather forecast and Demand forecast errors.			
Control Based Reactive Power	The Reactive Power supplied by a Grid Forming Plant through controlled means based on operator adjustment selectable setpoints (these may be manual or automatic).			
Control Calls	A telephone call whose destination and/or origin is a key on the control desk telephone keyboard at a Control Centre and which, for the purpose of Control Telephony , has the right to exercise priority over (ie. disconnect) a call of a lower status.			
Control Centre	A location used for the purpose of control and operation of the National Electricity Transmission System or DC Converter Station owner's System or HVDC System Owner's System or a User System other than a Generator's System or an External System.			
Control Engineer	A person nominated by the relevant party for the control of its Plant and Apparatus .			

Control Person	The term used as an alternative to "Safety Co-ordinator" on the Site Responsibility Schedule only.		
Control Phase	The Control Phase follows on from the Programming Phase and covers the period down to real time.		
Control Point	The point from which:-		
	(a) A Non-Embedded Customer's Plant and Apparatus is controlled; or		
	(b) A BM Unit at a Large Power Station or at a Medium Power Station or representing a Cascade Hydro Scheme or with a Demand Capacity with a magnitude of:		
	(i) 50MW or more in NGET's Transmission Area ; or		
	(ii) 30MW or more in SPT's Transmission Area ; or		
	(iii) 10MW or more in SHETL's Transmission Area,		
	(iv) 10MW or more which is connected to an Offshore Transmission System		
	is physically controlled by a BM Participant ; or		
	 (c) In the case of any other BM Unit or Generating Unit (which could be part of a Power Generating Module), data submission is co- ordinated for a BM Participant and instructions are received from The Company, 		
	as the case may be. For a Generator , this will normally be at a Power Station but may be at an alternative location agreed with The Company . In the case of a DC Converter Station or HVDC System , the Control Point will be at a location agreed with The Company . In the case of a BM Unit of an Interconnector User , the Control Point will be the Control Centre of the relevant Externally Interconnected System Operator .		
Control Telephony	The principal method by which a User's Responsible Engineer/Operator and The Company's Control Engineer(s) speak to one another for the purposes of control of the Total System in both normal and emergency operating conditions.		
Core Industry Document	As defined in the Transmission Licence		
Core Industry Document Owner	In relation to a Core Industry Document , the body(ies) or entity(ies) responsible for the management and operation of procedures for making changes to such document		
CUSC	Has the meaning set out in The Company's Transmission Licence		

CUSC Contract	One or more of the following agreements as envisaged in Standard Condition C1 of The Company's Transmission Licence :		
	(a) the CUSC Framework Agreement;		
	(b) a Bilateral Agreement;		
	(c) a Construction Agreement		
	or a variation to an existing Bilateral Agreement and/or Construction Agreement ;		
CUSC Framework Agreement	Has the meaning set out in The Company's Transmission Licence.		
CUSC Party	As defined in the The Company's Transmission Licence and "CUSC Parties" shall be construed accordingly.		
Customer	A person to whom electrical power is provided (whether or not they are the same person as the person who provides the electrical power).		
Customer Demand Management	Reducing the supply of electricity to a Customer or disconnecting a Customer in a manner agreed for commercial purposes between a Supplier and its Customer .		
Customer Demand Management Notification Level	The level above which a Supplier has to notify The Company of its proposed or achieved use of Customer Demand Management which is 12 MW in England and Wales and 5 MW in Scotland.		
Customer Generating Plant	A Power Station or Generating Unit or Power Generating Module of a Customer to the extent that it operates the same exclusively to supply all or part of its own electricity requirements, and does not export electrical power to any part of the Total System .		
Damping Factor (ζ)	The ratio of the actual damping to critical damping.		
	For a GBGF-I the open loop phase angle, for an open loop gain of one, is measured from the systems Nichols Chart .		
	This angle is used to define the system's equivalent Damping Factor that is the same as the Damping Factor of a second order system with the same open loop phase angle.		
	Alternatively, the Damping Factor refers to the damping of a specific oscillation mode that is associated with the second order system created by the power to angle transfer function as show in Figure PC.A.5.8.1(a) and PCA.5.8.1(b).		
Data Publisher	The person providing a reporting service, in relation to data which is submitted to the reporting service under OC2.4.2.3 or a Transmission Licensee , in relation to data which the Transmission Licensee is required to publish.		
Data Registration Code or DRC	That portion of the Grid Code which is identified as the Data Registration Code .		

Data Validation, Consistency and Defaulting Rules	The rules relating to validity and consistency of data, and default data to be applied, in relation to data submitted under the Balancing Codes , to be applied by The Company under the Grid Code as set out in the document "Data Validation, Consistency and Defaulting Rules" - Issue & dated 25 th January 2012. The document is available on the National Grid website or upon request from The Company .		
DC Connected Power Park Module	A Power Park Module that is connected to one or more HVDC Interface Points.		
DC Converter	Any Onshore DC Converter or Offshore DC Converter as applicable to GB Code User's .		
DC Converter Station	An installation comprising one or more Onshore DC Converters connecting a direct current interconnector:		
	to the National Electricity Transmission System; or,		
	(if the installation has a rating of 50MW or more) to a User System ,		
	and it shall form part of the External Interconnection to which it relates.		
DC Network	All items of Plant and Apparatus connected together on the direct curre side of a DC Converter or HVDC System .		
DCUSA	The Distribution Connection and Use of System Agreement approved by the Authority and required to be maintained in force by each Electricity Distribution Licence holder.		
Defence Service Provider	A User with a legal or contractual obligation to provide a service contributing to one or several measures of the System Defence Plan.		
Defined Active Damping Power	The Active Damping Power supplied by a GBGF-I when it is operating at the Grid Oscillation Value defined in Table PC.A.5.8.2		
De-Load	The condition in which a Genset has reduced or is not delivering electrical power to the System to which it is Synchronised .		
Δf	Deviation from Target Frequency		
Demand	The demand of MW and MVAr of electricity (i.e. both Active and Reactive Power), unless otherwise stated.		
Demand Aggregation	A process where one or more Demand Facilities or Closed Distribution Systems can be controlled by a Demand Response Provider either as a single facility or Closed Distribution System for the purposes of offering one or more Demand Response Services .		
Demand Capacity	Has the meaning as set out in the BSC .		

Demand Control	Any or all of the following methods of achieving a Demand reduction:		
	 (a) Customer voltage reduction initiated by Network Operators (other than following an instruction from The Company); 		
	 (b) Customer Demand reduction by Disconnection initiated by Network Operators (other than following an instruction from The Company); 		
	(c) Demand reduction instructed by The Company ;		
	(d) automatic low Frequency Demand Disconnection;		
	(e) emergency manual Demand Disconnection .		
Demand Control Notification Level	The level above which a Network Operator has to notify The Company of its proposed or achieved use of Demand Control which is 12 MW in England and Wales and 5 MW in Scotland.		
Demand Facility	A facility which consumes electrical energy and is connected at one or more Grid Supply Points to the National Electricity Transmission System or connection points to a Network Operator's System. A Network Operator's System and/or auxiliary supplies of a Power Generating Module do no constitute a Demand Facility.		
Demand Facility Owner	A person who owns or operates one or more Demand Units within a		
	Demand Facility . A Demand Facility Owner who owns or operates a Demand Facility which is directed connected to the Transmission		
	System shall be treated as a Non-Embedded Customer.		
Demand Response Active Power Control	Demand within a Demand Facility or Closed Distribution System that is available for modulation by The Company or Network Operator or Relevant Transmission Licensee, which results in an Active Power modification.		
Demand Response Provider	A party (other than The Company) who owns, operates, controls or manages Main Plant and Apparatus (excluding storage equipment) which was first connected to the Total System on or after 18 August 2019 and who had placed Purchase Contracts for its Main Plant and Apparatus on or after 7 September 2018 or is the subject of a Substantial Modification on or after 18 August 2019 and has an agreement with The Company to provide a Demand Response Service (s). The party may be one or more Customers , a Network Operator or Non-Embedded Customer or EU Code User contracting bilaterally with The Company for the provision of services, or may be a third party providing Demand Aggregation from many individual Customers .		
Demand Response Reactive Power Control	A Demand Response Service derived from Reactive Power or Reactive Power compensation devices in a Demand Facility or Closed Distribution System that are available for modulation by The Company or Network Operator or Relevant Transmission Licensee.		
Demand Response Transmission Constraint Management	A Demand Response Service derived from Demand within a Demand Facility or Closed Distribution System that is available for modulation by The Company or Network Operator or Relevant Transmission Licensee to manage transmission constraints within the System.		

Demand Response Service	A Demand Response Service includes one of more of the following services:	
	 (a) Demand Response Active Power Control; (b) Demand Response Reactive Power Control; (c) Demand Response Transmission Constraint Management; (d) Demand Response System Frequency Control; (e) Demand Response Very Fast Active Power Control. The above Demand Response Services are not exclusive and do not preclude Demand Response Providers from negotiating other services for demand response capability with The Company. Where such services are negotiated they would still be treated as a Demand Response Service.	
Demand Response	That portion of the Grid Code which is identified as the Demand	
Services Code (DRSC)	Response Services Code being applicable to Demand Response Providers.	
Demand Response System Frequency Control	A Demand Response Service derived from a Demand within one or more Demand Facilities or Closed Distribution Systems that is available for the reduction or increase in response to Frequency fluctuations, made by an autonomous response from those Demand Facilities or Closed Distribution Systems to diminish these fluctuations.	
Demand Response Unit Document (DRUD)	A document, issued either by the Non-Embedded Customer, Demand Facility Owner or the CDSO to The Company or the Network Operator (as the case may be) for Demand Units with demand response and providing a Demand Response Service which confirms the compliance of the Demand Unit with the technical requirements set out in the Grid Code and provides the necessary data and statements, including a statement of compliance.	
Demand Response Very Fast Active Power Control	A Demand Response Service derived from a Demand within a Demand Facility or Closed Distribution System that can be modulated very fast in response to a Frequency deviation, which results in a very fast Active Power modification.	
Demand Unit	An indivisible set of installations containing equipment which can be actively controlled at one or more sites by a Demand Response Provider , Demand Facility Owner , CDSO or by a Non Embedded Customer , either individually or commonly as part of Demand Aggregation through a third party who has agreed to provide Demand Response Services .	
Designed Minimum Operating Level	The output (in whole MW) below which a Genset or a DC Converter at a DC Converter Station (in any of its operating configurations) has no High Frequency Response capability.	
De-Synchronise	 (a) The act of taking a Power Generating Module (including a DC Connected Power Park Module), Generating Unit, Power Park Module, HVDC System or DC Converter off a System to which it has been Synchronised, by opening any connecting circuit breaker; or 	
	(b) The act of ceasing to consume electricity at an importing BM Unit ;	
	and the term "De-Synchronising" shall be construed accordingly.	
De-synchronised Island(s)	Has the meaning set out in OC9.5.1(a).	
Detailed Planning Data	Detailed additional data which The Company requires under the PC in support of Standard Planning Data , comprising DPD I and DPD II .	

The Detailed Planning Data categorised as such in the DRC , and submitted in accordance with PC.4.4.2 or PC.4.4.4 as applicable.			
The Detailed Planning Data categorised as such in the DRC , and submitted in accordance with PC.4.4.2 or PC.4.4.4 as applicable.			
The physical separation of Users (or Customers) from the National Electricity Transmission System or a User System as the case may be.			
The quality where a relay or protective system is enabled to pick out and cause to be disconnected only the faulty Apparatus .			
The procedure described in the CUSC relating to disputes resolution.			
The distribution code required to be drawn up by each Electricity Distribution Licence holder and approved by the Authority , as from time to time revised with the approval of the Authority .			
The ratio of the per unit steady state change in speed (or Frequency), to the per unit steady state change in Active Power output. Whilst not mandatory, it is often common practice to express Droop in percentage terms.			
Those parameters listed in Appendix 1 to BC1 under the heading BM Unit Data – Dynamic Parameters .			
Plant and Apparatus capable of injecting or absorbing Reactive Power in a controlled manner which includes but is not limited to Synchronous Compensators, Static Var Compensators (SVC), or STATCOM devices.			
An Offshore Transmission System with an Interface Point in England and Wales.			
A person who owns or operates an E&W Offshore Transmission System pursuant to a Transmission Licence .			
Collectively NGET's Transmission System and any E&W Offshore Transmission Systems.			
A User in England and Wales or any Offshore User who owns or operates Plant and/or Apparatus connected (or which will at the OTSUA Transfer Time be connected) to an E&W Offshore Transmission System.			
At a selected location of a three-phase System (generally the point of installation of equipment) and for a given System configuration, the ratio of the highest root mean square phase-to-earth power Frequency voltage on a sound phase during a fault to earth (affecting one or more phases at any point) to the root mean square phase-to-earth power Frequency voltage which would be obtained at the selected location without the fault.			

Earthing	A way of providing a connection between conductors and earth by an Earthing Device which is either:			
	 (a) Immobilised and Locked in the earthing position. Where the Earthing Device is Locked with a Safety Key, the Safety Key must be secured in a Key Safe and the Key Safe Key must be, where reasonably practicable, given to the authorised site representative of the Requesting Safety Co-ordinator and is to be retained in safe custody. Where not reasonably practicable the Key Safe Key must be retained by the authorised site representative of the Implementing Safety Co-ordinator in safe custody; or 			
	(b) maintained and/or secured in position by such other method which must be in accordance with the Local Safety Instructions of NGET or the Safety Rules of the Relevant Transmission Licensee or that User, as the case may be.			
Earthing Device	A means of providing a connection between a conductor and earth being of adequate strength and capability.			
Elected Panel Members	Shall mean the following Panel Members elected in accordance with GR4.2(a):			
	(a) the representative of the Suppliers ;			
	(b) the representative of the Onshore Transmission Licensees ;			
	(c) the representative of the Offshore Transmission Licensees ; and			
	(d) the representatives of the Generators			
Electrical Standard	A standard listed in the Annex to the General Conditions.			
Electricity Balancing Regulation	as defined in the CUSC.			
Electricity Council	That body set up under the Electricity Act, 1957.			
Electricity Distribution Licence	The licence granted pursuant to Section 6(1) (c) of the Act.			
Electricity Regulation	As defined in the Transmission Licence.			
Electricity Storage	The conversion of electrical energy into a form of energy which can be stored, the storing of that energy, and the subsequent reconversion of that energy back into electrical energy.			
Electricity Storage Module	Is either one or more Synchronous Electricity Storage Unit(s) or Non- Synchronous Electricity Storage Unit(s) which could also be part of a Power Generating Module. For the avoidance of doubt, Non- Controllable Electricity Storage Equipment would not be considered to be classed as an Electricity Storage Module or as an Electricity Storage Unit.			
Electricity Storage Unit	A Synchronous Electricity Storage Unit or Non-Synchronous Electricity Storage Unit.			

Electricity Supply Industry Arbitration Association	The unincorporated members' club of that name formed inter alia to promote the efficient and economic operation of the procedure for the resolution of disputes within the electricity supply industry by means of arbitration or otherwise in accordance with its arbitration rules.			
Electricity Supply Licence	The licence granted pursuant to Section 6(1) (d) of the Act.			
Electromagnetic Compatibility Level	Has the meaning set out in Engineering Recommendation G5.			
Electronic Power Converter	Electrical Plant and Apparatus which uses switched solid state power electronic devices to produce a real voltage waveform, that has a fundamental component with harmonics.			
Embedded	Having a direct connection to a User System or the System of any other User to which Customers and/or Power Stations are connected, such connection being either a direct connection or a connection via a busbar of another User or of a Relevant Transmission Licensee (but with no other connection to the National Electricity Transmission System).			
Embedded Development	Has the meaning set out in PC.4.4.3(a).			
Embedded Development Agreement	An agreement entered into between a Network Operator and an Embedded Person , identifying the relevant site of connection to the Network Operator's System and setting out other site specific details in relation to that use of the Network Operator's System .			
Embedded Generation Control	 Any or all of the following methods by which a Network Operator can achieve a reduction in the Active Power output of Embedded Power Stations to implement an instruction issued by The Company: (a) Embedded Generation De-energisation; or (b) where this is achievable in a suitable timescale to comply with an instruction, arranging to reduce the Active Power output of Embedded Power Stations or Embedded Generator Unit(s) connected to their System. 			
Embedded Generation Deenergisation	The de-energisation by Network Operators of one or more Embedded Power Stations or Embedded Generating Units from their System as part of an Embedded Generation Control action.			
Embedded Person	The party responsible for a Medium Power Station not subject to a Bilateral Agreement or DC Converter Station not subject to a Bilateral Agreement or HVDC System not subject to a Bilateral Agreement connected to or proposed to be connected to a Network Operator's System .			
Emergency Deenergisation Instruction	An Emergency Instruction issued by The Company to De- Synchronise a Power Generating Module (including a DC Connected Power Park Module), Generating Unit, Power Park Module, HVDC System or DC Converter in circumstances specified in the CUSC.			
Emergency Instruction	An instruction issued by The Company in emergency circumstances, pursuant to BC2.9, to the Control Point of a User . In the case of such instructions applicable to a BM Unit , it may require an action or response which is outside the Dynamic Parameters or Other Relevant Data , and may include an instruction to trip a Genset .			

EMR Administrative Parties	Has the meaning given to "administrative parties" in The Electricity Capacity Regulations 2014 and each CfD Counterparty and CfD Settlement Services Provider.		
EMR Documents	The Energy Act 2013, The Electricity Capacity Regulations 2014, the Capacity Market Rules , The Contracts for Difference (Allocation) Regulations 2014, The Contracts for Difference (Definition of Eligible Generator) Regulations 2014, The Contracts for Difference (Electricity Supplier Obligations) Regulations 2014, The Electricity Market Reform (General) Regulations 2014, the AF Rules and any other regulations or instruments made under Chapter 2 (contracts for difference), Chapter 3 (capacity market) or Chapter 4 (investment contracts) of Part 2 of the Energy Act 2013 which are in force from time to time.		
EMR Functions	Has the meaning given to "EMR functions" in Chapter 5 of Part 2 of the Energy Act 2013.		
Engineering Recommendations	The documents referred to as such and issued by the Energy Networks Association or the former Electricity Council.		
Engineering Recommendation G5	Means Engineering Recommendation G5/5.		
Energisation Operational Notification or EON	A notification (in respect of Plant and Apparatus (including OTSUA) which is directly connected to the National Electricity Transmission System) from The Company to a User confirming that the User can in accordance with the Bilateral Agreement and/or Construction Agreement , energise such User's Plant and Apparatus (including OTSUA) specified in such notification.		
Equipment Certificate	A document issued by an Authorised Certifier for equipment used by a Power Generating Module, Demand Unit, Network Operators System, Non-Embedded Customers System, Demand Facility or HVDC System. The Equipment Certificate defines the scope of its validity at a national level. For the purpose of replacing specific parts of the compliance process, the Equipment Certificate may include models or equivalent information that have been verified against actual test results.		
Estimated Registered Data	Those items of Standard Planning Data and Detailed Planning Data which either upon connection will become Registered Data , or which for the purposes of the Plant and/or Apparatus concerned as at the date of submission are Registered Data , but in each case which for the seven succeeding Financial Years will be an estimate of what is expected.		

EU Code User	A User	who is any of the following:-
	(a)	A Generator in respect of a Power Generating Module (excluding a DC Connected Power Park Module) or OTSDUA (in respect of an AC Offshore Transmission System) whose Main Plant and Apparatus is connected to the System on or after 27 April 2019 and who concluded Purchase Contracts for its Main Plant and Apparatus on or after 17 May 2018
	(b)	A Generator in respect of any Type C or Type D Power Generating Module which is the subject of a Substantial Modification which is effective on or after 27 April 2019.
	(c)	A Generator in respect of any DC Connected Power Park Module whose Main Plant and Apparatus is connected to the System on or after 8 September 2019 and who had concluded Purchase Contracts for its Main Plant and Apparatus on or after 28 September 2018.
	(d)	A Generator in respect of any DC Connected Power Park Module which is the subject of a Substantial Modification which is effective on or after 8 September 2019.
	(e)	An HVDC System Owner or OTSDUA (in respect of a DC Offshore Transmission System including a Transmission DC Converter) whose Main Plant and Apparatus is connected to the System on or after 8 September 2019 and who had concluded Purchase Contracts for its Main Plant and Apparatus on or after 28 September 2018.
	(f)	An HVDC System Owner or OTSDUA (in respect of a DC Offshore Transmission System including a Transmission DC Converter) whose HVDC System or DC Offshore Transmission System including a Transmission DC Converter) is the subject of a Substantial Modification on or after 8 September 2019.
	(g)	A User which the Authority has determined should be considered as an EU Code User .
	(h)	A Network Operator whose entire distribution System was first connected to the National Electricity Transmission System on or after 18 August 2019 and who had placed Purchase Contracts for its Main Plant and Apparatus in respect of its entire distribution System on or after 7 September 2018. For the avoidance of doubt, a Network Operator will be an EU Code User if its entire distribution System is connected to the National Electricity Transmission System at EU Grid Supply Points only.
	(i)	A Non Embedded Customer whose Main Plant and Apparatus at each EU Grid Supply Point was first connected to the National Electricity Transmission System on or after 18 August 2019 and who had placed Purchase Contracts for its Main Plant and Apparatus at each EU Grid Supply Point on or after 7 September 2018 or is the subject of a Substantial Modification on or after 18 August 2019.
	(j)	A Storage User in respect of an Electricity Storage Module whose Main Plant and Apparatus is connected to the System on or after 20 May 2020 and who concluded Purchase

	Contracts for its Main Plant and Apparatus on or after 20 May 2019.			
EU Generator	A Generator or OTSDUA who is also an EU Code User.			
EU Grid Supply Point	A Grid Supply Point where either:-			
	 (i) (a) the Network Operator or Non-Embedded Customer had placed Purchase Contracts for all of its Plant and Apparatus at that Grid Supply Point on or after 7 September 2018, and 			
	(b) All of the Network Operator's or Non-Embedded Customer's Plant and Apparatus at that Grid Supply Point was first connected to the Transmission System on or after 18 August 2019; or			
	 (ii) the Network Operator's or Non-Embedded Customer's Plant and Apparatus at a Grid Supply Point is the subject of a Substantial Modification which is effective on or after 18 August 2019. 			
EU Transparency Availability Data	Such relevant data as Customers and Generators are required to provide under Articles 7.1(a) and 7.1(b) and Articles 15.1(a), 15.1(b), 15.1(c), 15.1(d) of Retained EU Law (Commission Regulation (EU) 543/2013), and which also forms part of DRC Schedule 6 (Users ' Outage Data).			
European Compliance Processes or ECP	That portion of the Grid Code which is identified as the European Compliance Processes .			
European Connection Conditions or ECC	That portion of the Grid Code which is identified as the European Connection Conditions being applicable to EU Code Users .			
European Specification	A common technical specification, a British Standard implementing a European standard or a European technical approval. The terms "common technical specification", "European standard" and "European technical approval" shall have the meanings respectively ascribed to them in the Regulations .			
Event	An unscheduled or unplanned (although it may be anticipated) occurrence on, or relating to, a System (including Embedded Power Stations) including, without limiting that general description, faults, incidents and breakdowns and adverse weather conditions being experienced.			
Exciter	The source of the electrical power providing the field current of a synchronous machine.			
Excitation System	The equipment providing the field current of a machine, including all regulating and control elements, as well as field discharge or suppression equipment and protective devices.			
Excitation System No-Load Negative Ceiling Voltage	The minimum value of direct voltage that the Excitation System is able to provide from its terminals when it is not loaded, which may be zero or a negative value.			

Excitation System Nominal Response	Shall have the meaning ascribed to that term in IEC 34-16-1:1991 [equivalent to British Standard BS 4999 Section 116.1: 1992]. The time interval applicable is the first half-second of excitation system voltage response.
Excitation System On-Load Positive Ceiling Voltage	Shall have the meaning ascribed to the term 'Excitation system on load ceiling voltage' in IEC 34-16-1:1991[equivalent to British Standard BS4999 Section 116.1: 1992].
Excitation System No-Load Positive Ceiling Voltage	Shall have the meaning ascribed to the term 'Excitation system no load ceiling voltage' in IEC 34-16-1:1991[equivalent to British Standard BS 4999 Section 116.1: 1992].
Exemptable	Has the meaning set out in the CUSC.
Existing AGR Plant	The following nuclear advanced gas cooled reactor plant (which was commissioned and connected to the Total System at the Transfer Date):-
	(a) Dungeness B
	(b) Hinkley Point B
	(c) Heysham 1
	(d) Heysham 2
	(e) Hartlepool
	(f) Hunterston B
	(g) Torness
Existing AGR Plant Flexibility Limit	In respect of each Genset within each Existing AGR Plant which has a safety case enabling it to so operate, 8 (or such lower number which when added to the number of instances of reduction of output as instructed by The Company in relation to operation in Frequency Sensitive Mode totals 8) instances of flexibility in any calendar year (or such lower or greater number as may be agreed by the Nuclear Installations Inspectorate and notified to The Company) for the purpose of assisting in the period of low System NRAPM and/or low Localised NRAPM provided that in relation to each Generating Unit each change in output shall not be required to be to a level where the output of the reactor is less than 80% of the reactor thermal power limit (as notified to The Company and which corresponds to the limit of reactor thermal power as contained in the "Operating Rules" or "Identified Operating Instructions" forming part of the safety case agreed with the Nuclear Installations Inspectorate).
Existing Gas Cooled Reactor Plant	Both Existing Magnox Reactor Plant and Existing AGR Plant.

Existing Magnox Reactor Plant	The following nuclear gas cooled reactor plant (which was commissioned and connected to the Total System at the Transfer Date):-
	(a) Calder Hall
	(b) Chapelcross
	(c) Dungeness A
	(d) Hinkley Point A
	(e) Oldbury-on-Severn
	(f) Bradwell
	(g) Sizewell A
	(h) Wylfa
Export and Import Limits	Those parameters listed in Appendix 1 to BC1 under the heading BM Unit Data – Export and Import Limits.
External Interconnection	Apparatus for the transmission of electricity to or from the National Electricity Transmission System or a User System into or out of an External System. For the avoidance of doubt, a single External Interconnection may comprise several circuits operating in parallel.
External Interconnection Circuit	Plant or Apparatus which comprises a circuit and which operates in parallel with another circuit and which forms part of the External Interconnection .
Externally Interconnected System Operator or EISO	A person who operates an External System which is connected to the National Electricity Transmission System or a User System by an External Interconnection .
External System	In relation to an Externally Interconnected System Operator means the transmission or distribution system which it owns or operates which is located outside the National Electricity Transmission System Operator Area any Apparatus or Plant which connects that system to the External Interconnection and which is owned or operated by such Externally Interconnected System Operator.
Fast Fault Current	A current delivered by a Power Park Module or HVDC System during and after a voltage deviation caused by an electrical fault within the System with the aim of identifying a fault by network Protection systems at the initial stage of the fault, supporting System voltage retention at a later stage of the fault and System voltage restoration after fault clearance.
Fault Current Interruption Time	The time interval from fault inception until the end of the break time of the circuit breaker (as declared by the manufacturers).
Fault Ride Through	The capability of Power Generating Modules (including DC Connected Power Park Modules) and HVDC Systems to be able to remain connected to the System and operate through periods of low voltage at the Grid Entry Point or User System Entry Point caused by secured faults.
Fast Start	A start by a Genset with a Fast Start Capability.
Fast Start Capability	The ability of a Genset to be Synchronised and Loaded up to full Load within 5 minutes.
sue 6 Revision 12	GD 09 March 2022

Fast Track Criteria	A proposed Grid Code Modification Proposal that, if implemented,
	(a) would meet the Self-Governance Criteria ; and
	 (b) is properly a housekeeping modification required as a result of some error or factual change, including but not limited to:
	(i) updating names or addresses listed in the Grid Code ;
	(ii) correcting any minor typographical errors;
	(iii) correcting formatting and consistency errors, such as paragraph numbering; or
	 (iv) updating out of date references to other documents or paragraphs
Fault Current Interruption Time	The time interval from fault inception until the end of the break time of the circuit breaker (as declared by the manufacturers).
Fault Ride Through	The capability of Power Generating Modules (including DC Connected Power Park Modules) and HVDC Systems to be able to remain connected to the System and operate through periods of low voltage at the Grid Entry Point or User System Entry Point caused by secured faults.
Final Generation Outage Programme	An outage programme as agreed by The Company with each Generator and each Interconnector Owner at various stages through the Operational Planning Phase and Programming Phase which does not commit the parties to abide by it, but which at various stages will be used as the basis on which National Electricity Transmission System outages will be planned.
Final Operational Notification or FON	A notification from The Company to a Generator or DC Converter Station owner or HVDC System Owner or Network Operator or Non- Embedded Customer confirming that the User has demonstrated compliance:
	(a) with the Grid Code, (or where they apply, that relevant derogations have been granted), and
	(b) where applicable, with Appendices F1 to F5 of the Bilateral Agreement ,
	in each case in respect of the Plant and Apparatus specified in such notification.
Final Physical Notification Data	Has the meaning set out in the BSC .
Final Report	A report prepared by the Test Proposer at the conclusion of a System Test for submission to The Company (if it did not propose the System Test) and other members of the Test Panel .
Financial Year	Bears the meaning given in Condition A1 (Definitions and Interpretation) of The Company's Transmission Licence .

Fixed Proposed Implementation Date	The proposed date(s) for the implementation of a Grid Code Modification Proposal or Workgroup Alternative Grid Code Modification such date to be a specific date by reference to an assumed date by which a direction from the Authority approving the Grid Code Modification Proposal or Workgroup Alternative Grid Code Modification is required in order for the Grid Code Modification Proposal or any Workgroup Alternative Grid Code Modification, if it were approved, to be implemented by the proposed date.
Flicker Severity (Long Term)	A value derived from 12 successive measurements of Flicker Severity (Short Term) (over a two hour period) and a calculation of the cube root of the mean sum of the cubes of 12 individual measurements, as further set out in Engineering Recommendation P28 as current at the Transfer Date .
Flicker Severity (Short Term)	A measure of the visual severity of flicker derived from the time series output of a flickermeter over a 10 minute period and as such provides an indication of the risk of Customer complaints.
Forecast Data	Those items of Standard Planning Data and Detailed Planning Data which will always be forecast.
Frequency	The number of alternating current cycles per second (expressed in Hertz) at which a System is running.
Frequency Containment Reserves (FCR)	means, in the context of Balancing Services , the Active Power reserves available to contain System Frequency after the occurrence of an imbalance.
Frequency Response Deadband	An interval used intentionally to make the Frequency control unresponsive.
	In the case of mechanical governor systems, the Frequency Response Deadband is the same as Frequency Response Insensitivity .
Frequency Response Insensitivity	The inherent feature of the control system specified as the minimum magnitude of change in the Frequency or input signal that results in a change of output power or output signal.
Frequency Restoration Reserves (FRR)	Means, in the context of Balancing Services , the Active Power reserves available to restore System Frequency to the nominal Frequency .
Frequency Sensitive AGR Unit	Each Generating Unit in an Existing AGR Plant for which the Generator has notified The Company that it has a safety case agreed with the Nuclear Installations Inspectorate enabling it to operate in Frequency Sensitive Mode, to the extent that such unit is within its Frequency Sensitive AGR Unit Limit. Each such Generating Unit shall be treated as if it were operating in accordance with BC3.5.1 provided that it is complying with its Frequency Sensitive AGR Unit Limit.

Frequency Sensitive AGR Unit Limit	In respect of each Frequency Sensitive AGR Unit , 8 (or such lower number which when added to the number of instances of flexibility for the purposes of assisting in a period of low System or Localised NRAPM totals 8) instances of reduction of output in any calendar year as instructed by The Company in relation to operation in Frequency Sensitive Mode (or such greater number as may be agreed between The Company and the Generator), for the purpose of assisting with Frequency control, provided the level of operation of each Frequency Sensitive AGR Unit in Frequency Sensitive Mode shall not be outside that agreed by the Nuclear Installations Inspectorate in the relevant safety case.
Frequency Sensitive Mode	A Genset, or Type C Power Generating Module or Type D Power Generating Module or DC Connected Power Park Module or HVDC System operating mode which will result in Active Power output changing, in response to a change in System Frequency, in a direction which assists in the recovery to Target Frequency, by operating so as to provide Primary Response and/or Secondary Response and/or High Frequency Response.
Fuel Security Code	The document of that title designated as such by the Secretary of State , as from time to time amended.
Gas Turbine Unit	A Generating Unit driven by a gas turbine (for instance by an aero- engine).
Gas Zone Diagram	A single line diagram showing boundaries of, and interfaces between, gas-insulated HV Apparatus modules which comprise part, or the whole, of a substation at a Connection Site (or in the case of OTSDUW Plant and Apparatus , Transmission Interface Site), together with the associated stop valves and gas monitors required for the safe operation of the National Electricity Transmission System or the User System , as the case may be.
Gate Closure	Has the meaning set out in the BSC .

GB Code User	A User in respect of:-
	 (a) A Generator or OTSDUA whose Main Plant and Apparatus (excluding a DC Connected Power Park Module) is connected to the System before 27 April 2019, or who had concluded Purchase Contracts for its Main Plant and Apparatus before 17 May 2018, or whose Plant and Apparatus is not the subject of a Substantial Modification which is effective on or after 27 April 2019; or
	(b) A DC Converter Station owner whose Main Plant and Apparatus is connected to the System before 8 September 2019, or who had concluded Purchase Contracts for its Main Plant and Apparatus before 28 September 2018, or whose Plant and Apparatus is not the subject of a Substantial Modification which is effective on or after 8 September 2019; or
	(c) A Non-Embedded Customer whose Main Plant and Apparatus was connected to the National Electricity Transmission System at a GB Grid Supply Point before 18 August 2019 or who had placed Purchase Contracts for its Main Plant and Apparatus before 7 September 2018 or that Non- Embedded Customer is not the subject of a Substantial Modification which is effective on or after 18 August 2019; or
	(d) A Network Operator whose entire distribution System was connected to the National Electricity Transmission System at one or more GB Grid Supply Points before 18 August 2019 or who had placed Purchase Contracts for its Main Plant and Apparatus in respect of its entire distribution System before 7 September 2018 or its entire distribution System is not the subject of a Substantial Modification which is effective on or after 18 August 2019. For the avoidance of doubt, a Network Operator would still be classed as a GB Code User where its entire distribution System was connected to the National Electricity Transmission System at one or more GB Grid Supply Points, even where that entire distribution System may have one or more EU Grid Supply Points but still comprises of GB Grid Supply Points.
GB Generator	A Generator, or OTSDUA, who is also a GB Code User.
GBGF Fast Fault Current Injection	The ability of a Grid Forming Plant to supply reactive current, that starts to be delivered into the Total System in less than 5ms when the voltage falls below 90% of its nominal value at the Grid Entry Point or User System Entry Point .
GB Grid Forming - Inverter or GBGF-I	Is any Power Park Module, HVDC System, DC Converter, OTSDUW Plant and Apparatus, Non-Synchronous Electricity Storage Module, Dynamic Reactive Compensation Equipment or any Plant and Apparatus (including a smart load) which is connected or partly connected to the Total System via an Electronic Power Converter which has a Grid Forming Capability (GBGF-I).
GB Grid Forming – Synchronous or GBGF-S	Is a Synchronous Power Generating Module, Synchronous Electricity Storage Module or Synchronous Generating Unit with a Grid Forming Capability.

GB Grid Supply Point	A Grid Supply Point which is not an EU Grid Supply Point.
GB Synchronous Area	The AC power System in Great Britain which connects User's , Relevant Transmission Licensee's whose AC Plant and Apparatus is considered to operate in synchronism with each other at each Connection Point or User System Entry Point and at the same System Frequency .
GCDF	Means the Grid Code Development Forum.
General Conditions or GC	That portion of the Grid Code which is identified as the General Conditions .
Generating Plant Demand Margin	The difference between Output Usable and forecast Demand .
Generating Unit	An Onshore Generating Unit and/or an Offshore Generating Unit which could also be part of a Power Generating Module .
Generating Unit Data	The Physical Notification , Export and Import Limits and Other Relevant Data only in respect of each Generating Unit (which could be part of a Power Generating Module):
	 (a) which forms part of the BM Unit which represents that Cascade Hydro Scheme;
	(b) at an Embedded Exemptable Large Power Station , where the relevant Bilateral Agreement specifies that compliance with BC1 and/or BC2 is required:
	(i) to each Generating Unit , or
	 to each Power Park Module where the Power Station comprises Power Park Modules.
Generation Capacity	Has the meaning set out in the BSC .
Generation Planning Parameters	Those parameters listed in Appendix 2 of OC2 .
Generator	A person who generates electricity or undertakes Electricity Storage under licence or exemption under the Act , acting in its capacity as a generator in Great Britain or Offshore . The term Generator includes a EU Generator and a GB Generator .
Generator Performance Chart	A diagram which shows the MW and MVAr capability limits within which a Generating Unit will be expected to operate under steady state conditions.
Genset	A Power Generating Module (including a DC Connected Power Park Module and/or Electricity Storage Module), Generating Unit, Power Park Module or CCGT Module at a Large Power Station or any Power Generating Module (including a DC Connected Power Park Module), Generating Unit, Power Park Module or CCGT Module which is directly connected to the National Electricity Transmission System.

Good Industry Practice	The exercise of that degree of skill, diligence, prudence and foresight which would reasonably and ordinarily be expected from a skilled and experienced operator engaged in the same type of undertaking under the same or similar circumstances.
Governance Rules or GR	That portion of the Grid Code which is identified as the Governance Rules .
Governor Deadband	An interval used intentionally to make the frequency control unresponsive.
Great Britain or GB	The landmass of England and Wales and Scotland, including internal waters.
Grid Code Fast Track Proposals	A proposal to modify the Grid Code which is raised pursuant to GR.26 and has not yet been approved or rejected by the Grid Code Review Panel .
Grid Code Modification Fast Track Report	A report prepared pursuant to GR.26
Grid Code Modification Register	Has the meaning given in GR.13.1.
Grid Code Modification Report	Has the meaning given in GR.22.1.
Grid Code Modification Procedures	The procedures for the modification of the Grid Code (including the implementation of Approved Modifications) as set out in the Governance Rules .
Grid Code Modification Proposal	A proposal to modify the Grid Code which is not yet rejected pursuant to GR.15.5 or GR.15.6 and has not yet been implemented.
Grid Code Modification Self- Governance Report	Has the meaning given in GR.24.5
Grid Code Objectives	Means the objectives referred to in Paragraph 1b of Standard Condition C14 of The Company's Transmission Licence .
Grid Code Review Panel or Panel	The panel with the functions set out in GR.1.2.
Grid Code Review Panel Recommendation Vote	The vote of Panel Members undertaken by the Panel Chairperson in accordance with Paragraph GR.22.4 as to whether in their view they believe each proposed Grid Code Modification Proposal , or Workgroup Alternative Grid Code Modification would better facilitate achievement of the Grid Code Objective(s) and so should be made.
Grid Code Review Panel Self-Governance Vote	The vote of Panel Members undertaken by the Panel Chairperson in accordance with GR.24.9 as to whether they believe each proposed Grid Code Modification Proposal, as compared with the then existing provisions of the Grid Code and any Workgroup Alternative Grid Code Modification set out in the Grid Code Modification Self-Governance Report , would better facilitate achievement of the Grid Code Objective(s) .

Grid Code Self-Governance Proposals	Grid Code Modification Proposals which satisfy the Self Governance Criteria.
Grid Entry Point	An Onshore Grid Entry Point or an Offshore Grid Entry Point.
Grid Forming Active Power	Grid Forming Active Power is the inherent Active Power produced by Grid Forming Plant that includes Active Inertia Power plus Active Phase Jump Power plus Active Damping Power.
Grid Forming Capability	Is (but not limited to) the capability a Power Generating Module , HVDC Converter (which could form part of an HVDC System), Generating Unit , Power Park Module , DC Converter , OTSDUW Plant and Apparatus , Electricity Storage Module , Dynamic Reactive Compensation Equipment or any Plant and Apparatus (including a smart load) whose supplied Active Power is directly proportional to the difference between the magnitude and phase of its Internal Voltage Source and the magnitude and phase of the voltage at the Grid Entry Point or User System Entry Point and the sine of the Load Angle . As a consequence, Plant and Apparatus which has a Grid Forming Capability has a frequency of rotation of the Internal Voltage Source which is the same as the System Frequency for normal operation, with only the Load Angle defining the relative position between the two. In the case of a GBGF-I , a Grid Forming Unit forming part of a GBGF-I shall be capable of sustaining a voltage at its terminals irrespective of the voltage at the Grid Entry Point or User System Entry Point for normal operating conditions. For GBGF-I , the control system, which determines the amplitude and phase of the Internal Voltage Source , shall have a response to the voltage and System Frequency at the Grid Entry Point or User System Entry Point) with a bandwidth that is less than a defined value as shown by the control system's NFP Plot. Exceptions to this requirement are only allowed during transients caused by System faults, voltage dips/surges and/or step or ramp changes in the phase angle which are large enough to cause damage to the Grid Forming Plant via excessive currents.
Grid Forming Electronic Power Converter	A Grid Forming Plant whose output is derived from an Electronic Power Converter with a GBGF-I capability.
Grid Forming Plant	A site which contains Plant and Apparatus which is classified as either a GBGF-S or a GBGF-I
Grid Forming Plant Owner	The owner or operator of a Grid Forming Plant.
Grid Forming Unit	A Power Park Unit or Electricity Storage Unit or a Synchronous Power Generating Unit or individual Load with a Grid Forming Capability.
Grid Oscillation Value	An injected test frequency signal applied at nominal System Frequency with a superimposed oscillatory response overlayed onto the nominal System Frequency with an amplitude of 0.05 Hz peak to peak at a frequency of 1 Hz and is used for determining the rating of the Defined Active Damping Power .

Grid Supply Point	A point of supply from the National Electricity Transmission System to Network Operators or Non-Embedded Customers which could be a GB Grid Supply Point or an EU Grid Supply Point .	
Group	Those National Electricity Transmission System sub-stations bounded solely by the faulted circuit(s) and the overloaded circuit(s) excluding any third party connections between the Group and the rest of the National Electricity Transmission System , the faulted circuit(s) being a Secured Event .	
GSP Group	Has the meaning as set out in the BSC .	
Headroom	The Power Available (in MW) less the actual Active Power exported from the Power Park Module (in MW).	
High Frequency Response	An automatic reduction in Active Power output in response to an increase in System Frequency above the Target Frequency (or such other level of Frequency as may have been agreed in an Ancillary Services Agreement). This reduction in Active Power output must be in accordance with the provisions of the relevant Ancillary Services Agreement which will provide that it will be released increasingly with time over the period 0 to 10 seconds from the time of the Frequency increase on the basis set out in the Ancillary Services Agreement and fully achieved within 10 seconds of the time of the Frequency increase and it must be sustained at no lesser reduction thereafter. The interpretation of the High Frequency Response to a + 0.5 Hz frequency change is shown diagrammatically in Figure CC.A.3.3 and Figure ECC.A.3.3.	
High Voltage or HV	For E&W Transmission Systems , a voltage exceeding 650 volts. For Scottish Transmission Systems , a voltage exceeding 1000 volts.	
Historic Frequency Data	System Frequency data at a maximum of one second intervals for the whole month, published by The Company as detailed in OC3.4.4.	
Houseload Operation	Operation which ensures that a Power Station is able to continue to supply its in-house load in the event of System faults resulting in Power-Generating Modules being disconnected from the System and tripped onto their auxiliary supplies	
HP Turbine Power Fraction	Ratio of steady state mechanical power delivered by the HP turbine to the total steady state mechanical power delivered by the total steam turbine at Registered Capacity or Maximum Capacity .	
HV Connections	Apparatus connected at the same voltage as that of the National Electricity Transmission System, including Users' circuits, the higher voltage windings of Users' transformers and associated connection Apparatus.	
HVDC Converter	Any EU Code User Apparatus used to convert alternating current electricity to direct current electricity, or vice versa. An HVDC Converter is a standalone operative configuration at a single site comprising one or more converter bridges, together with one or more converter transformers, reactors, converter control equipment, essential protective and switching devices and auxiliaries, if any, used for conversion. In a bipolar arrangement, an HVDC Converter represents the bipolar configuration.	

HVDC Converter Station	Part of an HVDC System which consists of one or more HVDC Converters installed in a single location together with buildings, reactors, filters reactive power devices, control, monitoring, protective, measuring and auxiliary equipment.	
HVDC Equipment	Collectively means an HVDC System and a DC Connected Power Park Module and a Remote End HVDC Converter Station.	
HVDC Interface Point	A point at which HVDC Plant and Apparatus is connected to an AC System at which technical specifications affecting the performance of the Plant and Apparatus can be prescribed.	
HVDC System	An electrical power system which transfers energy in the form of high voltage direct current between two or more alternating current (AC) buses and comprises at least two HVDC Converter Stations with DC Transmission lines or cables between the HVDC Converter Stations.	
HVDC System Owner	A party who owns and is responsible for an HVDC System . For the avoidance of doubt a DC Connected Power Park Module owner would be treated as a Generator .	
IEC	International Electrotechnical Commission.	
IEC Standard	A standard approved by the International Electrotechnical Commission.	
Implementation Date	Is the date and time for implementation of an Approved Modification as specified in accordance with Paragraph GR.25.3.	
Implementing Safety Co- ordinator	The Safety Co-ordinator implementing Safety Precautions.	
Import Usable	That portion of Registered Import Capacity which is expected to be available and which is not unavailable due to a Planned Outage .	
Incident Centre	A centre established by The Company or a User as the focal point in The Company or in that User , as the case may be, for the communication and dissemination of information between the senior management representatives of The Company , or of that User , as the case may be, and the relevant other parties during a Joint System Incident in order to avoid overloading The Company's , or that User's , as the case may be, existing operational/control arrangements.	
Independent Back-Up Protection	A Back-Up Protection system which utilises a discrete relay, different current transformers and an alternate operating principle to the Main Protection systems(s) such that it can operate autonomously in the event of a failure of the Main Protection .	
Independent Main Protection	A Main Protection system which utilises a physically discrete relay and different current transformers to any other Main Protection .	
Indicated Constraint Boundary Margin	The difference between a constraint boundary transfer limit and the difference between the sum of BM Unit Maximum Export Limits and the forecast of local Demand within the constraint boundary.	
Indicated Imbalance	The difference between the sum of Physical Notifications for BM Units comprising Generating Units or CCGT Modules or Power Generating Modules and the forecast of Demand for the whole or any part of the System .	

Indicated Margin	The difference between the sum of BM Unit Maximum Export Limits submitted and the forecast of Demand for the whole or any part of the System .
Inertia Constant H	For a GBGF-S the Inertia Constant H is measured in MWsec/MVA.
Inertia Constant He	For a GBGF- I Electronic Power Converter the Inertia Constant He , is measured in MWsec/MVA and produced by the Active ROCOF Response Power .
Installation Document	A simple structured document containing information about a Type A Power Generating Module or a Demand Unit , with demand response connected below 1000 V, and confirming its compliance with the relevant requirements
Instructor Facilities	A device or system which gives certain Transmission Control Centre instructions with an audible or visible alarm, and incorporates the means to return message acknowledgements to the Transmission Control Centre .
Integral Equipment Test or IET	A test on equipment, associated with Plant and/or Apparatus , which takes place when that Plant and/or Apparatus forms part of a Synchronised System and which, in the reasonable judgement of the person wishing to perform the test, may cause an Operational Effect .
Intellectual Property" or "IPRs	Patents, trade marks, service marks, rights in designs, trade names, copyrights and topography rights (whether or not any of the same are registered and including applications for registration of any of the same) and rights under licences and consents in relation to any of the same and all rights or forms of protection of a similar nature or having equivalent or similar effect to any of the same which may subsist anywhere in the world.
Interconnection Agreement	An agreement made between The Company and an Externally Interconnected System Operator and/or an Interconnector User and/or other relevant persons for the External Interconnection relating to an External Interconnection and/or an agreement under which an Interconnector User can use an External Interconnection .
Interconnector Export Capacity	In relation to an External Interconnection means the (daily or weekly) forecast value (in MW) at the time of the (daily or weekly) peak demand, of the maximum level at which the External Interconnection can export to the Grid Entry Point .
Interconnector Import Capacity	In relation to an External Interconnection means the (daily or weekly) forecast value (in MW) at the time of the (daily or weekly) peak demand of the maximum level at which the External Interconnection can import from the Grid Entry Point .
Interconnector Owner	Has the meaning given to the term in the Connection and Use of System Code .
Interconnector User	Has the meaning set out in the BSC .
Interface Agreement	Has the meaning set out in the CUSC .

Interface Point	As the context admits or requires either;	
	 (a) the electrical point of connection between an Offshore Transmission System and an Onshore Transmission System, or 	
	(b) the electrical point of connection between an Offshore Transmission System and a Network Operator's User System.	
Interface Point Capacity	The maximum amount of Active Power transferable at the Interface Point as declared by a User under the OTSDUW Arrangements expressed in whole MW.	
Interface Point Target Voltage/Power factor	The nominal target voltage/power factor at an Interface Point which a Network Operator requires The Company to achieve by operation of the relevant Offshore Transmission System .	
Interim Operational Notification or ION	A notification from The Company to a Generator or DC Converter Station owner or HVDC System Owner or Network Operator or Non- Embedded Customer acknowledging that the User has demonstrated compliance, except for the Unresolved Issues;	
	 (a) with the Grid Code, and (b) where applicable, with Appendices F1 to F5 of the Bilateral Agreement, 	
	in each case in respect of the Plant and Apparatus (including OTSUA) specified in such notification and provided that in the case of the OTSDUW Arrangements such notification shall be provided to a Generator in two parts dealing with the OTSUA and Generator's Plant and Apparatus (called respectively "Interim Operational Notification Part A" or "ION A" and "Interim Operational Notification Part B" or "ION B") as provided for in the CP or ECP.	
Intermittent Power Source	The primary source of power for a Generating Unit or Power Generating Module that cannot be considered as controllable, e.g. wind, wave or solar. For the avoidance of doubt, the output from an Electricity Storage Module would not be considered to be an Intermittent Power Source .	
Internal Voltage Source or IVS	For a GBGF-S , a real magnetic field, that rotates synchronously with the System Frequency under normal operating conditions, which as a consequence induces an internal voltage (which is often referred to as the Electro Motive Force (EMF)) in the stationary generator winding that has a real impedance.	
	In a GBGF-I , switched power electronic devices are used to produce a voltage waveform, with harmonics, that has a fundamental rotational component called the Internal Voltage Source (IVS) that rotates synchronously with the System Frequency under normal operating conditions.	
	For a GBGF-I there must be an impedance with only real physical values, between the Internal Voltage Source and the Grid Entry Point or User System Entry Point .	
	For the avoidance of doubt, a virtual impedance, is not permitted in GBGF-I .	

Intertripping	 (a) The tripping of circuit-breaker(s) by commands initiated from Protection at a remote location independent of the state of the local Protection; or 	
	(b) Operational Intertripping .	
Intertrip Apparatus	Apparatus which performs Intertripping.	
IP Completion Day	31 December 2020 as defined in Section 39 of the European Union (Withdrawal Agreement) Act 2020.	
IP Turbine Power Fraction	Ratio of steady state mechanical power delivered by the IP turbine to the total steady state mechanical power delivered by the total steam turbine at Registered Capacity or Maximum Capacity .	
Isolating Device	A device for achieving Isolation .	
Isolation	The disconnection of HV Apparatus (as defined in OC8A.1.6.2 and OC8B.1.7.2) from the remainder of the System in which that HV Apparatus is situated by either of the following:	
	(a) an Isolating Device maintained in an isolating position. The isolating position must either be:	
	(i) maintained by immobilising and Locking the Isolating Device in the isolating position and affixing a Caution Notice to it. Where the Isolating Device is Locked with a Safety Key, the Safety Key must be secured in a Key Safe and the Key Safe Key must be, where reasonably practicable, given to the authorised site representative of the Requesting Safety Co-Ordinator and is to be retained in safe custody. Where not reasonably practicable the Key Safe Key must be retained by the authorised site representative of the Implementing Safety Co-ordinator in safe custody; or	
	(ii) maintained and/or secured by such other method which must be in accordance with the Local Safety Instructions or the Safety Rules of the Relevant Transmission Licensee or that User, as the case may be; or	
	(b) an adequate physical separation which must be in accordance with and maintained by the method set out in the Local Safety Instructions or the Safety Rules of the Relevant Transmission Licensee or that User, as the case may be.	
Joint System Incident	An Event wherever occurring (other than on an Embedded Medium Power Station or an Embedded Small Power Station) which, in the opinion of The Company or a User, has or may have a serious and/or widespread effect, in the case of an Event on a User(s) System(s) (other than on an Embedded Medium Power Station or Embedded Small Power Station), on the National Electricity Transmission System, and in the case of an Event on the National Electricity Transmission System, on a User(s) System(s) (other than on an Embedded Medium Power Station or Embedded Small Power Station).	
Key Safe	A device for the secure retention of keys.	

Key Safe Key	-	que at a Location capable of operating a lock, other than a k, on a Key Safe .	
Large Power Station	A Power Station which is		
	(a) dire	ctly connected to:	
	(i)	NGET's Transmission System where such Power Station has a Registered Capacity of 100MW or more; or	
	(ii)	SPT's Transmission System where such Power Station has a Registered Capacity of 30MW or more; or	
	(iii)	SHETL's Transmission System where such Power Station has a Registered Capacity of 10MW or more; or	
	(iv)	an Offshore Transmission System where such Power Station has a Registered Capacity of 10MW or more;	
	or,		
	Use	bedded within a User System (or part thereof) where such er System (or part thereof) is connected under normal operating ditions to:	
	(i)	NGET's Transmission System and such Power Station has a Registered Capacity of 100MW or more; or	
	(ii)	SPT's Transmission System and such Power Station has a Registered Capacity of 30MW or more; or	
	(iii)	SHETL's Transmission System and such Power Station has a Registered Capacity of 10MW or more;	
	or,		
	Sys	bedded within a User System (or part thereof) where the User stem (or part thereof) is not connected to the National ctricity Transmission System, although such Power Station b:	
	(i)	NGET's Transmission Area where such Power Station has a Registered Capacity of 100MW or more; or	
	(ii)	SPT's Transmission Area where such Power Station has a Registered Capacity of 30MW or more; or	
	(iii)	SHETL's Transmission Area where such Power Station has a Registered Capacity of 10MW or more;	
		voidance of doubt, a Large Power Station could comprise of ype B, Type C or Type D Power Generating Modules.	
Legally Binding Decisions of the European Commission and/or the Agency	Any relevant legally binding decision or decisions of the European Commission and/or the Agency , but a binding decision does not include a decision that is not, or so much of a decision as is not, Retained EU Law .		
Legal Challenge		rmitted by law, a judicial review in respect of the Authority's to approve or not to approve a Grid Code Modification	
Licence		ce granted to The Company or a Relevant Transmission or a User , under Section 6 of the Act .	

Licence Standards	Those standards set out or referred to in Condition C17 of The
	Company's Transmission Licence and/or Condition D3 and/or Condition E16 of a Relevant Transmission Licensee's Transmission Licence .
Limited Frequency Sensitive Mode	A mode whereby the operation of the Genset or Power Generating Module (or DC Converter at a DC Converter Station or HVDC Systems exporting Active Power to the Total System) is Frequency insensitive except when the System Frequency exceeds 50.4Hz, from which point Limited High Frequency Response must be provided. For Power Generating Modules (including DC Connected Power Park Modules) and HVDC Systems, operation in Limited Frequency Sensitive Mode would require Limited Frequency Sensitive Mode – Overfrequency (LFSM-O) capability and Limited Frequency Sensitive Mode – Underfrequency (LFSM-U) capability.
Limited Frequency Sensitive Mode – Overfrequency or LFSM-O	A Power Generating Module (including a DC Connected Power Park Module) or HVDC System operating mode which will result in Active Power output reduction in response to a change in System Frequency above a certain value.
Limited Frequency Sensitive Mode – Underfrequency or LFSM-U	A Power Generating Module (including a DC Connected Power Park Module) or HVDC System operating mode which will result in Active Power output increase in response to a change in System Frequency below a certain value.
Limited High Frequency Response	A response of a Genset (or DC Converter at a DC Converter Station exporting Active Power to the Total System) to an increase in System Frequency above 50.4Hz leading to a reduction in Active Power in accordance with the provisions of BC3.7.2.1.
Limited Membership Workgroup	A Workgroup having less than five (5) but more than two (2) persons that have nominated themselves for membership in addition to the Code Administrator representative and the chairperson of the Workgroup .
	Members of a Limited Membership Workgroup where employed by companies that are considered to be an Affiliate of each other will be considered to be a single workgroup member for the purposes of fulfilling this minimum requirement.
Limited Operational Notification or LON	A notification from The Company to a Generator or DC Converter Station owner or HVDC System Owner or Network Operator or Non- Embedded Customer stating that the User's Plant and/or Apparatus specified in such notification may be, or is, unable to comply:
	(a) with the provisions of the Grid Code specified in the notice, and
	(b) where applicable, with Appendices F1 to F5 of the Bilateral Agreement ,
	and specifying the Unresolved Issues.
Load	The Active , Reactive or Apparent Power , as the context requires, generated, transmitted or distributed.
Loaded	Supplying electrical power to the System .

Load Angle	The angle in radians between the voltage of the Internal Voltage Source and the voltage at the Grid Entry Point or User System Entry Point.	
Load Factor	The ratio of the actual output of a Generating Unit or Power Generating Module to the possible maximum output of that Generating Unit or Power Generating Module .	
Load Management Block	A block of Demand controlled by a Supplier or other party through the means of radio teleswitching or by some other means.	
Local Joint Restoration Plan	A plan produced under OC9.4.7.12 detailing the agreed method and procedure by which a Black Start Service Provider will energise part of the Total System and meet complementary blocks of local Demand so as to form a Power Island .	
	In Scotland, the plan may also: cover more than one Black Start Service Provider ; including Gensets other than those at a Black Start Station and cover the creation of one or more Power Islands .	
Local Safety Instructions	For safety co-ordination in England and Wales, instructions on each User Site and Transmission Site, approved by NGET's or User's relevant manager, setting down the methods of achieving the objectives of NGET's or the User's Safety Rules, as the case may be, to ensure the safety of personnel carrying out work or testing on Plant and/or Apparatus on which their Safety Rules apply and, in the case of a User, any other document(s) on a User Site which contains rules with regard to maintaining or securing the isolating position of an Isolating Device, or maintaining a physical separation or maintaining or securing the position of an Earthing Device.	
Local Switching Procedure	A procedure produced under OC7.6 detailing the agreed arrangements in respect of carrying out of Operational Switching at Connection Sites and parts of the National Electricity Transmission System adjacent to those Connection Sites .	
Localised Negative Reserve Active Power Margin or Localised NRAPM	That margin of Active Power sufficient to allow transfers to and from a System Constraint Group (as the case may be) to be contained within such reasonable limit as The Company may determine.	
Location	Any place at which Safety Precautions are to be applied.	
Locked	A condition of HV Apparatus that cannot be altered without the operation of a locking device.	
Locking	The application of a locking device which enables HV Apparatus to be Locked .	
Low Frequency Relay	Has the same meaning as Under Frequency Relay.	
Low Voltage or LV	For E&W Transmission Systems a voltage not exceeding 250 volts. For Scottish Transmission Systems , a voltage exceeding 50 volts but not exceeding 1000 volts.	
LV Side of the Offshore Platform	Unless otherwise specified in the Bilateral Agreement , the busbar on the Offshore Platform (typically 33kV) at which the relevant Offshore Grid Entry Point is located.	

Main Plant and Apparatus	In respect of a Power Station (including Power Stations comprising of DC Connected Power Park Modules and Electricity Storage Modules) is one or more of the principal items of Plant or Apparatus required to convert or re-convert the primary source of energy into electricity. In respect of HVDC Systems or DC Converters or Transmission DC Converters is one of the principal items of Plant or Apparatus used to convert high voltage direct current to high voltage alternating current or vice versa.
	In respect of a Network Operator's equipment or a Non-Embedded Customer's equipment, is one of the principal items of Plant or Apparatus required to facilitate the import or export of Active Power or Reactive Power to or from a Network Operator's or Non-Embedded Customer's System .
Main Protection	A Protection system which has priority above other Protection in initiating either a fault clearance or an action to terminate an abnormal condition in a power system.
Manufacturer's Data & Performance Report	A report submitted by a manufacturer to The Company relating to a specific version of a Power Park Unit demonstrating the performance characteristics of such Power Park Unit in respect of which The Company has evaluated its relevance for the purposes of the Compliance Processes .
Manufacturer's Test Certificates	A certificate prepared by a manufacturer which demonstrates that its Power Generating Module has undergone appropriate tests and conforms to the performance requirements expected by The Company in satisfying its compliance requirements and thereby satisfies the appropriate requirements of the Grid Code and Bilateral Agreement .
Market Operation Data Interface System (MODIS)	A computer system operated by The Company and made available for use by Customers connected to or using the National Electricity Transmission System for the purpose of submitting EU Transparency Availability Data to The Company .
Market Suspension Threshold	Has the meaning given to the term 'Market Suspension Threshold' in Section G of the BSC .
Material Effect	An effect causing The Company or a Relevant Transmission Licensee to effect any works or to alter the manner of operation of Transmission Plant and/or Transmission Apparatus at the Connection Site (which term shall, in this definition and in the definition of " Modification " only, have the meaning ascribed thereto in the CUSC) or the site of connection or a User to effect any works or to alter the manner of operation of its Plant and/or Apparatus at the Connection Site or the site of connection which in either case involves that party in expenditure of more than £10,000.
Materially Affected Party	Any person or class of persons designated by the Authority as such.
Maximum Export Capability	The maximum continuous Active Power that a Network Operator or Non-Embedded Customer can export to the Transmission System at the Grid Supply Point, as specified in the Bilateral Agreement.

The maximum continuous Apparent Power expressed in MVA and maximum continuous Active Power expressed in MW which can flow from an Offshore Transmission System connected to a Network Operator's User System , to that User System .
The maximum continuous Active Power which a Power Generating Module can supply to the Total System, less any demand associated solely with facilitating the operation of that Power Generating Module and not fed into the System. In the case of an Electricity Storage Module, the Maximum Capacity is the maximum continuous Active Power which an Electricity Storage Module can export to the Total System less any demand associated with facilitating the operation of that Electricity Storage Module when fully charged and operating in a mode analogous to Generation.
A service utilised by The Company in accordance with the CUSC and the Balancing Principles Statement in operating the Total System .
An agreement between a User and The Company for the payment by The Company to that User in respect of the provision by such User of a Maximum Generation Service .
The maximum continuous Active Power which an HVDC System can exchange with the network at each Grid Entry Point or User System Entry Point as specified in the Bilateral Agreement or as agreed between The Company and the HVDC System Owner .
The maximum continuous Active Power that a Network Operator or Non-Embedded Customer can import from the Transmission System at the Grid Supply Point , as specified in the Bilateral Agreement .
The maximum continuous Apparent Power expressed in MVA and maximum continuous Active Power expressed in MW which can flow to an Offshore Transmission System connected to a Network Operator's User System , from that User System .
The maximum continuous Active Power which an Electricity Storage Module can import from the Total System , when fully discharged and operating in a mode analogous to Demand .

Medium Power Station	A Power Station which is	
	 (a) directly connected to NGET's Transmission System where such Power Station has a Registered Capacity of 50MW or more but less than 100MW; 	
	or,	
	(b) Embedded within a User System (or part thereof) where such User System (or part thereof) is connected under normal operating conditions to NGET's Transmission System and such Power Station has a Registered Capacity of 50MW or more but less than 100MW;	
	or,	
	(c) Embedded within a User System (or part thereof) where the User System (or part thereof) is not connected to the National Electricity Transmission System, although such Power Station is in NGET's Transmission Area and such Power Station has a Registered Capacity of 50MW or more but less than 100MW.	
	For the avoidance of doubt a Medium Power Station could comprise of Type A , Type B , Type C or Type D Power Generating Modules .	
Medium Voltage or MV	For E&W Transmission Systems a voltage exceeding 250 volts but not exceeding 650 volts.	
Mills	Milling plant which supplies pulverised fuel to the boiler of a coal fired Power Station .	
Minimum Generation	The minimum output (in whole MW) which a Genset can generate or DC Converter at a DC Converter Station or Electricity Storage Module can import or export to the Total System under stable operating conditions, as registered with The Company under the PC (and amended pursuant to the PC). For the avoidance of doubt, the output may go below this level as a result of operation in accordance with BC3.7.	
Minimum Active Power Transmission Capacity (PHmin)	The minimum continuous Active Power which an HVDC System can exchange with the System at each Grid Entry Point or User System Entry Point as specified in the Bilateral Agreement or as agreed between The Company and the HVDC System Owner.	
Minimum Import Capacity	The minimum input (in whole MW) into a DC Converter at a DC Converter Station or HVDC System at an HVDC Converter (in any of its operating configurations) at the Onshore Grid Entry Point (or in the case of an Embedded DC Converter or an Embedded HVDC Converter at the User System Entry Point) at which a DC Converter or HVDC Converter can operate in a stable manner, as registered with The Company under the PC (and amended pursuant to the PC).	
Minimum Regulating Level	The minimum Active Power, as specified in the Bilateral Agreement or as agreed between The Company and the Generator or HVDC System Owner, down to which the Power Generating Module (including a DC Connected Power Park Module) or HVDC System can control Active Power.	

or construction by or on behalf of a User or The Company to either that User's Plant or Apparatus or Transmission Plant or Apparatus, as the case may be, or the manner of its operation which has or may have a Material Effect on The Company or a User, as the case may be, at a particular Connection Site.Mothballed DC Connected Power Park ModuleA DC Connected Power Park Module that has previously generated which the Generator plans not to use to generate for the remainder of the current Financial Year but which could be returned to service.Mothballed DC Converter at a DC Converter StationA DC Converter at a DC Converter Station that has previously imported or exported power which the DC Converter Station Owner plans not to use to import or export power for the remainder of the current Financial Year but which could be returned to service.Mothballed HVDC SystemAn HVDC System that has previously imported or exported power vhich the HVDC System Owner plans not to use to import or export power for the remainder of the current Financial Year but which could be returned to service.Mothballed HVDC ConverterAn HVDC Converter which is part of an HVDC System that has previously imported or exported power which the HVDC System Owner plans not to use to import or export power for the remainder of the current Financial Year but which could be returned to service.		
or construction by or on behalf of a User or The Company to either that User's Plant or Apparatus or Transmission Plant or Apparatus, as the case may be, or the manner of its operation which has or may have a Material Effect on The Company or a User, as the case may be, at a particular Connection Site.Mothballed DC Connected Power Park ModuleA DC Connected Power Park Module that has previously generated which the Generator plans not to use to generate for the remainder of the current Financial Year but which could be returned to service.Mothballed DC Converter at a DC Converter stationA DC Converter at a DC Converter Station Owner plans not to use to import or export power for the remainder of the current Financial Year but which could be returned to service.Mothballed HVDC SystemAn HVDC System that has previously imported or exported power which the DUC converter Station Owner plans not to use to import or export power for the remainder of the current Financial Year but which could be returned to service.Mothballed HVDCAn HVDC Converter which is part of an HVDC System that has previously imported or exported power which the HVDC System Owner plans not to use to import or export power for the remainder of the current Financial Year but which could be returned to service.Mothballed HVDCAn HVDC Converter which is part of an HVDC System Owner plans not to use to import or export power for the remainder of the current Financial Year but which could be returned to service.Mothballed Generating Unit Generating UnitA Generating Unit that has previously generated which the Generator plans not to use to generate for the remainder of the current Financial Year but which could be returned to service.Mothballed Power Generating ModuleA Power Gener		as agreed between The Company and the Generator, at which the
Power Park Modulewhich the Generator plans not to use to generate for the remainder of the current Financial Year but which could be returned to service.Mothballed DC Converter at a DC Converter StationA DC Converter at a DC Converter Station owner plans not to use to import or export power for the remainder of the current Financial Year but which could be returned to service.Mothballed HVDC SystemAn HVDC System that has previously imported or exported power which the HVDC System Owner plans not to use to import or export power for the remainder of the current Financial Year but which could be returned to service.Mothballed HVDC ConverterAn HVDC Converter which is part of an HVDC System that has previously imported or export power for the remainder of the current Financial Year but which could be returned to service.Mothballed HVDC ConverterAn HVDC Converter which is part of an HVDC System that has previously imported or export power for the remainder of the current Financial Year but which could be returned to service.Mothballed Generating Unit Bothballed Generating Unit Generating ModuleA Generating Unit that has previously generated which the Generator plans not to use to generate for the remainder of the current Financial Year but which could be returned to service.Mothballed Power Generating ModuleA Power Generating Module that has previously generated which the Generator plans not to use to generate for the remainder of the current Financial Year but which could be returned to service.Mothballed Power Generating ModuleA Power Park Module that has previously generated which the Generator plans not to use to generate for the remainder of the current Financial Year but which could be returned to service. <th>Modification</th> <td>or construction by or on behalf of a User or The Company to either that User's Plant or Apparatus or Transmission Plant or Apparatus, as the case may be, or the manner of its operation which has or may have a Material Effect on The Company or a User, as the case may be, at a</td>	Modification	or construction by or on behalf of a User or The Company to either that User's Plant or Apparatus or Transmission Plant or Apparatus , as the case may be, or the manner of its operation which has or may have a Material Effect on The Company or a User , as the case may be, at a
a DC Converter Stationor exported power which the DC Converter Station Owner plans not to use to import or export power for the remainder of the current Financial Year but which could be returned to service.Mothballed HVDC SystemAn HVDC System that has previously imported or export power which the HVDC System Owner plans not to use to import or export power for the remainder of the current Financial Year but which could be returned to service.Mothballed HVDC ConverterAn HVDC Converter which is part of an HVDC System that has previously imported or export power for the remainder of the current Financial Year but which the HVDC System Owner plans not to use to import or export power for the remainder of the current Financial Year but which could be returned to service.Mothballed Generating Unit Bothballed Generating UnitA Generating Unit that has previously generated which the Generator plans not to use to generate for the remainder of the current Financial Year but which could be returned to service. For the avoidance of doubt a Mothballed Generating Unit could be part of a Power Generating Module.Mothballed Power Generating ModuleA Power Generating Module that has previously generated which the Generator plans not to use to generate for the remainder of the current Financial Year but which could be returned to service.Mothballed Power Generating ModuleA Power Park Module that has previously generated which the Generator plans not to use to generate for the remainder of the current Financial Year but which could be returned to service.Mothballed Power Park ModuleA Power Park Module that has previously generated which the Generator plans not to use to generate for the remainder of the current Financial Year but which could be returned to s		which the Generator plans not to use to generate for the remainder of the
the HVDC System Owner plans not to use to import or export power for the remainder of the current Financial Year but which could be returned to service.Mothballed HVDC ConverterAn HVDC Converter which is part of an HVDC System that has previously imported or export power which the HVDC System Owner plans not to use to import or export power for the remainder of the current Financial Year but which could be returned to service.Mothballed Generating Unit Mothballed Generating UnitA Generating Unit that has previously generated which the Generator plans not to use to generate for the remainder of the current Financial Year but which could be returned to service. For the avoidance of doubt a Mothballed Generating Unit could be returned to service. For the avoidance of doubt a Mothballed Power Generating ModuleMothballed Power Generating ModuleA Power Generating Module that has previously generated which the Generator plans not to use to generate for the remainder of the current Financial Year but which could be returned to service.Mothballed Power Generating ModuleA Power Generating Module that has previously generated which the Generator plans not to use to generate for the remainder of the current Financial Year but which could be returned to service.Mothballed Power Park ModuleA Power Park Module that has previously generated which the Generator plans not to use to generate for the remainder of the current Financial Year but which could be returned to service.Multiple Point ofA double (or more) Point of Connection, being two (or more) Points of	Mothballed DC Converter at a DC Converter Station	or exported power which the DC Converter Station Owner plans not to use to import or export power for the remainder of the current Financial
Converterpreviously imported or exported power which the HVDC System Owner plans not to use to import or export power for the remainder of the current Financial Year but which could be returned to service.Mothballed Generating UnitA Generating Unit that has previously generated which the Generator plans not to use to generate for the remainder of the current Financial Year but which could be returned to service. For the avoidance of doubt a Mothballed Generating Unit could be part of a Power Generating Module.Mothballed Power Generating ModuleA Power Generating Module that has previously generated which the Generator plans not to use to generate for the remainder of the current Financial Year but which could be returned to service.Mothballed Power Generating ModuleA Power Generating Module that has previously generated which the Generator plans not to use to generate for the remainder of the current Financial Year but which could be returned to service.Mothballed Power Generating ModuleA Power Park Module that has previously generated which the Generator plans not to use to generate for the remainder of the current Financial Year but which could be returned to service.Mothballed Power Park ModuleA Power Park Module that has previously generated which the Generator plans not to use to generate for the remainder of the current Financial Year but which could be returned to service.Multiple Point ofA double (or more) Point of Connection, being two (or more) Points of	Mothballed HVDC System	the HVDC System Owner plans not to use to import or export power for the remainder of the current Financial Year but which could be returned
plans not to use to generate for the remainder of the current Financial Year but which could be returned to service. For the avoidance of doubt a Mothballed Generating Unit could be part of a Power Generating Module.Mothballed Power 		previously imported or exported power which the HVDC System Owner plans not to use to import or export power for the remainder of the current
Generating ModuleGenerator plans not to use to generate for the remainder of the current Financial Year but which could be returned to service.Mothballed Power Park ModuleA Power Park Module that has previously generated which the Generator plans not to use to generate for the remainder of the current Financial Year but which could be returned to service.Multiple Point ofA double (or more) Point of Connection, being two (or more) Points of	Mothballed Generating Unit	plans not to use to generate for the remainder of the current Financial Year but which could be returned to service. For the avoidance of doubt a Mothballed Generating Unit could be part of a Power Generating
ModuleGenerator plans not to use to generate for the remainder of the current Financial Year but which could be returned to service.Multiple Point ofA double (or more) Point of Connection, being two (or more) Points of		Generator plans not to use to generate for the remainder of the current
		Generator plans not to use to generate for the remainder of the current
MSID Has the meaning a set out in the BSC , covers Metering System Identifier.	MSID	Has the meaning a set out in the BSC , covers Metering System Identifier.

National Demand	The amount of electricity supplied from the Grid Supply Points plus:-
	 that supplied by Embedded Large Power Stations, and
	National Electricity Transmission System Losses, minus:-
	• the Demand taken by Station Transformers and, Pumped Storage Units' and Electricity Storage Modules' .
	and, for the purposes of this definition, does not include:-
	• any exports from the National Electricity Transmission System across External Interconnections.
National Electricity Transmission System	The Onshore Transmission System and, where owned by Offshore Transmission Licensees , Offshore Transmission Systems .
National Electricity	The amount of electricity supplied from the Grid Supply Points plus:-
Transmission System Demand	• that supplied by Embedded Large Power Stations, and
	• exports from the National Electricity Transmission System across External Interconnections, and
	National Electricity Transmission System Losses,
	and, for the purposes of this definition, includes:-
	• the Demand taken by Station Transformers and, Pumped Storage Units and Electricity Storage Modules' .
National Electricity Transmission System Losses	The losses of electricity incurred on the National Electricity Transmission System .
National Electricity Transmission System Operator Area	Has the meaning set out in Schedule 1 of The Company's Transmission Licence.
National Electricity Transmission System Study Network Data File	A computer file produced by The Company which in The Company's view provides an appropriate representation of the National Electricity Transmission System for a specific point in time. The computer file will contain information and data on Demand on the National Electricity Transmission System and on Large Power Stations including Genset power output consistent with Output Usable and The Company's view of prevailing system conditions.
National Electricity Transmission System Warning	A warning issued by The Company to Users (or to certain Users only) in accordance with OC7.4.8.2, which provides information relating to System conditions or Events and is intended to:
	(a) alert Users to possible or actual Plant shortage, System problems and/or Demand reductions;
	(b) inform of the applicable period;
	(c) indicate intended consequences for Users ; and
	(d) enable specified Users to be in a state of readiness to receive instructions from The Company .

National Electricity Transmission System Warning - Demand Control Imminent	A warning issued by The Company , in accordance with OC7.4.8.7, which is intended to provide short term notice, where possible, to those Users who are likely to receive Demand reduction instructions from The Company within 30 minutes.
National Electricity Transmission System Warning - Electricity Margin Notice	A warning issued by The Company , in accordance with OC7.4.8.5, which is intended to invite a response from and to alert recipients to a decreased System Margin .
National Electricity Transmission System Warning – Embedded Generation Control Imminent	A warning issued by The Company , in accordance with OC7.4.8.12, which is intended to provide short term notice, where possible, to those Network Operators who are likely to receive Embedded Generation Control instructions from The Company within 30 minutes.
National Electricity Transmission System Warning - High Risk of Demand Reduction	A warning issued by The Company , in accordance with OC7.4.8.6, which is intended to alert recipients that there is a high risk of Demand reduction being implemented and which may normally result from an Electricity Margin Notice .
National Electricity Transmission System Warning - High Risk of Embedded Generation Reduction	A warning issued by The Company , in accordance with OC7.4.8.11, which is intended to alert recipients that there is a high risk of Embedded Generation Control being implemented and which may result from a National Electricity Transmission System Warning – System NRAPM.
National Electricity Transmission System Warning – Localised NRAPM	A warning issued by The Company , in accordance with OC.7.4.8.10, which is intended to invite a response from and to alert recipients to a decreased Localised NRAPM .
National Electricity Transmission System Warning - Risk of System Disturbance	A warning issued by The Company , in accordance with OC7.4.8.8, which is intended to alert Users of the risk of widespread and serious System disturbance which may affect Users .
National Electricity Transmission System Warning – System NRAPM	A warning issued by The Company , in accordance with OC.7.4.8.9, which is intended to invite a response from and to alert recipients to a decreased System NRAPM .
Network Data	The data to be provided by The Company to Users in accordance with the PC , as listed in Part 3 of the Appendix to the PC .

Network Frequency	A form of Bode Plot which plots the amplitude (%) and phase (degrees)
Perturbation Plot	of the resulting output oscillation responding to an applied input oscillation across a frequency base. The plot will be used to assess the capability and performance of a Grid Forming Plant and to ensure that it does not pose a risk to other Plant and Apparatus connected to the Total System .
	For GBGF-I , these are used to provide data to The Company which together with the associated Nichols Chart (or equivalent) defines the effects on a GBGF-I for changes in the frequency of the applied input oscillation.
	The input is the applied as an input oscillation and the output is the resulting oscillations in the GBGF-I's Active Power .
	For the avoidance of doubt, Generators in respect of GBGF-S can provide their data using the existing formats and do not need to supply NFP plots.
Network Operator	A person with a User System directly connected to the National Electricity Transmission System to which Customers and/or Power Stations (not forming part of the User System) are connected, acting in its capacity as an operator of the User System , but shall not include a person acting in the capacity of an Externally Interconnected System Operator or a Generator in respect of OTSUA .
NGET	National Grid Electricity Transmission plc (NO: 2366977) whose registered office is at 1-3 Strand, London, WC2N 5EH.
Nichols Chart	For a GBGF-I , a chart derived from the open loop Bode Plots that are used to produce an NFP Plot . The Nichols Chart plots open loop gain versus open loop phase angle. This enables the open loop phase for an open loop gain of 1 to be identified for use in defining the GBGF-I 's equivalent Damping Factor .
No-Load Field Voltage	Shall have the meaning ascribed to that term in IEC 34-16-1:1991 [equivalent to British Standard BS 4999 Section 116.1 : 1992].
No System Connection	As defined in OC8A.1.6.2 and OC8B.1.7.2.
Non-CUSC Party	A Party who does not accede to the Connection and Use of System Code (CUSC).
Non-Synchronous Electricity Storage Module	A Power Park Module comprising soley of one or more Non- Synchronous Electricity Storage Units.
Notification of User's Intention to Operate	A notification from a Network Operator or Non-Embedded Customer to The Company informing The Company of the date upon which any Network Operator's or Non-Embedded Customer's Plant and Apparatus at an EU Grid Supply Point will be ready to be connected to the Transmission System.

Notification of User's Intention to Synchronise	A notification from a Generator or DC Converter Station owner or HVDC System Owner to The Company informing The Company of the date upon which any OTSUA, a Generating Unit(s), CCGT Module(s), Power Park Module(s), Power Generating Module(s) (including a DC Connected Power Park Module(s)), HVDC System or DC Converter(s) will be ready to be Synchronised to the Total System.
Non-Controllable Electricity Storage Equipment	An item of storage Plant , including but not limited to a Synchronous Flywheel or Synchronous Compensation Equipment or Regenerative Braking whose active output power cannot be independently controlled.
Non-Dynamic Frequency Response Service	A Demand Response Service in which the Demand is controlled through discrete switching rather than through continuous load changes in response to System Frequency changes.
Non-Embedded Customer	A Customer in Great Britain , except for a Network Operator acting in its capacity as such, receiving electricity direct from the Onshore Transmission System irrespective of from whom it is supplied.
Non-Synchronous Electricity Storage Module	A Power Park Module comprising solely of one or more Non- Synchronous Electricity Storage Units.
Non-Synchronous Electricity Storage Unit	A Power Park Unit which can produce electrical energy by converting or re-converting another source of energy such that the frequency of the generated voltage is not inherently in synchronism with the frequency of the System .
Non-Synchronous Generating Unit	An Onshore Non-Synchronous Generating Unit or Offshore Non- Synchronous Generating Unit which could form part of a Power Generating Module.
Normal CCGT Module	A CCGT Module other than a Range CCGT Module.
Novel Unit	A tidal, wave, wind, geothermal, or any similar, Generating Unit.
OC9 De-synchronised Island Procedure	Has the meaning set out in OC9.5.4.
Offshore	Means wholly or partly in Offshore Waters , and when used in conjunction with another term and not defined means that the associated term is to be read accordingly.
Offshore DC Converter	Any User Apparatus located Offshore used to convert alternating current electricity to direct current electricity, or vice versa. An Offshore DC Converter is a standalone operative configuration at a single site comprising one or more converter bridges, together with one or more converter transformers, converter control equipment, essential protective and switching devices and auxiliaries, if any, used for conversion.
Offshore HVDC Converter	Any User Apparatus located Offshore used to convert alternating current electricity to direct current electricity, or vice versa. An Offshore HVDC Converter is a standalone operative configuration at a single site comprising one or more converter bridges, together with one or more converter transformers, converter control equipment, essential protective and switching devices and auxiliaries, if any, used for conversion.

Offshore Development	A statement prepared by The Company in accordance with Special
Information Statement	Condition C4 of The Company's Transmission Licence .
Offshore Generating Unit	Unless otherwise provided in the Grid Code, any Apparatus located Offshore which produces electrical energy by converting or re-converting another source of energy, including, an Offshore Synchronous Generating Unit or Offshore Non-Synchronous Generating Unit which could also be part of a Power Generating Module or Electricity Storage Module
Offshore Grid Entry Point	In the case of:-
	 (a) an Offshore Generating Unit or an Offshore Synchronous Power Generating Module or an Offshore DC Converter or an Offshore HVDC Converter, as the case may be, which is directly connected to an Offshore Transmission System, the point at which it connects to that Offshore Transmission System, or;
	(b) an Offshore Power Park Module which is directly connected to an Offshore Transmission System, the point where one Power Park String (registered by itself as a Power Park Module) or the collection of points where a number of Offshore Power Park Strings (registered as a single Power Park Module) connects to that Offshore Transmission System, or;
	(c) an External Interconnection which is directly connected to an Offshore Transmission System , the point at which it connects to that Offshore Transmission System .
Offshore Non-Synchronous Generating Unit	An Offshore Generating Unit that is not an Offshore Synchronous Generating Unit including for the avoidance of doubt a Power Park Unit or Non-Synchronous Electricity Storage Unit located Offshore.
Offshore Platform	A single structure comprising of Plant and Apparatus located Offshore which includes one or more Offshore Grid Entry Points .
Offshore Power Park Module	A collection of one or more Offshore Power Park Strings (registered as a Power Park Module under the PC). There is no limit to the number of Power Park Strings within the Power Park Module , so long as they either:
	(a) connect to the same busbar which cannot be electrically split; or
	(b) connect to a collection of directly electrically connected busbars of the same nominal voltage and are configured in accordance with the operating arrangements set out in the relevant Bilateral Agreement .
Offshore Power Park String	A collection of Offshore Generating Units or Power Park Units or Non- Synchronous Electricity Storage Unit that are powered by an Intermittent Power Source, joined together by cables forming part of a User System with a single point of connection to an Offshore Transmission System. The connection to an Offshore Transmission System may include a DC Converter or HVDC Converter.

Offshore Synchronous Generating Unit	A Generating Unit or Synchronous Electricity Storage Unit located Offshore which could be part of an Offshore Synchronous Power Generating Module in which, under all steady state conditions, the rotor rotates at a mechanical speed equal to the electrical frequency of the National Electricity Transmission System divided by the number of pole pairs of the Generating Unit.
Offshore Synchronous Power Generating Module	A Synchronous Power Generating Module or Synchronous Electricity Storage Module located Offshore.
Offshore Tender Process	The process followed by the Authority to make, in prescribed cases, a determination on a competitive basis of the person to whom an offshore transmission licence is to be granted.
Offshore Transmission Distribution Connection Agreement	An agreement entered into by The Company and a Network Operator in respect of the connection to and use of a Network Operator's User System by an Offshore Transmission System .
Offshore Transmission Licensee	Such person in relation to whose Transmission Licence the standard conditions in Section E (offshore transmission owner standard conditions) of such Transmission Licence have been given effect, or any person in that prospective role who has acceded to the STC .
Offshore Transmission System	A system consisting (wholly or mainly) of high voltage electric lines and used for the transmission of electricity from one Power Station to a sub- station or to another Power Station or between sub-stations, and includes any Plant and Apparatus (including OTSUA) and meters in connection with the transmission of electricity but does not include any Remote Transmission Assets . An Offshore Transmission System extends from the Interface Point , or the Offshore Grid Entry Point(s) and may include Plant and Apparatus located Onshore and Offshore and, where the context permits, references to the Offshore Transmission System includes OTSUA .
Offshore Transmission System Development User Works or OTSDUW	In relation to a particular User where the OTSDUW Arrangements apply, means those activities and/or works for the design, planning, consenting and/or construction and installation of the Offshore Transmission System to be undertaken by the User as identified in Part 2 of Appendix I of the relevant Construction Agreement .
Offshore Transmission System User Assets or OTSUA	OTSDUW Plant and Apparatus constructed and/or installed by a User under the OTSDUW Arrangements which form an Offshore Transmission System that once transferred to a Relevant Transmission Licensee under an Offshore Tender Process will become part of the National Electricity Transmission System.
Offshore Waters	Has the meaning given to "offshore waters" in Section 90(9) of the Energy Act 2004.
Offshore Works Assumptions	In relation to a particular User , means those assumptions set out in Appendix P of the relevant Construction Agreement as amended from time to time.
Onshore	Means within Great Britain , and when used in conjunction with another term and not defined means that the associated term is to be read accordingly.

Onshore DC Converter	Any User Apparatus located Onshore with a Completion Date after 1 st April 2005 used to convert alternating current electricity to direct current electricity, or vice versa. An Onshore DC Converter is a standalone operative configuration at a single site comprising one or more converter bridges, together with one or more converter transformers, converter control equipment, essential protective and switching devices and auxiliaries, if any, used for conversion. In a bipolar arrangement, an Onshore DC Converter represents the bipolar configuration.
Onshore Generating Unit	Unless otherwise provided in the Grid Code, any Apparatus located Onshore which produces electrical energy by converting or re-converting another source of energy, including, an Onshore Synchronous Generating Unit or Onshore Non-Synchronous Generating Unit which could also be part of a Power Generating Module or an Electricity Storage Module .
Onshore Grid Entry Point	A point at which a Onshore Generating Unit or a CCGT Module or a CCGT Unit or an Onshore Power Generating Module or a Onshore DC Converter or an Onshore HVDC Converter or a Onshore Power Park Module or an Onshore Electricity Storage Module or an External Interconnection, as the case may be, which is directly connected to the Onshore Transmission System connects to the Onshore Transmission System.
Onshore HVDC Converter	Any User Apparatus located Onshore used to convert alternating current electricity to direct current electricity, or vice versa. An Onshore HVDC Converter is a standalone operative configuration at a single site comprising one or more converter bridges, together with one or more converter transformers, converter control equipment, essential protective and switching devices and auxiliaries, if any, used for conversion. In a bipolar arrangement, an Onshore HVDC Converter represents the bipolar configuration.
Onshore Non-Synchronous Generating Unit	A Generating Unit located Onshore that is not a Synchronous Generating Unit or Synchronous Electricity Storage Unit including for the avoidance of doubt a Power Park Unit or Non-Synchronous Electricity Storage Unit located Onshore.
Onshore Power Park Module	A collection of Non-Synchronous Generating Units that are powered by an Intermittent Power Source or connected through power electronic conversion technology or Non-Synchronous Electricity Storage Units, joined together by a System (registered as a Power Park Module under the PC) with a single electrical point of connection directly to the Onshore Transmission System (or User System if Embedded) with no intermediate Offshore Transmission System connections. The connection to the Onshore Transmission System (or User System if Embedded) may include a DC Converter or HVDC Converter.
Onshore Synchronous Generating Unit	An Onshore Generating Unit or Onshore Synchronous Electricity Storage Unit (which could also be part of an Onshore Power Generating Module) including, for the avoidance of doubt, a CCGT Unit or Synchronous Electricity Storage Unit in which, under all steady state conditions, the rotor rotates at a mechanical speed equal to the electrical frequency of the National Electricity Transmission System divided by the number of pole pairs of the Generating Unit.

Onshore Synchronous Power Generating Module	A Synchronous Power Generating Module or Synchronous Electricity Storage Module located Onshore.
Onshore Transmission Licensee	NGET, SPT, or SHETL.
Onshore Transmission System	The system consisting (wholly or mainly) of high voltage electric lines owned or operated by Onshore Transmission Licensees or operated by The Company and used for the transmission of electricity from one Power Station to a substation or to another Power Station or between substations or to or from Offshore Transmission Systems or to or from any External Interconnection , and includes any Plant and Apparatus and meters owned or operated by any Onshore Transmission Licensee in connection with the transmission of electricity but does not include any Remote Transmission Assets .
On-Site Generator Site	A site which is determined by the BSC Panel to be a Trading Unit under the BSC by reason of having fulfilled the Class 1 or Class 2 requirements as such terms are used in the BSC .
Operating Code or OC	That portion of the Grid Code which is identified as the Operating Code .
Operating Margin	Contingency Reserve plus Operating Reserve.
Operating Reserve	The additional output from Large Power Stations or the reduction in Demand , which must be realisable in real-time operation to respond in order to contribute to containing and correcting any System Frequency fall to an acceptable level in the event of a loss of generation or a loss of import from an External Interconnection or mismatch between generation and Demand.
Operation	A scheduled or planned action relating to the operation of a System (including an Embedded Power Station).
Operational Data	Data required under the Operating Codes and/or Balancing Codes .
Operational Day	The period from 0500 hours on one day to 0500 on the following day.
Operation Diagrams	Diagrams which are a schematic representation of the HV Apparatus and the connections to all external circuits at a Connection Site (and in the case of OTSDUW , Transmission Interface Site), incorporating its numbering, nomenclature and labelling.
Operational Effect	Any effect on the operation of the relevant other System which causes the National Electricity Transmission System or the System of the other User or Users , as the case may be, to operate (or be at a materially increased risk of operating) differently to the way in which they would or may have operated in the absence of that effect.
Operational Intertripping	The automatic tripping of circuit-breakers to prevent abnormal system conditions occurring, such as over voltage, overload, System instability, etc. after the tripping of other circuit-breakers following power System fault(s) which includes System to Generating Unit , System to CCGT Module , System to Power Park Module , System to Electricity Storage Module , System to DC Converter , System to Power Generating Module , System to HVDC Converter and System to Demand intertripping schemes.

Operational Notifications	Any Energisation Operational Notification, Interim Operational Notification, Final Operational Notification or Limited Operational Notification issued from The Company to a User.
Operational Planning	Planning through various timescales the matching of generation output with forecast National Electricity Transmission System Demand together with a reserve of generation to provide a margin, taking into account outages of certain Generating Units or Power Generating Modules , of parts of the National Electricity Transmission System and of parts of User Systems to which Power Stations and/or Customers are connected, carried out to achieve, so far as possible, the standards of security set out in The Company's Transmission Licence , each Relevant Transmission Licensee's Transmission Licence or Electricity Distribution Licence , as the case may be.
Operational Planning Margin	An operational planning margin set by The Company .
Operational Planning Phase	The period from 8 weeks to the end of the 5 th year ahead of real time operation.
Operational Procedures	Management instructions and procedures, both in support of the Safety Rules and for the local and remote operation of Plant and Apparatus, issued in connection with the actual operation of Plant and/or Apparatus at or from a Connection Site.
Operational Switching	Operation of Plant and/or Apparatus to the instruction of the relevant Control Engineer . For the avoidance of doubt, the operation of Transmission Plant and/or Apparatus forming part of the National Electricity Transmission System will be to the instruction of the Relevant Transmission Licensee .
Other Relevant Data	The data listed in BC1.4.2(f) under the heading Other Relevant Data .
OTSDUW Arrangements	The arrangements whereby certain aspects of the design, consenting, construction, installation and/or commissioning of transmission assets are capable of being undertaken by a User prior to the transfer of those assets to a Relevant Transmission Licensee under an Offshore Tender Process .
OTSDUW Data and Information	The data and information to be provided by Users undertaking OTSDUW , to The Company in accordance with Appendix F of the Planning Code .
OTSDUW DC Converter	A Transmission DC Converter designed and/or constructed and/or installed by a User under the OTSDUW Arrangements and/or operated by the User until the OTSUA Transfer Time .
OTSDUW Development and Data Timetable	The timetable for both the delivery of OTSDUW Data and Information and OTSDUW Network Data and Information as referred to in Appendix F of the Planning Code and the development of the scope of the OTSDUW .
OTSDUW Network Data and Information	The data and information to be provided by The Company to Users undertaking OTSDUW in accordance with Appendix F of the Planning Code .

OTSDUW Plant and Apparatus	Plant and Apparatus, including any OTSDUW DC Converter, designed by the User under the OTSDUW Arrangements.
OTSUA Transfer Time	The time and date at which the OTSUA are transferred to a Relevant Transmission Licensee .
Out of Synchronism	The condition where a System or Generating Unit or Power Generating Module cannot meet the requirements to enable it to be Synchronised .
Output Usable or OU	The (daily or weekly) forecast value (in MW), at the time of the (daily or weekly) peak demand, of the maximum level at which the Genset can export to the Grid Entry Point , or in the case of Embedded Power Stations , to the User System Entry Point . In addition, for a Genset powered by an Intermittent Power Source the forecast value is based upon the Intermittent Power Source being at a level which would enable the Genset to generate at Registered Capacity .
	For the purpose of OC2 only, the term Output Usable shall include the terms Interconnector Export Capacity and Interconnector Import Capacity where the term Output Usable is being applied to an External Interconnection .
Over-excitation Limiter	Shall have the meaning ascribed to that term in IEC 34-16-1:1991 [equivalent to British Standard BS 4999 Section 116.1: 1992].
Panel Chairperson	A person appointed as such in accordance with GR.4.1.
Panel Member	Any of the persons identified as such in GR.4.
Panel Members' Recommendation	The recommendation in accordance with the "Grid Code Review Panel Recommendation Vote".
Panel Secretary	A person appointed as such in accordance with GR.3.1.2(d).
Part 1 System Ancillary Services	Ancillary Services which are required for System reasons and which must be provided by Users in accordance with the Connection Conditions. An exhaustive list of Part 1 System Ancillary Services is included in that part of CC.8.1 or ECC.8.1 headed Part 1.
Part 2 System Ancillary Services	Ancillary Services which are required for System reasons and which must be provided by a User if the User has agreed to provide them under a Bilateral Agreement. A non-exhaustive list of Part 2 System Ancillary Services is included in that part of CC.8.1 or ECC.8.1 headed Part 2.
Part Load	The condition of a Genset , or Cascade Hydro Scheme which is Loaded but is not running at its Maximum Export Limit.
Peak Current Rating	 For a GBGF-I this is the larger of either the: - The registered maximum steady-state current plus the maximum additional current to supply the Active ROCOF Response Power plus the Defined Active Damping Power; or. The registered maximum steady-state current plus the maximum
	 additional current to supply the Phase Jump Angle limit power, or. This is the maximum short term total current as declared by the Grid Forming Plant Owner in accordance with PC.A.5.8.1.

Permit for Work for proximity work	In respect of E&W Transmission Systems, a document issued by the Relevant E&W Transmission Licensee or an E&W User in accordance with its respective Safety Rules to enable work to be carried out in accordance with OC8A.8 and which provides for Safety Precautions to be applied and maintained. An example format of a Relevant E&W Transmission Licensee's permit for work is attached as Appendix E to OC8A. In respect of Scottish Transmission Systems, a document issued by a Relevant Scottish Transmission Licensee or a Scottish User in accordance with its respective Safety Rules to enable work to be carried out in accordance with OC8B.8 and which provides for Safety Precautions to be applied and maintained. Example formats of Relevant
	Scottish Transmission Licensees' permits for work are attached as Appendix E to OC8B.
Partial Shutdown	The same as a Total Shutdown except that all generation has ceased in a separate part of the Total System and there is no electricity supply from External Interconnections or other parts of the Total System to that part of the Total System and, therefore, that part of the Total System is shutdown, with the result that it is not possible for that part of the Total System to begin to function again without The Company's directions relating to a Black Start .
Pending Grid Code Modification Proposal	A Grid Code Modification Proposal in respect of which, at the relevant time, the Authority has not yet made a decision as to whether to direct such Grid Code Modification Proposal to be made pursuant to the Transmission Licence (whether or not a Grid Code Modification Report has been submitted in respect of such Grid Code Modification Proposal) or, in the case of a Grid Code Self Governance Proposals, in respect of which the Grid Code Review Panel has not yet voted whether or not to approve.
Phase Jump Angle	The difference in the measured phase angle of the voltage at the Grid Entry Point or User System Entry Point in a given mains half cycle compared with the measured phase angle of the voltage at the Grid Entry Point or User System Entry Point in the previous mains half cycle.
Phase Jump Angle Limit	The maximum Phase Jump Angle when applied to a GBGF-I which will result in a linear controlled response without activating current limiting functions. This is specified for a System angle near to zero which will be considered to be the normal operating angle under steady state conditions.
Phase Jump Angle Withstand	The maximum Phase Jump Angle change when applied to a GBGF-I which will result in the GBGF-I remaining in stable operation with current limiting functions activated. This is specified for a System angle near to zero which will be considered to be the normal operating angle under steady state conditions.
Phase (Voltage) Unbalance	The ratio (in percent) between the rms values of the negative sequence component and the positive sequence component of the voltage.

Physical Notification	Data that describes the BM Participant 's best estimate of the expected input or output of Active Power of a BM Unit and/or (where relevant) Generating Unit , the accuracy of the Physical Notification being commensurate with Good Industry Practice .
Planning Code or PC	That portion of the Grid Code which is identified as the Planning Code .
Planned Maintenance Outage	An outage of The Company's electronic data communication facilities as provided for in CC.6.5.8 or ECC.6.5.8 and The Company's associated computer facilities of which normally at least 5 days notice is given, but in any event of which at least twelve hours notice has been given by The Company to the User and which is anticipated to last no longer than 2 hours. The length of such an outage may in exceptional circumstances be extended where at least 24 hours notice has been given by The Company to the User . It is anticipated that normally any planned outage would only last around one hour.
Planned Outage	An outage of a Large Power Station or of part of the National Electricity Transmission System, or of part of a User System, co-ordinated by The Company under OC2.
Plant	Fixed and movable items used in the generation and/or supply and/or transmission of electricity, other than Apparatus .
Point of Common Coupling	That point on the National Electricity Transmission System electrically nearest to the User installation at which either Demands or Loads are, or may be, connected.
Point of Connection	An electrical point of connection between the National Electricity Transmission System and a User's System .
Point of Isolation	The point on Apparatus (as defined in OC8A.1.6.2 and OC8B.1.7.2) at which Isolation is achieved.
Post-Control Phase	The period following real time operation.
Power Available	A signal prepared in accordance with good industry practice, representing the instantaneous sum of the potential Active Power available from each individual Power Park Unit within the Power Park Module calculated using any applicable combination of electrical or mechanical or meteorological data (including wind speed) measured at each Power Park Unit at a specified time. Power Available shall be a value between 0MW and Registered Capacity or Maximum Capacity which is the sum of the potential Active Power available of each Power Park Unit within the Power Park Module. A unit that is not generating or supplying power will be considered as not available. For the avoidance of doubt, the Power Available signal would be the Active Power output that a Power Park Module could reasonably be expected to export at the Grid Entry Point or User System Entry Point taking all the above criteria into account including Power Park Unit constraints such as optimisation modes but would exclude a reduction in the Active Power export of the Power Park Module instructed by The Company (for example) for the purposes selecting a Power Park Module to operate in Frequency Sensitive Mode or when an Emergency Instruction has been issued.
Power Factor	The ratio of Active Power to Apparent Power.

Power-Generating Module	Either a Synchronous Power Generating Module, a Synchronous Electricity Storage Module, a Power Park Module or a Non- Synchronous Electricity Storage Module owned or operated by an EU Generator.
Power-Generating Module Document (PGMD)	A document provided by the Generator to The Company for a Type B or Type C Power Generating Module which confirms that the Power Generating Module's compliance with the technical criteria set out in the Grid Code has been demonstrated and provides the necessary data and statements, including a statement of compliance.
Power Generating Module Performance Chart	A diagram showing the Active Power (MW) and Reactive Power (MVAr) capability limits within which a Synchronous Power Generating Module or Power Park Module at its Grid Entry Point or User System Entry Point will be expected to operate under steady state conditions.
Power Island	Gensets at an isolated Power Station, together with complementary local Demand. In Scotland a Power Island may include more than one Power Station.
Power Park Module	Any Onshore Power Park Module or Offshore Power Park Module.
Power Park Module Availability Matrix	The matrix described in Appendix 1 to BC1 under the heading Power Park Module Availability Matrix .
Power Park Module Planning Matrix	A matrix in the form set out in Appendix 4 of OC2 showing the combination of Power Park Units within a Power Park Module which would be expected to be running under normal conditions.
Power Park Unit	A Generating Unit within a Power Park Module.
Power Station	An installation comprising one or more Generating Units or Power Park Modules or Power Generating Modules or Electricity Storage Modules (even where sited separately) owned and/or controlled by the same Generator , which may reasonably be considered as being managed as one Power Station .
Power System Stabiliser or PSS	Equipment controlling the Exciter output via the voltage regulator in such a way that power oscillations of the synchronous machines are dampened. Input variables may be speed, frequency or power (or a combination of these).
Preface	The preface to the Grid Code (which does not form part of the Grid Code and therefore is not binding).
Preliminary Notice	A notice in writing, sent by The Company both to all Users identified by it under OC12.4.2.1 and to the Test Proposer , notifying them of a proposed System Test .
Preliminary Project Planning Data	Data relating to a proposed User Development at the time the User applies for a CUSC Contract but before an offer is made and accepted.

Primary Response	The automatic increase in Active Power output of a Genset or, as the case may be, the decrease in Active Power Demand in response to a System Frequency fall. This increase in Active Power output or, as the case may be, the decrease in Active Power Demand must be in accordance with the provisions of the relevant Ancillary Services Agreement which will provide that it will be released increasingly with time over the period 0 to 10 seconds from the time of the start of the Frequency fall on the basis set out in the Ancillary Services Agreement and fully available by the latter, and sustainable for at least a further 20 seconds. The interpretation of the Primary Response to a $- 0.5$ Hz frequency change is shown diagrammatically in Figure CC.A.3.2 and Figure ECC.A.3.2
Private Network	A network which connects to a Network Operator's System and that network belongs to a User who is not classified as a Generator , Network Operator or Non-Embedded Customer .
Programming Phase	The period between the Operational Planning Phase and the Control Phase . It starts at the 8 weeks ahead stage and finishes at 17:00 on the day ahead of real time.
Proposal Notice	A notice submitted to The Company by a User which would like to undertake a System Test .
Proposal Report	A report submitted by the Test Panel which contains:
	(a) proposals for carrying out a System Test (including the manner in which the System Test is to be monitored);
	(b) an allocation of costs (including un-anticipated costs) between the affected parties (the general principle being that the Test Proposer will bear the costs); and
	(c) such other matters as the Test Panel considers appropriate.
	The report may include requirements for indemnities to be given in respect of claims and losses arising from a System Test .
Proposed Implementation Date	The proposed date(s) for the implementation of a Grid Code Modification Proposal or Workgroup Alternative Grid Code Modification such date(s) to be either (i) described by reference to a specified period after a direction from the Authority approving the Grid Code Modification Proposal or Workgroup Alternative Grid Code Modification or (ii) a Fixed Proposed Implementation Date.
Proposer	In relation to a particular Grid Code Modification Proposal, the person who makes such Grid Code Modification Proposal.
Protection	The provisions for detecting abnormal conditions on a System and initiating fault clearance or actuating signals or indications.
Protection Apparatus	A group of one or more Protection relays and/or logic elements designated to perform a specified Protection function.
Pumped Storage	A hydro unit in which water can be raised by means of pumps and stored to be used for the generation of electrical energy;

Pumped Storage Generating Unit	A Generating Unit at a Pumped Storage Plant
Pumped Storage Generator	A Generator which owns and/or operates any Pumped Storage Plant.
Pumped Storage Plant	A Power Station comprising Pumped Storage Generating Units.
Pumped Storage Unit	A Generating Unit within a Pumped Storage Plant. For the avoidance of doubt, a Pumped Storage Unit is not considered to form part of an Electricity Storage Unit unless specifically declared by the Generator.
Purchase Contracts	A final and binding contract for the purchase of the Main Plant and Apparatus.
Q/Pmax	The ratio of Reactive Power to the Maximum Capacity . The relationship between Power Factor and Q/Pmax is given by the formula:-
	Power Factor = Cos [arctan $\left[\frac{Q}{P_{max}}\right]$]
	For example, a Power Park Module with a Q/P value of +0.33 would equate to a Power Factor of Cos(arctan0.33) = 0.95 Power Factor lag.
Quick Resynchronisation Capability	The capability of a Type C or Type D Power Generating Module as defined in ECC.6.3.5.6. For the avoidance of doubt this requirement only applies to EU Code Generators who own or operate a Type C or Type D Power Generating Module .
Quick Resynchronisation Unit Test	A test undertaken on Generating Unit forming part of a Type C or Type D Power Generating Module as detailed in OC5.7.1 and OC5.7.4 necessary to determine its ability to demonstrate a Quick Resynchronisation Capability .
Range CCGT Module	A CCGT Module where there is a physical connection by way of a steam or hot gas main between that CCGT Module and another CCGT Module or other CCGT Modules , which connection contributes (if open) to efficient modular operation, and which physical connection can be varied by the operator.
Rated Field Voltage	Shall have the meaning ascribed to that term in IEC 34-16-1:1991 [equivalent to British Standard BS 4999 Section 116.1: 1992].

Rated MW	The "rating-plate" MW output of a Power Generating Module , Generating Unit , Power Park Module , Electricity Storage Module , HVDC Converter or DC Converter , being:	
	 (a) that output up to which the Generating Unit was designed to operate (Calculated as specified in British Standard BS EN 60034 – 1: 1995); or 	
	(b) the nominal rating for the MW output of a Power Park Module or Power Generating Module being the maximum continuous electric output power which the Power Park Module or Power Generating Module was designed to achieve under normal operating conditions; or	
	(c) the nominal rating for the MW import capacity and export capacity (if at a DC Converter Station or HVDC Converter Station) of a DC Converter or HVDC Converter .	
	(d) in an importing mode, is that input up to which an Electricity Storage Module was designed to operate being the maximum continuous electric input which the Electricity Storage Module was designed to achieve under normal operating conditions. In an exporting mode is:-	
	 that output up to which the Synchronous Electricity Storage Unit was designed to operate (Calculated as specified in British Standard BS EN 60034 – 1: 1995); or 	
	 the nominal rating for the MW output of a Non-Synchronous Electricity Storage Module being the maximum continuous electric output power which the Non-Synchronous Electricity Storage Module was designed to achieve under normal operating conditions. 	
Reactive Despatch Instruction	Has the meaning set out in the CUSC .	
Reactive Despatch Network Restriction	A restriction placed upon an Embedded Power Generating Module, Embedded Generating Unit, Embedded Power Park Module or DC Converter at an Embedded DC Converter Station or HVDC Converter at an Embedded HVDC Converter Station by the Network Operator that prevents the Generator or DC Converter Station owner or HVDC System Owner in question (as applicable) from complying with any Reactive Despatch Instruction with respect to that Power Generating Module, Generating Unit, Power Park Module or DC Converter at a DC Converter Station or HVDC Converter at a HVDC Converter Station, whether to provide MVArs over the range referred to in CC 6.3.2, ECC.6.3.2 or otherwise.	
Reactive Despatch to Zero Mvar Network Restriction	A Reactive Despatch Network Restriction which prevents an Embedded Power Generating Module, an Embedded Generating Unit, Embedded Power Park Module, Embedded HVDC System, HVDC Converter at an Embedded HVDC Converter Station or DC Converter at an Embedded DC Converter Station from supplying power at zero MVAr at all Active Power output levels up to and including Rated MW at the Grid Entry Point (or User System Entry Point if Embedded).	
Reactive Energy	The integral with respect to time of the Reactive Power .	

Reactive Power	The product of voltage and current and the sine of the phase angle between them measured in units of voltamperes reactive and standard multiples thereof, ie: 1000 VAr = 1 kVAr 1000 kVAr = 1 MVAr
Record of Inter-System Safety Precautions or RISSP	A written record of inter-system Safety Precautions to be compiled in accordance with the provisions of OC8 .
Regenerative Braking	A method of braking in which energy is extracted from the parts braked, which may be returned directly to the System and the purpose of the braking is motion control.

Registered Capacity	(a)	In the case of a Generating Unit other than that forming part of a CCGT Module or Power Park Module or Power Generating Module , the normal full load capacity of a Generating Unit as declared by the Generator , less the MW consumed by the Generating Unit through the Generating Unit's Unit Transformer when producing the same (the resultant figure being expressed in whole MW, or in MW to one decimal place).
	(b)	In the case of a CCGT Module or Power Park Module owned or operated by a GB Generator, the normal full load capacity of the CCGT Module or Power Park Module (as the case may be) as declared by the GB Generator, being the Active Power declared by the GB Generator as being deliverable by the CCGT Module or Power Park Module at the Grid Entry Point (or in the case of an Embedded CCGT Module or Power Park Module, at the User System Entry Point), expressed in whole MW, or in MW to one decimal place. For the avoidance of doubt Maximum Capacity would apply to Power Generating Modules which form part of a Large, Medium or Small Power Station.
	(c)	In the case of a Power Station , the maximum amount of Active Power deliverable by the Power Station at the Grid Entry Point (or in the case of an Embedded Power Station at the User System Entry Point), as declared by the Generator , expressed in whole MW, or in MW to one decimal place. The maximum Active Power deliverable is the maximum amount deliverable simultaneously by the Power Generating Modules and/or Generating Units and/or CCGT Modules and/or Power Park Modules less the MW consumed by the Power Generating Modules and/or Generating Units and/or CCGT Modules in producing that Active Power and forming part of a Power Station .
	(d)	In the case of a DC Converter at a DC Converter Station or HVDC Converter at an HVDC Converter Station, the normal full load amount of Active Power transferable from a DC Converter or HVDC Converter at the Onshore Grid Entry Point (or in the case of an Embedded DC Converter Station or an Embedded HVDC Converter Station at the User System Entry Point), as declared by the DC Converter Station owner or HVDC System Owner, expressed in whole MW, or in MW to one decimal place.
	(e)	In the case of a DC Converter Station or HVDC Converter Station, the maximum amount of Active Power transferable from a DC Converter Station or HVDC Converter Station at the Onshore Grid Entry Point (or in the case of an Embedded DC Converter Station or Embedded HVDC Converter Station at the User System Entry Point), as declared by the DC Converter Station owner or HVDC System Owner, expressed in whole MW, or in MW to one decimal place.
	(f)	In the case of an Electricity Storage Module , the normal full load amount of Active Power transferable from an Electricity Storage Module at the Grid Entry Point (or in the case of an Embedded Electricity Storage Module at the User System Entry Point), as declared by the Generator , expressed in whole MW, or in MW to one decimal place.

Registered Data	Those items of Standard Planning Data and Detailed Planning Data which upon connection become fixed (subject to any subsequent changes).
Registered Import Capability	In the case of a DC Converter Station or HVDC Converter Station containing DC Converters or HVDC Converters connected to an External System, the maximum amount of Active Power transferable into a DC Converter Station or HVDC Converter Station at the Onshore Grid Entry Point (or in the case of an Embedded DC Converter Station or Embedded HVDC Converter Station at the User System Entry Point), as declared by the DC Converter Station owner or HVDC System Owner, expressed in whole MW.
	In the case of a DC Converter or HVDC Converter connected to an External System and in a DC Converter Station or HVDC Converter Station, the normal full load amount of Active Power transferable into a DC Converter or HVDC Converter at the Onshore Grid Entry Point (or in the case of an Embedded DC Converter Station or Embedded HVDC Converter Station at the User System Entry Point), as declared by the DC Converter owner or HVDC System Owner, expressed in whole MW.
	In the case of an Electricity Storage Module , the maximum amount of Active Power transferable into an Electricity Storage Module at the Grid Entry Point (or in the case of an Embedded Electricity Storage Module at the User System Entry Point), as declared by the Generator , expressed in whole MW.
Regulations	The Utilities Contracts Regulations 1996, as amended from time to time.
Regulated Sections	Parts of the Grid Code that are referenced in Governance Rules Annex GR.B as amended from time to time with the approval of the Authority .
Reheater Time Constant	Determined at Registered Capacity , the reheater time constant will be construed in accordance with the principles of the IEEE Committee Report "Dynamic Models for Steam and Hydro Turbines in Power System Studies" published in 1973 which apply to such phrase.
Rejected Grid Code Modification Proposal	A Grid Code Modification Proposal in respect of which the Authority has decided not to direct The Company to modify the Grid Code pursuant to The Company's Transmission Licence in the manner set out herein or, in the case of a Grid Code Self Governance Proposals, in respect of which the Grid Code Review Panel has voted not to approve.
Related Person	Means, in relation to an individual, any member of their immediate family, their employer (and any former employer of theirs within the previous 12 months), any partner with whom they are in partnership, and any company or Affiliate of a company in which they or any member of their immediate family controls more than 20% of the voting rights in respect of the shares of the company;
Relevant E&W Transmission Licensee	As the context requires NGET and/or an E&W Offshore Transmission Licensee .
Relevant Party	Has the meaning given in GR15.10(a).

Relevant Scottish Transmission Licensee	As the context requires SPT and/or SHETL and/or a Scottish Offshore Transmission Licensee.	
Relevant Transmission Licensee	Means National Grid Electricity Transmission plc (NGET) in its Transmission Area or SP Transmission plc (SPT) in its Transmission Area or Scottish Hydro-Electric Transmission Ltd (SHETL) in its Transmission Area or any Offshore Transmission Licensee in its Transmission Area.	
Relevant Unit	As defined in the STC , Schedule 3.	
Remote End HVDC Converter Station	An HVDC Converter Station which forms part of an HVDC System and is not directly connected to the AC part of the GB Synchronous Area .	
Remote Transmission	Any Plant and Apparatus or meters owned by NGET which:	
Assets	 (a) are Embedded in a User System and which are not directly connected by Plant and/or Apparatus owned by NGET to a sub- station owned by NGET; and 	
	(b) are by agreement between NGET and such User operated under the direction and control of such User .	
Replacement Reserves (RR)	Means, in the context of Balancing Services , the Active Power reserves available to restore or support the required level of FRR to be prepared for additional system imbalances, including generation reserves;	
Requesting Safety Co- ordinator	The Safety Co-ordinator requesting Safety Precautions.	
Responsible Engineer/ Operator	A person nominated by a User to be responsible for System control.	
Responsible Manager	A manager who has been duly authorised by a User or a Relevant Transmission Licensee to sign Site Responsibility Schedules on behalf of that User or Relevant Transmission Licensee as the case may be.	
Restoration Service Provider	A Black Start Service Provider or User with a legal or contractual obligation to provide a service contributing to one or several measures of the System Restoration Plan.	
Re-synchronisation	The bringing of parts of the System which have become Out of Synchronism with any other System back into Synchronism , and like terms shall be construed accordingly.	
Retained EU Law	31 December 2020 as defined in European Union (Withdrawal) Act 2018 as amended by the European Union (Withdrawal Agreement) Act 2020.	
RR Acceptance	The results of the TERRE auction for each BM Participant .	
Restricted	Applies to a TERRE Bid which has been marked so that it will be passed to the TERRE Central Platform but will not be used in the auction.	
ROCOF	Rate of Change of Frequency	

RR Instruction	Replacement Reserve Instruction – used for instructing BM Participants after the results of the TERRE auction. An RR Instruction has the same format as a Bid-Offer Acceptance but has type field indicating it is for TERRE .
Safety Co-ordinator	A person or persons nominated by a Relevant E&W Transmission Licensee and each E&W User in relation to Connection Points (or in the case of OTSUA operational prior to the OTSUA Transfer Time , Transmission Interface Points) on an E&W Transmission System and/or by the Relevant Scottish Transmission Licensee and each Scottish User in relation to Connection Points (or in the case of OTSUA operational prior to the OTSUA Transfer Time , Transmission Interface Points) on a Scottish Transmission System to be responsible for the co-ordination of Safety Precautions at each Connection Point (or in the case of OTSUA operational prior to the OTSUA Transfer Time , Transmission Interface Points) when work (which includes testing) is to be carried out on a System which necessitates the provision of Safety Precautions on HV Apparatus (as defined in OC8A.1.6.2 and OC8B.1.7.2), pursuant to OC8 .
Safety From The System	That condition which safeguards persons when work is to be carried out on or near a System from the dangers which are inherent in the System .
Safety Key	A key unique at the Location capable of operating a lock which will cause an Isolating Device and/or Earthing Device to be Locked .
Safety Log	A chronological record of messages relating to safety co-ordination sent and received by each Safety Co-ordinator under OC8 .
Safety Precautions	Isolation and/or Earthing.
Safety Rules	The rules of the Relevant Transmission Licensee or a User that seek to ensure that persons working on Plant and/or Apparatus to which the rules apply are safeguarded from hazards arising from the System .
Scottish Offshore Transmission System	An Offshore Transmission System with an Interface Point in Scotland.
Scottish Offshore Transmission Licensee	A person who owns or operates a Scottish Offshore Transmission System pursuant to a Transmission Licence .
Scottish Transmission System	Collectively SPT's Transmission System and SHETL's Transmission System and any Scottish Offshore Transmission Systems.
Scottish User	A User in Scotland or any Offshore User who owns or operates Plant and/or Apparatus connected (or which will at the OTSUA Transfer Time be connected) to a Scottish Offshore Transmission System.
Secondary BM Unit	Has the same meaning set out in the BSC .

Secondary Response	The automatic increase in Active Power output of a Genset or, as the case may be, the decrease in Active Power Demand in response to a System Frequency fall. This increase in Active Power output or, as the case may be, the decrease in Active Power Demand must be in accordance with the provisions of the relevant Ancillary Services Agreement which will provide that it will be fully available by 30 seconds from the time of the start of the Frequency fall and be sustainable for at least a further 30 minutes. The interpretation of the Secondary Response to a -0.5 Hz frequency change is shown diagrammatically in Figure CC.A.3.2 or Figure ECC.A.3.2.	
Secretary of State	Has the same meaning as in the Act .	
Secured Event	Has the meaning set out in the Security and Quality of Supply Standard.	
Security and Quality of Supply Standard (SQSS)	The version of the document entitled 'Security and Quality of Supply Standard' established pursuant to the Transmission Licence in force at the time of entering into the relevant Bilateral Agreement .	
Self-Governance Criteria	A proposed Modification that, if implemented,	
	(a) is unlikely to have a material effect on:	
	(i) existing or future electricity consumers; and	
	 (ii) competition in the generation, storage, distribution, or supply of electricity or any commercial activities connected with the generation, storage, distribution or supply of electricity; and 	
	(iii) the operation of the National Electricity Transmission System ; and	
	 (iv) matters relating to sustainable development, safety or security of supply, or the management of market or network emergencies; and 	
	(v) the Grid Code 's governance procedures or the Grid Code 's modification procedures, and	
	(b) is unlikely to discriminate between different classes of Users.	
	(c) other than where the modification meets the Fast Track Criteria, will not constitute an amendment to the Regulated Sections of the Grid Code.	
Self-Governance Modifications	A Grid Code Modification Proposal that does not fall within the scope of a Significant Code Review and that meets the Self-Governance Criteria or which the Authority directs is to be treated as such any direction under GR.24.4.	
Self-Governance Statement	The statement made by the Grid Code Review Panel and submitted to the Authority:	
	(a) confirming that, in its opinion, the Self-Governance Criteria are met and the proposed Grid Code Modification Proposal is suitable for the Self-Governance route; and	
	(b) providing a detailed explanation of the Grid Code Review Panel 's reasons for that opinion.	

Setpoint Voltage	The value of voltage at the Grid Entry Point, or User System Entry Point if Embedded, on the automatic control system steady state operating characteristic, as a percentage of the nominal voltage, at which the transfer of Reactive Power between a Power Park Module, DC Converter, HVDC Converter or Non-Synchronous Generating Unit and the Transmission System, or Network Operator's system if Embedded, is zero.	
Settlement Period	A period of 30 minutes ending on the hour and half-hour in each hour during a day.	
Seven Year Statement	A statement, prepared by The Company in accordance with the terms of The Company's Transmission Licence , showing for each of the seven succeeding Financial Years , the opportunities available for connecting to and using the National Electricity Transmission System and indicating those parts of the National Electricity Transmission System most suited to new connections and transport of further quantities of electricity.	
SF₀ Gas Zone	A segregated zone surrounding electrical conductors within a casing containing SF_6 gas.	
SHETL	Scottish Hydro-Electric Transmission Limited.	
Shutdown	In the case of a Generating Unit is the condition of a Generating Unit where the generator rotor is at rest or on barring. In the case of an HVDC System or DC Converter Station , is the	
	condition of an HVDC System or DC Converter Station where the HVDC System or DC Converter Station is de-energised and therefore not importing or exporting Apparent Power to or from the Total System.	
Significant Code Review	Means the period commencing on the start date of a Significant Code Review as stated in the notice issued by the Authority , and ending in the circumstances described in GR.16.6 or GR.16.7, as appropriate.	
Significant Code Review Phase	Means the period commencing on the start date of a Significant Code Review as stated in the notice issued by the Authority , and ending in the circumstances described in GR.16.6 or GR.16.7, as appropriate.	
Significant Event	An Event , as defined in OC3.4.1.	
Significant Incident	An Event which either:	
	(a) was notified by a User to The Company under OC7, and which The Company considers has had or may have had a significant effect on the National Electricity Transmission System, and The Company requires the User to report that Event in writing in accordance with OC10 and notifies the User accordingly; or	
	(b) was notified by The Company to a User under OC7, and which that User considers has had or may have had a significant effect on that User's System, and that User requires The Company to report that Event in writing in accordance with the provisions of OC10 and notifies The Company accordingly.	

Simultaneous Tap Change	A tap change implemented on the generator step-up transformers of Synchronised Gensets , effected by Generators in response to an instruction from The Company issued simultaneously to the relevant Power Stations . The instruction, preceded by advance notice, must be effected as soon as possible, and in any event within one minute of receipt from The Company of the instruction.
Single Intraday Coupling	The continuous process where collected orders are matched and cross- zonal capacity is allocated simultaneously for different bidding zones in the intraday market.
Single Line Diagram	A schematic representation of a three-phase network in which the three phases are represented by single lines. The diagram shall include (but not necessarily be limited to) busbars, overhead lines, underground cables, power transformers and reactive compensation equipment. It shall also show where Large Power Stations are connected, and the points at which Demand is supplied.
Single Point of Connection	A single Point of Connection , with no interconnection through the User's System to another Point of Connection .
Site Common Drawings	Drawings prepared for each Connection Site (and in the case of OTSDUW , Transmission Interface Site) which incorporate Connection Site (and in the case of OTSDUW , Transmission Interface Site) layout drawings, electrical layout drawings, common protection/ control drawings and common services drawings.
Site Responsibility Schedule	A schedule containing the information and prepared on the basis of the provisions set out in Appendix 1 of the CC and Appendix E1 of the ECC .
Slope	The ratio of the steady state change in voltage, as a percentage of the nominal voltage, to the steady state change in Reactive Power output, in per unit of Reactive Power capability. For the avoidance of doubt, the value indicates the percentage voltage reduction that will result in a 1 per unit increase in Reactive Power generation.
Small Participant	Has the meaning given in the CUSC .

Small Power Station	A Power Station which is	
	(a) dire	ctly connected to:
	(i)	NGET's Transmission System where such Power Station has a Registered Capacity of less than 50MW; or
	(ii)	SPT's Transmission System where such Power Station has a Registered Capacity of less than 30MW; or
	(iii)	SHETL's Transmission System where such a Power Station has a Registered Capacity of less than 10 MW; or
	(iv)	an Offshore Transmission System where such Power Station has a Registered Capacity of less than 10MW;
	or,	
	Use	bedded within a User System (or part thereof) where such r System (or part thereof) is connected under normal operating ditions to:
	(i)	NGET's Transmission System and such Power Station has a Registered Capacity of less than 50MW; or
	(ii)	SPT's Transmission System and such Power Station has a Registered Capacity of less than 30MW; or
	(iii)	SHETL's Transmission System and such Power Station has a Registered Capacity of less than 10MW;
	or,	
	Sys	bedded within a User System (or part thereof) where the User tem (or part thereof) is not connected to the National ctricity Transmission System, although such Power Station :
	(i)	NGET's Transmission Area and such Power Station has a Registered Capacity of less than 50MW; or
	(ii)	SPT's Transmission Area and such Power Station has a Registered Capacity of less than 30MW; or
	(iii)	SHETL's Transmission Area and such Power Station has a Registered Capacity of less than 10MW;
		oidance of doubt, a Small Power Station could comprise of ype B , Type C or Type D Power Generating Modules .
Speeder Motor Setting Range	The minimum and maximum no-load speeds (expressed as a percentage of rated speed) to which the turbine is capable of being controlled, by the speeder motor or equivalent, when the Generating Unit terminals are on open circuit.	
SPT	SP Transmission Limited plc	
Standard Contract Terms	provided	ard terms and conditions applicable to Ancillary Services by Demand Response Providers and published on the rom time to time.

Standard Modifications	A Grid Code Modification Proposal that does not fall within the scope of a Significant Code Review subject to any direction by the Authority pursuant to GR.16.3 and GR.16.4, nor meets the Self-Governance Criteria subject to any direction by the Authority pursuant to GR.24.4 and in accordance with any direction under GR.24.2. A Grid Code Modification Proposal that constitutes an amendment to the Regulated Sections of the Grid Code shall be a Standard Modification except where it is an Urgent Modification or where it meets the Fast Track Criteria.
Standard Planning Data	The general data required by The Company under the PC . It is generally also the data which The Company requires from a User in an application for a CUSC Contract , as reflected in the PC .
Standard Product	Means a harmonised balancing product defined by all EU TSOs for the exchange of balance services.
Specific Product	Means in the context of Balancing Services a product that is not a standard product.
Start Time	The time named as such in an instruction issued by The Company pursuant to the BC .
Start-Up	In the case of a Generating Unit is the action of bringing a Generating Unit from Shutdown to Synchronous Speed . In the case of an HVDC System or DC Converter Station , is the action of bringing the HVDC System or DC Converter Station from Shutdown to a state where it is energised.
Statement of Readiness	Has the meaning set out in the Bilateral Agreement and/or Construction Agreement .
Station Board	A switchboard through which electrical power is supplied to the Auxiliaries of a Power Station , and which is supplied by a Station Transformer . It may be interconnected with a Unit Board .
Station Transformer	A transformer supplying electrical power to the Auxiliaries of
	 (a) a Power Station, which is not directly connected to the Generating Unit terminals (typical voltage ratios being 132/11kV or 275/11kV), or (b) a DC Converter Station or HVDC Converter Station.
STC Committee	The committee established under the STC.
Steam Unit	A Generating Unit whose prime mover converts the heat-energy in steam to mechanical energy.

Storage User	A Generator who owns or operates one or more Electricity Storage Modules. For the avoidance of doubt:	
	 (a) Retained EU Law (Commission Regulation (EU) 2016/631, Commission Regulation (EU) 2016/1388 and Commission Regulation (EU) 2016/1485) shall not apply to Storage Users; and 	
	 (b) the European Connection Conditions (ECC's) shall apply to Storage Users on the basis set out in Paragraph ECC1.1(d). 	
Subtransmission System	The part of a User's System which operates at a single transformation below the voltage of the relevant Transmission System .	
Substantial Modification	A Modification in relation to modernisation or replacement of the User's Main Plant and Apparatus which impacts its technical capabilities, which, following notification by the relevant User to The Company , results in substantial amendment to the Bilateral Agreement .	
Supergrid Voltage	Any voltage greater than 200kV.	
Supplier	(a) A person supplying electricity under an Electricity Supply Licence; or	
	(b) A person supplying electricity under exemption under the Act ;	
	in each case acting in its capacity as a supplier of electricity to Customers in Great Britain .	
Surplus	A MW figure equal to the total Output Usable:	
	(a) minus the forecast of Active Power Demand , and	
	(b) minus the Operational Planning Margin .	
Synchronised	(a) The condition where an incoming Power Generating Module, Generating Unit or Power Park Module or DC Converter or HVDC Converter or System is connected to the busbars of another System so that the Frequencies and phase relationships of that Power Generating Module, Generating Unit, Power Park Module, DC Converter, HVDC Converter or System, as the case may be, and the System to which it is connected are identical, like terms shall be construed accordingly e.g. "Synchronism".	
	(b) The condition where an importing BM Unit is consuming electricity.	
Synchronous Electricity Storage Module	A Synchronous Power Generating Module which can convert or re- convert electrical energy from another source of energy such that the frequency of the generated voltage, the rotor speed and the frequency of network voltage are in a constant ratio and thus in synchronism. For the avoidance of doubt a Synchronous Electricity Storage Module could comprise of one or more Synchronous Electricity Storage Units .	

Synchronous Electricity Storage Unit	A Synchronous Generating Unit which can supply or absorb electrical energy such that the frequency of the generated voltage, the rotor speed and the frequency of the equipment are in constant ratio and thus in synchronism with the network.
Synchronising Generation	The amount of MW (in whole MW) produced at the moment of synchronising.
Synchronising Group	A group of two or more Gensets) which require a minimum time interval between their Synchronising or De-Synchronising times.
Synchronous Area	An area covered by synchronously interconnected Transmission Licensees , such as the Synchronous Areas of Continental Europe, Great Britain, Ireland-Northern Ireland and Nordic and the power systems of Lithuania, Latvia and Estonia, together referred to as 'Baltic' which are part of a wider Synchronous Area ;
Synchronous Compensation	The operation of rotating synchronous Apparatus for the specific purpose of either the generation or absorption of Reactive Power .
Synchronous Compensation Equipment	Apparatus which has the function of providing Synchronous Compensation. For the avoidance of doubt, one or more Synchronous Compensation units would not constitute an Electricity Storage Module unless it could be operated in a controllable manner.
Synchronous Electricity Storage Module	A Synchronous Power Generating Module which can convert and reconvert electrical energy from another source of energy such that the frequency of the generated voltage, the rotor speed and the frequency of network voltage are in a constant ratio and thus in synchronism. For the avoidance of doubt a Synchronous Electricity Storage Module could comprise of one or more Synchronous Electricity Storage Units.
Synchronous Electricity Storage Unit	A Synchronous Generating Unit which can supply and absorb electrical energy such that the frequency of the generated voltage, the rotor speed and the frequency of the equipment are in constant ratio and thus in synchronism with the network.
Synchronous Flywheel	An item of synchronously rotating Plant for the specific purpose of contributing inertia to the System . One or more Synchronous Flywheels would not be considered to form an Electricity Storage Module unless it could be operated in a controllable manner for its AC input and output power.
Synchronous Generating Unit	Any Onshore Synchronous Generating Unit or Offshore Synchronous Generating Unit.
Synchronous Generating Unit Performance Chart	A diagram showing the Active Power (MW) and Reactive Power (MVAr) capability limits within which a Synchronous Generating Unit at its stator terminals (which is part of a Synchronous Power Generating Module) will be expected to operate under steady state conditions.

Synchronous Power-	An indivisible set of installations which can convert or re-convert electrical
Generating Module	energy from another source of energy such that the frequency of the supplied voltage, the rotor speed and the frequency of network voltage are in a constant ratio and thus in synchronism. For the avoidance of doubt, a Synchronous Power Generating Module could comprise of one or more Synchronous Generating Units or one or more Synchronous Electricity Storage Units.
Synchronous Power Generating Module Matrix	The matrix described in Appendix 1 to BC1 under the heading Synchronous Power Generating Module Matrix .
Synchronous Power Generating Module Planning Matrix	A matrix in the form set out in Appendix 5 of OC2 showing the combination of Synchronous Generating Units within a Synchronous Power Generating Module which would be running in relation to any given MW output.
Synchronous Power Generating Unit	Has the same meaning as a Synchronous Generating Unit and would be considered to be part of a Power Generating Module.
Synchronous Speed	That speed required by a Generating Unit to enable it to be Synchronised to a System .
System	Any User System and/or the National Electricity Transmission System, as the case may be.
System Ancillary Services	Collectively Part 1 System Ancillary Services and Part 2 System Ancillary Services.
System Constraint	A limitation on the use of a System due to lack of transmission capacity or other System conditions.
System Constrained Capacity	That portion of Registered Capacity or Regis tered Import Capacity not available due to a System Constraint .
System Constraint Group	A part of the National Electricity Transmission System which, because of System Constraints , is subject to limits of Active Power which can flow into or out of (as the case may be) that part.
System Defence Plan	A document prepared by The Company , as published on its Website , outlining how the requirements of the "defence plan", as provided for by Retained EU Law (Commission Regulation (EU) 2017/2196), has been implemented within the GB Synchronous Area .
System Fault Dependability Index or Dp	A measure of the ability of Protection to initiate successful tripping of circuit-breakers which are associated with a faulty item of Apparatus . It is calculated using the formula:
	$\mathbf{D}\mathbf{p} = 1 - \mathbf{F}_1 / \mathbf{A}$
	Where:
	A = Total number of System faults
	F ₁ = Number of System faults where there was a failure to trip a circuit- breaker.
System Incidents Report	A report submitted to the GCRP on a monthly basis, containing, but not limited to, a list of Significant Events , as detailed in OC3.4.1.

System Margin	The margin in any period between
	(a) the sum of Maximum Export Limits and
	(b) forecast Demand and the Operating Margin ,
	for that period.
System Negative Reserve Active Power Margin or System NRAPM	That margin of Active Power sufficient to allow the largest loss of Load at any time.
System Operator - Transmission Owner Code or STC	Has the meaning set out in The Company's Transmission Licence
System Restoration Plan	A document prepared by The Company , as published on its Website , outlining how the requirements of the "restoration plan", as defined in Retained EU Law (Commission Regulation (EU) 2017/2196), has been implemented within the GB Synchronous Area .
System Telephony	An alternative method by which a User's Responsible Engineer/Operator and The Company's Control Engineer(s) speak to one and another for the purposes of control of the Total System in both normal operating conditions and where practicable, emergency operating conditions.
System Tests	Tests which involve simulating conditions, or the controlled application of irregular, unusual or extreme conditions, on the Total System , or any part of the Total System , but which do not include commissioning or recommissioning tests or any other tests of a minor nature.
System to Demand Intertrip Scheme	An intertrip scheme which disconnects Demand when a System fault has arisen to prevent abnormal conditions occurring on the System .
System to Generator Operational Intertripping	A Balancing Service involving the initiation by a System to Generator Operational Intertripping Scheme of automatic tripping of the User's circuit breaker(s), or Relevant Transmission Licensee's circuit breaker(s) where agreed by The Company, the User and the Relevant Transmission Licensee, resulting in the tripping of BM Unit(s) or (where relevant) Generating Unit(s) comprised in a BM Unit to prevent abnormal system conditions occurring, such as over voltage, overload, System instability, etc, after the tripping of other circuit-breakers following power System fault(s).
System to Generator Operational Intertripping Scheme	A System to Generating Unit or System to CCGT Module or System to Power Park Module or System to Power Generating Module or System to Electricity Storage Module Intertripping Scheme forming a condition of connection and specified in Appendix F3 of the relevant Bilateral Agreement, being either a Category 1 Intertripping Scheme, Category 2 Intertripping Scheme, Category 3 Intertripping Scheme or Category 4 Intertripping Scheme.

Target Frequency	That Frequency determined by The Company , in its reasonable opinion, as the desired operating Frequency of the Total System . This will normally be 50.00Hz plus or minus 0.05Hz, except in exceptional circumstances as determined by The Company , in its reasonable opinion when this may be 49.90 or 50.10Hz. An example of exceptional circumstances may be difficulties caused in operating the System during disputes affecting fuel supplies.	
Technical Specification	In relation to Plant and/or Apparatus ,	
	 (a) the relevant European Specification; or (b) if there is no relevant European Specification, other relevant standards which are in common use in the European Community. 	
TERRE	Trans European Replacement Reserves Exchange – a market covering the procurement of replacement reserves across Europe.	
TERRE Activation Period	A period of time lasting 15 minutes and starting at either 0, 15, 30 or 45 minutes past the hour (e.g. 10:00 to 10:15). There are 4 TERRE Activation Periods in one TERRE Auction Period .	
TERRE Auction Period	A period of time lasting one hour and starting and ending on the hour (e.g. from 10:00 to 11:00). Hence there are 24 TERRE Auction Periods in a day.	
TERRE Bid	A submission by a BM Participant covering the price and MW deviation offered into the TERRE auction (please note – in the Balancing Mechanism the term bid has a different meaning – in this case a bid can be an upward or downward MW change).	
TERRE Central Platform	An IT system which implements the TERRE auction.	
TERRE Data Validation and Consistency Rules	A document produced by the central TERRE project detailing the correct format of submissions for TERRE .	
TERRE Gate Closure	60 minutes before the start of the TERRE Auction Period (note still ongoing discussions if this may become 55 minutes).	
TERRE Instruction Guide	Details specific rules for creating an RR Instruction from an RR Acceptance .	
Test Co-ordinator	A person who co-ordinates System Tests.	
Test Panel	A panel, whose composition is detailed in OC12 , which is responsible, inter alia, for considering a proposed System Test , and submitting a Proposal Report and a Test Programme .	
Test Programme	A programme submitted by the Test Panel to The Company , the Test Proposer , and each User identified by The Company under OC12.4.2.1, which states the switching sequence and proposed timings of the switching sequence, a list of those staff involved in carrying out the System Test (including those responsible for the site safety) and such other matters as the Test Panel deems appropriate.	
Test Proposer	The person who submits a Proposal Notice .	

Test Signal	A signal in the form of a sine wave, applied to a GBGF-I to demonstrate its ability to contribute to Active Damping Power .
The Company	National Grid Electricity System Operator Limited (NO: 11014226) whose registered office is at 1-3 Strand, London, WC2N 5EH as the person whose Transmission Licence Section C of such Transmission Licence has been given effect.
The Company Control Engineer	The nominated person employed by The Company to direct the operation of the National Electricity Transmission System or such person as nominated by The Company .
The Company Operational Strategy	The Company's operational procedures which form the guidelines for operation of the National Electricity Transmission System.
Total Shutdown	The situation existing when all generation has ceased and there is no electricity supply from External Interconnections and, therefore, the Total System has shutdown with the result that it is not possible for the Total System to begin to function again without The Company's directions relating to a Black Start .
Total System	The National Electricity Transmission System and all User Systems in the National Electricity Transmission System Operator Area.
Trading Point	A commercial and, where so specified in the Grid Code, an operational interface between a User and The Company , which a User has notified to The Company .
Transfer Date	Such date as may be appointed by the Secretary of State by order under section 65 of the Act .
Transmission	Means, when used in conjunction with another term relating to equipment or a site, whether defined or not, that the associated term is to be read as being part of or directly associated with the National Electricity Transmission System , and not of or with the User System .
Transmission Area	Has the meaning set out in the Transmission Licence of a Transmission Licensee .
Transmission Connected Demand Facilities	A Demand Facility which has a Grid Supply Point to the National Electricity Transmission System.
Transmission DC Converter	Any Transmission Licensee Apparatus (or OTSUA that will become Transmission Licensee Apparatus at the OTSUA Transfer Time) used to convert alternating current electricity to direct current electricity, or vice versa. A Transmission Network DC Converter (which could include an HVDC System owned by an Offshore Transmission Licensee or Generator in respect of OTSUA) is a standalone operative configuration at a single site comprising one or more converter bridges, together with one or more converter transformers, converter control equipment, essential protective and switching devices and auxiliaries, if any, used for conversion.
Transmission Entry Capacity	Has the meaning set out in the CUSC .

Transmission Interface Circuit	In NGET's Transmission Area, a Transmission circuit which connects a System operating at a voltage above 132kV to a System operating at a voltage of 132kV or below
	In SHETL's Transmission Area and SPT's Transmission Area, a Transmission circuit which connects a System operating at a voltage of 132kV or above to a System operating at a voltage below 132kV.
Transmission Interface Point	Means the electrical point of connection between the Offshore Transmission System and an Onshore Transmission System .
Transmission Interface Site	The site at which the Transmission Interface Point is located.
Transmission Licence	A licence granted under Section 6(1)(b) of the Act.
Transmission Licensee	The Company and any Onshore Transmission Licensee or Offshore Transmission Licensee.
Transmission Site	Means a site owned (or occupied pursuant to a lease, licence or other agreement) by a Relevant Transmission Licensee in which there is a Connection Point . For the avoidance of doubt, a site owned by a User but occupied by the Relevant Transmission Licensee as aforesaid, is a Transmission Site .
Transmission System	Has the same meaning as the term "licensee's transmission system" in the Transmission Licence of a Transmission Licensee .
Turbine Time Constant	Determined at Registered Capacity , the turbine time constant will be construed in accordance with the principles of the IEEE Committee Report "Dynamic Models for Steam and Hydro Turbines in Power System Studies" published in 1973 which apply to such phrase.
Type A Power Generating Module	A Power-Generating Module (including an Electricity Storage Module) with a Grid Entry Point or User System Entry Point below 110 kV and a Maximum Capacity of 0.8 kW or greater but less than 1MW;
Type B Power Generating Module	A Power-Generating Module (including an Electricity Storage Module) with a Grid Entry Point or User System Entry Point below 110 kV and a Maximum Capacity of 1MW or greater but less than 10MW;
Type C Power Generating Module	A Power-Generating Module (including an Electricity Storage Module) with a Grid Entry Point or User System Entry Point below 110 kV and a Maximum Capacity of 10MW or greater but less than 50MW;
Type D Power Generating Module	A Power-generating Module: (including an Electricity Storage Module): with a Grid Entry Point or User System Entry Point at, or greater than, 110 kV; or
	with a Grid Entry Point or User System Entry Point below 110 kV and
	with Maximum Capacity of 50MW or greater
Unbalanced Load	The situation where the Load on each phase is not equal.
Under-excitation Limiter	Shall have the meaning ascribed to that term in IEC 34-16-1:1991 [equivalent to British Standard BS 4999 Section 116.1: 1992].

	·
Under Frequency Relay	An electrical measuring relay intended to operate when its characteristic quantity (Frequency) reaches the relay settings by a decrease in Frequency .
Unit Board	A switchboard through which electrical power is supplied to the Auxiliaries of a Generating Unit and which is supplied by a Unit Transformer . It may be interconnected with a Station Board .
Unit Transformer	A transformer directly connected to a Generating Unit's terminals, and which supplies power to the Auxiliaries of a Generating Unit . Typical voltage ratios are 23/11kV and 15/6.6kV.
Unit Load Controller Response Time Constant	The time constant, expressed in units of seconds, of the power output increase which occurs in the Secondary Response timescale in response to a step change in System Frequency .
Unresolved Issues	Any relevant Grid Code provisions or Bilateral Agreement requirements identified by The Company with which the relevant User has not demonstrated compliance to The Company's reasonable satisfaction at the date of issue of the Preliminary Operational Notification and/or Interim Operational Notification and/or Limited Operational Notification and which are detailed in such Preliminary Operational Notification and/or Interim Operational Notification and/or Limited Operational Notification .
Urgent Modification	A Grid Code Modification Proposal treated or to be treated as an Urgent Modification in accordance with GR.23.
User	A term utilised in various sections of the Grid Code to refer to the persons using the National Electricity Transmission System , as more particularly identified in each section of the Grid Code concerned. In the Preface and the General Conditions the term means any person to whom the Grid Code applies. The term User includes an EU Code User and a GB Code User .
User Data File Structure	The file structure given at DRC 18 which will be specified by The Company which a Generator or DC Converter Station owner or HVDC System Owner must use for the purposes of the CP or the ECP to submit DRC data Schedules and information demonstrating compliance with the Grid Code and, where applicable, with the CUSC Contract(s), unless otherwise agreed by The Company.
User Development	In the PC means either User's Plant and/or Apparatus to be connected to the National Electricity Transmission System, or a Modification relating to a User's Plant and/or Apparatus already connected to the National Electricity Transmission System, or a proposed new connection or Modification to the connection within the User System.
User Self Certification of Compliance	A certificate, in the form attached at CP.A.2.(1) or ECP.A.2.(1) completed by a Generator or DC Converter Station owner or HVDC System Owner to which the Compliance Statement is attached which confirms that such Plant and Apparatus complies with the relevant Grid Code provisions and where appropriate, with the CUSC Contract (s), as identified in the Compliance Statement and, if appropriate, identifies any Unresolved Issues and/or any exceptions to such compliance and details the derogation(s) granted in respect of such exceptions.

User Site	A site owned (or occupied pursuant to a lease, licence or other agreement) by a User in which there is a Connection Point . For the
	avoidance of doubt, a site owned by a Relevant Transmission Licensee but occupied by a User as aforesaid, is a User Site .
User System	Any system owned or operated by a User comprising:-
	(a) Power Generating Modules or Generating Units ; and/or
	 (b) Systems consisting (wholly or mainly) of electric lines used for the distribution of electricity from Grid Supply Points or Generating Units or Power Generating Modules or other entry points to the point of delivery to Customers, or other Users;
	and Plant and/or Apparatus (including prior to the OTSUA Transfer Time , any OTSUA) connecting:-
	(c) The system as described above; or
	(d) Non-Embedded Customers equipment;
	to the National Electricity Transmission System or to the relevant other User System , as the case may be.
	The User System includes any Remote Transmission Assets operated by such User or other person and any Plant and/or Apparatus and meters owned or operated by the User or other person in connection with the distribution of electricity but does not include any part of the National Electricity Transmission System.
User System Entry Point	A point at which a Power Generating Module , Generating Unit , a CCGT Module or a CCGT Unit or a Power Park Module , or an Electricity Storage Module or a DC Converter or an HVDC Converter , as the case may be, which is Embedded connects to the User System .
Voltage Jump Reactive Power	The transient Reactive Power injected or absorbed from a Grid Forming Plant to the Total System as a result of either a step or ramp change in the difference between the voltage magnitude and/or phase of the voltage of the Internal Voltage Source of the Grid Forming Plant and Grid Entry Point or User System Entry Point .
	In the event of a voltage magnitude and phase change at the Grid Entry Point or User System Entry Point , a Grid Forming Plant will instantaneously (within 5ms) supply Voltage Jump Reactive Power to the Total System as a result of the voltage magnitude change.
Water Time Constant	Bears the meaning ascribed to the term "Water inertia time" in IEC 308.
Website	The site established by The Company on the World-Wide Web for the exchange of information among Users and other interested persons in accordance with such restrictions on access as may be determined from time to time by The Company .

Weekly ACS Conditions	Means that particular combination of weather elements that gives rise to a level of peak Demand within a week, taken to commence on a Monday and end on a Sunday, which has a particular chance of being exceeded as a result of weather variation alone. This particular chance is determined such that the combined probabilities of Demand in all weeks of the year exceeding the annual peak Demand under Annual ACS Conditions is 50%, and in the week of maximum risk the weekly peak Demand under Weekly ACS Conditions is equal to the annual peak Demand under Annual ACS Conditions .
WG Consultation Alternative Request	Any request from an Authorised Electricity Operator; the Citizens Advice or the Citizens Advice Scotland, The Company or a Materially Affected Party for a Workgroup Alternative Grid Code Modification to be developed by the Workgroup expressed as such and which contains the information referred to at GR.20.16. For the avoidance of doubt, any WG Consultation Alternative Request does not constitute either a Grid Code Modification Proposal or a Workgroup Alternative Grid Code Modification.
Workgroup	A Workgroup established by the Grid Code Review Panel pursuant to GR.20.1;
Workgroup Consultation	As defined in GR.20.13, and any further consultation which may be directed by the Grid Code Review Panel pursuant to GR.20.20;
Workgroup Alternative Grid Code Modification	An alternative modification to the Grid Code Modification Proposal developed by the Workgroup under the Workgroup terms of reference (either as a result of a Workgroup Consultation or otherwise) and which is believed by a majority of the members of the Workgroup or by the chairperson of the Workgroup to better facilitate the Grid Code Objectives than the Grid Code Modification Proposal or the current version of the Grid Code ;
Zonal System Security Requirements	That generation required, within the boundary circuits defining the System Zone , which when added to the secured transfer capability of the boundary circuits exactly matches the Demand within the System Zone .

A number of the terms listed above are defined in other documents, such as the **Balancing and Settlement Code** and the **Transmission Licence**. Appendix 1 sets out the current definitions from the other documents of those terms so used in the Grid Code and defined in other documents for ease of reference, but does not form part of the Grid Code.

GD.2 Construction of References

- GD.2.1 In the Grid Code:
 - (i) a table of contents, a Preface, a Revision section, headings, and the Appendix to this Glossary and Definitions are inserted for convenience only and shall be ignored in construing the Grid Code;
 - (ii) unless the context otherwise requires, all references to a particular paragraph, subparagraph, Appendix or Schedule shall be a reference to that paragraph, sub-paragraph Appendix or Schedule in or to that part of the Grid Code in which the reference is made;
 - (iii) unless the context otherwise requires, the singular shall include the plural and vice versa, references to any gender shall include all other genders and references to persons shall include any individual, body corporate, corporation, joint venture, trust, unincorporated association, organisation, firm or partnership and any other entity, in each case whether or not having a separate legal personality;
 - (iv) references to the words "include" or "including" are to be construed without limitation to the generality of the preceding words;

- (v) unless there is something in the subject matter or the context which is inconsistent therewith, any reference to an Act of Parliament or any Section of or Schedule to, or other provision of an Act of Parliament shall be construed at the particular time, as including a reference to any modification, extension or re-enactment thereof then in force and to all instruments, orders and regulations then in force and made under or deriving validity from the relevant Act of Parliament;
- (vi) where the Glossary and Definitions refers to any word or term which is more particularly defined in a part of the Grid Code, the definition in that part of the Grid Code will prevail (unless otherwise stated) over the definition in the Glossary & Definitions in the event of any inconsistency;
- (vii) a cross-reference to another document or part of the Grid Code shall not of itself impose any additional or further or co-existent obligation or confer any additional or further or coexistent right in the part of the text where such cross-reference is contained;
- (viii) nothing in the Grid Code is intended to or shall derogate from **The Company's** statutory or licence obligations;
- (ix) a "holding company" means, in relation to any person, a holding company of such person within the meaning of section 736, 736A and 736B of the Companies Act 1985 as substituted by section 144 of the Companies Act 1989 and, if that latter section is not in force at the **Transfer Date**, as if such latter section were in force at such date;
- (x) a "subsidiary" means, in relation to any person, a subsidiary of such person within the meaning of section 736, 736A and 736B of the Companies Act 1985 as substituted by section 144 of the Companies Act 1989 and, if that latter section is not in force at the **Transfer Date**, as if such latter section were in force at such date;
- (xi) references to time are to London time; and
- (xii) (a) Save where (b) below applies, where there is a reference to an item of data being expressed in a whole number of MW, fractions of a MW below 0.5 shall be rounded down to the nearest whole MW and fractions of a MW of 0.5 and above shall be rounded up to the nearest whole MW;
 - (b) In the case of the definition of **Registered Capacity** or **Maximum Capacity**, fractions of a MW below 0.05 shall be rounded down to one decimal place and fractions of a MW of 0.05 and above shall be rounded up to one decimal place.
- (xiii) For the purposes of the Grid Code, physical quantities such as current or voltage are not defined terms as their meaning will vary depending upon the context of the obligation. For example, voltage could mean positive phase sequence root mean square voltage, instantaneous voltage, phase to phase voltage, phase to earth voltage. The same issue equally applies to current, and therefore the terms current and voltage should remain undefined with the meaning depending upon the context of the application. **Retained EU** Law (Commission Regulation (EU) 2016/631) defines requirements of current and voltage but they have not been adopted as part of EU implementation for the reasons outlined above.
- (xiv) Except where expressly stated to the contrary, reference to Commission Regulations means the Commission Regulation (EU) as it forms part of **Retained EU Law**, as such regulation may be amended.

< END OF GLOSSARY & DEFINITIONS>

CONNECTION CONDITIONS

(CC)

CONTENTS

(This contents page does not form part of the Grid Code)

Paragraph No/Title	Page Number
CC.1 INTRODUCTION	2
CC.2 OBJECTIVE	2
CC.3 SCOPE	2
CC.4 PROCEDURE	4
CC.5 CONNECTION	4
CC.6 TECHNICAL, DESIGN AND OPERATIONAL CRITERIA	6
CC.7 SITE RELATED CONDITIONS	47
CC.8 ANCILLARY SERVICES	52
APPENDIX 1 - SITE RESPONSIBILITY SCHEDULES	54
PROFORMA FOR SITE RESPONSIBILITY SCHEDULE	58
APPENDIX 2 - OPERATION DIAGRAMS	62
PART 1A - PROCEDURES RELATING TO OPERATION DIAGRAMS	62
PART 1B - PROCEDURES RELATING TO GAS ZONE DIAGRAMS	65
PART 2 - NON-EXHAUSTIVE LIST OF APPARATUS TO BE INCLUDED ON (DIAGRAMS	
APPENDIX 3 - MINIMUM FREQUENCY RESPONSE REQUIREMENT PROFILE AND C RANGE FOR NEW POWER STATIONS AND DC CONVERTER STATIONS	
APPENDIX 4 - FAULT RIDE THROUGH REQUIREMENTS	73
APPENDIX 4A	73
APPENDIX 4B	79
APPENDIX 5 - TECHNICAL REQUIREMENTS LOW FREQUENCY RELAYS FOR THE A DISCONNECTION OF SUPPLIES AT LOW FREQUENCY	
APPENDIX 6 - PERFORMANCE REQUIREMENTS FOR CONTINUOUSLY ACTING A EXCITATION CONTROL SYSTEMS FOR ONSHORE SYNCHRONOUS GENERATING L	
APPENDIX 7 - PERFORMANCE REQUIREMENTS FOR CONTINUOUSLY ACTING A VOLTAGE CONTROL SYSTEMS FOR ONSHORE NON-SYNCHRONOUS GENERAT	ING UNITS,
ONSHORE DC CONVERTERS, ONSHORE POWER PARK MODULES AND OTSDUW APPARATUS AT THE INTERFACE POINT	

CC.1 INTRODUCTION

- CC.1.1 The **Connection Conditions** ("**CC**") specify both:
 - (a) the minimum technical, design and operational criteria which must be complied with by:
 - (i) any **GB Code User** connected to or seeking connection with the **National Electricity Transmission System**, or
 - (ii) GB Code User's in respect of GB Generators (other than in respect of Small Power Stations) or GB Code User's in respect of DC Converter Station owners connected to or seeking connection to a User's System which is located in Great Britain or Offshore, and
 - (b) the minimum technical, design and operational criteria with which The Company will comply in relation to the part of the National Electricity Transmission System at the Connection Site with GB Code Users. In the case of any OTSDUW Plant and Apparatus, the CC also specify the minimum technical, design and operational criteria which must be complied with by those GB Code Users when undertaking OTSDUW.
 - (c) For the avoidance of doubt, the requirements of these **CC's** do not apply to **EU Code User's** for whom the requirements of the **ECC's** shall apply.

CC.2 <u>OBJECTIVE</u>

- CC.2.1 The objective of the CC is to ensure that by specifying minimum technical, design and operational criteria, the basic rules for connection to the National Electricity Transmission System and (for certain GB Code Users) to a User's System are similar for all GB Code Users of an equivalent category and will enable The Company to comply with its statutory and Transmission Licence obligations.
- CC.2.2 In the case of any **OTSDUW**, the objective of the **CC** is to ensure that by specifying the minimum technical, design and operational criteria, the basic rules relating to an **Offshore Transmission System** designed and constructed by an **Offshore Transmission Licensee** or designed and/or constructed by an **GB Code User** under the **OTSDUW Arrangements** are equivalent.
- CC.2.3 Provisions of the CC which apply in relation to OTSDUW and OTSUA, and/or a Transmission Interface Site, shall (in any particular case) apply up to the OTSUA Transfer Time, whereupon such provisions shall (without prejudice to any prior non-compliance) cease to apply, without prejudice to the continuing application of provisions of the CC applying in relation to the relevant Offshore Transmission System and/or Connection Site. It is the case therefore that in cases where the OTSUA becomes operational prior to the OTSUA Transfer Time that a GB Generator is required to comply with this CC both as it applies to its Plant and Apparatus at a Connection Site\Connection Point and the OTSUA at the Transmission Interface Site/Transmission Interface Point until the OTSUA Transfer Time and this CC shall be construed accordingly.
- CC.2.4 In relation to OTSDUW, provisions otherwise to be contained in a Bilateral Agreement may be contained in the Construction Agreement, and accordingly a reference in the CC to a relevant Bilateral Agreement includes the relevant Construction Agreement.

CC.3 <u>SCOPE</u>

- CC.3.1 The CC applies to The Company and to GB Code Users, which in the CC means:
 - (a) **GB Generators** (other than those which only have **Embedded Small Power Stations**), including those undertaking **OTSDUW**;
 - (b) Network Operators;
 - (c) Non-Embedded Customers;

- (d) DC Converter Station owners; and
- (e) **BM Participants** and **Externally Interconnected System Operators** in respect of CC.6.5 only.
- CC.3.2 The above categories of **GB Code User** will become bound by the **CC** prior to them generating, distributing, supplying or consuming, as the case may be, and references to the various categories should, therefore, be taken as referring to them in that prospective role as well as to **GB Code Users** actually connected.
- CC.3.3 Embedded Medium Power Stations not subject to a Bilateral Agreement and Embedded DC Converter Stations not subject to a Bilateral Agreement Provisions.

The following provisions apply in respect of **Embedded Medium Power Stations** not subject to a **Bilateral Agreement** and **Embedded DC Converter Stations** not subject to a **Bilateral Agreement**.

- CC.3.3.1 The obligations within the CC that are expressed to be applicable to GB Generators in respect of Embedded Medium Power Stations not subject to a Bilateral Agreement and DC Converter Station Owners in respect of Embedded DC Converter Stations not subject to a Bilateral Agreement (where the obligations are in each case listed in CC.3.3.2) shall be read and construed as obligations that the Network Operator within whose System any such Medium Power Station or DC Converter Station is Embedded must ensure are performed and discharged by the GB Generator or the DC Converter Station owner. Embedded Medium Power Stations not subject to a Bilateral Agreement and Embedded DC Converter Stations not subject to a Bilateral Agreement which are located Offshore and which are connected to an Onshore GB Code Users System will be required to meet the applicable requirements of the Grid Code as though they are an Onshore GB Generator or Onshore DC Converter Station Owner connected to an Onshore User System Entry Point.
- CC.3.3.2 The Network Operator within whose System a Medium Power Station not subject to a Bilateral Agreement is Embedded or a DC Converter Station not subject to a Bilateral Agreement is Embedded must ensure that the following obligations in the CC are performed and discharged by the GB Generator in respect of each such Embedded Medium Power Station or the DC Converter Station owner in the case of an Embedded DC Converter Station:
 - CC.5.1
 - CC.5.2.2
 - CC.5.3
 - CC.6.1.3
 - CC.6.1.5 (b)

CC.6.3.2, CC.6.3.3, CC.6.3.4, CC.6.3.6, CC.6.3.7, CC.6.3.8, CC.6.3.9, CC.6.3.10, CC.6.3.12, CC.6.3.13, CC.6.3.15, CC.6.3.16

CC.6.4.4

CC.6.5.6 (where required by CC.6.4.4)

In respect of CC.6.2.2.2, CC.6.2.2.3, CC.6.2.2.5, CC.6.1.5(a), CC.6.1.5(b) and CC.6.3.11 equivalent provisions as co-ordinated and agreed with the **Network Operator** and **GB Generator** or **DC Converter Station** owner may be required. Details of any such requirements will be notified to the **Network Operator** in accordance with CC.3.5.

CC.3.3.3 In the case of **Embedded Medium Power Stations** not subject to a **Bilateral Agreement** and **Embedded DC Converter Stations** not subject to a **Bilateral Agreement** the requirements in:

CC.6.1.6

CC.6.3.8 CC.6.3.12 CC.6.3.15 CC.6.3.16

that would otherwise have been specified in a **Bilateral Agreement** will be notified to the relevant **Network Operator** in writing in accordance with the provisions of the **CUSC** and the **Network Operator** must ensure such requirements are performed and discharged by the **GB Generator** or the **DC Converter Station** owner.

- CC.3.4 In the case of Offshore Embedded Power Stations connected to an Offshore GB Code User's System which directly connects to an Offshore Transmission System, any additional requirements in respect of such Offshore Embedded Power Stations may be specified in the relevant Bilateral Agreement with the Network Operator or in any Bilateral Agreement between The Company and such Offshore Embedded Power Station.
- CC.3.5 In the case of a **GB Generator** undertaking **OTSDUW** connecting to an **Onshore Network Operator's System**, any additional requirements in respect of such **OTSDUW Plant and Apparatus** will be specified in the relevant **Bilateral Agreement** with the **GB Generator**. For the avoidance of doubt, requirements applicable to **GB Generators** undertaking **OTSDUW** and connecting to a **Network Operator's System**, shall be consistent with those applicable requirements of **GB Generators** undertaking **OTSDUW** and connecting to a **Transmission Interface Point**.

CC.4 <u>PROCEDURE</u>

CC.4.1 The CUSC contains certain provisions relating to the procedure for connection to the National Electricity Transmission System or, in the case of Embedded Power Stations or Embedded DC Converter Stations, becoming operational and includes provisions relating to certain conditions to be complied with by GB Code Users prior to and during the course of The Company notifying the GB Code User that it has the right to become operational. The procedure for a GB Code User to become connected is set out in the Compliance Processes.

CC.5 <u>CONNECTION</u>

- CC.5.1 The provisions relating to connecting to the National Electricity Transmission System (or to a User's System in the case of a connection of an Embedded Large Power Station or Embedded Medium Power Station or Embedded DC Converter Station) are contained in:
 - (a) the CUSC and/or CUSC Contract (or in the relevant application form or offer for a CUSC Contract);
 - (b) or, in the case of an Embedded Development, the relevant Distribution Code and/or the Embedded Development Agreement for the connection (or in the relevant application form or offer for an Embedded Development Agreement),

and include provisions relating to both the submission of information and reports relating to compliance with the relevant **Connection Conditions** for that **GB Code User**, **Safety Rules**, commissioning programmes, **Operation Diagrams** and approval to connect (and their equivalents in the case of **Embedded Medium Power Stations** not subject to a **Bilateral Agreement** or **Embedded DC Converter Stations** not subject to a **Bilateral Agreement**). References in the **CC** to the "**Bilateral Agreement**" and/or "**Construction Agreement**" and/or "**Embedded Development Agreement**" shall be deemed to include references to the application form or offer therefor.

CC.5.2 <u>Items For Submission</u>

CC.5.2.1 Prior to the **Completion Date** (or, where the **GB Generator** is undertaking **OTSDUW**, any later date specified) under the **Bilateral Agreement** and/or **Construction Agreement**, the following is submitted pursuant to the terms of the **Bilateral Agreement** and/or **Construction Agreement**:

(a) updated **Planning Code** data (both **Standard Planning Data** and **Detailed Planning Data**), with any estimated values assumed for planning purposes confirmed or, where practical, replaced by validated actual values and by updated estimates for the future and by updated forecasts for **Forecast Data** items such as **Demand**, pursuant to the requirements of the **Planning Code**;

- (b) details of the **Protection** arrangements and settings referred to in CC.6;
- (c) copies of all Safety Rules and Local Safety Instructions applicable at Users' Sites which will be used at the Transmission/User interface (which, for the purpose of OC8, must be to The Company's satisfaction regarding the procedures for Isolation and Earthing. The Company will consult the Relevant Transmission Licensee when determining whether the procedures for Isolation and Earthing are satisfactory);
- (d) information to enable the preparation of the **Site Responsibility Schedules** on the basis of the provisions set out in Appendix 1;
- (e) an **Operation Diagram** for all **HV Apparatus** on the **User** side of the **Connection Point** as described in CC.7;
- (f) the proposed name of the **User Site** (which shall not be the same as, or confusingly similar to, the name of any **Transmission Site** or of any other **User Site**);
- (g) written confirmation that **Safety Co-ordinators** acting on behalf of the **User** are authorised and competent pursuant to the requirements of **OC8**;
- (h) Such **RISSP** prefixes pursuant to the requirements of **OC8**. Prefixes shall be circulated utilising a proforma in accordance with **OC8**;
- (i) a list of the telephone numbers for **Joint System Incidents** at which senior management representatives nominated for the purpose can be contacted and confirmation that they are fully authorised to make binding decisions on behalf of the **User**, pursuant to **OC9**;
- (j) a list of managers who have been duly authorised to sign **Site Responsibility Schedules** on behalf of the **User**;
- (k) information to enable the preparation of the Site Common Drawings as described in CC.7;
- (I) a list of the telephone numbers for the **Users** facsimile machines referred to in CC.6.5.9; and
- (m) for Sites in Scotland and Offshore a list of persons appointed by the User to undertake operational duties on the User's System (including any OTSDUW prior to the OTSUA Transfer Time) and to issue and receive operational messages and instructions in relation to the User's System (including any OTSDUW prior to the OTSUA Transfer Time); and an appointed person or persons responsible for the maintenance and testing of User's Plant and Apparatus.
- CC.5.2.2 Prior to the **Completion Date** the following must be submitted to **The Company** by the **Network Operator** in respect of an **Embedded Development**:
 - (a) updated Planning Code data (both Standard Planning Data and Detailed Planning Data), with any estimated values assumed for planning purposes confirmed or, where practical, replaced by validated actual values and by updated estimates for the future and by updated forecasts for Forecast Data items such as Demand, pursuant to the requirements of the Planning Code;
 - (b) details of the **Protection** arrangements and settings referred to in CC.6;

- (c) the proposed name of the Embedded Medium Power Station or Embedded DC Converter Station Site (which shall be agreed with The Company unless it is the same as, or confusingly similar to, the name of other Transmission Site or User Site);
- CC.5.2.3 Prior to the Completion Date contained within an Offshore Transmission Distribution Connection Agreement, the following must be submitted to The Company by the Network Operator in respect of a proposed new Interface Point within its User System:
 - (a) updated Planning Code data (both Standard Planning Data and Detailed Planning Data), with any estimated values assumed for planning purposes confirmed or, where practical, replaced by validated actual values and by updated estimates for the future and by updated forecasts for Forecast Data items such as Demand, pursuant to the requirements of the Planning Code;
 - (b) details of the Protection arrangements and settings referred to in CC.6;
 - (c) the proposed name of the **Interface Point** (which shall not be the same as, or confusingly similar to, the name of any **Transmission Site** or of any other **User Site**);
- CC.5.2.4 In the case of **OTSDUW Plant and Apparatus** (in addition to items under CC.5.2.1 in respect of the **Connection Site**), prior to the **Completion Date** (or any later date specified) under the **Construction Agreement** the following must be submitted to **The Company** by the **GB Code User** in respect of the proposed new **Connection Point** and **Interface Point**:
 - (a) updated Planning Code data (Standard Planning Data, Detailed Planning Data and OTSDUW Data and Information), with any estimated values assumed for planning purposes confirmed or, where practical, replaced by validated actual values and by updated estimates for the future and by updated forecasts for Forecast Data items such as Demand, pursuant to the requirements of the Planning Code;
 - (b) details of the **Protection** arrangements and settings referred to in CC.6;
 - (c) information to enable preparation of the **Site Responsibility Schedules** at the **Transmission Interface Site** on the basis of the provisions set out in Appendix 1.
 - (d) the proposed name of the **Interface Point** (which shall not be the same as, or confusingly similar to, the name of any **Transmission Site** or of any other **User Site**);
 - (a) Of the items CC.5.2.1 (c), (e), (g), (h), (k) and (m) need not be supplied in respect of Embedded Power Stations or Embedded DC Converter Stations,
 - (b) item CC.5.2.1(i) need not be supplied in respect of **Embedded Small Power Stations** and **Embedded Medium Power Stations** or **Embedded DC Converter Stations** with a **Registered Capacity** of less than 100MW, and
 - (c) items CC.5.2.1(d) and (j) are only needed in the case where the **Embedded Power** Station or the **Embedded DC Converter Station** is within a **Connection Site** with another **User**.

CC.6 TECHNICAL, DESIGN AND OPERATIONAL CRITERIA

- CC.6.1 National Electricity Transmission System Performance Characteristics
- CC.6.1.1 The Company shall ensure that, subject as provided in the Grid Code, the National Electricity Transmission System complies with the following technical, design and operational criteria in relation to the part of the National Electricity Transmission System at the Connection Site with a GB Code User and in the case of OTSDUW Plant and Apparatus, a Transmission Interface Point (unless otherwise specified in CC.6) although in relation to operational criteria The Company may be unable (and will not be required) to comply with this obligation to the extent that there are insufficient Power Stations or User Systems are not available, or Users do not comply with The Company's instructions or otherwise do not comply with the Grid Code and each GB Code User shall ensure that its Plant and Apparatus complies with the criteria set out in CC.6.1.5.

CC.5.3

Grid Frequency Variations

- CC.6.1.2 The **Frequency** of the **National Electricity Transmission System** shall be nominally 50Hz and shall be controlled within the limits of 49.5 50.5Hz unless exceptional circumstances prevail.
- CC.6.1.3 The **System Frequency** could rise to 52Hz or fall to 47Hz in exceptional circumstances. Design of **GB Code User's Plant** and **Apparatus** and **OTSDUW Plant and Apparatus** must enable operation of that **Plant** and **Apparatus** within that range in accordance with the following:

Frequency Range	<u>Requirement</u>
51.5Hz - 52Hz	Operation for a period of at least 15 minutes is required each
	time the Frequency is above 51.5Hz.
51Hz - 51.5Hz	Operation for a period of at least 90 minutes is required each
	time the Frequency is above 51Hz.
49.0Hz - 51Hz	Continuous operation is required
47.5Hz - 49.0Hz	Operation for a period of at least 90 minutes is required each
	time the Frequency is below 49.0Hz.
47Hz - 47.5Hz	Operation for a period of at least 20 seconds is required each time the Frequency is below 47.5Hz.

For the avoidance of doubt, disconnection, by frequency or speed based relays is not permitted within the frequency range 47.5Hz to 51.5Hz, unless agreed with **The Company** in accordance with CC.6.3.12.

Grid Voltage Variations

CC.6.1.4 Subject as provided below, the voltage on the 400kV part of the National Electricity Transmission System at each Connection Site with a GB Code User (and in the case of OTSDUW Plant and Apparatus, a Transmission Interface Point) will normally remain within $\pm 5\%$ of the nominal value unless abnormal conditions prevail. The minimum voltage is -10% and the maximum voltage is +10% unless abnormal conditions prevail, but voltages between +5% and +10% will not last longer than 15 minutes unless abnormal conditions prevail. Voltages on the 275kV and 132kV parts of the National Electricity Transmission System at each Connection Site with a User (and in the case of OTSDUW Plant and Apparatus, a Transmission Interface Point) will normally remain within the limits ±10% of the nominal value unless abnormal conditions prevail. At nominal System voltages below 132kV the voltage of the National Electricity Transmission System at each Connection Site with a User (and in the case of OTSDUW Plant and Apparatus, a Transmission Interface Point) will normally remain within the limits $\pm 6\%$ of the nominal value unless abnormal conditions prevail. Under fault conditions, voltage may collapse transiently to zero at the point of fault until the fault is cleared. The normal operating ranges of the National Electricity Transmission System are summarised below:

National Electricity Transmission System	Normal Operating Range
Nominal Voltage	
400kV	400kV ±5%
275kV	275kV ±10%
132kV	132kV ±10%

The Company and a GB Code User may agree greater or lesser variations in voltage to those set out above in relation to a particular Connection Site, and insofar as a greater or lesser variation is agreed, the relevant figure set out above shall, in relation to that GB Code User at the particular Connection Site, be replaced by the figure agreed.

Voltage Waveform Quality

- CC.6.1.5 All **Plant** and **Apparatus** connected to the **National Electricity Transmission System**, and that part of the **National Electricity Transmission System** at each **Connection Site** or, in the case of **OTSDUW Plant and Apparatus**, at each **Interface Point**, should be capable of withstanding the following distortions of the voltage waveform in respect of harmonic content and phase unbalance:
 - (a) Harmonic Content

The Electromagnetic Compatibility Levels for harmonic distortion on the Onshore Transmission System from all sources under both Planned Outage and fault outage conditions, (unless abnormal conditions prevail) shall comply with Engineering Recommendation G5. The Electromagnetic Compatibility Levels for harmonic distortion on an Offshore Transmission System will be defined in relevant Bilateral Agreements.

Engineering Recommendation G5 contains planning criteria which The Company will apply to the connection of non-linear Load to the National Electricity Transmission System, which may result in harmonic emission limits being specified for these Loads in the relevant Bilateral Agreement. The application of the planning criteria will take into account the position of GB Code Users' and EU Code Users' Plant and Apparatus (and OTSDUW Plant and Apparatus) in relation to harmonic emissions. GB Code Users must ensure that connection of distorting loads to their User Systems do not cause any harmonic emission limits specified in the Bilateral Agreement, or where no such limits are specified, the relevant planning levels specified in Engineering Recommendation G5 to be exceeded.

(b) Phase Unbalance

Under Planned Outage conditions, the weekly 95 percentile of Phase (Voltage) Unbalance, calculated in accordance with IEC 61000-4-30 and IEC 61000-3-13, on the National Electricity Transmission System for voltages above 150kV should remain, in England and Wales, below 1.5%, and in Scotland, below 2%, and for voltages of 150kV and below, across GB below 2%, unless abnormal conditions prevail and Offshore (or in the case of OTSDUW, OTSDUW Plant and Apparatus) will be defined in relevant Bilateral Agreements.

The **Phase (Voltage) Unbalance** is calculated from the ratio of root mean square (rms) of negative phase sequence voltage to rms of positive phase sequence voltage, based on 10-minute average values, in accordance with IEC 61000-4-30.

CC.6.1.6 Across GB, under the **Planned Outage** conditions stated in CC.6.1.5(b) infrequent short duration peaks with a maximum value of 2% are permitted for **Phase (Voltage) Unbalance**, for voltages above 150kV, subject to the prior agreement of **The Company** under the **Bilateral Agreement** and in relation to **OTSDUW**, the **Construction Agreement**. **The Company** will only agree following a specific assessment of the impact of these levels on **Transmission Apparatus** and other **Users Apparatus** with which it is satisfied.

Voltage Fluctuations

- CC.6.1.7 Voltage changes at a **Point of Common Coupling** on the **Onshore Transmission System** shall not exceed:
 - (a) The limits specified in Table CC.6.1.7(a) with the stated frequency of occurrence, where:
 - <u>(i)</u>

$$\Delta V_{\text{steadystate}} = | 100 \text{ x} \frac{\Delta V_{\text{steadystate}}}{Vn}$$

and

$$\Delta V_{max} = 100 \text{ x} \quad \frac{\Delta V_{max}}{V_n}$$

- (ii) V_n is the nominal system voltage;
- (iii) $V_{\text{steadystate}}$ is the voltage at the end of a period of 1 s during which the rate of change of system voltage over time is $\leq 0.5\%$;
- (iv) $\Delta V_{\text{steadystate}}$ is the difference in voltage between the initial steady state voltage prior to the RVC (V₀) and the final steady state voltage after the RVC (V₀');
- (v) ∆V_{max} is the absolute change in the system voltage relative to the initial steady state system voltage (V₀);
- (vi) All voltages are the r.m.s. of the voltage measured over one cycle refreshed every half a cycle as per BS EN 61000-4-30; and
- (vii) The applications in the 'Example Applicability' column are examples only and are not definitive.

Cat- egory	Title	Maximum number of occurrence	Limits %∆V _{max} & %∆V _{steadystate}	Example Applicability
1	Frequent events	(see NOTE 1)	As per Figure CC.6.1.7 (1)	Any single or repetitive RVC that falls inside Figure CC.6.1.7 (1)
2	Infrequent events	4 events in 1 calendar month (see NOTE 2)	As per Figure CC.6.1.7 (2) $ \%\Delta V_{steadystate} \le 3\%$ For decrease in voltage: $ \%\Delta V_{max} \le 10\%$ (see NOTE 3) For increase in voltage: $ \%\Delta V_{max} \le 6\%$ (see NOTE 4)	Infrequent motor starting, transformer energisation, re-energisation (see NOTE 7)
3	Very infrequent events	1 event in 3 calendar months (see NOTE 2)	As per Figure CC.6.1.7 (3) $ \% \Delta V_{steadystate} \le 3\%$ For decrease in voltage: $ \% \Delta V_{max} \le 12\%$ (see NOTE 5) For increase in voltage: $ \% \Delta V_{max} \le 6\%$ (see NOTE 6)	Commissioning, maintenance & post fault switching (see NOTE 7)
NOTE 1: ±6% is permissible for 100 ms reduced to ±3% thereafter as per Figure CC.6.1.7 (1). If the profile of repetitive voltage change(s) falls within the envelope given in Figure CC.6.1.7 (1), the assessment of such voltage change(s) shall be undertaken according to the recommendations for assessment of flicker <u>and</u> shall conform to the planning levels provided for flicker. If any part of the voltage change(s) falls outside the envelope given in Figure CC.6.1.7(1), the assessment of such voltage change(s) falls outside the envelope given in Figure CC.6.1.7(1), the assessment of such voltage change(s) falls outside the envelope given in Figure CC.6.1.7(1), the assessment of such voltage changes, repetitive or not, shall be done according to the guidance and limits for RVCs.				
NOTE 2:	E 2: No more than 1 event is permitted per day, consisting of up to 4 RVCs, each separated by at least 10 minutes with all switching completed within a two-hour window.			
NOTE 3:	−10% is permi CC.6.1.7 (2).	ssible for 100 ms reduce	d to -6% until 2 s then reduced to	-3% thereafter as per Figure

NOTE 4:	+6% is permissible for 0.8 s from the instant the event begins then reduced to +3% thereafter as per Figure CC.6.1.7 (2).
NOTE 5:	-12% is permissible for 100 ms reduced to $-10%$ until 2 s then reduced to $-3%$ thereafter as per Figure CC.6.1.7 (3).
NOTE 6:	+6% is permissible for 0.8 s from the instant the event begins then reduced to +3% thereafter as per Figure CC.6.1.7 (3).
NOTE 7:	These are examples only. Customers may opt to conform to the limits of another category providing the frequency of occurrence is not expected to exceed the 'Maximum number of occurrence' for the chosen category.

Table CC.6.1.7 (a) – Planning levels for RVC

- (b) The voltage change limit is the absolute maximum allowed of either the phase-to-earth voltage change or the phase-to-phase voltage change, whichever is the highest. The limits do not apply to single phasor equivalent voltages, e.g. positive phase sequence (PPS) voltages. For high impedance earthed systems, the maximum phase-to-phase, i.e. line voltage, should be used for assessment.
- (c) The RVCs in Category 2 and 3 should not exceed the limits depicted in the time dependent characteristic shown in Figure CC.6.1.7 (2) and Figure CC.6.1.7 (3) respectively. These limits do not apply to: 1) fault clearance operations; or 2) immediate operations in response to fault conditions; or 3) operations relating to post fault system restoration (for the avoidance of doubt this third exception pertains to a fault that is external to the Users Plant and Apparatus).
- (d) Any RVCs permitted in Category 2 and Category 3 should be at least 10 minutes apart.
- (e) The value of V_{steadystate} should be established immediately prior to the start of a RVC. Following a RVC, the voltage should remain within the relevant envelope, as shown in Figures CC.6.1.7 (1), CC.6.1.7 (2), CC.6.1.7 (3), until a V_{steadystate} condition has been satisfied.

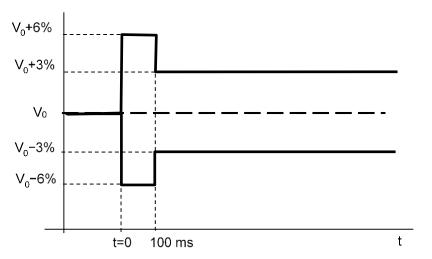


Figure CC.6.1.7 (1) — Voltage characteristic for frequent events

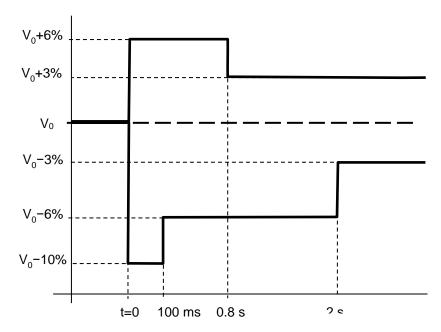


Figure CC.6.1.7 (2) — Voltage characteristic for infrequent events

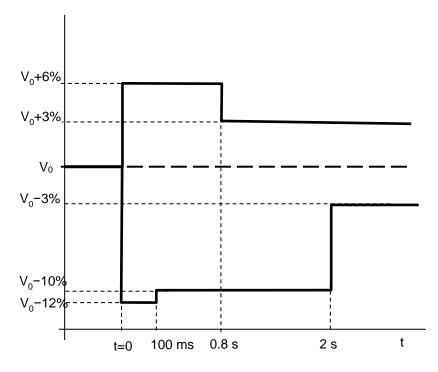


Figure CC.6.1.7 (3) — Voltage characteristic for very infrequent events

- (f) The voltage change between two steady state voltage conditions should not exceed 3%. (The limit is based on 3% of the nominal voltage of the system (V_n) as measured at the Point of Common Coupling. The step voltage change as measured at the customer's supply terminals or equipment terminals could be greater. For example: The step voltage change limit stated in BS EN 61000-3-3 and BS EN 61000-3-11 is 3.3% when measured at the equipment terminals.)
- (g) The limits apply to voltage changes measured at the **Point of Common Coupling**.
- (h) Category 3 events that are planned should be notified to The Company in advance.

- (i) For connections with a Completion Date after 1st September 2015 and where voltage changes would constitute a risk to the National Electricity Transmission System or, in The Company's view, the System of any GB Code User, Bilateral Agreements may include provision for The Company to reasonably limit the number of voltage changes in Category 2 or 3 to a lower number than specified in Table CC.6.1.7(a) to ensure that the total number of voltage changes at the Point of Common Coupling across multiple Users remains within the limits of Table CC.6.1.7(a).
- (j) The planning levels applicable to **Flicker Severity Short Term** (Pst) and **Flicker Severity Long Term** (Plt) are set out in Table CC.6.1.7(b).

Supply system Nominal voltage	Planning level	
	Flicker Severity Short Term (Pst)	Flicker Severity Long Term (Plt)
3.3 kV, 6.6 kV, 11 kV, 20 kV, 33 kV	0.9	0.7
66 kV, 110 kV, 132 kV, 150 kV, 200 kV, 220 kV, 275 kV, 400 kV	0.8	0.6
NOTE 1: The magnitude of P_{st} is linear with r	respect to the magnitude of the vo	bltage changes giving rise to it.
NOTE 2: Extreme caution is advised in allowing any excursions of Pst and Ptt above the planning level.		

Table CC.6.7.1(b) — Planning levels for flicker

The values and figures referred to in this paragraph CC.6.1.7 are derived from Engineering Recommendation P28 Issue 2.

CC.6.1.8 Voltage fluctuations at a **Point of Common Coupling** with a fluctuating **Load** directly connected to an **Offshore Transmission System** (or in the case of **OTSDUW**, **OTSDUW Plant and Apparatus**) shall not exceed the limits set out in the **Bilateral Agreement**.

Sub-Synchronous Resonance and Sub-Synchronous Torsional Interaction

- CC.6.1.9 **The Company** shall ensure that **GB Code Users' Plant and Apparatus** will not be subject to unacceptable Sub-Synchronous Oscillation conditions as specified in the relevant **Licence Standards**.
- CC.6.1.10 **The Company** shall ensure where necessary, and in consultation with **Relevant Transmission Licensees** where required, that any relevant site specific conditions applicable at a **GB Code User's Connection Site**, including a description of the Sub-Synchronous Oscillation conditions considered in the application of the relevant **License Standards**, are set out in the **GB Code User's Bilateral Agreement**.

CC.6.2 Plant and Apparatus relating to Connection Site and Interface Point

The following requirements apply to **Plant** and **Apparatus** relating to the **Connection Point**, and **OTSDUW Plant and Apparatus** relating to the **Interface Point** (until the **OTSUA Transfer Time**) and **Connection Point** which (except as otherwise provided in the relevant paragraph) each **GB Code User** must ensure are complied with in relation to its **Plant** and **Apparatus** and which in the case of CC.6.2.2.2.2, CC.6.2.3.1.1 and CC.6.2.1.1(b) only, **The Company** must ensure are complied with in relation to **Transmission Plant** and **Apparatus**, as provided in those paragraphs.

CC.6.2.1 <u>General Requirements</u>

- CC.6.2.1.1 (a) The design of connections between the **National Electricity Transmission System** and:
 - (i) any Generating Unit (other than a CCGT Unit or Power Park Unit), DC Converter, Power Park Module or CCGT Module, or
 - (ii) any Network Operator's System, or
 - (iii) Non-Embedded Customers equipment;

will be consistent with the Licence Standards.

In the case of **OTSDUW**, the design of the **OTSUA's** connections at the **Interface Point** and **Connection Point** will be consistent with **Licence Standards**.

- (b) The National Electricity Transmission System (and any OTSDUW Plant and Apparatus) at nominal System voltages of 132kV and above is/shall be designed to be earthed with an Earth Fault Factor of, in England and Wales or Offshore, below 1.4 and in Scotland, below 1.5. Under fault conditions the rated Frequency component of voltage could fall transiently to zero on one or more phases or, in England and Wales, rise to 140% phase-to-earth voltage, or in Scotland, rise to 150% phase-to-earth voltage. The voltage rise would last only for the time that the fault conditions exist. The fault conditions referred to here are those existing when the type of fault is single or two phase-to-earth.
- (c) For connections to the National Electricity Transmission System at nominal System voltages of below 132kV the earthing requirements and voltage rise conditions will be advised by The Company as soon as practicable prior to connection and in the case of OTSDUW Plant and Apparatus shall be advised to The Company by the GB Code User.

CC.6.2.1.2 Substation Plant and Apparatus

- (a) The following provisions shall apply to all Plant and Apparatus which is connected at the voltage of the Connection Point (and OTSDUW Plant and Apparatus at the Interface Point) and which is contained in equipment bays that are within the Transmission busbar Protection zone at the Connection Point. This includes circuit breakers, switch disconnectors, disconnectors, Earthing Devices, power transformers, voltage transformers, reactors, current transformers, surge arresters, bushings, neutral equipment, capacitors, line traps, coupling devices, external insulation and insulation coordination devices. Where necessary, this is as more precisely defined in the Bilateral Agreement.
 - (i) Plant and/or Apparatus prior to 1st January 1999

Each item of such Plant and/or Apparatus which at 1st January 1999 is either :

installed; or

owned (but is either in storage, maintenance or awaiting installation); or

ordered;

and is the subject of a **Bilateral Agreement** with regard to the purpose for which it is in use or intended to be in use, shall comply with the relevant standards/specifications applicable at the time that the **Plant** and/or **Apparatus** was

designed (rather than commissioned) and any further requirements as specified in the **Bilateral Agreement**.

(ii) <u>Plant and/or Apparatus post 1st January 1999 for a new Connection Point (including</u> <u>OTSDUW Plant and Apparatus at the Interface Point)</u>

Each item of such **Plant** and/or **Apparatus** installed in relation to a new **Connection Point** (or **OTSDUW Plant and Apparatus** at the **Interface Point**) after 1st January 1999 shall comply with the relevant **Technical Specifications** and any further requirements identified by **The Company**, acting reasonably, to reflect the options to be followed within the **Technical Specifications** and/or to complement if necessary the **Technical Specifications** so as to enable **The Company** to comply with its obligations in relation to the **National Electricity Transmission System** or the **Relevant Transmission Licensee** to comply with its obligations in relation to its **Transmission System**. This information, including the application dates of the relevant **Technical Specifications**, will be as specified in the **Bilateral Agreement**.

(iii) <u>New Plant and/or Apparatus post 1st January 1999 for an existing Connection Point</u> (including OTSDUW Plant and Apparatus at the Interface Point)

Each new additional and/or replacement item of such Plant and/or Apparatus installed in relation to a change to an existing Connection Point (or OTSDUW Plant and Apparatus at the Interface Point and Connection Point) after 1st January 1999 shall comply with the standards/specifications applicable when the change was designed, or such other standards/specifications as necessary to ensure that the item of Plant and/or Apparatus is reasonably fit for its intended purpose having due regard to the obligations of The Company, the relevant GB Code User and the Relevant Transmission Licensee under their respective Licences. Where appropriate this information, including the application dates of the relevant standards/specifications, will be as specified in the varied Bilateral Agreement.

(iv) Used Plant and/or Apparatus being moved, re-used or modified

If, after its installation, any such item of **Plant** and/or **Apparatus** is subsequently:

moved to a new location; or

used for a different purpose; or

otherwise modified;

then the standards/specifications as described in (i), (ii), or (iii) above or in ECC.6.2.1.2 (as applicable) will apply as appropriate to such **Plant** and/or **Apparatus**, which must be reasonably fit for its intended purpose having due regard to the obligations of **The Company**, the relevant **GB Code User** or **EU Code User** (as applicable) and the **Relevant Transmission Licensee** under their respective **Licences**.

- (b) **The Company** shall at all times maintain a list of those **Technical Specifications** and additional requirements which might be applicable under this CC.6.2.1.2 and which may be referenced by **The Company** in the **Bilateral Agreement**. **The Company** shall provide a copy of the list upon request to any **User**.
- (c) Where the GB Code User provides The Company with information and/or test reports in respect of Plant and/or Apparatus which the GB Code User reasonably believes demonstrate the compliance of such items with the provisions of a Technical Specification, then The Company shall promptly and without unreasonable delay give due and proper consideration to such information.
- (d) Plant and Apparatus shall be designed, manufactured and tested in premises with an accredited certificate in accordance with the quality assurance requirements of the relevant standard in the BS EN ISO 9000 series (or equivalent as reasonably approved by The Company) or in respect of test premises which do not include a manufacturing facility premises with an accredited certificate in accordance with BS EN 45001.

- (e) Each connection between an GB Code User and the National Electricity Transmission System must be controlled by a circuit-breaker (or circuit breakers) capable of interrupting the maximum short circuit current at the point of connection. The Seven Year Statement gives values of short circuit current and the rating of Transmission circuit breakers at existing and committed Connection Points for future years.
- (f) Each connection between a GB Generator undertaking OTSDUW or an Onshore Transmission Licensee, must be controlled by a circuit breaker (or circuit breakers) capable of interrupting the maximum short circuit current at the Transmission Interface Point. The Seven Year Statement gives values of short circuit current and the rating of Transmission circuit breakers at existing and committed Transmission Interface Points for future years.
- CC.6.2.2 Requirements at Connection Points or, in the case of OTSDUW at Interface Points that relate to GB Generators or OTSDUW Plant and Apparatus or DC Converter Station owners
- CC.6.2.2.1 Not Used.
- CC.6.2.2.2 Generating Unit, OTSDUW Plant and Apparatus and Power Station Protection Arrangements
- CC.6.2.2.2.1 <u>Minimum Requirements</u>

Protection of Generating Units (other than Power Park Units), DC Converters, OTSDUW Plant and Apparatus or Power Park Modules and their connections to the National Electricity Transmission System shall meet the requirements given below. These are necessary to reduce the impact on the National Electricity Transmission System of faults on OTSDUW Plant and Apparatus circuits or circuits owned by GB Generators or DC Converter Station owners.

- CC.6.2.2.2.2 Fault Clearance Times
 - (a) The required fault clearance time for faults on the GB Generator's or DC Converter Station owner's equipment directly connected to the National Electricity Transmission System or OTSDUW Plant and Apparatus and for faults on the National Electricity Transmission System directly connected to the GB Generator or DC Converter Station owner's equipment or OTSDUW Plant and Apparatus, from fault inception to the circuit breaker arc extinction, shall be set out in the Bilateral Agreement. The fault clearance time specified in the Bilateral Agreement shall not be shorter than the durations specified below:
 - (i) 80ms at 400kV
 - (ii) 100ms at 275kV
 - (iii) 120ms at 132kV and below

but this shall not prevent the **GB Code User** or the **Relevant Transmission Licensee** or the **GB Generator** (including in respect of **OTSDUW Plant and Apparatus**) from selecting a shorter fault clearance time on their own **Plant** and **Apparatus** provided **Discrimination** is achieved.

A longer fault clearance time may be specified in the **Bilateral Agreement** for faults on the **National Electricity Transmission System**. A longer fault clearance time for faults on the **GB Generator** or **DC Converter Station** owner's equipment or **OTSDUW Plant and Apparatus** may be agreed with **The Company** in accordance with the terms of the **Bilateral Agreement** but only if **System** requirements, in **The Company's** view, permit. The probability that the fault clearance time stated in the **Bilateral Agreement** will be exceeded by any given fault, must be less than 2%. (b) In the event that the required fault clearance time is not met as a result of failure to operate on the Main Protection System(s) provided, GB Generators or DC Converter Station owners or GB Generators in the case of OTSDUW Plant and Apparatus shall, except as specified below provide Independent Back-Up Protection. The Relevant Transmission Licensee will also provide Back-Up Protection; and the Relevant Transmission Licensee's and the GB Code User's Back-Up Protections will be coordinated so as to provide Discrimination.

On a Generating Unit (other than a Power Park Unit), DC Converter or Power Park Module or OTSDUW Plant and Apparatus in respect of which the Completion Date is after 20 January 2016 and connected to the National Electricity Transmission System at 400kV or 275kV and where two Independent Main Protections are provided to clear faults on the HV Connections within the required fault clearance time, the Back-Up Protection provided by GB Generators (including in respect of OTSDUW Plant and Apparatus) and DC Converter Station owner shall operate to give a fault clearance time of no longer than 300ms at the minimum infeed for normal operation for faults on the HV Connections. Where two Independent Main Protections are installed, the Back-Up Protection may be integrated into one (or both) of the Independent Main Protection relays.

On a Generating Unit (other than a Power Park Unit), DC Converter or Power Park Module or OTSDUW Plant and Apparatus in respect of which the Completion Date is after 20 January 2016 and connected to the National Electricity Transmission System at 132 kV and where only one Main Protection is provided to clear faults on the HV Connections within the required fault clearance time, the Independent Back-Up Protection provided by the GB Generator (including in respect of OTSDUW Plant and Apparatus) and the DC Converter Station owner shall operate to give a fault clearance time of no longer than 300ms at the minimum infeed for normal operation for faults on the HV Connections.

On a Generating Unit (other than a Power Park Unit), DC Converter or Power Park Module or OTSDUW Plant and Apparatus connected to the National Electricity Transmission System and on Generating Units (other than a Power Park Unit), DC Converters or Power Park Modules or OTSDUW Plant and Apparatus connected to the National Electricity Transmission System at 400 kV or 275 kV or 132 kV, in respect of which the Completion Date is before the 20 January 2016, the Back-Up Protection or Independent Back-Up Protection shall operate to give a fault clearance time of no longer than 800ms in England and Wales or 300ms in Scotland at the minimum infeed for normal operation for faults on the HV Connections.

A Generating Unit (other than a Power Park Unit), DC Converter or Power Park Module or OTSDUW Plant and Apparatus) with Back-Up Protection or Independent Back-Up Protection will also be required to withstand, without tripping, the loading incurred during the clearance of a fault on the National Electricity Transmission System by breaker fail Protection at 400kV or 275kV or of a fault cleared by Back-Up Protection where the GB Generator (including in the case of OTSDUW Plant and Apparatus) or DC Converter is connected at 132kV and below. This will permit Discrimination between GB Generator in respect of OTSDUW Plant and Apparatus or DC Converter Station owners' Back-Up Protection or Independent Back-Up Protection and the Back-Up Protection provided on the National Electricity Transmission System and other Users' Systems.

- (c) When the Generating Unit (other than Power Park Units), or the DC Converter or Power Park Module or OTSDUW Plant and Apparatus is connected to the National Electricity Transmission System at 400kV or 275kV, and in Scotland and Offshore also at 132kV, and a circuit breaker is provided by the GB Generator (including in respect of OTSDUW Plant and Apparatus) or the DC Converter Station owner, or the Relevant Transmission Licensee, as the case may be, to interrupt fault current interchange with the National Electricity Transmission System, or GB Generator's System, or DC Converter Station owner's System, as the case may be, circuit breaker fail Protection shall be provided by the GB Generator (including in respect of OTSDUW Plant and Apparatus) or DC Converter Station owner, or the Relevant Transmission Licensee as the case may be, on this circuit breaker. In the event, following operation of a Protection system, of a failure to interrupt fault current by these circuit-breakers within the Fault Current Interruption Time, the circuit breaker fail Protection is required to initiate tripping of all the necessary electrically adjacent circuit-breakers so as to interrupt the fault current within the next 200ms.
- (d) The target performance for the System Fault Dependability Index shall be not less than 99%. This is a measure of the ability of Protection to initiate successful tripping of circuit breakers which are associated with the faulty item of Apparatus.
- CC.6.2.2.3 Equipment to be provided
- CC.6.2.2.3.1 Protection of Interconnecting Connections

The requirements for the provision of **Protection** equipment for interconnecting connections will be specified in the **Bilateral Agreement**. In this **CC**, the term "interconnecting connections" means the primary conductors from the current transformer accommodation on the circuit side of the circuit breaker to the **Connection Point** or the primary conductors from the current transformer accommodation on the circuit side of the circuit breaker to the **Transmission Interface Point**.

CC.6.2.2.3.2 Circuit-breaker fail Protection

The **GB** Generator or **DC** Converter Station owner will install circuit breaker fail **Protection** equipment in accordance with the requirements of the **Bilateral Agreement**. The **GB** Generator or **DC** Converter Station owner will also provide a back-trip signal in the event of loss of air from its pressurised head circuit breakers, during the Generating Unit (other than a CCGT Unit or Power Park Unit) or CCGT Module or DC Converter or Power Park Module run-up sequence, where these circuit breakers are installed.

CC.6.2.2.3.3 Loss of Excitation

The **GB Generator** must provide **Protection** to detect loss of excitation on a **Generating Unit** and initiate a **Generating Unit** trip.

CC.6.2.2.3.4 Pole-Slipping Protection

Where, in **The Company's** reasonable opinion, **System** requirements dictate, **The Company** will specify in the **Bilateral Agreement** a requirement for **GB Generators** to fit pole-slipping **Protection** on their **Generating Units**.

CC.6.2.2.3.5 Signals for Tariff Metering

GB Generators and **DC** Converter Station owners will install current and voltage transformers supplying all tariff meters at a voltage to be specified in, and in accordance with, the **Bilateral Agreement**.

CC.6.2.2.4 Work on Protection Equipment

No busbar **Protection**, mesh corner **Protection**, circuit-breaker fail **Protection** relays, AC or DC wiring (other than power supplies or DC tripping associated with the **Generating Unit**, **DC Converter** or **Power Park Module** itself) may be worked upon or altered by the **GB Generator** or **DC Converter Station** owner personnel in the absence of a representative of the **Relevant Transmission Licensee**, or written authority from the **Relevant Transmission Licensee** to perform such work or alterations in the absence of a representative of the **Relevant Transmission Licensee**.

CC.6.2.2.5 <u>Relay Settings</u>

Protection and relay settings will be co-ordinated (both on connection and subsequently) across the **Connection Point** in accordance with the **Bilateral Agreement** and in relation to **OTSDUW Plant and Apparatus**, across the **Interface Point** in accordance with the **Bilateral Agreement** to ensure effective disconnection of faulty **Apparatus**.

- CC.6.2.3 <u>Requirements at Connection Points relating to Network Operators and Non-Embedded</u> <u>Customers</u>
- CC.6.2.3.1 Protection Arrangements for Network Operators and Non-Embedded Customers
- CC.6.2.3.1.1 **Protection** of **Network Operator** and **Non-Embedded Customers Systems** directly connected to the **National Electricity Transmission System**, shall meet the requirements given below:

Fault Clearance Times

- (a) The required fault clearance time for faults on Network Operator and Non-Embedded Customer equipment directly connected to the National Electricity Transmission System, and for faults on the National Electricity Transmission System directly connected to the Network Operator's or Non-Embedded Customer's equipment, from fault inception to the circuit breaker arc extinction, shall be set out in each Bilateral Agreement. The fault clearance time specified in the Bilateral Agreement shall not be shorter than the durations specified below:
 - (i) 80ms at 400kV
 - (ii) 100ms at 275kV
 - (iii) 120ms at 132kV and below

but this shall not prevent the **GB Code User** or the **Relevant Transmission Licensee** from selecting a shorter fault clearance time on its own **Plant** and **Apparatus** provided **Discrimination** is achieved.

For the purpose of establishing the **Protection** requirements in accordance with CC.6.2.3.1.1 only, the point of connection of the **Network Operator** or **Non-Embedded Customer** equipment to the **National Electricity Transmission System** shall be deemed to be the low voltage busbars at a **GB Grid Supply Point**, irrespective of the ownership of the equipment at the **GB Grid Supply Point**.

A longer fault clearance time may be specified in the **Bilateral Agreement** for faults on the **National Electricity Transmission System**. A longer fault clearance time for faults on the **Network Operator** and **Non-Embedded Customers** equipment may be agreed with **The Company** in accordance with the terms of the **Bilateral Agreement** but only if **System** requirements in **The Company's** view permit. The probability that the fault clearance time stated in the **Bilateral Agreement** will be exceeded by any given fault must be less than 2%.

- (b) (i) For the event of failure of the Protection systems provided to meet the above fault clearance time requirements, Back-Up Protection shall be provided by the Network Operator or Non-Embedded Customer as the case may be.
 - (ii) The Relevant Transmission Licensee will also provide Back-Up Protection, which will result in a fault clearance time longer than that specified for the Network Operator or Non-Embedded Customer Back-Up Protection so as to provide Discrimination.

- (iii) For connections with the National Electricity Transmission System at 132kV and below, it is normally required that the Back-Up Protection on the National Electricity Transmission System shall discriminate with the Network Operator or Non-Embedded Customer's Back-Up Protection.
- (iv) For connections with the National Electricity Transmission System at 400kV or 275kV, the Back-Up Protection will be provided by the Network Operator or Non-Embedded Customer, as the case may be, with a fault clearance time not longer than 300ms for faults on the Network Operator's or Non-Embedded Customer's Apparatus.
- (v) Such Protection will also be required to withstand, without tripping, the loading incurred during the clearance of a fault on the National Electricity Transmission System by breaker fail Protection at 400kV or 275kV. This will permit Discrimination between Network Operator's Back-Up Protection or Non-Embedded Customer's Back-Up Protection, as the case may be, and Back-Up Protection provided on the National Electricity Transmission System and other User Systems. The requirement for and level of Discrimination required will be specified in the Bilateral Agreement.
- (c) (i) Where the Network Operator or Non-Embedded Customer is connected to the National Electricity Transmission System at 400kV or 275kV, and in Scotland also at 132kV, and a circuit breaker is provided by the Network Operator or Non-Embedded Customer, or the Relevant Transmission Licensee, as the case may be, to interrupt the interchange of fault current with the National Electricity Transmission System or the System of the Network Operator or Non-Embedded Customer, as the case may be, circuit breaker fail Protection will be provided by the Network Operator or Non-Embedded Customer, or the Relevant Transmission Licensee, as the case may be, on this circuit breaker.
 - (ii) In the event, following operation of a Protection system, of a failure to interrupt fault current by these circuit-breakers within the Fault Current Interruption Time, the circuit breaker fail Protection is required to initiate tripping of all the necessary electrically adjacent circuit-breakers so as to interrupt the fault current within the next 200ms.
- (d) The target performance for the System Fault Dependability Index shall be not less than 99%. This is a measure of the ability of Protection to initiate successful tripping of circuit breakers which are associated with the faulty items of Apparatus.

CC.6.2.3.2 Fault Disconnection Facilities

- (a) Where no Transmission circuit breaker is provided at the GB Code User's connection voltage, the GB Code User must provide The Company with the means of tripping all the GB Code User's circuit breakers necessary to isolate faults or System abnormalities on the National Electricity Transmission System. In these circumstances, for faults on the GB Code User's System, the GB Code User's Protection should also trip higher voltage Transmission circuit breakers. These tripping facilities shall be in accordance with the requirements specified in the Bilateral Agreement.
- (b) The Company may require the installation of a System to Generator Operational Intertripping Scheme in order to enable the timely restoration of circuits following power System fault(s). These requirements shall be set out in the relevant Bilateral Agreement.

CC.6.2.3.3 Automatic Switching Equipment

Where automatic reclosure of **Transmission** circuit breakers is required following faults on the **GB Code User's System**, automatic switching equipment shall be provided in accordance with the requirements specified in the **Bilateral Agreement**.

CC.6.2.3.4 Relay Settings

Protection and relay settings will be co-ordinated (both on connection and subsequently) across the **Connection Point** in accordance with the **Bilateral Agreement** to ensure effective disconnection of faulty **Apparatus**.

CC.6.2.3.5 Work on Protection equipment

Where a Transmission Licensee owns the busbar at the Connection Point, no busbar Protection, mesh corner Protection relays, AC or DC wiring (other than power supplies or DC tripping associated with the Network Operator or Non-Embedded Customer's Apparatus itself) may be worked upon or altered by the Network Operator or Non-Embedded Customer personnel in the absence of a representative of the Relevant Transmission Licensee or written authority from the Relevant Transmission Licensee to perform such work or alterations in the absence of a representative of the Relevant Transmission Licensee.

- CC.6.2.3.6 Equipment to be provided
- CC.6.2.3.6.1 Protection of Interconnecting Connections

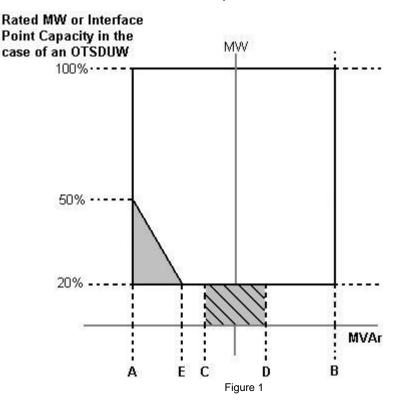
The requirements for the provision of **Protection** equipment for interconnecting connections will be specified in the **Bilateral Agreement**.

CC.6.3 GENERAL GENERATING UNIT (AND OTSDUW) REQUIREMENTS

CC.6.3.1 This section sets out the technical and design criteria and performance requirements for Generating Units, DC Converters and Power Park Modules (whether directly connected to the National Electricity Transmission System or Embedded) and (where provided in this section) OTSDUW Plant and Apparatus which each GB Generator or DC Converter Station owner must ensure are complied with in relation to its Generating Units, DC Converters and Power Park Modules and OTSDUW Plant and Apparatus but does not apply to Small Power Stations or individually to Power Park Units. References to Generating Units, DC Converters and Power Park Modules in this CC.6.3 should be read accordingly. The performance requirements that OTSDUW Plant and Apparatus must be capable of providing at the Interface Point under this section may be provided using a combination of GB Generator Plant and Apparatus and/or OTSDUW Plant and Apparatus.

Plant Performance Requirements

CC.6.3.2


(a) When supplying Rated MW all Onshore Synchronous Generating Units must be capable of continuous operation at any point between the limits 0.85 Power Factor lagging and 0.95 Power Factor leading at the Onshore Synchronous Generating Unit terminals. At Active Power output levels other than Rated MW, all Onshore Synchronous Generating Units must be capable of continuous operation at any point between the Reactive Power capability limits identified on the Generator Performance Chart.

In addition to the above paragraph, where **Onshore Synchronous Generating Unit(s)**:

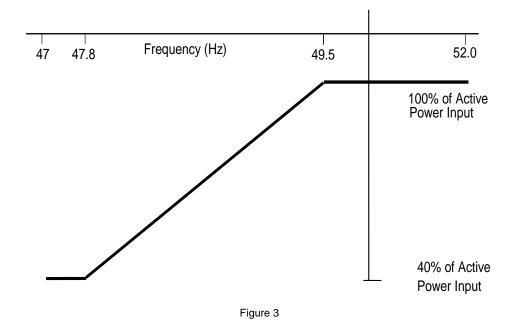
- (i) have a Connection Entry Capacity which has been increased above Rated MW (or the Connection Entry Capacity of the CCGT module has increased above the sum of the Rated MW of the Generating Units compromising the CCGT module), and such increase takes effect after 1st May 2009, the minimum lagging Reactive Power capability at the terminals of the Onshore Synchronous Generating Unit(s) must be 0.9 Power Factor at all Active Power output levels in excess of Rated MW. Further, the User shall comply with the provisions of and any instructions given pursuant to BC1.8 and the relevant Bilateral Agreement; or
- (ii) have a Connection Entry Capacity in excess of Rated MW (or the Connection Entry Capacity of the CCGT module exceeds the sum of Rated MW of the Generating Units comprising the CCGT module) and a Completion Date before 1st May 2009, alternative provisions relating to Reactive Power capability may be specified in the Bilateral Agreement and where this is the case such provisions must be complied with.

The short circuit ratio of **Onshore Synchronous Generating Units** with an **Apparent Power** rating of less than 1600MVA shall be not less than 0.5. The short circuit ratio of **Onshore Synchronous Generating Units** with a rated **Apparent Power** of 1600MVA or above shall be not less than 0.4.

(b) Subject to paragraph (c) below, all Onshore Non-Synchronous Generating Units, Onshore DC Converters and Onshore Power Park Modules must be capable of maintaining zero transfer of Reactive Power at the Onshore Grid Entry Point (or User System Entry Point if Embedded) at all Active Power output levels under steady state voltage conditions. For Onshore Non-Synchronous Generating Units and Onshore Power Park Modules the steady state tolerance on Reactive Power transfer to and from the National Electricity Transmission System expressed in MVAr shall be no greater than 5% of the Rated MW. For Onshore DC Converters the steady state tolerance on Reactive Power transfer to and from the National Electricity Transmission System shall be specified in the Bilateral Agreement. (c) Subject to the provisions of CC.6.3.2(d) below, all Onshore Non-Synchronous Generating Units, Onshore DC Converters (excluding current source technology) and Onshore Power Park Modules (excluding those connected to the Total System by a current source Onshore DC Converter) and OTSDUW Plant and Apparatus at the Interface Point with a Completion Date on or after 1 January 2006 must be capable of supplying Rated MW output or Interface Point Capacity in the case of OTSDUW Plant and Apparatus at any point between the limits 0.95 Power Factor lagging and 0.95 Power Factor leading at the Onshore Grid Entry Point in England and Wales or Interface Point in the case of OTSDUW Plant and Apparatus or at the HV side of the 33/132kV or 33/275kV or 33/400kV transformer for GB Generators directly connected to the Onshore Transmission System in Scotland (or User System Entry Point if Embedded). With all Plant in service, the Reactive Power limits defined at Rated MW or Interface Point Capacity in the case of OTSDUW Plant and Apparatus at Lagging Power Factor will apply at all Active Power output levels above 20% of the Rated MW or Interface Point Capacity in the case of OTSDUW Plant and Apparatus output as defined in Figure 1. With all **Plant** in service, the **Reactive Power** limits defined at **Rated MW** at Leading **Power Factor** will apply at all **Active Power** output levels above 50% of the Rated MW output or Interface Point Capacity in the case of OTSDUW Plant and Apparatus as defined in Figure 1. With all Plant in service, the Reactive Power limits will reduce linearly below 50% Active Power output as shown in Figure 1 unless the requirement to maintain the Reactive Power limits defined at Rated MW or Interface Point Capacity in the case of OTSDUW Plant and Apparatus at Leading Power Factor down to 20% Active Power output is specified in the Bilateral Agreement. These Reactive Power limits will be reduced pro rata to the amount of Plant in service.

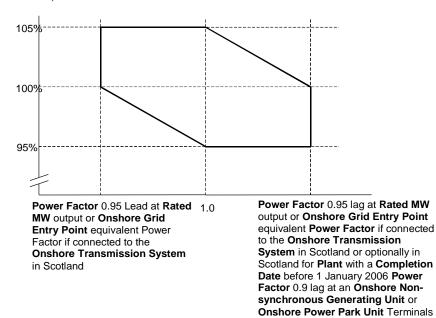
Point A is equivalent	0.95 leading Power Factor at Rated MW output or Interface
(in MVAr) to	Point Capacity in the case of OTSDUW Plant and Apparatus
Point B is equivalent	0.95 lagging Power Factor at Rated MW output or Interface
(in MVAr) to:	Point Capacity in the case of OTSDUW Plant and Apparatus
Point C is equivalent (in MVAr) to:	-5% of Rated MW output or Interface Point Capacity in the case of OTSDUW Plant and Apparatus
Point D is equivalent	+5% of Rated MW output or Interface Point Capacity in the case

(in MVAr) to:	of OTSDUW Plant and Apparatus	
Point E is equivalent	-12% of Rated MW output or Interface Point C	


Point E is equivalent-12% of Rated MW output or Interface Point Capacity in the
case of OTSDUW Plant and Apparatus

- (d) All **Onshore Non-Synchronous Generating Units** and **Onshore Power Park Modules** in Scotland with a **Completion Date** after 1 April 2005 and before 1 January 2006 must be capable of supplying **Rated MW** at the range of power factors either:
 - (i) from 0.95 lead to 0.95 lag as illustrated in Figure 1 at the User System Entry Point for Embedded GB Generators or at the HV side of the 33/132kV or 33/275kV or 33/400kV transformer for GB Generators directly connected to the Onshore Transmission System. With all Plant in service, the Reactive Power limits defined at Rated MW will apply at all Active Power output levels above 20% of the Rated MW output as defined in Figure 1. These Reactive Power limits will be reduced pro rata to the amount of Plant in service, or
 - (ii) from 0.95 lead to 0.90 lag at the Onshore Non-Synchronous Generating Unit (including Power Park Unit) terminals. For the avoidance of doubt GB Generators complying with this option (ii) are not required to comply with CC.6.3.2(b).
- (e) The short circuit ratio of Offshore Synchronous Generating Units at a Large Power Station shall be not less than 0.5. At a Large Power Station all Offshore Synchronous Generating Units, Offshore Non-Synchronous Generating Units, Offshore DC Converters and Offshore Power Park Modules must be capable of maintaining:
 - (i) zero transfer of Reactive Power at the Offshore Grid Entry Point for all GB Generators with an Offshore Grid Entry Point at the LV Side of the Offshore Platform at all Active Power output levels under steady state voltage conditions. The steady state tolerance on Reactive Power transfer to and from an Offshore Transmission System expressed in MVAr shall be no greater than 5% of the Rated MW, or
 - (ii) a transfer of Reactive Power at the Offshore Grid Entry Point at a value specified in the Bilateral Agreement that will be equivalent to zero at the LV Side of the Offshore Platform. In addition, the steady state tolerance on Reactive Power transfer to and from an Offshore Transmission System expressed in MVAr at the LV Side of the Offshore Platform shall be no greater than 5% of the Rated MW, or
 - (iii) the **Reactive Power** capability (within an associated steady state tolerance) specified in the **Bilateral Agreement** if any alternative has been agreed with the **GB Generator**, **Offshore Transmission Licensee** and **The Company**.
- (f) In addition, a **Genset** shall meet the operational requirements as specified in BC2.A.2.6.
- CC.6.3.3 Each Generating Unit, DC Converter (including an OTSDUW DC Converter), Power Park Module and/or CCGT Module must be capable of:
 - (a) continuously maintaining constant **Active Power** output for **System Frequency** changes within the range 50.5 to 49.5 Hz; and

(b) (subject to the provisions of CC.6.1.3) maintaining its Active Power output at a level not lower than the figure determined by the linear relationship shown in Figure 2 for System Frequency changes within the range 49.5 to 47 Hz, such that if the System Frequency drops to 47 Hz the Active Power output does not decrease by more than 5%. In the case of a CCGT Module, the above requirement shall be retained down to the Low Frequency Relay trip setting of 48.8 Hz, which reflects the first stage of the automatic low Frequency Demand Disconnection scheme notified to Network Operators under OC6.6.2. For System Frequency below that setting, the existing requirement shall be retained for a minimum period of 5 minutes while System Frequency remains below that setting, and special measure(s) that may be required to meet this requirement shall be kept in service during this period. After that 5 minute period, if System Frequency remains below that setting, the special measure(s) must be discontinued if there is a materially increased risk of the Gas Turbine tripping. The need for special measure(s) is linked to the inherent Gas Turbine Active Power output reduction caused by reduced shaft speed due to falling System Frequency.



- (c) For the avoidance of doubt, in the case of a Generating Unit or Power Park Module (or OTSDUW DC Converters at the Interface Point) using an Intermittent Power Source where the mechanical power input will not be constant over time, the requirement is that the Active Power output shall be independent of System Frequency under (a) above and should not drop with System Frequency by greater than the amount specified in (b) above.
- (d) A DC Converter Station must be capable of maintaining its Active Power input (i.e. when operating in a mode analogous to Demand) from the National Electricity Transmission System (or User System in the case of an Embedded DC Converter Station) at a level not greater than the figure determined by the linear relationship shown in Figure 3 for System Frequency changes within the range 49.5 to 47 Hz, such that if the System Frequency drops to 47.8 Hz the Active Power input decreases by more than 60%.

(e) At a Large Power Station, in the case of an Offshore Generating Unit, Offshore Power Park Module, Offshore DC Converter and OTSDUW DC Converter, the GB Generator shall comply with the requirements of CC.6.3.3. GB Generators should be aware that Section K of the STC places requirements on Offshore Transmission Licensees which utilise a Transmission DC Converter as part of their Offshore Transmission System to make appropriate provisions to enable GB Generators to fulfil their obligations.

- (f) In the case of an **OTSDUW DC Converter** the **OTSDUW Plant and Apparatus** shall provide a continuous signal indicating the real time frequency measured at the **Interface Point** to the **Offshore Grid Entry Point**.
- CC.6.3.4 At the **Grid Entry Point**, the **Active Power** output under steady state conditions of any **Generating Unit**, **DC Converter** or **Power Park Module** directly connected to the **National Electricity Transmission System** or in the case of **OTSDUW**, the **Active Power** transfer at the **Interface Point**, under steady state conditions of any **OTSDUW Plant and Apparatus** should not be affected by voltage changes in the normal operating range specified in paragraph CC.6.1.4 by more than the change in **Active Power** losses at reduced or increased voltage. In addition:
 - (a) For any Onshore Generating Unit, Onshore DC Converter and Onshore Power Park Module or OTSDUW Plant and Apparatus, the Reactive Power output under steady state conditions should be fully available within the voltage range ±5% at 400kV, 275kV and 132kV and lower voltages, except for an Onshore Power Park Module or Onshore Non-Synchronous Generating Unit if Embedded at 33kV and below (or directly connected to the Onshore Transmission System at 33kV and below) where the requirement shown in Figure 4 applies.
 - (b) At a Large Power Station, in the case of an Offshore Generating Unit, Offshore DC Converter and Offshore Power Park Module where an alternative reactive capability has been agreed with the GB Generator, as specified in CC.6.3.2(e) (iii), the voltage / Reactive Power requirement shall be specified in the Bilateral Agreement. The Reactive Power output under steady state conditions shall be fully available within the voltage range ±5% at 400kV, 275kV and 132kV and lower voltages.

Voltage at an **Onshore Grid Entry Point** or **User System Entry Point** if **Embedded** (% of Nominal) at 33 kV and below

CC.6.3.5 It is an essential requirement that the National Electricity Transmission System must incorporate a Black Start Capability. This will be achieved by agreeing a Black Start Capability with a number of strategically located Black Start Service Providers. For each Black Start Service Provider The Company will state in the Bilateral Agreement whether or not a Black Start Capability is required. For the avoidance of doubt, a GBGF-I designed with a Black Start Capability will also be required to have a Grid Forming Capability in accordance with the requirements of ECC.6.3.19.

Control Arrangements

- CC.6.3.6 (a) Each:
 - (i) Offshore Generating Unit in a Large Power Station or Onshore Generating Unit; or,
 - (ii) Onshore DC Converter with a Completion Date on or after 1 April 2005 or Offshore DC Converter at a Large Power Station; or,
 - (iii) **Onshore Power Park Module** in England and Wales with a **Completion Date** on or after 1 January 2006; or,
 - (iv) Onshore Power Park Module in operation in Scotland on or after 1 January 2006 (with a Completion Date after 1 July 2004 and in a Power Station with a Registered Capacity of 50MW or more); or,
 - (v) Offshore Power Park Module in a Large Power Station with a Registered Capacity of 50MW or more;

must be capable of contributing to **Frequency** control by continuous modulation of **Active Power** supplied to the **National Electricity Transmission System** or the **User System** in which it is **Embedded**. For the avoidance of doubt, each **OTSDUW DC Converter** shall provide each **GB Code User** in respect of its **Offshore Power Stations** connected to and/or using an **Offshore Transmission System** a continuous signal indicating the real time **Frequency** measured at the **Transmission Interface Point**.

- (b) Each:
 - (i) **Onshore Generating Unit**; or,
 - (ii) **Onshore DC Converter** (with a **Completion Date** on or after 1 April 2005 excluding current source technologies); or

- (iii) **Onshore Power Park Module** in England and Wales with a **Completion Date** on or after 1 January 2006; or,
- (iv) Onshore Power Park Module in Scotland irrespective of Completion Date; or,
- (v) Offshore Generating Unit at a Large Power Station, Offshore DC Converter at a Large Power Station or Offshore Power Park Module at a Large Power Station which provides a reactive range beyond the minimum requirements specified in CC.6.3.2(e) (iii); or,
- (vi) OTSDUW Plant and Apparatus at a Transmission Interface Point

must be capable of contributing to voltage control by continuous changes to the **Reactive Power** supplied to the **National Electricity Transmission System** or the **User System** in which it is **Embedded**.

- CC.6.3.7
- (a) Each Generating Unit, DC Converter or Power Park Module (excluding Onshore Power Park Modules in Scotland with a Completion Date before 1 July 2004 or Onshore Power Park Modules in a Power Station in Scotland with a Registered Capacity less than 50MW or Offshore Power Park Modules in a Large Power Station located Offshore with a Registered Capacity less than 50MW) must be fitted with a fast acting proportional Frequency control device (or turbine speed governor) and unit load controller or equivalent control device to provide Frequency response under normal operational conditions in accordance with Balancing Code 3 (BC3). In the case of a Power Park Module the Frequency or speed control device(s) may be on the Power Park Module or on each individual Power Park Unit or be a combination of both. The Frequency control device(s) (or speed governor(s)) must be designed and operated to the appropriate:
 - (i) European Specification; or
 - (ii) in the absence of a relevant European Specification, such other standard which is in common use within the European Community (which may include a manufacturer specification);

as at the time when the installation of which it forms part was designed or (in the case of modification or alteration to the **Frequency** control device (or turbine speed governor)) when the modification or alteration was designed.

The European Specification or other standard utilised in accordance with subparagraph CC.6.3.7 (a) (ii) will be notified to The Company by the GB Generator or DC Converter Station owner or, in the case of an Embedded Medium Power Station not subject to a Bilateral Agreement or Embedded DC Converter Station not subject to a Bilateral Agreement, the relevant Network Operator:

- (i) as part of the application for a **Bilateral Agreement**; or
- (ii) as part of the application for a varied Bilateral Agreement; or
- (iii) in the case of an Embedded Development, within 28 days of entry into the Embedded Development Agreement (or such later time as agreed with The Company); or
- (iv) as soon as possible prior to any modification or alteration to the **Frequency** control device (or governor); and
- (b) The Frequency control device (or speed governor) in co-ordination with other control devices must control the Generating Unit, DC Converter or Power Park Module Active Power Output with stability over the entire operating range of the Generating Unit, DC Converter or Power Park Module; and
- (c) The **Frequency** control device (or speed governor) must meet the following minimum requirements:
 - (i) Where a Generating Unit, DC Converter or Power Park Module becomes isolated

from the rest of the **Total System** but is still supplying **Customers**, the **Frequency** control device (or speed governor) must also be able to control **System Frequency** below 52Hz unless this causes the **Generating Unit**, **DC Converter** or **Power Park Module** to operate below its **Designed Minimum Operating Level** when it is possible that it may, as detailed in BC 3.7.3, trip after a time. For the avoidance of doubt, the **Generating Unit**, **DC Converter** or **Power Park Module** is only required to operate within the **System Frequency** range 47 - 52 Hz as defined in CC.6.1.3;

- (ii) the Frequency control device (or speed governor) must be capable of being set so that it operates with an overall speed Droop of between 3% and 5%. For the avoidance of doubt, in the case of a Power Park Module the speed Droop should be equivalent of a fixed setting between 3% and 5% applied to each Power Park Unit in service;
- (iii) in the case of all Generating Units, DC Converter or Power Park Module other than the Steam Unit within a CCGT Module the Frequency control device (or speed governor) deadband should be no greater than 0.03Hz (for the avoidance of doubt, ±0.015Hz). In the case of the Steam Unit within a CCGT Module, the speed Governor Deadband should be set to an appropriate value consistent with the requirements of CC.6.3.7(c)(i) and the requirements of BC3.7.2 for the provision of Limited High Frequency Response;

For the avoidance of doubt, the minimum requirements in (ii) and (iii) for the provision of **System Ancillary Services** do not restrict the negotiation of **Commercial Ancillary Services** between **The Company** and the **GB Code User** using other parameters; and

- (d) A facility to modify, so as to fulfil the requirements of the **Balancing Codes**, the **Target Frequency** setting either continuously or in a maximum of 0.05 Hz steps over at least the range 50 ± 0.1 Hz should be provided in the unit load controller or equivalent device.
- (e) (i) Each Onshore Generating Unit and/or CCGT Module which has a Completion Date after 1 January 2001 in England and Wales, and after 1 April 2005 in Scotland, must be capable of meeting the minimum Frequency response requirement profile subject to and in accordance with the provisions of Appendix 3.
 - (ii) Each DC Converter at a DC Converter Station which has a Completion Date on or after 1 April 2005 and each Offshore DC Converter at a Large Power Station must be capable of meeting the minimum Frequency response requirement profile subject to and in accordance with the provisions of Appendix 3.
 - (iii) Each Onshore Power Park Module in operation in England and Wales with a Completion Date on or after 1 January 2006 must be capable of meeting the minimum Frequency response requirement profile subject to and in accordance with the provisions of Appendix 3.
 - (iv) Each Onshore Power Park Module in operation on or after 1 January 2006 in Scotland (with a Completion Date on or after 1 April 2005 and a Registered Capacity of 50MW or more) must be capable of meeting the minimum Frequency response requirement profile subject to and in accordance with the provisions of Appendix 3.
 - (v) Each Offshore Generating Unit in a Large Power Station must be capable of meeting the minimum Frequency response requirement profile subject to and in accordance with the provisions of Appendix 3.
 - (vi) Each Offshore Power Park Module in a Large Power Station with a Registered Capacity of 50 MW or greater, must be capable of meeting the minimum Frequency response requirement profile subject to and in accordance with the provisions of Appendix 3.
 - (vii) Subject to the requirements of CC.6.3.7(e), Offshore Generating Units at a Large Power Station, Offshore Power Park Modules at a Large Power Station and Offshore DC Converters in a Large Power Station shall comply with the requirements of CC.6.3.7. GB Generators should be aware that Section K of the

STC places requirements on **Offshore Transmission Licensees** which utilise a **Transmission DC Converter** as part of their **Offshore Transmission System** to make appropriate provisions to enable **GB Generators** to fulfil their obligations.

- (viii) Each **OTSDUW DC Converter** must be capable of providing a continuous signal indicating the real time frequency measured at the **Interface Point** to the **Offshore Grid Entry Point**.
- (f) For the avoidance of doubt, the requirements of Appendix 3 do not apply to:
 - (i) **Generating Units** and/or **CCGT Modules** which have a **Completion Date** before 1 January 2001 in England and Wales, and before 1 April 2005 in Scotland, for whom the remaining requirements of this clause CC.6.3.7 shall continue to apply unchanged: or
 - (ii) **DC Converters** at a **DC Converter Station** which have a **Completion Date** before 1 April 2005; or
 - (iii) Onshore Power Park Modules in England and Wales with a Completion Date before 1 January 2006 for whom only the requirements of Limited Frequency Sensitive Mode (BC3.5.2) operation shall apply; or
 - (iv) Onshore Power Park Modules in operation in Scotland before 1 January 2006 for whom only the requirements of Limited Frequency Sensitive Mode (BC3.5.2) operation shall apply; or
 - (v) **Onshore Power Park Modules** in operation after 1 January 2006 in Scotland which have a **Completion Date** before 1 April 2005 for whom the remaining requirements of this clause CC.6.3.7 shall continue to apply unchanged; or
 - (vi) Offshore Power Park Modules which are in a Large Power Station with a Registered Capacity less than 50MW for whom only the requirements of Limited Frequency Sensitive Mode (BC3.5.2) operation shall apply; or

Excitation and Voltage Control Performance Requirements

- CC.6.3.8 (a) Excitation and voltage control performance requirements applicable to **Onshore Generating Units**, **Onshore Power Park Modules**, **Onshore DC Converters** and **OTSDUW Plant and Apparatus**.
 - (i) A continuously-acting automatic excitation control system is required to provide constant terminal voltage control of the **Onshore Synchronous Generating Unit** without instability over the entire operating range of the **Onshore Generating Unit**.
 - (ii) In respect of Onshore Synchronous Generating Units with a Completion Date before 1 January 2009, the requirements for excitation control facilities, including Power System Stabilisers, where in The Company's view these are necessary for system reasons, will be specified in the Bilateral Agreement. If any Modification to the excitation control facilities of such Onshore Synchronous Generating Units is made on or after 1 January 2009 the requirements that shall apply may be specified in the Bilateral Agreement as varied. To the extent that the Bilateral Agreement does not specify, the requirements given or referred to in CC.A.6 shall apply. The performance requirements for a continuously acting automatic excitation control system that shall be complied with by the GB Code User in respect of such Onshore Synchronous Generating Units with a Completion Date on or after 1 January 2009 are given or referred to in CC.A.6. Reference is made to on-load commissioning witnessed by The Company in BC2.11.2.
 - (iii) In the case of an Onshore Non-Synchronous Generating Unit, Onshore DC Converter, Onshore Power Park Module or OTSDUW Plant and Apparatus at the Interface Point a continuously-acting automatic control system is required to provide control of the voltage (or zero transfer of Reactive Power as applicable to CC.6.3.2) at the Onshore Grid Entry Point or User System Entry Point or in the case of OTSDUW Plant and Apparatus at the Interface Point without instability over the entire operating range of the Onshore Non-Synchronous Generating

Unit, Onshore DC Converter, Onshore Power Park Module or OTSDUW Plant and Apparatus. Any Plant or Apparatus used in the provisions of such voltage control within an Onshore Power Park Module may be located at the Power Park Unit terminals, an appropriate intermediate busbar or the Connection Point. OTSDUW Plant and Apparatus used in the provision of such voltage control may be located at the Offshore Grid Entry Point, an appropriate intermediate busbar or at the Interface Point. In the case of an Onshore Power Park Module in Scotland with a Completion Date before 1 January 2009, voltage control may be at the Power Park Unit terminals, an appropriate intermediate busbar or the Connection Point as specified in the Bilateral Agreement. When operating below 20% Rated MW the automatic control system may continue to provide voltage control utilising any available reactive capability. If voltage control is not being provided, the automatic control system shall be designed to ensure a smooth transition between the shaded area bound by CD and the non-shaded area bound by AB in Figure 1 of CC.6.3.2 (c).

- (iv) The performance requirements for a continuously acting automatic voltage control system in respect of Onshore Power Park Modules, Onshore Non-Synchronous Generating Units and Onshore DC Converters with a Completion Date before 1 January 2009 will be specified in the Bilateral Agreement. If any Modification to the continuously acting automatic voltage control system of such Onshore Power Park Modules, Onshore Non-Synchronous Generating Units and Onshore DC Converters is made on or after 1 January 2009 the requirements that shall apply may be specified in the Bilateral Agreement as varied. To the extent that the Bilateral Agreement does not specify, the requirements given or referred to in CC.A.7 shall apply. The performance requirements for a continuously acting automatic voltage control system that shall be complied with by the GB Code User in respect of Onshore Power Park Modules, Onshore Non-Synchronous Generating Units and Onshore DC Converters or OTSDUW Plant and Apparatus at the Interface Point with a Completion Date on or after 1 January 2009 are given or referred to in CC.A.7.
- (v) Unless otherwise required for testing in accordance with OC5.A.2, the automatic excitation control system of an Onshore Synchronous Generating Unit shall always be operated such that it controls the Onshore Synchronous Generating Unit terminal voltage to a value that is
 - equal to its rated value; or
 - only where provisions have been made in the **Bilateral Agreement**, greater than its rated value.
- (vi) In particular, other control facilities, including constant Reactive Power output control modes and constant Power Factor control modes (but excluding VAr limiters) are not required. However, if present in the excitation or voltage control system they will be disabled unless the Bilateral Agreement records otherwise. Operation of such control facilities will be in accordance with the provisions contained in BC2.
- (b) Excitation and voltage control performance requirements applicable to Offshore Generating Units at a Large Power Station, Offshore Power Park Modules at a Large Power Station and Offshore DC Converters at a Large Power Station.

A continuously acting automatic control system is required to provide either:

- (i) control of Reactive Power (as specified in CC.6.3.2(e) (i) (ii)) at the Offshore Grid Entry Point without instability over the entire operating range of the Offshore Generating Unit, Offshore DC Converter or Offshore Power Park Module. The performance requirements for this automatic control system will be specified in the Bilateral Agreement or;
- (ii) where an alternative reactive capability has been specified in the **Bilateral Agreement**, in accordance with CC.6.3.2 (e) (iii), the **Offshore Generating Unit**,

Offshore Power Park Module or Offshore DC Converter will be required to control voltage and / or Reactive Power without instability over the entire operating range of the Offshore Generating Unit, Offshore Power Park Module or Offshore DC Converter. The performance requirements of the control system will be specified in the Bilateral Agreement.

In addition to CC.6.3.8(b) (i) and (ii) the requirements for excitation control facilities, including **Power System Stabilisers**, where in **The Company's** view these are necessary for system reasons, will be specified in the **Bilateral Agreement**. Reference is made to on-load commissioning witnessed by **The Company** in BC2.11.2.

Steady state Load Inaccuracies

CC.6.3.9 The standard deviation of **Load** error at steady state **Load** over a 30 minute period must not exceed 2.5 per cent of a **Genset's Registered Capacity**. Where a **Genset** is instructed to **Frequency** sensitive operation, allowance will be made in determining whether there has been an error according to the governor droop characteristic registered under the **PC**.

For the avoidance of doubt in the case of a **Power Park Module** allowance will be made for the full variation of mechanical power output.

Negative Phase Sequence Loadings

CC.6.3.10 In addition to meeting the conditions specified in CC.6.1.5(b), each **Synchronous Generating Unit** will be required to withstand, without tripping, the negative phase sequence loading incurred by clearance of a close-up phase-to-phase fault, by **System Back-Up Protection** on the **National Electricity Transmission System** or **User System** located **Onshore** in which it is **Embedded**.

Neutral Earthing

CC.6.3.11 At nominal **System** voltages of 132kV and above the higher voltage windings of a transformer of a **Generating Unit**, **DC Converter**, **Power Park Module** or transformer resulting from **OTSDUW** must be star connected with the star point suitable for connection to earth. The earthing and lower voltage winding arrangement shall be such as to ensure that the **Earth Fault Factor** requirement of paragraph CC.6.2.1.1 (b) will be met on the **National Electricity Transmission System** at nominal **System** voltages of 132kV and above.

Frequency Sensitive Relays

- CC.6.3.12 As stated in CC.6.1.3, the **System Frequency** could rise to 52Hz or fall to 47Hz. Each **Generating Unit**, **DC Converter**, **OTSDUW Plant and Apparatus**, **Power Park Module** or any constituent element must continue to operate within this **Frequency** range for at least the periods of time given in CC.6.1.3 unless **The Company** has agreed to any **Frequency**-level relays and/or rate-of-change-of-**Frequency** relays which will trip such **Generating Unit**, **DC Converter**, **OTSDUW Plant and Apparatus**, **Power Park Module** and any constituent element within this **Frequency** range, under the **Bilateral Agreement**.
- CC.6.3.13 GB Generators (including in respect of OTSDUW Plant and Apparatus) and DC Converter Station owners will be responsible for protecting all their Generating Units (and OTSDUW Plant and Apparatus), DC Converters or Power Park Modules against damage should Frequency excursions outside the range 52Hz to 47Hz ever occur. Should such excursions occur, it is up to the GB Generator or DC Converter Station owner to decide whether to disconnect their Apparatus for reasons of safety of Apparatus, Plant and/or personnel.
- CC.6.3.14 It may be agreed in the **Bilateral Agreement** that a **Genset** shall have a **Fast-Start Capability**. Such **Gensets** may be used for **Operating Reserve** and their **Start-Up** may be initiated by **Frequency**-level relays with settings in the range 49Hz to 50Hz as specified pursuant to **OC2**.

CC.6.3.15 Fault Ride Through

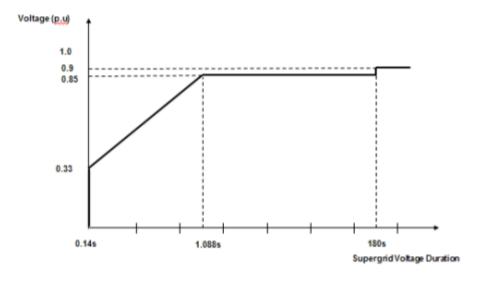
This section sets out the fault ride through requirements on Generating Units, Power Park Modules, DC Converters and OTSDUW Plant and Apparatus. Onshore Generating Units, Onshore Power Park Modules, Onshore DC Converters (including Embedded Medium Power Stations and Embedded DC Converter Stations not subject to a Bilateral Agreement and with an Onshore User System Entry Point (irrespective of whether they are located Onshore or Offshore)) and OTSDUW Plant and Apparatus are required to operate through System faults and disturbances as defined in CC.6.3.15.1 (a), CC.6.3.15.1 (b) and CC.6.3.15.3. Offshore GB Generators in respect of Offshore Generating Units at a Large Power Station, Offshore Power Park Modules at a Large Power Station and DC Converter Station owners in respect of Offshore DC Converters at a Large Power Station shall have the option of meeting either:

- (i) CC.6.3.15.1 (a), CC.6.3.15.1 (b) and CC.6.3.15.3, or:
- (ii) CC.6.3.15.2 (a), CC.6.3.15.2 (b) and CC.6.3.15.3

Offshore GB Generators and Offshore DC Converter owners, should notify The Company which option they wish to select within 28 days (or such longer period as The Company may agree, in any event this being no later than 3 months before the Completion Date of the offer for a final CUSC Contract which would be made following the appointment of the Offshore Transmission Licensee).

- CC.6.3.15.1 Fault Ride through applicable to Generating Units, Power Park Modules and DC Converters and OTSDUW Plant and Apparatus
 - (a) Short circuit faults on the **Onshore Transmission System** (which may include an **Interface Point**) at **Supergrid Voltage** up to 140ms in duration.
 - Each Generating Unit, DC Converter, or Power Park Module and any constituent (i) Power Park Unit thereof and OTSDUW Plant and Apparatus shall remain transiently stable and connected to the System without tripping of any Generating Unit, DC Converter or Power Park Module and / or any constituent Power Park Unit, OTSDUW Plant and Apparatus, and for Plant and Apparatus installed on or after 1 December 2017, reactive compensation equipment, for a close-up solid threephase short circuit fault or any unbalanced short circuit fault on the Onshore Transmission System (including in respect of OTSDUW Plant and Apparatus, the Interface Point) operating at Supergrid Voltages for a total fault clearance time of up to 140 ms. A solid three-phase or unbalanced earthed fault results in zero voltage on the faulted phase(s) at the point of fault. The duration of zero voltage is dependent on local Protection and circuit breaker operating times. This duration and the fault clearance times will be specified in the Bilateral Agreement. Following fault clearance, recovery of the Supergrid Voltage on the Onshore Transmission **System** to 90% may take longer than 140ms as illustrated in Appendix 4A Figures CC.A.4A.1 (a) and (b). It should be noted that in the case of an Offshore Generating Unit, Offshore DC Converter or Offshore Power Park Module (including any Offshore Power Park Unit thereof) which is connected to an Offshore Transmission System which includes a Transmission DC Converter as part of that Offshore Transmission System, the Offshore Grid Entry Point voltage may not indicate the presence of a fault on the Onshore Transmission System. The fault will affect the level of Active Power that can be transferred to the Onshore Transmission System and therefore subject the Offshore Generating Unit, Offshore DC Converter or Offshore Power Park Module (including any Offshore Power Park Unit thereof) to a load rejection.
 - (ii) Each Generating Unit, Power Park Module and OTSDUW Plant and Apparatus, shall be designed such that upon both clearance of the fault on the Onshore Transmission System as detailed in CC.6.3.15.1 (a) (i) and within 0.5 seconds of the restoration of the voltage at the Onshore Grid Entry Point (for Onshore Generating Units or Onshore Power Park Modules) or Interface Point (for Offshore Generating Units, Offshore Power Park Modules or OTSDUW Plant

and Apparatus) to the minimum levels specified in CC.6.1.4 (or within 0.5 seconds of restoration of the voltage at the User System Entry Point to 90% of nominal or greater if Embedded), Active Power output or in the case of OTSDUW Plant and Apparatus, Active Power transfer capability, shall be restored to at least 90% of the level available immediately before the fault. Once the Active Power output, or in the case of OTSDUW Plant and Apparatus, Active Power and Apparatus, Active Power transfer capability, has been restored to the required level, Active Power oscillations shall be acceptable provided that:


- the total **Active Energy** delivered during the period of the oscillations is at least that which would have been delivered if the **Active Power** was constant
- the oscillations are adequately damped

During the period of the fault as detailed in CC.6.3.15.1 (a) (i) for which the voltage at the **Grid Entry Point** (or **Interface Point** in the case of **OTSDUW Plant and Apparatus**) is outside the limits specified in CC.6.1.4, each **Generating Unit** or **Power Park Module** or **OTSDUW Plant and Apparatus** shall generate maximum reactive current without exceeding the transient rating limit of the **Generating Unit**, **OTSDUW Plant and Apparatus** or **Power Park Module** and / or any constituent **Power Park Unit** or reactive compensation equipment. For **Plant and Apparatus** installed on or after 1 December 2017, switched reactive compensation equipment (such as mechanically switched capacitors and reactors) shall be controlled such that it is not switched in or out of service during the fault but may act to assist in post fault voltage recovery.

- (iii) Each DC Converter shall be designed to meet the Active Power recovery characteristics (and OTSDUW DC Converter shall be designed to meet the Active Power transfer capability at the Interface Point) as specified in the Bilateral Agreement upon clearance of the fault on the Onshore Transmission System as detailed in CC.6.3.15.1 (a) (i).
- (b) **Supergrid Voltage** dips on the **Onshore Transmission System** greater than 140ms in duration
- (1b) Requirements applicable to **Synchronous Generating Units** subject to **Supergrid Voltage** dips on the **Onshore Transmission System** greater than 140ms in duration.

In addition to the requirements of CC.6.3.15.1 (a) each **Synchronous Generating Unit**, each with a **Completion Date** on or after **1 April 2005** shall:

(i) remain transiently stable and connected to the System without tripping of any Synchronous Generating Unit for balanced Supergrid Voltage dips and associated durations on the Onshore Transmission System (which could be at the Interface Point) anywhere on or above the heavy black line shown in Figure 5a. Appendix 4A and Figures CC.A.4A.3.2 (a), (b) and (c) provide an explanation and illustrations of Figure 5a; and,

Figure 5a

- (ii) provide Active Power output at the Grid Entry Point, during Supergrid Voltage dips on the Onshore Transmission System as described in Figure 5a, at least in proportion to the retained balanced voltage at the Onshore Grid Entry Point (for Onshore Synchronous Generating Units) or Interface Point (for Offshore Synchronous Generating Units) (or the retained balanced voltage at the User System Entry Point if Embedded) and shall generate maximum reactive current (where the voltage at the Grid Entry Point is outside the limits specified in CC.6.1.4) without exceeding the transient rating limits of the Synchronous Generating Unit and,
- (iii) restore Active Power output following Supergrid Voltage dips on the Onshore Transmission System as described in Figure 5a, within 1 second of restoration of the voltage to 1.0p.u of the nominal voltage at the:

Onshore Grid Entry Point for directly connected Onshore Synchronous Generating Units or,

Interface Point for Offshore Synchronous Generating Units or,

User System Entry Point for Embedded Onshore Synchronous Generating Units or,

User System Entry Point for Embedded Medium Power Stations not subject to a Bilateral Agreement which comprise Synchronous Generating Units and with an Onshore User System Entry Point (irrespective of whether they are located Onshore or Offshore)

to at least 90% of the level available immediately before the occurrence of the dip. Once the **Active Power** output has been restored to the required level, **Active Power** oscillations shall be acceptable provided that:

- the total **Active Energy** delivered during the period of the oscillations is at least that which would have been delivered if the **Active Power** was constant
- the oscillations are adequately damped.

For the avoidance of doubt a balanced **Onshore Transmission System Supergrid Voltage** meets the requirements of CC.6.1.5 (b) and CC.6.1.6.

(2b) Requirements applicable to **OTSDUW Plant and Apparatus** and **Power Park Modules** subject to **Supergrid Voltage** dips on the **Onshore Transmission System** greater than 140ms in duration In addition to the requirements of CC.6.3.15.1 (a) each **OTSDUW Plant and Apparatus** or each **Power Park Module** and / or any constituent **Power Park Unit**, each with a **Completion Date** on or after the 1 April 2005 shall:

(i) remain transiently stable and connected to the System without tripping of any OTSDUW Plant and Apparatus, or Power Park Module and / or any constituent Power Park Unit, for balanced Supergrid Voltage dips and associated durations on the Onshore Transmission System (which could be at the Interface Point) anywhere on or above the heavy black line shown in Figure 5b. Appendix 4A and Figures CC.A.4A.3.4 (a), (b) and (c) provide an explanation and illustrations of Figure 5b; and,

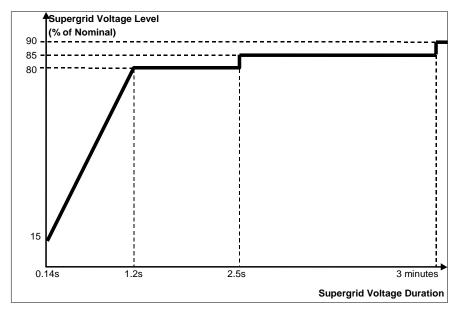


Figure 5b

- (ii) provide Active Power output at the Grid Entry Point or in the case of an OTSDUW, Active Power transfer capability at the Transmission Interface Point, during Supergrid Voltage dips on the Onshore Transmission System as described in Figure 5b, at least in proportion to the retained balanced voltage at the **Onshore** Grid Entry Point (for Onshore Power Park Modules) or Interface Point (for OTSDUW Plant and Apparatus and Offshore Power Park Modules) (or the retained balanced voltage at the User System Entry Point if Embedded) except in the case of a Non-Synchronous Generating Unit or OTSDUW Plant and Apparatus or Power Park Module where there has been a reduction in the Intermittent Power Source or in the case of OTSDUW Active Power transfer capability in the time range in Figure 5b that restricts the Active Power output or in the case of an OTSDUW Active Power transfer capability below this level and shall generate maximum reactive current (where the voltage at the Grid Entry Point, or in the case of an OTSDUW Plant and Apparatus, the Interface Point voltage, is outside the limits specified in CC.6.1.4) without exceeding the transient rating limits of the OTSDUW Plant and Apparatus or Power Park Module and any constituent Power Park Unit; and,
- (iii) restore Active Power output (or, in the case of OTSDUW, Active Power transfer capability), following Supergrid Voltage dips on the Onshore Transmission System as described in Figure 5b, within 1 second of restoration of the voltage at the:

Onshore Grid Entry Point for directly connected Onshore Power Park Modules or,

Modules or,

User System Entry Point for Embedded Onshore Power Park Modules or,

User System Entry Point for Embedded Medium Power Stations which comprise Power Park Modules not subject to a Bilateral Agreement and with an Onshore User System Entry Point (irrespective of whether they are located Onshore or Offshore)

to the minimum levels specified in CC.6.1.4 to at least 90% of the level available immediately before the occurrence of the dip except in the case of a **Non-Synchronous Generating Unit**, **OTSDUW Plant and Apparatus** or **Power Park Module** where there has been a reduction in the **Intermittent Power Source** in the time range in Figure 5b that restricts the **Active Power** output or, in the case of **OTSDUW**, **Active Power** transfer capability below this level. Once the **Active Power** output or, in the case of **OTSDUW**, **Active Power** transfer capability has been restored to the required level, **Active Power** oscillations shall be acceptable provided that:

- the total **Active Energy** delivered during the period of the oscillations is at least that which would have been delivered if the **Active Power** was constant
- the oscillations are adequately damped.

For the avoidance of doubt a balanced **Onshore Transmission System Supergrid Voltage** meets the requirements of CC.6.1.5 (b) and CC.6.1.6.

- CC.6.3.15.2 Fault Ride Through applicable to Offshore Generating Units at a Large Power Station, Offshore Power Park Modules at a Large Power Station and Offshore DC Converters at a Large Power Station who choose to meet the fault ride through requirements at the LV side of the Offshore Platform
 - (a) Requirements on Offshore Generating Units, Offshore Power Park Modules and Offshore DC Converters to withstand voltage dips on the LV Side of the Offshore Platform for up to 140ms in duration as a result of faults and / or voltage dips on the Onshore Transmission System operating at Supergrid Voltage.
 - Each Offshore Generating Unit, Offshore DC Converter, or Offshore Power (i) Park Module and any constituent Power Park Unit thereof shall remain transiently stable and connected to the System without tripping of any Offshore Generating Unit, or Offshore DC Converter or Offshore Power Park Module and / or any constituent Power Park Unit or, in the case of Plant and Apparatus installed on or after 1 December 2017, reactive compensation equipment, for any balanced or unbalanced voltage dips on the LV Side of the Offshore Platform whose profile is anywhere on or above the heavy black line shown in Figure 6. For the avoidance of doubt, the profile beyond 140ms in Figure 6 shows the minimum recovery in voltage that will be seen by the Generator's Plant and Apparatus following clearance of the fault at 140ms. Appendix 4B and Figures CC.A.4B.2 (a) and (b) provide further illustration of the voltage recovery profile that may be seen. It should be noted that in the case of an Offshore Generating Unit, Offshore DC Converter or Offshore Power Park Module (including any Offshore Power Park Unit thereof) which is connected to an Offshore Transmission System which includes a Transmission DC Converter as part of that Offshore Transmission System, the Offshore Grid Entry Point voltage may not indicate the presence of a fault on the Onshore **Transmission System.** The voltage dip will affect the level of **Active Power** that can be transferred to the Onshore Transmission System and therefore subject the Offshore Generating Unit, Offshore DC Converter or Offshore Power Park Module (including any Offshore Power Park Unit thereof) to a load rejection.

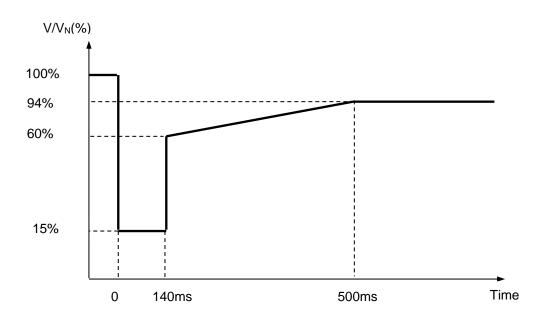
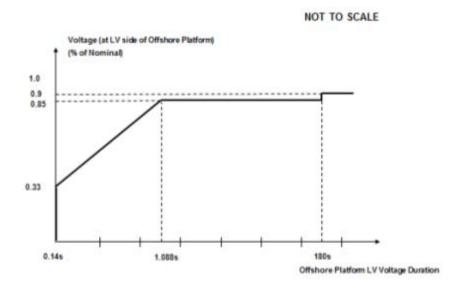


Figure 6

 V/V_N is the ratio of the actual voltage on one or more phases at the LV Side of the Offshore Platform to the nominal voltage of the LV Side of the Offshore Platform.


- (ii) Each Offshore Generating Unit, or Offshore Power Park Module and any constituent Power Park Unit thereof shall provide Active Power output, during voltage dips on the LV Side of the Offshore Platform as described in Figure 6, at least in proportion to the retained voltage at the LV Side of the Offshore Platform except in the case of an Offshore Non-Synchronous Generating Unit or Offshore Power Park Module where there has been a reduction in the Intermittent Power Source in the time range in Figure 6 that restricts the Active Power output below this level and shall generate maximum reactive current without exceeding the transient rating limits of the Offshore Generating Unit or Offshore Power Park Module and any constituent Power Park Unit or, in the case of Plant and Apparatus installed on or after 1 December 2017, reactive compensation equipment. Once the Active Power output has been restored to the required level, Active Power oscillations shall be acceptable provided that:
 - the total Active Energy delivered during the period of the oscillations is at least that which would have been delivered if the Active Power was constant
 - the oscillations are adequately damped

and;

- (iii) Each Offshore DC Converter shall be designed to meet the Active Power recovery characteristics as specified in the Bilateral Agreement upon restoration of the voltage at the LV Side of the Offshore Platform.
- (b) Requirements of **Offshore Generating Units**, **Offshore Power Park Modules**, to withstand voltage dips on the **LV Side of the Offshore Platform** greater than 140ms in duration.
- (1b) Requirements applicable to **Offshore Synchronous Generating Units** to withstand voltage dips on the **LV Side of the Offshore Platform** greater than 140ms in duration.

In addition to the requirements of CC.6.3.15.2. (a) each **Offshore Synchronous Generating Unit** shall:

 (i) remain transiently stable and connected to the System without tripping of any Offshore Synchronous Generating Unit for any balanced voltage dips on the LV side of the Offshore Platform and associated durations anywhere on or above the heavy black line shown in Figure 7a. Appendix 4B and Figures CC.A.4B.3.2 (a), (b) and (c) provide an explanation and illustrations of Figure 7a. It should be noted that in the case of an Offshore Synchronous Generating Unit which is connected to an Offshore Transmission System which includes a Transmission DC Converter as part of that Offshore Transmission System, the Offshore Grid Entry Point voltage may not indicate the presence of a voltage dip on the Onshore Transmission System. The voltage dip will affect the level of Active Power that can be transferred to the Onshore Transmission System and therefore subject the Offshore Generating Unit, to a load rejection.

- (ii) provide Active Power output, during voltage dips on the LV Side of the Offshore Platform as described in Figure 7a, at least in proportion to the retained balanced or unbalanced voltage at the LV Side of the Offshore Platform and shall generate maximum reactive current (where the voltage at the Offshore Grid Entry Point is outside the limits specified in CC.6.1.4) without exceeding the transient rating limits of the Offshore Synchronous Generating Unit and,
- (iii) within 1 second of restoration of the voltage to 1.0p.u of the nominal voltage at the LV Side of the Offshore Platform, restore Active Power to at least 90% of the Offshore Synchronous Generating Unit's immediate pre-disturbed value, unless there has been a reduction in the Intermittent Power Source in the time range in Figure 7a that restricts the Active Power output below this level. Once the Active Power output has been restored to the required level, Active Power oscillations shall be acceptable provided that:
 - the total **Active Energy** delivered during the period of the oscillations is at least that which would have been delivered if the **Active Power** was constant
 - the oscillations are adequately damped
- (2b) Requirements applicable to **Offshore Power Park Modules** to withstand voltage dips on the **LV Side of the Offshore Platform** greater than 140ms in duration.

In addition to the requirements of CC.6.3.15.2. (a) each **Offshore Power Park Module** and / or any constituent **Power Park Unit**, shall:

(i) remain transiently stable and connected to the System without tripping of any Offshore Power Park Module and / or any constituent Power Park Unit, for any balanced voltage dips on the LV side of the Offshore Platform and associated durations anywhere on or above the heavy black line shown in Figure 7b. Appendix 4B and Figures CC.A.4B.5. (a), (b) and (c) provide an explanation and illustrations of Figure 7b. It should be noted that in the case of an Offshore Power Park Module (including any Offshore Power Park Unit thereof) which is connected to an Offshore Transmission System which includes a Transmission DC Converter as part of that Offshore Transmission System, the Offshore Grid Entry Point voltage may not indicate the presence of a voltage dip on the Onshore Transmission System. The voltage dip will affect the level of Active Power that can be transferred to the Onshore Transmission System and therefore subject the Offshore Power Park Module (including any Offshore Transmission System and therefore subject the Offshore Power Park Module (including any Offshore Transmission System and therefore subject the Offshore Power Park Module (including any Offshore Power Park Unit thereof) to a load rejection.

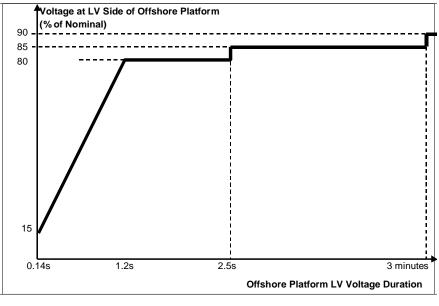


Figure 7b

- (ii) provide Active Power output, during voltage dips_on the LV Side of the Offshore Platform as described in Figure 7b, at least in proportion to the retained balanced or unbalanced voltage at the LV Side of the Offshore Platform except in the case of an Offshore Non-Synchronous Generating Unit or Offshore Power Park Module where there has been a reduction in the Intermittent Power Source in the time range in Figure 7b that restricts the Active Power output below this level and shall generate maximum reactive current (where the voltage at the Offshore Grid Entry Point is outside the limits specified in CC.6.1.4) without exceeding the transient rating limits of the Offshore Power Park Module and any constituent Power Park Unit or reactive compensation equipment. For Plant and Apparatus installed on or after 1 December 2017, switched reactive compensation equipment (such as mechanically switched capacitors and reactors) shall be controlled such that it is not switched in or out of service during the fault but may act to assist in post fault voltage recovery; and,
- (iii) within 1 second of the restoration of the voltage at the LV Side of the Offshore Platform (to the minimum levels specified in CC.6.1.4) restore Active Power to at least 90% of the Offshore Power Park Module's immediate pre-disturbed value, unless there has been a reduction in the Intermittent Power Source in the time range in Figure 7b that restricts the Active Power output below this level. Once the Active Power output has been restored to the required level, Active Power oscillations shall be acceptable provided that:
 - the total **Active Energy** delivered during the period of the oscillations is at least that which would have been delivered if the **Active Power** was constant

the oscillations are adequately damped

CC.6.3.15.3 Other Requirements

- (i) In the case of a Power Park Module (comprising of wind-turbine generator units), the requirements in CC.6.3.15.1 and CC.6.3.15.2 do not apply when the Power Park Module is operating at less than 5% of its Rated MW or during very high wind speed conditions when more than 50% of the wind turbine generator units in a Power Park Module have been shut down or disconnected under an emergency shutdown sequence to protect GB Code User's Plant and Apparatus.
- (ii) In addition to meeting the conditions specified in CC.6.1.5(b) and CC.6.1.6, each Non-Synchronous Generating Unit, OTSDUW Plant and Apparatus or Power Park Module with a Completion Date after 1 April 2005 and any constituent Power Park Unit thereof will be required to withstand, without tripping, the negative phase sequence loading incurred by clearance of a close-up phase-to-phase fault, by System Back-Up Protection on the Onshore Transmission System operating at Supergrid Voltage.
- (iii) In the case of an Onshore Power Park Module in Scotland with a Completion Date before 1 January 2004 and a Registered Capacity less than 30MW, the requirements in CC.6.3.15.1 (a) do not apply. In the case of an Onshore Power Park Module in Scotland with a Completion Date on or after 1 January 2004 and before 1 July 2005 and a Registered Capacity less than 30MW the requirements in CC.6.3.15.1 (a) are relaxed from the minimum Onshore Transmission System Supergrid Voltage of zero to a minimum Onshore Transmission System Supergrid Voltage of 15% of nominal. In the case of an Onshore Power Park Module in Scotland with a Completion Date before 1 January 2004 and a Registered Capacity of 30MW and above the requirements in CC.6.3.15.1 (a) are relaxed from the minimum Onshore Transmission System Supergrid Voltage of zero to a minimum Onshore Transmission System Supergrid Voltage of zero to a minimum Onshore Transmission System Supergrid Voltage of zero to a minimum Onshore Transmission System Supergrid Voltage of zero to a minimum Onshore Transmission System Supergrid Voltage of zero to a minimum Onshore Transmission System Supergrid Voltage of zero to a minimum Onshore Transmission System Supergrid Voltage of 15% of nominal.
- (iv) To avoid unwanted island operation, Non-Synchronous Generating Units in Scotland (and those directly connected to a Scottish Offshore Transmission System), Power Park Modules in Scotland (and those directly connected to a Scottish Offshore Transmission System), or OTSDUW Plant and Apparatus with an Interface Point in Scotland shall be tripped for the following conditions:
 - (1) **Frequency** above 52Hz for more than 2 seconds
 - (2) Frequency below 47Hz for more than 2 seconds
 - (3) Voltage as measured at the Onshore Connection Point or Onshore User System Entry Point or Offshore Grid Entry Point or Interface Point in the case of OTSDUW Plant and Apparatus is below 80% for more than 2.5 seconds
 - (4) Voltage as measured at the Onshore Connection Point or Onshore User System Entry Point or Offshore Grid Entry Point or Interface Point in the case of OTSDUW Plant and Apparatus is above 120% (115% for 275kV) for more than 1 second.

The times in sections (1) and (2) are maximum trip times. Shorter times may be used to protect the **Non-Synchronous Generating Units**, or **OTSDUW Plant and Apparatus** or **Power Park Modules**.

Additional Damping Control Facilities for DC Converters

- (a) DC Converter owners, or GB Generators in respect of OTSDUW DC Converters or Network Operators in the case of an Embedded DC Converter Station not subject to a Bilateral Agreement must ensure that any of their Onshore DC Converters or OTSDUW DC Converters will not cause a sub-synchronous resonance problem on the Total System. Each DC Converter or OTSDUW DC Converter is required to be provided with sub-synchronous resonance damping control facilities.
 - (b) Where specified in the **Bilateral Agreement**, each **DC Converter** or **OTSDUW DC Converter** is required to be provided with power oscillation damping or any other identified additional control facilities.

System to Generator Operational Intertripping Scheme

- CC.6.3.17 **The Company** may require that a **System to Generator Operational Intertripping Scheme** be installed as part of a condition of the connection of the **GB Generator**. Scheme specific details shall be included in the relevant **Bilateral Agreement** and shall, in respect of **Bilateral Agreements** entered into on or after 16th March 2009 include the following information:
 - the relevant category(ies) of the scheme (referred to as Category 1 Intertripping Scheme, Category 2 Intertripping Scheme, Category 3 Intertripping Scheme and Category 4 Intertripping Scheme);
 - (2) the **Generating Unit(s)** or **CCGT Module(**s) or **Power Park Module(s)** to be either permanently armed or that can be instructed to be armed in accordance with BC2.8;
 - (3) the time within which the Generating Unit(s) or CCGT Module(s) or Power Park Module(s) circuit breaker(s) are to be automatically tripped;
 - (4) the location to which the trip signal will be provided by The Company. Such location will be provided by The Company prior to the commissioning of the Generating Unit(s) or CCGT Module(s) or Power Park Module(s).

Where applicable, the **Bilateral Agreement** shall include the conditions on the **National Electricity Transmission System** during which **The Company** may instruct the **System to Generator Operational Intertripping Scheme** to be armed and the conditions that would initiate a trip signal.

- CC.6.3.18 The time within which the **Generating Unit(s)** or **CCGT Module** or **Power Park Module** circuit breaker(s) need to be automatically tripped is determined by the specific conditions local to the **GB Generator**. This 'time to trip' (defined as time from provision of the trip signal by **The Company** to the specified location, to circuit breaker main contact opening) can typically range from 100ms to 10sec. A longer time to trip may allow the initiation of an automatic reduction in the **Generating Unit(s)** or **CCGT Module(s)** or **Power Park Module(s)** output prior to the automatic tripping of the **Generating Unit(s)** or **CCGT Module(s)** or **Power Park Module(s)** circuit breaker. Where applicable **The Company** may provide separate trip signals to allow for either a longer or shorter 'time to trip' to be initiated.
- CC.6.4 General Network Operator And Non-Embedded Customer Requirements
- CC.6.4.1 This part of the **Grid Code** describes the technical and design criteria and performance requirements for **Network Operators** and **Non-Embedded Customers**.

Neutral Earthing

CC.6.4.2 At nominal **System** voltages of 132kV and above the higher voltage windings of three phase transformers and transformer banks connected to the **National Electricity Transmission System** must be star connected with the star point suitable for connection to earth. The earthing and lower voltage winding arrangement shall be such as to ensure that the **Earth Fault Factor** requirement of paragraph CC.6.2.1.1 (b) will be met on the **National Electricity Transmission System** at nominal **System** voltages of 132kV and above.

Frequency Sensitive Relays

CC.6.4.3 As explained under OC6, each **Network Operator**, will make arrangements that will facilitate automatic low **Frequency Disconnection** of **Demand** (based on **Annual ACS Conditions**). CC.A.5.5. of Appendix 5 includes specifications of the local percentage **Demand** that shall be disconnected at specific frequencies. The manner in which **Demand** subject to low **Frequency** disconnection will be split into discrete MW blocks is specified in OC6.6. Technical requirements relating to **Low Frequency Relays** are also listed in Appendix 5.

Operational Metering

CC.6.4.4 Where The Company can reasonably demonstrate that an Embedded Medium Power Station or Embedded DC Converter Station has a significant effect on the National Electricity Transmission System, it may require the Network Operator within whose System the Embedded Medium Power Station or Embedded DC Converter Station is situated to ensure that the operational metering equipment described in CC.6.5.6 is installed such that The Company can receive the data referred to in CC.6.5.6. In the case of an Embedded Medium Power Station subject to, or proposed to be subject to a Bilateral Agreement, The Company shall notify such Network Operator of the details of such installation in writing within 3 months of being notified of the application to connect under CUSC and in the case of an Embedded Medium Power Station not subject to, or not proposed to be subject to a Bilateral Agreement in writing as a Site Specific Requirement in accordance with the timescales in CUSC 6.5.5. In either case the Network Operator shall ensure that the data referred to in CC.6.5.6 is provided to The Company.

CC.6.5 <u>Communications Plant</u>

- CC.6.5.1 In order to ensure control of the National Electricity Transmission System, telecommunications between GB Code Users and The Company must (including in respect of any OTSDUW Plant and Apparatus at the OTSUA Transfer Time), if required by The Company, be established in accordance with the requirements set down below.
- CC.6.5.2 Control Telephony and System Telephony
- CC.6.5.2.1 Control Telephony is the principle method by which a User's Responsible Engineer/Operator and The Company's Control Engineers speak to one another for the purposes of control of the Total System in both normal and emergency operating conditions. Control Telephony provides secure point to point telephony for routine Control Calls, priority Control Calls and emergency Control Calls.
- CC.6.5.2.2 System Telephony is an alternate method by which a User's Responsible Engineer/Operator and The Company's Control Engineers speak to one another for the purposes of control of the Total System in both normal operating conditions and where practicable, emergency operating conditions. System Telephony uses an appropriate public communications network to provide telephony for Control Calls, inclusive of emergency Control Calls. For the avoidance of doubt, System Telephony could include but shall not be limited to: an analogue or digital telephone line; a mobile telephone or an internet-based voice communication system, all of which shall be connected to an appropriate public communications network.
- CC.6.5.2.3 Calls made and received over **Control Telephony** and **System Telephony** may be recorded and subsequently replayed for commercial and operational reasons.
- CC.6.5.4 Obligations in respect of Control Telephony and System Telephony

- CC.6.5.4.1 Where **The Company** requires **Control Telephony**, **Users** are required to use the **Control Telephony** with **The Company** in respect of all **Connection Points** with the **National Electricity Transmission System** and in respect of all **Embedded Large Power Stations** and **Embedded DC Converter Stations**. **The Company** will have **Control Telephony** installed at the **GB Code User's Control Point** where the **GB Code User's** telephony equipment is not capable of providing the required facilities or is otherwise incompatible with the **Transmission Control Telephony**. Details of and relating to the **Control Telephony** required are contained in the **Bilateral Agreement**.
- CC.6.5.4.2 Where in **The Company's** sole opinion the installation of **Control Telephony** is not practicable at a **GB Code User's Control Point(s)**, **The Company** shall specify in the **Bilateral Agreement** whether **System Telephony** is required. Where **System Telephony** is required by **The Company**, the **GB Code User** shall ensure that **System Telephony** is installed.
- CC.6.5.4.3 Where **System Telephony** is installed, **GB Code Users** are required to use the **System Telephony** with **The Company** in respect of those **Control Point(s)** for which it has been installed. Details of and relating to the **System Telephony** required are contained in the **Bilateral Agreement**.
- CC.6.5.4.4 Where **Control Telephony** or **System Telephony** is installed, routine testing of such facilities may be required by **The Company** (not normally more than once in any calendar month). The **GB Code User** and **The Company** shall use reasonable endeavours to agree a test programme and where **The Company** requests the assistance of the **GB Code User** in performing the agreed test programme the **User** shall provide such assistance. **The Company** requires the **GB Code User** to test the backup power supplies feeding its **Control Telephony** facilities at least once every 5 years.
- CC.6.5.4.5 **Control Telephony** and **System Telephony** shall only be used for the purposes of operational voice communication between **The Company** and the relevant **User**.
- CC.6.5.4.6 **Control Telephony** contains emergency calling functionality to be used for urgent operational communication only. Such functionality enables **The Company** and **Users** to utilise a priority call in the event of an emergency. **The Company** and **GB Code Users** shall only use such priority call functionality for urgent operational communications.
- CC.6.5.5 <u>Technical Requirements for Control Telephony and System Telephony</u>
- CC.6.5.5.1 Detailed information on the technical interfaces and support requirements for **Control Telephony** is provided in the **Control Telephony Electrical Standard** identified in the Annex to the **General Conditions**. Where additional information, or information in relation to **Control Telephony** applicable in Scotland, is requested by **GB Code Users**, this will be provided, where possible, by **The Company**.
- CC.6.5.5.2 System Telephony shall consist of a dedicated telephone connected to an appropriate public communications network, that shall be configured by the relevant GB Code User. The Company shall provide a dedicated free phone number (UK only), for the purposes of receiving incoming calls to The Company, which GB Code Users shall utilise for System Telephony. System Telephony shall only be utilised by The Company Control Engineer and the GB Code User's Responsible Engineer/Operator for the purposes of operational communications.

Operational Metering

- (a) The Company or The Relevant Transmission Licensee, as applicable, shall provide system control and data acquisition (SCADA) outstation interface equipment. The GB Code User shall provide such voltage, current, Frequency, Active Power and Reactive Power measurement outputs and plant status indications and alarms to the Transmission SCADA outstation interface equipment as required by The Company in accordance with the terms of the Bilateral Agreement. In the case of OTSDUW, the GB Code User shall provide such SCADA outstation interface equipment and voltage, current, Frequency, Active Power and Reactive Power measurement outputs and plant status indications and plant status indications and plant status indications and plant status indication interface equipment and voltage, current, Frequency, Active Power and Reactive Power measurement outputs and plant status indications and alarms to the SCADA outstation interface equipment as required by The Company in accordance with the terms of the Bilateral Agreement.
 - (b) For the avoidance of doubt, for **Active Power** and **Reactive Power** measurements, circuit breaker and disconnector status indications from:
 - (i) CCGT Modules at Large Power Stations, the outputs and status indications must each be provided to The Company on an individual CCGT Unit basis. In addition, where identified in the Bilateral Agreement, Active Power and Reactive Power measurements from Unit Transformers and/or Station Transformers must be provided.
 - (ii) DC Converters at DC Converter Stations and OTSDUW DC Converters, the outputs and status indications must each be provided to The Company on an individual DC Converter basis. In addition, where identified in the Bilateral Agreement, Active Power and Reactive Power measurements from converter and/or station transformers must be provided.
 - (iii) Power Park Modules at Embedded Large Power Stations and at directly connected Power Stations, the outputs and status indications must each be provided to The Company on an individual Power Park Module basis. In addition, where identified in the Bilateral Agreement, Active Power and Reactive Power measurements from station transformers must be provided.
 - (iv) In respect of OTSDUW Plant and Apparatus, the outputs and status indications must be provided to The Company for each piece of electrical equipment. In addition, where identified in the Bilateral Agreement, Active Power and Reactive Power measurements at the Interface Point must be provided.
 - (c) For the avoidance of doubt, the requirements of CC.6.5.6(a) in the case of a Cascade Hydro Scheme will be provided for each Generating Unit forming part of that Cascade Hydro Scheme. In the case of Embedded Generating Units forming part of a Cascade Hydro Scheme the data may be provided by means other than the SCADA outstation located at the Power Station, such as, with the agreement of the Network Operator in whose system such Embedded Generating Unit is located, from the Network Operator's SCADA system to The Company. Details of such arrangements will be contained in the relevant Bilateral Agreements between The Company and the GB Generator and the Network Operator.
 - (d) In the case of a Power Park Module, additional energy input signals (e.g. wind speed, and wind direction) may be specified in the Bilateral Agreement. For Power Park Modules with a Completion Date on or after 1st April 2016, a Power Available signal will also be specified in the Bilateral Agreement. The signals would be used to establish the potential level of energy input from the Intermittent Power Source for monitoring pursuant to CC.6.6.1 and Ancillary Services and will, in the case of a wind farm, be used to provide The Company with advanced warning of excess wind speed shutdown and to determine the level of Headroom available from Power Park Modules for the purposes of calculating response and reserve. For the avoidance of doubt, the Power Available signal would be automatically provided to The Company and represent the sum of the potential output of all available and operational Power Park Units within the Bilateral Agreement.

Instructor Facilities

CC.6.5.7 The **User** shall accommodate **Instructor Facilities** provided by **The Company** for the receipt of operational messages relating to **System** conditions.

Electronic Data Communication Facilities

- CC.6.5.8 (a) All **BM Participants** must ensure that appropriate electronic data communication facilities are in place to permit the submission of data, as required by the **Grid Code**, to **The Company**.
 - (b) In addition,
 - (1) any **GB Code User** that wishes to participate in the **Balancing Mechanism**;
 - or
 - (2) any BM Participant in respect of its BM Units at a Power Station where the Construction Agreement and/or a Bilateral Agreement has a Completion Date on or after 1 January 2013 and the BM Participant is required to provide all Part 1 System Ancillary Services in accordance with CC.8.1 (unless The Company has otherwise agreed)

must ensure that appropriate automatic logging devices are installed at the **Control Points** of its **BM Units** to submit data to and to receive instructions from **The Company**, as required by the **Grid Code**. For the avoidance of doubt, in the case of an **Interconnector User**, the **Control Point** will be at the **Control Centre** of the appropriate **Externally Interconnected System Operator**.

(c) Detailed specifications of these required electronic facilities will be provided by **The Company** on request and they are listed as **Electrical Standards** in the Annex to the **General Conditions**.

Facsimile Machines

- CC.6.5.9 Each **GB Code User** and **The Company** shall provide a facsimile machine or machines:
 - (a) in the case of **GB Generators**, at the **Control Point** of each **Power Station** and at its **Trading Point**;
 - (b) in the case of The Company and Network Operators, at the Control Centre(s); and
 - (c) in the case of **Non-Embedded Customers** and **DC Converter Station** owners at the **Control Point**.

Each **GB Code User** shall notify, prior to connection to the **System** of the **GB Code User's Plant and Apparatus**, **The Company** of its or their telephone number or numbers, and will notify **The Company** of any changes. Prior to connection to the **System** of the **GB Code User's Plant** and **Apparatus**, **The Company** shall notify each **GB Code User** of the telephone number or numbers of its facsimile machine or machines and will notify any changes.

CC.6.5.10 Busbar Voltage

The Relevant Transmission Licensee shall, subject as provided below, provide each GB Generator or DC Converter Station owner at each Grid Entry Point where one of its Power Stations or DC Converter Stations is connected with appropriate voltage signals to enable the GB Generator or DC Converter Station owner to obtain the necessary information to permit its Gensets or DC Converters to be Synchronised to the National Electricity Transmission System. The term "voltage signal" shall mean in this context, a point of connection on (or wire or wires from) a relevant part of Transmission Plant and/or Apparatus at the Grid Entry Point, to which the GB Generator or DC Converter Station owner, with The Company's agreement (not to be unreasonably withheld) in relation to the Plant and/or Apparatus to be attached, will be able to attach its Plant and/or Apparatus (normally a wire or wires) in order to obtain measurement outputs in relation to the busbar.

CC.6.5.11 Bilingual Message Facilities

- (a) A Bilingual Message Facility is the method by which the User's Responsible Engineer/Operator, the Externally Interconnected System Operator and The Company's Control Engineers communicate clear and unambiguous information in two languages for the purposes of control of the Total System in both normal and emergency operating conditions.
- (b) A Bilingual Message Facility, where required, will provide up to two hundred pre-defined messages with up to five hundred and sixty characters each. A maximum of one minute is allowed for the transmission to, and display of, the selected message at any destination. The standard messages must be capable of being displayed at any combination of locations and can originate from any of these locations. Messages displayed in the UK will be displayed in the English language.
- (c) Detailed information on a Bilingual Message Facility and suitable equipment required for individual **GB Code User** applications will be provided by **The Company** upon request.

CC.6.6 System Monitoring

- CC.6.6.1 Monitoring equipment is provided on the National Electricity Transmission System to enable The Company to monitor its power system dynamic performance conditions. Where this monitoring equipment requires voltage and current signals on the Generating Unit (other than Power Park Unit), DC Converter or Power Park Module circuit from the GB Code User or from OTSDUW Plant and Apparatus, The Company will inform the GB Code User and they will be provided by the GB Code User with both the timing of the installation of the equipment for receiving such signals and its exact position being agreed (the GB Code User's agreement not to be unreasonably withheld) and the costs being dealt with, pursuant to the terms of the Bilateral Agreement.
- CC.6.6.2 For all on site monitoring by **The Company** of witnessed tests pursuant to the **CP** or **OC5** the **GB Code User** shall provide suitable test signals as outlined in OC5.A.1.
- CC.6.6.2.1 The signals which shall be provided by the **GB Code User** to **The Company** for onsite monitoring shall be of the following resolution, unless otherwise agreed by **The Company**:
 - (i) 1 Hz for reactive range tests
 - (ii) 10 Hz for frequency control tests
 - (iii) 100 Hz for voltage control tests
- CC.6.6.2.2 The **GB Code User** will provide all relevant signals for this purpose in the form of d.c. voltages within the range -10V to +10V. In exceptional circumstances, some signals may be accepted as d.c. voltages within the range -60V to +60V with prior agreement between the **GB Code User** and **The Company**. All signals shall:
 - (i) in the case of an **Onshore Power Park Module**, **DC Convertor Station** or **Synchronous Generating Unit**, be suitably terminated in a single accessible location at the **GB Generator** or **DC Converter Station** owner's site.
 - (ii) in the case of an Offshore Power Park Module and OTSDUW Plant and Apparatus, be transmitted onshore without attenuation, delay or filtering which would result in the inability to fully demonstrate the objectives of the test, or identify any potential safety or plant instability issues, and be suitably terminated in a single robust location normally located at or near the onshore Interface Point of the Offshore Transmission System to which it is connected.
- CC.6.6.2.3 All signals shall be suitably scaled across the range. The following scaling would (unless **The Company** notify the **GB Code User** otherwise) be acceptable to **The Company**:
 - (a) 0MW to Registered Capacity or Interface Point Capacity 0-8V dc
 - (b) Maximum leading Reactive Power to maximum lagging Reactive Power -8 to 8V dc
 - (c) 48 52Hz as -8 to 8V dc
 - (d) Nominal terminal or connection point voltage -10% to +10% as -8 to 8V dc

- CC.6.6.2.4 The **GB Code User** shall provide to **The Company** a 230V power supply adjacent to the signal terminal location.
- CC.7 SITE RELATED CONDITIONS
- CC.7.1 Not used.
- CC.7.2 Responsibilities For Safety
- CC.7.2.1 Any User entering and working on its Plant and/or Apparatus (including, until the OTSUA Transfer Time, any OTSUA) on a Transmission Site will work to the Safety Rules of the Relevant Transmission Licensee, as advised by The Company.
- CC.7.2.2 For User Sites, The Company shall procure that the Relevant Transmission Licensee entering and working on Transmission Plant and/or Apparatus on a User Site will work to the User's Safety Rules.
- CC.7.2.3 A User may, with a minimum of six weeks notice, apply to **The Company** for permission to work according to that Users own **Safety Rules** when working on its **Plant** and/or **Apparatus** on a **Transmission Site** rather than those set out in CC.7.2.1. If **The Company** is of the opinion that the **User's Safety Rules** provide for a level of safety commensurate with those set out in CC.7.2.1, **The Company** will notify the **User**, in writing, that, with effect from the date requested by the **User**, the **User** may use its own **Safety Rules** when working on its **Plant** and/or **Apparatus** on the **Transmission Site**. In forming its opinion, **The Company** will seek the opinion of the **Relevant Transmission Licensee**. Until receipt of such written approval from **The Company**, the **GB Code User** will continue to use the **Safety Rules** as set out in CC.7.2.1.
- CC.7.2.4 In the case of a User Site, The Company may, with a minimum of six weeks notice, apply to a User for permission for the Relevant Transmission Licensee to work according to the Relevant Transmission Licensee's Safety Rules when working on Transmission Plant and/or Apparatus on that User Site, rather than the User's Safety Rules. If the User is of the opinion that the Relevant Transmission Licensee's Safety Rules, provide for a level of safety commensurate with that of that User's Safety Rules, it will notify The Company, in writing, that, with effect from the date requested by The Company, that the Relevant Transmission Licensee may use its own Safety Rules when working on its Transmission Plant and/or Apparatus on that User's Site. Until receipt of such written approval from the User, The Company shall procure that the Relevant Transmission Licensee shall continue to use the User's Safety Rules.
- CC.7.2.5 For a Transmission Site, if The Company gives its approval for the User's Safety Rules to apply to the User when working on its Plant and/or Apparatus, that does not imply that the User's Safety Rules will apply to entering the Transmission Site and access to the User's Plant and/or Apparatus on that Transmission Site. Bearing in mind the Relevant Transmission Licensee's responsibility for the whole Transmission Site, entry and access will always be in accordance with the Relevant Transmission Licensee's site access procedures. For a User Site, if the User gives its approval for Relevant Transmission Licensee Safety Rules to apply to the Relevant Transmission Licensee when working on its Plant and Apparatus, that does not imply that the Relevant Transmission Licensee's Safety Rules will apply to entering the User Site, and access to the Transmission Plant and Apparatus on that User Site. Bearing in mind the User's responsibility for the whole User Site, entry and access will always be in accordance with the User's site access procedures.
- CC.7.2.6 For User Sites, Users shall notify The Company of any Safety Rules that apply to the Relevant Transmission Licensee's staff working on User Sites. The Company shall procure that the Relevant Transmission Licensee shall notify Users of any Safety Rules that apply to the User's staff working on the Transmission Site.
- CC.7.2.7 Each **Site Responsibility Schedule** must have recorded on it the **Safety Rules** which apply to each item of **Plant** and/or **Apparatus**.

- CC.7.2.8 In the case of **OTSUA** a **User Site** or **Transmission Site** shall, for the purposes of this CC.7.2, include a site at which there is an **Interface Point** until the **OTSUA Transfer Time** when it becomes part of the **National Electricity Transmission System**.
- CC.7.3 <u>Site Responsibility Schedules</u>
- CC.7.3.1 In order to inform site operational staff and **The Company's Control Engineers** of agreed responsibilities for **Plant** and/or **Apparatus** at the operational interface, a **Site Responsibility Schedule** shall be produced for **Connection Sites** (and in the case of **OTSUA**, until the **OTSUA Transfer Time**, **Interface Sites**) for **The Company**, the **Relevant Transmission Licensee** and **Users** with whom they interface.
- CC.7.3.2 The format, principles and basic procedure to be used in the preparation of **Site Responsibility Schedules** are set down in Appendix 1.
- CC.7.4 Operation And Gas Zone Diagrams

Operation Diagrams

- CC.7.4.1 An Operation Diagram shall be prepared for each Connection Site at which a Connection Point exists (and in the case of OTSDUW Plant and Apparatus, by User's for each Interface Point) using, where appropriate, the graphical symbols shown in Part 1A of Appendix 2. Users should also note that the provisions of OC11 apply in certain circumstances.
- CC.7.4.2 The **Operation Diagram** shall include all **HV Apparatus** and the connections to all external circuits and incorporate numbering, nomenclature and labelling, as set out in **OC11**. At those **Connection Sites** (or in the case of **OTSDUW Plant and Apparatus**, **Interface Points**) where gas-insulated metal enclosed switchgear and/or other gas-insulated **HV Apparatus** is installed, those items must be depicted within an area delineated by a chain dotted line which intersects gas-zone boundaries. The nomenclature used shall conform with that used on the relevant **Connection Site** and circuit (and in the case of **OTSDUW Plant and Apparatus**, **Interface Point** and circuit). The **Operation Diagram** (and the list of technical details) is intended to provide an accurate record of the layout and circuit interconnections, ratings and numbering and nomenclature of **HV Apparatus** and related **Plant**.
- CC.7.4.3 A non-exhaustive guide to the types of **HV Apparatus** to be shown in the **Operation Diagram** is shown in Part 2 of Appendix 2, together with certain basic principles to be followed unless equivalent principles are approved by **The Company**.

Gas Zone Diagrams

- CC.7.4.4 A Gas Zone Diagram shall be prepared for each Connection Site at which a Connection Point (and in the case of OTSDUW Plant and Apparatus, by User's for an Interface Point) exists where gas-insulated switchgear and/or other gas-insulated HV Apparatus is utilised. They shall use, where appropriate, the graphical symbols shown in Part 1B of Appendix 2.
- CC.7.4.5 The nomenclature used shall conform with that used in the relevant **Connection Site** and circuit (and in the case of **OTSDUW Plant and Apparatus**, relevant **Interface Point** and circuit).
- CC.7.4.6 The basic principles set out in Part 2 of Appendix 2 shall be followed in the preparation of **Gas Zone Diagrams** unless equivalent principles are approved by **The Company**.

Preparation of Operation and Gas Zone Diagrams for Users' Sites and Transmission Interface Sites

CC.7.4.7 In the case of a User Site, the User shall prepare and submit to The Company, an Operation Diagram for all HV Apparatus on the User side of the Connection Point (and in the case of OTSDUW Plant and Apparatus, on what will be the Offshore Transmission side of the Connection Point and the Interface Point) and The Company shall provide the User with an Operation Diagram for all HV Apparatus on the Transmission side of the Connection Point (and in the case of OTSDUW Plant and Apparatus on what will be the Onshore Transmission side of the Interface Point), in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement prior to the Completion Date under the Bilateral Agreement and/or Construction Agreement.

- CC.7.4.8 The User will then prepare, produce and distribute, using the information submitted on the User's Operation Diagram and The Company Operation Diagram, a composite Operation Diagram for the complete Connection Site (and in the case of OTSDUW Plant and Apparatus, Interface Point), also in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement.
- CC.7.4.9 The provisions of CC.7.4.7 and CC.7.4.8 shall apply in relation to **Gas Zone Diagrams** where gas-insulated switchgear and/or other gas-insulated **HV Apparatus** is utilised.

Preparation of Operation and Gas Zone Diagrams for Transmission Sites

- CC.7.4.10 In the case of an **Transmission Site**, the **User** shall prepare and submit to **The Company** an **Operation Diagram** for all **HV Apparatus** on the **User** side of the **Connection Point**, in accordance with the timing requirements of the **Bilateral Agreement** and/or **Construction Agreement**.
- CC.7.4.11 **The Company** will then prepare, produce and distribute, using the information submitted on the **User's Operation Diagram**, a composite **Operation Diagram** for the complete **Connection Site**, also in accordance with the timing requirements of the **Bilateral Agreement** and/or **Construction Agreement**.
- CC.7.4.12 The provisions of CC.7.4.10 and CC.7.4.11 shall apply in relation to **Gas Zone Diagrams** where gas-insulated switchgear and/or other gas-insulated **HV Apparatus** is utilised.
- CC.7.4.13 Changes to Operation and Gas Zone Diagrams
- CC.7.4.13.1 When the **Relevant Transmission Licensee** has decided that it wishes to install new **HV Apparatus** or it wishes to change the existing numbering or nomenclature of **Transmission HV Apparatus** at a **Transmission Site**, **The Company**, in coordination with the **Relevant Transmission Licensee** will (unless it gives rise to a **Modification** under the **CUSC**, in which case the provisions of the **CUSC** as to the timing apply) one month prior to the installation or change, send to each such **User** a revised **Operation Diagram** of that **Transmission Site**, incorporating the new **Transmission HV Apparatus** to be installed and its numbering and nomenclature or the changes, as the case may be. **OC11** is also relevant to certain **Apparatus**.
- CC.7.4.13.2 When a **User** has decided that it wishes to install new **HV Apparatus**, or it wishes to change the existing numbering or nomenclature of its **HV Apparatus** at its **User Site**, the **User** will (unless it gives rise to a **Modification** under the **CUSC**, in which case the provisions of the **CUSC** as to the timing apply) one month prior to the installation or change, send to **The Company** a revised **Operation Diagram** of that **User Site** incorporating the new **User HV Apparatus** to be installed and its numbering and nomenclature or the changes as the case may be. **OC11** is also relevant to certain **Apparatus**.
- CC.7.4.13.3 The provisions of CC.7.4.13.1 and CC.7.4.13.2 shall apply in relation to **Gas Zone Diagrams** where gas-insulated switchgear and/or other gas-insulated **HV Apparatus** is installed.

Validity

- (a) The composite Operation Diagram prepared by The Company or the User, as the case may be, will be the definitive Operation Diagram for all operational and planning activities associated with the Connection Site. If a dispute arises as to the accuracy of the composite Operation Diagram, a meeting shall be held at the Connection Site, as soon as reasonably practicable, between The Company and the User, to endeavour to resolve the matters in dispute.
 - (b) The composite Operation Diagram prepared by The Company or the User, as the case may be, will be the definitive Operation Diagram for all operational and planning activities associated with the Interface Point until the OTSUA Transfer Time. If a dispute arises as to the accuracy of the composite Operation Diagram prior to the OTSUA Transfer Time, a meeting shall be held at the Interface Point, as soon as reasonably practicable, between The Company and the User, to endeavour to resolve the matters in dispute.
 - (c) An equivalent rule shall apply for **Gas Zone Diagrams** where they exist for a **Connection Site**.

- CC.7.4.15 In the case of **OTSUA**, a **User Site** and **Transmission Site** shall, for the purposes of this CC.7.4, include a site at which there is an **Interface Point** until the **OTSUA Transfer Time** when it becomes part of the **National Electricity Transmission System** and references to **HV Apparatus** in this CC.7.4 shall include references to **HV OTSUA**.
- CC.7.5 <u>Site Common Drawings</u>
- CC.7.5.1 Site Common Drawings will be prepared for each Connection Site (and in the case of OTSDUW, each Interface Point) and will include Connection Site (and in the case of OTSDUW, Interface Point) layout drawings, electrical layout drawings, common Protection/control drawings and common services drawings.

Preparation of Site Common Drawings for a User Site and Transmission Interface Site

- CC.7.5.2 In the case of a User Site, The Company shall prepare and submit to the User, Site Common Drawings for the Transmission side of the Connection Point (and in the case of OTSDUW Plant and Apparatus, on what will be the Onshore Transmission side of the Interface Point,) and the User shall prepare and submit to The Company, Site Common Drawings for the User side of the Connection Point (and in the case of OTSDUW, on what will be the Offshore Transmission side of the Interface Point) in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement.
- CC.7.5.3 The User will then prepare, produce and distribute, using the information submitted on the Transmission Site Common Drawings, Site Common Drawings for the complete Connection Site (and in the case of OTSDUW, Interface Point) in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement .

Preparation of Site Common Drawings for a Transmission Site

- CC.7.5.4 In the case of a **Transmission Site**, the **User** will prepare and submit to **The Company Site Common Drawings** for the **User** side of the **Connection Point** in accordance with the timing requirements of the **Bilateral Agreement** and/or **Construction Agreement**.
- CC.7.5.5 The Company will then prepare, produce and distribute, using the information submitted in the User's Site Common Drawings, Site Common Drawings for the complete Connection Site in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement.
- CC.7.5.6 When a **User** becomes aware that it is necessary to change any aspect of the **Site Common Drawings** at a **Connection Site** (and in the case of **OTSDUW**, **Interface Point**) it will:
 - (a) if it is a User Site, as soon as reasonably practicable, prepare, produce and distribute revised Site Common Drawings for the complete Connection Site (and in the case of OTSDUW, Interface Point); and
 - (b) if it is a Transmission Site, as soon as reasonably practicable, prepare and submit to The Company revised Site Common Drawings for the User side of the Connection Point (and in the case of OTSDUW, Interface Point) and The Company will then, as soon as reasonably practicable, prepare, produce and distribute, using the information submitted in the User's Site Common Drawings, revised Site Common Drawings for the complete Connection Site (and in the case of OTSDUW, Interface Point).

In either case, if in the **User's** reasonable opinion the change can be dealt with by it notifying **The Company** in writing of the change and for each party to amend its copy of the **Site Common Drawings** (or where there is only one set, for the party holding that set to amend it), then it shall so notify and each party shall so amend. If the change gives rise to a **Modification** under the **CUSC**, the provisions of the **CUSC** as to timing will apply.

- CC.7.5.7 When **The Company** becomes aware that it is necessary to change any aspect of the **Site Common Drawings** at a **Connection Site** (and in the case of **OTSDUW**, **Interface Point**) it will:
 - (a) if it is a Transmission Site, as soon as reasonably practicable, prepare, produce and distribute revised Site Common Drawings for the complete Connection Site (and in the case of OTSDUW, Interface Point); and

(b) if it is a User Site, as soon as reasonably practicable, prepare and submit to the User revised Site Common Drawings for the Transmission side of the Connection Point (in the case of OTSDUW, Interface Point) and the User will then, as soon as reasonably practicable, prepare, produce and distribute, using the information submitted in the Transmission Site Common Drawings, revised Site Common Drawings for the complete Connection Site (and in the case of OTSDUW, Interface Point).

In either case, if in **The Company's** reasonable opinion the change can be dealt with by it notifying the **User** in writing of the change and for each party to amend its copy of the **Site Common Drawings** (or where there is only one set, for the party holding that set to amend it), then it shall so notify and each party shall so amend. If the change gives rise to a **Modification** under the **CUSC**, the provisions of the **CUSC** as to timing will apply.

<u>Validity</u>

- CC.7.5.8
- (a) The Site Common Drawings for the complete Connection Site prepared by the User or The Company, as the case may be, will be the definitive Site Common Drawings for all operational and planning activities associated with the Connection Site. If a dispute arises as to the accuracy of the Site Common Drawings, a meeting shall be held at the Site, as soon as reasonably practicable, between The Company and the User, to endeavour to resolve the matters in dispute.
 - (b) The Site Common Drawing prepared by The Company or the User, as the case may be, will be the definitive Site Common Drawing for all operational and planning activities associated with the Interface Point until the OTSUA Transfer Time. If a dispute arises as to the accuracy of the composite Operation Diagram prior to the OTSUA Transfer Time, a meeting shall be held at the Interface Point, as soon as reasonably practicable, between The Company and the User, to endeavour to resolve the matters in dispute.
- CC.7.5.9 In the case of **OTSUA**, a **User Site** and **Transmission Site** shall, for the purposes of this CC.7.5, include a site at which there is an **Interface Point** until the **OTSUA Transfer Time** when it becomes part of the **National Electricity Transmission System**.
- CC.7.6 <u>Access</u>
- CC.7.6.1 The provisions relating to access to **Transmission Sites** by **Users**, and to **Users' Sites** by **Relevant Transmission Licensees**, are set out in each **Interface Agreement** (or in the case of **Interfaces Sites** prior to the **OTSUA Transfer Time** agreements in similar form) with, the **Relevant Transmission Licensee** and each **User**.
- CC.7.6.2 In addition to those provisions, where a **Transmission Site** contains exposed **HV** conductors, unaccompanied access will only be granted to individuals holding an **Authority for Access** issued by the **Relevant Transmission Licensee**.
- CC.7.6.3 The procedure for applying for an **Authority for Access** is contained in the **Interface Agreement**.
- CC.7.7 <u>Maintenance Standards</u>
- CC.7.7.1 It is the User's responsibility to ensure that all its Plant and Apparatus (including, until the OTSUA Transfer Time, any OTSUA) on a Transmission Site is tested and maintained adequately for the purpose for which it is intended, and to ensure that it does not pose a threat to the safety of any Transmission Plant, Apparatus or personnel on the Transmission Site. The Company will have the right to inspect the test results and maintenance records relating to such Plant and Apparatus at any time
- CC.7.7.2 For User Sites, The Company shall procure that the Relevant Transmission Licensee has a responsibility to ensure that all Transmission Plant and Apparatus on a User Site is tested and maintained adequately for the purposes for which it is intended and to ensure that it does not pose a threat to the safety of any User's Plant, Apparatus or personnel on the User Site.

The **User** will have the right to inspect the test results and maintenance records relating to such **Plant** and **Apparatus** on its **User Site** at any time.

CC.7.8 <u>Site Operational Procedures</u>

- CC.7.8.1 Where there is an interface with **National Electricity Transmission System**, **The Company** and **Users**, must make available staff to take necessary **Safety Precautions** and carry out operational duties as may be required to enable work/testing to be carried out and for the operation of **Plant** and **Apparatus** (including, prior to the **OTSUA Transfer Time**, any **OTSUA**) connected to the **Total System**.
- CC.7.9 GB Generators, DC Converter Station owners and BM Participants shall provide a Control Point.
 - a) In the case of **GB** Generators and **DC** Converter Station owners, for each Power Station or **DC** Converter Station directly connected to the National Electricity Transmission System and for each Embedded Large Power Station or Embedded **DC** Converter Station, the Control Point shall receive and act upon instructions pursuant to OC7 and BC2 at all times that Generating Units or Power Park Modules at the Power Station are generating or available to generate or **DC** Converters at the **DC** Converter Station are importing or exporting or available to do so. In the case of all **BM** Participants, the Control Point shall be continuously staffed except where the **Bilateral Agreement** specifies that compliance with BC2 is not required, in which case the Control Point shall be staffed between the hours of 0800 and 1800 each day.
 - b) In the case of **BM Participants**, the **BM Participant's Control Point** shall be capable of receiving and acting upon instructions from **The Company**.

The Company will normally issue instructions via automatic logging devices in accordance with the requirements of CC.6.5.8(b).

Where the **BM Participant's Plant** and **Apparatus** does not respond to an instruction from **The Company** via automatic logging devices, or where it is not possible for **The Company** to issue the instruction via automatic logging devices, **The Company** shall issue the instruction by telephone.

In the case of **BM Participants** who own and/or operate a **Power Station** or **DC Converter Station** with an aggregated **Registered Capacity** or **BM Participants** with **BM Units** with an aggregated **Demand Capacity** per **Control Point** of less than 50MW, or, where a site is not part of a Virtual Lead Party as defined in the **BSC**, a **Registered Capacity** or **Demand Capacity** per site of less than 10MW:

- a) where this situation arises, a representative of the BM Participant is required to be available to respond to instructions from The Company via the Control Telephony or System Telephony system, as provided for in CC.6.5.4, between the hours of 0800-1800 each day.
- b) Outside the hours of 0800-1800 each day, the requirements of BC2.9.7 shall apply.

For the avoidance of doubt, **BM Participants** who are unable to provide **Control Telephony** and do not have a continuously staffed **Control Point** may be unable to act as a **Defence Service Provider** and shall be unable to act as a **Restoration Service Provider** or **Black Start Service Provider** where these require **Control Telephony** or a **Control Point** in respect of the specification of any such services falling into these categories.

CC.8 <u>ANCILLARY SERVICES</u>

CC.8.1 System Ancillary Services

The CC's contain requirements for the capability for certain Ancillary Services, which are needed for System reasons ("System Ancillary Services"). There follows a list of these System Ancillary Services, together with the paragraph number of the CC (or other part of the Grid Code) in which the minimum capability is required or referred to. The list is divided into two categories: Part 1 lists the System Ancillary Services which

- (a) GB Generators in respect of Large Power Stations are obliged to provide (except GB Generators in respect of Large Power Stations which have a Registered Capacity of less than 50MW and comprise Power Park Modules); and,
- (b) GB Generators in respect of Large Power Stations with a Registered Capacity of less than 50MW and comprise Power Park Modules are obliged to provide in respect of Reactive Power only; and,
- (c) DC Converter Station owners are obliged to have the capability to supply; and
- (d) **GB Generators** in respect of **Medium Power Stations** (except **Embedded Medium Power Stations**) are obliged to provide in respect of **Reactive Power** only:

and Part 2 lists the **System Ancillary Services** which **GB Generators** will provide only if agreement to provide them is reached with **The Company**:

Part 1

- (a) Reactive Power supplied (in accordance with CC.6.3.2) otherwise than by means of synchronous or static compensators (except in the case of a Power Park Module where synchronous or static compensators within the Power Park Module may be used to provide Reactive Power)
- (b) Frequency Control by means of Frequency sensitive generation CC.6.3.7 and BC3.5.1

Part 2

- (c) Frequency Control by means of Fast Start CC.6.3.14
- (d) Black Start Capability CC.6.3.5
- (e) System to Generator Operational Intertripping

CC.8.2 Commercial Ancillary Services

Other Ancillary Services are also utilised by The Company in operating the Total System if these have been agreed to be provided by a GB Code User (or other person) under an Ancillary Services Agreement or under a Bilateral Agreement, with payment being dealt with under an Ancillary Services Agreement or in the case of Externally Interconnected System Operators or Interconnector Users, under any other agreement (and in the case of Externally Interconnected System Operators and Interconnector Users includes Ancillary Services equivalent to or similar to System Ancillary Services) ("Commercial Ancillary Services"). The capability for these Commercial Ancillary Services is set out in the relevant Ancillary Services Agreement or Bilateral Agreement (as the case may be).

APPENDIX 1 - SITE RESPONSIBILITY SCHEDULES

FORMAT, PRINCIPLES AND BASIC PROCEDURE TO BE USED IN THE PREPARATION OF SITE RESPONSIBILITY SCHEDULES

CC.A.1.1 Principles

Types of Schedules

- CC.A.1.1.1 At all **Complexes** (which in the context of this **CC** shall include, **Interface Sites** until the **OTSUA Transfer Time**) the following **Site Responsibility Schedules** shall be drawn up using the relevant proforma attached or with such variations as may be agreed between **The Company** and **Users**, but in the absence of agreement the relevant proforma attached will be used. In addition, in the case of **OTSDUW Plant and Apparatus**, and in readiness for the **OTSUA Transfer Time**, the **User** shall provide **The Company** with the necessary information such that **Site Responsibility Schedules** in this form can be prepared by the **Relevant Transmission Licensees** for the **Transmission Interface Site**:
 - (a) Schedule of **HV Apparatus**
 - (b) Schedule of **Plant**, **LV/MV Apparatus**, services and supplies;
 - (c) Schedule of telecommunications and measurements **Apparatus**.

Other than at **Generating Unit**, **DC Converter**, **Power Park Module** and **Power Station** locations, the schedules referred to in (b) and (c) may be combined.

New Connection Sites

CC.A.1.1.2 In the case of a new Connection Site each Site Responsibility Schedule for a Connection Site shall be prepared by The Company in consultation with relevant GB Code Users at least 2 weeks prior to the **Completion Date** (or, where the **OTSUA** is to become **Operational** prior to the OTSUA Transfer Time, an alternative date) under the Bilateral Agreement and/or Construction Agreement for that Connection Site (which may form part of a Complex). In the case of a new Interface Site where the OTSUA is to become Operational prior to the OTSUA Transfer Time each Site Responsibility Schedule for an Interface Site shall be prepared by The Company in consultation with relevant GB Code Users at least 2 weeks prior to the Completion Date under the Bilateral Agreement and/or Construction Agreement for that Interface Site (which may form part of a Complex) (and references to and requirements placed on "Connection Site" in this CC shall also be read as "Interface Site" where the context requires and until the OTSUA Transfer Time). Each GB Code User shall, in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement, provide information to The Company to enable it to prepare the Site Responsibility Schedule.

Sub-division

CC.A.1.1.3 Each **Site Responsibility Schedule** will be subdivided to take account of any separate **Connection Sites** on that **Complex**.

<u>Scope</u>

- CC.A.1.1.4 Each **Site Responsibility Schedule** shall detail for each item of **Plant** and **Apparatus**:
 - (a) **Plant/Apparatus** ownership;
 - (b) Site Manager (Controller) (except in the case of **Plant/Apparatus** located in **SPT's Transmission Area**);
 - (c) Safety issues comprising applicable Safety Rules and Control Person or other responsible person (Safety Co-ordinator), or such other person who is responsible for safety;
 - (d) Operations issues comprising applicable **Operational Procedures** and **Control Engineer**;

(e) Responsibility to undertake statutory inspections, fault investigation and maintenance.

Each Connection Point shall be precisely shown.

Detail

- CC.A.1.1.5 (a) In the case of **Site Responsibility Schedules** referred to in CC.A.1.1.1(b) and (c), with the exception of Protection Apparatus and Intertrip Apparatus operation, it will be sufficient to indicate the responsible User or Transmission Licensee, as the case may he
 - (b) In the case of the Site Responsibility Schedule referred to in CC.A.1.1.1(a) and for Protection Apparatus and Intertrip Apparatus, the responsible management unit must be shown in addition to the **User** or **Transmission Licensee**, as the case may be.
- CC.A.1.1.6 The HV Apparatus Site Responsibility Schedule for each Connection Site must include lines and cables emanating from or traversing¹ the **Connection Site**.

Issue Details

CC.A.1.1.7 Every page of each Site Responsibility Schedule shall bear the date of issue and the issue number.

Accuracy Confirmation

- CC.A.1.1.8 When a Site Responsibility Schedule is prepared it shall be sent by The Company to the **Users** involved for confirmation of its accuracy.
- CC.A.1.1.9 The Site Responsibility Schedule shall then be signed on behalf of The Company by its Responsible Manager (see CC.A.1.1.16) and on behalf of each User involved by its Responsible Manager (see CC.A.1.1.16), by way of written confirmation of its accuracy. The Site Responsibility Schedule will also be signed on behalf of the Relevant Transmission Licensee by its Responsible Manager.

Distribution and Availability

- CC.A.1.1.10 Once signed, two copies will be distributed by **The Company**, not less than two weeks prior to its implementation date, to each User which is a party on the Site Responsibility Schedule, accompanied by a note indicating the issue number and the date of implementation.
- The Company and Users must make the Site Responsibility Schedules readily available CC.A.1.1.11 to operational staff at the **Complex** and at the other relevant control points.

Alterations to Existing Site Responsibility Schedules

- CC.A 1.1.12 Without prejudice to the provisions of CC.A.1.1.15 which deals with urgent changes, when a User identified on a Site Responsibility Schedule becomes aware that an alteration is necessary, it must inform The Company immediately and in any event 8 weeks prior to any change taking effect (or as soon as possible after becoming aware of it, if less than 8 weeks remain when the **User** becomes aware of the change). This will cover the commissioning of new Plant and/or Apparatus at the Connection Site, whether requiring a revised Bilateral Agreement or not, de-commissioning of Plant and/or Apparatus, and other changes which affect the accuracy of the Site Responsibility Schedule.
- CC.A 1.1.13 Where **The Company** has been informed of a change by an **GB Code User**, or itself proposes a change, it will prepare a revised Site Responsibility Schedule by not less than six weeks prior to the change taking effect (subject to it having been informed or knowing of the change eight weeks prior to that time) and the procedure set out in CC.A.1.1.8 shall be followed with regard to the revised Site Responsibility Schedule.

¹ Details of circuits traversing the **Connection Site** are only needed from the date which is the earlier of the date when the **Site** Responsibility Schedule is first updated and 15th October 2004. In Scotland or Offshore, from a date to be agreed between The Company and the Relevant Transmission Licensee. CC

CC.A 1.1.14 The revised **Site Responsibility Schedule** shall then be signed in accordance with the procedure set out in CC.A.1.1.9 and distributed in accordance with the procedure set out in CC.A.1.1.10, accompanied by a note indicating where the alteration(s) has/have been made, the new issue number and the date of implementation.

Urgent Changes

- CC.A.1.1.15 When an **GB Code User** identified on a **Site Responsibility Schedule**, or **The Company**, as the case may be, becomes aware that an alteration to the **Site Responsibility Schedule** is necessary urgently to reflect, for example, an emergency situation which has arisen outside its control, the **GB Code User** shall notify **The Company**, or **The Company** shall notify the **GB Code User**, as the case may be, immediately and will discuss:
 - (a) what change is necessary to the **Site Responsibility Schedule**;
 - (b) whether the Site Responsibility Schedule is to be modified temporarily or permanently;
 - (c) the distribution of the revised **Site Responsibility Schedule**.

The Company will prepare a revised Site Responsibility Schedule as soon as possible, and in any event within seven days of it being informed of or knowing the necessary alteration. The Site Responsibility Schedule will be confirmed by GB Code Users and signed on behalf of The Company and GB Code Users and the Relevant Transmission Licensee (by the persons referred to in CC.A.1.1.9) as soon as possible after it has been prepared and sent to GB Code Users for confirmation.

Responsible Managers

CC.A.1.1.16 Each GB Code User shall, prior to the Completion Date under each Bilateral Agreement and/or Construction Agreement, supply to The Company a list of Managers who have been duly authorised to sign Site Responsibility Schedules on behalf of the GB Code User and The Company shall, prior to the Completion Date under each Bilateral Agreement and/or Construction Agreement, supply to that GB Code User the name of the Relevant Transmission Licensee's Responsible Manager and each shall supply to the other any changes to such list six weeks before the change takes effect where the change is anticipated, and as soon as possible after the change, where the change was not anticipated.

De-commissioning of Connection Sites

CC.A.1.1.17 Where a **Connection Site** is to be de-commissioned, whichever of **The Company** or the **GB Code User** who is initiating the de-commissioning must contact the other to arrange for the **Site Responsibility Schedule** to be amended at the relevant time.

PROFORMA FOR SITE RESPONSIBILITY SCHEDULE

_____ AREA

COMPLEX:

SCHEDULE:

CONNECTION SITE: _____

	PLANT APPARATUS OWNER	SITE MANAGER	SAFETY		OPERATIONS		PARTY	
ITEM OF PLANT/ APPARATUS			SAFETY RULES	CONTROL OR OTHER RESPONSIBLE PERSON (SAFETY CO- ORDINATOR	OPERATIONAL PROCEDURES	CONTROL OR OTHER RESPONSIBLE ENGINEER	RESPONSIBLE FOR UNDERTAKING STATUTORY INSPECTIONS, FAULT INVESTIGATION & MAINTENANCE	REMARKS
PAGE:			ISSUE	NO:		DATE:		

PROFORMA FOR SITE RESPONSIBILITY SCHEDULE

_____ AREA

COMPLEX:

SCHEDULE:

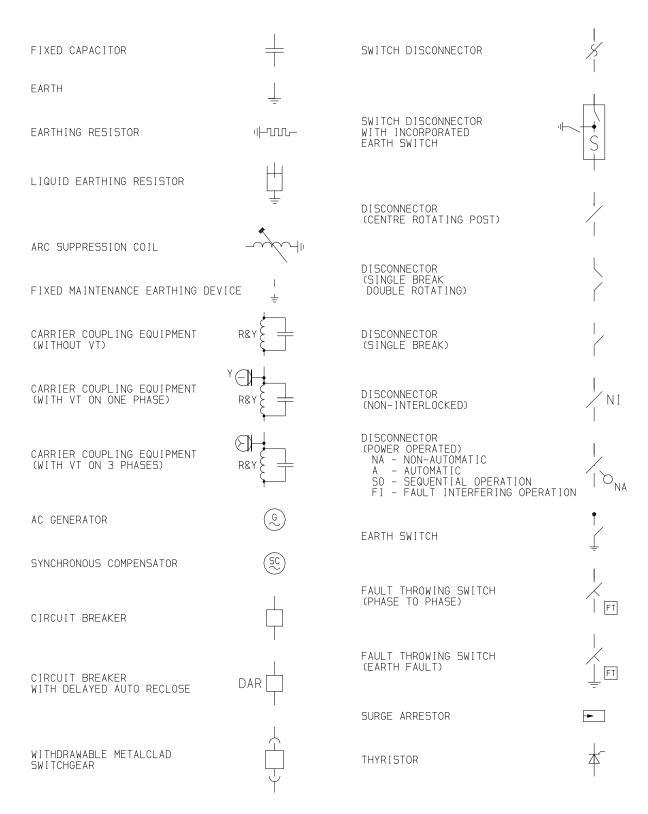
CONNECTION SITE:

			SAFETY		OPERATIONS		PARTY RESPONSIBLE	
ITEM OF PLANT/ APPARATUS	PLANT APPARATUS OWNER	SITE MANAGER	SAFETY RULES	CONTROL OR OTHER RESPONSIBLE PERSON (SAFETY CO- ORDINATOR	OPERATIONAL PROCEDURES	CONTROL OR OTHER RESPONSIBLE ENGINEER	FOR UNDERTAKING STATUTORY INSPECTIONS, FAULT INVESTIGATION & MAINTENANCE	REMARKS

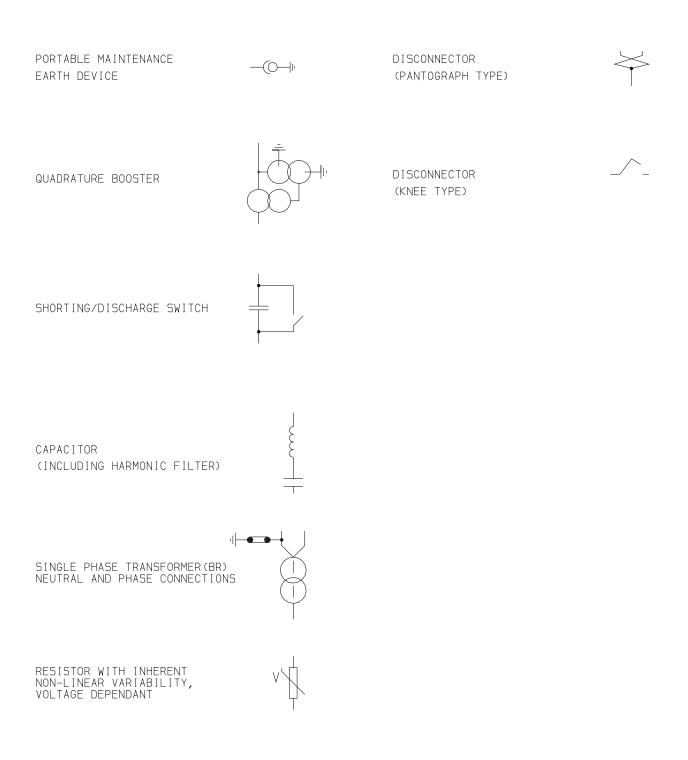
NOTES:

PAGE:	ISSUE NO:	DA	TE:	
SIGNED:	NAME:	COMPANY:	DATE:	
SIGNED:	NAME:	COMPANY:	DATE:	
SIGNED:	NAME:	COMPANY:	DATE:	
SIGNED:	NAME:	COMPANY:	DATE:	

							Network Area:	(Area:						-	Revision:	
ECT	SECTION 'A' BUILDING AND SITE	AND SITE								SE	CTION '	Date: SECTION 'B' CUSTOMER OR OTHER PARTY	MER OF	R OTHER	Date: R PARTY	
OWNER	ER		ACCESS	ACCESS REQUIRED:-						N	NAME:-		-			
LESSEE																
Z	MAINIENANCE		SPECIAL	SPECIAL CONDITIONS:						AL	ADDRESS:-	+				
SAFETY	SAFETY		I OCATION OF	V OF SUDDIV						TE	TELNO-					
5			TERMINALS							LO U	LOCATION -	1				
	SECTION 'C' PLANT									1						
MH				SAFETY RULES		OPERATION	VTION	F	MAINTENANCE		FAULT INVESTIGATION	STIGATION	TES	TESTING	RELAY	
Nos	EQUIPMENT	IDENTIFICATION	OWNER	APPLICABLE	Tripping	Closing	8	Earthing	Primary Pro Equip. E	e a	Primary Protection Equip. Equip	tion Reclosure	Ala	Primary Equip.	SETTING8	REMARKS
SECTI ITEM Nos	SECTION 'D' CONFIGURATION AND CONTROL TEM Nos. CONFIGURATION AND CONTROL RESPONSIBILITY TELEPHONE NUMBER TEM Nos. CONTROL RESPONSIBILITY TELEPHONE NUMBER	TELEPHONE NJMBER TELEPHONE NJMBER		RE MARKS RE MARKS		SECTIC	N E A	10III	SECTION 'E' ADDITIONAL INFORMATION	RMATIC	Z					
REW	ABREVIATIONS:-															
P AL	D - SP AUTHORISED PERSON - DISTRIBUTION SYSTEM NGC - NATIONAL GRD COMP AVY	UTION SYSTEM				SIGNED				FOR	<u>م</u>	SH Iransmission			DATE	
g - 8	SPD - SP DISTRIBUTION LM SPPS - POWERSYSTEMS SPT - SP TRANSMISSION LM					SIGNED				FOR		SP Distribution			DATE	
SCO	ST - SCOTTISH POWER TELECOMMUNICATIONS	and the second s														


					5		
	Notes						
Revision:	Operational Procedures						
Re	Safety Rules						
_	Control Authority						
	Responsible Management Unit						
Number:	Responsible System User						
	Maintainer						
	Controller						
	Owner						
Substation Type	Equipment						

Scottish Hydro-Electric Transmission Limited


Site Responsibility Schedule

APPENDIX 2 - OPERATION DIAGRAMS

PART 1A - PROCEDURES RELATING TO OPERATION DIAGRAMS

TRANSFORMERS (VECTORS TO INDICATE WINDING CONFIGURATION) TWO WINDING	$\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	<pre>* BUSBARS</pre>	_
THREE WINDING	T C C C C C	* THROUGH WALL BUSHING	
AUTO		* BYPASS FACILITY	
AUTO WITH DELTA TERTIARY		* CROSSING OF CONDUCTORS (LOWER CONDUCTOR	
EARTHING OR AUX. TRANSFORMER (-) INDICATE REMOTE SITE IF APPLICABLE	415v		
VOLTAGE TRANSFORMERS			
SINGLE PHASE WOUND	y CD -		
THREE PHASE WOUND		PREFERENTIAL ABBREVIATIONS	
SINGLE PHASE CAPACITOR	-€J		
TWO SINGLE PHASE CAPACITOR	R&B 2	AUXILIARY TRANSFORMER AUX T EARTHING TRANSFORMER ET	
THREE PHASE CAPACITOR	\square	GAS TURBINE Gas T GENERATOR TRANSFORMER Gen T	
* CURRENT TRANSFORMER (WHERE SEPARATE PRIMARY APPARATUS)	•	GRID TRANSFORMER Gr T SERIES REACTOR Ser Reac SHUNT REACTOR Sh Reac STATION TRANSFORMER Stn T SUPERGRID TRANSFORMER SGT	
* COMBINED VT/CT UNIT FOR METERING		UNIT TRANSFORMER UT	
REACTOR	Ģ	* NON-STANDARD SYMBOL	

PART 1B - PROCEDURES RELATING TO GAS ZONE DIAGRAMS

GAS INSULATED BUSBAR	DOUBLE-BREAK	
GAS BOUNDARY	EXTERNAL MOUNTED CURRENT TRANSFORMER (WHERE SEPARATE PRIMARY APPARATUS)	
GAS/GAS BOUNDARY	STOP VALVE NORMALLY CLOSED	
GAS/CABLE BOUNDARY 🔶	STOP VALVE NORMALLY OPEN	\bowtie
GAS/AIR BOUNDARY	GAS MONITOR	\boxtimes
GAS/TRANSFORMER BOUNDARY 🔶	FILTER	
MAINTENANCE VALVE	QUICK ACTING COUPLING	ŶŀĊ

PART 2 - NON-EXHAUSTIVE LIST OF APPARATUS TO BE INCLUDED ON OPERATION DIAGRAMS

Basic Principles

- (1) Where practicable, all the HV Apparatus on any Connection Site shall be shown on one Operation Diagram. Provided the clarity of the diagram is not impaired, the layout shall represent as closely as possible the geographical arrangement on the Connection Site.
- (2) Where more than one **Operation Diagram** is unavoidable, duplication of identical information on more than one **Operation Diagram** must be avoided.
- (3) The **Operation Diagram** must show accurately the current status of the **Apparatus** e.g. whether commissioned or decommissioned. Where decommissioned, the associated switchbay will be labelled "spare bay".
- (4) Provision will be made on the **Operation Diagram** for signifying approvals, together with provision for details of revisions and dates.
- (5) **Operation Diagrams** will be prepared in A4 format or such other format as may be agreed with **The Company**.
- (6) The **Operation Diagram** should normally be drawn single line. However, where appropriate, detail which applies to individual phases shall be shown. For example, some **HV Apparatus** is numbered individually per phase.

Apparatus To Be Shown On Operation Diagram

- (1) Busbars
- (2) Circuit Breakers
- (3) Disconnector (Isolator) and Switch Disconnecters (Switching Isolators)
- (4) Disconnectors (Isolators) Automatic Facilities
- (5) Bypass Facilities
- (6) Earthing Switches
- (7) Maintenance Earths
- (8) Overhead Line Entries
- (9) Overhead Line Traps
- (10) Cable and Cable Sealing Ends
- (11) Generating Unit
- (12) Generator Transformers
- (13) Generating Unit Transformers, Station Transformers, including the lower voltage circuitbreakers.
- (14) Synchronous Compensators
- (15) Static Variable Compensators
- (16) Capacitors (including Harmonic Filters)
- (17) Series or Shunt Reactors (Referred to as "Inductors" at nuclear power station sites)
- (18) Supergrid and Grid Transformers
- (19) Tertiary Windings
- (20) Earthing and Auxiliary Transformers
- (21) Three Phase VT's

(22)	Single Phase VT & Phase Identity
(23)	High Accuracy VT and Phase Identity
(24)	Surge Arrestors/Diverters
(25)	Neutral Earthing Arrangements on HV Plant
(26)	Fault Throwing Devices
(27)	Quadrature Boosters
(28)	Arc Suppression Coils
(29)	Single Phase Transformers (BR) Neutral and Phase Connections
(30)	Current Transformers (where separate plant items)
(31)	Wall Bushings
(32)	Combined VT/CT Units
(33)	Shorting and Discharge Switches
(34)	Thyristor
(35)	Resistor with Inherent Non-Linear Variability, Voltage Dependent
(36)	Gas Zone

APPENDIX 3 - MINIMUM FREQUENCY RESPONSE REQUIREMENT PROFILE AND OPERATING RANGE FOR NEW POWER STATIONS AND DC CONVERTER STATIONS

CC.A.3.1 Scope

The **Frequency** response capability is defined in terms of **Primary Response**, **Secondary Response** and **High Frequency Response**. This appendix defines the minimum **Frequency** response requirement profile for:

- (a) each **Onshore Generating Unit** and/or **CCGT Module** which has a **Completion Date** after 1 January 2001 in England and Wales and 1 April 2005 in Scotland and **Offshore Generating Unit** in a **Large Power Station**,
- (b) each DC Converter at a DC Converter Station which has a Completion Date on or after 1 April 2005 or each Offshore DC Converter which is part of a Large Power Station.
- (c) each **Onshore Power Park Module** in England and Wales with a **Completion Date** on or after 1 January 2006.
- (d) each Onshore Power Park Module in operation in Scotland after 1 January 2006 with a Completion Date after 1 April 2005 and in Power Stations with a Registered Capacity of 50MW or more.
- (e) each Offshore Power Park Module in a Large Power Station with a Registered Capacity of 50MW or more.

For the avoidance of doubt, this appendix does not apply to:

- (i) **Generating Units** and/or **CCGT Modules** which have a **Completion Date** before 1 January 2001 in England and Wales and before 1 April 2005 in Scotland,
- (ii) **DC Converters** at a **DC Converter Station** which have a **Completion Date** before 1 April 2005.
- (iii) **Power Park Modules** in England and Wales with a **Completion Date** before 1 January 2006.
- (iv) **Power Park Modules** in operation in Scotland before 1 January 2006.
- (v) Power Park Modules in Scotland with a Completion Date before 1 April 2005.
- (vi) **Power Park Modules** in **Power Stations** with a **Registered Capacity** less than 50MW.
- (vii) Small Power Stations or individually to Power Park Units; or.

(viii) an OTSDUW DC Converter where the Interface Point Capacity is less than 50MW.

OTSDUW Plant and Apparatus should facilitate the delivery of Frequency response services provided by Offshore Generating Units and Offshore Power Park Modules at the Interface Point.

The functional definition provides appropriate performance criteria relating to the provision of **Frequency** control by means of **Frequency** sensitive generation in addition to the other requirements identified in CC.6.3.7.

In this Appendix 3 to the CC, for a CCGT Module or a Power Park Module with more than one Generating Unit, the phrase Minimum Generation applies to the entire CCGT Module or Power Park Module operating with all Generating Units Synchronised to the System.

The minimum **Frequency** response requirement profile is shown diagrammatically in Figure CC.A.3.1. The capability profile specifies the minimum required levels of **Primary Response**, **Secondary Response** and **High Frequency Response** throughout the normal plant operating range. The definitions of these **Frequency** response capabilities are illustrated diagrammatically in Figures CC.A.3.2 & CC.A.3.3.

CC.A.3.2 Plant Operating Range

The upper limit of the operating range is the **Registered Capacity** of the **Generating Unit** or **CCGT Module** or **DC Converter** or **Power Park Module**.

The Minimum Generation level may be less than, but must not be more than, 65% of the **Registered Capacity**. Each Generating Unit and/or CCGT Module and/or Power Park Module and/or DC Converter must be capable of operating satisfactorily down to the **Designed Minimum Operating Level** as dictated by System operating conditions, although it will not be instructed to below its Minimum Generation level. If a Generating Unit or CCGT Module or Power Park Module or DC Converter is operating below Minimum Generation because of high System Frequency, it should recover adequately to its Minimum Generation level as the System Frequency returns to Target Frequency so that it can provide Primary and Secondary Response from Minimum Generation if the System Frequency continues to fall. For the avoidance of doubt, under normal operating conditions steady state operation below Minimum Generation is not expected. The Designed Minimum Operating Level must not be more than 55% of Registered Capacity.

In the event of a **Generating Unit** or **CCGT Module** or **Power Park Module** or **DC Converter** load rejecting down to no less than its **Designed Minimum Operating Level** it should not trip as a result of automatic action as detailed in BC3.7. If the load rejection is to a level less than the **Designed Minimum Operating Level** then it is accepted that the condition might be so severe as to cause it to be disconnected from the **System**.

CC.A.3.3 Minimum Frequency Response Requirement Profile

Figure CC.A.3.1 shows the minimum **Frequency** response requirement profile diagrammatically for a 0.5 Hz change in **Frequency**. The percentage response capabilities and loading levels are defined on the basis of the **Registered Capacity** of the **Generating Unit** or **CCGT Module** or **Power Park Module** or **DC Converter**. Each **Generating Unit** and/or **CCGT Module** and/or **Power Park Module** and/or **DC Converter** must be capable of operating in a manner to provide **Frequency** response at least to the solid boundaries shown in the figure. If the **Frequency** response capability falls within the solid boundaries, the **Generating Unit** or **CCGT Module** or **Power Park Module** or **DC Converter** is providing response below the minimum requirement which is not acceptable. Nothing in this appendix is intended to prevent a **Generating Unit** or **CCGT Module** or **Power Park Module** or **Power Park Module** or **DC Converter** from being designed to deliver a **Frequency** response in excess of the identified minimum requirement.

The **Frequency** response delivered for **Frequency** deviations of less than 0.5 Hz should be no less than a figure which is directly proportional to the minimum **Frequency** response requirement for a **Frequency** deviation of 0.5 Hz. For example, if the **Frequency** deviation is 0.2 Hz, the corresponding minimum **Frequency** response requirement is 40% of the level shown in Figure CC.A.3.1. The **Frequency** response delivered for **Frequency** deviations of more than 0.5 Hz should be no less than the response delivered for a **Frequency** deviation of 0.5 Hz.

Each Generating Unit and/or CCGT Module and/or Power Park Module and/or DC Converter must be capable of providing some response, in keeping with its specific operational characteristics, when operating between 95% to 100% of Registered Capacity as illustrated by the dotted lines in Figure CC.A.3.1.

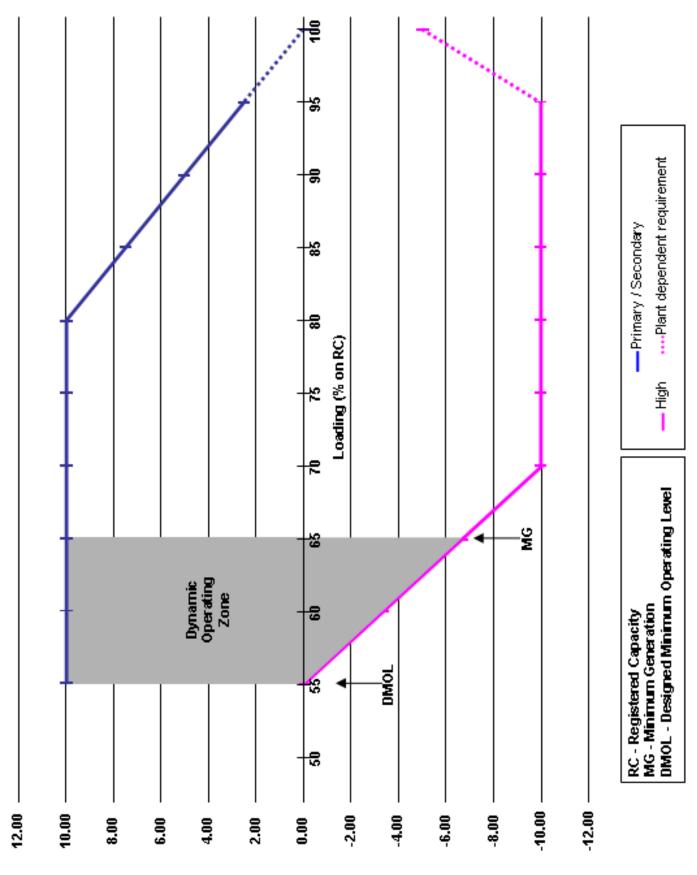
At the **Minimum Generation** level, each **Generating Unit** and/or **CCGT Module** and/or **Power Park Module** and/or **DC Converter** is required to provide high and low frequency response depending on the **System Frequency** conditions. Where the **Frequency** is high, the **Active Power** output is therefore expected to fall below the **Minimum Generation** level.

The Designed Minimum Operating Level is the output at which a Generating Unit and/or CCGT Module and/or Power Park Module and/or DC Converter has no High Frequency Response capability. It may be less than, but must not be more than, 55% of the Registered Capacity. This implies that a Generating Unit or CCGT Module or Power Park Module or DC Converter is not obliged to reduce its output to below this level unless the Frequency is at or above 50.5 Hz (cf BC3.7).

CC.A.3.4 <u>Testing of Frequency Response Capability</u>

The response capabilities shown diagrammatically in Figure CC.A.3.1 are measured by taking the responses as obtained from some of the dynamic response tests specified by **The Company** and carried out by **GB Generators** and **DC Converter Station** owners for compliance purposes and to validate the content of **Ancillary Services Agreements** using an injection of a **Frequency** change to the plant control system (i.e. governor and load controller). The injected signal is a linear ramp from zero to 0.5 Hz **Frequency** change over a ten second period, and is sustained at 0.5 Hz **Frequency** change thereafter, as illustrated diagrammatically in figures CC.A.3.2 and CC.A.3.3. In the case of an **Embedded Medium Power Station** not subject to a **Bilateral Agreement** or **Embedded DC Converter Station** not subject to a **Bilateral Agreement**, **The Company** may require the **Network Operator** within whose **System** the **Embedded Medium Power Station** or **Embedded DC Converter Station** is situated, to ensure that the **Embedded Person** performs the dynamic response tests reasonably required by **The Company** in order to demonstrate compliance within the relevant requirements in the **CC**.

The **Primary Response** capability (P) of a **Generating Unit** or a **CCGT Module** or **Power Park Module** or **DC Converter** is the minimum increase in **Active Power** output between 10 and 30 seconds after the start of the ramp injection as illustrated diagrammatically in Figure CC.A.3.2. This increase in **Active Power** output should be released increasingly with time over the period 0 to 10 seconds from the time of the start of the **Frequency** fall as illustrated by the response from Figure CC.A.3.2.


The **Secondary Response** capability (S) of a **Generating Unit** or a **CCGT Module** or **Power Park Module** or **DC Converter** is the minimum increase in **Active Power** output between 30 seconds and 30 minutes after the start of the ramp injection as illustrated diagrammatically in Figure CC.A.3.2.

The **High Frequency Response** capability (H) of a **Generating Unit** or a **CCGT Module** or **Power Park Module** or **DC Converter** is the decrease in **Active Power** output provided 10 seconds after the start of the ramp injection and sustained thereafter as illustrated diagrammatically in Figure CC.A.3.3. This reduction in **Active Power** output should be released increasingly with time over the period 0 to 10 seconds from the time of the start of the **Frequency** rise as illustrated by the response in Figure CC.A.3.2.

CC.A.3.5 Repeatability Of Response

When a **Generating Unit** or **CCGT Module** or **Power Park Module** or **DC Converter** has responded to a significant **Frequency** disturbance, its response capability must be fully restored as soon as technically possible. Full response capability should be restored no later than 20 minutes after the initial change of **System Frequency** arising from the **Frequency** disturbance.

Figure CC.A.3.1 - Minimum Frequency Response Requirement Profile for a 0.5 Hz frequency change from Target Frequency

Primary / Secondary / High Frequency Response levels (% on RC)

Figure CC.A.3.2 - Interpretation of Primary and Secondary Response Values

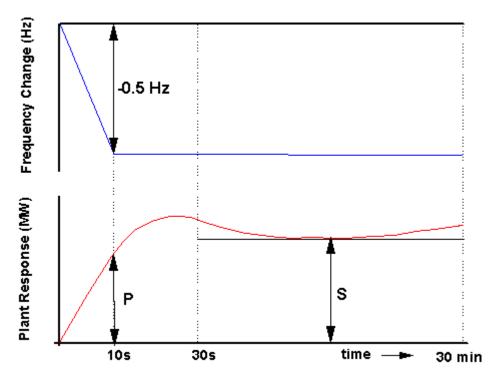
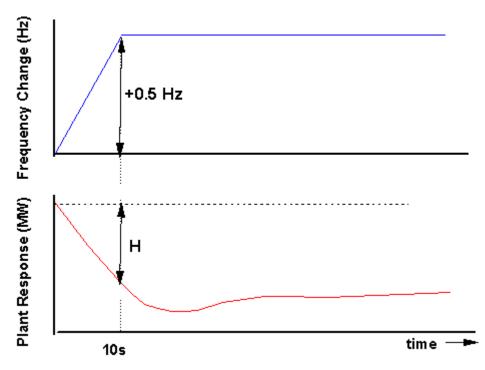
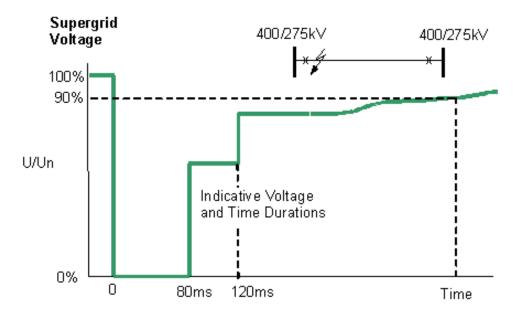



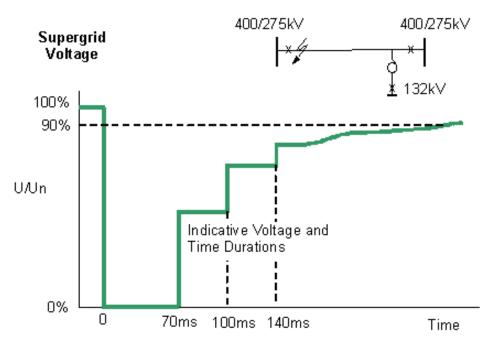
Figure CC.A.3.3 - Interpretation of High Frequency Response Values

APPENDIX 4 - FAULT RIDE THROUGH REQUIREMENTS


APPENDIX 4A - FAULT RIDE THROUGH REQUIREMENTS FOR ONSHORE SYNCHRONOUS GENERATING UNITS, ONSHORE POWER PARK MODULES, ONSHORE DC CONVERTERS OTSDUW PLANT AND APPARATUS AT THE INTERFACE POINT, OFFSHORE SYNCHRONOUS GENERATING UNITS IN A LARGE POWER STATION, OFFSHORE POWER PARK MODULES IN A LARGE POWER STATION AND OFFSHORE DC CONVERTERS IN A LARGE POWER STATION WHICH SELECT TO MEET THE FAULT RIDE THROUGH REQUIREMENTS AT THE INTERFACE POINT

CC.A.4A.1 <u>Scope</u>

The fault ride through requirement is defined in CC.6.3.15.1 (a), (b) and CC.6.3.15.3. This Appendix provides illustrations by way of examples only of CC.6.3.15.1 (a) (i) and further background and illustrations to CC.6.3.15.1 (1b) (i) and CC.6.3.15.1 (2b) (i) and is not intended to show all possible permutations.


CC.A.4A.2 Short Circuit Faults At Supergrid Voltage On The Onshore Transmission System Up To 140ms In Duration

For short circuit faults at **Supergrid Voltage** on the **Onshore Transmission System** (which could be at an **Interface Point**) up to 140ms in duration, the fault ride through requirement is defined in CC.6.3.15.1 (a) (i). Figures CC.A.4A.1 (a) and (b) illustrate two typical examples of voltage recovery for short-circuit faults cleared within 140ms by two circuit breakers (a) and three circuit breakers (b) respectively.

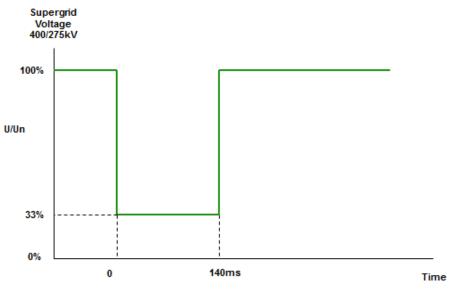
Typical fault cleared in less than 140ms: 2 ended circuit

Figure CC.A.4A.1 (a)

Typical fault cleared in 140ms:- 3 ended circuit

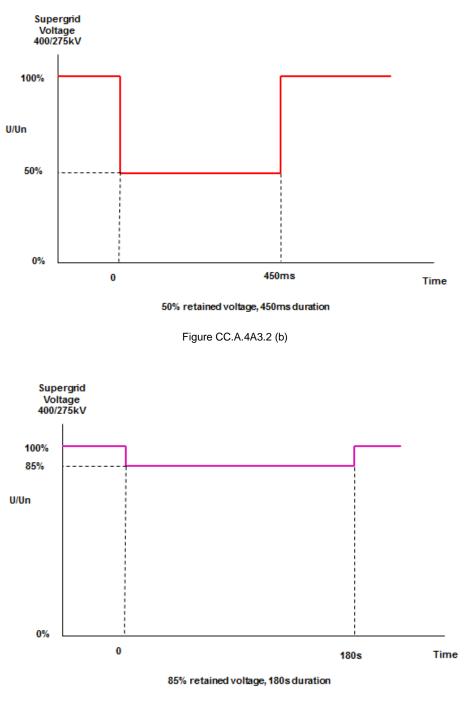
Figure CC.A.4A.1 (b)

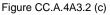
- CC.A.4A.3 <u>Supergrid Voltage Dips On The Onshore Transmission System Greater Than 140ms In</u> <u>Duration</u>
- CC.A.4A3.1 Requirements applicable to **Synchronous Generating Units** subject to **Supergrid Voltage** dips on the **Onshore Transmission System** greater than 140ms in duration.


For balanced **Supergrid Voltage** dips on the **Onshore Transmission System** having durations greater than 140ms and up to 3 minutes, the fault ride through requirement is defined in CC.6.3.15.1 (1b) and Figure 5a which is reproduced in this Appendix as Figure CC.A.4A3.1 and termed the voltage–duration profile.

This profile is not a voltage-time response curve that would be obtained by plotting the transient voltage response at a point on the **Onshore Transmission System** (or **User System** if located **Onshore**) to a disturbance. Rather, each point on the profile (i.e. the heavy black line) represents a voltage level and an associated time duration which connected **Synchronous Generating Units** must withstand or ride through.

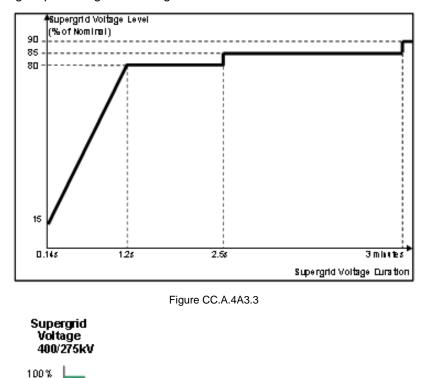
Figures CC.A.4A3.2 (a), (b) and (c) illustrate the meaning of the voltage-duration profile for voltage dips having durations greater than 140ms.




Figure CC.A.4A3.1

33% retained voltage, 140ms duration

Figure CC.A.4A3.2 (a)



CC.A.4A3.2 Requirements applicable to **Power Park Modules** or **OTSDUW Plant and Apparatus** subject to **Supergrid Voltage** dips on the **Onshore Transmission System** greater than 140ms in duration.

For balanced **Supergrid Voltage** dips on the **Onshore Transmission System** (which could be at an **Interface Point**) having durations greater than 140ms and up to 3 minutes the fault ride through requirement is defined in CC.6.3.15.1 (<u>2</u>b) and Figure 5<u>b</u> which is reproduced in this Appendix as Figure CC.A.4A<u>3</u>.3 and termed the voltage–duration profile.

This profile is not a voltage-time response curve that would be obtained by plotting the transient voltage response at a point on the **Onshore Transmission System** (or **User System** if located **Onshore**) to a disturbance. Rather, each point on the profile (i.e. the heavy black line) represents a voltage level and an associated time duration which connected **Power Park Modules** or **OTSDUW Plant and Apparatus** must withstand or ride through.

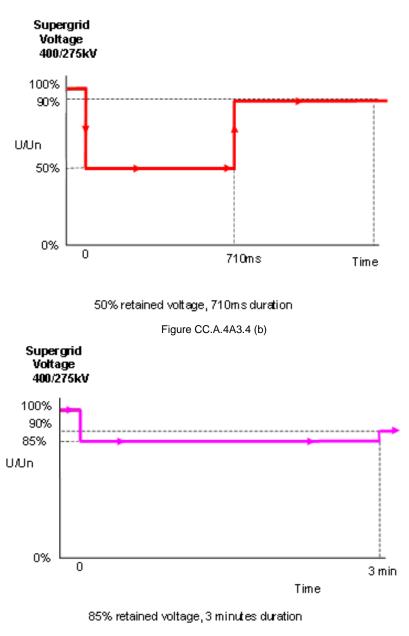
Figures CC.A.4A.4 (a), (b) and (c) illustrate the meaning of the voltage-duration profile for voltage dips having durations greater than 140ms.

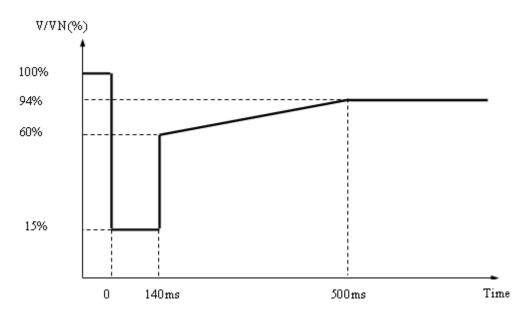
U/Un 30% 0% 0 0 384ms Time

30% retained voltage, 384ms duration

90%

Figure CC.A.4A3.4 (a)

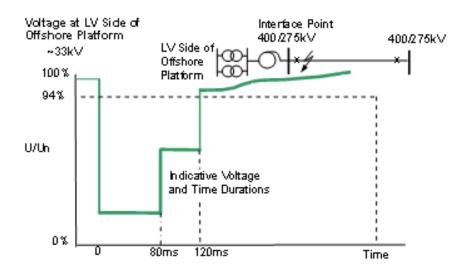



Figure CC.A.4A3.4 (c)

APPENDIX 4B - FAULT RIDE THROUGH REQUIREMENTS FOR OFFSHORE GENERATING UNITS IN A LARGE POWER STATION, OFFSHORE POWER PARK MODULES IN A LARGE POWER STATION AND OFFSHORE DC CONVERTERS IN A LARGE POWER STATION WHICH SELECT TO MEET THE FAULT RIDE THROUGH REQUIREMENTS AT THE LV SIDE OF THE OFFSHORE PLATFORM AS SPECIFIED IN CC.6.3.15.2

CC.A.4B.1 Scope
 The fault ride through requirement is defined in CC.6.3.15.2 (a), (b) and CC.6.3.15.3. This Appendix provides illustrations by way of examples only of CC.6.3.15.2 (a) (i) and further background and illustrations to CC.6.3.15.2 (1b) and CC.6.3.15.2 (2b) and is not intended to show all possible permutations.

CC.A.4B.2 Voltage Dips On The LV Side Of The Offshore Platform Up To 140ms In Duration


For voltage dips on the LV Side of the Offshore Platform which last up to 140ms in duration, the fault ride through requirement is defined in CC.6.3.15.2 (a) (i). This includes Figure 6 which is reproduced here in Figure CC.A.4B.1. The purpose of this requirement is to translate the conditions caused by a balanced or unbalanced fault which occurs on the Onshore Transmission System (which may include the Interface Point) at the LV Side of the Offshore Platform.

 V/V_N is the ratio of the voltage at the LV side of the Offshore Platform to the nominal voltage of the LV side of the Offshore Platform.

Figure CC.A.4B.1

Figures CC.A.4B.2 (a) and CC.A.4B.2 (b) illustrate two typical examples of the voltage recovery seen at the **LV Side of the Offshore Platform** for a short circuit fault cleared within 140ms by (a) two circuit breakers and (b) three circuit breakers on the **Onshore Transmission System**.

Typical fault cleared in less than 140ms: 2 ended circuit

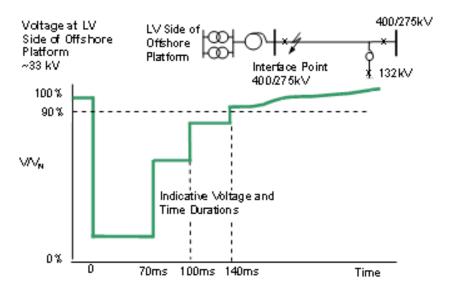
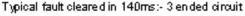
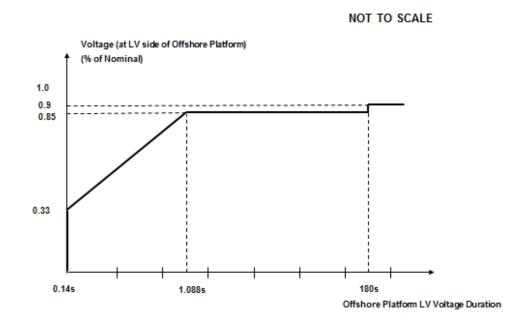



Figure CC.A.4B.2 (a)

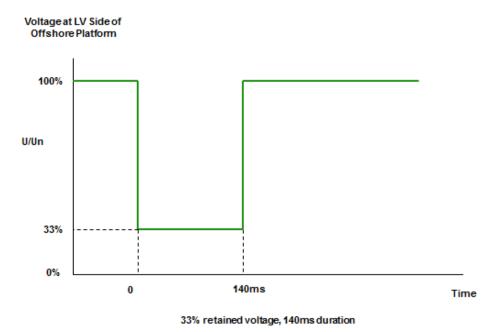
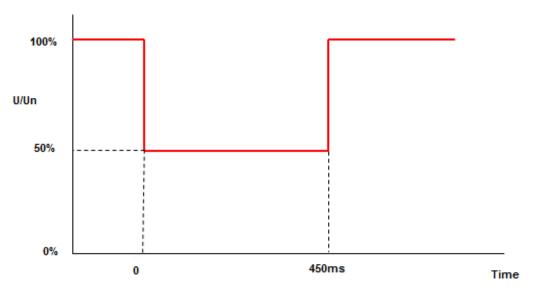

CCA.4B.3 <u>Voltage Dips Which Occur On The LV Side Of The Offshore Platform Greater Than 140ms</u> In Duration

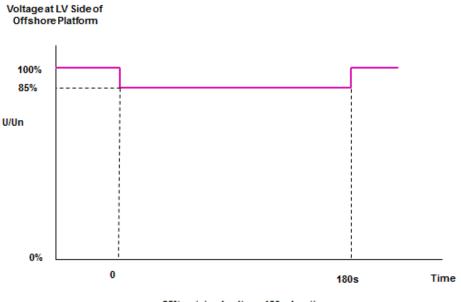
CC.A.4B.3.1 Requirements applicable to **Offshore Synchronous Generating Units** subject to voltage dips which occur on the **LV Side of the Offshore Platform** greater than 140ms in duration.

In addition to CC.A.4B.2 the fault ride through requirements applicable to **Offshore Synchronous Generating Units** during balanced voltage dips which occur at the **LV Side of the Offshore Platform** and having durations greater than 140ms and up to 3 minutes are defined in CC.6.3.15.2 (1b) and Figure 7a which is reproduced in this Appendix as Figure CC.A.4B3.1 and termed the voltage–duration profile.

This profile is not a voltage-time response curve that would be obtained by plotting the transient voltage response at the **LV Side of the Offshore Platform** to a disturbance. Rather, each point on the profile (i.e. the heavy black line) represents a voltage level and an associated time duration which connected **Offshore Synchronous Generating Units** must withstand or ride through.

Figures CC.A.4B3.2 (a), (b) and (c) illustrate the meaning of the voltage-duration profile for voltage dips having durations greater than 140ms.


Figure CC.A.4B3.2 (a)

50% retained voltage, 450ms duration

Figure CC.A.4B3.2 (b)

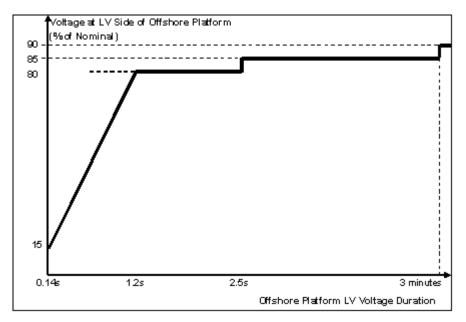
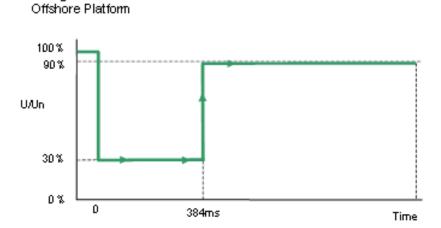
85% retained voltage, 180s duration

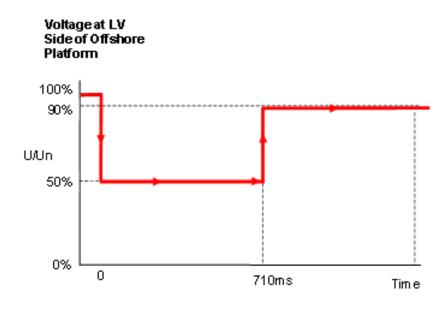
Figure CC.A.4B3.2 (c)

CC.A.4B.3.2 <u>Requirements applicable to Offshore Power Park Modules subject to Voltage which occur</u> on The LV Side Of The Offshore Platform greater than 140ms in duration.

In addition to CCA.4B.2 the fault ride through requirements applicable for **Offshore Power Park Modules** during balanced voltage dips which occur at the **LV Side of the Offshore Platform** and have durations greater than 140ms and up to 3 minutes are defined in CC.6.3.15.2 (2b) (i) and Figure 7b which is reproduced in this Appendix as Figure CC.A.4B.4 and termed the voltage–duration profile. This profile is not a voltage-time response curve that would be obtained by plotting the transient voltage response at the **LV Side of the Offshore Platform** to a disturbance. Rather, each point on the profile (i.e. the heavy black line) represents a voltage level and an associated time duration which connected **Offshore Power Park Modules** must withstand or ride through.

Figures CC.A.4B.5 (a), (b) and (c) illustrate the meaning of the voltage-duration profile for voltage dips having durations greater than 140ms.


Figure CC.A.4B.4

Voltage at LV Side of

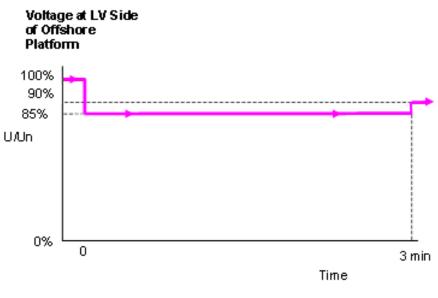

30% retained voltage, 384ms duration

Figure CC.A.4B.5 (a)

85% retained voltage, 3 minutes duration

Figure CC.A.4B.5(c)

APPENDIX 5 - TECHNICAL REQUIREMENTS LOW FREQUENCY RELAYS FOR THE AUTOMATIC DISCONNECTION OF SUPPLIES AT LOW FREQUENCY

CC.A.5.1 Low Frequency Relays

- CC.A.5.1.1 The **Low Frequency Relays** to be used shall have a setting range of 47.0 to 50Hz and be suitable for operation from a nominal AC input of 63.5, 110 or 240V. The following general parameters specify the requirements of approved **Low Frequency Relays** for automatic installations installed and commissioned after 1st April 2007 and provide an indication, without prejudice to the provisions that may be included in a **Bilateral Agreement**, for those installed and commissioned before 1st April 2007:
 - (a) **Frequency** settings: 47-50Hz in steps of 0.05Hz or better, preferably 0.01Hz;
 - (b) Operating time: Relay operating time shall not be more than 150 ms;
 - (c) Voltage lock-out: Selectable within a range of 55 to 90% of nominal voltage;
 - (d) Facility stages: One or two stages of **Frequency** operation;
 - (e) Output contacts: Two output contacts per stage to be capable of repetitively making and breaking for 1000 operations:
 (f) Accuracy: 0.01 Hz maximum error under reference environmental and system voltage conditions.
 - 0.05 Hz maximum error at 8% of total harmonic distortion **Electromagnetic Compatibility Level**.

CC.A.5.2 Low Frequency Relay Voltage Supplies

- CC.A.5.2.1 It is essential that the voltage supply to the **Low Frequency Relays** shall be derived from the primary **System** at the supply point concerned so that the **Frequency** of the **Low Frequency Relays** input voltage is the same as that of the primary **System**. This requires either:
 - (a) the use of a secure supply obtained from voltage transformers directly associated with the grid transformer(s) concerned, the supply being obtained where necessary via a suitable automatic voltage selection scheme; or
 - (b) the use of the substation 240V phase-to-neutral selected auxiliary supply, provided that this supply is always derived at the supply point concerned and is never derived from a standby supply **Generating Unit** or from another part of the **User System**.

CC.A.5.3 <u>Scheme Requirements</u>

- CC.A.5.3.1 The tripping facility should be engineered in accordance with the following reliability considerations:
 - (a) <u>Dependability</u>

Failure to trip at any one particular **Demand** shedding point would not harm the overall operation of the scheme. However, many failures would have the effect of reducing the amount of **Demand** under low **Frequency** control. An overall reasonable minimum requirement for the dependability of the **Demand** shedding scheme is 96%, i.e. the average probability of failure of each **Demand** shedding point should be less than 4%. Thus the **Demand** under low **Frequency** control will not be reduced by more than 4% due to relay failure.

(b) Outages

Low **Frequency Demand** shedding schemes will be engineered such that the amount of **Demand** under control is as specified in Table CC.A.5.5.1a and is not reduced unacceptably during equipment outage or maintenance conditions.

- CC.A.5.3.2 The total operating time of the scheme, including circuit breakers operating time, shall where reasonably practicable, be less than 200ms. For the avoidance of doubt, the replacement of plant installed prior to October 2009 will not be required in order to achieve lower total scheme operating times.
- CC.A.5.4 Low Frequency Relay Testing
- CC.A.5.4.1 **Low Frequency Relays** installed and commissioned after 1st January 2007 shall be type tested in accordance with and comply with the functional test requirements for **Frequency Protection** contained in Energy Networks Association Technical Specification 48-6-5 Issue 1 dated 2005 "ENA **Protection** Assessment Functional Test Requirements Voltage and Frequency **Protection**".

For the avoidance of doubt, **Low Frequency Relays** installed and commissioned before 1st January 2007 shall comply with the version of CC.A.5.1.1 applicable at the time such **Low Frequency Relays** were commissioned.

- CC.A.5.4.2 Each **Non-Embedded Customer** shall aim to execute testing on its low frequency demand disconnection relays installed within its network and in service at least once every three years, although this may be extended to no more than every five years if considered to be required for operational purposes.
- CC.A.5.4.3 Each **Network Operator** and **Relevant Transmission Licensee** shall aim to execute testing on its low frequency demand disconnection relays installed within its network and in service at least once every three years, although this may be extended to no more than every five years if considered to be required for operational purposes.

CC.A.5.5 <u>Scheme Settings</u>

CC.A.5.5.1 Table CC.A.5.5.1a shows, for each **Transmission Area**, the percentage of **Demand** (based on **Annual ACS Conditions**) at the time of forecast **National Electricity Transmission System** peak **Demand** that each **Network Operator** whose **System** is connected to the **Onshore Transmission System** within such **Transmission Area** shall disconnect by **Low Frequency Relays** at a range of frequencies. Where a **Network Operator's System** is connected to the **National Electricity Transmission System** in more than one **Transmission Area**, the settings for the **Transmission Area** in which the majority of the **Demand** is connected shall apply.

Frequency Hz	% Demand disconnection for each Network Operator in Transmission Area					
	NGET	SPT	SHETL			
48.8	5					
48.75	5					
48.7	10					
48.6	7.5		10			
48.5	7.5	10				
48.4	7.5	10	10			
48.2	7.5	10	10			
48.0	5	10	10			
47.8	5					
Total % Demand	60 Tubbi 00	40	40			

Table CC.A.5.5.1a

Note – the percentages in table CC.A.5.5.1a are cumulative such that, for example, should the frequency fall to 48.6 Hz in the **NGET Transmission Area**, 27.5% of the total **Demand** connected to the **National Electricity Transmission System** in the **NGET Transmission Area** shall be disconnected by the action of **Low Frequency Relays**.

The percentage **Demand** at each stage shall be allocated as far as reasonably practicable. The cumulative total percentage **Demand** is a minimum.

APPENDIX 6 - PERFORMANCE REQUIREMENTS FOR CONTINUOUSLY ACTING AUTOMATIC EXCITATION CONTROL SYSTEMS FOR ONSHORE SYNCHRONOUS GENERATING UNITS

CC.A.6.1 Scope

- CC.A.6.1.1 This Appendix sets out the performance requirements of continuously acting automatic excitation control systems for **Onshore Synchronous Generating Units** that must be complied with by the **GB Code User**. This Appendix does not limit any site specific requirements that may be included in a **Bilateral Agreement** where in **The Company's** reasonable opinion these facilities are necessary for system reasons.
- CC.A.6.1.2 Where the requirements may vary the likely range of variation is given in this Appendix. It may be necessary to specify values outside this range where **The Company** identifies a system need, and notwithstanding anything to the contrary **The Company** may specify in the **Bilateral Agreement** values outside of the ranges provided in this Appendix 6. The most common variations are in the on-load excitation ceiling voltage requirements and the response time required of the **Exciter**. Actual values will be included in the **Bilateral Agreement**.
- CC.A.6.1.3 Should a **GB Generator** anticipate making a change to the excitation control system it shall notify **The Company** under the **Planning Code** (PC.A.1.2(b) and (c)) as soon as the **GB Generator** anticipates making the change. The change may require a revision to the **Bilateral Agreement**.

CC.A.6.2 <u>Requirements</u>

- CC.A.6.2.1 The Excitation System of an Onshore Synchronous Generating Unit shall include an excitation source (Exciter), a Power System Stabiliser and a continuously acting Automatic Voltage Regulator (AVR) and shall meet the following functional specification.
- CC.A.6.2.2 In respect of **Onshore Synchronous Generating Units** with a **Completion Date** on or after 1 January 2009, and **Onshore Synchronous Generating Units** with a **Completion Date** before 1 January 2009 subject to a **Modification** to the excitation control facilities where the **Bilateral Agreement** does not specify otherwise, the continuously acting automatic excitation control system shall include a **Power System Stabiliser (PSS)** as a means of supplementary control. The functional specification of the **Power System Stabiliser** is included in CC.A.6.2.5.
- CC.A.6.2.3 Steady State Voltage Control
- CC.A.6.2.3.1 An accurate steady state control of the **Onshore Generating Unit** pre-set terminal voltage is required. As a measure of the accuracy of the steady-state voltage control, the **Automatic Voltage Regulator** shall have static zero frequency gain, sufficient to limit the change in terminal voltage to a drop not exceeding 0.5% of rated terminal voltage, when the **Onshore Generating Unit** output is gradually changed from zero to rated MVA output at rated voltage, **Active Power** and **Frequency**.

CC.A.6.2.4 <u>Transient Voltage Control</u>

- CC.A.6.2.4.1 For a step change from 90% to 100% of the nominal **Onshore Generating Unit** terminal voltage, with the **Onshore Generating Unit** on open circuit, the **Excitation System** response shall have a damped oscillatory characteristic. For this characteristic, the time for the **Onshore Generating Unit** terminal voltage to first reach 100% shall be less than 0.6 seconds. Also, the time to settle within 5% of the voltage change shall be less than 3 seconds.
- CC.A.6.2.4.2 To ensure that adequate synchronising power is maintained, when the **Onshore Generating Unit** is subjected to a large voltage disturbance, the **Exciter** whose output is varied by the **Automatic Voltage Regulator** shall be capable of providing its achievable upper and lower limit ceiling voltages to the **Onshore Generating Unit** field in a time not exceeding that specified in the **Bilateral Agreement**. This will normally be not less than 50ms and not greater than 300ms. The achievable upper and lower limit ceiling voltages may be dependent on the voltage disturbance.

CC.A.6.2.4.3 The Exciter shall be capable of attaining an Excitation System On Load Positive Ceiling Voltage of not less than a value specified in the Bilateral Agreement that will be:

not less than 2 per unit (pu)

normally not greater than 3 pu

exceptionally up to 4 pu

of **Rated Field Voltage** when responding to a sudden drop in voltage of 10 percent or more at the **Onshore Generating Unit** terminals. **The Company** may specify a value outside the above limits where **The Company** identifies a **System** need.

- CC.A.6.2.4.4 If a static type **Exciter** is employed:
 - (i) the field voltage should be capable of attaining a negative ceiling level specified in the Bilateral Agreement after the removal of the step disturbance of CC.A.6.2.4.3. The specified value will be 80% of the value specified in CC.A.6.2.4.3. The Company may specify a value outside the above limits where The Company identifies a system need.
 - the Exciter must be capable of maintaining free firing when the Onshore Generating Unit terminal voltage is depressed to a level which may be between 20% to 30% of rated terminal voltage
 - (iii) the Exciter shall be capable of attaining a positive ceiling voltage not less than 80% of the Excitation System On Load Positive Ceiling Voltage upon recovery of the Onshore Generating Unit terminal voltage to 80% of rated terminal voltage following fault clearance. The Company may specify a value outside the above limits where The Company identifies a system need.
 - (iv) The requirement to provide a separate power source for the Exciter will be specified in the Bilateral Agreement if The Company, in coordination with the Relevant Transmission Licensee, identifies a Transmission System need.
- CC.A.6.2.5 Power Oscillations Damping Control
- CC.A.6.2.5.1 To allow the **Onshore Generating Unit** to maintain second and subsequent swing stability and also to ensure an adequate level of low frequency electrical damping power, the **Automatic Voltage Regulator** shall include a **Power System Stabiliser** as a means of supplementary control.
- CC.A.6.2.5.2 Whatever supplementary control signal is employed, it shall be of the type which operates into the **Automatic Voltage Regulator** to cause the field voltage to act in a manner which results in the damping power being improved while maintaining adequate synchronising power.
- CC.A.6.2.5.3 The arrangements for the supplementary control signal shall ensure that the **Power System Stabiliser** output signal relates only to changes in the supplementary control signal and not the steady state level of the signal. For example, if generator electrical power output is chosen as a supplementary control signal then the **Power System Stabiliser** output should relate only to changes in generator electrical power output and not the steady state level of power output. Additionally the **Power System Stabiliser** should not react to mechanical power changes in isolation for example during rapid changes in steady state load or when providing frequency response.
- CC.A.6.2.5.4 The output signal from the **Power System Stabiliser** shall be limited to not more than ±10% of the **Onshore Generating Unit** terminal voltage signal at the **Automatic Voltage Regulator** input. The gain of the **Power System Stabiliser** shall be such that an increase in the gain by a factor of 3 shall not cause instability.
- CC.A.6.2.5.5 The **Power System Stabiliser** shall include elements that limit the bandwidth of the output signal. The bandwidth limiting must ensure that the highest frequency of response cannot excite torsional oscillations on other plant connected to the network. A bandwidth of 0-5Hz would be judged to be acceptable for this application.

- CC.A.6.2.5.6 The **GB Generator** will agree **Power System Stabiliser** settings with **The Company**, in coordination with the **Relevant Transmission Licensee** prior to the on-load commissioning detailed in BC2.11.2(d). To allow assessment of the performance before on-load commissioning the **GB Generator** will provide to **The Company** a report covering the areas specified in CP.A.3.2.1.
- CC.A.6.2.5.7 The **Power System Stabiliser** must be active within the **Excitation System** at all times when **Synchronised** including when the **Under Excitation Limiter** or **Over Excitation Limiter** are active. When operating at low load when **Synchronising** or **De-Synchronising** an **Onshore Generating Unit**, the **Power System Stabiliser** may be out of service.
- CC.A.6.2.5.8 Where a **Power System Stabiliser** is fitted to a **Pumped Storage Unit** it must function when the **Pumped Storage Unit** is in both generating and pumping modes.
- CC.A.6.2.6 Overall Excitation System Control Characteristics
- CC.A.6.2.6.1 The overall **Excitation System** shall include elements that limit the bandwidth of the output signal. The bandwidth limiting must be consistent with the speed of response requirements and ensure that the highest frequency of response cannot excite torsional oscillations on other plant connected to the network. A bandwidth of 0-5 Hz will be judged to be acceptable for this application.
- CC.A.6.2.6.2 The response of the Automatic Voltage Regulator combined with the Power System Stabiliser shall be demonstrated by injecting similar step signal disturbances into the Automatic Voltage Regulator reference as detailed in OC5A.2.2 and OC5A.2.4. The Automatic Voltage Regulator shall include a facility to allow step injections into the Automatic Voltage Regulator voltage reference, with the Onshore Generating Unit operating at points specified by The Company (up to rated MVA output). The damping shall be judged to be adequate if the corresponding Active Power response to the disturbances decays within two cycles of oscillation.
- CC.A.6.2.6.3 A facility to inject a band limited random noise signal into the **Automatic Voltage Regulator** voltage reference shall be provided for demonstrating the frequency domain response of the **Power System Stabiliser**. The tuning of the **Power System Stabiliser** shall be judged to be adequate if the corresponding **Active Power** response shows improved damping with the **Power System Stabiliser** in combination with the **Automatic Voltage Regulator** compared with the **Automatic Voltage Regulator** alone over the frequency range 0.3Hz 2Hz.

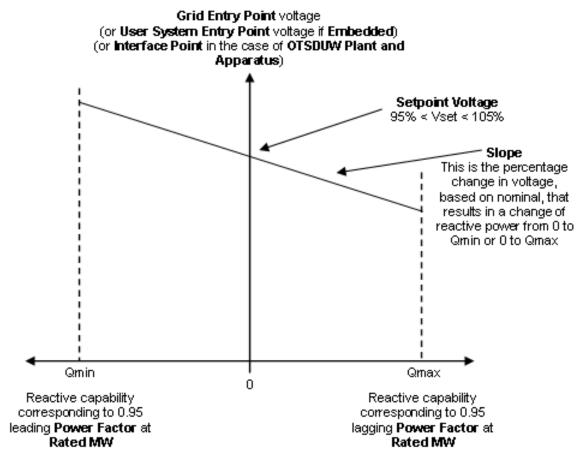
CC.A.6.2.7 <u>Under-Excitation Limiters</u>

- CC.A.6.2.7.1 The security of the power system shall also be safeguarded by means of MVAr Under Excitation Limiters fitted to the generator Excitation System. The Under Excitation Limiter shall prevent the Automatic Voltage Regulator reducing the generator excitation to a level which would endanger synchronous stability. The Under Excitation Limiter shall operate when the excitation system is providing automatic control. The Under Excitation Limiter shall respond to changes in the Active Power (MW) and the Reactive Power (MVAr), and to the square of the generator voltage in such a direction that an increase in voltage will permit an increase in leading MVAr. The characteristic of the Under Excitation Limiter shall be substantially linear from no-load to the maximum Active Power output of the Onshore Generating Unit at any setting and shall be readily adjustable.
- CC.A.6.2.7.2 The performance of the **Under Excitation Limiter** shall be independent of the rate of change of the **Onshore Generating Unit** load and shall be demonstrated by testing as detailed in OC5.A.2.5. The resulting maximum overshoot in response to a step injection which operates the **Under Excitation Limiter** shall not exceed 4% of the **Onshore Generating Unit** rated MVA. The operating point of the **Onshore Generating Unit** shall be returned to a steady state value at the limit line and the final settling time shall not be greater than 5 seconds. When the step change in **Automatic Voltage Regulator** reference voltage is reversed, the field voltage should begin to respond without any delay and should not be held down by the **Under Excitation Limiter**. Operation into or out of the preset limit levels shall ensure that any resultant oscillations are damped so that the disturbance is within 0.5% of the **Onshore Generating Unit** MVA rating within a period of 5 seconds.

- CC.A.6.2.7.3 The **GB Generator** shall also make provision to prevent the reduction of the **Onshore Generating Unit** excitation to a level which would endanger synchronous stability when the **Excitation System** is under manual control.
- CC.A.6.2.8 Over-Excitation Limiters
- CC.A.6.2.8.1 The settings of the **Over-Excitation Limiter**, where it exists, shall ensure that the **Generating Unit's** excitation is not limited to less than the maximum value that can be achieved whilst ensuring the **Onshore Generating Unit** is operating within its design limits. If the **Generating Unit's** excitation is reduced following a period of operation at a high level, the rate of reduction shall not exceed that required to remain within any time dependent operating characteristics of the **Onshore Generating Unit**.
- CC.A.6.2.8.2 The performance of the **Over-Excitation Limiter**, where it exists, shall be demonstrated by testing as described in OC5.A.2.6. Any operation beyond the **Over-Excitation Limit** shall be controlled by the **Over-Excitation Limiter** without the operation of any **Protection** that could trip the **Onshore Generating Unit**.
- CC.A.6.2.8.3 The **GB Generator** shall also make provision to prevent any over-excitation restriction of the generator when the **Excitation System** is under manual control, other than that necessary to ensure the **Onshore Generating Unit** is operating within its design limits.

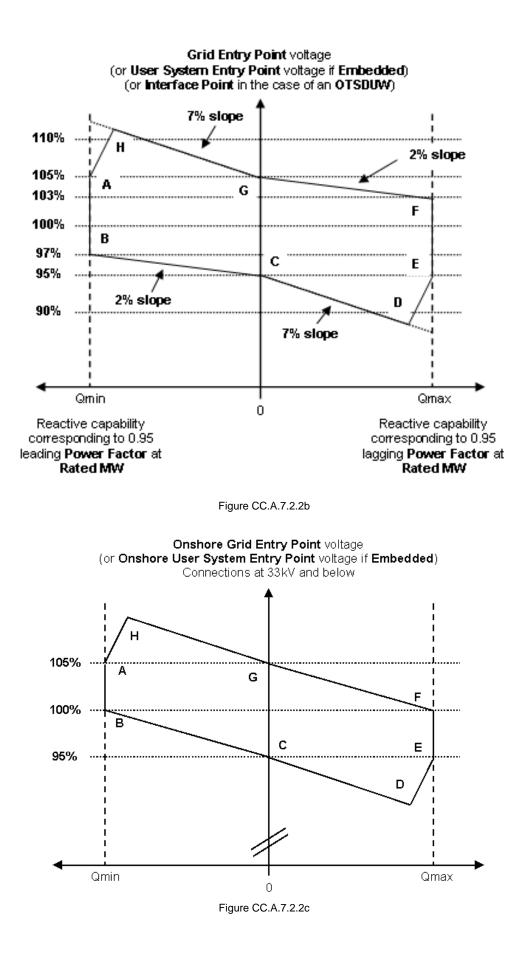
APPENDIX 7 - PERFORMANCE REQUIREMENTS FOR CONTINUOUSLY ACTING AUTOMATIC VOLTAGE CONTROL SYSTEMS FOR ONSHORE NON-SYNCHRONOUS GENERATING UNITS, ONSHORE DC CONVERTERS, ONSHORE POWER PARK MODULES AND OTSDUW PLANT AND APPARATUS AT THE INTERFACE POINT

CC.A.7.1 <u>Scope</u>


- CC.A.7.1.1 This Appendix sets out the performance requirements of continuously acting automatic voltage control systems for Onshore Non-Synchronous Generating Units, Onshore DC Converters, Onshore Power Park Modules and OTSDUW Plant and Apparatus at the Interface Point that must be complied with by the GB Code User. This Appendix does not limit any site specific requirements that may be included in a Bilateral Agreement where in The Company's reasonable opinion these facilities are necessary for system reasons.
- CC.A.7.1.2 Proposals by **GB Generators** to make a change to the voltage control systems are required to be notified to **The Company** under the **Planning Code** (PC.A.1.2(b) and (c)) as soon as the **GB Generator** anticipates making the change. The change may require a revision to the **Bilateral Agreement**.

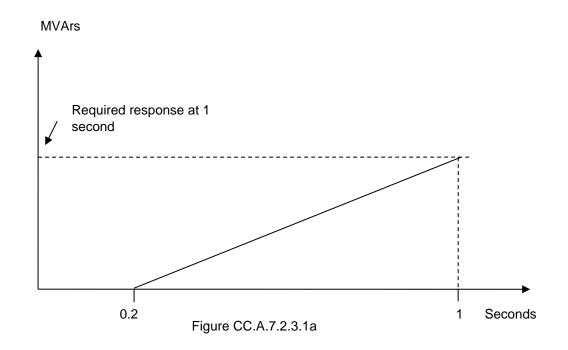
CC.A.7.2 Requirements

CC.A.7.2.1 The Company requires that the continuously acting automatic voltage control system for the Onshore Non-Synchronous Generating Unit, Onshore DC Converter or Onshore Power Park Module or OTSDUW Plant and Apparatus shall meet the following functional performance specification. If a Network Operator has confirmed to The Company that its network to which an Embedded Onshore Non-Synchronous Generating Unit, Onshore DC Converter, Onshore Power Park Module or OTSDUW Plant and Apparatus is connected is restricted such that the full reactive range under the steady state voltage control requirements (CC.A.7.2.2) cannot be utilised, The Company may specify in the Bilateral Agreement alternative limits to the steady state voltage control range that reflect these restrictions. Where the **Network Operator** subsequently notifies **The Company** that such restriction has been removed, The Company may propose a Modification to the Bilateral Agreement (in accordance with the CUSC contract) to remove the alternative limits such that the continuously acting automatic voltage control system meets the following functional performance specification. All other requirements of the voltage control system will remain as in this Appendix.


CC.A.7.2.2 Steady State Voltage Control

CC.A.7.2.2.1 The Onshore Non-Synchronous Generating Unit, Onshore DC Converter, Onshore Power Park Module or OTSDUW Plant and Apparatus shall provide continuous steady state control of the voltage at the Onshore Grid Entry Point (or Onshore User System Entry Point if Embedded) (or the Interface Point in the case of OTSDUW Plant and Apparatus) with a Setpoint Voltage and Slope characteristic as illustrated in Figure CC.A.7.2.2a. It should be noted that where the Reactive Power capability requirement of a directly connected Onshore Non-Synchronous Generating Unit, Onshore DC Converter, Onshore Power Park Module in Scotland, or OTSDUW Plant and Apparatus in Scotland as specified in CC.6.3.2 (c), is not at the Onshore Grid Entry Point or Interface Point, the values of Qmin and Qmax shown in this figure will be as modified by the 33/132kV or 33/275kV or 33/400kV transformer.

Figure CC.A.7.2.2a


- CC.A.7.2.2.2 The continuously acting automatic control system shall be capable of operating to a **Setpoint Voltage** between 95% and 105% with a resolution of 0.25% of the nominal voltage. For the avoidance of doubt, values of 95%, 95.25%, 95.5% ... may be specified, but not intermediate values. The initial **Setpoint Voltage** will be 100%. The tolerance within which this **Setpoint Voltage** shall be achieved is specified in BC2.A.2.6. For the avoidance of doubt, with a tolerance of 0.25% and a **Setpoint Voltage** of 100%, the achieved value shall be between 99.75% and 100.25%. **The Company** may request the **GB Generator** to implement an alternative **Setpoint Voltage** within the range of 95% to 105%. For **Embedded GB Generators** the **Setpoint Voltage** will be discussed between **The Company** and the relevant **Network Operator** and will be specified to ensure consistency with CC.6.3.4.
- CC.A.7.2.2.3 The **Slope** characteristic of the continuously acting automatic control system shall be adjustable over the range 2% to 7% (with a resolution of 0.5%). For the avoidance of doubt values of 2%, 2.5%, 3% may be specified, but not intermediate values. The initial **Slope** setting will be 4%. The tolerance within which this **Slope** shall be achieved is specified in BC2.A.2.6. For the avoidance of doubt, with a tolerance of 0.5% and a **Slope** setting of 4%, the achieved value shall be between 3.5% and 4.5%. **The Company** may request the **GB Generator** to implement an alternative slope setting within the range of 2% to 7%. For **Embedded GB Generators** the **Slope** setting will be discussed between **The Company** and the relevant **Network Operator** and will be specified to ensure consistency with CC.6.3.4.

- CC.A.7.2.2.4 Figure CC.A.7.2.2b shows the required envelope of operation for **Onshore Non-Synchronous Generating Units**, **Onshore DC Converters**, **OTSDUW Plant and Apparatus** and **Onshore Power Park Modules** except for those **Embedded** at 33kV and below or directly connected to the **National Electricity Transmission System** at 33kV and below. Figure CC.A.7.2.2c shows the required envelope of operation for **Onshore Non-Synchronous Generating Units**, **Onshore DC Converters** and **Onshore Power Park Modules Embedded** at 33kV and below or directly connected to the **National Electricity Transmission System** at 33kV and below. Where the **Reactive Power** capability requirement of a directly connected **Onshore Non-Synchronous Generating Unit**, **Onshore DC Converter**, **OTSDUW Plant and Apparatus** or **Onshore Power Park Module** in Scotland, as specified in CC.6.3.2 (c), is not at the **Onshore Grid Entry Point** or **Interface Point** in the case of **OTSDUW Plant and Apparatus**, the values of Qmin and Qmax shown in this figure will be as modified by the 33/132kV or 33/275kV or 33/400kV transformer. The enclosed area within points ABCDEFGH is the required capability range within which the **Slope** and **Setpoint Voltage** can be changed.
- CC.A.7.2.2.5 Should the operating point of the **Onshore Non-Synchronous Generating Unit**, **Onshore DC Converter**, **OTSDUW Plant and Apparatus** or **Onshore Power Park Module** deviate so that it is no longer a point on the operating characteristic (figure CC.A.7.2.2a) defined by the target **Setpoint Voltage** and **Slope**, the continuously acting automatic voltage control system shall act progressively to return the value to a point on the required characteristic within 5 seconds.
- Should the Reactive Power output of the Onshore Non-Synchronous Generating Unit, CC.A.7.2.2.6 Onshore DC Converter, OTSDUW Plant and Apparatus or Onshore Power Park Module reach its maximum lagging limit at an Onshore Grid Entry Point voltage (or Onshore User System Entry Point voltage if Embedded or Interface Point in the case of OTSDUW Plant and Apparatus) above 95%, the Onshore Non-Synchronous Generating Unit, Onshore DC Converter, OTSDUW Plant and Apparatus or Onshore Power Park Module shall maintain maximum lagging Reactive Power output for voltage reductions down to 95%. This requirement is indicated by the line EF in figures CC.A.7.2.2b and CC.A.7.2.2c. Should the Reactive Power output of the Onshore Non-Synchronous Generating Unit, Onshore DC Converter, OTSDUW Plant and Apparatus or Onshore Power Park Module reach its maximum leading limit at an Onshore Grid Entry Point voltage (or Onshore User System Entry Point voltage if Embedded or Interface Point in the case of OTSDUW Plant and Apparatus) below 105%, the Onshore Non-Synchronous Generating Unit, Onshore DC Converter, OTSDUW Plant and Apparatus or Onshore Power Park Module shall maintain maximum leading Reactive Power output for voltage increases up to 105%. This requirement is indicated by the line AB in figures CC.A.7.2.2b and CC.A.7.2.2c.

- CC.A.7.2.2.7 For Onshore Grid Entry Point voltages (or Onshore User System Entry Point voltages if Embedded or Interface Point voltages) below 95%, the lagging Reactive Power capability of the Onshore Non-Synchronous Generating Unit, Onshore DC Converter, OTSDUW Plant and Apparatus or Onshore Power Park Module should be that which results from the supply of maximum lagging reactive current whilst ensuring the current remains within design operating limits. An example of the capability is shown by the line DE in figures CC.A.7.2.2b and CC.A.7.2.2c. For Onshore Grid Entry Point voltages (or User System Entry Point voltages if Embedded or Interface Point voltages) above 105%, the leading Reactive Power capability of the Onshore Non-Synchronous Generating Unit, Onshore DC Converter, OTSDUW Plant and Apparatus or Onshore Power Park Module should be that which results from the supply of maximum leading reactive current whilst ensuring the current remains within design operating limits. An example of the capability is shown by the line AH in figures CC.A.7.2.2b and CC.A.7.2.2c. Should the Reactive Power output of the Onshore Non-Synchronous Generating Unit, Onshore DC Converter, OTSDUW Plant and Apparatus or Onshore Power Park Module reach its maximum lagging limit at an Onshore Grid Entry Point voltage (or Onshore User System Entry Point voltage if Embedded or Interface Point in the case of OTSDUW Plant and Apparatus) below 95%, the Onshore Non-Synchronous Generating Unit, Onshore DC Converter or Onshore Power Park **Module** shall maintain maximum lagging reactive current output for further voltage decreases. Should the Reactive Power output of the Onshore Non-Synchronous Generating Unit, Onshore DC Converter, OTSDUW Plant and Apparatus or Onshore Power Park Module reach its maximum leading limit at a Onshore Grid Entry Point voltage (or User System Entry Point voltage if Embedded or Interface Point voltage in the case of an OTSDUW Plant and Apparatus) above 105%, the Onshore Non-Synchronous Generating Unit, Onshore DC Converter, OTSDUW Plant and Apparatus or Onshore Power Park Module shall maintain maximum leading reactive current output for further voltage increases.
- CC.A.7.2.2.8 All **OTSDUW Plant and Apparatus** must be capable of enabling **GB Code Users** undertaking **OTSDUW** to comply with an instruction received from **The Company** relating to a variation of the **Setpoint Voltage** at the **Interface Point** within 2 minutes of such instruction being received.
- CC.A.7.2.2.9 For OTSDUW Plant and Apparatus connected to a Network Operator's System where the Network Operator has confirmed to The Company that its System is restricted in accordance with CC.A.7.2.1, clause CC.A.7.2.2.8 will not apply unless The Company can reasonably demonstrate that the magnitude of the available change in Reactive Power has a significant effect on voltage levels on the Onshore National Electricity Transmission System.
- CC.A.7.2.3 Transient Voltage Control
- CC.A.7.2.3.1 For an on-load step change in **Onshore Grid Entry Point** or **Onshore User System Entry Point** voltage, or in the case of **OTSDUW Plant and Apparatus** an on-load step change in **Transmission Interface Point** voltage, the continuously acting automatic control system shall respond according to the following minimum criteria:
 - (i) the Reactive Power output response of the Onshore Non-Synchronous Generating Unit, Onshore DC Converter, OTSDUW Plant and Apparatus or Onshore Power Park Module shall commence within 0.2 seconds of the application of the step. It shall progress linearly although variations from a linear characteristic shall be acceptable provided that the MVAr seconds delivered at any time up to 1 second are at least those that would result from the response shown in figure CC.A.7.2.3.1a.
 - (ii) the response shall be such that 90% of the change in the Reactive Power output of the Onshore Non-Synchronous Generating Unit, Onshore DC Converter, OTSDUW Plant and Apparatus or Onshore Power Park Module, will be achieved within
 - 1 second, where the step is sufficiently large to require a change in the steady state Reactive Power output from zero to its maximum leading value or maximum lagging value, as required by CC.6.3.2 (or, if appropriate, CC.A.7.2.2.6 or CC.A.7.2.2.7); and

- 2 seconds, for Plant and Apparatus installed on or after 1 December 2017, where the step is sufficiently large to require a change in the steady state Reactive Power output from its maximum leading value to its maximum lagging value or vice versa.
- (iii) the magnitude of the **Reactive Power** output response produced within 1 second shall vary linearly in proportion to the magnitude of the step change.
- (iv) within 2 seconds from achieving 90% of the response as defined in CC.A.7.2.3.1 (ii), the peak to peak magnitude of any oscillations shall be less than 5% of the change in steady state **Reactive Power**.
- (v) following the transient response, the conditions of CC.A.7.2.2 apply.

CC.A.7.2.3.2 An Onshore Non-Synchronous Generating Unit, Onshore DC Converter, OTSDUW Plant and Apparatus or Onshore Power Park Module installed on or after 1 December 2017 shall be capable of;

- (a) changing its **Reactive Power** output from its maximum lagging value to its maximum leading value, or vice versa, then reverting back to the initial level of **Reactive Power** output once every 15 seconds for at least 5 times within any 5 minute period; and
- (b) changing its Reactive Power output from zero to its maximum leading value then reverting back to zero Reactive Power output at least 25 times within any 24 hour period and from zero to its maximum lagging value then reverting back to zero Reactive Power output at least 25 times within any 24 hour period. Any subsequent restriction on reactive capability shall be notified to The Company in accordance with BC2.5.3.2, and BC2.6.1.

In all cases, the response shall be in accordance to CC.A.7.2.3.1 where the change in **Reactive Power** output is in response to an on-load step change in **Onshore Grid Entry Point** or **Onshore User System Entry Point** voltage, or in the case of **OTSDUW Plant and Apparatus** an on-load step change in **Transmission Interface Point** voltage.

CC.A.7.2.4 Power Oscillation Damping

- CC.A.7.2.4.1 The requirement for the continuously acting voltage control system to be fitted with a **Power System Stabiliser (PSS)** shall be specified in the **Bilateral Agreement** if, in **The Company's** view, this is required for system reasons. However if a **Power System Stabiliser** is included in the voltage control system its settings and performance shall be agreed with **The Company** and commissioned in accordance with BC2.11.2. To allow assessment of the performance before on-load commissioning the **GB Generator** will provide to **The Company** a report covering the areas specified in CP.A.3.2.2.
- CC.A.7.2.5 Overall Voltage Control System Characteristics
- CC.A.7.2.5.1 The continuously acting automatic voltage control system is required to respond to minor variations, steps, gradual changes or major variations in **Onshore Grid Entry Point** voltage (or **Onshore User System Entry Point** voltage if **Embedded** or **Interface Point** voltage in the case of **OTSDUW Plant and Apparatus**).
- CC.A.7.2.5.2 The overall voltage control system shall include elements that limit the bandwidth of the output signal. The bandwidth limiting must be consistent with the speed of response requirements and ensure that the highest frequency of response cannot excite torsional oscillations on other plant connected to the network. A bandwidth of 0-5Hz would be judged to be acceptable for this application. All other control systems employed within the **Onshore Non-Synchronous Generating Unit**, **Onshore DC Converter**, **OTSDUW Plant and Apparatus** or **Onshore Power Park Module** should also meet this requirement
- CC.A.7.2.5.3 The response of the voltage control system (including the **Power System Stabiliser** if employed) shall be demonstrated by testing in accordance with OC5A.A.3.

< END OF CONNECTION CONDITIONS >

EUROPEAN CONNECTION CONDITIONS

(ECC)

CONTENTS

(This contents page does not form part of the Grid Code)

Paragraph No/Title

Page Number

ECC.1	INTRODUCTION
ECC.2	OBJECTIVE
ECC.3	SCOPE
ECC.4	PROCEDURE
ECC.5	CONNECTION
ECC.6	TECHNICAL, DESIGN AND OPERATIONAL CRITERIA
ECC.7	SITE RELATED CONDITIONS
ECC.8	ANCILLARY SERVICES
APPEN	DIX E1 - SITE RESPONSIBILITY SCHEDULES
PR	OFORMA FOR SITE RESPONSIBILITY SCHEDULE
APPEN	DIX E2 - OPERATION DIAGRAMS
PA	RT 1A - PROCEDURES RELATING TO OPERATION DIAGRAMS
PA	RT E1B - PROCEDURES RELATING TO GAS ZONE DIAGRAMS
	RT E2 - NON-EXHAUSTIVE LIST OF APPARATUS TO BE INCLUDED ON OPERATION AGRAMS
OPERA	DIX E3 - MINIMUM FREQUENCY RESPONSE CAPABILITY REQUIREMENT PROFILE AND TING RANGE FOR POWER GENERATING MODULES AND HVDC EQUIPMENT
APPEN	DIX 4 - FAULT RIDE THROUGH REQUIREMENTS 109
	DIX E5 - TECHNICAL REQUIREMENTS LOW FREQUENCY RELAYS FOR THE AUTOMATIC NNECTION OF SUPPLIES AT LOW FREQUENCY
	DIX E6 - PERFORMANCE REQUIREMENTS FOR CONTINUOUSLY ACTING AUTOMATIC ATION CONTROL SYSTEMS FOR ONSHORE SYNCHRONOUS GENERATING UNITS 118
VOLTA ONSHC	DIX E7 - PERFORMANCE REQUIREMENTS FOR CONTINUOUSLY ACTING AUTOMATIC GE CONTROL SYSTEMS FOR ONSHORE NON-SYNCHRONOUS GENERATING UNITS, DRE DC CONVERTERS, ONSHORE POWER PARK MODULES AND OTSDUW PLANT AND ATUS AT THE INTERFACE POINT
VOLTA	DIX E8 - PERFORMANCE REQUIREMENTS FOR CONTINUOUSLY ACTING AUTOMATIC GE CONTROL SYSTEMS FOR CONFIGURATION 2 AC CONNECTED OFFSHORE POWER MODULES AND CONFIGURATION 2 DC CONNECTED POWER PARK MODULES

ECC.1 INTRODUCTION

- ECC.1.1 The European Connection Conditions ("ECC") specify both:
 - (a) the minimum technical, design and operational criteria which must be complied with by:
 - (i) any EU Code User connected to or seeking connection with the National Electricity Transmission System, or
 - (ii) **EU Generators** or **HVDC System Owners** connected to or seeking connection to a **User's System** which is located in **Great Britain** or **Offshore**, or
 - (iii) Network Operators who are EU Code Users
 - (iv) Network Operators who are GB Code Users but only in respect of:-
 - (a) Their obligations in respect of Embedded Medium Power Stations not subject to a Bilateral Agreement for whom the requirements of ECC.3.1(b)(iii) apply alone; and/or
 - (b) The requirements of this ECC only in relation to each EU Grid Supply Point. Network Operators in respect of all other Grid Supply Points should continue to satisfy the requirements as specified in the CCs.
 - (v) Non-Embedded Customers who are EU Code Users
 - (b) the minimum technical, design and operational criteria with which The Company will comply in relation to the part of the National Electricity Transmission System at the Connection Site with Users. In the case of any OTSDUW Plant and Apparatus, the ECC also specify the minimum technical, design and operational criteria which must be complied with by the User when undertaking OTSDUW.
 - (c) The requirements of **Retained EU Law** (Commission Regulation (EU) 2016/631) shall not apply to
 - (i) Power Generating Modules that are installed to provide backup power and operate in parallel with the Total System for less than 5 minutes per calendar month while the System is in normal state. Parallel operation during maintenance or commissioning of tests of that Power Generating Module shall not count towards that five minute limit.
 - (ii) Power Generating Modules connected to the Transmission System or Network Operators System which are not operated in synchronism with a Synchronous Area.
 - (iii) Power Generating Modules that do not have a permanent Connection Point or User System Entry Point and used by The Company to temporarily provide power when normal System capacity is partly or completely unavailable.
 - (iv) Electricity Storage Modules.
 - (d) Storage Users are required to comply with the entirety of the ECC but are not subject to the requirements of Retained EU Law (Commission Regulation (EU) 2016/631, Commission Regulation (EU) 2016/1388 and Commission Regulation (EU) 2016/1485). The requirements of the ECC shall therefore be enforceable against Storage Users under the Grid Code only (and not under any of the aforementioned Retained EU Law) and any derogation sought by a Storage User in respect of the ECC shall be deemed a derogation from the Grid Code only (and not from the aforementioned Retained EU Law).

ECC.2 <u>OBJECTIVE</u>

- ECC.2.1 The objective of the ECC is to ensure that by specifying minimum technical, design and operational criteria the basic rules for connection to the National Electricity Transmission System and (for certain Users) to a User's System are similar for all Users of an equivalent category and will enable The Company to comply with its statutory and Transmission Licence obligations and the applicable Retained EU Law.
- ECC.2.2 In the case of any **OTSDUW** the objective of the **ECC** is to ensure that by specifying the minimum technical, design and operational criteria the basic rules relating to an **Offshore Transmission System** designed and constructed by an **Offshore Transmission Licensee** and designed and/or constructed by a **User** under the **OTSDUW Arrangements** are equivalent.
- ECC.2.3 Provisions of the ECC which apply in relation to OTSDUW and OTSUA, and/or a Transmission Interface Site, shall (in any particular case) apply up to the OTSUA Transfer Time, whereupon such provisions shall (without prejudice to any prior non-compliance) cease to apply, without prejudice to the continuing application of provisions of the ECC applying in relation to the relevant Offshore Transmission System and/or Connection Site. It is the case therefore that in cases where the OTSUA becomes operational prior to the OTSUA Transfer Time that a EU Generator is required to comply with this ECC both as it applies to its Plant and Apparatus at a Connection Site\Connection Point and the OTSUA at the Transmission Interface Site/Transmission Interface Point until the OTSUA Transfer Time and this ECC shall be construed accordingly.
- ECC.2.4 In relation to **OTSDUW**, provisions otherwise to be contained in a **Bilateral Agreement** may be contained in the **Construction Agreement**, and accordingly a reference in the **ECC** to a relevant **Bilateral Agreement** includes the relevant **Construction Agreement**.
- ECC.3 <u>SCOPE</u>
- ECC.3.1 The ECC applies to The Company and to Users, which in the ECC means:
 - (a) EU Generators (other than those which only have Embedded Small Power Stations), including those undertaking OTSDUW including Power Generating Modules, and DC Connected Power Park Modules. For the avoidance of doubt, Electricity Storage Modules are included within the definition of Power Generating Modules for which the requirements of the ECC would be equally applicable.
 - (b) Network Operators but only in respect of:-
 - (i) Network Operators who are EU Code Users
 - (ii) Network Operators who only have EU Grid Supply Points
 - (iii) **Embedded Medium Power Stations** not subject to a **Bilateral Agreement** as provided for in ECC.3.2, ECC.3.3, EC3.4, EC3.5, ECC5.1, ECC.6.4.4 and ECA.3.4;
 - (iv) Notwithstanding the requirements of ECC3.1(b)(i)(ii) and (iii) , Network Operators who own and/or operate EU Grid Supply Points, are only required to satisfy the requirements of this ECC in relation to each EU Grid Supply Point. Network Operators in respect of all other Grid Supply Points should continue to satisfy the requirements as specified in the CCs.
 - (c) Non-Embedded Customers who are also EU Code Users ;
 - (d) HVDC System Owners who are also EU Code Users; and
 - (e) BM Participants and Externally Interconnected System Operators who are also EU Code Users in respect of ECC.6.5 only.

- ECC.3.2 The above categories of **User** will become bound by the applicable sections of the **ECC** prior to them generating, distributing, storing, supplying or consuming, as the case may be, and references to the various categories should, therefore, be taken as referring to them in that prospective role.
- ECC.3.3 Embedded Medium Power Stations not subject to a Bilateral Agreement and Embedded HVDC Systems not subject to a Bilateral Agreement Provisions.

The following provisions apply in respect of **Embedded Medium Power Stations** not subject to a **Bilateral Agreement** and **Embedded HVDC Systems** not subject to a **Bilateral Agreement**.

- ECC.3.3.1 The obligations within the ECC that are expressed to be applicable to EU Generators in respect of Embedded Medium Power Stations not subject to a Bilateral Agreement and HVDC System Owners in respect of Embedded HVDC Systems not subject to a Bilateral Agreement (where the obligations are in each case listed in ECC.3.3.2) shall be read and construed as obligations that the Network Operator within whose System any such Medium Power Station or HVDC System is Embedded must ensure are performed and discharged by the EU Generator or the HVDC Owner. Embedded Medium Power Stations not subject to a Bilateral Agreement and Embedded HVDC Systems not subject to a Bilateral Agreement and Embedded HVDC Systems not subject to a Bilateral Agreement which are located Offshore and which are connected to an Onshore User System will be required to meet the applicable requirements of the Grid Code as though they are an Onshore Generator or Onshore HVDC System Owner connected to an Onshore User System Entry Point.
- ECC.3.3.2 The Network Operator within whose System a Medium Power Station not subject to a Bilateral Agreement is Embedded or a HVDC System not subject to a Bilateral Agreement is Embedded must ensure that the following obligations in the ECC are performed and discharged by the EU Generator in respect of each such Embedded Medium Power Station or the HVDC System Owner in the case of an Embedded HVDC System:

ECC.5.1 ECC.5.2.2 ECC.5.3 ECC.6.1.3 ECC.6.1.5 (b) ECC.6.3.2, ECC.6.3.3, ECC.6.3.4, ECC.6.3.6, ECC.6.3.7, ECC.6.3.8, ECC.6.3.9, ECC.6.3.10, ECC.6.3.12, ECC.6.3.13, ECC.6.3.15, ECC.6.3.16

ECC.6.4.4

ECC.6.5.6 (where required by ECC.6.4.4)

In respect of ECC.6.2.2.2, ECC.6.2.2.3, ECC.6.2.2.5, ECC.6.1.5(a), ECC.6.1.5(b) and ECC.6.3.11 equivalent provisions as co-ordinated and agreed with the **Network Operator** and **EU Generator** or **HVDC System Owner** may be required. Details of any such requirements will be notified to the **Network Operator** in accordance with ECC.3.5.

- ECC.3.3.3 In the case of **Embedded Medium Power Stations** not subject to a **Bilateral Agreement** and **Embedded HVDC Systems** not subject to a **Bilateral Agreement** the requirements in:
 - ECC.6.1.6 ECC.6.3.8 ECC.6.3.12 ECC.6.3.15

ECC.6.3.16

ECC.6.3.17

that would otherwise have been specified in a **Bilateral Agreement** will be notified to the relevant **Network Operator** in writing in accordance with the provisions of the **CUSC** and the **Network Operator** must ensure such requirements are performed and discharged by the **Generator** or the **HVDC System** owner.

- ECC.3.4 In the case of Offshore Embedded Power Generating Modules connected to an Offshore User's System which directly connects to an Offshore Transmission System, any additional requirements in respect of such Offshore Embedded Power Generating Modules may be specified in the relevant Bilateral Agreement with the Network Operator or in any Bilateral Agreement between The Company and such Offshore Generator.
- ECC.3.5 In the case of a Generator undertaking OTSDUW connecting to an Onshore Network Operator's System, any additional requirements in respect of such OTSDUW Plant and Apparatus will be specified in the relevant Bilateral Agreement with the EU Generator. For the avoidance of doubt, requirements applicable to EU Generators undertaking OTSDUW and connecting to a Network Operator's User System, shall be consistent with those applicable requirements of Generators undertaking OTSDUW and connecting to a Transmission Interface Point.
- ECC.3.6 The requirements of this ECC shall apply to EU Code Users in respect of Power Generating Modules (including DC Connected Power Park Modules and Electricity Storage Modules) and HVDC Systems.

ECC.4 PROCEDURE

ECC.4.1 The CUSC contains certain provisions relating to the procedure for connection to the National Electricity Transmission System or, in the case of Embedded Power Stations or Embedded HVDC Systems, becoming operational and includes provisions relating to certain conditions to be complied with by EU Code Users prior to and during the course of The Company notifying the User that it has the right to become operational. The procedure for an EU Code User to become connected is set out in the Compliance Processes.

ECC.5 <u>CONNECTION</u>

- ECC.5.1 The provisions relating to connecting to the **National Electricity Transmission System** (or to a **User's System** in the case of a connection of an **Embedded Large Power Station** or **Embedded Medium Power Stations** or **Embedded HVDC System**) are contained in:
 - (a) the CUSC and/or CUSC Contract (or in the relevant application form or offer for a CUSC Contract);
 - (b) or, in the case of an **Embedded Development**, the relevant **Distribution Code** and/or the **Embedded Development Agreement** for the connection (or in the relevant application form or offer for an **Embedded Development Agreement**),

and include provisions relating to both the submission of information and reports relating to compliance with the relevant **European Connection Conditions** for that **EU Code User**, **Safety Rules**, commissioning programmes, **Operation Diagrams** and approval to connect (and their equivalents in the case of **Embedded Medium Power Stations** not subject to a **Bilateral Agreement** or **Embedded HVDC Systems** not subject to a **Bilateral Agreement**. References in the **ECC** to the "**Bilateral Agreement**" and/or "**Embedded Development Agreement**" shall be deemed to include references to the application form or offer therefor.

ECC.5.2 Items For Submission

- ECC.5.2.1 Prior to the **Completion Date** (or, where the **EU Generator** is undertaking **OTSDUW**, any later date specified) under the **Bilateral Agreement** and/or **Construction Agreement**, the following is submitted pursuant to the terms of the **Bilateral Agreement** and/or **Construction Agreement**:
 - (a) updated Planning Code data (both Standard Planning Data and Detailed Planning Data), with any estimated values assumed for planning purposes confirmed or, where practical, replaced by validated actual values and by updated estimates for the future and by updated forecasts for Forecast Data items such as Demand, pursuant to the requirements of the Planning Code;
 - (b) details of the **Protection** arrangements and settings referred to in ECC.6;
 - (c) copies of all Safety Rules and Local Safety Instructions applicable at Users' Sites which will be used at the Transmission/User interface (which, for the purpose of OC8, must be to The Company's satisfaction regarding the procedures for Isolation and Earthing. The Company will consult the Relevant Transmission Licensee when determining whether the procedures for Isolation and Earthing are satisfactory);
 - (d) information to enable the preparation of the **Site Responsibility Schedules** on the basis of the provisions set out in Appendix 1;
 - (e) an **Operation Diagram** for all **HV Apparatus** on the **User** side of the **Connection Point** as described in ECC.7;
 - (f) the proposed name of the **User Site** (which shall not be the same as, or confusingly similar to, the name of any **Transmission Site** or of any other **User Site**);
 - (g) written confirmation that **Safety Co-ordinators** acting on behalf of the **User** are authorised and competent pursuant to the requirements of **OC8**;
 - (h) Such **RISSP** prefixes pursuant to the requirements of **OC8**. Such **RISSP** prefixes shall be circulated utilising a proforma in accordance with **OC8**;
 - a list of the telephone numbers for **Joint System Incidents** at which senior management representatives nominated for the purpose can be contacted and confirmation that they are fully authorised to make binding decisions on behalf of the **User**, pursuant to **OC9**;
 - (j) a list of managers who have been duly authorised to sign **Site Responsibility Schedules** on behalf of the **User**;
 - (k) information to enable the preparation of the Site Common Drawings as described in ECC.7;
 - (I) a list of the telephone numbers for the **Users** facsimile machines referred to in ECC.6.5.9; and
 - (m) for Sites in Scotland and Offshore a list of persons appointed by the User to undertake operational duties on the User's System (including any OTSDUW prior to the OTSUA Transfer Time) and to issue and receive operational messages and instructions in relation to the User's System (including any OTSDUW prior to the OTSUA Transfer Time); and an appointed person or persons responsible for the maintenance and testing of User's Plant and Apparatus.

ECC.5.2.2 Prior to the **Completion Date** the following must be submitted to **The Company** by the **Network Operator** in respect of an **Embedded Development**:

- (a) updated Planning Code data (both Standard Planning Data and Detailed Planning Data), with any estimated values assumed for planning purposes confirmed or, where practical, replaced by validated actual values and by updated estimates for the future and by updated forecasts for Forecast Data items such as Demand, pursuant to the requirements of the Planning Code;
- (b) details of the Protection arrangements and settings referred to in ECC.6;

- (c) the proposed name of the Embedded Medium Power Station or Embedded HVDC System (which shall be agreed with The Company unless it is the same as, or confusingly similar to, the name of other Transmission Site or User Site);
- ECC.5.2.3 Prior to the **Completion Date** contained within an **Offshore Transmission Distribution Connection Agreement** the following must be submitted to **The Company** by the **Network Operator** in respect of a proposed new **Interface Point** within its **User System**:
 - (a) updated Planning Code data (both Standard Planning Data and Detailed Planning Data), with any estimated values assumed for planning purposes confirmed or, where practical, replaced by validated actual values and by updated estimates for the future and by updated forecasts for Forecast Data items such as Demand, pursuant to the requirements of the Planning Code;
 - (b) details of the **Protection** arrangements and settings referred to in ECC.6;
 - (c) the proposed name of the **Interface Point** (which shall not be the same as, or confusingly similar to, the name of any **Transmission Site** or of any other **User Site**);
- ECC.5.2.4 In the case of **OTSDUW Plant and Apparatus** (in addition to items under ECC.5.2.1 in respect of the **Connection Site**), prior to the **Completion Date** (or any later date specified) under the **Construction Agreement** the following must be submitted to **The Company** by the **User** in respect of the proposed new **Connection Point** and **Interface Point**:
 - (a) updated Planning Code data (Standard Planning Data, Detailed Planning Data and OTSDUW Data and Information), with any estimated values assumed for planning purposes confirmed or, where practical, replaced by validated actual values and by updated estimates for the future and by updated forecasts for Forecast Data items such as Demand, pursuant to the requirements of the Planning Code;
 - (b) details of the **Protection** arrangements and settings referred to in ECC.6;
 - (c) information to enable preparation of the **Site Responsibility Schedules** at the **Transmission Interface Site** on the basis of the provisions set out in Appendix E1.
 - (d) the proposed name of the **Interface Point** (which shall not be the same as, or confusingly similar to, the name of any **Transmission Site** or of any other **User Site**);
 - (a) Of the items ECC.5.2.1 (c), (e), (g), (h), (k) and (m) need not be supplied in respect of Embedded Power Stations or Embedded HVDC Systems,
 - (b) item ECC.5.2.1(i) need not be supplied in respect of **Embedded Small Power Stations** and **Embedded Medium Power Stations** or **Embedded HVDC Systems** with a **Registered Capacity** of less than 100MW, and
 - (c) items ECC.5.2.1(d) and (j) are only needed in the case where the **Embedded Power** Station or the **Embedded HVDC System** is within a **Connection Site** with another **User**.

ECC.6 TECHNICAL, DESIGN AND OPERATIONAL CRITERIA

ECC.6.1 National Electricity Transmission System Performance Characteristics

- ECC.6.1.1 The Company shall ensure that, subject as provided in the Grid Code, the National Electricity Transmission System complies with the following technical, design and operational criteria in relation to the part of the National Electricity Transmission System at the Connection Site with a User and in the case of OTSDUW Plant and Apparatus, a Transmission Interface Point (unless otherwise specified in ECC.6) although in relation to operational criteria The Company may be unable (and will not be required) to comply with this obligation to the extent that there are insufficient Power Stations or User Systems are not available or Users do not comply with The Company's instructions or otherwise do not comply with the Grid Code and each User shall ensure that its Plant and Apparatus complies with the criteria set out in ECC.6.1.5.
- ECC.6.1.2 <u>Grid Frequency Variations</u>

ECC.5.3

ECC.6.1.2.1 Grid Frequency Variations

- ECC.6.1.2.1.1 The **Frequency** of the **National Electricity Transmission System** shall be nominally 50Hz and shall be controlled within the limits of 49.5 50.5Hz unless exceptional circumstances prevail.
- ECC.6.1.2.1.2 The **System Frequency** could rise to 52Hz or fall to 47Hz in exceptional circumstances. Design of **User's Plant** and **Apparatus** and **OTSDUW Plant and Apparatus** must enable operation of that **Plant** and **Apparatus** within that range in accordance with the following:

Frequency Range	<u>Requirement</u>
51.5Hz - 52Hz	Operation for a period of at least 15 minutes is required each
	time the Frequency is above 51.5Hz.
51Hz - 51.5Hz	Operation for a period of at least 90 minutes is required each
	time the Frequency is above 51Hz.
49.0Hz - 51Hz	Continuous operation is required
47.5Hz - 49.0Hz	Operation for a period of at least 90 minutes is required each
	time the Frequency is below 49.0Hz.
47Hz - 47.5Hz	Operation for a period of at least 20 seconds is required
	each time the Frequency is below 47.5Hz.

- ECC.6.1.2.1.3 For the avoidance of doubt, disconnection, by frequency or speed based relays is not permitted within the frequency range 47.5Hz to 51.5Hz. **EU Generators** should however be aware of the combined voltage and frequency operating ranges as defined in ECC.6.3.12 and ECC.6.3.13.
- ECC.6.1.2.1.4 **The Company** in co-ordination with the **Relevant Transmission Licensee** and/or **Network Operator** and a **User** may agree on wider variations in frequency or longer minimum operating times to those set out in ECC.6.1.2.1.2 or specific requirements for combined frequency and voltage deviations. Any such requirements in relation to **Power Generating Modules** shall be in accordance with ECC.6.3.12 and ECC.6.3.13. A **User** shall not unreasonably withhold consent to apply wider frequency ranges or longer minimum times for operation taking account of their economic and technical feasibility.
- ECC.6.1.2.2 Grid Frequency variations for HVDC Systems and Remote End HVDC Converter Stations
- ECC.6.1.2.2.1 **HVDC Systems** and **Remote End HVDC Converter Stations** shall be capable of staying connected to the **System** and remaining operable within the frequency ranges and time periods specified in Table ECC.6.1.2.2 below. This requirement shall continue to apply during the **Fault Ride Through** conditions defined in ECC.6.3.15

Frequency Range (Hz)	Time Period for Operation (s)
47.0 – 47.5Hz	60 seconds
47.5 – 49.0Hz	90 minutes and 30 seconds
49.0 – 51.0Hz	Unlimited
51.0 – 51.5Hz	90 minutes and 30 seconds
51.5Hz – 52 Hz	20 minutes

Table ECC.6.1.2.2 – Minimum time periods <u>HVDC Systems</u> and <u>Remote End HVDC Converter Stations</u> shall be able to operate for different frequencies deviating from a nominal value without disconnecting from the **National Electricity Transmission System**

ECC.6.1.2.2.2 **The Company** in coordination with the **Relevant Transmission Licensee** and a **HVDC System Owner** may agree wider frequency ranges or longer minimum operating times if required to preserve or restore system security. If wider frequency ranges or longer minimum times for operation are economically and technically feasible, the HV**DC System Owner** shall not unreasonably withhold consent.

- ECC.6.1.2.2.3 Not withstanding the requirements of ECC.6.1.2.2.1, an **HVDC System** or **Remote End HVDC Converter Station** shall be capable of automatic disconnection at frequencies specified by **The Company** and/or **Relevant Network Operator**.
- ECC.6.1.2.2.4 In the case of **Remote End HVDC Converter Stations** where the **Remote End HVDC Converter Station** is operating at either nominal frequency other than 50Hz or a variable frequency, the requirements defined in ECC6.1.2.2.1 to ECC.6.1.2.2.3 shall apply to the **Remote End HVDC Converter Station** other than in respect of the frequency ranges and time periods.
- ECC.6.1.2.3 Grid Frequency Variations for DC Connected Power Park Modules
- ECC.6.1.2.3.1 DC Connected Power Park Modules shall be capable of staying connected to the Remote End DC Converter network at the HVDC Interface Point and operating within the Frequency ranges and time periods specified in Table ECC.6.1.2.3 below. Where a nominal frequency other than 50Hz, or a Frequency variable by design is used as agreed with The Company and the Relevant Transmission Licensee the applicable Frequency ranges and time periods shall be specified in the Bilateral Agreement which shall (where applicable) reflect the requirements in Table ECC.6.1.2.3.

Frequency Range (Hz)	Time Period for Operation (s)
47.0 – 47.5Hz	20 seconds
47.5 – 49.0Hz	90 minutes
49.0 – 51.0Hz	Unlimited
51.0 – 51.5Hz	90 minutes
51.5Hz – 52 Hz	15 minutes

Table ECC.6.1.2.3 – Minimum time periods a DC Connected Power Park Module shall be able to operate for different frequencies deviating from a nominal value without disconnecting from the System

ECC.6.1.2.3.2 **The Company** in coordination with the **Relevant Transmission Licensee** and a **Generator** may agree wider frequency ranges or longer minimum operating times if required to preserve or restore system security and to ensure the optimum capability of the **DC Connected Power Park Module**. If wider frequency ranges or longer minimum times for operation are economically and technically feasible, the **EU Generator** shall not unreasonably withhold consent.

- ECC.6.1.3 Not used
- ECC.6.1.4 <u>Grid Voltage Variations</u>
- ECC.6.1.4.1 <u>Grid Voltage Variations for Users excluding DC Connected Power Park Modules and</u> <u>Remote End HVDC Converters</u>

The voltage on part of the National Electricity Transmission System operating at nominal voltages of greater than 300kV at each Connection Site with a User (and in the case of OTSDUW Plant and Apparatus, a Transmission Interface Point, excluding DC Connected Power Park Modules and Remote End HVDC Converters) will normally remain within ±5% of the nominal value unless abnormal conditions prevail. The minimum voltage is -10% and the maximum voltage is +10% unless abnormal conditions prevail, but voltages between +5% and +10% will not last longer than 15 minutes unless abnormal conditions prevail. For nominal voltages of 110kV and up to and including 300kV voltages on the parts of the National Electricity Transmission System at each Connection Point (and in the case of OTSDUW Plant and Apparatus, a Transmission Interface Point) will normally remain within the limits $\pm 10\%$ of the nominal value unless abnormal conditions prevail. At nominal **System** voltages below 110kV the voltage of the National Electricity Transmission System at each Connection Site with a User (and in the case of OTSDUW Plant and Apparatus, a Transmission Interface Point), excluding Connection Sites for DC Connected Power Park Modules and Remote End HVDC Converters) will normally remain within the limits $\pm 6\%$ of the nominal value unless abnormal conditions prevail. Under fault conditions, the voltage may collapse transiently to zero at the point of fault until the fault is cleared. The normal operating ranges of the National Electricity Transmission System are summarised below:

National Electricity Transmission System	Normal Ope	Time period for Operation	
Nominal Voltage	Voltage	Pu (1pu relates to	
5	(percentage of	the Nominal	
	Nominal Voltage)	Voltage)	
Greater than 300kV	V -10% to +5%	0.90pu- 1.05pu	Unlimited
	V +5% to +10%	1.05pu- 1.10pu	15 minutes
110kV up to 300kV	V ±10%	0.90- 1.10pu	Unlimited
Below 110kV	±6%	0.94pu- 1.06pu	Unlimited

The Company and a User may agree greater variations or longer minimum time periods of operation in voltage to those set out above in relation to a particular Connection Site, and insofar as a greater variation is agreed, the relevant figure set out above shall, in relation to that User at the particular Connection Site, be replaced by the figure agreed.

ECC.6.1.4.2 Grid Voltage Variations for all DC Connected Power Park Modules

ECC.6.1.4.2.1 All DC Connected Power Park Modules shall be capable of staying connected to the Remote End HVDC Converter Station at the HVDC Interface Point and operating within the voltage ranges and time periods specified in Tables ECC.6.1.4.2(a) and ECC.6.1.4.2(b) below. The applicable voltage range and time periods specified are selected based on the reference 1pu voltage.

Voltage Range (pu)	Time Period for Operation (s)
0.85ри — 0.9ри	60 minutes
0.9pu – 1.1pu	Unlimited
1.1pu – 1.15pu	15 minutes

Table ECC.6.1.4.2(a) – Minimum time periods for which DC Connected Power Park Modules shall be capable of operating for different voltages deviating from reference 1pu without

> disconnecting from the network where the nominal voltage base is 110kV or above and less than 300kV.

	Voltage Range (pu)	Time Period for Operation (s)	
12	E	СС	09 March 2

0.85pu – 0.9pu	60 minutes
0.9pu – 1.05pu	Unlimited
1.05pu – 1.15pu	15 minutes

Table ECC.6.1.4.2(b) – Minimum time periods for which **DC Connected Power Park Modules** shall be capable of operating for different voltages deviating from reference 1pu without disconnecting from the network where the nominal voltage base is from 300kV up to and including 400kV.

- ECC.6.1.4.2.2 **The Company** and a **EU Generator** in respect of a **DC Connected Power Park Module** may agree greater voltage ranges or longer minimum operating times. If greater voltage ranges or longer minimum times for operation are economically and technically feasible, the **EU Generator** shall not unreasonably withhold any agreement.
- ECC.6.1.4.2.3 For DC Connected Power Park Modules which have an HVDC Interface Point to the Remote End HVDC Converter Station, The Company in coordination with the Relevant Transmission Licensee may specify voltage limits at the HVDC Interface Point at which the DC Connected Power Park Module is capable of automatic disconnection.
- ECC.6.1.4.2.4 For **HVDC Interface Points** which fall outside the scope of ECC.6.1.4.2.1, ECC.6.1.4.2.2 and ECC.6.1.4.2.3, **The Company** in coordination with the **Relevant Transmission Licensee** shall specify any applicable requirements at the **Grid Entry Point** or **User System Entry Point**.
- ECC.6.1.4.2.5 Where the nominal frequency of the AC collector **System** which is connected to an **HVDC Interface Point** is at a value other than 50Hz, the voltage ranges and time periods specified by **The Company** in coordination with the **Relevant Transmission Licensee** shall be proportional to the values specified in Table ECC.6.1.4.2(a) and Table ECC.6.1.4.2(b)
- ECC.6.1.4.3 Grid Voltage Variations for all Remote End HVDC Converters
- ECC.6.1.4.3.1 All **Remote End HVDC Converter Stations** shall be capable of staying connected to the **HVDC Interface Point** and operating within the voltage ranges and time periods specified in Tables ECC.6.1.4.3(a) and ECC.6.1.4.3(b) below. The applicable voltage range and time periods specified are selected based on the reference 1pu voltage.

Voltage Range (pu)	Time Period for Operation (s)	
0.85pu – 0.9pu	60 minutes	
0.9pu – 1.1pu	Unlimited	
1.1pu – 1.15pu	15 minutes	

Table ECC.6.1.4.3(a) – Minimum time periods for which a **Remote End HVDC Converter** shall be capable of operating for different voltages deviating from reference 1pu without disconnecting from the network where the nominal voltage base is 110kV or above and less than 300kV.

Voltage Range (pu)	Time Period for Operation (s)
0.85pu – 0.9pu	60 minutes
0.9pu – 1.05pu	Unlimited
1.05pu – 1.15pu	15 minutes

Table ECC.6.1.4.3(b) – Minimum time periods for which **a Remote End HVDC Converter** shall be capable of operating for different voltages deviating from reference 1pu without disconnecting from the network where the nominal voltage base is from 300kV up to and including 400kV.

- ECC.6.1.4.3.2 **The Company** and a **HVDC System Owner** may agree greater voltage ranges or longer minimum operating times which shall be in accordance with the requirements of ECC.6.1.4.2.
- ECC.6.1.4.3.4 For **HVDC Interface Points** which fall outside the scope of ECC.6.1.4.3.1 **The Company** in coordination with the **Relevant Transmission Licensee** shall specify any applicable requirements at the **Grid Entry Point** or **User System Entry Point**.
- ECC.6.1.4.3.5 Where the nominal frequency of the AC collector **System** which is connected to an **HVDC Interface Point** is at a value other than 50Hz, the voltage ranges and time periods specified by **The Company** in coordination with the **Relevant Transmission Licensee** shall be proportional to the values specified in Table ECC.6.1.4.3(a) and Table ECC.6.1.4.3(b)

Voltage Waveform Quality

- ECC.6.1.5 All **Plant** and **Apparatus** connected to the **National Electricity Transmission System**, and that part of the **National Electricity Transmission System** at each **Connection Site** or, in the case of **OTSDUW Plant and Apparatus**, at each **Interface Point**, should be capable of withstanding the following distortions of the voltage waveform in respect of harmonic content and phase unbalance:
 - (a) Harmonic Content

The Electromagnetic Compatibility Levels for harmonic distortion on the Onshore Transmission System from all sources under both Planned Outage and fault outage conditions, (unless abnormal conditions prevail) shall comply with Engineering Recommendation G5. The Electromagnetic Compatibility Levels for harmonic distortion on an Offshore Transmission System will be defined in relevant Bilateral Agreements.

Engineering Recommendation G5 contains planning criteria which The Company will apply to the connection of non-linear Load to the National Electricity Transmission System, which may result in harmonic emission limits being specified for these Loads in the relevant Bilateral Agreement. The application of the planning criteria will take into account the position of existing GB Code User's and EU Code Users' Plant and Apparatus (and OTSDUW Plant and Apparatus) in relation to harmonic emissions. EU Code Users must ensure that connection of distorting loads to their User Systems do not cause any harmonic emission limits specified in the Bilateral Agreement, or where no such limits are specified, the relevant planning levels specified in Engineering Recommendation G5 to be exceeded.

(b) Phase Unbalance

Under Planned Outage conditions, the weekly 95 percentile of Phase (Voltage) Unbalance, calculated in accordance with IEC 61000-4-30 and IEC 61000-3-13, on the National Electricity Transmission System for voltages above 150kV should remain, in England and Wales, below 1.5%, and in Scotland, below 2%, and for voltages of 150kV and below, across GB below 2%, unless abnormal conditions prevail and Offshore (or in the case of OTSDUW, OTSDUW Plant and Apparatus) will be defined in relevant Bilateral Agreements.

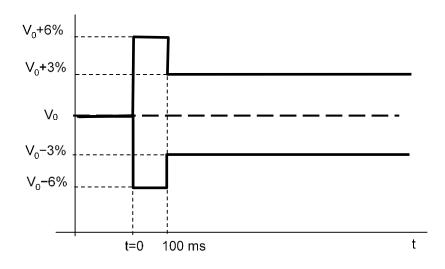
The Phase Unbalance is calculated from the ratio of root mean square (rms) of negative phase sequence voltage to rms of positive phase sequence voltage, based on 10-minute average values, in accordance with IEC 61000-4-30.

ECC.6.1.6 Across GB, under the **Planned Outage** conditions stated in ECC.6.1.5(b) infrequent short duration peaks with a maximum value of 2% are permitted for **Phase (Voltage) Unbalance**, for voltages above 150kV, subject to the prior agreement of **The Company** under the **Bilateral Agreement** and in relation to **OTSDUW**, the **Construction Agreement**. **The Company** will only agree following a specific assessment of the impact of these levels on **Transmission Apparatus** and other **Users Apparatus** with which it is satisfied.

- ECC.6.1.7 Voltage changes at a **Point of Common Coupling** on the **Onshore Transmission System** shall not exceed:
 - (a) The limits specified in Table ECC.6.1.7(a) with the stated frequency of occurrence, where:

<u>(i)</u>

$$\label{eq:Vsteadystate} \begin{split} & \% \Delta V_{steadystate} = \big| \ 100 \ x \ \frac{\Delta V_{steadystate}}{Vn} \big| \qquad \text{and} \\ & \% \Delta V_{max} = 100 \ x \ \frac{\Delta V_{max}}{V_n} \ ; \end{split}$$


- (ii) V_n is the nominal system voltage;
- (iii) V_{steadystate} is the voltage at the end of a period of 1 s during which the rate of change of system voltage over time is ≤ 0.5%;
- (iv) $\Delta V_{\text{steadystate}}$ is the difference in voltage between the initial steady state voltage prior to the RVC (V₀) and the final steady state voltage after the RVC (V₀);
- (v) ∆V_{max} is the absolute change in the system voltage relative to the initial steady state system voltage (V₀);
- (vi) All voltages are the r.m.s. of the voltage measured over one cycle refreshed every half a cycle as per BS EN 61000-4-30; and
- (vii) The applications in the 'Example Applicability' column are examples only and are not definitive.

Cat- egory	Title	Maximum number of occurrence	Limits %∆V _{max} & %∆V _{steadystate}	Example Applicability
1	Frequent events	(see NOTE 1)	As per Figure ECC.6.1.7 (1)	Any single or repetitive RVC that falls inside Figure ECC.6.1.7 (1)
2	Infrequent events	4 events in 1 calendar month (see NOTE 2)	As per Figure ECC.6.1.7 (2) $ \% \Delta V_{steadystate} \le 3\%$ For decrease in voltage: $ \% \Delta V_{max} \le 10\%$ (see NOTE 3) For increase in voltage: $ \% \Delta V_{max} \le 6\%$ (see NOTE 4)	Infrequent motor starting, transformer energisation, re-energisation (see NOTE 7)

3	Very infrequent events	1 event in 3 calendar months (see NOTE 2)	As per Figure ECC.6.1.7 (3) $ \% \Delta V_{steadystate} \le 3\%$ For decrease in voltage: $ \% \Delta V_{max} \le 12\%$ (see NOTE 5) For increase in voltage: $ \% \Delta V_{max} \le 6\%$ (see NOTE 6)	Commissioning, maintenance & post fault switching (see NOTE 7)
NOTE 1:	NOTE 1: ±6% is permissible for 100 ms reduced to ±3% thereafter as per Figure ECC.6.1.7 (1). If the profile of repetitive voltage change(s) falls within the envelope given in Figure ECC.6.1.7 (1), the assessment of such voltage change(s) shall be undertaken according to the recommendations for assessment of flicker and shall conform to the planning levels provided for flicker. If any part of the voltage change(s) falls outside the envelope given in Figure ECC.6.1.7(1), the assessment of such voltage changes, repetitive or not, shall be done according to the guidance and limits for RVCs.			
NOTE 2:	No more than 1 event is permitted per day, consisting of up to 4 RVCs, each separated by at least 10 minutes with all switching completed within a two-hour window.			
NOTE 3:	-10% is permissible for 100 ms reduced to -6% until 2 s then reduced to -3% thereafter as per Figure ECC.6.1.7 (2).			
NOTE 4:	+6% is permissible for 0.8 s from the instant the event begins then reduced to +3% thereafter as per Figure ECC.6.1.7 (2).			
NOTE 5:	-12% is permissible for 100 ms reduced to $-10%$ until 2 s then reduced to $-3%$ thereafter as per Figure ECC.6.1.7 (3).			
NOTE 6:	+6% is permissible for 0.8 s from the instant the event begins then reduced to +3% thereafter as per Figure ECC.6.1.7 (3).			
NOTE 7:	These are examples only. Customers may opt to conform to the limits of another category providing the frequency of occurrence is not expected to exceed the 'Maximum number of occurrence' for the chosen category.			

Table ECC.6.1.7 (a) – Planning levels for RVC

- (b) The voltage change limit is the absolute maximum allowed of either the phase-to-earth voltage change or the phase-to-phase voltage change, whichever is the highest. The limits do not apply to single phasor equivalent voltages, e.g. positive phase sequence (PPS) voltages. For high impedance earthed systems, the maximum phase-to-phase, i.e. line voltage, should be used for assessment.
- (c) The RVCs in Category 2 and 3 should not exceed the limits depicted in the time dependent characteristic shown in Figure ECC.6.1.7 (2) and Figure ECC.6.1.7 (3) respectively. These limits do not apply to: 1) fault clearance operations; or 2) immediate operations in response to fault conditions; or 3) operations relating to post fault system restoration (for the avoidance of doubt this third exception pertains to a fault that is external to the Users plant and apparatus).
- (d) Any RVCs permitted in Category 2 and Category 3 should be at least 10 minutes apart.
- (e) The value of V_{steadystate} should be established immediately prior to the start of a RVC. Following a RVC, the voltage should remain within the relevant envelope, as shown in Figures ECC.6.1.7 (1), ECC.6.1.7 (2), ECC.6.1.7 (3), until a V_{steadystate} condition has been satisfied.

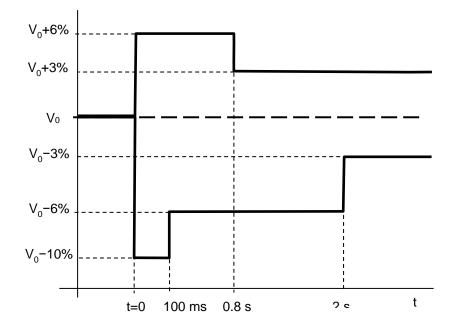


Figure ECC.6.1.7 (2) — Voltage characteristic for infrequent events

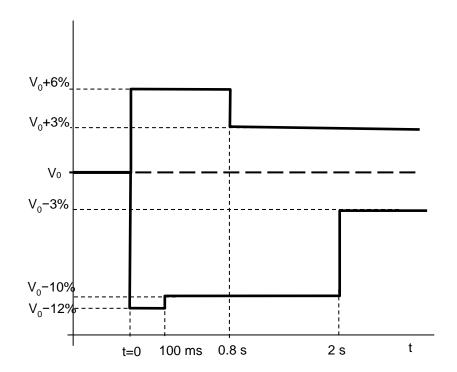


Figure ECC.6.1.7 (3) — Voltage characteristic for very infrequent events

- (f) The voltage change between two steady state voltage conditions should not exceed 3%. (The limit is based on 3% of the nominal voltage of the system (Vn) as measured at the PCC. The step voltage change as measured at the customer's supply terminals or equipment terminals could be greater. For example: The step voltage change limit stated in BS EN 61000-3-3 and BS EN 61000-3-11 is 3.3% when measured at the equipment terminals.)
- (g) The limits apply to voltage changes measured at the Point of Common Coupling.
- (h) Category 3 events that are planned should be notified to the Company in advance.
- (i) For connections where voltage changes would constitute a risk to the National Electricity Transmission System or, in The Company's view, the System of any GB Code User, Bilateral Agreements may include provision for The Company to reasonably limit the number of voltage changes in Category 2 or 3 to a lower number than specified in Table ECC.6.1.7(a) to ensure that the total number of voltage changes at the Point of Common Coupling across multiple Users remains within the limits of Table ECC.6.1.7(a).
- (j) The planning levels applicable to Flicker Severity Short Term (Pst) and Flicker Severity Long Term (Plt) are set out in Table ECC.6.1.7(b).

	Planning level	
Supply system Nominal voltage	Flicker Severity Short Term (Pst)	Flicker Severity Long Term (Plt)
Up to and including 33 kV	0.9	0.7
66kV and greater	0.8	0.6
NOTE 1: The magnitude of Pst is linear with respect to the magnitude of the voltage changes giving rise to it. NOTE 2: Extreme caution is advised in allowing any excursions of Pst and Plt above the planning level.		

Table ECC.6.7.1(b) — Planning levels for flicker

The values and figures referred to in this paragraph ECC.6.1.7 are derived from Engineering Recommendation P28 Issue 2.

ECC.6.1.8 Voltage fluctuations at a **Point of Common Coupling** with a fluctuating **Load** directly connected to an **Offshore Transmission System** (or in the case of **OTSDUW**, **OTSDUW Plant and Apparatus**) shall not exceed the limits set out in the **Bilateral Agreement**.

Sub-Synchronous Resonance and Sub-Synchronous Torsional Interaction (SSTI)

- ECC.6.1.9 **The Company** shall ensure that **Users' Plant and Apparatus** will not be subject to unacceptable Sub-Synchronous Oscillation conditions as specified in the relevant **License Standards**.
- ECC.6.1.10 **The Company** shall ensure where necessary, and in consultation with **Relevant Transmission Licensees** where required, that any relevant site specific conditions applicable at a **User's Connection Site**, including a description of the Sub-Synchronous Oscillation conditions considered in the application of the relevant **License Standards**, are set out in the **User's Bilateral Agreement**.

ECC.6.2 Plant and Apparatus relating to Connection Sites and Interface Points and HVDC Interface Points

The following requirements apply to **Plant** and **Apparatus** relating to the **Connection Point** and OTSDUW Plant and Apparatus relating to the Interface Point (until the OTSUA Transfer Time), HVDC Interface Points relating to Remote End HVDC Converters and **Connection Points** which (except as otherwise provided in the relevant paragraph) each EU Code User must ensure are complied with in relation to its Plant and Apparatus and which in the case of ECC.6.2.2.2.2, ECC.6.2.3.1.1 and ECC.6.2.1.1(b) only, The Company must ensure are complied with in relation to Transmission Plant and Apparatus, as provided in those paragraphs.

- ECC.6.2.1 General Requirements
- ECC.6.2.1.1 (a) The design of connections between the **National Electricity Transmission System** and:
 - any Power Generating Module Generating Unit (other than a CCGT Unit or (i) Power Park Unit) HVDC Equipment, Power Park Module or CCGT Module, or
 - (ii) any Network Operator's User System, or
 - (iii) Non-Embedded Customers equipment;

will be consistent with the Licence Standards.

In the case of OTSDUW, the design of the OTSUA's connections at the Interface Point and Connection Point will be consistent with Licence Standards.

- (b) The National Electricity Transmission System (and any OTSDUW Plant and Apparatus) at nominal System voltages of 132kV and above is/shall be designed to be earthed with an Earth Fault Factor of, in England and Wales or Offshore, below 1.4 and in Scotland, below 1.5. Under fault conditions the rated Frequency component of voltage could fall transiently to zero on one or more phases or, in England and Wales, rise to 140% phase-to-earth voltage, or in Scotland, rise to 150% phase-to-earth voltage. The voltage rise would last only for the time that the fault conditions exist. The fault conditions referred to here are those existing when the type of fault is single or two phase-to-earth.
- (c) For connections to the National Electricity Transmission System at nominal System voltages of below 132kV the earthing requirements and voltage rise conditions will be advised by The Company as soon as practicable prior to connection and in the case of OTSDUW Plant and Apparatus shall be advised to The Company by the EU Code User.

ECC.6.2.1.2 Substation Plant and Apparatus

- (a) The following provisions shall apply to all **Plant** and **Apparatus** which is connected at the voltage of the Connection Point (and OTSDUW Plant and Apparatus at the Interface Point) and which is contained in equipment bays that are within the Transmission busbar Protection zone at the Connection Point. This includes circuit breakers, switch disconnectors, disconnectors, Earthing Devices, power transformers, voltage transformers, reactors, current transformers, surge arresters, bushings, neutral equipment, capacitors, line traps, coupling devices, external insulation and insulation coordination devices. Where necessary, this is as more precisely defined in the **Bilateral** Agreement.
 - Plant and/or Apparatus in respect of EU Code Users connecting to a new Connection (i) Point (including OTSDUW Plant and Apparatus at the Interface Point)

Each item of such **Plant** and/or **Apparatus** installed in relation to a new **Connection** Point (or OTSDUW Plant and Apparatus at the Interface Point or Remote End HVDC Converter Station at the HVDC Interface Point) shall comply with the relevant Technical Specifications and any further requirements identified by The Company, acting reasonably, to reflect the options to be followed within the Technical Specifications and/or to complement if necessary the Technical FCC 09 March 2022 **Specifications** so as to enable **The Company** to comply with its obligations in relation to the **National Electricity Transmission System** or the **Relevant Transmission Licensee** to comply with its obligations in relation to its **Transmission System**. This information, including the application dates of the relevant **Technical Specifications**, will be as specified in the **Bilateral Agreement**.

(ii) <u>EU Code User's Plant and/or Apparatus connecting to an existing Connection Point</u> (including OTSDUW Plant and Apparatus at the Interface Point)

Each new additional and/or replacement item of such Plant and/or Apparatus installed in relation to a change to an existing Connection Point (or OTSDUW Plant and Apparatus at the Interface Point and Connection Point or Remote End HVDC Converter Stations at the HVDC Interface Point)-shall comply with the standards/specifications applicable when the change was designed, or such other standards/specifications as necessary to ensure that the item of Plant and/or Apparatus is reasonably fit for its intended purpose having due regard to the obligations of The Company, the relevant User the Relevant Transmission Licensee under their respective Licences. Where appropriate this information, including the application dates of the relevant standards/specifications, will be as specified in the varied Bilateral Agreement.

- (iii) Used Plant and/or Apparatus being moved, re-used or modified
 - If, after its installation, any such item of **Plant** and/or **Apparatus** is subsequently:

moved to a new location; or

used for a different purpose; or

otherwise modified;

then the standards/specifications as described in (i) or (ii) above as applicable will apply as appropriate to such **Plant** and/or **Apparatus**, which must be reasonably fit for its intended purpose having due regard to the obligations of **The Company**, the relevant **User** and the **Relevant Transmission Licensee** under their respective **Licences**.

- (b) The Company shall at all times maintain a list of those Technical Specifications and additional requirements which might be applicable under this ECC.6.2.1.2 and which may be referenced by The Company in the Bilateral Agreement. The Company shall provide a copy of the list upon request to any EU Code User. The Company shall also provide a copy of the list to any EU Code User upon receipt of an application form for a Bilateral Agreement for a new Connection Point.
- (c) Where the EU Code User provides The Company with information and/or test reports in respect of Plant and/or Apparatus which the EU Code User reasonably believes demonstrate the compliance of such items with the provisions of a Technical Specification then The Company shall promptly and without unreasonable delay give due and proper consideration to such information.
- (d) Plant and Apparatus shall be designed, manufactured and tested in premises with an accredited certificate in accordance with the quality assurance requirements of the relevant standard in the BS EN ISO 9000 series (or equivalent as reasonably approved by The Company) or in respect of test premises which do not include a manufacturing facility premises with an accredited certificate in accordance with BS EN 45001.
- (e) Each connection between a User and the National Electricity Transmission System must be controlled by a circuit-breaker (or circuit breakers) capable of interrupting the maximum short circuit current at the point of connection. The Seven Year Statement gives values of short circuit current and the rating of Transmission circuit breakers at existing and committed Connection Points for future years.

- (f) Each connection between a Generator undertaking OTSDUW or an Onshore Transmission Licensee, must be controlled by a circuit breaker (or circuit breakers) capable of interrupting the maximum short circuit current at the Transmission Interface Point. The Seven Year Statement gives values of short circuit current and the rating of Transmission circuit breakers at existing and committed Transmission Interface Points for future years.
- ECC.6.2.2 Requirements at Connection Points or, in the case of OTSDUW at Interface Points that relate to Generators or OTSDUW Plant and Apparatus
- ECC.6.2.2.1 Not Used.
- ECC.6.2.2.2 Power Generating Module, OTSDUW Plant and Apparatus, HVDC Equipment and Power Station Protection Arrangements
- ECC.6.2.2.2.1 <u>Minimum Requirements</u>

Protection of Power Generating Modules (other than Power Park Units), HVDC Equipment, OTSDUW Plant and Apparatus and their connections to the National Electricity Transmission System shall meet the requirements given below. These are necessary to reduce the impact on the National Electricity Transmission System of faults on OTSDUW Plant and Apparatus circuits or circuits owned by Generators (including DC Connected Power Park Modules) or HVDC System Owners.

ECC.6.2.2.2.2 Fault Clearance Times

- (a) The required fault clearance time for faults on the Generator's (including DC Connected Power Park Modules) or HVDC System Owner's equipment directly connected to the National Electricity Transmission System or OTSDUW Plant and Apparatus and for faults on the National Electricity Transmission System directly connected to the EU Generator (including DC Connected Power Park Modules) or HVDC System Owner's equipment or OTSDUW Plant and Apparatus, from fault inception to the circuit breaker arc extinction, shall be set out in the Bilateral Agreement. The fault clearance time specified in the Bilateral Agreement shall not be shorter than the durations specified below:
 - (i) 80ms for connections operating at a nominal voltage of greater than 300kV
 - (ii) 100ms for connections operating at a nominal voltage of greater than 132kV and up to 300kV
 - (iii) 120ms for connections operating at a nominal voltage of 132kV and below

but this shall not prevent the User or The Company or the Relevant Transmission Licensee or the EU Generator (including in respect of OTSDUW Plant and Apparatus and DC Connected Power Park Modules) from selecting a shorter fault clearance time on their own Plant and Apparatus provided Discrimination is achieved.

A longer fault clearance time may be specified in the **Bilateral Agreement** for faults on the **National Electricity Transmission System**. A longer fault clearance time for faults on the **EU Generator** or **HVDC System Owner's** equipment or **OTSDUW Plant and Apparatus** may be agreed with **The Company** in accordance with the terms of the **Bilateral Agreement** but only if **System** requirements, in **The Company's** view, permit. The probability that the fault clearance time stated in the **Bilateral Agreement** will be exceeded by any given fault, must be less than 2%.

(b) In the event that the required fault clearance time is not met as a result of failure to operate on the Main Protection System(s) provided, the Generators or HVDC System Owners or Generators in the case of OTSDUW Plant and Apparatus shall, except as specified below provide Independent Back-Up Protection. The Relevant Transmission Licensee will also provide Back-Up Protection and the Relevant Transmission Licensee's and the User's Back-Up Protections will be co-ordinated so as to provide Discrimination. On a Power Generating Module (other than a Power Park Unit), HVDC Equipment or OTSDUW Plant and Apparatus and connected to the National Electricity Transmission System operating at a nominal voltage of greater than 132kV and where two Independent Main Protections are provided to clear faults on the HV Connections within the required fault clearance time, the Back-Up Protection provided by EU Generators (including in respect of OTSDUW Plant and Apparatus and DC Connected Power Park Modules) and HVDC System Owners shall operate to give a fault clearance time of no longer than 300ms at the minimum infeed for normal operation for faults on the HV Connections. Where two Independent Main Protections are installed the Back-Up Protection may be integrated into one (or both) of the Independent Main Protection relays.

On a Power Generating Module (other than a Power Park Unit), HVDC Equipment or OTSDUW Plant and Apparatus and connected to the National Electricity Transmission System at 132 kV and below and where only one Main Protection is provided to clear faults on the HV Connections within the required fault clearance time, the Independent Back-Up Protection provided by the Generator (including in respect of OTSDUW Plant and Apparatus and DC Connected Power Park Modules) and the HVDC System Owner shall operate to give a fault clearance time of no longer than 300ms at the minimum infeed for normal operation for faults on the HV Connections.

A Power Generating Module (other than a Power Park Unit), HVDC Equipment or OTSDUW Plant and Apparatus) with Back-Up Protection or Independent Back-Up Protection will also be required to withstand, without tripping, the loading incurred during the clearance of a fault on the National Electricity Transmission System by breaker fail Protection at a nominal voltage of greater than 132kV or of a fault cleared by Back-Up Protection where the EU Generator (including in the case of OTSDUW Plant and Apparatus or DC Connected Power Park Module) or HVDC System is connected at 132kV and below. This will permit Discrimination between the Generator in respect of OTSDUW Plant and Apparatus or DC Connected Power Park Modules or HVDC System Owners' Back-Up Protection or Independent Back-Up Protection and the Back-Up Protection provided on the National Electricity Transmission System and other Users' Systems.

- (c) When the **Power Generating Module** (other than **Power Park Units**), or the **HVDC** Equipment or OTSDUW Plant and Apparatus is connected to the National Electricity Transmission System operating at a nominal voltage of greater than 132kV, and in Scotland and Offshore also at 132kV, and a circuit breaker is provided by the Generator (including in respect of OTSDUW Plant and Apparatus or DC Connected Power Park Modules) or the HVDC System owner, or the Relevant Transmission Licensee, as the case may be, to interrupt fault current interchange with the National Electricity Transmission System, or Generator's System, or HVDC System Owner's System, as the case may be, circuit breaker fail **Protection** shall be provided by the **Generator** (including in respect of OTSDUW Plant and Apparatus or DC Connected Power Park Modules) or HVDC System-Owner, or the Relevant Transmission Licensee, as the case may be, on this circuit breaker. In the event, following operation of a Protection system, of a failure to interrupt fault current by these circuit-breakers within the Fault Current Interruption Time, the circuit breaker fail Protection is required to initiate tripping of all the necessary electrically adjacent circuit-breakers so as to interrupt the fault current within the next 200ms.
- (d) The target performance for the System Fault Dependability Index shall be not less than 99%. This is a measure of the ability of Protection to initiate successful tripping of circuit breakers which are associated with the faulty item of Apparatus.

ECC.6.2.2.3 Equipment including Protection equipment to be provided

The **Relevant Transmission Licensee** shall specify the **Protection** schemes and settings necessary to protect the **National Electricity Transmission System**, taking into account the characteristics of the **Power Generating Module** or **HVDC Equipment**.

The protection schemes needed for the **Power Generating Module** or **HVDC Equipment** and the **National Electricity Transmission System** as well as the settings relevant to the **Power Generating Module** and/or **HVDC Equipment** shall be coordinated and agreed between **The Company** and the **EU Generator** or **HVDC System Owner**. The agreed **Protection** schemes and settings will be specified in the **Bilateral Agreement**.

The protection schemes and settings for internal electrical faults must not prevent the **Power Generating Module** or **HVDC Equipment** from satisfying the requirements of the Grid Code although **EU Generators** should be aware of the requirements of ECC.6.3.13.1.;

electrical Protection of the Power Generating Module or HVDC Equipment shall take precedence over operational controls, taking into account the security of the National Electricity Transmission System and the health and safety of personnel, as well as mitigating any damage to the Power Generating Module or HVDC Equipment.

ECC.6.2.2.3.1 Protection of Interconnecting Connections

The requirements for the provision of **Protection** equipment for interconnecting connections will be specified in the **Bilateral Agreement**. In this ECC the term "interconnecting connections" means the primary conductors from the current transformer accommodation on the circuit side of the circuit breaker to the **Connection Point** or the primary conductors from the current transformer accommodation on the circuit side of the circuit breaker to the **Connection Point** or the primary conductors from the current transformer accommodation on the circuit side of the circuit breaker to the **Transmission Interface Point**.

ECC.6.2.2.3.2 Circuit-breaker fail Protection

The EU Generator or HVDC System Owner will install circuit breaker fail Protection equipment in accordance with the requirements of the Bilateral Agreement. The EU Generator or HVDC System Owner will also provide a back-trip signal in the event of loss of air from its pressurised head circuit breakers, during the Power Generating Module (other than a CCGT Unit or Power Park Unit) or HVDC Equipment run-up sequence, where these circuit breakers are installed.

ECC.6.2.2.3.3 Loss of Excitation

The EU Generator must provide Protection to detect loss of excitation in respect of each of its Generating Units within a Synchronous Power Generating Module to initiate a Generating Unit trip.

ECC.6.2.2.3.4 Pole-Slipping Protection

Where, in **The Company's** reasonable opinion, **System** requirements dictate, **The Company** will specify in the **Bilateral Agreement** a requirement for **EU Generators** to fit pole-slipping **Protection** on their **Generating Units** within each **Synchronous Power Generating Module**.

ECC.6.2.2.3.5 Signals for Tariff Metering

EU Generators and **HVDC System Owners** will install current and voltage transformers supplying all tariff meters at a voltage to be specified in, and in accordance with, the **Bilateral Agreement**.

ECC.6.2.2.3.6 Commissioning of Protection Systems

No **EU Generator** or **HVDC System Owner** equipment shall be energised until the **Protection** settings have been finalised. The **EU Generator** or **HVDC System Owner** shall agree with **The Company** (in coordination with the **Relevant Transmission Licensee**) and carry out a combined commissioning programme for the **Protection** systems, and generally, to a minimum standard as specified in the **Bilateral Agreement**.

ECC.6.2.2.4 <u>Work on Protection Equipment</u>

No busbar **Protection**, mesh corner **Protection**, circuit-breaker fail **Protection** relays, AC or DC wiring (other than power supplies or DC tripping associated with the **Power Generating Module**, **HVDC Equipment** itself) may be worked upon or altered by the **EU Generator** or **HVDC System Owner** personnel in the absence of a representative of the **Relevant Transmission Licensee** or written authority from the **Relevant Transmission Licensee** to perform such work or alterations in the absence of a representative of the **Relevant Transmission Licensee**.

ECC.6.2.2.5 Relay Settings

Protection and relay settings will be co-ordinated (both on connection and subsequently) across the **Connection Point** in accordance with the **Bilateral Agreement** and in relation to **OTSDUW Plant and Apparatus**, across the **Interface Point** in accordance with the **Bilateral Agreement** to ensure effective disconnection of faulty **Apparatus**.

- ECC.6.2.2.6 Changes to **Protection** Schemes and **HVDC System** Control Modes
- ECC.6.2.2.6.1 Any subsequent alterations to the protection settings (whether by **The Company**, the **Relevant Transmission Licensee**, the **EU Generator** or the **HVDC System Owner**) shall be agreed between **The Company** (in co-ordination with the **Relevant Transmission Licensee**) and the **EU Generator** or **HVDC System Owner** in accordance with the Grid Code (ECC.6.2.2.5). No alterations are to be made to any protection schemes unless agreement has been reached between **The Company**, the **Relevant Transmission Licensee**, the **EU Generator** or **HVDC System Owner**.
- ECC.6.2.2.6.2 The parameters of different control modes of the **HVDC System** shall be able to be changed in the **HVDC Converter Station**, if required by **The Company** in coordination with the **Relevant Transmission Licensee** and in accordance with ECC.6.2.2.6.4.
- ECC.6.2.2.6.3 Any change to the schemes or settings of parameters of the different control modes and protection of the **HVDC System** including the procedure shall be agreed with **The Company** in coordination with the **Relevant Transmission Licensee** and the **HVDC System Owner**.
- ECC.6.2.2.6.4 The control modes and associated set points shall be capable of being changed remotely, as specified by **The Company** in coordination with the **Relevant Transmission Licensee**.
- ECC.6.2.2.7 Control Schemes and Settings
- ECC.6.2.2.7.1 The schemes and settings of the different control devices on the **Power Generating Module** and **HVDC Equipment** that are necessary for **Transmission System** stability and for taking emergency action shall be agreed with **The Company** in coordination with the **Relevant Transmission Licensee** and the **EU Generator** or **HVDC System Owner**.
- ECC.6.2.2.7.2 Subject to the requirements of ECC.6.2.2.7.1 any changes to the schemes and settings, defined in ECC.6.2.2.7.1, of the different control devices of the **Power Generating Module** or **HVDC Equipment** shall be coordinated and agreed between , the **Relevant Transmission** Licensee, the EU Generator and HVDC System Owner.
- ECC.6.2.2.8 Ranking of Protection and Control
- ECC.6.2.2.8.1 **The Company** in coordination with **Relevant Transmission Licensees**, shall agree and coordinate the protection and control devices of **EU Generators Plant** and **Apparatus** in accordance with the following general priority ranking (from highest to lowest):
 - (i) The interface between the National Electricity Transmission System and the Power Generating Module or HVDC Equipment Protection equipment;
 - (ii) frequency control (active power adjustment);
 - (iii) power restriction; and
 - (iv) power gradient constraint;

- ECC.6.2.2.8.2 A control scheme, specified by the **HVDC System Owner** consisting of different control modes, including the settings of the specific parameters, shall be coordinated and agreed between **The Company** in coordination with the **Relevant Transmission Licensee** and the **HVDC System Owner**. These details would be specified in the **Bilateral Agreement**.
- ECC.6.2.2.8.3 **The Company** in coordination with **Relevant Transmission Licensees**, shall agree and coordinate the protection and control devices of **HVDC System Owners Plant** and **Apparatus** in accordance with the following general priority ranking (from highest to lowest)
 - (i) The interface between the **National Electricity Transmission System** and **HVDC System Protection** equipment;
 - (ii) **Active Power** control for emergency assistance
 - (iii) automatic remedial actions as specified in ECC.6.3.6.1.2.5
 - (iv) Limited Frequency Sensitive Mode (LFSM) of operation;
 - (v) Frequency Sensitive Mode of operation and Frequency control; and
 - (vi) power gradient constraint.

ECC.6.2.2.9 Synchronising

- ECC.6.2.2.9.1 For any **Power Generating Module** directly connected to the **National Electricity Transmission System** or **Type D Power Generating Module**, synchronisation shall be performed by the **EU Generator** only after instruction by **The Company** in accordance with the requirements of BC.2.5.2.
- ECC.6.2.2.9.2 Each **Power Generating Module** directly connected to the **National Electricity Transmission System** or **Type D Power Generating Module** shall be equipped with the necessary synchronisation facilities. Synchronisation shall be possible within the range of frequencies specified in ECC.6.1.2.
- ECC.6.2.2.9.3 The requirements for synchronising equipment shall be specified in accordance with the requirements in the **Electrical Standards** listed in the annex to the **General Conditions**. The synchronisation settings shall include the following elements below. Any variation to these requirements shall be pursuant to the terms of the **Bilateral Agreement**.
 - (a) voltage
 - (b) Frequency
 - (c) phase angle range
 - (d) phase sequence
 - (e) deviation of voltage and **Frequency**
- ECC.6.2.2.9.4 **HVDC Equipment** shall be required to satisfy the requirements of ECC.6.2.2.9.1 ECC.6.2.2.9.3. In addition, unless otherwise specified by **The Company**, during the synchronisation of a **DC Connected Power Park Module** to the **National Electricity Transmission System**, any **HVDC Equipment** shall have the capability to limit any steady state voltage changes to the limits specified within ECC.6.1.7 or ECC.6.1.8 (as applicable) which shall not exceed 5% of the pre-synchronisation voltage. **The Company** in coordination with the **Relevant Transmission Licensee** shall specify any additional requirements for the maximum magnitude, duration and measurement of the voltage transients over and above those defined in ECC.6.1.7 and ECC.6.1.8 in the **Bilateral Agreement**.
- ECC.6.2.2.9.5 **EU Generators** in respect of **DC Connected Power Park Modules** shall also provide output synchronisation signals specified by **The Company** in co-ordination with the **Relevant Transmission Licensee**.

ECC.6.2.2.9.6 In addition to the requirements of ECC.6.2.2.9.1 to ECC.6.2.2.9.5, **EU Generators** and **HVDC** System Owners should also be aware of the requirements of ECC.6.5.10 relating to busbar voltage

ECC.6.2.2.9.10 HVDC Parameters and Settings

- ECC.6.2.2.9.10.1 The parameters and settings of the main control functions of an **HVDC System** shall be agreed between the **HVDC System** owner and **The Company**, in coordination with the **Relevant Transmission Licensee**. The parameters and settings shall be implemented within such a control hierarchy that makes their modification possible if necessary. Those main control functions are at least:
 - (b) Frequency Sensitive Modes (FSM, LFSM-O, LFSM-U);
 - (c) **Frequency** control, if applicable;
 - (d) Reactive Power control mode, if applicable;
 - (e) power oscillation damping capability;
 - (f) subsynchronous torsional interaction damping capability,.

ECC.6.2.2.11 Automatic Reconnection

- ECC.6.2.2.11.1 EU Generators in respect of Type A, Type B, Type C and Type D Power Generating Modules (including DC Connected Power Park Modules) which have signed a CUSC Contract with The Company are not permitted to automatically reconnect to the Total System without instruction from The Company. The Company will issue instructions for reconnection or re-synchronisation in accordance with the requirements of BC2.5.2. Where synchronising is permitted in accordance with BC2.5.2, the voltage and frequency at the Grid Entry Point or User System Entry Point shall be within the limits defined in ECC.6.1.2 and ECC.6.1.4 and the ramp rate limits pursuant to BC1.A.1.1. For the avoidance of doubt this requirement does not apply to EU Generators who are not required to satisfy the requirements of the Balancing Codes.
- ECC.6.2.2.12 Automatic Disconnection
- ECC.6.2.2.12.1 No **Power Generating Module** or **HVDC Equipment** shall disconnect within the frequency range or voltage range defined in ECC.6.1.2 and ECC.6.1.4.
- ECC.6.2.2.13 <u>Special Provisions relating to Power Generating Modules embedded within Industrial Sites</u> which supply electricity as a bi-product of their industrial process
- ECC.6.2.2.13.1 Generators in respect of Power Generating Modules which form part of an industrial network, where the Power Generating Module is used to supply critical loads within the industrial process shall be permitted to operate isolated from the Total System if agreed with The Company in the Bilateral Agreement.
- ECC.6.2.2.13.2 Except for the requirements of ECC.6.3.3 and ECC.6.3.7.1, **Power Generating Modules** which are embedded within industrial sites are not required to satisfy the requirements of ECC.6.3.6.2.1 and ECC.6.3.9. In this case this exception would only apply to **Power Generating Modules** on industrial sites used for combined heat and power production which are embedded in the network of an industrial site where all the following criteria are met.
 - (a) The primary purpose of these sites is to produce heat for production processes of the industrial site concerned,
 - (b) Heat and power generation is inextricably interlinked, that is to say any change to heat generation results inadvertently in a change of active power generating and visa versa.
 - (c) The Power Generating Modules are of Type A, Type B or Type C.
 - (d) Combined heat and power generating facilities shall be assessed on the basis of their electrical **Maximum Capacity**.

- ECC.6.2.3 Requirements at EU Grid Supply Points relating to Network Operators and Non-Embedded Customers
- ECC.6.2.3.1 <u>Protection Arrangements for EU Code Users in respect of Network Operators and Non-Embedded Customers</u>
- ECC.6.2.3.1.1 Protection arrangements for EU Code Users in respect of Network Operators and Non-Embedded Customers User Systems directly connected to the National Electricity Transmission System, shall meet the requirements given below:

Fault Clearance Times

- (a) The required fault clearance time for faults on Network Operator and Non-Embedded Customer equipment directly connected to the National Electricity Transmission System, and for faults on the National Electricity Transmission System directly connected to the Network Operator's or Non-Embedded Customer's equipment, from fault inception to the circuit breaker arc extinction, shall be set out in each Bilateral Agreement. The fault clearance time specified in the Bilateral Agreement shall not be shorter than the durations specified below:
 - (i) 80ms for connections operating at a nominal voltage of greater than 300kV
 - (ii) 100ms for connections operating at a nominal voltage of greater than 132kV and up to 300kV
 - (iii) 120ms for connections operating at a nominal voltage of greater than 132kV and below

but this shall not prevent the **User** or **The Company** or **Relevant Transmission Licensee** from selecting a shorter fault clearance time on its own **Plant** and **Apparatus** provided **Discrimination** is achieved.

For the purpose of establishing the **Protection** requirements in accordance with ECC.6.2.3.1.1 only, the point of connection of the **Network Operator** or **Non-Embedded Customer** equipment to the **National Electricity Transmission System** shall be deemed to be the low voltage busbars at an **EU Grid Supply Point**, irrespective of the ownership of the equipment at the **EU Grid Supply Point**.

A longer fault clearance time may be specified in the **Bilateral Agreement** for faults on the **National Electricity Transmission System**. A longer fault clearance time for faults on the **Network Operator** and **Non-Embedded Customers** equipment may be agreed with **The Company** in accordance with the terms of the **Bilateral Agreement** but only if **System** requirements in **The Company's** view permit. The probability that the fault clearance time stated in the **Bilateral Agreement** will be exceeded by any given fault must be less than 2%.

- (b) (i) For the event of failure of the Protection systems provided to meet the above fault clearance time requirements, Back-Up Protection shall be provided by the Network Operator or Non-Embedded Customer as the case may be.
 - (ii) The Relevant Transmission Licensee will also provide Back-Up Protection, which will result in a fault clearance time longer than that specified for the Network Operator or Non-Embedded Customer Back-Up Protection so as to provide Discrimination.
 - (iii) For connections with the National Electricity Transmission System at 132kV and below, it is normally required that the Back-Up Protection on the National Electricity Transmission System shall discriminate with the Network Operator or Non-Embedded Customer's Back-Up Protection.
 - (iv) For connections with the National Electricity Transmission System operating at a nominal voltage greater than 132kV, the Back-Up Protection will be provided by the Network Operator or Non-Embedded Customer, as the case may be, with a fault clearance time not longer than 300ms for faults on the Network Operator's or Non-Embedded Customer's Apparatus.

- (v) Such Protection will also be required to withstand, without tripping, the loading incurred during the clearance of a fault on the National Electricity Transmission System by breaker fail Protection operating at a nominal voltage of greater than 132kV. This will permit Discrimination between Network Operator's Back-Up Protection or Non-Embedded Customer's Back-Up Protection, as the case may be, and Back-Up Protection provided on the National Electricity Transmission System and other User Systems. The requirement for and level of Discrimination required will be specified in the Bilateral Agreement.
- (c) (i) Where the Network Operator or Non-Embedded Customer is connected to part of the National Electricity Transmission System operating at a nominal voltage greater than 132kV and in Scotland also at 132kV, and a circuit breaker is provided by the Network Operator or Non-Embedded Customer, or the Relevant Transmission Licensee, as the case may be, to interrupt the interchange of fault current with the National Electricity Transmission System or the System of the Network Operator or Non-Embedded Customer, as the case may be, circuit breaker fail Protection will be provided by the Network Operator or Non-Embedded Customer, or the Relevant Transmission Licensee, as the case may be, on this circuit breaker.
 - (ii) In the event, following operation of a **Protection** system, of a failure to interrupt fault current by these circuit-breakers within the **Fault Current Interruption Time**, the circuit breaker fail **Protection** is required to initiate tripping of all the necessary electrically adjacent circuit-breakers so as to interrupt the fault current within the next 200ms.
- (d) The target performance for the System Fault Dependability Index shall be not less than 99%. This is a measure of the ability of Protection to initiate successful tripping of circuit breakers which are associated with the faulty items of Apparatus.

ECC.6.2.3.2 Fault Disconnection Facilities

- (a) Where no Transmission circuit breaker is provided at the User's connection voltage, the User must provide The Company with the means of tripping all the User's circuit breakers necessary to isolate faults or System abnormalities on the National Electricity Transmission System. In these circumstances, for faults on the User's System, the User's Protection should also trip higher voltage Transmission circuit breakers. These tripping facilities shall be in accordance with the requirements specified in the Bilateral Agreement.
- (b) The Company may require the installation of a System to Generator Operational Intertripping Scheme in order to enable the timely restoration of circuits following power System fault(s). These requirements shall be set out in the relevant Bilateral Agreement.

ECC.6.2.3.3 Automatic Switching Equipment

Where automatic reclosure of **Transmission** circuit breakers is required following faults on the **User's System**, automatic switching equipment shall be provided in accordance with the requirements specified in the **Bilateral Agreement**.

ECC.6.2.3.4 Relay Settings

Protection and relay settings will be co-ordinated (both on connection and subsequently) across the **Connection Point** in accordance with the **Bilateral Agreement** to ensure effective disconnection of faulty **Apparatus**.

ECC.6.2.3.5 Work on Protection equipment

Where a Transmission Licensee owns the busbar at the Connection Point, no busbar Protection, mesh corner Protection relays, AC or DC wiring (other than power supplies or DC tripping associated with the Network Operator or Non-Embedded Customer's Apparatus itself) may be worked upon or altered by the Network Operator or Non-Embedded Customer personnel in the absence of a representative of the Relevant Transmission Licensee or written authority from the Relevant Transmission Licensee to perform such work or alterations in the absence of a representative of the Relevant Transmission Licensee.

ECC.6.2.3.6 Equipment including **Protection** equipment to be provided

The Company in coordination with the Relevant Transmission Licensee shall specify and agree the Protection schemes and settings at each EU Grid Supply Point required to protect the National Electricity Transmission System in accordance with the characteristics of the Network Operator's or Non Embedded Customer's System. The Company in coordination with the Relevant Transmission Licensee and the Network Operator or Non Embedded Customer shall agree on the protection schemes and settings in respect of the busbar protection zone in respect of each EU Grid Supply Point.

Protection of the **Network Operator**'s or **Non Embedded Customer**'s **System** shall take precedence over operational controls whilst respecting the security of the **National Electricity Transmission System** and the health and safety of staff and the public.

ECC.6.2.3.6.1 Protection of Interconnecting Connections

The requirements for the provision of **Protection** equipment for interconnecting connections will be specified in the **Bilateral Agreement**.

ECC.6.2.3.7 Changes to Protection Schemes at EU Grid Supply Points

Any subsequent alterations to the busbar protection settings at the **EU Grid Supply Point** (whether by **The Company**, the **Relevant Transmission Licensee**, the **Network Operator** or the **Non Embedded Customer**) shall be agreed between **The Company** (in co-ordination with the **Relevant Transmission Licensee**) and the **Network Operator** or **Non Embedded Customer** in accordance with the Grid Code (ECC.6.2.3.4). No alterations are to be made to any busbar protection schemes unless agreement has been reached between **The Company**,

the Relevant Transmission Licensee, the Network Operator or Non Embedded Customer.

No Network Operator or Non Embedded Customer equipment shall be energised until the Protection settings have been agreed prior to commissioning. The Network Operator or Non Embedded Customer shall agree with The Company (in coordination with the Relevant Transmission Licensee) and carry out a combined commissioning programme for the Protection systems, and generally, to a minimum standard as specified in the Bilateral Agreement.

ECC.6.2.3.8 Control Requirements

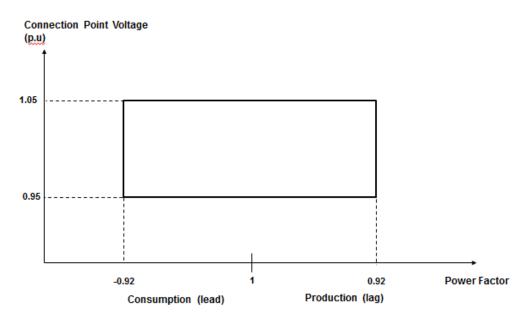
- ECC.6.2.3.8.1 The Company in coordination with the Relevant Transmission Licensee and the Network Operator or Non Embedded Customer shall agree on the control schemes and settings at each EU Grid Supply Point of the different control devices of the Network Operator's or Non Embedded Customer's System relevant for security of the National Electricity Transmission System. Such requirements would be pursuant to the terms of the Bilateral Agreement which shall also cover at least the following elements:
 - (a) Isolated (National Electricity Transmission System) operation;
 - (b) Damping of oscillations;
 - (c) Disturbances to the National Electricity Transmission System;
 - (d) Automatic switching to emergency supply and restoration to normal topology;
 - (e) Automatic circuit breaker re-closure (on 1-phase faults).
- ECC.6.2.3.8.2 Subject to the requirements of ECC.6.2.3.8.1 any changes to the schemes and settings, defined in ECC.6.2.3.8.1 of the different control devices of the **Network Operator**'s or **Non-Embedded Customer**'s **System** at the **EU Grid Supply Point** shall be coordinated and agreed between **The Company**, the **Relevant Transmission Licensee**, the **Network Operator** or **Non Embedded Customer**.
- ECC.6.2.3.9 Ranking of Protection and Control
- ECC.6.2.3.9.1 The **Network Operator** or the **Non Embedded Customer** who owns or operates an **EU Grid Supply Point** shall set the **Protection** and control devices of its **System**, in compliance with the following priority ranking, organised in decreasing order of importance:
 - (a) National Electricity Transmission System Protection;
 - (b) Protection equipment at each EU Grid Supply Point;
 - (c) Frequency control (Active Power adjustment);
 - (d) **P**ower restriction.
- ECC.6.2.3.10 Synchronising
- ECC.6.2.3.10.1 Each **Network Operator** or **Non Embedded Customer** at each **EU Grid Supply Point** shall be capable of synchronisation within the range of frequencies specified in ECC.6.1.2 unless otherwise agreed with **The Company**.
- ECC.6.2.3.10.2 **The Company** and the **Network Operator** or **Non Embedded Customer** shall agree on the settings of the synchronisation equipment at each **EU Grid Supply Point** prior to the **Completion Date**. **The Company** and the relevant **Network Operator** or **Non-Embedded Customer** shall agree the synchronisation settings which shall include the following elements.
 - (a) Voltage;
 - (b) Frequency;
 - (c) phase angle range;
 - (d) deviation of voltage and Frequency.

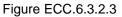
ECC.6.3 <u>GENERAL POWER GENERATING MODULE, OTSDUW AND HVDC EQUIPMENT</u> <u>REQUIREMENTS</u>

ECC.6.3.1 This section sets out the technical and design criteria and performance requirements for Power Generating Modules (which includes Electricity Storage Modules) and HVDC Equipment (whether directly connected to the National Electricity Transmission System or Embedded) and (where provided in this section) OTSDUW Plant and Apparatus which each Generator or HVDC System Owner must ensure are complied with in relation to its Power Generating Modules, HVDC Equipment and OTSDUW Plant and Apparatus. References to Power Generating Modules, HVDC Equipment in this ECC.6.3 should be read accordingly. For the avoidance of doubt, the requirements applicable to Synchronous Power Generating Modules also apply to Synchronous Electricity Storage Modules and the requirements applicable to Power Park Modules apply to Non-Synchronous Electricity Storage Modules. In addition, the requirements applicable to Electricity Storage Modules also apply irrespective of whether the Electricity Storage Module operates in such a mode as to import or export power from the Total System.

Plant Performance Requirements

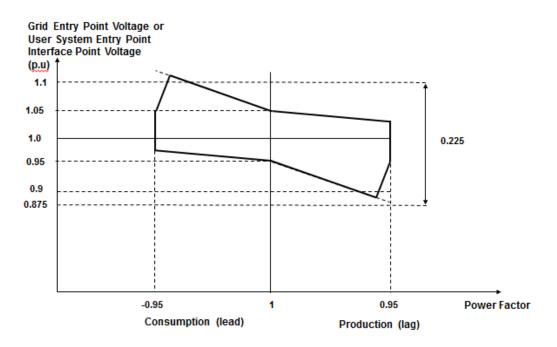
- ECC.6.3.2 REACTIVE CAPABILITY
- ECC.6.3.2.1 Reactive Capability for Type B Synchronous Power Generating Modules
- ECC.6.3.2.1.1 When operating at Maximum Capacity, all Type B Synchronous Power Generating Modules must be capable of continuous operation at any points between the limits of 0.95 Power Factor lagging and 0.95 Power Factor leading at the Grid Entry Point or User System Entry Point unless otherwise agreed with The Company or relevant Network Operator. At Active Power output levels other than Maximum Capacity, all Generating Units within a Type B Synchronous Power Generating Module must be capable of continuous operation at any point between the Reactive Power capability limits identified on the HV Generator Performance Chart unless otherwise agreed with The Company or relevant Network Operator.


ECC.6.3.2.2 Reactive Capability for Type B Power Park Modules


ECC.6.3.2.2.1 When operating at Maximum Capacity all Type B Power Park Modules must be capable of continuous operation at any points between the limits of 0.95 Power Factor lagging and 0.95 Power Factor leading at the Grid Entry Point or User System Entry Point unless otherwise agreed with The Company or relevant Network Operator. At Active Power output levels other than Maximum Capacity, each Power Park Module must be capable of continuous operation at any point between the Reactive Power capability limits identified on the HV Generator Performance Chart unless otherwise agreed with The Company or Network Operator.

ECC.6.3.2.3 Reactive Capability for Type C and D Synchronous Power Generating Modules

- ECC.6.3.2.3.1 In addition to meeting the requirements of ECC.6.3.2.3.2 ECC.6.3.2.3.5, **EU Generators** which connect a **Type C** or **Type D Synchronous Power Generating Module**(s) to a **Non Embedded Customers System** or private network, may be required to meet additional reactive compensation requirements at the point of connection between the **System** and the **Non Embedded Customer** or private network where this is required for **System** reasons.
- ECC.6.3.2.3.2 All **Type C** and **Type D Synchronous Power Generating Modules** shall be capable of satisfying the **Reactive Power** capability requirements at the **Grid Entry Point** or **User System Entry Point** as defined in Figure ECC.6.3.2.3 when operating at **Maximum Capacity**.


ECC.6.3.2.3.3 At Active Power output levels other than Maximum Capacity, all Generating Units within a Synchronous Power Generating Module must be capable of continuous operation at any point between the Reactive Power capability limit identified on the HV Generator Performance Chart at least down to the Minimum Stable Operating Level. At reduced Active Power output, Reactive Power supplied at the Grid Entry Point (or User System Entry Point if Embedded) shall correspond to the HV Generator Performance Chart of the Synchronous Power Generating Module, taking the auxiliary supplies and the Active Power and Reactive Power losses of the Generating Unit transformer or Station Transformer into account.

- ECC.6.3.2.3.4 In addition, to the requirements of ECC.6.3.2.3.1 ECC.6.3.2.3.3 the short circuit ratio of all **Onshore Synchronous Generating Units** with an **Apparent Power** rating of less than 1600MVA shall not be less than 0.5. The short circuit ratio of **Onshore Synchronous Generating Units** with a rated **Apparent Power** of 1600MVA or above shall be not less than 0.4.
- ECC.6.3.2.4 Reactive Capability for Type C and D Power Park Modules, HVDC Equipment and OTSDUW Plant and Apparatus at the Interface Point
- ECC.6.3.2.4.1 EU Generators or HVDC System Owners which connect an Onshore Type C or Onshore Type D Power Park Module or HVDC Equipment to a Non Embedded Customers System or private network, may be required to meet additional reactive compensation requirements at the point of connection between the System and the Non Embedded Customer or private network where this is required for System reasons.

ECC.6.3.2.4.2 All Onshore Type C Power Park Modules and Onshore Type D Power Park Modules or HVDC Converters at an HVDC Converter Station with a Grid Entry Point or User System Entry Point voltage above 33kV, or Remote End HVDC Converters with an HVDC Interface Point voltage above 33kV, or OTSDUW Plant and Apparatus with an Interface Point voltage above 33kV shall be capable of satisfying the Reactive Power capability requirements at the Grid Entry Point or User System Entry Point (or Interface Point in the case of OTSDUW Plant and Apparatus, or HVDC Interface Point in the case of a Remote End HVDC Converter Station) as defined in Figure ECC.6.3.2.4(a) when operating at Maximum Capacity (or Interface Point Capacity in the case of OTSUW Plant and Apparatus). In the case of Remote End HVDC Converters and DC Connected Power Park Modules, The Company in co-ordination with the Relevant Transmission Licensee may agree to alternative reactive capability requirements to those specified in Figure ECC.6.3.2.4(a), where it is demonstrated that it is uneconomic and inefficient to do so, for example in the case of new technologies or advanced control strategies. For the avoidance of doubt, the requirements for Offshore Power Park Modules and DC **Connected Power Park Modules** are defined in ECC.6.3.2.5 and ECC.6.3.2.6.

Figure ECC.6.3.2.4(a)

ECC.6.3.2.4.3 All Onshore Type C or Type D Power Park Modules or HVDC Converters at a HVDC Converter Station with a Grid Entry Point or User System Entry Point voltage at or below 33kV or Remote End HVDC Converter Station with an HVDC Interface Point Voltage at or below 33kV shall be capable of satisfying the Reactive Power capability requirements at the Grid Entry Point or User System Entry Point as defined in Figure ECC.6.3.2.4(b) when operating at Maximum Capacity. In the case of Remote End HVDC Converters The Company in co-ordination with the Relevant Transmission Licensee may agree to alternative reactive capability requirements to those specified in Figure ECC.6.3.2.4(b), where it is demonstrated that it is uneconomic and inefficient to do so, for example in the case of new technologies or advanced control strategies. For the avoidance of doubt, the requirements for Offshore Power Park Modules and DC Connected Power Park Modules are defined in ECC.6.3.2.5 and ECC.6.3.2.6.

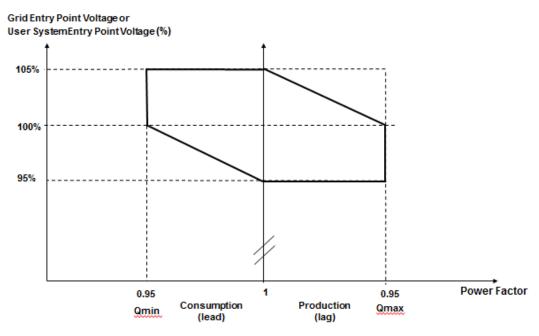
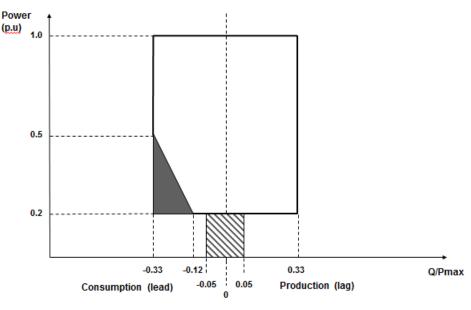



Figure ECC.6.3.2.4(b)

- ECC.6.3.2.4.4
 - All Type C and Type D Power Park Modules, HVDC Converters at a HVDC Converter Station including Remote End HVDC Converters or OTSDUW Plant and Apparatus, shall be capable of satisfying the Reactive Power capability requirements at the Grid Entry Point or User System Entry Point (or Interface Point Capacity in the case of OTSUW Plant and Apparatus or HVDC Interface Point in the case of Remote End HVDC Converter Stations) as defined in Figure ECC.6.3.2.4(c) when operating below Maximum Capacity. With all Plant in service, the Reactive Power limits will reduce linearly below 50% Active Power output as shown in Figure ECC.6.3.2.4(c) unless the requirement to maintain the Reactive Power limits defined at Maximum Capacity (or Interface Point Capacity in the case of OTSDUW Plant and Apparatus) under absorbing Reactive Power conditions down to 20% Active Power output has been specified by The Company. These Reactive Power limits will be reduced pro rata to the amount of Plant in service. In the case of **Remote End HVDC Converters**, **The Company** in co-ordination with the Relevant Transmission Licensee may agree to alternative reactive capability requirements to those specified in Figure ECC.6.3.2.4(a), where it is demonstrated that it is uneconomic and inefficient to do so, for example in the case of new technologies or advanced control strategies. For the avoidance of doubt, the requirements for Offshore Power Park Modules and DC Connected Power Park Modules are defined in ECC.6.3.2.5 and ECC.6.3.2.6.

Figure ECC.6.3.2.4(c)

- ECC.6.3.2.5 Reactive Capability for Offshore Synchronous Power Generating Modules, Configuration 1 AC connected Offshore Power Park Modules and Configuration 1 DC Connected Power Park Modules.
- ECC.6.3.2.5.1 The short circuit ratio of any Offshore Synchronous Generating Units within a Synchronous Power Generating Module shall not be less than 0.5. All Offshore Synchronous Generating Units, Configuration 1 AC connected Offshore Power Park Modules or Configuration 1 DC Connected Power Park Modules must be capable of maintaining zero transfer of Reactive Power at the Offshore Grid Entry Point. The steady state tolerance on Reactive Power transfer to and from an Offshore Transmission System expressed in MVAr shall be no greater than 5% of the Maximum Capacity.
- ECC.6.3.2.5.2 For the avoidance of doubt if an **EU Generator** (including those in respect of **DC Connected Power Park Modules**) wishes to provide a **Reactive Power** capability in excess of the minimum requirements defined in ECC.6.3.2.5.1 then such capability (including steady state tolerance) shall be agreed between the **Generator**, **Offshore Transmission Licensee** and **The Company** and/or the relevant **Network Operator**.
- ECC.6.3.2.6 Reactive Capability for Configuration 2 AC Connected Offshore Power Park Modules and Configuration 2 DC Connected Power Park Modules.
- ECC.6.3.2.6.1 All **Configuration 2 AC connected Offshore Power Park Modules** and **Configuration 2 DC Connected Power Park Modules** shall be capable of satisfying the minimum **Reactive Power** capability requirements at the **Offshore Grid Entry Point** as defined in Figure ECC.6.3.2.6(a) when operating at **Maximum Capacity**. **The Company** in co-ordination with the **Relevant Transmission Licensee** may agree to alternative reactive capability requirements to those specified in Figure ECC.6.3.2.6(a), where it is demonstrated that it is uneconomic and inefficient to do so, for example in the case of new technologies or advanced control strategies.

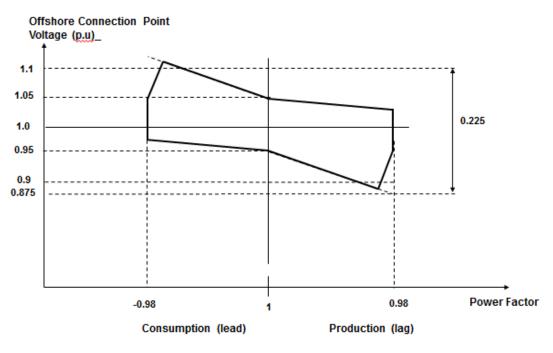


Figure ECC.6.3.2.6(a)

ECC.6.3.2.6.2 All AC Connected Configuration 2 Offshore Power Park Modules and Configuration 2 DC Connected Power Park Modules shall be capable of satisfying the Reactive Power capability requirements at the Offshore Grid Entry Point as defined in Figure ECC.6.3.2.6(b) when operating below Maximum Capacity. With all Plant in service, the Reactive Power limits will reduce linearly below 50% Active Power output as shown in Figure ECC.6.3.2.6(b) unless the requirement to maintain the Reactive Power limits defined at Maximum Capacity (or Interface Point Capacity in the case of OTSDUW Plant and Apparatus) under absorbing Reactive Power conditions down to 20% Active Power output has been specified with The Company. These Reactive Power limits will be reduced pro rata to the amount of Plant in service. The Company in co-ordination with the Relevant Transmission Licensee may agree to alternative reactive capability requirements to those specified in Figure ECC.6.3.2.6(b), where it is demonstrated that it is uneconomic and inefficient to do so, for example in the case of new technologies or advanced control strategies.

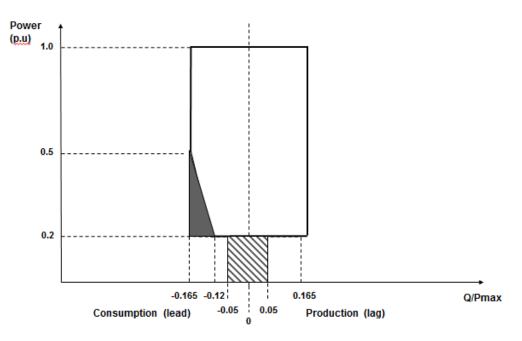
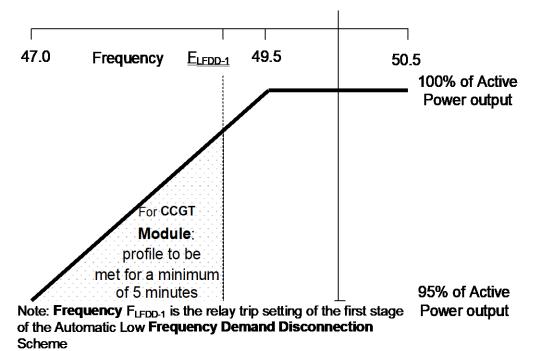



Figure ECC.6.3.2.6(b)

- ECC.6.3.2.6.3 For the avoidance of doubt if an **EU Generator** (including **Generators** in respect of **DC Connected Power Park Modules** referred to in ECC.6.3.2.6.2) wishes to provide a **Reactive Power** capability in excess of the minimum requirements defined in ECC.6.3.2.6.1 then such capability (including any steady state tolerance) shall be between the **EU Generator**, **Offshore Transmission Licensee** and **The Company** and/or the relevant **Network Operator**.
- ECC.6.3.3 OUTPUT POWER WITH FALLING FREQUENCY
- ECC.6.3.3.1 Output power with falling frequency for **Power Generating Modules** and **HVDC Equipment**
- ECC.6.3.3.1.1 Each **Power Generating Module** and **HVDC Equipment** must be capable of:
 - (a) continuously maintaining constant **Active Power** output for **System Frequency** changes within the range 50.5 to 49.5 Hz; and
 - (b) (subject to the provisions of ECC.6.1.2) maintaining its Active Power output at a level not lower than the figure determined by the linear relationship shown in Figure ECC.6.3.3(a) for System Frequency changes within the range 49.5 to 47 Hz for all ambient temperatures up to and including 25°C, such that if the System Frequency drops to 47 Hz the **Active Power** output does not decrease by more than 5%. In the case of a CCGT Module, the above requirement shall be retained down to the Low Frequency Relay trip setting of 48.8 Hz, which reflects the first stage of the Automatic Low Frequency Demand Disconnection scheme notified to Network Operators under OC6.6.2. For **System Frequency** below that setting, the existing requirement shall be retained for a minimum period of 5 minutes while System Frequency remains below that setting, and special measure(s) that may be required to meet this requirement shall be kept in service during this period. After that 5 minutes period, if System Frequency remains below that setting, the special measure(s) must be discontinued if there is a materially increased risk of the Gas Turbine tripping. The need for special measure(s) is linked to the inherent Gas Turbine Active Power output reduction caused by reduced shaft speed due to falling System Frequency. Where the need for special measures is identified in order to maintain output in line with the level identified in Figure ECC.6.3.3(a) these measures should be still continued at ambient temperatures above 25°C maintaining as much of the Active Power achievable within the capability of the plant. For the avoidance of doubt, Generators in respect of Pumped Storage Plant and Electricity Storage Modules shall also be required to satisfy the requirements of OC6.6.6.

Figure ECC.6.3.3(a) Active Power Output with falling frequency for Power Generating Modules and HVDC Systems and Electricity Storage Modules when operating in an exporting mode of operation

- (c) For the avoidance of doubt, in the case of a Power Generating Module including a DC Connected Power Park Module using an Intermittent Power Source where the mechanical power input will not be constant over time, the requirement is that the Active Power output shall be independent of System Frequency under (a) above and should not drop with System Frequency by greater than the amount specified in (b) above.
 - (d) An HVDC System must be capable of maintaining its Active Power input (i.e. when operating in a mode analogous to Demand) from the National Electricity Transmission System (or User System in the case of an Embedded HVDC System) at a level not greater than the figure determined by the linear relationship shown in Figure ECC.6.3.3(b) for System Frequency changes within the range 49.5 to 47 Hz, such that if the System Frequency drops to 47.8 Hz the Active Power input decreases by more than 60%.

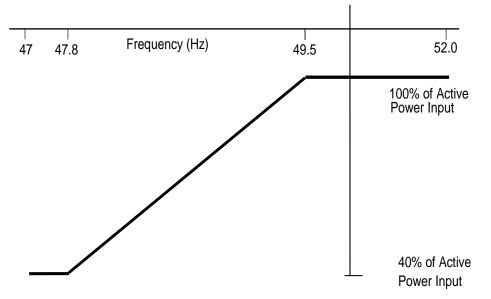


Figure ECC.6.3.3(b) Active Power input with falling frequency for HVDC Systems

- (e) In the case of an Offshore Generating Unit or Offshore Power Park Module or DC Connected Power Park Module or Remote End HVDC Converter or Transmission DC Converter, the EU Generator shall comply with the requirements of ECC.6.3.3. EU Generators should be aware that Section K of the STC places requirements on Offshore Transmission Licensees which utilise a Transmission DC Converter as part of their Offshore Transmission System to make appropriate provisions to enable EU Generators to fulfil their obligations.
- (f) Transmission DC Converters and Remote End HVDC Converters shall provide a continuous signal indicating the real time frequency measured at the Interface Point to the Offshore Grid Entry Point or HVDC Interface Point for the purpose of Offshore Generators or DC Connected Power Park Modules to respond to changes in System Frequency on the Main Interconnected Transmission System. A DC Connected Power Park Module or Offshore Power Generating Module shall be capable of receiving and processing this signal within 100ms.

ECC.6.3.4 ACTIVE POWER OUTPUT UNDER SYSTEM VOLTAGE VARIATIONS

ECC.6.3.4.1 At the Grid Entry Point or User System Entry Point, the Active Power output under steady state conditions of any Power Generating Module or HVDC Equipment directly connected to the National Electricity Transmission System or in the case of OTSDUW, the Active Power transfer at the Interface Point, under steady state conditions of any OTSDUW Plant and Apparatus should not be affected by voltage changes in the normal operating range specified in paragraph ECC.6.1.4 by more than the change in Active Power losses at reduced or increased voltage.

ECC.6.3.5 BLACK START

- ECC.6.3.5.1 Black Start is not a mandatory requirement, however EU Code Users may wish to notify The Company of their ability to provide a Black Start facility and the cost of the service. The Company will then consider whether it wishes to contract with the EU Code User for the provision of a Black Start service which would be specified via a Black Start Contract. Where an EU Code User does not offer to provide a cost for the provision of a Black Start Capability, The Company may make such a request if it considers System security to be at risk due to a lack of Black Start capability.
- ECC.6.3.5.2 It is an essential requirement that the National Electricity Transmission System must incorporate a Black Start Capability. This will be achieved by agreeing a Black Start Capability at a number of strategically located Power Stations and HVDC Systems. For each Power Station or HVDC System, The Company will state in the Bilateral Agreement whether or not a Black Start Capability is required.
- ECC.6.3.5.3 Where an EU Code User has entered into a Black Start Contract to provide a Black Start Capability in respect of a Type C Power Generating Module or Type D Power Generating Module (including DC Connected Power Park Modules) the following requirements shall apply.
 - (i) The **Power-Generating Module** or **DC Connected Power Park Module** shall be capable of starting from shutdown without any external electrical energy supply within a time frame specified by **The Company** in the **Black Start Contract**.
 - (ii) Each **Power Generating Module** or **DC Connected Power Park Module** shall be able to synchronise within the frequency limits defined in ECC.6.1. and, where applicable, voltage limits specified in ECC.6.1.4;
 - (iii) The **Power Generating Module** or **DC Connected Power Park Module** shall be capable of connecting on to an unenergised **System**.
 - (iv) The **Power-Generating Module** or **DC Connected Power Park Module** shall be capable of automatically regulating dips in voltage caused by connection of demand;
 - (v) The **Power Generating Module** or **DC Connected Power Park Module** shall:

be capable of Block Load Capability,

be capable of operating in **LFSM-O** and **LFSM-U**, as specified in ECC.6.3.7.1 and ECC.6.3.7.2

control **Frequency** in case of overfrequency and underfrequency within the whole **Active Power** output range between the **Minimum Regulating Level** and **Maximum Capacity** as well as at houseload operation levels

be capable of parallel operation of a few **Power Generating Modules** including **DC Connected Power Park Modules** within an isolated part of the **Total System** that is still supplying **Customers**, and control voltage automatically during the system restoration phase;

- (vi) Power Park Modules (including DC Connected Power Park Modules) and HVDC Equipment which provide a Black Start Capability, shall also be capable of satisfying the Grid Forming Capability requirements defined in ECC.6.3.19.
- ECC.6.3.5.4 Each HVDC System or Remote End HVDC Converter Station which has a Black Start Capability shall be capable of energising the busbar of an AC substation to which the another HVDC Converter Station is connected. The timeframe after shutdown of the HVDC System prior to energisation of the AC substation shall be pursuant to the terms of the Black Start Contract. The HVDC System shall be able to synchronise within the Frequency limits defined in ECC.6.1.2.1.2 and voltage limits defined in ECC.6.1.4.1 unless otherwise specified in the Black Start Contract. Wider Frequency and voltage ranges can be specified in the Black Start Contract in order to restore System security.
- ECC.6.3.5.5 With regard to the capability to take part in operation of an isolated part of the **Total System** that is still supplying **Customers**:
- (b)Power Generating Modules including DC Connected Power Park Modules shall be capable of taking part in island operation if specified in the Black Start Contract required by The Company and:

the Frequency limits for island operation shall be those specified in ECC.6.1.2,

the voltage limits for island operation shall be those defined in ECC.6.1.4;

- (i) Power Generating Modules including DC Connected Power Park Modules shall be able to operate in Frequency Sensitive Mode during island operation, as specified in ECC.6.3.7.3. In the event of a power surplus, Power Generating Modules including DC Connected Power Park Modules shall be capable of reducing the Active Power output from a previous operating point to any new operating point within the Power Generating Module Performance Chart. Power Generating Modules including DC Connected Power Park Modules shall be capable of reducing Active Power output as much as inherently technically feasible, but to at least 55 % of Maximum Capacity;
- (iii) The method for detecting a change from interconnected system operation to island operation shall be agreed between the EU Generator, The Company and the Relevant Transmission Licensee. The agreed method of detection must not rely solely on The Company, Relevant Transmission Licensee's or Network Operators switchgear position signals;
- Power Generating Modules including DC Connected Power Park Modules shall be able to operate in LFSM-O and LFSM-U during island operation, as specified in ECC.6.3.7.1 and ECC.6.3.7.2;
- ECC.6.3.5.6 With regard to quick re-synchronisation capability:
- (b) In case of disconnection of the Power Generating Module including DC Connected Power Park Modules from the System, the Power Generating Module shall be capable of quick re-synchronisation in line with the Protection strategy agreed between The Company and/or Network Operator in co-ordination with the Relevant Transmission Licensee and the Generator;

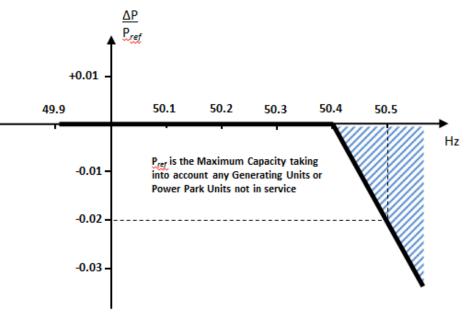
- (i) A Power Generating Module including a DC Connected Power Park Module with a minimum re-synchronisation time greater than 15 minutes after its disconnection from any external power supply must be capable of Houseload Operation from any operating point on-its-Power Generating Module Performance Chart. In this case, the identification of Houseload Operation must not be based solely on the Total System's-switchgear position signals;
- (ii) Power Generating Modules including DC Connected Power Park Modules shall be capable of Houseload Operation, irrespective of any auxiliary connection to the Total System. The minimum operation time shall be specified by The Company, taking into consideration the specific characteristics of prime mover technology.
- ECC.6.3.6 CONTROL ARRANGEMENTS
- ECC.6.3.6.1 ACTIVE POWER CONTROL
- ECC.6.3.6.1.1 <u>Active Power control in respect of Power Generating Modules including DC Connected</u> <u>Power Park Modules</u>
- ECC.6.3.6.1.1.1 Type A Power Generating Modules shall be equipped with a logic interface (input port) in order to cease Active Power output within five seconds following receipt of a signal from The Company. The Company shall specify the requirements for such facilities, including the need for remote operation, in the Bilateral Agreement where they are necessary for System reasons.
- ECC.6.3.6.1.1.2**Type B Power Generating Modules** shall be equipped with an interface (input port) in order to be able to reduce **Active Power** output following receipt of a signal from **The Company**. **The Company** shall specify the requirements for such facilities, including the need for remote operation, in the **Bilateral Agreement** where they are necessary for **System** reasons.
- ECC.6.3.6.1.1.3 Type C and Type D Power Generating Modules and DC Connected Power Park Modules shall be capable of adjusting the Active Power setpoint in accordance with instructions issued by The Company.
- ECC.6.3.6.1.2 <u>Active Power control in respect of HVDC Systems</u> and <u>Remote End HVDC Converter</u> <u>Stations</u>
- ECC.6.3.6.1.2.1 **HVDC Systems** shall be capable of adjusting the transmitted **Active Power** upon receipt of an instruction from **The Company** which shall be in accordance with the requirements of BC2.6.1.
- ECC.6.3.6.1.2.2The requirements for fast Active Power reversal (if required) shall be specified by The Company. Where Active Power reversal is specified in the Bilateral Agreement, each HVDC System and Remote End HVDC Converter Station shall be capable of operating from maximum import to maximum export in a time which is as fast as technically feasible or in a time that is no greater than 2 seconds except where a HVDC Converter Station Owner has justified to The Company that a longer reversal time is required.
- ECC.6.3.6.1.2.3Where an HVDC System connects various Control Areas or Synchronous Areas, each HVDC System or Remote End HVDC Converter Station shall be capable of responding to instructions issued by The Company under the Balancing Code to modify the transmitted Active Power for the purposes of cross-border balancing.
- ECC.6.3.6.1.2.4An **HVDC System** shall be capable of adjusting the ramping rate of **Active Power** variations within its technical capabilities in accordance with instructions issued by **The Company**. In case of modification of **Active Power** according to ECC.6.3.15 and ECC.6.3.6.1.2.2, there shall be no adjustment of ramping rate.

ECC.6.3.6.1.2.5If specified by **The Company**, in coordination with the **Relevant Transmission Licensees**, the control functions of an **HVDC System** shall be capable of taking automatic remedial actions including, but not limited to, stopping the ramping and blocking FSM, LFSM-O, LFSM-U and **Frequency** control. The triggering and blocking criteria shall be specified by **The Company**.

ECC.6.3.6.2 MODULATION OF ACTIVE POWER

ECC.6.3.6.2.1 Each Power Generating Module (including DC Connected Power Park Modules) and Onshore HVDC Converters at an Onshore HVDC Converter Station must be capable of contributing to Frequency control by continuous modulation of Active Power supplied to the National Electricity Transmission System. For the avoidance of doubt each Onshore HVDC Converter at an Onshore HVDC Converter Station and/or OTSDUW DC Converter shall provide each EU Code User in respect of its Offshore Power Stations connected to and/or using an Offshore Transmission System a continuous signal indicating the real time Frequency measured at the Transmission Interface Point. A DC Connected Power Park Module or Offshore Power Generating Module shall be capable of receiving and processing this signal within 100ms.

ECC.6.3.6.3 MODULATION OF REACTIVE POWER


ECC.6.3.6.3.1 Notwithstanding the requirements of ECC.6.3.2, each **Power Generating Module** or **HVDC Equipment** (and **OTSDUW Plant and Apparatus** at a **Transmission Interface Point** and **Remote End HVDC Converter** at an **HVDC Interface Point**) (as applicable) must be capable of contributing to voltage control by continuous changes to the **Reactive Power** supplied to the **National Electricity Transmission System** or the **User System** in which it is **Embedded**.

ECC.6.3.7 FREQUENCY RESPONSE

- ECC.6.3.7.1 Limited Frequency Sensitive Mode Overfrequency (LFSM-O)
- ECC.6.3.7.1.1 Each Power Generating Module (including DC Connected Power Park Modules) and HVDC Systems shall be capable of reducing Active Power output in response to Frequency on the Total System when this rises above 50.4Hz. For the avoidance of doubt, the provision of this reduction in Active Power output is not an Ancillary Service. Such provision is known as Limited High Frequency Response. The Power Generating Module (including DC Connected Power Park Modules) or HVDC Systems shall be capable of operating stably during LFSM-O operation. However for a Power Generating Module (including DC Connected Power Park Modules) or HVDC Systems operating in Frequency Sensitive Mode the requirements of LFSM-O shall apply when the frequency exceeds 50.5Hz.
- ECC.6.3.7.1.2 (i) The rate of change of **Active Power** output must be at a minimum a rate of 2 percent of output per 0.1 Hz deviation of **System Frequency** above 50.4Hz (ie a **Droop** of 10%) as shown in Figure ECC.6.3.7.1 below. This would not preclude a **EU Generator** or **HVDC System Owner** from designing their **Power Generating Module** with a **Droop** of less than 10% but in all cases the **Droop** should be 2% or greater.
 - (ii) The reduction in Active Power output must be continuously and linearly proportional, as far as is practicable, to the excess of Frequency above 50.4 Hz and must be provided increasingly with time over the period specified in (iii) below.
 - (iii) As much as possible of the proportional reduction in Active Power output must result from the frequency control device (or speed governor) action and must be achieved within 10 seconds of the time of the Frequency increase above 50.4 Hz. The Power Generating Module (including DC Connected Power Park Modules) or HVDC Systems shall be capable of initiating a power Frequency response with an initial delay that is as short as possible. If the delay exceeds 2 seconds the EU Generator or HVDC System Owner shall justify the variation, providing technical evidence to The Company.
 - (iii) The residue of the proportional reduction in **Active Power** output which results from automatic action of the **Power Generating Module** (including **DC Connected Power**

Park Modules) or **HVDC System** output control devices other than the frequency control devices (or speed governors) must be achieved within 3 minutes for the time of the **Frequency** increase above 50.4Hz.

- (iv) For the avoidance of doubt, the LFSM-O response must be reduced when the Frequency falls again and, when to a value less than 50.4Hz, as much as possible of the increase in Active Power must be achieved within 10 seconds.
 - (v) For Type A and Type B Power Generating Modules which are not required to have Frequency Sensitive Mode (FSM) as described in ECC.6.3.7.3 for deviations in Frequency up to 50.9Hz at least half of the proportional reduction in Active Power output must be achieved in 10 seconds of the time of the Frequency increase above 50.4Hz. For deviations in Frequency beyond 50.9Hz the measured rate of change of Active Power reduction must exceed 0.5%/sec of the initial output. The LFSM-O response must be reduced when the Frequency subsequently falls again and when to a value less than 50.4Hz, at least half the increase in Active Power must be achieved in 10 seconds. For a Frequency excursion returning from beyond 50.9Hz the measured rate of change of Active Power increase must exceed 0.5%/second.

Active Power Frequency response capability of when operating in LFSM-O

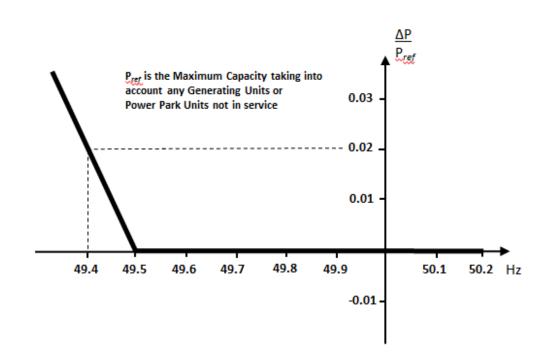
Figure ECC.6.3.7.1 – P_{ref} is the reference **Active Power** to which ΔP is related and ΔP is the change in **Active Power** output from the **Power Generating Module** (including **DC Connected Power Park Modules**) or **HVDC System**. The **Power Generating Module** (including **DC Connected Power Park Modules** or **HVDC Systems**) has to provide a negative **Active Power** output change with a droop of 10% or less based on Pref.

- ECC.6.3.7.1.3 Each Power Generating Module (including DC Connected Power Park Modules) or HVDC Systems which is providing Limited High Frequency Response (LFSM-O) must continue to provide it until the Frequency has returned to or below 50.4Hz or until otherwise instructed by The Company. EU Generators in respect of Gensets and HVDC Converter Station Owners in respect of an HVDC System should also be aware of the requirements in BC.3.7.2.2.
- ECC.6.3.7.1.4 Steady state operation below the Minimum Stable Operating Level in the case of Power Generating Modules including DC Connected Power Park Modules or Minimum Active Power Transmission Capacity in the case of HVDC Systems is not expected but if System operating conditions cause operation below the Minimum Stable Operating Level or Minimum Active Power Transmission Capacity which could give rise to operational

difficulties for the **Power Generating Module** including a **DC Connected Power Park Module** or **HVDC Systems** then the **EU Generator** or HV**DC System Owner** shall be able to return the output of the **Power Generating Module** including a **DC Connected Power Park Module** to an output of not less than the **Minimum Stable Operating Level** or **HVDC System** to an output of not less than the **Minimum Active Power Transmission Capacity**.

ECC.6.3.7.1.5 All reasonable efforts should in the event be made by the **EU Generator** or **HVDC System Owner** to avoid such tripping provided that the **System Frequency** is below 52Hz in accordance with the requirements of ECC.6.1.2. If the **System Frequency** is at or above 52Hz, the requirement to make all reasonable efforts to avoid tripping does not apply and the **EU Generator** or **HVDC System Owner** is required to take action to protect its **Power Generating Modules** including **DC Connected Power Park Modules** or **HVDC Converter Stations**.

ECC.6.3.7.2 Limited Frequency Sensitive Mode – Underfrequency (LFSM-U)


- ECC.6.3.7.2.1 Each Type C Power Generating Module and Type D Power Generating Module (including DC Connected Power Park Modules) or HVDC Systems operating in Limited Frequency Sensitive Mode shall be capable of increasing Active Power output in response to System Frequency when this falls below 49.5Hz. For the avoidance of doubt, the provision of this increase in Active Power output is not a mandatory Ancillary Service and it is not anticipated Power Generating Modules (including DC Connected Power Park Modules) or HVDC Systems are operated in an inefficient mode to facilitate delivery of LFSM-U response, but any inherent capability (where available) should be made without undue delay. The Power Generating Module (including DC Connected Power Park Modules) or HVDC Systems shall be capable of stable operation during LFSM-U Mode. For example, a EU Generator which is operating with no headroom (eg it is operating at maximum output or is de-loading as part of a run down sequence and has no headroom) would not be required to provide LFSM-U.
- ECC.6.3.7.2.2 (i) The rate of change of Active Power output must be at a minimum a rate of 2 percent of output per 0.1 Hz deviation of System Frequency below 49.5Hz (ie a Droop of 10%) as shown in Figure ECC.6.3.7.2.2 below. This requirement only applies if the Power Generating Module has headroom and the ability to increase Active Power output. In the case of a Power Park Module or DC Connected Power Park Module the requirements of Figure ECC.6.3.7.2.2 shall be reduced pro-rata to the amount of Power Park Units in service and available to generate. For the avoidance of doubt, this would not preclude an EU Generator or HVDC System Owner from designing their Power Generating Module with a lower Droop setting, for example between 3 – 5%.
 - (ii) As much as possible of the proportional increase in Active Power output must result from the Frequency control device (or speed governor) action and must be achieved for Frequencies below 49.5 Hz. The Power Generating Module (including DC Connected Power Park Modules) or HVDC Systems shall be capable of initiating a power Frequency response with minimal delay. If the delay exceeds 2 seconds the EU Generator or HVDC System Owner shall justify the delay, providing technical evidence to The Company).
 - (iii) The actual delivery of **Active Power Frequency Response** in **LFSM-U** mode shall take into account

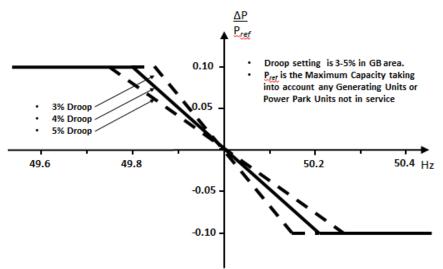
The ambient conditions when the response is to be triggered

The operating conditions of the **Power Generating Module** (including **DC Connected Power Park Modules**) or **HVDC Systems** in particular limitations on operation near **Maximum Capacity** or **Maximum HVDC Active Power Transmission Capacity** at low frequencies and the respective impact of ambient conditions as detailed in ECC.6.3.3.

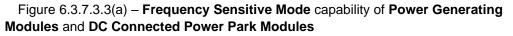
The availability of primary energy sources.

(iv) In LFSM_U Mode, the Power Generating Module (including DC Connected Power Park Modules) and HVDC Systems, shall be capable of providing a power increase up to its Maximum Capacity or Maximum HVDC Active Power Transmission Capacity (as applicable).

Active Power Frequency response capability of when operating in LFSM-U


Figure ECC.6.3.7.2.2 – P_{ref} is the reference **Active Power** to which ΔP is related and ΔP is the change in **Active Power** output from the **Power Generating Module** (including **DC Connected Power Park Modules**) or **HVDC System**. The **Power Generating Module** (including **DC Connected Power Park Modules** or **HVDC Systems**) has to provide a positive **Active Power** output change with a droop of 10% or less based on Pref.

- ECC.6.3.7.3 Frequency Sensitive Mode (FSM)
- ECC.6.3.7.3.1 In addition to the requirements of ECC.6.3.7.1 and ECC.6.3.7.2 each **Type C Power Generating Module** and **Type D Power Generating Module** (including **DC Connected Power Park Modules**) or **HVDC Systems** must be fitted with a fast acting proportional **Frequency** control device (or turbine speed governor) and unit load controller or equivalent control device to provide **Frequency** response under normal operational conditions in accordance with **Balancing Code 3** (**BC3**). In the case of a **Power Park Module** including a **DC Connected Power Park Module**, the **Frequency** or speed control device(s) may be on the **Power Park Module** (including a **DC Connected Power Park Module**) or on each individual **Power Park Unit** (including a **Power Park Unit** within a **DC Connected Power Park Module**) or be a combination of both. The **Frequency** control device(s) (or speed governor(s)) must be designed and operated to the appropriate:
 - (i) European Specification: or
 - (ii) in the absence of a relevant European Specification, such other standard which is in common use within the European Community (which may include a manufacturer specification);


as at the time when the installation of which it forms part was designed or (in the case of modification or alteration to the **Frequency** control device (or turbine speed governor)) when the modification or alteration was designed.

The **European Specification** or other standard utilised in accordance with sub paragraph ECC.6.3.7.3.1 (a) (ii) will be notified to **The Company** by the **EU Generator** or **HVDC System Owner**:

- (i) as part of the application for a Bilateral Agreement; or
- (ii) as part of the application for a varied Bilateral Agreement; or
- (iii) in the case of an Embedded Development, within 28 days of entry into the Embedded Development Agreement (or such later time as agreed with **The Company**) or
- (iv) as soon as possible prior to any modification or alteration to the **Frequency** control device (or governor); and
- ECC.6.3.7.3.2 The **Frequency** control device (or speed governor) in co-ordination with other control devices must control each **Type C Power Generating Module** and **Type D Power Generating Module** (including **DC Connected Power Park Modules**) or **HVDC Systems Active Power Output** or **Active Power** transfer capability with stability over the entire operating range of the **Power Generating Module** (including **DC Connected Power Park Modules**) or **HVDC Systems**; and
- ECC.6.3.7.3.3 **Type C** and **Type D Power Generating Modules** and **DC Connected Power Park Modules** shall also meet the following minimum requirements:
 - (i) capable of providing **Active Power Frequency** response in accordance with the performance characteristic shown in Figure 6.3.7.3.3(a) and parameters in Table 6.3.7.3.3(a)

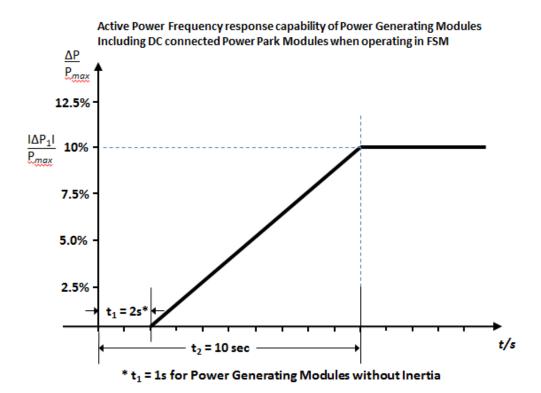
Active Power Frequency Response capability of Power Generating Modules Including HVDC connected Power Park Modules when operating in FSM

Parameter	Setting
Nominal System Frequency	50Hz
Active Power as a percentage of Maximum Capacity $\binom{ \Delta P_1 }{P_{max}}$	10%
Frequency Response Insensitivity in mHz (Δf_i)	±15mHz

Frequency Response Insensitivity as a percentage of nominal frequency $\binom{ \Delta f_i }{f_n}$	±0.03%
Frequency Response Deadband in mHz	0 (mHz)
Droop (%)	3 – 5%

Table 6.3.7.3.3(a) – Parameters for **Active Power Frequency** response in **Frequency Sensitive Mode** including the mathematical expressions in Figure 6.3.7.3.3(a).

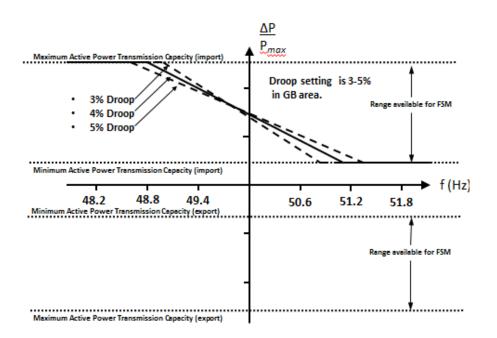
(ii) In satisfying the performance requirements specified in ECC.6.3.7.3(i) EU Generators in respect of each Type C and Type D Power Generating Modules and DC Connected Power Park Module should be aware:-


in the case of overfrequency, the **Active Power Frequency** response is limited by the **Minimum Regulating Level**,

in the case of underfrequency, the **Active Power Frequency** response is limited by the **Maximum Capacity**,

the actual delivery of **Active Power** frequency response depends on the operating and ambient conditions of the **Power Generating Module** (including **DC Connected Power Park Modules**) when this response is triggered, in particular limitations on operation near **Maximum Capacity** at low **Frequencies** as specified in ECC.6.3.3 and available primary energy sources.

The frequency control device (or speed governor) must also be capable of being set so that it operates with an overall speed **Droop** of between 3 - 5%. The **Frequency Response Deadband** and **Droop** must be able to be reselected repeatedly. For the avoidance of doubt, in the case of a **Power Park Module** (including **DC Connected Power Park Modules**) the speed **Droop** should be equivalent of a fixed setting between 3% and 5% applied to each **Power Park Unit** in service.


(iii) In the event of a Frequency step change, each Type C and Type D Power Generating Module and DC Connected Power Park Module shall be capable of activating full and stable Active Power Frequency response (without undue power oscillations), in accordance with the performance characteristic shown in Figure 6.3.7.3.3(b) and parameters in Table 6.3.7.3.3(b).

Parameter	Setting
Active Power as a percentage of Maximum Capacity (frequency response range) $\binom{ \Delta P_1 }{P_{max}}$	10%
Maximum admissible initial delay t ₁ for Power Generating Modules (including DC Connected Power Park Modules) with inertia unless justified as specified in ECC.6.3.7.3.3 (iv)	2 seconds
Maximum admissible initial delay t ₁ for Power Generating Modules (including DC Connected Power Park Modules) which do not contribute to System inertia unless justified as specified in ECC.6.3.7.3.3 (iv)	1 second
Activation time t ₂	10 seconds

Table 6.3.7.3.3(b) – Parameters for full activation of **Active Power Frequency** response resulting from a **Frequency** step change. Table 6.3.7.3.3(b) also includes the mathematical expressions used in Figure 6.3.7.3.3(b).

- (iv) The initial activation of Active Power Primary Frequency response shall not be unduly delayed. For Type C and Type D Power Generating Modules (including DC Connected Power Park Modules) with inertia the delay in initial Active Power Frequency response shall not be greater than 2 seconds. For Type C and Type D Power Generating Modules (including DC Connected Power Park Modules) without inertia, the delay in initial Active Power Frequency response shall not be greater than 1 second. If the Generator cannot meet this requirement they shall provide technical evidence to The Company demonstrating why a longer time is needed for the initial activation of Active Power Frequency response.
- (v) in the case of Type C and Type D Power Generating Modules (including DC Connected Power Park Modules) other than the Steam Unit within a CCGT Module the combined effect of the Frequency Response Insensitivity and Frequency Response Deadband of the Frequency control device (or speed governor) should be no greater than 0.03Hz (for the avoidance of doubt, ±0.015Hz). In the case of the Steam Unit within a CCGT Module, the Frequency Response Deadband should be set to an appropriate value consistent with the requirements of ECC.6.3.7.3.5(ii) and the requirements of BC3.7.2.2 for the provision of LFSM-O taking account of any Frequency Response Insensitivity of the Frequency control device (or speed governor);
- ECC.6.3.7.3.4 **HVDC Systems** shall also meet the following minimum requirements:
 - (i) HVDC Systems shall be capable of responding to Frequency deviations in each connected AC System by adjusting their Active Power import or export as shown in Figure 6.3.7.3.4(a) with the corresponding parameters in Table 6.3.7.3.4(a).

Active Power Frequency response capability of HVDC systems when operating in FSI

Figure 6.3.7.3.4(a) – Active Power frequency response capability of a HVDC System operating in Frequency Sensitive Mode (FSM). ΔP is the change in active power output from the HVDC System..

Parameter	Setting
-----------	---------

Frequency Response Deadband	0
Droop S1 and S2 (upward and downward regulation) where S1=S2.	3 – 5%
Frequency Response Insensitivity	±15mHz

Table 6.3.7.3.4(a) – Parameters for **Active Power Frequency** response in **FSM** including the mathematical expressions in Figure 6.3.7.3.4.

- (ii) Each HVDC System shall be capable of adjusting the Droop for both upward and downward regulation and the Active Power range over which Frequency Sensitive Mode of operation is available as defined in ECC.6.3.7.3.4.
- (iii) In addition to the requirements in ECC.6.3.7.4(i) and ECC.6.3.7.4(ii) each **HVDC System** shall be capable of:-

delivering the response as soon as technically feasible

delivering the response on or above the solid line in Figure 6.3.7.3.4(b) in accordance with the parameters shown in Table 6.3.7.3.4(b)

initiating the delivery of **Primary Response** in no less than 0.5 seconds unless otherwise agreed with **The Company**. Where the initial delay time (t_1 – as shown in Figure 6.3.7.3.4(b)) is longer than 0.5 seconds the **HVDC Converter Station Owner** shall reasonably justify it to **The Company**.

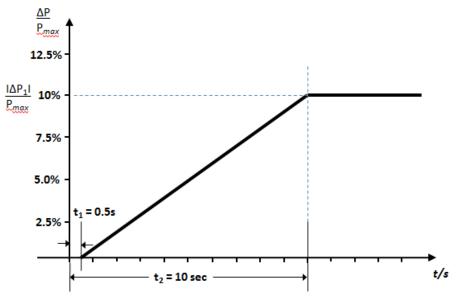


Figure 6.3.7.3.4(b) Active Power Frequency Response capability of a HVDC System. ΔP is the change in Active Power triggered by the step change in frequency

Parameter	Setting
Active Power as a percentage of Maximum Capacity (frequency response range) $\binom{ \Delta P_1 }{P_{max}}$	10%
Maximum admissible delay t ₁	0.5 seconds

Maximum admissible time for full	10 seconds
activation t ₂ , unless longer activation	
times are agreed with The Company	

Table 6.3.7.3.4(b) – Parameters for full activation of **Active Power Frequency** response resulting from a **Frequency** step change.

- (iv) For HVDC Systems connecting various Synchronous Areas, each HVDC System shall be capable of adjusting the full Active Power Frequency Response when operating in Frequency Sensitive Mode at any time and for a continuous time period. In addition, the Active Power controller of each HVDC System shall not have any adverse impact on the delivery of frequency response.
- ECC.6.3.7.3.5 For HVDC Systems and Type C and Type D Power Generating Modules (including DC Connected Power Park Modules), other than the Steam Unit within a CCGT Module the combined effect of the Frequency Response Insensitivity and Frequency Response Deadband of the Frequency control device (or speed governor) should be no greater than 0.03Hz (for the avoidance of doubt, ±0.015Hz). In the case of the Steam Unit within a CCGT Module, the Frequency Response Deadband should be set to an appropriate value consistent with the requirements of ECC.6.3.7.3.5(ii) and the requirements of BC3.7.2.2 for the provision of LFSM-O taking account of any Frequency Response Insensitivity of the Frequency control device (or speed governor);
 - (i) With regard to disconnection due to underfrequency, EU Generators responsible for Type C and Type D Power Generating Modules (including DC Connected Power Park Modules) capable of acting as a load, including but not limited to Pumped Storage and tidal Power Generating Modules, HVDC Systems and Remote End HVDC Converter Stations, shall be capable of disconnecting their load in case of underfrequency which will be agreed with The Company. For the avoidance of doubt this requirement does not apply to station auxiliary supplies; EU Generators in respect of Type C and Type D Pumped Storage Power Generating Modules should also be aware of the requirements in OC.6.6.6.
 - (ii) Where a Type C or Type D Power Generating Module, DC Connected Power Park Module or HVDC System becomes isolated from the rest of the Total System but is still supplying Customers, the Frequency control device (or speed governor) must also be able to control System Frequency below 52Hz unless this causes the Type C or Type D Power Generating Module or DC Connected Power Park Module to operate below its Minimum Regulating Level or Minimum Active Power Transmission Capacity when it is possible that it may, as detailed in BC 3.7.3, trip after a time. For the avoidance of doubt Power Generating Modules (including DC Connected Power Park Modules) and HVDC Systems are only required to operate within the System Frequency range 47 - 52 Hz as defined in ECC.6.1.2 and for converter based technologies, the remaining island contains sufficient fault level for effective commutation;
 - (iii) Each Type C and Type D Power Generating Module and HVDC Systems shall have the facility to modify the Target Frequency setting either continuously or in a maximum of 0.05Hz steps over at least the range 50 ±0.1Hz should be provided in the unit load controller or equivalent device.
- ECC.6.3.7.3.6 In addition to the requirements of ECC.6.3.7.3 each **Type C** and **Type D Power Generating Module** and **HVDC System** shall be capable of meeting the minimum **Frequency** response requirement profile subject to and in accordance with the provisions of Appendix A3.
- ECC.6.3.7.3.7 For the avoidance of doubt, the requirements of Appendix A3 do not apply to **Type A** and **Type B Power Generating Modules**.

ECC.6.3.8 EXCITATION AND VOLTAGE CONTROL PERFORMANCE REQUIREMENTS

- ECC.6.3.8.1 Excitation Performance Requirements for Type B Synchronous Power Generating Modules
- ECC.6.3.8.1.1 Each Synchronous Generating Unit within a Type B Synchronous Power Generating Module shall be equipped with a permanent automatic excitation control system that shall have the capability to provide constant terminal voltage control at a selectable setpoint without instability over the entire operating range of the Type B Synchronous Power Generating Module.
- ECC.6.3.8.1.2 In addition to the requirements of ECC.6.3.8.1.1, **The Company** or the relevant **Network Operator** will specify if the control system of the **Type B Synchronous Power Generating Module** shall contribute to voltage control or **Reactive Power** control or **Power Factor** control at the **Grid Entry Point** or **User System Entry Point** (or other defined busbar). The performance requirements of the control system including slope (where applicable) shall be agreed between **The Company** and/or the relevant **Network Operator** and the **EU Generator**.
- ECC.6.3.8.2 Voltage Control Requirements for **Type B Power Park Modules**
- ECC.6.3.8.2.1 The Company or the relevant Network Operator will specify if the control system of the Type B Power Park Module shall contribute to voltage control or Reactive Power control or Power Factor control at the Grid Entry Point or User System Entry Point (or other defined busbar). The performance requirements of the control system including slope (where applicable) shall be agreed between The Company and/or the relevant Network Operator and the EU Generator.
- ECC.6.3.8.3 Excitation Performance Requirements for Type C and Type D Onshore Synchronous Power Generating Modules
- ECC.6.3.8.3.1 Each Synchronous Generating Unit within a Type C and Type D Onshore Synchronous Power Generating Modules shall be equipped with a permanent automatic excitation control system that shall have the capability to provide constant terminal voltage control at a selectable setpoint without instability over the entire operating range of the Synchronous Power Generating Module.
- ECC.6.3.8.3.2 The requirements for excitation control facilities are specified in ECC.A.6. Any site specific requirements shall be specified by **The Company** or the relevant **Network Operator**.
- ECC.6.3.8.3.3 Unless otherwise required for testing in accordance with OC5.A.2, the automatic excitation control system of an **Onshore Synchronous Power Generating Module** shall always be operated such that it controls the **Onshore Synchronous Generating Unit** terminal voltage to a value that is
 - equal to its rated value: or
 - only where provisions have been made in the **Bilateral Agreement**, greater than its rated value.
- ECC.6.3.8.3.4 In particular, other control facilities including constant **Reactive Power** output control modes and constant **Power Factor** control modes (but excluding VAR limiters) are not required. However if present in the excitation or voltage control system they will be disabled unless otherwise agreed with **The Company** or the relevant **Network Operator**. Operation of such control facilities will be in accordance with the provisions contained in **BC2**.
- ECC.6.3.8.3.5 The excitation performance requirements for **Offshore Synchronous Power Generating Modules** with an **Offshore Grid Entry Point** shall be specified by **The Company**.
- ECC.6.3.8.4 Voltage Control Performance Requirements for Type C and Type D Onshore Power Park Modules, Onshore HVDC Converters and OTSUW Plant and Apparatus at the Interface Point

- ECC.6.3.8.4.1 Each Type C and Type D Onshore Power Park Module, Onshore HVDC Converter and OTSDUW Plant and Apparatus shall be fitted with a continuously acting automatic control system to provide control of the voltage at the Grid Entry Point or User System Entry Point (or Interface Point in the case of OTSDUW Plant and Apparatus) without instability over the entire operating range of the Onshore Power Park Module, or Onshore HVDC Converter or OTSDUW Plant and Apparatus. Any Plant or Apparatus used in the provisions of such voltage control within an **Onshore Power Park Module** may be located at the Power Park Unit terminals, an appropriate intermediate busbar or the Grid Entry Point or User System Entry Point. In the case of an Onshore HVDC Converter at a HVDC Converter Station any Plant or Apparatus used in the provisions of such voltage control may be located at any point within the User's Plant and Apparatus including the Grid Entry Point or User System Entry Point. OTSDUW Plant and Apparatus used in the provision of such voltage control may be located at the Offshore Grid Entry Point an appropriate intermediate busbar or at the Interface Point. When operating below 20% **Maximum Capacity** the automatic control system may continue to provide voltage control using any available reactive capability. If voltage control is not being provided, the automatic control system shall be designed to ensure a smooth transition between the shaded area below 20% of Active Power output and the non-shaded area above 20% of Active Power output in Figure ECC.6.3.2.5(c) and Figure ECC.6.3.2.7(b) The performance requirements for a continuously acting automatic voltage control system that shall be complied with by the User in respect of Onshore Power Park Modules, Onshore HVDC Converters at an Onshore HVDC Converter Station, OTSDUW Plant and Apparatus at the Interface Point are defined in ECC.A.7.
- ECC.6.3.8.4.3 In particular, other control facilities, including constant **Reactive Power** output control modes and constant **Power Factor** control modes (but excluding VAR limiters) are not required. However if present in the voltage control system they will be disabled unless otherwise agreed with **The Company** or the relevant **Network Operator**. Operation of such control facilities will be in accordance with the provisions contained in BC2. Where **Reactive Power** output control modes and constant **Power Factor** control modes have been fitted within the voltage control system they shall be required to satisfy the requirements of ECC.A.7.3 and ECC.A.7.4.
- ECC.6.3.8.5 Excitation Control Performance requirements applicable to AC Connected Offshore Synchronous Power Generating Modules and voltage control performance requirements applicable to AC connected Offshore Power Park Modules, DC Connected Power Park Modules and Remote End HVDC Converters
- ECC.6.3.8.5.1 A continuously acting automatic control system is required to provide control of **Reactive Power** (as specified in ECC.6.3.2.5 and ECC.6.3.2.6) at the **Offshore Grid Entry Point** (or **HVDC Interface Point** in the case of **Configuration 1 DC Connected Power Park Modules** and **Remote End HVDC Converters**) without instability over the entire operating range of the AC connected **Offshore Synchronous Power Generating Module** or **Configuration 1 AC connected Offshore Power Park Module** or **Configuration 1 DC Connected Power Park Modules** or **Remote End HVDC Converter**. The performance requirements for this automatic control system will be specified by **The Company** which would be consistent with the requirements of ECC.6.3.2.5 and ECC.6.3.2.6.
- ECC.6.3.8.5.2 A continuously acting automatic control system is required to provide control of **Reactive Power** (as specified in ECC.6.3.2.8) at the **Offshore Grid Entry Point** (or **HVDC Interface Point** in the case of **Configuration 2 DC Connected Power Park Modules**) without instability over the entire operating range of the **Configuration 2 AC connected Offshore Power Park Module** or **Configuration 2 DC Connected Power Park Modules**. otherwise the requirements of ECC.6.3.2.6 shall apply. The performance requirements for this automatic control system are specified in ECC.A.8
- ECC.6.3.8.5.3 In addition to ECC.6.3.8.5.1 and ECC.6.3.8.5.2 the requirements for excitation or voltage control facilities, including **Power System Stabilisers**, where these are necessary for system reasons, will be specified by **The Company**. Reference is made to on-load commissioning witnessed by **The Company** in BC2.11.2.

STEADY STATE LOAD INACCURACIES ECC.6.3.9

ECC.6.3.9.1 The standard deviation of Load error at steady state Load over a 30 minute period must not exceed 2.5 per cent of a Type C or Type D Power Generating Modules (including a DC Connected Power Park Module) Maximum Capacity. Where a Type C or Type D Power Generating Module (including a DC Connected Power Park Module) is instructed to Frequency sensitive operation, allowance will be made in determining whether there has been an error according to the governor droop characteristic registered under the PC.

> For the avoidance of doubt in the case of a Power Park Module (excluding a Non-Synchronous Electricity Storage Module) an allowance will be made for the full variation of mechanical power output.

In the case of an **Electricity Storage Module**, an allowance will be made for the storage reserve capability of the Electricity Storage Module.

ECC.6.3.10 NEGATIVE PHASE SEQUENCE LOADINGS

ECC.6.3.10.1 In addition to meeting the conditions specified in ECC.6.1.5(b), each Synchronous Power Generating Module will be required to withstand, without tripping, the negative phase sequence loading incurred by clearance of a close-up phase-to-phase fault, by System Back-Up Protection on the National Electricity Transmission System or User System located Onshore in which it is Embedded.

ECC.6.3.11 NEUTRAL EARTHING

ECC.6.3.11 At nominal **System** voltages of 110kV and above the higher voltage windings of a transformer of a Power Generating Module or HVDC Equipment or transformer resulting from OTSDUW must be star connected with the star point suitable for connection to earth. The earthing and lower voltage winding arrangement shall be such as to ensure that the Earth Fault Factor requirement of paragraph ECC.6.2.1.1 (b) will be met on the National Electricity Transmission System at nominal System voltages of 110kV and above.

ECC.6.3.12 FREQUENCY AND VOLTAGE DEVIATIONS

ECC.6.3.12.1 As stated in ECC.6.1.2, the System Frequency could rise to 52Hz or fall to 47Hz. Each Power Generating Module (including DC Connected Power Park Modules) must continue to operate within this **Frequency** range for at least the periods of time given in ECC.6.1.2 unless The Company has specified any requirements for combined Frequency and voltage deviations which are required to ensure the best use of technical capabilities of Power Generating Modules (including DC Connected Power Park Modules) if required to preserve or restore system security.- Notwithstanding this requirement, EU Generators should also be aware of the requirements of ECC.6.3.13.

ECC.6.3.13 FREQUENCY, RATE OF CHANGE OF FREQUENCY AND VOLATGE PROTECTION SETTING ARRANGEMENTS

ECC.6.3.13.1 EU Generators (including in respect of OTSDUW Plant and Apparatus) and HVDC System Owners will be responsible for protecting all their Power Generating Modules (and OTSDUW Plant and Apparatus) or HVDC Equipment against damage should Frequency excursions outside the range 52Hz to 47Hz ever occur. Should such excursions occur, it is up to the EU Generator or HVDC System Owner to decide whether to disconnect their Apparatus for reasons of safety of Apparatus, Plant and/or personnel.

ECC.6.3.13.2 Each **Power Park Module** with a **Grid Forming Capability** as provided for in ECC.6.3.19, when connected and synchronised to the System, is required to be capable of withstanding without tripping a rate of change of Frequency up to and including 2 Hz per second as measured over a rolling 500 milliseconds period. All other Power Generating Modules when connected and synchronised to the **System**, shall be capable of withstanding without tripping a rate of change of **Frequency** up to and including 1 Hz per second as measured over a rolling 500 milliseconds period. Voltage dips may cause localised rate of change of Frequency values in excess of 1 Hz per second (or 2Hz/s in the case of Power Park Modules with a Grid Forming Capability) for short periods, and in these cases, the requirements under FCC

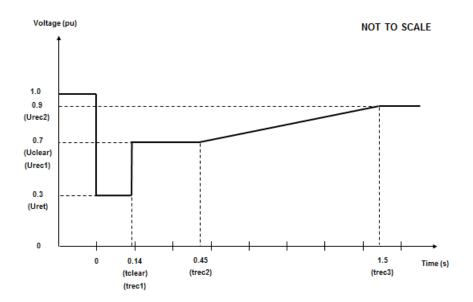
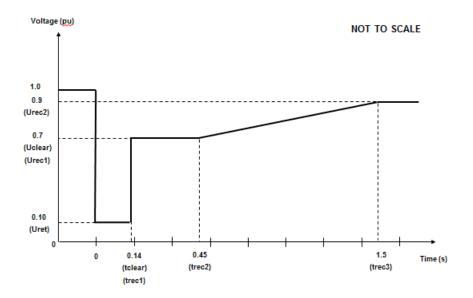
ECC.6.3.15 (fault ride through) supersedes this clause. For the avoidance of doubt, this requirement relates to the capabilities of **Power Generating Modules** only and does not impose the need for rate of change of **Frequency** protection nor does it impose a specific setting for anti-islanding or loss-of-mains protection relays.

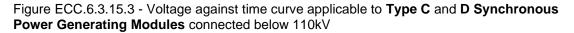
- ECC.6.3.13.3 Each **HVDC System** and **Remote End HVDC Converter Station** when connected and synchronised to the **System**, shall be capable of withstanding without tripping a rate of change of **Frequency** up to and including ±2.5Hz per second as measured over the previous 1 second period. Voltage dips may cause localised rate of change of **Frequency** values in excess of ±2.5 Hz per second for short periods, and in these cases, the requirements under ECC.6.3.15 (fault ride through) supersedes this clause. For the avoidance of doubt, this requirement relates to the capabilities of **HVDC Systems** and **Remote End HVDC Converter Stations** only and does not impose the need for rate of change of **Frequency** protection nor does it impose a specific setting for anti-islanding or loss-of-mains protection relays.
- ECC.6.3.13.4 Each **DC Connected Power Park Module** when connected to the **System**, shall be capable of withstanding without tripping a rate of change of **Frequency** up to and including ±2.0Hz per second as measured over the previous 1 second period. **Voltage** dips may cause localised rate of change of **Frequency** values in excess of ±2.0 Hz per second for short periods, and in these cases, the requirements under ECC.6.3.15 (fault ride through) supersedes this clause. For the avoidance of doubt, this requirement relates to the capabilities of **DC Connected Power Park Modules** only and does not impose the need for rate of change of **Frequency** protection nor does it impose a specific setting for anti-islanding or loss-of-mains protection relays.
- ECC.6.3.13.5 As stated in ECC.6.1.2, the **System Frequency** could rise to 52Hz or fall to 47Hz and the **System** voltage at the **Grid Entry Point** or **User System Entry Point** could rise or fall within the values outlined in ECC.6.1.4. Each **Type C** and **Type D Power Generating Module** (including **DC Connected Power Park Modules**) or any constituent element must continue to operate within this **Frequency** range for at least the periods of time given in ECC.6.1.2 and voltage range as defined in ECC.6.1.4 unless **The Company** has agreed to any simultaneous overvoltage and underfrequency relays and/or simultaneous undervoltage and over frequency relays which will trip such Power Generating Module (including **DC Connected Power Park Modules**), and any constituent element within this **Frequency** or voltage range. In the case of **Grid Forming Plant**, **Grid Forming Plant Owners** are also required to satisfy the **System Frequency** and **System** voltage requirements as defined in ECC.6.3.19.
- ECC.6.3.14 FAST START CAPABILITY
- ECC.6.3.14.1 It may be agreed in the **Bilateral Agreement** that a **Genset** shall have a **Fast-Start Capability**. Such **Gensets** may be used for **Operating Reserve** and their **Start-Up** may be initiated by **Frequency**-level relays with settings in the range 49Hz to 50Hz as specified pursuant to **OC2**.
- ECC.6.3.15 FAULT RIDE THROUGH
- ECC.6.3.15.1 <u>General Fault Ride Through requirements, principles and concepts applicable to Type B,</u> <u>Type C and Type D Power Generating Modules and OTSDUW Plant and Apparatus</u> <u>subject to faults up to 140ms in duration</u>
- ECC.6.3.15.1.1 ECC.6.3.15.1 ECC.6.3.15.8 section sets out the Fault Ride Through requirements on Type B, Type C and Type D Power Generating Modules, OTSDUW Plant and Apparatus and HVDC Equipment that shall apply in the event of a fault lasting up to 140ms in duration.

ECC.6.3.15.1.2 Each Power Generating Module, Power Park Module, HVDC Equipment and OTSDUW Plant and Apparatus is required to remain connected and stable for any balanced and unbalanced fault where the voltage at the Grid Entry Point or User System Entry Point or (HVDC Interface Point in the case of Remote End DC Converter Stations or Interface Point in the case of OTSDUW Plant and Apparatus) remains on or above the heavy black line defined in sections ECC.6.3.15.2 – ECC.6.3.15.7 below.

ECC.6.3.15.1.3 The voltage against time curves defined in ECC.6.3.15.2 – ECC.6.3.15.7 expresses the lower limit (expressed as the ratio of its actual value and its reference 1pu) of the actual course of the phase to phase voltage (or phase to earth voltage in the case of asymmetrical/unbalanced faults) on the **System** voltage level at the **Grid Entry Point** or **User System Entry Point** (or **HVDC Interface Point** in the case of **Remote End HVDC Converter Stations** or **Interface Point** in the case of **OTSDUW Plant and Apparatus**) during a symmetrical or asymmetrical/unbalanced fault, as a function of time before, during and after the fault.

ECC.6.3.15.2 Voltage against time curve and parameters applicable to **Type B Synchronous Power** Generating Modules


Figure ECC.6.3.15.2 - Voltage against time curve applicable to **Type B Synchronous Power Generating Modules**

Voltage parameters (pu)		Time parameters (seconds)	
Uret	0.3	tclear	0.14
Uclear	0.7	trec1	0.14
Urec1	0.7	trec2	0.45
Urec2	0.9	trec3	1.5

Table ECC.6.3.15.2 Voltage against time parameters applicable to **Type B Synchronous Power Generating Modules**

ECC.6.3.15.3 Voltage against time curve and parameters applicable to Type C and D Synchronous Power Generating Modules connected below 110kV

Voltage parameters (pu)		Time parameters (seconds)	
Uret	0.1	tclear	0.14
Uclear	0.7	trec1	0.14
Urec1	0.7	trec2	0.45
Urec2	0.9	trec3	1.5

Table ECC.6.3.15.3 Voltage against time parameters applicable to **Type C** and **D Synchronous Power Generating Modules** connected below 110kV

ECC.6.3.15.4 Voltage against time curve and parameters applicable to **Type D Synchronous Power** Generating Modules connected at or above 110kV

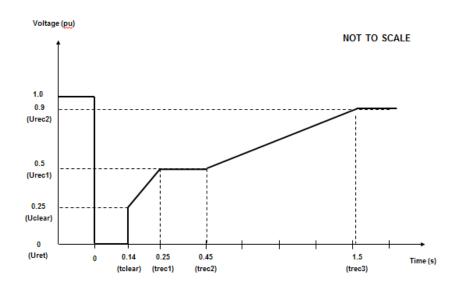


Figure ECC.6.3.15.4 - Voltage against time curve applicable to **Type D Synchronous Power Generating Modules** connected at or above 110kV

Voltage parameters (pu)		Time parameters (seconds)	
Uret	0	tclear	0.14
Uclear	0.25	trec1	0.25
Urec1	0.5	trec2	0.45
Urec2	0.9	trec3	1.5

Table ECC.6.3.15.4 Voltage against time parameters applicable to **Type D Synchronous Power Generating Modules** connected at or above 110kV

ECC.6.3.15.5 Voltage against time curve and parameters applicable to **Type B**, **C** and **D Power Park** Modules connected below 110kV

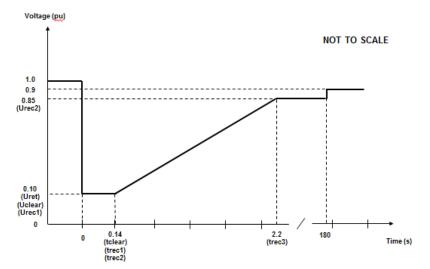


Figure ECC.6.3.15.5 - Voltage against time curve applicable to **Type B**, **C** and **D Power Park Modules** connected below 110kV

Voltage parameters (pu)		Time parameters (seconds)	
Uret	0.10	tclear	0.14
Uclear	0.10	trec1	0.14
Urec1	0.10	trec2	0.14
Urec2	0.85	trec3	2.2

Table ECC.6.3.15.5 Voltage against time parameters applicable to **Type B**, **C** and **D Power Park Modules** connected below 110kV

ECC.6.3.15.6 Voltage against time curve and parameters applicable to **Type D Power Park Modules** with a **Grid Entry Point** or **User System Entry Point** at or above 110kV, **DC Connected Power Park Modules** at the **HVDC Interface Point** or **OTSDUW Plant** and **Apparatus** at the **Interface Point**.

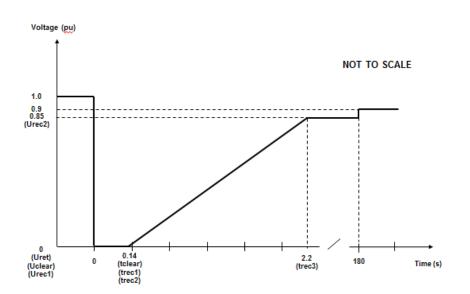
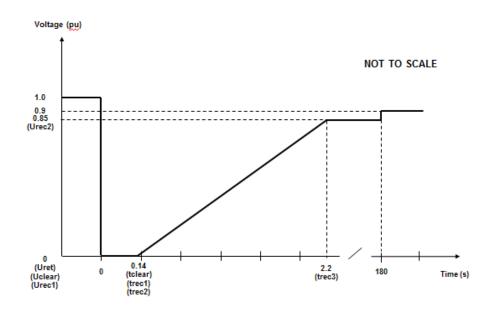
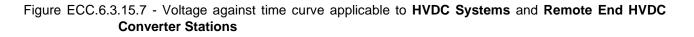




Figure ECC.6.3.15.6 - Voltage against time curve applicable to **Type D Power Park Modules** with a **Grid Entry Point** or **User System Entry Point** at or above 110kV, **DC Connected Power Park Modules** at the **HVDC Interface Point** or **OTSDUW Plant and Apparatus** at the **Interface Point**.

Voltage parameters (pu)		Time parameters (seconds)	
Uret	0	tclear	0.14
Uclear	0	trec1	0.14
Urec1	0	trec2	0.14
Urec2	0.85	trec3	2.2

- Table ECC.6.3.15.6 Voltage against time parameters applicable to a **Type D Power Park Modules** with a **Grid Entry Point** or **User System Entry Point** at or above 110kV, **DC Connected Power Park Modules** at the **HVDC Interface Point** or **OTSDUW Plant and Apparatus** at the **Interface Point**.
- ECC.6.3.15.7 <u>Voltage against time curve and parameters applicable to HVDC Systems and Remote End</u> <u>HVDC Converter Stations</u>

Voltage parameters (pu)		Time parameters (seconds)	
Uret	0	tclear	0.14
Uclear	0	trec1	0.14
Urec1	0	trec2	0.14
Urec2	0.85	trec3	2.2

Table ECC.6.3.15.7 Voltage against time parameters applicable to HVDC Systems and Remote End HVDC Converter Stations

ECC.6.3.15.8 In addition to the requirements in ECC.6.3.15.1 – ECC.6.3.15.7:

- (i) Each Type B, Type C and Type D Power Generating Module at the Grid Entry Point or User System Entry Point, HVDC Equipment (or OTSDUW Plant and Apparatus at the Interface Point) shall be capable of satisfying the above requirements when operating at Rated MW output and maximum leading Power Factor.
- (ii) The Company will specify upon request by the User the pre-fault and post fault short circuit capacity (in MVA) at the Grid Entry Point or User System Entry Point (or HVDC Interface Point in the case of a remote end HVDC Converter Stations or Interface Point in the case of OTSDUW Plant and Apparatus).
- (iii) The pre-fault voltage shall be taken to be 1.0pu and the post fault voltage shall not be less than 0.9pu.
- (iv) To allow a User to model the Fault Ride Through performance of its Type B, Type C and/or Type D Power Generating Modules or HVDC Equipment, The Company will provide additional network data as may reasonably be required by the EU Code User to undertake such study work in accordance with PC.A.8. Alternatively, The Company may provide generic values derived from typical cases.
- (v) **The Company** will publish fault level data under maximum and minimum demand conditions in the **Electricity Ten Year Statement**.
- Each EU Generator (in respect of Type B, Type C, Type D Power Generating (vi) Modules and DC Connected Power Park Modules) and HVDC System Owners (in respect of **HVDC Systems**) shall satisfy the requirements in ECC.6.3.15.8(i) – (vii) unless the protection schemes and settings for internal electrical faults trips the Type B, Type C and Type D Power Generating Module, HVDC Equipment (or OTSDUW Plant and Apparatus) from the System. The protection schemes and settings should not jeopardise Fault Ride Through performance as specified in ECC.6.3.15.8(i) - (vii). The undervoltage protection at the Grid Entry Point or User System Entry Point (or HVDC Interface Point in the case of a Remote End HVDC Converter Stations or Interface Point in the case of OTSDUW Plant and Apparatus) shall be set by the EU Generator (or HVDC System Owner or **OTSDUA** in the case of **OTSDUW Plant and Apparatus**) according to the widest possible range unless The Company and the EU Code User have agreed to narrower settings. All protection settings associated with undervoltage protection shall be agreed between the EU Generator and/or HVDC System Owner with The Company and Relevant Transmission Licensee's and relevant Network Operator (as applicable).
- (vii) Each Type B, Type C and Type D Power Generating Module, HVDC System and OTSDUW Plant and Apparatus at the Interface Point shall be designed such that upon clearance of the fault on the Onshore Transmission System and within 0.5 seconds of restoration of the voltage at the Grid Entry Point or User System Entry Point or HVDC Interface Point in the case of a Remote End HVDC Converter Stations or Interface Point in the case of OTSDUW Plant and Apparatus to 90% of nominal voltage or greater, Active Power output (or Active Power transfer capability in the case of OTSDW Plant and Apparatus or Remote End HVDC Converter Stations) shall be restored to at least 90% of the level immediately before the fault. Once Active Power output (or Active Power transfer capability in the case of OTSDUW Plant and Apparatus or Remote End HVDC Converter Stations) has been restored to the required level, Active Power oscillations shall be acceptable provided that:
 - The total **Active Energy** delivered during the period of the oscillations is at least that which would have been delivered if the **Active Power** was constant
 - The oscillations are adequately damped.
 - In the event of power oscillations, **Power Generating Modules** shall retain steady state stability when operating at any point on **the Power Generating Module Performance Chart**.

For AC Connected **Onshore** and **Offshore Power Park Modules** comprising switched reactive compensation equipment (such as mechanically switched capacitors and reactors), such switched reactive compensation equipment shall be controlled such that it is not switched in or out of service during the fault but may act to assist in post fault voltage recovery.

ECC.6.3.15.9 <u>General Fault Ride Through requirements for faults in excess of 140ms in duration.</u>

- ECC.6.3.15.9.1 <u>General Fault Ride Through requirements applicable to HVDC Equipment and OTSDUW</u> DC Converters subject to faults and voltage dips in excess of 140ms.
- ECC.6.3.15.9.1.1 The requirements applicable to HVDC Equipment including OTSDUW DC Converters subject to faults and voltage disturbances at the Grid Entry Point or User System Entry Point or Interface Point or HVDC Interface Point, including Active Power transfer capability shall be specified in the Bilateral Agreement.
- ECC.6.3.15.9.2 Fault Ride Through requirements for Type C and Type D Synchronous Power Generating Modules and Type C and Type D Power Park Modules and OTSDUW Plant and Apparatus subject to faults and voltage disturbances on the Onshore Transmission System in excess of 140ms
- ECC.6.3.15.9.2.1 The Fault Ride Through requirements for Type C and Type D Synchronous Power Generating Modules subject to faults and voltage disturbances <u>on the Onshore</u> <u>Transmission System</u> in excess of 140ms are defined in ECC.6.3.15.9.2.1(a) and the Fault Ride Through Requirements for Type C and Type D Power Park Modules and OTSDUW Plant and Apparatus subject to faults and voltage disturbances <u>on the</u> <u>Onshore Transmission System</u> greater than 140ms in duration are defined in <u>ECC.6.3.15.9.2.1(b).</u>
 - (a) Requirements applicable to Synchronous Power Generating Modules subject to Supergrid Voltage dips on the Onshore Transmission System greater than 140ms in duration.

In addition to the requirements of ECC.6.3.15.1 – ECC.6.3.15.8 each **Synchronous Power Generating Module** shall:

(i) remain transiently stable and connected to the System without tripping of any Synchronous Power Generating Module for balanced Supergrid Voltage dips and associated durations on the Onshore Transmission System (which could be at the Interface Point) anywhere on or above the heavy black line shown in Figure ECC.6.3.15.9(a) Appendix 4 and Figures EA.4.3.2(a), (b) and (c) provide an explanation and illustrations of Figure ECC.6.3.15.9(a); and,

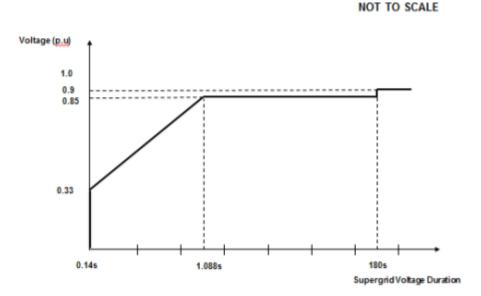


Figure ECC.6.3.15.9(a)

- (ii) provide Active Power output at the Grid Entry Point, during Supergrid Voltage dips on the Onshore Transmission System as described in Figure ECC.6.3.15.9(a), at least in proportion to the retained balanced voltage at the Onshore Grid Entry Point (for Onshore Synchronous Power Generating Modules) or Interface Point (for Offshore Synchronous Power Generating Modules) (or the retained balanced voltage at the User System Entry Point if Embedded) and shall generate maximum reactive current (where the voltage at the Grid Entry Point is outside the limits specified in ECC.6.1.4) without exceeding the transient rating limits of the Synchronous Power Generating Module and,
- (iii) restore Active Power output following Supergrid Voltage dips on the Onshore Transmission System as described in Figure ECC.6.3.15.9(a), within 1 second of restoration of the voltage to 1.0pu of the nominal voltage at the:

Onshore Grid Entry Point for directly connected Onshore Synchronous Power Generating Modules or,

Interface Point for Offshore Synchronous Power Generating Modules or,

User System Entry Point for Embedded Onshore Synchronous Power Generating Modules

or, User System Entry Point for Embedded Medium Power Stations not subject to a Bilateral Agreement which comprise Synchronous Generating Units and with an Onshore User System Entry Point (irrespective of whether they are located Onshore or Offshore)

to at least 90% of the level available immediately before the occurrence of the dip. Once the **Active Power** output has been restored to the required level, **Active Power** oscillations shall be acceptable provided that:

- the total **Active Energy** delivered during the period of the oscillations is at least that which would have been delivered if the **Active Power** was constant
- the oscillations are adequately damped.

For the avoidance of doubt a balanced **Onshore Transmission System Supergrid Voltage** meets the requirements of ECC.6.1.5 (b) and ECC.6.1.6.

(b) Requirements applicable to Type C and Type D Power Park Modules and OTSDUW Plant and Apparatus (excluding OTSDUW DC Converters) subject to Supergrid Voltage dips on the Onshore Transmission System greater than 140ms in duration.

In addition to the requirements of ECC.6.3.15.5, ECC.6.3.15.6 and ECC.6.3.15.8 (as applicable) each **OTSDUW Plant and Apparatus** or each **Power Park Module** and / or any constituent **Power Park Unit**, shall:

(i) remain transiently stable and connected to the System without tripping of any OTSDUW Plant and Apparatus, or Power Park Module and / or any constituent Power Park Unit, for balanced Supergrid Voltage dips and associated durations on the Onshore Transmission System (which could be at the Interface Point) anywhere on or above the heavy black line shown in Figure ECC.6.3.15.9(b). Appendix 4 and Figures EA.4.3.4 (a), (b) and (c) provide an explanation and illustrations of Figure ECC.6.3.15.9(b) ; and,

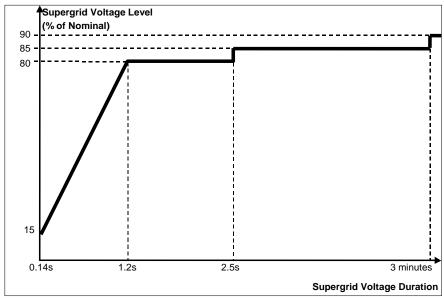


Figure ECC.6.3.15.9(b)

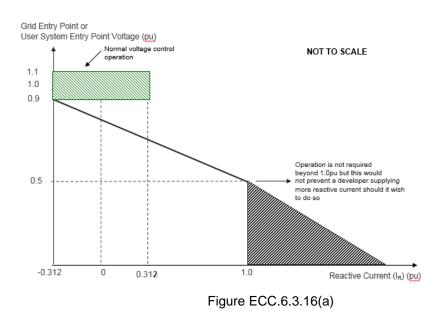
- (ii) be required to satisfy the requirements of ECC.6.3.16. In the case of a Non-Synchronous Generating Unit or OTSDUW Plant and Apparatus or Power Park Module where there has been a reduction in the Intermittent Power Source or in the case of OTSDUW Active Power transfer capability in the time range in Figure ECC.6.3.15.9(b) an allowance shall be made for the fall in input power and the corresponding reduction of real and reactive current.
- (iii) restore Active Power output (or, in the case of OTSDUW, Active Power transfer capability), following Supergrid Voltage dips on the Onshore Transmission System as described in Figure ECC.6.3.15.9(b), within 1 second of restoration of the voltage to 0.9 pu of the nominal voltage at the:

Onshore Grid Entry Point for directly connected Onshore Power Park Modules or,

Interface Point for OTSDUW Plant and Apparatus and Offshore Power Park Modules or,

User System Entry Point for Embedded Onshore Power Park Modules or ,

User System Entry Point for Embedded Medium Power Stations which comprise Power Park Modules not subject to a Bilateral Agreement and with an Onshore User System Entry Point (irrespective of whether they are located Onshore or Offshore)


to at least 90% of the level available immediately before the occurrence of the dip except in the case of a **Non-Synchronous Generating Unit**, **OTSDUW Plant and Apparatus** or **Power Park Module** where there has been a reduction in the **Intermittent Power Source** in the time range in Figure ECC.6.3.15.9(b) that restricts the **Active Power** output or, in the case of **OTSDUW**, **Active Power** transfer capability below this level. Once the **Active Power** output or, in the case of **OTSDUW**, **Active Power** transfer capability has been restored to the required level, **Active Power** oscillations shall be acceptable provided that:

 the total Active Energy delivered during the period of the oscillations is at least that which would have been delivered if the Active Power was constant
 the oscillations are adequately damped.

For the avoidance of doubt a balanced **Onshore Transmission System Supergrid Voltage** meets the requirements of ECC.6.1.5 (b) and ECC.6.1.6.

- (i) In the case of a Power Park Module (excluding Non-Synchronous Electricity Storage Modules), the requirements in ECC.6.3.15.9 do not apply when the Power Park Module (excluding Non-Synchronous Electricity Storage Modules) is operating at less than 5% of its Rated MW or during very high primary energy source conditions when more than 50% of the Power Park Units in a Power Park Module have been shut down or disconnected under an emergency shutdown sequence to protect User's Plant and Apparatus.
- (ii) In addition to meeting the conditions specified in ECC.6.1.5(b) and ECC.6.1.6, each Non-Synchronous Generating Unit, OTSDUW Plant and Apparatus or Power Park Module and any constituent Power Park Unit thereof will be required to withstand, without tripping, the negative phase sequence loading incurred by clearance of a close-up phase-to-phase fault, by System Back-Up Protection on the Onshore Transmission System operating at Supergrid Voltage.
- (iii) Generators in respect of Type B, Type C and Type D Power Park Modules and HVDC System Owners are required to confirm to The Company, their repeated ability to operate through balanced and unbalanced faults and System disturbances each time the voltage at the Grid Entry Point or User System Entry Point falls outside the limits specified in ECC.6.1.4. Demonstration of this capability would be satisfied by EU Generators and HVDC System Owners supplying the protection settings of their plant, informing The Company of the maximum number of repeated operations that can be performed under such conditions and any limiting factors to repeated operation such as protection or thermal rating; and
- (iv) Notwithstanding the requirements of ECC.6.3.15(v), Power Generating Modules shall be capable of remaining connected during single phase or three phase auto-reclosures to the National Electricity Transmission System and operating without power reduction as long as the voltage and frequency remain within the limits defined in ECC.6.1.4 and ECC.6.1.2; and
- (v) For the avoidance of doubt the requirements specified in ECC.6.3.15 do not apply to Power Generating Modules connected to either an unhealthy circuit and/or islanded from the Transmission System even for delayed auto reclosure times.
- (vi) To avoid unwanted island operation, Non-Synchronous Generating Units in Scotland (and those directly connected to a Scottish Offshore Transmission System), Power Park Modules in Scotland (and those directly connected to a Scottish Offshore Transmission System), or OTSDUW Plant and Apparatus with an Interface Point in Scotland shall be tripped for the following conditions:
 - (1) **Frequency** above 52Hz for more than 2 seconds
 - (2) **Frequency** below 47Hz for more than 2 seconds
 - (3) Voltage as measured at the Onshore Connection Point or Onshore User System Entry Point or Offshore Grid Entry Point or Interface Point in the case of OTSDUW Plant and Apparatus is below 80% for more than 2.5 seconds
 - Voltage as measured at the Onshore Connection Point or Onshore User System Entry Point or Offshore Grid Entry Point or Interface Point in the case of OTSDUW Plant and Apparatus is above 120% (115% for 275kV) for more than 1 second. The times in sections (1) and (2) are maximum trip times. Shorter times may be used to protect the Non-Synchronous Generating Units, or OTSDUW Plant and Apparatus.
- ECC.6.3.15.11 HVDC System Robustness
- ECC.6.3.15.11.1 The **HVDC System** shall be capable of finding stable operation points with a minimum change in **Active Power** flow and voltage level, during and after any planned or unplanned change in the **HVDC System** or AC **System** to which it is connected. **The Company** shall specify the changes in the System conditions for which the **HVDC Systems** shall remain in stable operation.

- ECC.6.3.15.11.2 The **HVDC System** owner shall ensure that the tripping or disconnection of an **HVDC Converter Station**, as part of any multi-terminal or embedded **HVDC System**, does not result in transients at the **Grid Entry Point** or **User System Entry Point** beyond the limit specified by **The Company** in co-ordination with the **Relevant Transmission Licensee**.
- ECC.6.3.15.11.3 The **HVDC System** shall withstand transient faults on HVAC lines in the network adjacent or close to the **HVDC System**, and shall not cause any of the equipment in the **HVDC System** to disconnect from the network due to autoreclosure of lines in the **System**.
- ECC.6.3.15.11.4 The **HVDC System Owner** shall provide information to **The Company** on the resilience of the **HVDC System** to AC **System** disturbances.
- ECC.6.3.16 FAST FAULT CURRENT INJECTION
- ECC.6.3.16.1 <u>General Fast Fault Current injection, principles and concepts applicable to Type B, Type</u> <u>C and Type D Power Park Modules and HVDC Equipment</u>
- ECC.6.3.16.1.1 In addition to the requirements of ECC.6.1.4, ECC.6.3.2, ECC.6.3.8 and ECC.A.7, each **Type B**, **Type C** and **Type D Power Park Module** or each **Power Park Unit** within a **Type B**, **Type C** and **Type D Power Park Module** or **HVDC Equipment** shall be required to satisfy the following requirements unless operating in a **Grid Forming Capability** mode in which case the requirements of ECC.6.3.19 shall apply instead. For the purposes of this requirement, current and voltage are assumed to be positive phase sequence values.
- ECC.6.3.16.1.2 For any balanced fault which results in the positive phase sequence voltage falling below the voltage levels specified in ECC.6.1.4 at the **Grid Entry Point** or **User System Entry Point** (if **Embedded**), each **Type B**, **Type C** and **Type D Power Park Module** or each **Power Park Unit** within a **Type B**, **Type C** and **Type D Power Park Module** or **HVDC Equipment** shall, as a minimum (unless an alternative type registered solution has otherwise been agreed with **The Company**), be required to inject a reactive current above the heavy black line shown in Figure ECC.16.3.16(a)

- ECC.6.3.16.1.3 Figure ECC.6.3.16(a) defines the reactive current (I_R) to be supplied under a faulted condition which shall be dependent upon the pre-fault operating condition and the retained voltage at the **Grid Entry Point** or **User System Entry Point** voltage. For the avoidance of doubt, each **Power Park Module** (and any constituent element thereof) or **HVDC Equipment**, shall be required to inject a reactive current (I_R) which shall be not less than its pre-fault reactive current and which shall as a minimum increase with the fall in the retained voltage each time the voltage at the **Grid Entry Point** or **User System Entry Point** (if **Embedded**) falls below 0.9pu whilst ensuring the overall rating of the **Power Park Module** (or constituent element thereof) or **HVDC Equipment** shall not be exceeded.
- ECC.6.3.16.1.4 In addition to the requirements of ECC.6.3.16.1.2 and ECC.6.3.16.1.3, each **Type B**, **Type C** and **Type D Power Park Module** or each **Power Park Unit** within a **Type B**, **Type C** and **Type D Power Park Module** or **HVDC Equipment** shall be required to inject reactive current above the shaded area shown in Figure ECC.6.3.16(b) and Figure ECC.6.3.16(c) which illustrates how the reactive current shall be injected over time from fault inception in which the value of I_R is determined from Figure ECC.6.3.16(a). In figures ECC.6.3.16(b) and ECC.6.3.16(c) ΔI_R is the value of the reactive current (I_R) less the prefault current. In this context fault inception is taken to be when the voltage at the **Grid Entry Point** or **User System Entry Point** falls below 0.9pu.

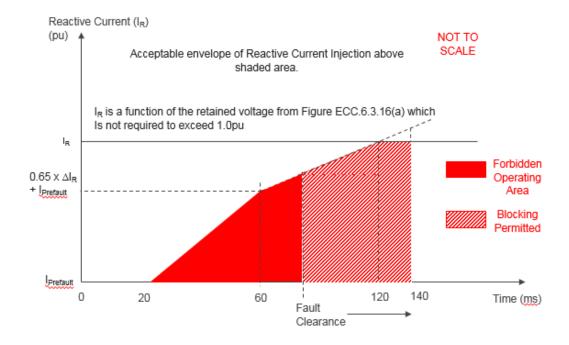
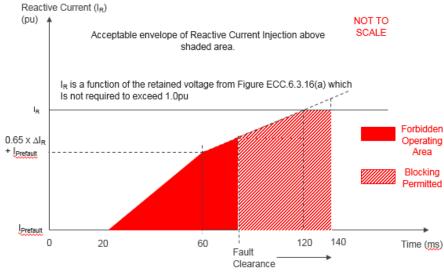



Figure ECC.16.3.16(b)

- ECC.6.3.16.1.5 The injected reactive current (I_R)shall be above the shaded area shown in Figure ECC.6.3.16(b) and Figure ECC.6.3.16(c) with priority being given to reactive current injection with any residual capability being supplied as active current. Under any faulted condition, where the voltage falls outside the limits specified in ECC.6.1.4, there would be no requirement for each **Power Park Module** or constituent **Power Park Unit** or **HVDC Equipment** to exceed its transient or steady state rating of 1.0pu as defined in ECC.6.3.16.1.7.
- ECC.6.3.16.1.6 For any planned or switching events (as outlined in ECC.6.1.7 of the Grid Code) or unplanned events which results in temporary power frequency over voltages (TOV's), each **Type B**, **Type C** and **Type D Power Generating Module** or each **Power Park Unit** within a **Type B**, **Type C** or **Type D Power Park Module** or **HVDC Equipment** will be required to satisfy the transient overvoltage limits specified in the **Bilateral Agreement**.
- ECC.6.3.16.1.7 For the purposes of this requirement, the maximum rated current is taken to be the maximum current each **Power Park Module** (or the sum of the constituent **Power Park Units** which are connected to the **System** at the **Grid Entry Point** or **User System Entry Point**) or **HVDC Converter** is capable of supplying. In the case of a **Power Park Module** this would be the maximum rated current at the **Grid Entry Point** (or **User System Entry Point** if **Embedded**) when the **Power Park Module** is operating at rated **Active Power** and rated **Reactive Power** (as required under ECC.6.3.2) whilst operating over the nominal voltage range as required under ECC.6.1.4 at the **Grid Entry Point** (or **User System Entry Point** if **Embedded**). In the case of a **Power Park Unit** forming part of a **Type B**, **Type C** and **Type D Power Park Module**, the maximum rated current expected would be the maximum current supplied from each constituent **Power Park Unit** when the **Power Park Module** is operating at rated **Active Power** and rated **Reactive** at rated **Active Power** and rated **Reactive Power** over the nominal voltage operating range as required in ECC.6.1.4 less the contribution from the reactive compensation equipment.

For example, in the case of a 100MW **Power Park Module** (consisting of 50 x 2MW Power Park Units and +10MVAr reactive compensation equipment) the **Rated Active Power** at the **Grid Entry Point** (or **User System Entry Point** if **Embedded**) would be taken as 100MW and the rated **Reactive Power** at the **Grid Entry Point** or (**User System Entry Point** if **Embedded**) would be taken as 32.8MVArs (ie **Rated MW** output operating at 0.95 **Power Factor** lead or 0.95 **Power Factor** lag as required under ECC.6.3.2.4). In this example, the maximum rating of each constituent **Power Park Unit** is obtained when the **Power Park**

Module is operating at 100MW, and +32.8MVAr less 10MVAr equal to 22.8MVAr or – 32.8MVAr (less the reactive compensation equipment component of 10MVAr (ie - 22.8MVAr) when operating within the normal voltage operating range as defined under ECC.6.1.4 (allowing for any reactive compensation equipment or losses in the **Power Park Module** array network).

For the avoidance of doubt, the total current of 1.0pu would be assumed to be on the MVA rating of the **Power Park Module** or **HVDC Equipment** (less losses). Under all normal and abnormal conditions, the steady state or transient rating of the **Power Park Module** (or any constituent element including the **Power Park Units**) or **HVDC Equipment**, would not be required to exceed the locus shown in Figure 16.3.16(d).

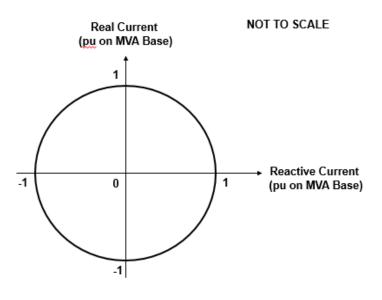


Figure ECC.16.3.16(d)

- ECC.6.3.16.1.7 Each **Type B**, **Type C** and **Type D Power Park Module** or **HVDC Equipment** shall be designed to ensure a smooth transition between voltage control mode and fault ride through mode in order to prevent the risk of instability which could arise in the transition between the steady state voltage operating range as defined under ECC.6.1.4 and abnormal conditions where the retained voltage falls below 90% of nominal voltage. Such a requirement is necessary to ensure adequate performance between the pre-fault operating condition of the **Power Park Module** or **HVDC Equipment** and its subsequent behaviour under faulted conditions. **EU Generators** and **HVDC System Owners** are required to both advise and agree with **The Company** the control strategy employed to mitigate the risk of such instability.
- ECC.6.3.16.1.8 Each Type B, Type C and Type D Power Park Module or HVDC Equipment shall be designed to reduce the risk of transient over voltage levels arising following clearance of the fault and in order to mitigate the risk of any form of instability which could result. EU Generators or HVDC System Owners shall be permitted to block or employ other means where the anticipated transient overvoltage would otherwise exceed the maximum permitted values specified in ECC.6.1.7. Figure ECC.16.3.16(b) and Figure ECC.16.3.16(c) shows the impact of variations in fault clearance time. For main protection operating times this would not exceed 140ms. The requirements for the maximum transient overvoltage withstand capability and associated time duration, shall be agreed between the EU Code User and The Company as part of the Bilateral Agreement. Where the EU Code User is able to demonstrate to The Company that blocking or other control strategies are required in order to prevent the risk of transient over voltage excursions as specified in ECC.6.3.16.1.5, EU Generators and HVDC System Owners are required to both advise and agree with The Company the control strategy, which must also include the approach taken to de-blocking

- ECC.6.3.16.1.9 In addition to the requirements of ECC.6.3.15, Generators in respect of Type B, Type C and Type D Power Park Modules or each Power Park Unit within a Type B, Type C and Type D Power Park Module or DC Connected Power Park Modules and HVDC System Owners in respect of HVDC Systems are required to confirm to The Company, their repeated ability to supply Fast Fault Current to the System each time the voltage at the Grid Entry Point or User System Entry Point falls outside the limits specified in ECC.6.1.4. EU Generators and HVDC Equipment Owners should inform The Company of the maximum number of repeated operations that can be performed under such conditions and any limiting factors to repeated operation such as protection or thermal rating.
- ECC.6.3.16.1.10 To permit additional flexibility for example from **Power Park Modules** made up of full converter machines, DFIG machines, induction generators or **HVDC Systems** or **Remote End HVDC Converters**, **The Company** will permit transient or marginal deviations below the shaded area shown in Figures ECC.16.3.16(b) or ECC.16.3.16(c) provided the injected reactive current supplied exceeds the area bound in Figure ECC.6.3.16(b) or ECC.6.3.16(c). Such agreement would be confirmed and agreed between **The Company** and **Generator**.
- ECC.6.3.16.1.11 In the case of a **Power Park Module** or **DC Connected Power Park Module**, where it is not practical to demonstrate the compliance requirements of ECC.6.3.16.1.1 to ECC.6.3.16.1.6 at the **Grid Entry Point** or **User System Entry Point**, **The Company** will accept compliance of the above requirements at the **Power Park Unit** terminals.
- ECC.6.3.16.1.12 For the avoidance of doubt, **Generators** in respect of **Type C** and **Type D Power Park Modules** and **OTSDUW Plant and Apparatus** are also required to satisfy the requirements of ECC.6.3.15.9.2.1(b) which specifies the requirements for fault ride through for voltage dips in excess of 140ms.
- ECC.6.3.16.1.13 In the case of an unbalanced fault, each **Type B**, **Type C** and **Type D Power Park Module** or each **Power Park Unit** within a **Type B**, **Type C** and **Type D Power Park Module** or **HVDC Equipment** shall be required to inject reactive current (I_R) which shall as a minimum increase with the fall in the retained unbalanced voltage up to its maximum reactive current without exceeding the transient rating of the **Power Park Module** (or constituent element thereof) or **HVDC Equipment**.
- ECC.6.3.16.1.14 In the case of a unbalanced fault, the **Generator** or **HVDC System Owner** shall confirm to **The Company** their ability to prevent transient overvoltages arising on the remaining healthy phases and the control strategy employed.
- ECC.6.3.17 <u>SUBSYNCHRONOUS TORSIONAL INTERACTION DAMPING CAPABILITY, POWER</u> OSCILLATION DAMPING CAPABILITY AND CONTROL FACILITIES FOR HVDC SYSTEMS
- ECC.6.3.17.1 Subsynchronous Torsional Interaction Damping Capability
- ECC.6.3.17.1.1 HVDC System Owners, or Generators in respect of OTSDUW DC Converters or Network Operators in the case of an Embedded HVDC Systems not subject to a Bilateral Agreement must ensure that any of their Onshore HVDC Systems or OTSDUW DC Converters will not cause a sub-synchronous resonance problem on the Total System. Each HVDC System or OTSDUW DC Converter is required to be provided with sub-synchronous resonance damping control facilities. HVDC System Owners and EU Generators in respect of OTSDUW DC Converters should also be aware of the requirements in ECC.6.1.9 and ECC.6.1.10.
- ECC.6.3.17.1.2 Where specified in the **Bilateral Agreement**, each **OTSDUW DC Converter** is required to be provided with power oscillation damping or any other identified additional control facilities.

- ECC.6.3.17.1.3 Each HVDC System shall be capable of contributing to the damping of power oscillations on the National Electricity Transmission System. The control system of the HVDC System shall not reduce the damping of power oscillations. The Company in coordination with the Relevant Transmission Licensee (as applicable) shall specify a frequency range of oscillations that the control scheme shall positively damp and the System conditions when this occurs, at least accounting for any dynamic stability assessment studies undertaken by the Relevant Transmission Licensee or The Company (as applicable) to identify the stability limits and potential stability problems on the National Electricity Transmission System. The selection of the control parameter settings shall be agreed between The Company in coordination with the Relevant Transmission Licensee and the HVDC System Owner.
- ECC.6.3.17.1.4 **The Company** shall specify the necessary extent of SSTI studies and provide input parameters, to the extent available, related to the equipment and relevant system conditions on the **National Electricity Transmission System**. The SSTI studies shall be provided by the **HVDC System Owner**. The studies shall identify the conditions, if any, where SSTI exists and propose any necessary mitigation procedure. The responsibility for undertaking the studies in accordance with these requirements lies with the **Relevant Transmission Licensee** in co-ordination with **The Company**. All parties shall be informed of the results of the studies.
- ECC.6.3.17.1.5 All parties identified by **The Company** as relevant to each **Grid Entry Point** or **User System Entry Point** (if **Embedded**), including the **Relevant Transmission Licensee**, shall contribute to the studies and shall provide all relevant data and models as reasonably required to meet the purposes of the studies. **The Company** shall collect this data and, where applicable, pass it on to the party responsible for the studies in accordance with **Retained EU Law** (Article 10 of Commission Regulation (EU) 2016/1447). Specific information relating to the interface schedules, input/output requirements, timing and submission of any studies or data would be agreed between the **User** and **The Company** and specified (where applicable) in the **Bilateral Agreement**.
- ECC.6.3.17.1.6 **The Company** in coordination with the **Relevant Transmission Licensee** shall assess the result of the SSTI studies. If necessary for the assessment, **The Company** in coordination with the **Relevant Transmission Licensee** may request that the **HVDC System Owner** perform further SSTI studies in line with this same scope and extent.
- ECC.6.3.17.1.7 **The Company** in coordination with the **Relevant Transmission Licensee** may review or replicate the study. The **HVDC System Owner** shall provide **The Company** with all relevant data and models that allow such studies to be performed. Submission of this data to **Relevant Transmission Licensee's** shall be in accordance with the requirements of **Retained EU Law** (Article 10 of Commission Regulation (EU) 2016/1447).
- ECC.6.3.17.1.8 Any necessary mitigating actions identified by the studies carried out in accordance with paragraphs ECC.6.3.17.1.4 or ECC.6.3.17.1.6, and reviewed by **The Company** in coordination with the **Relevant Transmission Licensees**, shall be undertaken by the **HVDC System Owner** as part of the connection of the new **HVDC Converter Station**.
- ECC.6.3.17.1.9 As part of the studies and data flow in respect of ECC.6.3.17.1 ECC.6.3.17.8 the following data exchange would take place with the time scales being pursuant to the terms of the Bilateral Agreement.

Information supplied by The Company and Relevant Transmission Licensees

Studies provided by the User

User review

The Company review

Changes to studies and agreed updates between **The Company**, the **Relevant Transmission Licensee** and **User**

Final review

ECC.6.3.17.2 Interaction between HVDC Systems or other User's Plant and Apparatus

- ECC.6.3.17.2.1 Notwithstanding the requirements of ECC6.1.9 and ECC.6.1.10, when several **HVDC Converter Stations** or other **User's Plant** and **Apparatus** are within close electrical proximity, **The Company** may specify that a study is required, and the scope and extent of that study, to demonstrate that no adverse interaction will occur. If adverse interaction is identified, the studies shall identify possible mitigating actions to be implemented to ensure compliance with the requirements of ECC.6.1.9
- ECC.6.3.17.2.2 The studies shall be carried out by the connecting HVDC System Owner with the participation of all other User's identified by The Company in coordination with Relevant Transmission Licensees as relevant to each Connection Point.
- ECC.6.3.17.2.3 All **User's** identified by **The Company** as relevant to the connection , and where applicable **Relevant Transmission Licensee's**, shall contribute to the studies and shall provide all relevant data and models as reasonably required to meet the purposes of the studies. **The Company** shall collect this input and, where applicable, pass it on to the party responsible for the studies in accordance with **Retained EU Law** (Article 10 of Commission Regulation (EU) 2016/1447). Specific information relating to the interface schedules, input/output requirements, timing and submission of any studies or data would be agreed between the **User** and **The Company** and specified (where applicable) in the **Bilateral Agreement**.
- ECC.6.3.17.2.4 **The Company** in coordination with **Relevant Transmission Licensees** shall assess the result of the studies based on their scope and extent as specified in accordance with ECC.6.3.17.2.1. If necessary for the assessment, **The Company** in coordination with the **Relevant Transmission Licensee** may request the **HVDC System Owner** to perform further studies in line with the scope and extent specified in accordance with ECC.6.3.17.2.1.
- ECC.6.3.17.2.5 **The Company** in coordination with the **Relevant Transmission Licensee** may review or replicate some or all of the studies. The **HVDC System Owner** shall provide **The Company** all relevant data and models that allow such studies to be performed.
- ECC.6.3.17.2.6 The **EU Code User** and **The Company**, in coordination with the **Relevant Transmission** Licensee, shall agree any mitigating actions identified by the studies carried out following the site specific requirements and works, including any transmission reinforcement works and / or User works required to ensure that all sub-synchronous oscillations are sufficiently damped.
- ECC.6.1.17.3 Fast Recovery from DC faults
- ECC.6.1.17.3.1 **HVDC Systems**, including DC overhead lines, shall be capable of fast recovery from transient faults within the **HVDC System**. Details of this capability shall be subject to the **Bilateral Agreement** and the protection requirements specified in ECC.6.2.2.
- ECC.6.1.17.4 Maximum loss of Active Power
- ECC.6.1.14.4.1 An **HVDC System** shall be configured in such a way that its loss of **Active Power** injection in the **GB Synchronous Area** shall be in accordance with the requirements of the **SQSS**.

ECC.6.3.18 SYSTEM TO GENERATOR OPERATIONAL INTERTRIPPING SCHEMES

- ECC.6.3.18.1 **The Company** may require that a **System to Generator Operational Intertripping Scheme** be installed as part of a condition of the connection of the **EU Generator**. Scheme specific details shall be included in the relevant **Bilateral Agreement** and shall, include the following information:
 - (1) the relevant category(ies) of the scheme (referred to as Category 1 Intertripping Scheme, Category 2 Intertripping Scheme, Category 3 Intertripping Scheme and Category 4 Intertripping Scheme);
 - (2) the **Power Generating Module** to be either permanently armed or that can be instructed to be armed in accordance with BC2.8;
 - (3) the time within which the **Power Generating Module** circuit breaker(s) are to be automatically tripped;

(4) the location to which the trip signal will be provided by **The Company**. Such location will be provided by **The Company** prior to the commissioning of the **Power Generating Module**.

Where applicable, the **Bilateral Agreement** shall include the conditions on the **National Electricity Transmission System** during which **The Company** may instruct the **System to Generator Operational Intertripping Scheme** to be armed and the conditions that would initiate a trip signal.

ECC.6.3.18.2 The time within which the **Power Generating Module(s)** circuit breaker(s) need to be automatically tripped is determined by the specific conditions local to the **EU Generator**. This 'time to trip' (defined as the time from provision of the trip signal by **The Company** to the specified location, to circuit breaker main contact opening) can typically range from 100ms to 10sec. A longer time to trip may allow the initiation of an automatic reduction in the **Power Generating Module(s)** output prior to the automatic tripping of the **Power Generating Module(s)** circuit breaker. Where applicable **The Company** may provide separate trip signals to allow for either a longer or shorter 'time to trip' to be initiated.

ECC.6.3.19 GRID FORMING CAPABILITY

- ECC.6.3.19.1 In order for the National Electricity Transmission System to satisfy the stability requirements defined in the National Electricity Transmission System Security and Quality of Supply Standards, it is an essential requirement that an appropriate volume of Grid Forming Plant is available and capable of providing a Grid Forming Capability.
- ECC.6.3.19.2 **Grid Forming Capability** is not a mandatory requirement but one which will be delivered through market arrangements, the details of which shall be published on **The Company's Website**. **Grid Forming Capability** can be implemented by any technology including **Electronic Power Converters** with a **GBGF-I** ability, rotating **Synchronous Generating Units** or a combination of the two.
- ECC.6.3.19.3 As noted in ECC.6.3.19.2, Grid Forming Capability is not a mandatory requirement, however where a User (be they a GB Code User or EU Code User) or Non-CUSC Party wishes to offer a Grid Forming Capability, then they will be required to ensure their Grid Forming Plant meets the following requirements.
 - The Grid Forming Plant must fully comply with the applicable requirements of the Grid Code including but not limited to the Planning Code (PC), Connection Conditions (CC's) or European Connection Conditions (ECC's) (as applicable), Compliance Processes (CP's) or European Compliance Processes (ECP's) (as applicable), Operating Codes (OC's), Balancing Codes (BC's) and Data Registration Code (DRC).
 - (ii) Each GBGF-I shall comprise an Internal Voltage Source and reactance. For the avoidance of doubt, the reactance between the Internal Voltage Source and Grid Entry Point or User System Entry Point (if Embedded) within the Grid Forming Plant can only be made by a combination of several physical discrete reactances. This could include the reactance of the Synchronous Generating Unit or Power Park Unit or HVDC System or Electricity Storage Unit or Dynamic Reactive Compensation Equipment and the electrical Plant and Apparatus connecting the Synchronous Generating Unit or Power Park Unit or HVDC System or Electricity Storage Unit or User System Entry Storage Unit (such as a transformer) to the Grid Entry Point or User System Entry Point (if Embedded).
 - (iii) In addition to meeting the requirements of CC.6.3.15 or ECC.6.3.15, each **Grid Forming Plant** is required to remain in synchronism with the **Total System** and maintain a **Load Angle** whose value can vary between 0 and 90 degrees ($\pi/2$ radians).

- (iv) When subject to a fault or disturbance, or System Frequency change, each Grid Forming Plant shall be capable of supplying Active ROCOF Response Power, Active Phase Jump Power, Active Damping Power, Active Control Based Power, Control Based Reactive Power, Voltage Jump Reactive Power and GBGF Fast Fault Current Injection.
- (v) Each GBGF-I shall be capable of:-
 - (a) Providing a symmetrical ability for importing and exporting Active ROCOF Response Power, Active Phase Jump Power, Active Damping Power and Active Control Based Power under both rising and falling System Frequency conditions. Such requirements will apply over the full System Frequency range as detailed in CC.6.1.2 and CC.6.1.3 or ECC.6.1.2 (as applicable). In satisfying these requirements, User's and Non-CUSC Parties should be aware of (but not limited to) the exclusions in CC.6.3.3, CC.6.3.7 and BC3.7.2.1 (as applicable for GB Code User's) or ECC.6.1.2, ECC.6.3.3, ECC.6.3.7 and BC3.7.2.1(b)(i) (as applicable for EU Code User's and Non-CUSC Parties) during System Frequencies between 47Hz – 52Hz, excluding CC.6.1.3 or ECC.6.1,2.1,2 for a Grid Forming Plant with time limited output ratings. For the avoidance of doubt, an asymmetrical response is permissible as agreed with The Company when required to protect User's and Non-CUSC Parties Plant and Apparatus or asymmetry in energy availability.
 - (b) Operating as a voltage source behind a real reactance.
 - (c) being designed so as not to cause any undue interactions which could cause damage to the **Total System** or other **User's Plant** and **Apparatus**.
 - (d) include an Active Control Based Power part of the control system that can respond to changes in the Grid Forming Plant or external signals from the Total System available at the Grid Entry Point or User System Entry Point but with a bandwidth below 5 Hz to avoid AC System resonance problems.
 - (e) meeting the requirements of ECC.6.3.13 irrespective of being owned or operated by a **GB Code User**, **EU Code User** or **Non-CUSC Party**.
 - (f) GBGF-I with an importing capability mode of operation such as DC Converters, HVDC Systems and Electricity Storage Modules are required to have a predefined frequency response operating characteristic over the full import and export range which is contained within the envelope defined by the red and blue lines shown in Figure ECC.6.3.19.3. This characteristic shall be submitted to The Company. For the avoidance of doubt, Grid Forming Plants which are only capable of exporting Active Power to the Total System are only required to operate over the exporting power region

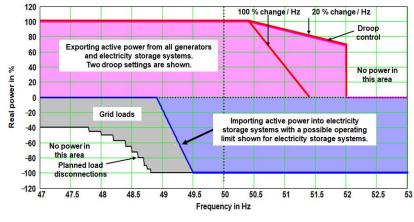
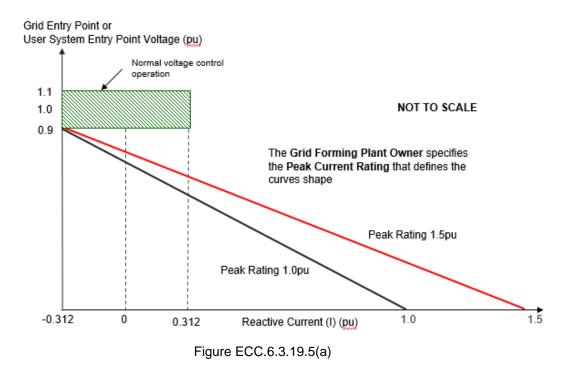
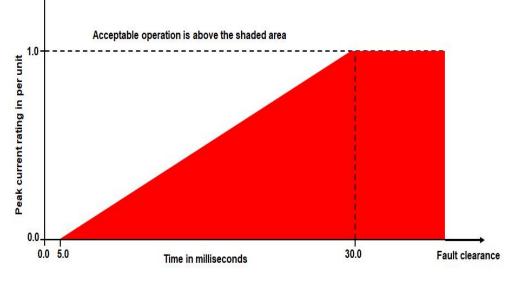
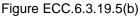


Figure ECC.6.3.19.3


(vi) Each User or Non-CUSC Party shall design their GBGF-I system with an equivalent Damping Factor of between 0.2 and 5.0. It is down to the User or Non-CUSC Party to determine the Damping Factor, whose value shall be agreed with The Company. It is typical for the Damping Factor to be less than 1.0, though this will be dependent upon the parameters of the Grid Forming Plant and the equivalent System impedance at the Grid Entry Point or User System Entry Point.

The output of the **Grid Forming Plant** shall be designed such that following a disturbance on the **System**, the **Active Power** output and **Reactive Power** output shall be adequately damped. The damping shall be judged to be adequate if the corresponding **Active Power** response to a disturbance decays with a response that is in line with the response of second order system that has the same equivalent **Damping Factor**.


- (vii) Each GBGF-I shall be designed so as not to interact and affect the operation, performance, safety or capability of other User's Plant and Apparatus connected to the Total System. To achieve this requirement, each User and Non-CUSC Party shall be required to submit the data required in PC.A.5.8
- ECC.6.3.19.4 In addition to the requirements of ECC.6.3.19.1 ECC.6.3.19.3 each **Grid Forming Plant** shall also be capable of: -
 - (i) satisfying the requirements of ECC.6.3.19.5.
 - (ii) operating at a minimum short circuit level of zero MVA at the **Grid Entry Point** or **User System Entry Point**.
 - (iii) providing any additional quality of supply requirements, including but not limited to reductions in the permitted frequency of Temporary Power System Over-voltage events (TOV's) and System Frequency bandwidth limitations, as agreed with The Company. Such requirements will be pursuant to the terms of the Bilateral Agreement. For the avoidance of doubt, this requirement is in addition the minimum quality of supply requirements detailed in CC.6.1.5, CC.6.1.6 and CC.6.1.7 (as applicable) or ECC.6.1.5, ECC.6.1.6 and ECC.6.1.7 (as applicable),


ECC.6.3.19.5 **GBGF Fast Fault Current Injection**

ECC.6.3.19.5.1 For any balanced fault which results in the positive phase sequence voltage falling below the voltage levels specified in CC.6.1.4 or ECC.6.1.4 (as applicable) at the **Grid Entry Point** or **User System Entry Point** (if **Embedded**), a **Grid Forming Plant** shall, as a minimum be required to inject a reactive current of at least their **Peak Current Rating** when the voltage at the **Grid Entry Point** or **User System Entry Point** drops to zero. For intermediate retained voltages at the **Grid Entry Point** or **User System Entry Point**, the injected reactive current shall be on or above a line drawn from the bottom left hand corner of the normal voltage control operating zone (shown in the rectangular green shaded area of Figure ECC.6.3.19.5(a)) and the specified **Peak Current Rating** at a voltage of zero at the **Grid Entry Point** or **User System Entry Point** as shown in Figure ECC.16.3.19.5(a). Typical examples of limit lines are shown in Figure ECC.16.3.19.5(a) for a **Peak Current Rating** of 1.0pu where the injected reactive current must be on or above the black line and a **Peak Current Rating** of 1.5pu where injected reactive current must be on or above the red line.

- ECC.6.3.19.5.2 Figure ECC.6.3.19.5(a) defines the reactive current to be supplied under a faulted condition which shall be dependent upon the pre-fault operating condition and the retained voltage at the **Grid Entry Point** or **User System Entry Point** voltage. For the avoidance of doubt, each **Grid Forming Plant** (and any constituent element thereof), shall be required to inject a reactive current which shall be not less than its pre-fault reactive current and which shall as a minimum, increase each time the voltage at the **Grid Entry Point** or **User System Entry Point** (if **Embedded**) falls below 0.9pu whilst ensuring the overall rating of the **Grid Forming Plant** (or constituent element thereof) shall not be exceeded.
- ECC.6.3.19.5.3 In addition to the requirements of ECC.6.3.19.5.1 and ECC.6.3.19.5.2, each **Grid Forming Plant** shall be required to inject reactive current above the shaded area shown in Figure ECC.6.3.19.5(b) when the retained voltage at the **Grid Entry Point** or **User System Entry Point** falls to 0pu. Where the retained voltage at the **Grid Entry Point** or **User System Entry Point** is below 0.9pu but above 0pu (for example when significant active current is drawn by loads and/or resistive components arising from both local and remote faults or disturbances from other **Plant** and **Apparatus** connected to the **Total System**) the injected reactive current component shall be in accordance with Figure ECC.6.3.19.5(a).

- ECC.6.3.19.5.4 The injected current shall be above the shaded area shown in Figure ECC.6.3.19.5(b) for the duration of the fault clearance time which for faults on the **Transmission System** cleared in **Main Protection** operating times shall be up to 140ms. Under any faulted condition, where the voltage falls outside the limits specified in CC.6.1.4 or ECC.6.1.4 (as applicable), there will be no requirement for each **Grid Forming Plant** or constituent part to exceed its transient or steady state rating as defined in Table PC.A.5.8.2.
- ECC.6.3.19.5.5 For any planned or switching events (as outlined in CC.6.1.7 or ECC.6.1.7 of the Grid Code) or unplanned events which results in Temporary Power **System** Over Voltages (TOV's), each **Grid Forming Plant** will be required to satisfy the transient overvoltage limits specified in the **Bilateral Agreement**.
- ECC.6.3.19.5.6 For the purposes of this requirement, the maximum rated current will be the **Peak Current Rating** declared by the **Grid Forming Plant Owner** in accordance with Table PC.A.5.8.2.
- ECC.6.3.19.5.7 Each **Grid Forming Plant** shall be designed to ensure a smooth transition between voltage control mode and **Fault Ride Through** mode in order to prevent the risk of instability which could arise in the transition between the steady state voltage operating range as defined under CC.6.1.4 or ECC.6.1.4 (as applicable) and abnormal conditions where the retained voltage falls below 90% of nominal voltage. Such a requirement is necessary to ensure adequate performance between the pre-fault operating condition of the **Grid Forming Plant** and its subsequent behaviour under faulted conditions. **Grid Forming Plant Owners** are required to both advise and agree with **The Company** the control strategy employed to mitigate the risk of such instability.
- ECC.6.3.19.5.8. Each **Grid Forming Plant** shall be designed to reduce the risk of transient over voltage levels arising following clearance of the fault and in order to mitigate the risk of any form of instability which could result. The requirements for the maximum transient overvoltage withstand capability and associated time duration, shall be agreed between the **User** or **Non-CUSC Party** and **The Company** as part of the **Bilateral Agreement**.
- ECC.6.3.19.5.9 In addition to the requirements of CC.6.3.15 or ECC.6.3.15, each **Grid Forming Plant Owner** is required to confirm to **The Company**, their repeated ability to supply **GBGF Fast Fault Current Injection** to the **System** each time the voltage at the **Grid Entry Point** or **User System Entry Point** falls outside the limits specified in CC.6.1.4 or ECC.6.1.4 (as applicable). **Grid Forming Plant Owners** should inform **The Company** of the maximum number of repeated operations that can be performed under such conditions and any limiting factors to repeated operation such as protection or thermal rating.

- ECC.6.3.19.5.10 In the case of a **Power Park Module** or **DC Connected Power Park Module**, where it is not practical to demonstrate the compliance requirements of ECC.6.3.19.5.1 to ECC.6.3.19.5.5 at the **Grid Entry Point** or **User System Entry Point**, **The Company** will accept compliance of the above requirements at the **Power Park Unit** terminals.
- ECC.6.3.19.5.11 In the case of an unbalanced fault, each **Grid Forming Plant**, shall be required to inject current which shall as a minimum increase with the fall in the unbalanced voltage without exceeding the transient **Peak Current Rating** of the **Grid Forming Plant** (or constituent element thereof).
- ECC.6.3.19.5.12 In the case of an unbalanced fault, the **User** or **Non-CUSC Party** shall confirm to **The Company** their ability to prevent transient overvoltages arising on the remaining healthy phases and the control strategy employed.
- ECC.6.4 General Network Operator And Non-Embedded Customer Requirements
- ECC.6.4.1 This part of the **Grid Code** describes the technical and design criteria and performance requirements for **Network Operators** and **Non-Embedded Customers**.

Neutral Earthing

ECC.6.4.2 At nominal **System** voltages of 132kV and above the higher voltage windings of three phase transformers and transformer banks connected to the **National Electricity Transmission System** must be star connected with the star point suitable for connection to earth. The earthing and lower voltage winding arrangement shall be such as to ensure that the **Earth Fault Factor** requirement of paragraph ECC.6.2.1.1 (b) will be met on the **National Electricity Transmission System** at nominal **System** voltages of 132kV and above.

Frequency Sensitive Relays

ECC.6.4.3 As explained under OC6, each Network Operator and Non Embedded Customer, will make arrangements that will facilitate automatic low Frequency Disconnection of Demand (based on Annual ACS Conditions). ECC.A.5.5. of Appendix E5 includes specifications of the local percentage Demand that shall be disconnected at specific frequencies. The manner in which Demand subject to low Frequency disconnection will be split into discrete MW blocks is specified in OC6.6. Technical requirements relating to Low Frequency Relays are also listed in Appendix E5.

Operational Metering

- ECC.6.4.4 Where The Company can reasonably demonstrate that an Embedded Medium Power Station or Embedded HVDC System has a significant effect on the National Electricity Transmission System, it may require the Network Operator within whose System the Embedded Medium Power Station or Embedded HVDC System is situated to ensure that the operational metering equipment described in ECC.6.5.6 is installed such that The Company can receive the data referred to in ECC.6.5.6. In the case of an Embedded Medium Power Station subject to, or proposed to be subject to a Bilateral Agreement, The Company shall notify such Network Operator of the details of such installation in writing within 3 months of being notified of the application to connect under CUSC and in the case of an Embedded Medium Power Station not subject to, or not proposed to be subject to a Bilateral Agreement in writing as a Site Specific Requirement in accordance with the timescales in CUSC 6.5.6. In either case the Network Operator shall ensure that the data referred to in ECC.6.5.6 is provided to The Company.
- ECC.6.4.5 Reactive Power Requirements at each EU Grid Supply Point
- ECC.6.4.5.1 At each EU Grid Supply Point, Non-Embedded Customers and Network Operatorswho are EU Code Users shall ensure their Systems are capable of steady state operation within the Reactive Power limits as specified in ECC.6.4.5.1(a) and ECC.6.4.5.1(b). Where The Company requires a Reactive Power range which is broader than the limits defined in ECC.6.4.5.1(a) and ECC.6.4.5.1(b), this will be agreed as a reasonable requirement through joint assessment between the relevant EU Code User and The Company and justified in accordance with the requirements of ECC.6.4.5.1(c), (d), (e) and (f). For Non-Embedded Customers who are EU Code Users, the Reactive Power range at each EU Grid Supply Point, under both importing and exporting conditions, shall not exceed 48% of the larger of the Maximum Import Capability or Maximum Export Capability (0.9 Power Factor import or export of Active Power), except in situations where either technical or financial system benefits are demonstrated for Non-Embedded Customers and accepted by The Company in coordination with the Relevant Transmission Licensee.
 - (a) For **Network Operators** who are **EU Code Users** at each **EU Grid Supply Point**, the **Reactive Power** range shall not exceed:
 - 48 percent (i.e. 0.9 Power Factor) of the larger of the Maximum Import Capability or Maximum Export Capability during Reactive Power import (consumption); and
 - (ii) 48 percent (i.e. 0.9 Power Factor) of the larger of the Maximum Import Capability or Maximum Export Capability during Reactive Power export (production);

Except in situations where either technical or financial system benefits are proved by **The Company** in coordination with the **Relevant Transmission Licensee** and the relevant **Network Operator** through joint analysis.

- (b) The Company in co-ordination with the Relevant Transmission Licensee shall agree with the Network Operator on the scope of the analysis, which shall determine the optimal solution for Reactive Power exchange between their Systems at each EU Grid Supply Point, taking adequately into consideration the specific System characteristics, variable structure of power exchange, bidirectional flows and the Reactive Power capabilities of the Network Operator's System. Any proposed solutions shall take the above issues into account and shall be agreed as a reasonable requirement through joint assessment between the relevant Network Operator or Non-Embedded Customer and The Company in coordination with the Relevant Transmission Licensee. In the event of a shared site between a GB Code User and EU Code User, the requirements would generally be allocated to each User on the basis of their Demand in the case of a Network Operator who is a GB Code User and applied on the basis of the Maximum Import Capability or Maximum Export Capability as specified in ECC.6.4.5.1 in the case of a Network Operator who is an EU Code User.
- (c) **The Company** in coordination with the **Relevant Transmission Licensee** may specify the **Reactive Power** capability range at the **EU Grid Supply Point** in another form other than **Power Factor**.
- (d) Notwithstanding the ability of Network Operators or Non Embedded Customers to apply for a derogation from ECC.6.4.5.1 (e), where an EU Grid Supply Point is shared between a Power Generating Module and a Non-Embedded Customers System, the Reactive Power range would be apportioned to each EU Code User at their Connection Point.
- ECC.6.4.5.2 Where agreed with the Network Operator who is an EU Code User and justified though appropriate System studies, The Company may reasonably require the Network Operator not to export Reactive Power at the EU Grid Supply Point (at nominal voltage) at an Active Power flow of less than 25 % of the Maximum Import Capability. Where applicable, the Authority may require The Company in coordination with the Relevant Transmission Licensee to justify its request through a joint analysis with the relevant Network Operator and demonstrate that any such requirement is reasonable. If this requirement is not justified based on the joint analysis, The Company in coordination with the Relevant Transmission Licensee and the Network Operator shall agree on necessary requirements according to the outcomes of a joint analysis.
- ECC.6.4.5.3 Notwithstanding the requirements of ECC.6.4.5.1(b) and subject to agreement between **The Company** and the relevant **Network Operator** there may be a requirement to actively control the exchange of **Reactive** Power at the **EU Grid Supply Point** for the benefit of the **Total System**. **The Company** and the relevant **Network Operator** shall agree on a method to carry out this control, to ensure the justified level of security of supply for both parties. Any such solution including joint study work and timelines would be agreed between **The Company** and the relevant **Network Operator** as reasonable, efficient and proportionate.
- ECC.6.4.5.4 In accordance with ECC.6.4.5.3, the relevant **Network Operator** may require **The Company** to consider its **Network Operator's System** for **Reactive Power** management. Any such requirement would need to be agreed between **The Company** and the relevant **Network Operator** and justified by **The Company**.

ECC.6.5 <u>Communications Plant</u>

ECC.6.5.1 In order to ensure control of the National Electricity Transmission System, telecommunications between Users and The Company must (including in respect of any OTSDUW Plant and Apparatus at the OTSUA Transfer Time), if required by The Company, be established in accordance with the requirements set down below.

ECC.6.5.2 Control Telephony and System Telephony

- ECC.6.5.2.1 Control Telephony is the principle method by which a User's Responsible Engineer/Operator and The Company's Control Engineers speak to one another for the purposes of control of the Total System in both normal and emergency operating conditions. Control Telephony provides secure point to point telephony for routine Control Calls, priority Control Calls and emergency Control Calls.
- ECC.6.5.2.2 System Telephony is an alternate method by which a User's Responsible Engineer/Operator and The Company's Control Engineers speak to one another for the purposes of control of the Total System in both normal operating conditions and where practicable, emergency operating conditions. System Telephony uses an appropriate public communications network to provide telephony for Control Calls, inclusive of emergency Control Calls. For the avoidance of doubt, System Telephony could include but shall not be limited to: an analogue or digital telephone line; a mobile telephone or an internet-based voice communication system, all of which would be connected to an appropriate public communications network.
- ECC.6.5.2.3 Calls made and received over **Control Telephony** and **System Telephony** may be recorded and subsequently replayed for commercial and operational reasons.
- ECC.6.5.3 Not Used
- ECC.6.5.4 Obligations in respect of Control Telephony and System Telephony
- ECC.6.5.4.1 Where **The Company** requires **Control Telephony**, **Users** are required to use the **Control Telephony** with **The Company** in respect of all **Connection Points** with the **National Electricity Transmission System** and in respect of all **Embedded Large Power Stations** and **Embedded HVDC Systems**. **The Company** will have **Control Telephony** installed at the **User's Control Point** where the **User's** telephony equipment is not capable of providing the required facilities or is otherwise incompatible with the **Transmission Control Telephony**. Details of and relating to the **Control Telephony** required are contained in the **Bilateral Agreement**.
- ECC.6.5.4.2 Where in **The Company's** sole opinion the installation of **Control Telephony** is not practicable at a **User's Control Point(s)**, **The Company** shall specify in the **Bilateral Agreement** whether **System Telephony** is required. Where **System Telephony** is required by **The Company**, the **User** shall ensure that **System Telephony** is installed.
- ECC.6.5.4.3 Where **System Telephony** is installed, **Users** are required to use the **System Telephony** with **The Company** in respect of those **Control Point(s)** for which it has been installed. Details of and relating to the **System Telephony** required are contained in the **Bilateral Agreement**.
- ECC.6.5.4.4 Where **Control Telephony** or **System Telephony** is installed, routine testing of such facilities may be required by **The Company** (not normally more than once in any calendar month). The **User** and **The Company** shall use reasonable endeavours to agree a test programme and where **The Company** requests the assistance of the **User** in performing the agreed test programme the **User** shall provide such assistance. **The Company** requires the **EU Code User** to test the backup power supplies feeding its **Control Telephony** facilities at least once every 5 years.
- ECC.6.5.4.5 **Control Telephony** and **System Telephony** shall only be used for the purposes of operational voice communication between **The Company** and the relevant **User**.
- ECC.6.5.4.6 **Control Telephony** contains emergency calling functionality to be used for urgent operational communication only. Such functionality enables **The Company** and **Users** to utilise a priority call in the event of an emergency. **The Company** and **Users** shall only use such priority call functionality for urgent operational communications.
- ECC.6.5.5 Technical Requirements for Control Telephony and System Telephony

- ECC.6.5.5.1 Detailed information on the technical interfaces and support requirements for **Control Telephony** is provided in the **Control Telephony Electrical Standard** identified in the Annex to the **General Conditions**. Where additional information, or information in relation to **Control Telephony** applicable in Scotland, is requested by **Users**, this will be provided, where possible, by **The Company**.
- ECC.6.5.5.2 System Telephony shall consist of a dedicated telephone connected to an appropriate public communications network that shall be configured by the relevant User. The Company shall provide a dedicated free phone number (UK only), for the purposes of receiving incoming calls to The Company, which Users shall utilise for System Telephony. System Telephony shall only be utilised by The Company's Control Engineer and the User's Responsible Engineer/Operator for the purposes of operational communications.
- ECC.6.5.6 Operational Metering
- ECC.6.5.6.1 It is an essential requirement for **The Company** and **Network Operators** to have visibility of the real time output and status of indications of **User's Plant and Apparatus** so they can control the operation of the **System**.
- ECC.6.5.6.2 **Type B**, **Type C** and **Type D Power Park Modules**, **HVDC Equipment**, **Network Operators** and **Non Embedded Customers** are required to be capable of exchanging operational metering data with **The Company** and **Relevant Transmission Licensees** (as applicable) with time stamping. Time stamping would generally be to a sampling rate of 1 second or better unless otherwise specified by **The Company** in the **Bilateral Agreement**.
- ECC.6.5.6.3 The Company in coordination with the Relevant Transmission Licensee shall specify in the Bilateral Agreement the operational metering signals to be provided by the EU Generator, HVDC System Owner, Network Operator or Non-Embedded Customer. In the case of Network Operators and Non-Embedded Customers, detailed specifications relating to the operational metering standards at EU Grid Supply Points and the data required are published as Electrical Standards in the Annex to the General Conditions.
- ECC.6.5.6.4 (a) The Company or The Relevant Transmission Licensee, as applicable, shall provide system control and data acquisition (SCADA) outstation interface equipment., each EU Code User shall provide such voltage, current, Frequency, Active Power and Reactive Power measurement outputs and plant status indications and alarms to the Transmission SCADA outstation interface equipment as required by The Company in accordance with the terms of the Bilateral Agreement. In the case of OTSDUW, the User shall provide such SCADA outstation interface equipment and voltage, current, Frequency, Active Power and Reactive Power measurement outputs and plant status indications and alarms to the SCADA outstation interface equipment as required by The Company in accordance with the terms of the SCADA outstation interface equipment as required by The Company in accordance with the terms of the SCADA outstation interface equipment as required by The Company in accordance with the terms of the Bilateral Agreement.
 - (b) For the avoidance of doubt, for **Active Power** and **Reactive Power** measurements, circuit breaker and disconnector status indications from:
 - (i) CCGT Modules from Type B, Type C and Type D Power Generating Modules, the outputs and status indications must each be provided to The Company on an individual CCGT Unit basis. In addition, where identified in the Bilateral Agreement, Active Power and Reactive Power measurements from Unit Transformers and/or Station Transformers must be provided.
 - (ii) For Type B, Type C and Type D Power Park Modules the outputs and status indications must each be provided to The Company on an individual Power Park Module basis. In addition, where identified in the Bilateral Agreement, Active Power and Reactive Power measurements from station transformers must be provided.
 - (iii) In respect of OTSDUW Plant and Apparatus, the outputs and status indications must be provided to The Company for each piece of electrical equipment. In addition, where identified in the Bilateral Agreement, Active Power and Reactive

Power measurements at the Interface Point must be provided.

- (c) For the avoidance of doubt, the requirements of ECC.6.5.6.4(a) in the case of a Cascade Hydro Scheme will be provided for each Generating Unit forming part of that Cascade Hydro Scheme. In the case of Embedded Generating Units forming part of a Cascade Hydro Scheme the data may be provided by means other than the SCADA outstation located at the Power Station, such as, with the agreement of the Network Operator in whose system such Embedded Generating Unit is located, from the Network Operator's SCADA system to The Company. Details of such arrangements will be contained in the relevant Bilateral Agreements between The Company and the Generator and the Network Operator.
- (d) In the case of a **Power Park Module**, additional energy input signals (e.g. wind speed, and wind direction) may be specified in the **Bilateral Agreement**. A **Power Available** signal will also be specified in the **Bilateral Agreement**. The signals would be used to establish the potential level of energy input from the **Intermittent Power Source** for monitoring pursuant to ECC.6.6.1 and **Ancillary Services** and will, in the case of a wind farm, be used to provide **The Company** with advanced warning of excess wind speed shutdown and to determine the level of **Headroom** available from **Power Park Modules** for the purposes of calculating response and reserve. For the avoidance of doubt, the **Power Available** signal would be automatically provided to **The Company** and represent the sum of the potential output of all available and operational **Power Park Units** within the **Power Park Module**. The refresh rate of the **Power Available** signal shall be specified in the **Bilateral Agreement**. In the case of an **Electricity Storage Module**, the requirement to provide a **Power Available Signal** when the **Plant** is in both an importing and exporting mode of operation would be specified in the **Bilateral Agreement**.
- (e) In the case of an Electricity Storage Module, additional input signals (e.g. state of energy (MWhr, and system availability) may be specified in the Bilateral Agreement. A Power Available signal will also be specified in the Bilateral Agreement in accordance with the requirements of ECC.6.5.6.4(d).
- ECC.6.5.6.5 In addition to the requirements of the **Balancing Codes**, each **HVDC Converter** unit of an **HVDC system** shall be equipped with an automatic controller capable of receiving instructions from **The Company**. This automatic controller shall be capable of operating the **HVDC Converter** units of the **HVDC System** in a coordinated way. **The Company** shall specify the automatic controller hierarchy per **HVDC Converter** unit.
- ECC.6.5.6.6 The automatic controller of the **HVDC System** referred to in paragraph ECC.6.5.6.5 shall be capable of sending the following signal types to **The Company** (where applicable) :
 - (a) operational metering signals, providing at least the following:
 - (i) start-up signals;
 - (ii) AC and DC voltage measurements;
 - (iii) AC and DC current measurements;
 - (iv) Active and Reactive Power measurements on the AC side;
 - (v) DC power measurements;
 - (vi) HVDC Converter unit level operation in a multi-pole type HVDC Converter;
 - (vii) elements and topology status; and
 - (viii) Frequency Sensitive Mode, Limited Frequency Sensitive Mode Overfrequency and Limited Frequency Sensitive Mode Underfrequency Active Power ranges (where applicable).
 - (b) alarm signals, providing at least the following:
 - (i) emergency blocking;
 - (ii) ramp blocking;

- (iii) fast **Active Power** reversal (where applicable)
- ECC.6.5.6.7 The automatic controller referred to in ECC.6.5.6.5 shall be capable of receiving the following signal types from **The Company** (where applicable) :
 - (a) operational metering signals, receiving at least the following:
 - (i) start-up command;
 - (ii) Active Power setpoints;
 - (iii) Frequency Sensitive Mode settings;
 - (iv) **Reactive Power**, voltage or similar setpoints;
 - (v) Reactive Power control modes;
 - (vi) power oscillation damping control; and
 - (b) alarm signals, receiving at least the following:
 - (i) emergency blocking command;
 - (ii) ramp blocking command;
 - (iii) Active Power flow direction; and
 - (iv)) fast **Active Power** reversal command.
 - ECC.6.5.6.8 With regards to operational metering signals, the resolution and refresh rate required would be 1 second or better unless otherwise agreed with **The Company**

Instructor Facilities

ECC.6.5.7 The **User** shall accommodate **Instructor Facilities** provided by **The Company** for the receipt of operational messages relating to **System** conditions.

Electronic Data Communication Facilities

- ECC.6.5.8 (a) All BM Participants must ensure that appropriate electronic data communication facilities are in place to permit the submission of data, as required by the Grid Code, to The Company.
 - (b) In addition,
 - (1) any User that wishes to participate in the Balancing Mechanism;
 - or
 - (2) any BM Participant in respect of its BM Units at a Power Station and the BM Participant is required to provide all Part 1 System Ancillary Services in accordance with ECC.8.1 (unless The Company has otherwise agreed)

must ensure that appropriate automatic logging devices are installed at the **Control Points** of its **BM Units** to submit data to and to receive instructions from **The Company**, as required by the **Grid Code**. For the avoidance of doubt, in the case of an **Interconnector User** the **Control Point** will be at the **Control Centre** of the appropriate **Externally Interconnected System Operator**.

(c) Detailed specifications of these required electronic facilities will be provided by **The Company** on request and they are listed as **Electrical Standards** in the Annex to the **General Conditions**.

Facsimile Machines

ECC.6.5.9 Each **User** and **The Company** shall provide a facsimile machine or machines:

- (a) in the case of **Generators**, at the **Control Point** of each **Power Station** and at its **Trading Point**;
- (b) in the case of **The Company** and **Network Operators**, at the **Control Centre(s)**; and
- (c) in the case of **Non-Embedded Customers** and **HVDC Equipment** owners at the **Control Point**.

Each User shall notify, prior to connection to the **System** of the **User's Plant and Apparatus**, **The Company** of its or their telephone number or numbers, and will notify **The Company** of any changes. Prior to connection to the **System** of the **User's Plant** and **Apparatus The Company** shall notify each **User** of the telephone number or numbers of its facsimile machine or machines and will notify any changes.

ECC.6.5.10 Busbar Voltage

The Relevant Transmission Licensee shall, subject as provided below, provide each Generator or HVDC System Owner at each Grid Entry Point where one of its Power Stations or HVDC Systems is connected with appropriate voltage signals to enable the Generator or HVDC System owner to obtain the necessary information to permit its Power Generating Modules (including DC Connected Power Park Modules) or HVDC System to be Synchronised to the National Electricity Transmission System. The term "voltage signal" shall mean in this context, a point of connection on (or wire or wires from) a relevant part of Transmission Plant and/or Apparatus at the Grid Entry Point, to which the Generator or HVDC System Owner, with The Company's agreement (not to be unreasonably withheld) in relation to the Plant and/or Apparatus to be attached, will be able to attach its Plant and/or Apparatus (normally a wire or wires) in order to obtain measurement outputs in relation to the busbar.

ECC.6.5.11 Bilingual Message Facilities

- (a) A Bilingual Message Facility is the method by which the User's Responsible Engineer/Operator, the Externally Interconnected System Operator and The Company's Control Engineers communicate clear and unambiguous information in two languages for the purposes of control of the Total System in both normal and emergency operating conditions.
- (b) A Bilingual Message Facility, where required, will provide up to two hundred pre-defined messages with up to five hundred and sixty characters each. A maximum of one minute is allowed for the transmission to, and display of, the selected message at any destination. The standard messages must be capable of being displayed at any combination of locations and can originate from any of these locations. Messages displayed in the UK will be displayed in the English language.
- (c) Detailed information on a Bilingual Message Facility and suitable equipment required for individual **User** applications will be provided by **The Company** upon request.

ECC.6.6 Monitoring

ECC.6.6.1 System Monitoring

- ECC.6.6.1.1 Each **Type C** and **Type D Power Generating Module** including **DC Connected Power Park Modules** shall be equipped with a facility to provide fault recording and monitoring of dynamic system behaviour. These requirements are necessary to record conditions during **System** faults and detect poorly damped power oscillations. This facility shall record the following parameters:
 - voltage,
 - Active Power,
 - Reactive Power, and
 - Frequency.

- ECC.6.6.1.2 Detailed specifications for fault recording and dynamic system monitoring equipment including triggering criteria and sample rates are listed as **Electrical Standards** in the **Annex** to the **General Conditions**. For Dynamic System Monitoring, the specification for the communication protocol and recorded data shall also be included in the **Electrical Standard**.
- ECC.6.6.1.3 **The Company** in coordination with the **Relevant Transmission Licensee** shall specify any requirements for **Power Quality Monitoring** in the **Bilateral Agreement**. The power quality parameters to be monitored, the communication protocols for the recorded data and the time frames for compliance shall be agreed between **The Company**, the **Relevant Transmission Licensee** and **EU Generator**.
- ECC.6.6.1.4 **HVDC Systems** shall be equipped with a facility to provide fault recording and dynamic system behaviour monitoring of the following parameters for each of its **HVDC Converter Stations**:
 - (a) AC and DC voltage;
 - (b) AC and DC current;
 - (c) Active Power;
 - (d) Reactive Power; and
 - (e) Frequency.
- ECC.6.6.1.5 **The Company** in coordination with the **Relevant Transmission Licensee** may specify quality of supply parameters to be complied with by the **HVDC System**, provided a reasonable prior notice is given.
- ECC.6.6.1.6 The particulars of the fault recording equipment referred to in ECC.6.6.1.4, including analogue and digital channels, the settings, including triggering criteria and the sampling rates, shall be agreed between the HVDC System Owner and The Company in coordination with the Relevant Transmission Licensee.
- ECC.6.6.1.7 All dynamic system behaviour monitoring equipment shall include an oscillation trigger, specified by **The Company**, in coordination with the **Relevant Transmission Licensee**, with the purpose of detecting poorly damped power oscillations.
- ECC.6.6.1.8 The facilities for quality of supply and dynamic system behaviour monitoring shall include arrangements for the HVDC System Owner and The Company and/or Relevant Transmission Licensee to access the information electronically. The communications protocols for recorded data shall be agreed between the HVDC System Owner, The Company and the Relevant Transmission Licensee.
- ECC.6.6.1.9 In order to accurately monitor the performance of a **Grid Forming Plant**, each **Grid Forming Plant** shall be equipped with a facility to accurately record the following parameters at a rate of 10ms : -
 - System Frequency using a nominated algorithm as defined by The Company
 - The **ROCOF** rate using a nominated algorithm as defined by **The Company** based on a 500ms rolling average
 - A technique for recording the **Grid Phase Jump Angle** by using either a nominated algorithm as defined by **The Company** or an algorithm that records the time period of each half cycle with a time resolution of 10 microseconds. For a 50Hz **System**, a 1 degree phase jump is a time period change of 55.6 microseconds.
- ECC.6.6.1.10 Detailed specifications for **Grid Forming Capability Plant** dynamic performance including triggering criteria, sample rates, the communication protocol and recorded data shall be specified by **The Company** in the **Bilateral Agreement**.
- ECC.6.6.2 Frequency Response Monitoring
- ECC.6.6.2.1 Each **Type C** and **Type D Power Generating Module** including **DC Connected Power Park Modules** shall be fitted with equipment capable of monitoring the real time **Active Power** output of a **Power Generating Module** when operating in **Frequency Sensitive Mode**.

ECC.6.6.2.2

Detailed specifications of the Active Power Frequency response requirements including the communication requirements are listed as Electrical Standards in the Annex to the General Conditions.

ECC.6.6.2.3 **The Company** in co-ordination with the **Relevant Transmission Licensee** shall specify additional signals to be provided by the **EU Generator** by monitoring and recording devices in order to verify the performance of the **Active Power Frequency** response provision of participating **Power Generating Modules**.

ECC.6.6.3 <u>Compliance Monitoring</u>

- ECC.6.6.3.1 For all on site monitoring by **The Company** of witnessed tests pursuant to the **CP** or **OC5** or **ECP** the **User** shall provide suitable test signals as outlined in either OC5.A.1or **ECP.A.4** (as applicable).
- ECC.6.6.3.2 The signals which shall be provided by the **User** to **The Company** for onsite monitoring shall be of the following resolution, unless otherwise agreed by **The Company**:
 - (i) 1 Hz for reactive range tests
 - (ii) 10 Hz for frequency control tests
 - (iii) 100 Hz for voltage control tests
 - (iv) 1 kHz for Grid Forming Plant signals including fast fault current measurements
 - (v) 100Hz for the other Grid Forming Plant tests carried out in accordance with ECC.6.6.1.9
- ECC.6.6.3.3 The **User** will provide all relevant signals for this purpose in the form of d.c. voltages within the range -10V to +10V. In exceptional circumstances some signals may be accepted as d.c. voltages within the range -60V to +60V with prior agreement between the **User** and **The Company**. All signals shall:
 - (i) in the case of an **Onshore Power Generating Module** or **Onshore HVDC Convertor Station**, be suitably terminated in a single accessible location at the **Generator** or **HVDC Converter Station** owner's site.
 - (ii) in the case of an Offshore Power Generating Module and OTSDUW Plant and Apparatus, be transmitted onshore without attenuation, delay or filtering which would result in the inability to fully demonstrate the objectives of the test, or identify any potential safety or plant instability issues, and be suitably terminated in a single robust location normally located at or near the onshore Interface Point of the Offshore Transmission System to which it is connected.
- ECC.6.6.3.4 All signals shall be suitably scaled across the range. The following scaling would (unless **The Company** notify the **User** otherwise) be acceptable to **The Company**:
 - (a) 0MW to Maximum Capacity or Interface Point Capacity 0-8V dc
 - (b) Maximum leading Reactive Power to maximum lagging Reactive Power -8 to 8V dc
 - (c) 48 52Hz as -8 to 8V dc
 - (d) Nominal terminal or connection point voltage -10% to +10% as -8 to 8V dc
- ECC.6.6.3.5 The **User** shall provide to **The Company** a 230V power supply adjacent to the signal terminal location.
- ECC.7 SITE RELATED CONDITIONS
- ECC.7.1 Not used.
- ECC.7.2 Responsibilities For Safety

Issue 6 Revision 12

- ECC.7.2.1 Any User entering and working on its Plant and/or Apparatus (including, until the OTSUA Transfer Time, any OTSUA) on a Transmission Site will work to the Safety Rules of the Relevant Transmission Licensee, as advised by The Company.
- ECC.7.2.2 For User Sites, The Company shall procure that the Relevant Transmission Licensee entering and working on Transmission Plant and/or Apparatus on a User Site will work to the User's Safety Rules.
- ECC.7.2.3 A User may, with a minimum of six weeks notice, apply to **The Company** for permission to work according to that Users own **Safety Rules** when working on its **Plant** and/or **Apparatus** on a **Transmission Site** rather than those set out in ECC.7.2.1. If **The Company** is of the opinion that the **User's Safety Rules** provide for a level of safety commensurate with those set out in ECC.7.2.1, **The Company** will notify the **User**, in writing, that, with effect from the date requested by the **User**, the **User** may use its own **Safety Rules** when working on its **Plant** and/or **Apparatus** on the **Transmission Site**. For a **Transmission Site**, in forming its opinion, **The Company** will seek the opinion of the **Relevant Transmission Licensee**. Until receipt of such written approval from **The Company**, the **User** will continue to use the **Safety Rules** as set out in ECC.7.2.1.
- ECC.7.2.4 In the case of a User Site, The Company may, with a minimum of six weeks notice, apply to a User for permission for the Relevant Transmission Licensee to work according to the Relevant Transmission Licensee's Safety Rules when working on Transmission Plant and/or Apparatus on that User Site, rather than the User's Safety Rules. If the User is of the opinion that the Relevant Transmission Licensee's Safety Rules, provide for a level of safety commensurate with that of that User's Safety Rules, it will notify The Company, in writing, that, with effect from the date requested by The Company, that the Relevant Transmission Licensee may use its own Safety Rules when working on its Transmission Plant and/or Apparatus on that User's Site. Until receipt of such written approval from the User, The Company shall procure that the Relevant Transmission Licensee shall continue to use the User's Safety Rules.
- ECC.7.2.5 For a Transmission Site, if The Company gives its approval for the User's Safety Rules to apply to the User when working on its Plant and/or Apparatus, that does not imply that the User's Safety Rules will apply to entering the Transmission Site and access to the User's Plant and/or Apparatus on that Transmission Site. Bearing in mind the Relevant Transmission Licensee's responsibility for the whole Transmission Site, entry and access will always be in accordance with the Relevant Transmission Licensee's site access procedures. For a User Site, if the User gives its approval for Relevant Transmission Licensee Safety Rules to apply to the Relevant Transmission Licensee when working on its Plant and Apparatus, that does not imply that the Relevant Transmission Licensee's Safety Rules will apply to entering the User Site, and access to the Transmission Plant and Apparatus on that User Site. Bearing in mind the User's responsibility for the whole User Site, entry and access will always be in accordance with the User's site access procedures.
- ECC.7.2.6 For User Sites, Users shall notify The Company of any Safety Rules that apply to the Relevant Transmission Licensee's staff working on User Sites. The Company shall procure that the Relevant Transmission Licensee shall notify Users of any Safety Rules that apply to the User's staff working on the Transmission Site.
- ECC.7.2.7 Each **Site Responsibility Schedule** must have recorded on it the **Safety Rules** which apply to each item of **Plant** and/or **Apparatus**.
- ECC.7.2.8 In the case of **OTSUA** a **User Site** or **Transmission Site** shall, for the purposes of this ECC.7.2, include a site at which there is an **Interface Point** until the **OTSUA Transfer Time** when it becomes part of the **National Electricity Transmission System**.
- ECC.7.3 <u>Site Responsibility Schedules</u>

- ECC.7.3.1 In order to inform site operational staff and **The Company's Control Engineers** of agreed responsibilities for **Plant** and/or **Apparatus** at the operational interface, a **Site Responsibility Schedule** shall be produced for **Connection Sites** (and in the case of **OTSUA**, until the **OTSUA Transfer Time**, **Interface Sites**) for **The Company**, the **Relevant Transmission Licensee** and **Users** with whom they interface.
- ECC.7.3.2 The format, principles and basic procedure to be used in the preparation of **Site Responsibility Schedules** are set down in Appendix 1.
- ECC.7.4 Operation And Gas Zone Diagrams

Operation Diagrams

- ECC.7.4.1 An Operation Diagram shall be prepared for each Connection Site at which a Connection Point exists (and in the case of OTSDUW Plant and Apparatus, by User's for each Interface Point) using, where appropriate, the graphical symbols shown in Part 1A of Appendix 2. Users should also note that the provisions of OC11 apply in certain circumstances.
- ECC.7.4.2 The **Operation Diagram** shall include all **HV Apparatus** and the connections to all external circuits and incorporate numbering, nomenclature and labelling, as set out in **OC11**. At those **Connection Sites** (or in the case of **OTSDUW Plant and Apparatus**, **Interface Points**) where gas-insulated metal enclosed switchgear and/or other gas-insulated **HV Apparatus** is installed, those items must be depicted within an area delineated by a chain dotted line which intersects gas-zone boundaries. The nomenclature used shall conform with that used on the relevant **Connection Site** and circuit (and in the case of **OTSDUW Plant and Apparatus**, **Interface Point** and circuit). The **Operation Diagram** (and the list of technical details) is intended to provide an accurate record of the layout and circuit interconnections, ratings and numbering and nomenclature of **HV Apparatus** and related **Plant**.
- ECC.7.4.3 A non-exhaustive guide to the types of **HV Apparatus** to be shown in the **Operation Diagram** is shown in Part 2 of Appendix 2, together with certain basic principles to be followed unless equivalent principles are approved by **The Company**.

Gas Zone Diagrams

- ECC.7.4.4 A Gas Zone Diagram shall be prepared for each Connection Site at which a Connection Point (and in the case of OTSDUW Plant and Apparatus, by User's for an Interface Point) exists where gas-insulated switchgear and/or other gas-insulated HV Apparatus is utilised. They shall use, where appropriate, the graphical symbols shown in Part 1B of Appendix 2.
- ECC.7.4.5 The nomenclature used shall conform with that used in the relevant **Connection Site** and circuit (and in the case of **OTSDUW Plant and Apparatus**, relevant **Interface Point** and circuit).
- ECC.7.4.6 The basic principles set out in Part 2 of Appendix 2 shall be followed in the preparation of **Gas Zone Diagrams** unless equivalent principles are approved by **The Company**.

Preparation of Operation and Gas Zone Diagrams for Users' Sites and Transmission Interface Sites

ECC.7.4.7 In the case of a User Site, the User shall prepare and submit to The Company, an Operation Diagram for all HV Apparatus on the User side of the Connection Point (and in the case of OTSDUW Plant and Apparatus, on what will be the Offshore Transmission side of the Connection Point and the Interface Point) and The Company shall provide the User with an Operation Diagram for all HV Apparatus on the Transmission side of the Connection Point (and in the case of OTSDUW Plant and Apparatus on what will be the Onshore Transmission side of the Interface Point, in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement.

- ECC.7.4.8 The User will then prepare, produce and distribute, using the information submitted on the User's Operation Diagram and The Company's Operation Diagram, a composite Operation Diagram for the complete Connection Site (and in the case of OTSDUW Plant and Apparatus, Interface Point), also in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement.
- ECC.7.4.9 The provisions of ECC.7.4.7 and ECC.7.4.8 shall apply in relation to **Gas Zone Diagrams** where gas-insulated switchgear and/or other gas-insulated **HV Apparatus** is utilised.

Preparation of Operation and Gas Zone Diagrams for Transmission Sites

- ECC.7.4.10 In the case of an **Transmission Site**, the **User** shall prepare and submit to **The Company** an **Operation Diagram** for all **HV Apparatus** on the **User** side of the **Connection Point**, in accordance with the timing requirements of the **Bilateral Agreement** and/or **Construction Agreement**.
- ECC.7.4.11 **The Company** will then prepare, produce and distribute, using the information submitted on the **User's Operation Diagram**, a composite **Operation Diagram** for the complete **Connection Site**, also in accordance with the timing requirements of the **Bilateral Agreement** and/or **Construction Agreement**.
- ECC.7.4.12 The provisions of ECC.7.4.10 and ECC.7.4.11 shall apply in relation to **Gas Zone Diagrams** where gas-insulated switchgear and/or other gas-insulated **HV Apparatus** is utilised.
- ECC.7.4.13 Changes to Operation and Gas Zone Diagrams
- ECC.7.4.13.1 When **The Company** has decided that it wishes to install new **HV Apparatus** or it wishes to change the existing numbering or nomenclature of **Transmission HV Apparatus** at a **Transmission Site**, **The Company** will (unless it gives rise to a **Modification** under the **CUSC**, in which case the provisions of the **CUSC** as to the timing apply) one month prior to the installation or change, send to each such **User** a revised **Operation Diagram** of that **Transmission Site**, incorporating the new **Transmission HV Apparatus** to be installed and its numbering and nomenclature or the changes, as the case may be. **OC11** is also relevant to certain **Apparatus**.
- ECC.7.4.13.2 When a **User** has decided that it wishes to install new **HV Apparatus**, or it wishes to change the existing numbering or nomenclature of its **HV Apparatus** at its **User Site**, the **User** will (unless it gives rise to a **Modification** under the **CUSC**, in which case the provisions of the **CUSC** as to the timing apply) one month prior to the installation or change, send to **The Company** a revised **Operation Diagram** of that **User Site** incorporating the **EU Code User HV Apparatus** to be installed and its numbering and nomenclature or the changes as the case may be. **OC11** is also relevant to certain **Apparatus**.
- ECC.7.4.13.3 The provisions of ECC.7.4.13.1 and ECC.7.4.13.2 shall apply in relation to **Gas Zone Diagrams** where gas-insulated switchgear and/or other gas-insulated **HV Apparatus** is installed.

Validity

- ECC.7.4.14 (a) The composite Operation Diagram prepared by The Company or the User, as the case may be, will be the definitive Operation Diagram for all operational and planning activities associated with the Connection Site. If a dispute arises as to the accuracy of the composite Operation Diagram, a meeting shall be held at the Connection Site, as soon as reasonably practicable, between The Company and the User, to endeavour to resolve the matters in dispute.
 - (b) The composite Operation Diagram prepared by The Company or the User, as the case may be, will be the definitive Operation Diagram for all operational and planning activities associated with the Interface Point until the OTSUA Transfer Time. If a dispute arises as to the accuracy of the composite Operation Diagram prior to the OTSUA Transfer Time, a meeting shall be held at the Interface Point, as soon as reasonably practicable, between The Company and the User, to endeavour to resolve the matters in dispute.

- (c) An equivalent rule shall apply for **Gas Zone Diagrams** where they exist for a **Connection Site**.
- ECC.7.4.15 In the case of **OTSUA**, a **User Site** and **Transmission Site** shall, for the purposes of this ECC.7.4, include a site at which there is an **Interface Point** until the **OTSUA Transfer Time** when it becomes part of the **National Electricity Transmission System** and references to **HV Apparatus** in this ECC.7.4 shall include references to **HV OTSUA**.

ECC.7.5 <u>Site Common Drawings</u>

ECC.7.5.1 Site Common Drawings will be prepared for each Connection Site (and in the case of OTSDUW, each Interface Point) and will include Connection Site (and in the case of OTSDUW, Interface Point) layout drawings, electrical layout drawings, common Protection/control drawings and common services drawings.

Preparation of Site Common Drawings for a User Site and Transmission Interface Site

- ECC.7.5.2 In the case of a User Site, The Company shall prepare and submit to the User, Site Common Drawings for the Transmission side of the Connection Point (and in the case of OTSDUW Plant and Apparatus, on what will be the Onshore Transmission side of the Interface Point,) and the User shall prepare and submit to The Company, Site Common Drawings for the User side of the Connection Point (and in the case of OTSDUW, on what will be the Offshore Transmission side of the Interface Point) in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement.
- ECC.7.5.3 The User will then prepare, produce and distribute, using the information submitted on the Transmission Site Common Drawings, Site Common Drawings for the complete Connection Site (and in the case of OTSDUW, Interface Point) in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement .

Preparation of Site Common Drawings for a Transmission Site

- ECC.7.5.4 In the case of a **Transmission Site**, the **User** will prepare and submit to **The Company Site Common Drawings** for the **User** side of the **Connection Point** in accordance with the timing requirements of the **Bilateral Agreement** and/or **Construction Agreement**.
- ECC.7.5.5 The Company will then prepare, produce and distribute, using the information submitted in the User's Site Common Drawings, Site Common Drawings for the complete Connection Site in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement.
- ECC.7.5.6 When a **User** becomes aware that it is necessary to change any aspect of the **Site Common Drawings** at a **Connection Site** (and in the case of **OTSDUW**, **Interface Point**) it will:
 - (a) if it is a User Site, as soon as reasonably practicable, prepare, produce and distribute revised Site Common Drawings for the complete Connection Site (and in the case of OTSDUW, Interface Point); and
 - (b) if it is a Transmission Site, as soon as reasonably practicable, prepare and submit to The Company revised Site Common Drawings for the User side of the Connection Point (and in the case of OTSDUW, Interface Point) and The Company will then, as soon as reasonably practicable, prepare, produce and distribute, using the information submitted in the User's Site Common Drawings, revised Site Common Drawings for the complete Connection Site (and in the case of OTSDUW, Interface Point).

In either case, if in the **User's** reasonable opinion the change can be dealt with by it notifying **The Company** in writing of the change and for each party to amend its copy of the **Site Common Drawings** (or where there is only one set, for the party holding that set to amend it), then it shall so notify and each party shall so amend. If the change gives rise to a **Modification** under the **CUSC**, the provisions of the **CUSC** as to timing will apply.

ECC.7.5.7 When **The Company** becomes aware that it is necessary to change any aspect of the **Site Common Drawings** at a **Connection Site**(and in the case of **OTSDUW**, **Interface Point**) it will:

- (a) if it is a **Transmission Site**, as soon as reasonably practicable, prepare, produce and distribute revised **Site Common Drawings** for the complete **Connection Site** (and in the case of **OTSDUW**, **Interface Point**); and
- (b) if it is a User Site, as soon as reasonably practicable, prepare and submit to the User revised Site Common Drawings for the Transmission side of the Connection Point (in the case of OTSDUW, Interface Point) and the User will then, as soon as reasonably practicable, prepare, produce and distribute, using the information submitted in the Transmission Site Common Drawings, revised Site Common Drawings for the complete Connection Site (and in the case of OTSDUW, Interface Point).

In either case, if in **The Company's** reasonable opinion the change can be dealt with by it notifying the **User** in writing of the change and for each party to amend its copy of the **Site Common Drawings** (or where there is only one set, for the party holding that set to amend it), then it shall so notify and each party shall so amend. If the change gives rise to a **Modification** under the **CUSC**, the provisions of the **CUSC** as to timing will apply.

Validity

- ECC.7.5.8 (a) The Site Common Drawings for the complete Connection Site prepared by the User or The Company, as the case may be, will be the definitive Site Common Drawings for all operational and planning activities associated with the Connection Site. If a dispute arises as to the accuracy of the Site Common Drawings, a meeting shall be held at the Site, as soon as reasonably practicable, between The Company and the User, to endeavour to resolve the matters in dispute.
 - (b) The Site Common Drawing prepared by The Company or the User, as the case may be, will be the definitive Site Common Drawing for all operational and planning activities associated with the Interface Point until the OTSUA Transfer Time. If a dispute arises as to the accuracy of the composite Operation Diagram prior to the OTSUA Transfer Time, a meeting shall be held at the Interface Point, as soon as reasonably practicable, between The Company and the User, to endeavour to resolve the matters in dispute.
- ECC.7.5.9 In the case of **OTSUA**, a **User Site** and **Transmission Site** shall, for the purposes of this ECC.7.5, include a site at which there is an **Interface Point** until the **OTSUA Transfer Time** when it becomes part of the **National Electricity Transmission System**.

ECC.7.6 <u>Access</u>

- ECC.7.6.1 The provisions relating to access to **Transmission Sites** by **Users**, and to **Users' Sites** by **Relevant Transmission Licensees**, are set out in each **Interface Agreement** (or in the case of **Interfaces Sites** prior to the **OTSUA Transfer Time** agreements in similar form) with, the **Relevant Transmission Licensee** and each **User**.
- ECC.7.6.2 In addition to those provisions, where a **Transmission Site** contains exposed **HV** conductors, unaccompanied access will only be granted to individuals holding an **Authority for Access** issued by the **Relevant Transmission Licensee**.
- ECC.7.6.3 The procedure for applying for an **Authority for Access** is contained in the **Interface Agreement**.
- ECC.7.7 <u>Maintenance Standards</u>
- ECC.7.7.1 It is the User's responsibility to ensure that all its Plant and Apparatus (including, until the OTSUA Transfer Time, any OTSUA) on a Transmission Site is tested and maintained adequately for the purpose for which it is intended, and to ensure that it does not pose a threat to the safety of any Transmission Plant, Apparatus or personnel on the Transmission Site. The Company will have the right to inspect the test results and maintenance records relating to such Plant and Apparatus at any time
- ECC.7.7.2 For User Sites, The Company shall procure that the Relevant Transmission Licensee has a responsibility to ensure that all Transmission Plant and Apparatus on a User Site is tested and maintained adequately for the purposes for which it is intended and to ensure that it does not pose a threat to the safety of any User's Plant, Apparatus or personnel on the User Site.

The **User** will have the right to inspect the test results and maintenance records relating to such **Plant** and **Apparatus** on its **User Site** at any time.

ECC.7.8 <u>Site Operational Procedures</u>

- ECC.7.8.1 Where there is an interface with **National Electricity Transmission System The Company** and **Users** must make available staff to take necessary **Safety Precautions** and carry out operational duties as may be required to enable work/testing to be carried out and for the operation of **Plant** and **Apparatus** (including, prior to the **OTSUA Transfer Time**, any **OTSUA**) connected to the **Total System**.
- ECC.7.9 Generators, HVDC System owners and BM Participants shall provide a Control Point.
 - a) In the case of EU Generators and HVDC System owners, for each Power Station or HVDC System directly connected to the National Electricity Transmission System and for each Embedded Large Power Station or Embedded HVDC System, the Control Point shall receive and act upon instructions pursuant to OC7 and BC2 at all times that Power Generating Modules at the Power Station are generating or available to generate or HVDC Systems are importing or exporting or available to do so. In the case of all BM Participants, the Control Point shall be continuously staffed except where the Bilateral Agreement specifies that compliance with BC2 is not required, in which case the Control Point shall be staffed between the hours of 0800 and 1800 each day.
 - b) In the case of **BM Participants**, the **BM Participant**'s **Control Point** shall be capable of receiving and acting upon instructions from **The Company**.

The Company will normally issue instructions via automatic logging devices in accordance with the requirements of ECC.6.5.8(b).

Where the **BM Participant**'s **Plant** and **Apparatus** does not respond to an instruction from **The Company** via automatic logging devices, or where it is not possible for **The Company** to issue the instruction via automatic logging devices, **The Company** shall issue the instruction by telephone.

In the case of **BM Participants** who own and/or operate a **Power Station** or **HVDC System** with an aggregated **Registered Capacity** or **BM Participants** with **BM Units** with an aggregated **Demand Capacity** per **Control Point** of less than 50MW, or, where a site is not part of a Virtual Lead Party as defined in the **BSC**, a **Registered Capacity** or **Demand Capacity** per site of less than 10MW

- a) where this situation arises, a representative of the BM Participant is required to be available to respond to instructions from The Company via the Control Telephony or System Telephony system, as provided for in ECC.6.5.4, between the hours of 0800-1800 each day.
- b) Outside the hours of 0800-1800 each day, the requirements of BC2.9.7 shall apply.

For the avoidance of doubt, **BM Participants** who are unable to provide **Control Telephony** and do not have a continuously staffed **Control Point** may be unable to act as a **Defence Service Provider** and shall be unable to act as a **Restoration Service Provider** or **Black Start Service Provider** where these require **Control Telephony** or a **Control Point** in respect of the specification of any such services falling into these categories.

ECC.8 <u>ANCILLARY SERVICES</u>

ECC.8.1 System Ancillary Services

The ECC contain requirements for the capability for certain Ancillary Services, which are needed for System reasons ("System Ancillary Services"). There follows a list of these System Ancillary Services, together with the paragraph number of the ECC (or other part of the Grid Code) in which the minimum capability is required or referred to. The list is divided into two categories: Part 1 lists the System Ancillary Services which

- (a) Generators in respect of Type C and Type D Power Generating Modules (including DC Connected Power Park Modules and Electricity Storage Modules) are obliged to provide; and,
- (b) **HVDC System Owners** are obliged to have the capability to supply;
- (c) Generators in respect of Medium Power Stations (except Embedded Medium Power Stations) are obliged to provide in respect of Reactive Power only:

and Part 2 lists the **System Ancillary Services** which **Generators** will provide only if agreement to provide them is reached with **The Company**:

Part 1

- (a) **Reactive Power** supplied (in accordance with ECC.6.3.2)
- (b) **Frequency** Control by means of **Frequency** sensitive generation ECC.6.3.7 and BC3.5.1

<u>Part 2</u>

- (c) Frequency Control by means of Fast Start ECC.6.3.14
- (d) Black Start Capability ECC.6.3.5
- (e) System to Generator Operational Intertripping

ECC.8.2 Commercial Ancillary Services

Other Ancillary Services are also utilised by The Company in operating the Total System if these have been agreed to be provided by a User (or other person) under an Ancillary Services Agreement or under a Bilateral Agreement, with payment being dealt with under an Ancillary Services Agreement or in the case of Externally Interconnected System Operators or Interconnector Users, under any other agreement (and in the case of Externally Interconnected System Operators and Interconnector Users includes ancillary services equivalent to or similar to System Ancillary Services) ("Commercial Ancillary Services"). The capability for these Commercial Ancillary Services is set out in the relevant Ancillary Services Agreement or Bilateral Agreement (as the case may be).

APPENDIX E1 - SITE RESPONSIBILITY SCHEDULES

FORMAT, PRINCIPLES AND BASIC PROCEDURE TO BE USED IN THE PREPARATION OF SITE RESPONSIBILITY SCHEDULES

ECC.A.1.1 Principles

Types of Schedules

- ECC.A.1.1.1 At all **Complexes** (which in the context of this ECC shall include, **Interface Sites** until the **OTSUA Transfer Time**) the following **Site Responsibility Schedules** shall be drawn up using the relevant proforma attached or with such variations as may be agreed between **The Company** and **Users**, but in the absence of agreement the relevant proforma attached will be used. In addition, in the case of **OTSDUW Plant and Apparatus**, and in readiness for the **OTSUA Transfer Time**, the **User** shall provide **The Company** with the necessary information such that **Site Responsibility Schedules** in this form can be prepared by the **Relevant Transmission Licensees** for the **Transmission Interface Site**:
 - (a) Schedule of **HV Apparatus**
 - (b) Schedule of Plant, LV/MV Apparatus, services and supplies;
 - (c) Schedule of telecommunications and measurements Apparatus.

Other than at **Power Generating Module** (including **DC Connected Power Park Modules**) and **Power Station** locations, the schedules referred to in (b) and (c) may be combined.

New Connection Sites

ECC.A.1.1.2 In the case of a new Connection Site each Site Responsibility Schedule for a Connection Site shall be prepared by The Company in consultation with relevant Users at least 2 weeks prior to the Completion Date (or, where the OTSUA is to become Operational prior to the OTSUA Transfer Time, an alternative date) under the Bilateral Agreement and/or Construction Agreement for that Connection Site (which may form part of a Complex). In the case of a new Interface Site where the OTSUA is to become Operational prior to the OTSUA Transfer Time each Site Responsibility Schedule for an Interface Site shall be prepared by The Company in consultation with relevant Users at least 2 weeks prior to the Completion Date under the Bilateral Agreement and/or Construction Agreement for that Interface Site (which may form part of a Complex) (and references to and requirements placed on "Connection Site" in this ECC shall also be read as "Interface Site" where the context requires and until the OTSUA Transfer Time). Each User shall, in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement, provide information to The Company to enable it to prepare the Site Responsibility Schedule.

Sub-division

ECC.A.1.1.3 Each **Site Responsibility Schedule** will be subdivided to take account of any separate **Connection Sites** on that **Complex**.

<u>Scope</u>

- ECC.A.1.1.4 Each Site Responsibility Schedule shall detail for each item of Plant and Apparatus:
 - (a) **Plant/Apparatus** ownership;
 - (b) Site Manager (Controller) (except in the case of **Plant/Apparatus** located in **SPT's Transmission Area**);
 - (c) Safety issues comprising applicable Safety Rules and Control Person or other responsible person (Safety Co-ordinator), or such other person who is responsible for safety;
 - (d) Operations issues comprising applicable Operational Procedures and control engineer;
 - (e) Responsibility to undertake statutory inspections, fault investigation and maintenance.

Each **Connection Point** shall be precisely shown.

Detail

- ECC.A.1.1.5 (a) In the case of **Site Responsibility Schedules** referred to in ECC.A.1.1.1(b) and (c), with the exception of **Protection Apparatus** and **Intertrip Apparatus** operation, it will be sufficient to indicate the responsible **User** or **Transmission Licensee**, as the case may be.
 - (b) In the case of the **Site Responsibility Schedule** referred to in ECC.A.1.1.1(a) and for **Protection Apparatus** and **Intertrip Apparatus**, the responsible management unit must be shown in addition to the **User** or **Transmission Licensee**, as the case may be.
- ECC.A.1.1.6 The **HV Apparatus Site Responsibility Schedule** for each **Connection Site** must include lines and cables emanating from or traversing¹ the **Connection Site**.

Issue Details

ECC.A.1.1.7 Every page of each **Site Responsibility Schedule** shall bear the date of issue and the issue number.

Accuracy Confirmation

- ECC.A.1.1.8 When a **Site Responsibility Schedule** is prepared it shall be sent by **The Company** to the **Users** involved for confirmation of its accuracy.
- ECC.A.1.1.9 The **Site Responsibility Schedule** shall then be signed on behalf of **The Company** by its **Responsible Manager** (see ECC.A.1.1.16) and on behalf of each **User** involved by its **Responsible Manager** (see ECC.A.1.1.16), by way of written confirmation of its accuracy. The **Site Responsibility Schedule** will also be signed on behalf of the **Relevant Transmission Licensee** by its **Responsible Manager**.

Distribution and Availability

- ECC.A.1.1.10 Once signed, two copies will be distributed by **The Company**, not less than two weeks prior to its implementation date, to each **User** which is a party on the **Site Responsibility Schedule**, accompanied by a note indicating the issue number and the date of implementation.
- ECC.A.1.1.11 **The Company** and **Users** must make the **Site Responsibility Schedules** readily available to operational staff at the **Complex** and at the other relevant control points.

Alterations to Existing Site Responsibility Schedules

- ECC.A 1.1.12 Without prejudice to the provisions of ECC.A.1.1.15 which deals with urgent changes, when a **User** identified on a **Site Responsibility Schedule** becomes aware that an alteration is necessary, it must inform **The Company** immediately and in any event 8 weeks prior to any change taking effect (or as soon as possible after becoming aware of it, if less than 8 weeks remain when the **User** becomes aware of the change). This will cover the commissioning of new **Plant** and/or **Apparatus** at the **Connection Site**, whether requiring a revised **Bilateral Agreement** or not, de-commissioning of **Plant** and/or **Apparatus**, and other changes which affect the accuracy of the **Site Responsibility Schedule**.
- ECC.A 1.1.13 Where **The Company** has been informed of a change by a **User**, or itself proposes a change, it will prepare a revised **Site Responsibility Schedule** by not less than six weeks prior to the change taking effect (subject to it having been informed or knowing of the change eight weeks prior to that time) and the procedure set out in ECC.A.1.1.8 shall be followed with regard to the revised **Site Responsibility Schedule**.

¹ Details of circuits traversing the Connection Site are only needed from the date which is the earlier of the date when the Site Responsibility Schedule is first updated and 15th October 2004. In Scotland or Offshore, from a date to be agreed between The Company and the Relevant Transmission Licensee.

ECC.A 1.1.14 The revised **Site Responsibility Schedule** shall then be signed in accordance with the procedure set out in ECC.A.1.1.9 and distributed in accordance with the procedure set out in ECC.A.1.1.10, accompanied by a note indicating where the alteration(s) has/have been made, the new issue number and the date of implementation.

Urgent Changes

- ECC.A.1.1.15 When a **User** identified on a **Site Responsibility Schedule**, or **The Company**, as the case may be, becomes aware that an alteration to the **Site Responsibility Schedule** is necessary urgently to reflect, for example, an emergency situation which has arisen outside its control, the **User** shall notify **The Company**, or **The Company** shall notify the **User**, as the case may be, immediately and will discuss:
 - (a) what change is necessary to the Site Responsibility Schedule;
 - (b) whether the Site Responsibility Schedule is to be modified temporarily or permanently;
 - (c) the distribution of the revised **Site Responsibility Schedule**.

The Company will prepare a revised Site Responsibility Schedule as soon as possible, and in any event within seven days of it being informed of or knowing the necessary alteration. The Site Responsibility Schedule will be confirmed by Users and signed on behalf of The Company and Users and the Relevant Transmission Licensee (by the persons referred to in ECC.A.1.1.9) as soon as possible after it has been prepared and sent to Users for confirmation.

Responsible Managers

ECC.A.1.1.16 Each User shall, prior to the Completion Date under each Bilateral Agreement and/or Construction Agreement, supply to The Company a list of Managers who have been duly authorised to sign Site Responsibility Schedules on behalf of the User and The Company shall, prior to the Completion Date under each Bilateral Agreement and/or Construction Agreement, supply to that User the name of its Responsible Manager and the name of the Relevant Transmission Licensee's Responsible Manager and each shall supply to the other any changes to such list six weeks before the change takes effect where the change is anticipated, and as soon as possible after the change, where the change was not anticipated.

De-commissioning of Connection Sites

ECC.A.1.1.17 Where a **Connection Site** is to be de-commissioned, whichever of **The Company** or the **User** who is initiating the de-commissioning must contact the other to arrange for the **Site Responsibility Schedule** to be amended at the relevant time.

PROFORMA FOR SITE RESPONSIBILITY SCHEDULE

AREA

COMPLEX:

SCHEDULE:

CONNECTION SITE:

			S	AFETY	OPERA	TIONS	PARTY	
ITEM OF PLANT/ APPAR ATUS	PLANT APPAR ATUS OWNE R	SITE MANA GER	SAF ETY RUL ES	CONTRO L OR OTHER RESPON SIBLE PERSON (SAFETY CO- ORDINAT OR	OPERATI ONAL PROCED URES	CONTRO L OR OTHER RESPON SIBLE ENGINEE R	RESPON SIBLE FOR UNDERT AKING STATUT ORY INSPECTI ONS, FAULT INVESTI GATION & MAINTEN ANCE	REMARK S

PAGE:	 	ISSUE	NO:	DATE:	

PROFORMA FOR SITE RESPONSIBILITY SCHEDULE

AREA

COMPLEX:

SCHEDULE:

CONNECTION SITE:

			S	AFETY	OPERA	TIONS	PARTY	
ITEM OF PLANT/ APPAR ATUS	PLANT APPAR ATUS OWNE R	SITE MANA GER	SAF ETY RUL ES	CONTRO L OR OTHER RESPON SIBLE PERSON (SAFETY CO- ORDINAT OR	OPERATI ONAL PROCED URES	CONTRO L OR OTHER RESPON SIBLE ENGINEE R	RESPON SIBLE FOR UNDERT AKING STATUT ORY INSPECTI ONS, FAULT INVESTI GATION & MAINTEN ANCE	REMARK S

NOTES:

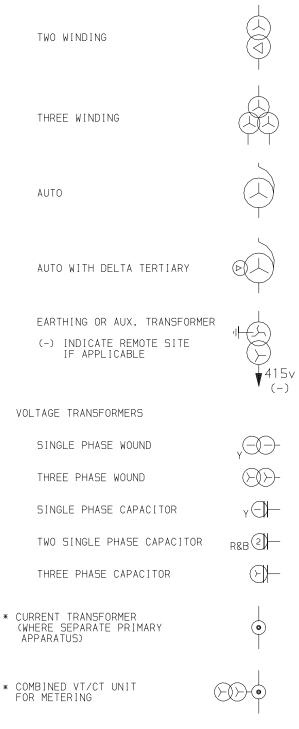
SIGNE	NAM	COMPAN	DAT
D:	E:	Y:	E:

SIGNE	NAM	COMPAN	DAT	
D:	E:	Y:	E:	
SIGNE	NAM	COMPAN	DAT	
D:	E:	Y:	E:	
SIGNE	NAM	COMPAN	DAT	
D:	E:	Y:	E:	
PAGE:	ISSUE NO:		DATE:	

						Network Area:	Area:							Revision: Date:	11
SECTION 'A' BUILDING AND SITE	G AND SITE								SE	CTION '	B' CUST	OMER O	R OTHE	SECTION 'B' CUSTOMER OR OTHER PARTY	•
OWNER		ACCESS I	ACCESS REQUIRED:-						N.A	NAME:-					
LESSEE MAINTENANCE		COCCUSI &	CORCUTATION OF A LANCE						-	* PODEGG.		+			
SAFFTY		SPECIAL	CUNULIUNO						T T	TEL NOL	+				
SECURITY		LOCATION	LOCATION OF SUPPLY						SU	SUB STATION:-	- N				
		TERMINALS -	-22						P	LOCATION:-					
SECTION 'C' PLANT															
ITEM FOURPMENT	DENTIFICATION	OWNER	SAFETY RULES		OPERATION	ATION		MAINTENANCE	L '	FAULT INVESTIG	FAULT INVESTIGATION		TESTING	RELAY	
SECTION 'D' CONFIGURATION AND CONTROL TELEPHONE NUMBER	IRATION AND CON		RE MARKS		SECTIC	N E AC	Nollig	SECTION 'E' ADDITIONAL INFORMATION	RMATIC						
ITEM Nos. CONTROL RESPONSIBILITY	TELEPHONE NUMBER	RE	REMARKS												
ABBRE VIATIONS: - 0 - SP AUTHORISED PERSON - DISTRIBUTION SYSTEM NGC - MATIONAL ORD COMPANY	RIBUTION SYSTEM				SIGNED				FOR	3	SH Iransmission	c		DATE	
SPD - SP DISTRIBUTION Ltd SPPS - POWERSYSTEMS				41	SIGNED				FOR	SP	SP Distribution			DATE	
SPT - SECTTISH POWER TELECOMMUNICATIONS	INICATIONS														

Scottish Hydro-Electric Transmission Limited

Site Responsibility Schedule


	Notes					
Revision:	Operational Procedures					
Re	Safety Rules					
_	Control Authority					
	Responsible Management Unit					
Number:	Responsible System User					
_	Maintainer					
	Controller					
	Owner					
Substation Type	Equipment					

APPENDIX E2 - OPERATION DIAGRAMS

PART 1A - PROCEDURES RELATING TO OPERATION DIAGRAMS

FIXED CAPACITOR	\pm	SWITCH DISCONNECTOR	 <i>%</i>
EARTH	<u> </u>		
EARTHING RESISTOR		SWITCH DISCONNECTOR WITH INCORPORATED EARTH SWITCH	
LIQUID EARTHING RESISTOR		DISCONNECTOR (CENTRE ROTATING POST)	
ARC SUPPRESSION COIL			I
FIXED MAINTENANCE EARTHING DEV	ICE I	DISCONNECTOR (SINGLE BREAK DOUBLE ROTATING)	
CARRIER COUPLING EQUIPMENT (WITHOUT VT)	R&Y	DISCONNECTOR (SINGLE BREAK)	
CARRIER COUPLING EQUIPMENT (WITH VT ON ONE PHASE)	Y CH REY	DISCONNECTOR (NON-INTERLOCKED)	 / NI
CARRIER COUPLING EQUIPMENT (WITH VT ON 3 PHASES)	REY E	DISCONNECTOR (POWER OPERATED) NA - NON-AUTOMATIC A - AUTOMATIC SO - SEQUENTIAL OPERATION FI - FAULT INTERFERING OPERATIC	
AC GENERATOR	G	EARTH SWITCH	
SYNCHRONOUS COMPENSATOR	SC		
CIRCUIT BREAKER		FAULT THROWING SWITCH (PHASE TO PHASE)	- FT
CIRCUIT BREAKER WITH DELAYED AUTO RECLOSE		FAULT THROWING SWITCH (EARTH FAULT)	
	I	SURGE ARRESTOR	•
WITHDRAWABLE METALCLAD SWITCHGEAR		THYRISTOR	*

TRANSFORM	1ERS	
(VECTORS	TO I	NDICATE
WINDING	CONF	IGURATION)

* BUSBARS
* OTHER PRIMARY CONNECTIONS
* CABLE & CABLE SEALING END
* THROUGH WALL BUSHING
* BYPASS FACILITY
* CROSSING OF CONDUCTORS (LOWER CONDUCTOR TO BE BROKEN)

PREFERENTIAL ABBREVIATIONS

AUXILIARY TRANSFORMER	Aux T
EARTHING TRANSFORMER	ET
GAS TURBINE	Gas T
GENERATOR TRANSFORMER	Gen T
GRID TRANSFORMER	Gr T
SERIES REACTOR	Ser Reac
SHUNT REACTOR	Sh Reac
STATION TRANSFORMER	Stn T
SUPERGRID TRANSFORMER	SGT
UNIT TRANSFORMER	UT

* NON-STANDARD SYMBOL

REACTOR

PORTABLE MAINTENANCE — (O—II) DISCONNECTOR EARTH DEVICE (PANTOGRAPH TYPE)

SHORTING/DISCHARGE SWITCH

SINGLE PHASE TRANSFORMER(BR NEUTRAL AND PHASE CONNECTIO	

RESISTOR WITH INHERENT NON-LINEAR VARIABILITY, VOLTAGE DEPENDANT

PART E1B - PROCEDURES RELATING TO GAS ZONE DIAGRAMS

GAS INSULATED BUSBAR		DOUBLE-BREAK	
GAS BOUNDARY		EXTERNAL MOUNTED CURRENT TRANSFORMER (WHERE SEPARATE PRIMARY APPARATUS)	٢
GAS/GAS BOUNDARY	◆	STOP VALVE NORMALLY CLOSED	
GAS/CABLE BOUNDARY	◆	STOP VALVE NORMALLY OPEN	\bowtie
GAS/AIR BOUNDARY		GAS MONITOR	\boxtimes
GAS/TRANSFORMER BOUNDARY		FILTER	
MAINTENANCE VALVE		QUICK ACTING COUPLING	\$+¢

PART E2 - NON-EXHAUSTIVE LIST OF APPARATUS TO BE INCLUDED ON OPERATION DIAGRAMS

Basic Principles

- (1) Where practicable, all the HV Apparatus on any Connection Site shall be shown on one Operation Diagram. Provided the clarity of the diagram is not impaired, the layout shall represent as closely as possible the geographical arrangement on the Connection Site.
- (2) Where more than one **Operation Diagram** is unavoidable, duplication of identical information on more than one **Operation Diagram** must be avoided.
- (3) The Operation Diagram must show accurately the current status of the Apparatus e.g. whether commissioned or decommissioned. Where decommissioned, the associated switchbay will be labelled "spare bay".
- (4) Provision will be made on the **Operation Diagram** for signifying approvals, together with provision for details of revisions and dates.
- (5) **Operation Diagrams** will be prepared in A4 format or such other format as may be agreed with **The Company**.
- (6) The **Operation Diagram** should normally be drawn single line. However, where appropriate, detail which applies to individual phases shall be shown. For example, some **HV Apparatus** is numbered individually per phase.

Apparatus To Be Shown On Operation Diagram

- (1) Busbars
- (2) Circuit Breakers
- (3) Disconnector (Isolator) and Switch Disconnecters (Switching Isolators)
- (4) Disconnectors (Isolators) Automatic Facilities
- (5) Bypass Facilities
- (6) Earthing Switches
- (7) Maintenance Earths
- (8) Overhead Line Entries
- (9) Overhead Line Traps
- (10) Cable and Cable Sealing Ends
- (11) Generating Unit
- (12) Generator Transformers
- (13) Generating Unit Transformers, Station Transformers, including the lower voltage circuitbreakers.
- (14) Synchronous Compensators
- (15) Static Variable Compensators
- (16) Capacitors (including Harmonic Filters)
- (17) Series or Shunt Reactors (Referred to as "Inductors" at nuclear power station sites)
- (18) Supergrid and Grid Transformers
- (19) Tertiary Windings
- (20) Earthing and Auxiliary Transformers
- (21) Three Phase VT's

(22)	Single Phase VT & Phase Identity
(23)	High Accuracy VT and Phase Identity
(24)	Surge Arrestors/Diverters
(25)	Neutral Earthing Arrangements on HV Plant
(26)	Fault Throwing Devices
(27)	Quadrature Boosters
(28)	Arc Suppression Coils
(29)	Single Phase Transformers (BR) Neutral and Phase Connections
(30)	Current Transformers (where separate plant items)
(31)	Wall Bushings
(32)	Combined VT/CT Units
(33)	Shorting and Discharge Switches
(34)	Thyristor
(35)	Resistor with Inherent Non-Linear Variability, Voltage Dependent
(36)	Gas Zone

APPENDIX E3 - MINIMUM FREQUENCY RESPONSE CAPABILITY REQUIREMENT PROFILE AND OPERATING RANGE FOR POWER GENERATING MODULES AND HVDC EQUIPMENT

ECC.A.3.1 <u>Scope</u>

The frequency response capability is defined in terms of **Primary Response**, **Secondary Response** and **High Frequency Response**. In addition to the requirements defined in ECC.6.3.7 this appendix defines the minimum frequency response requirements for:-

- (a) each Type C and Type D Power Generating Module
- (b) each **DC Connected Power Park Module**
- (c) each HVDC System

For the avoidance of doubt, this appendix does not apply to **Type A** and **Type B Power Generating Modules**.

OTSDUW Plant and Apparatus should facilitate the delivery of frequency response services provided by **Offshore Generating Units** and **Offshore Power Park Units**.

The functional definition provides appropriate performance criteria relating to the provision of **Frequency** control by means of **Frequency** sensitive generation in addition to the other requirements identified in ECC.6.3.7.

In this Appendix 3 to the ECC, for a **Power Generating Module** including a **CCGT Module** or a **Power Park Module** or **DC Connected Power Park Module**, the phrase **Minimum Regulating Level** applies to the entire **CCGT Module** or **Power Park Module** or **DC Connected Power Park Module** operating with all **Generating Units Synchronised** to the **System**.

The minimum **Frequency** response requirement profile is shown diagrammatically in Figure ECC.A.3.1. The capability profile specifies the minimum required level of **Frequency Response** Capability throughout the normal plant operating range.

ECC.A.3.2 Plant Operating Range

The upper limit of the operating range is the **Maximum Capacity** of the **Power Generating Module** or **Generating Unit** or **CCGT Module** or **HVDC Equipment**.

The Minimum Stable Operating Level may be less than, but must not be more than, 65% of the Maximum Capacity. Each Power Generating Module and/or Generating Unit and/or CCGT Module and/or Power Park Module or HVDC Equipment must be capable of operating satisfactorily down to the Minimum Regulating Level as dictated by System operating conditions, although it will not be instructed to below its Minimum Stable Operating Level . If a Power Generating Module or Generating Unit or CCGT Module or Power Park Module, or HVDC Equipment is operating below Minimum Stable Operating Level because of high System Frequency, it should recover adequately to its Minimum Stable Operating Level as the System Frequency returns to Target Frequency so that it can provide Primary and Secondary Response from its Minimum Stable Operating Level if the System Frequency continues to fall. For the avoidance of doubt, under normal operating conditions steady state operation below the Minimum Stable Operating Level is not expected. The Minimum Regulating Level must not be more than 55% of Maximum Capacity.

In the event of a **Power Generating Module** or **Generating Unit** or **CCGT Module** or **Power Park Module** or **HVDC Equipment** load rejecting down to no less than its **Minimum Regulating Level** it should not trip as a result of automatic action as detailed in BC3.7. If the load rejection is to a level less than the **Minimum Regulating Level** then it is accepted that the condition might be so severe as to cause it to be disconnected from the **System**.

ECC.A.3.3 <u>Minimum Frequency Response Requirement Profile</u>

Figure ECC.A.3.1 shows the minimum **Frequency** response capability requirement profile diagrammatically for a 0.5 Hz change in **Frequency**. The percentage response capabilities and loading levels are defined on the basis of the **Maximum Capacity** of the **Power Generating Module** or **CCGT Module** or **Power Park Module** or **HVDC Equipment**. Each **Power Generating Module** or and/or **CCGT Module** or **Power Park Module** (including a **DC Connected Power Park Module**) and/or **HVDC Equipment** must be capable of operating in a manner to provide **Frequency** response at least to the solid boundaries shown in the figure. If the **Frequency** response capability falls within the solid boundaries, the **Power Generating Module** or **Power Park Module** or **HVDC Equipment** is providing response below the minimum requirement which is not acceptable. Nothing in this appendix is intended to prevent a **Power Generating Module** or **CCGT Module** or **CCGT Module** or **HVDC Equipment** from being designed to deliver a **Frequency** response in excess of the identified minimum requirement.

The **Frequency** response delivered for **Frequency** deviations of less than 0.5 Hz should be no less than a figure which is directly proportional to the minimum **Frequency** response requirement for a **Frequency** deviation of 0.5 Hz. For example, if the **Frequency** deviation is 0.2 Hz, the corresponding minimum **Frequency** response requirement is 40% of the level shown in Figure ECC.A.3.1. The **Frequency** response delivered for **Frequency** deviations of more than 0.5 Hz should be no less than the response delivered for a **Frequency** deviation of 0.5 Hz.

Each **Power Generating Module** and/or **CCGT Module** and/or **Power Park Module** or **HVDC Equipment** must be capable of providing some response, in keeping with its specific operational characteristics, when operating between 95% to 100% of **Maximum Capacity** as illustrated by the dotted lines in Figure ECC.A.3.1.

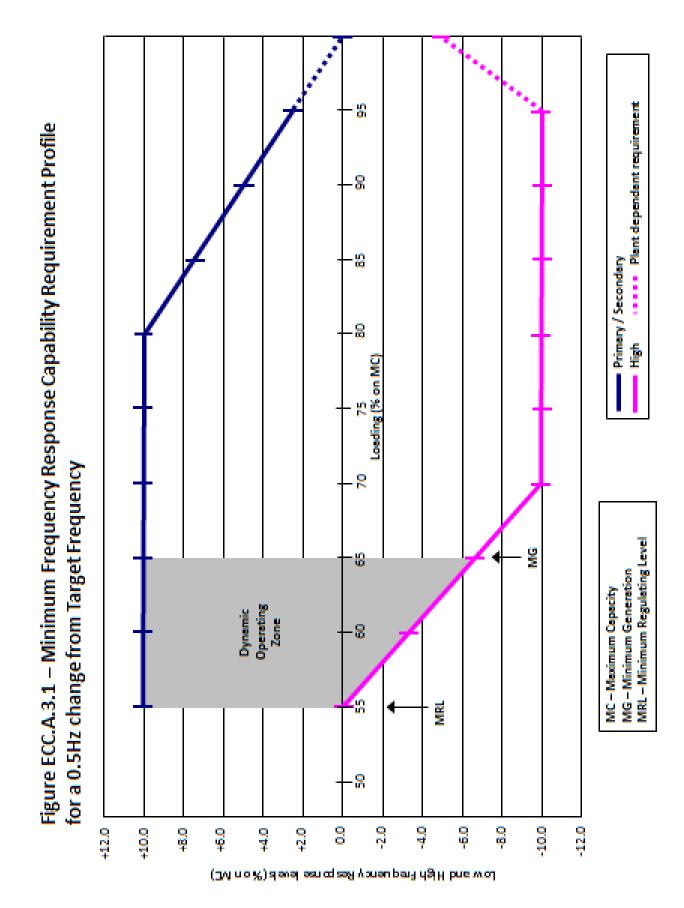
At the **Minimum Stable Operating** level, each **Power Generating Module** and/or **CCGT Module** and/or **Power Park Module** and/or HV**DC Equipment** is required to provide high and low frequency response depending on the **System Frequency** conditions. Where the **Frequency** is high, the **Active Power** output is therefore expected to fall below the **Minimum Stable Operating** level.

The Minimum Regulating Level is the output at which a Power Generating Module and/or CCGT Module and/or Power Park Module and/or HVDC Equipment has no High Frequency Response capability. It may be less than, but must not be more than, 55% of the Maximum Capacity. This implies that a Power Generating Module or CCGT Module or Power Park Module) or HVDC Equipment is not obliged to reduce its output to below this level unless the Frequency is at or above 50.5 Hz (cf BC3.7).

ECC.A.3.4 <u>Testing of Frequency Response Capability</u>

The frequency response capabilities shown diagrammatically in Figure ECC.A.3.1 are measured by taking the responses as obtained from some of the dynamic step response tests specified by **The Company** and carried out by **Generators** and HV**DC System** owners for compliance purposes. The injected signal is a step of 0.5Hz from zero to 0.5 Hz **Frequency** change, and is sustained at 0.5 Hz **Frequency** change thereafter, the latter as illustrated diagrammatically in figures ECC.A.3.4 and ECC.A.3.5.

In addition to provide and/or to validate the content of **Ancillary Services Agreements** a progressive injection of a **Frequency** change to the plant control system (i.e. governor and load controller) is used. The injected signal is a ramp of 0.5Hz from zero to 0.5 Hz **Frequency** change over a ten second period, and is sustained at 0.5 Hz **Frequency** change thereafter, the latter as illustrated diagrammatically in figures ECC.A.3.2 and ECC.A.3.3. In the case of an **Embedded Medium Power Station** not subject to a **Bilateral Agreement** or **Embedded HVDC System** not subject to a **Bilateral Agreement**, **The Company** may require the **Network Operator** within whose System the **Embedded Medium Power Station** or **Embedded HVDC System** is situated, to ensure that the **Embedded Person** performs the dynamic response tests reasonably required by **The Company** in order to demonstrate compliance within the relevant requirements in the **ECC**.


The **Primary Response** capability (P) of a **Power Generating Module** or a **CCGT Module** or **Power Park Module** or **HVDC Equipment** is the minimum increase in **Active Power** output between 10 and 30 seconds after the start of the ramp injection as illustrated diagrammatically in Figure ECC.A.3.2. This increase in **Active Power** output should be released increasingly with time over the period 0 to 10 seconds from the time of the start of the **Frequency** fall as illustrated by the response from Figure ECC.A.3.2.

The **Secondary Response** capability (S) of a **Power Generating Module** or a **CCGT Module** or **Power Park Module** or **HVDC Equipment** is the minimum increase in **Active Power** output between 30 seconds and 30 minutes after the start of the ramp injection as illustrated diagrammatically in Figure ECC.A.3.2.

The **High Frequency Response** capability (H) of a **Power Generating Module** or a **CCGT Module** or **Power Park Module** or **HVDC Equipment** is the decrease in **Active Power** output provided 10 seconds after the start of the ramp injection and sustained thereafter as illustrated diagrammatically in Figure ECC.A.3.3. This reduction in **Active Power** output should be released increasingly with time over the period 0 to 10 seconds from the time of the start of the **Frequency** rise as illustrated by the response in Figure ECC.A.3.2.

ECC.A.3.5 Repeatability Of Response

When a **Power Generating Module** or **CCGT Module** or **Power Park Module** or **HVDC Equipment** has responded to a significant **Frequency** disturbance, its response capability must be fully restored as soon as technically possible. Full response capability should be restored no later than 20 minutes after the initial change of **System Frequency** arising from the **Frequency** disturbance.

Figure ECC.A.3.1 - Minimum Frequency Response requirement profile for a 0.5 Hz frequency change from Target Frequency

Issue 6 Revision 12

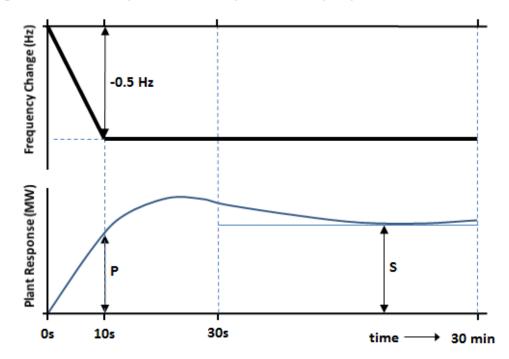
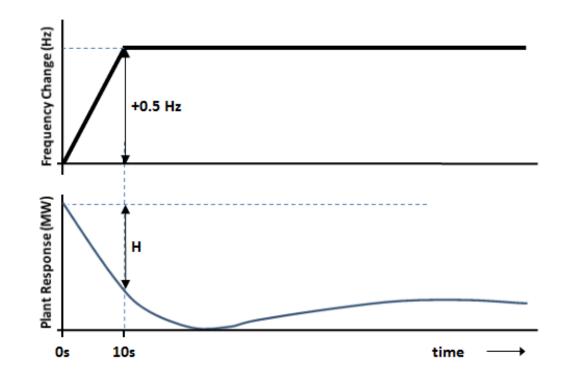



Figure ECC.A.3.2 – Interpretation of Primary and Secondary Response Service Values

Figure ECC.A.3.3 - Interpretation of High Frequency Response Service Values

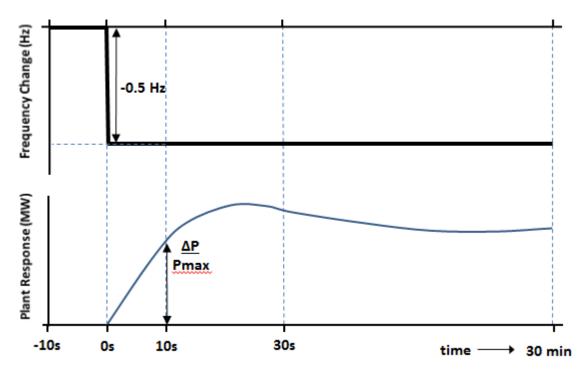
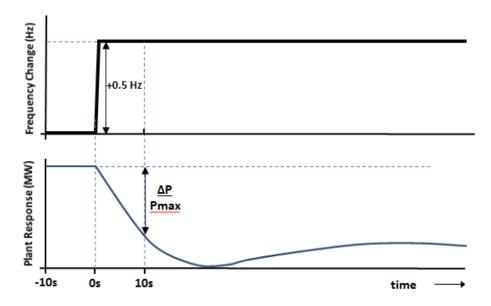
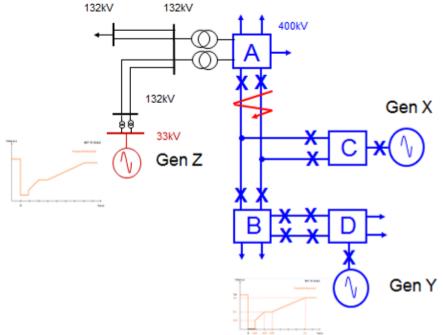
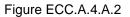



Figure ECC.A.3.5 – Interpretation of High Frequency Response Capability Values

ECC.4 - APPENDIX 4 - FAULT RIDE THROUGH REQUIREMENTS

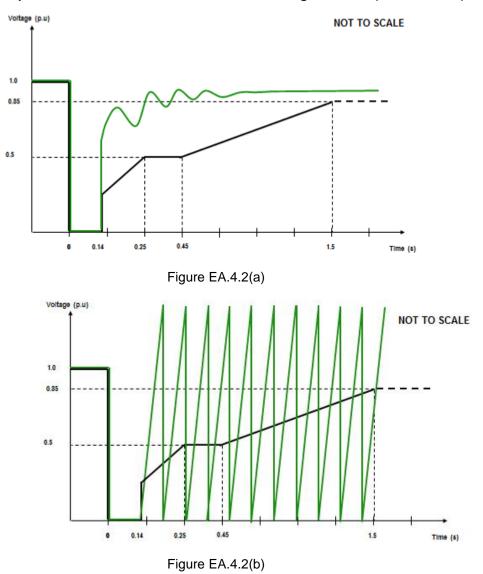

FAULT RIDE THROUGH REQUIREMENTS FOR TYPE B, TYPE C AND TYPE D POWER GENERATING MODULES (INCLUDING OFFSHORE POWER PARK MODULES WHICH ARE EITHER AC CONNECTED POWER PARK MODULES OR DC CONNECTED POWER PARK MODULES), HVDC SYSTEMS AND OTSDUW PLANT AND APPARATUS


ECC.A.4A.1 Scope

The **Fault Ride Through** requirements are defined in ECC.6.3.15. This Appendix provides illustrations by way of examples only of ECC.6.3.15.1 to ECC.6.3.15.10 and further background and illustrations and is not intended to show all possible permutations.

ECC.A.4A.2 Short Circuit Faults At Supergrid Voltage On The Onshore Transmission System Up To 140ms In Duration

For short circuit faults at **Supergrid Voltage** on the **Onshore Transmission System** (which could be at an **Interface Point**) up to 140ms in duration, the **Fault Ride Through** requirement is defined in ECC.6.3.15. In summary any **Power Generating Module** (including a **DC Connected Power Park Module**) or **HVDC System** is required to remain connected and stable whilst connected to a healthy circuit. Figure ECC.A.4.A.2 illustrates this principle.


In Figure ECC.A.4.A.2 a solid three phase short circuit fault is applied adjacent to substation A resulting in zero voltage at the point of fault. All circuit breakers on the faulty circuit (Lines ABC) will open within 140ms resulting in Gen X tripping. The effect of this fault, due to the low impedance of the network, will be the observation of a low voltage at each substation node across the **Total System** until the fault has been cleared. In this example, Gen Y and Gen Z (an Embedded Generator) would need to remain connected and stable as both are still connected to the **Total System** and remain connected to healthy circuits.

The criteria for assessment is based on a voltage against time curve at each **Grid Entry Point** or **User System Entry Point**. The voltage against time curve at the **Grid Entry Point** or **User System Entry Point** varies for each different type and size of **Power Generating Module** as detailed in ECC.6.3.15.2. – ECC.6.3.15.7.

The voltage against time curve represents the voltage profile at a **Grid Entry Point or User System Entry Point** that would be obtained by plotting the voltage at that **Grid Entry Point** or **User System Entry Point** before during and after the fault. This is not to be confused with a voltage duration curve (as defined under ECC.6.3.15.9) which represents a voltage level and associated time duration.

The post fault voltage at a **Grid Entry Point** or **User System Entry Point** is largely influenced by the topology of the network rather than the behaviour of the **Power Generating Module** itself. The **EU Generator** therefore needs to ensure each **Power Generating Module** remains connected and stable for a close up solid three phase short circuit fault for 140ms at the **Grid Entry Point** or **User System Entry Point**.

Two examples are shown in Figure EA.4.2(a) and Figure EA4.2(b). In Figure EA.4.2(a) the post fault profile is above the heavy black line. In this case the **Power Generating Module** must remain connected and stable. In Figure EA4.2(b) the post fault voltage dips below the heavy black line in which case the **Power Generating Module** is permitted to trip.

The process for demonstrating **Fault Ride Through** compliance against the requirements of ECC.6.3.15 is detailed in ECP.A.3.5 and ECP.A.6.7 (as applicable).

ECC.A.4A.3 <u>Supergrid Voltage Dips On The Onshore Transmission System Greater Than 140ms In</u> <u>Duration</u>

ECC.A.4A3.1 Requirements applicable to **Synchronous Power Generating Modules** subject to **Supergrid Voltage** dips on the **Onshore Transmission System** greater than 140ms in duration. For balanced **Supergrid Voltage** dips on the **Onshore Transmission System** having durations greater than 140ms and up to 3 minutes, the **Fault Ride Through** requirement is defined in ECC.6.3.15.9.2.1(a) and Figure ECC.6.3.15.9(a) which is reproduced in this Appendix as Figure EA.4.3.1 and termed the voltage–duration profile.

This profile is not a voltage-time response curve that would be obtained by plotting the transient voltage response at a point on the **Onshore Transmission System** (or **User System** if located **Onshore**) to a disturbance. Rather, each point on the profile (ie the heavy black line) represents a voltage level and an associated time duration which connected **Synchronous Power Generating Modules** must withstand or ride through.

Figures EA.4.3.2 (a), (b) and (c) illustrate the meaning of the voltage-duration profile for voltage dips having durations greater than 140ms.

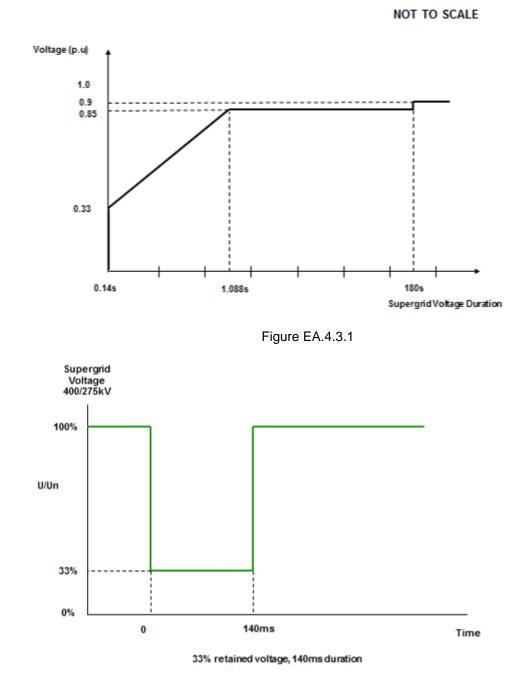
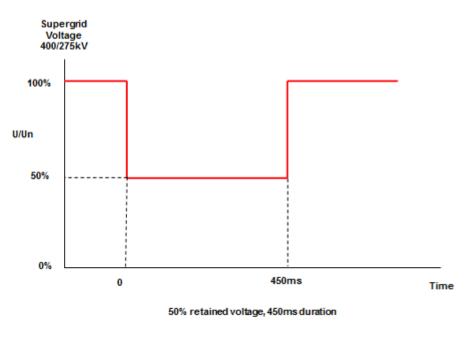
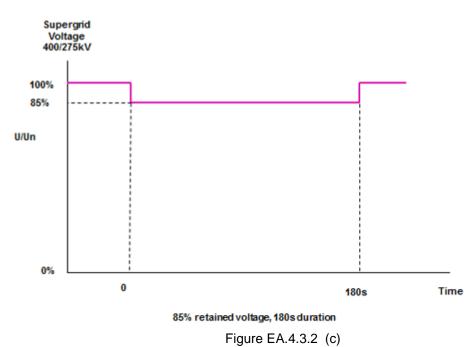
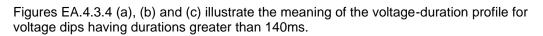


Figure EA.4.3.2 (a)


Figure EA.4.3.2 (b)

ECC.A.4A3.2 Requirements applicable to **Power Park Modules** or **OTSDUW Plant and Apparatus** subject to **Supergrid Voltage** dips on the **Onshore Transmission System** greater than 140ms in duration

For balanced **Supergrid Voltage** dips on the **Onshore Transmission System** (which could be at an **Interface Point**) having durations greater than 140ms and up to 3 minutes the **Fault Ride Through** requirement is defined in ECC.6.3.15.9.2.1(b) and Figure ECC.6.3.15.9(b) which is reproduced in this Appendix as Figure EA.4.3.3 and termed the voltage–duration profile.

This profile is not a voltage-time response curve that would be obtained by plotting the transient voltage response at a point on the **Onshore Transmission System** (or **User System** if located **Onshore**) to a disturbance. Rather, each point on the profile (ie the heavy black line) represents a voltage level and an associated time duration which connected **Power Park Modules** or **OTSDUW Plant and Apparatus** must withstand or ride through.

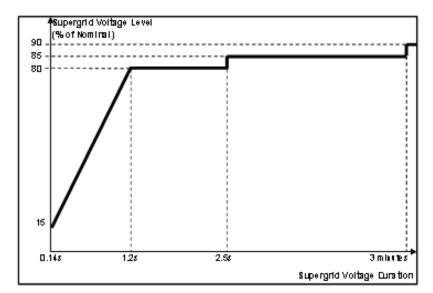
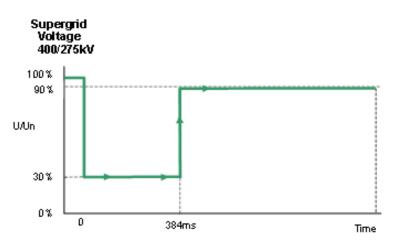



Figure EA.4.3.3

30% retained voltage, 384ms duration

Figure EA.4.3.4(a)

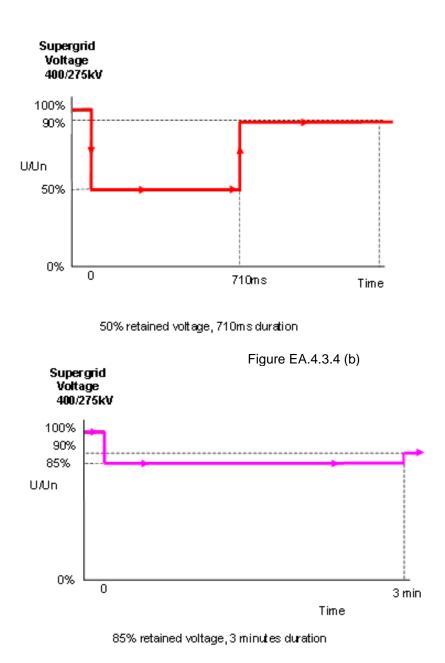


Figure EA.4.3.4 (c)

APPENDIX E5 - TECHNICAL REQUIREMENTS LOW FREQUENCY RELAYS FOR THE AUTOMATIC DISCONNECTION OF SUPPLIES AT LOW FREQUENCY

ECC.A.5.1 Low Frequency Relays

ECC.A.5.1.1 The **Low Frequency Relays** to be used shall have a setting range of 47.0 to 50Hz and be suitable for operation from a nominal AC input of 63.5, 110 or 240V. The following-parameters specify the requirements of approved **Low Frequency Relays**:

(a) Frequency settings:	47-50Hz in steps of 0.05Hz or better, preferably 0.01Hz;
(b) Operating time:	Relay operating time shall not be more than 150 ms;
(c) Voltage lock-out:	Selectable within a range of 55 to 90% of nominal voltage;
(d) Direction	Tripping interlock for forward or reverse power flow capable of being set in either position or off
(e) Facility stages:	One or two stages of Frequency operation;
(f) Output contacts:	Two output contacts per stage to be capable of repetitively making and breaking for 1000 operations:
(g) Accuracy:	 0.01 Hz maximum error under reference environmental and system voltage conditions. 0.05 Hz maximum error at 8% of total harmonic distortion Electromagnetic Compatibility Level.

In the case of **Network Operators** who are **GB Code Users**, the above requirements only apply to a relay (if any) installed at the **EU Grid Supply Point**. **Network Operators** who are also **GB Code Users** should continue to satisfy the requirements for low frequency relays as specified in the **CCs** as applicable to their **System**.

ECC.A.5.2 Low Frequency Relay Voltage Supplies

- ECC.A.5.2.1 It is essential that the voltage supply to the **Low Frequency Relays** shall be derived from the primary **System** at the supply point concerned so that the **Frequency** of the **Low Frequency Relays** input voltage is the same as that of the primary **System**. This requires either:
 - (a) the use of a secure supply obtained from voltage transformers directly associated with the grid transformer(s) concerned, the supply being obtained where necessary via a suitable automatic voltage selection scheme; or
 - (b) the use of the substation 240V phase-to-neutral selected auxiliary supply, provided that this supply is always derived at the supply point concerned and is never derived from a standby supply **Power Generating Module** or from another part of the **User System**.

ECC.A.5.3 <u>Scheme Requirements</u>

- ECC.A.5.3.1 The tripping facility should be engineered in accordance with the following reliability considerations:
 - (a) Dependability

Failure to trip at any one particular **Demand** shedding point would not harm the overall operation of the scheme. However, many failures would have the effect of reducing the amount of **Demand** under low **Frequency** control. An overall reasonable minimum requirement for the dependability of the **Demand** shedding scheme is 96%, i.e. the average probability of failure of each **Demand** shedding point should be less than 4%. Thus the **Demand** under low **Frequency** control will not be reduced by more than 4% due to relay failure.

(b) Outages

Low **Frequency Demand** shedding schemes will be engineered such that the amount of **Demand** under control is as specified in Table ECC.A.5.5.1a and is not reduced unacceptably during equipment outage or maintenance conditions.

- ECC.A.5.3.2 The total operating time of the scheme, including circuit breakers operating time, shall where reasonably practicable, be less than 200 ms. For the avoidance of doubt, the replacement of plant installed prior to October 2009 will not be required in order to achieve lower total scheme operating times.
- ECC.A.5.4 Low Frequency Relay Testing
- ECC.A.5.4.1 **Low Frequency Relays** installed and commissioned after 1st January 2007 shall be type tested in accordance with and comply with the functional test requirements for **Frequency Protection** contained in Energy Networks Association Technical Specification 48-6-5 Issue 1 dated 2005 "ENA **Protection** Assessment Functional Test Requirements Voltage and Frequency **Protection**".

For the avoidance of doubt, **Low Frequency Relays** installed and commissioned before 1st January 2007 shall comply with the version of ECC.A.5.1.1 applicable at the time such **Low Frequency Relays** were commissioned.

- ECC.A.5.4.2 Each **Non-Embedded Customer** shall aim to execute testing on its low frequency demand disconnection relays installed within its network and in service at least once every three years, although this may be extended to no more than every five years if considered to be required for operational purposes.
- ECC.A.5.4.3 Each **Network Operator** and **Relevant Transmission Licensee** shall aim to execute testing on its low frequency demand disconnection relays installed within its network and in service at least once every three years, although this may be extended to no more than every five years if considered to be required for operational purposes.

ECC.A.5.5 Scheme Settings

ECC.A.5.5.1 Table CC.A.5.5.1a shows, for each **Transmission Area**, the percentage of **Demand** (based on **Annual ACS Conditions**) at the time of forecast **National Electricity Transmission System** peak **Demand** that each **Network Operator** whose **System** is connected to the **Onshore Transmission System** within such **Transmission Area** shall disconnect by **Low Frequency Relays** at a range of frequencies. Where a **Network Operator's System** is connected to the **National Electricity Transmission System** in more than one **Transmission Area**, the settings for the **Transmission Area** in which the majority of the **Demand** is connected shall apply.

Frequency Hz	% Demand disconnection for each Network Operator in Transmission Area			
	NGET	SPT	SHETL	
48.8	5			
48.75	5			

10		
7.5		10
7.5	10	
7.5	10	10
7.5	10	10
5	10	10
5		
60	40	40
	7.5 7.5 7.5 7.5 5 5 60	7.5 7.5 7.5 7.5 10 7.5 10 5 5

Table ECC.A.5.5.1a

Note – the percentages in table ECC.A.5.5.1a are cumulative such that, for example, should the frequency fall to 48.6 Hz in **NGET's Transmission Area**, 27.5% of the total **Demand** connected to the **National Electricity Transmission System** in **NGET's Transmission Area** shall be disconnected by the action of **Low Frequency Relays**.

The percentage **Demand** at each stage shall be allocated as far as reasonably practicable. The cumulative total percentage **Demand** is a minimum.

- ECC.A.5.5.2 In the case of a **Non-Embedded Customer** (who is also an **EU Code User**) the percentage of **Demand** (based on **Annual ACS Conditions**) at the time of forecast **National Electricity Transmission System** peak **Demand** that each **Non-Embedded Customer** whose **System** is connected to the **Onshore Transmission System** which shall be disconnected by **Low Frequency Relays** shall be in accordance with OC6.6 and the **Bilateral Agreement**.
- ECC.A.5.6 <u>Connection and Reconnection</u>
- ECC.A.5.6.1 As defined under OC.6.6 once automatic low **Frequency Demand Disconnection** has taken place, the **Network Operator** on whose **User System** it has occurred, will not reconnect until **The Company** instructs that **Network Operator** to do so in accordance with OC6. The same requirement equally applies to **Non-Embedded Customers.**
- ECC.A.5.6.2 Once **The Company** instructs the **Network Operator** or **Non Embedded Customer** to reconnect to the **National Electricity Transmission System** following operation of the **Low Frequency Demand Disconnection** scheme it shall do so in accordance with the requirements of ECC.6.2.3.10 and OC6.6.
- ECC.A.5.6.3 **Network Operators** or **Non Embedded Customers** shall be capable of being remotely disconnected from the **National Electricity Transmission System** when instructed by **The Company**. Any requirement for the automated disconnection equipment for reconfiguration of the **National Electricity Transmission System** in preparation for block loading and the time required for remote disconnection shall be specified by **The Company** in accordance with the terms of the **Bilateral Agreement**.

APPENDIX E6 - PERFORMANCE REQUIREMENTS FOR CONTINUOUSLY ACTING AUTOMATIC EXCITATION CONTROL SYSTEMS FOR ONSHORE SYNCHRONOUS POWER GENERATING MODULES,

- ECC.A.6.1 <u>Scope</u>
- ECC.A.6.1.1 This Appendix sets out the performance requirements of continuously acting automatic excitation control systems for **Type C** and **Type D Onshore Synchronous Power Generating Modules** that must be complied with by the **User**. This Appendix does not limit any site specific requirements where in **The Company's** reasonable opinion these facilities are necessary for system reasons.
- ECC.A.6.1.2 Where the requirements may vary the likely range of variation is given in this Appendix. It may be necessary to specify values outside this range where **The Company** identifies a system need, and notwithstanding anything to the contrary **The Company** may specify values outside of the ranges provided in this Appendix 6. The most common variations are in the on-load excitation ceiling voltage requirements and the response time required of the **Exciter**. Actual values will be included in the **Bilateral Agreement**.
- ECC.A.6.1.3 Should an **EU Generator** anticipate making a change to the excitation control system it shall notify **The Company** under the **Planning Code** (PC.A.1.2(b) and (c)) as soon as the **EU Generator** anticipates making the change. The change may require a revision to the **Bilateral Agreement**.
- ECC.A.6.2 Requirements
- ECC.A.6.2.1 The Excitation System of a Type C or Type D Onshore Synchronous Power Generating Module shall include an excitation source (Exciter), and a continuously acting Automatic Voltage Regulator (AVR) and shall meet the following functional specification. Type D Synchronous Power Generating Modules are also required to be fitted with a Power System Stabiliser in accordance with the requirements of ECC.A.6.2.5.
- ECC.A.6.2.3 Steady State Voltage Control
- ECC.A.6.2.3.1 An accurate steady state control of the **Onshore Synchronous Power Generating Module** pre-set **Synchronous Generating Unit** terminal voltage is required. As a measure of the accuracy of the steady-state voltage control, the **Automatic Voltage Regulator** shall have static zero frequency gain, sufficient to limit the change in terminal voltage to a drop not exceeding 0.5% of rated terminal voltage, when the output of a **Synchronous Generating Unit** within an **Onshore Synchronous Power Generating Module** is gradually changed from zero to rated MVA output at rated voltage, **Active Power** and **Frequency**.
- ECC.A.6.2.4 Transient Voltage Control
- ECC.A.6.2.4.1 For a step change from 90% to 100% of the nominal **Onshore Synchronous Generating Unit** terminal voltage, with the **Onshore Synchronous Generating Unit** on open circuit, the **Excitation System** response shall have a damped oscillatory characteristic. For this characteristic, the time for the **Onshore Synchronous Generating Unit** terminal voltage to first reach 100% shall be less than 0.6 seconds. Also, the time to settle within 5% of the voltage change shall be less than 3 seconds.
- ECC.A.6.2.4.2 To ensure that adequate synchronising power is maintained, when the **Onshore Power Generating Module** is subjected to a large voltage disturbance, the **Exciter** whose output is varied by the **Automatic Voltage Regulator** shall be capable of providing its achievable upper and lower limit ceiling voltages to the **Onshore Synchronous Generating Unit** field in a time not exceeding that specified in the **Bilateral Agreement**. This will normally be not less than 50 ms and not greater than 300 ms. The achievable upper and lower limit ceiling voltages may be dependent on the voltage disturbance.
- ECC.A.6.2.4.3 The Exciter shall be capable of attaining an Excitation System On Load Positive Ceiling Voltage of not less than a value specified in the Bilateral Agreement that will be:

not less than 2 per unit (pu)

normally not greater than 3 pu

exceptionally up to 4 pu

of **Rated Field Voltage** when responding to a sudden drop in voltage of 10 percent or more at the **Onshore Synchronous Generating Unit** terminals. **The Company** may specify a value outside the above limits where **The Company** identifies a system need.

- ECC.A.6.2.4.4 If a static type **Exciter** is employed:
 - (i) the field voltage should be capable of attaining a negative ceiling level specified in the Bilateral Agreement after the removal of the step disturbance of ECC.A.6.2.4.3. The specified value will be 80% of the value specified in ECC.A.6.2.4.3. The Company may specify a value outside the above limits where The Company identifies a system need.
 - the Exciter must be capable of maintaining free firing when the Onshore Synchronous Generating Unit terminal voltage is depressed to a level which may be between 20% to 30% of rated terminal voltage
 - (iii) the Exciter shall be capable of attaining a positive ceiling voltage not less than 80% of the Excitation System On Load Positive Ceiling Voltage upon recovery of the Onshore Synchronous Generating Unit terminal voltage to 80% of rated terminal voltage following fault clearance. The Company may specify a value outside the above limits where The Company identifies a system need.
 - (iv) the requirement to provide a separate power source for the **Exciter** will be specified if **The Company** identifies a **Transmission System** need.
- ECC.A.6.2.5 Power Oscillations Damping Control
- ECC.A.6.2.5.1 To allow **Type D Onshore Power Generating Modules** to maintain second and subsequent swing stability and also to ensure an adequate level of low frequency electrical damping power, the **Automatic Voltage Regulator** of each **Onshore Synchronous Generating Unit** within each **Type D Onshore Synchronous Power Generating Module** shall include a **Power System Stabiliser** as a means of supplementary control.
- ECC.A.6.2.5.2 Whatever supplementary control signal is employed, it shall be of the type which operates into the **Automatic Voltage Regulator** to cause the field voltage to act in a manner which results in the damping power being improved while maintaining adequate synchronising power.
- ECC.A.6.2.5.3 The arrangements for the supplementary control signal shall ensure that the **Power System Stabiliser** output signal relates only to changes in the supplementary control signal and not the steady state level of the signal. For example, if generator electrical power output is chosen as a supplementary control signal then the **Power System Stabiliser** output should relate only to changes in the **Synchronous Generating Unit** electrical power output and not the steady state level of power output. Additionally the **Power System Stabiliser** should not react to mechanical power changes in isolation for example during rapid changes in steady state load or when providing frequency response.
- ECC.A.6.2.5.4 The output signal from the **Power System Stabiliser** shall be limited to not more than ±10% of the **Onshore Synchronous Generating Unit** terminal voltage signal at the **Automatic Voltage Regulator** input. The gain of the **Power System Stabiliser** shall be such that an increase in the gain by a factor of 3 shall not cause instability.
- ECC.A.6.2.5.5 The **Power System Stabiliser** shall include elements that limit the bandwidth of the output signal. The bandwidth limiting must ensure that the highest frequency of response cannot excite torsional oscillations on other plant connected to the network. A bandwidth of 0-5Hz would be judged to be acceptable for this application.

- ECC.A.6.2.5.6 The **EU Generator** in respect of its **Type D Synchronous Power Generating Modules** will agree **Power System Stabiliser** settings with **The Company** prior to the on-load commissioning detailed in BC2.11.2(d). To allow assessment of the performance before on-load commissioning the **EU Generator** will provide to **The Company** a report covering the areas specified in ECP.A.3.2.1.
- ECC.A.6.2.5.7 The **Power System Stabiliser** must be active within the **Excitation System** at all times when **Synchronised** including when the **Under Excitation Limiter** or **Over Excitation Limiter** are active. When operating at low load when **Synchronising** or **De-Synchronising** an **Onshore Synchronous Generating Unit**, within a **Type D Synchronous Power Generating Modul**e, the **Power System Stabiliser** may be out of service.
- ECC.A.6.2.5.8 Where a **Power System Stabiliser** is fitted to a **Pumped Storage Unit** within a **Type D Synchronous Power Generating Module** it must function when the **Pumped Storage Unit** is in both generating and pumping modes. In addition, where a **Power System Stabiliser** is fitted to an **Electricity Storage Unit** within a **Type D Synchronous Electricity Storage Module**, it must function when the **Synchronous Electricity Storage Unit** is in both importing and exporting modes of operation.
- ECC.A.6.2.6 Overall Excitation System Control Characteristics
- ECC.A.6.2.6.1 The overall **Excitation System** shall include elements that limit the bandwidth of the output signal. The bandwidth limiting must be consistent with the speed of response requirements and ensure that the highest frequency of response cannot excite torsional oscillations on other plant connected to the network. A bandwidth of 0-5 Hz will be judged to be acceptable for this application.
- ECC.A.6.2.6.2 The response of the Automatic Voltage Regulator combined with the Power System Stabiliser shall be demonstrated by injecting similar step signal disturbances into the Automatic Voltage Regulator reference as detailed in ECPA.5.2 and ECPA.5.4. The Automatic Voltage Regulator shall include a facility to allow step injections into the Automatic Voltage Regulator voltage reference, with the Onshore Type D Power Generating Module operating at points specified by The Company (up to rated MVA output). The damping shall be judged to be adequate if the corresponding Active Power response to the disturbances decays within two cycles of oscillation.
- ECC.A.6.2.6.3 A facility to inject a band limited random noise signal into the Automatic Voltage Regulator voltage reference shall be provided for demonstrating the frequency domain response of the **Power System Stabiliser**. The tuning of the **Power System Stabiliser** shall be judged to be adequate if the corresponding Active Power response shows improved damping with the **Power System Stabiliser** in combination with the Automatic Voltage Regulator compared with the Automatic Voltage Regulator alone over the frequency range 0.3Hz 2Hz.

ECC.A.6.2.7 <u>Under-Excitation Limiters</u>

ECC.A.6.2.7.1 The security of the power system shall also be safeguarded by means of MVAr Under Excitation Limiters fitted to the Synchronous Power Generating Module Excitation System. The Under Excitation Limiter shall prevent the Automatic Voltage Regulator reducing the Synchronous Generating Unit excitation to a level which would endanger synchronous stability. The Under Excitation Limiter shall operate when the excitation system is providing automatic control. The Under Excitation Limiter shall respond to changes in the Active Power (MW) the Reactive Power (MVAr) and to the square of the Synchronous Generating Unit voltage in such a direction that an increase in voltage will permit an increase in leading MVAr. The characteristic of the Under Excitation Limiter shall be substantially linear from no-load to the maximum Active Power output of the Onshore Power Generating Module at any setting and shall be readily adjustable.

- ECC.A.6.2.7.2 The performance of the **Under Excitation Limiter** shall be independent of the rate of change of the **Onshore Synchronous Power Generating Module** load and shall be demonstrated by testing as detailed in ECP.A.5.5. The resulting maximum overshoot in response to a step injection which operates the **Under Excitation Limiter** shall not exceed 4% of the **Onshore Synchronous Generating Unit** rated MVA. The operating point of the **Onshore Synchronous Generating Unit** shall be returned to a steady state value at the limit line and the final settling time shall not be greater than 5 seconds. When the step change in **Automatic Voltage Regulator** reference voltage is reversed, the field voltage should begin to respond without any delay and should not be held down by the **Under Excitation Limiter**. Operation into or out of the preset limit levels shall ensure that any resultant oscillations are damped so that the disturbance is within 0.5% of the **Onshore Synchronous Generating Unit** MVA rating within a period of 5 seconds.
- ECC.A.6.2.7.3 The **EU Generator** shall also make provision to prevent the reduction of the **Onshore Synchronous Generating Unit** excitation to a level which would endanger synchronous stability when the **Excitation System** is under manual control.
- ECC.A.6.2.8 Over-Excitation and Stator Current Limiters
- ECC.A.6.2.8.1 The settings of the **Over-Excitation Limiter** and stator current limiter, shall ensure that the **Onshore Synchronous Generating Unit** excitation is not limited to less than the maximum value that can be achieved whilst ensuring the **Onshore Synchronous Generating Unit** is operating within its design limits. If the **Onshore Synchronous Generating Unit** excitation is reduced following a period of operation at a high level, the rate of reduction shall not exceed that required to remain within any time dependent operating characteristics of the **Onshore Synchronous Power Generating Module**.
- ECC.A.6.2.8.2 The performance of the **Over-Excitation Limiter**, shall be demonstrated by testing as described in ECP.A.5.6. Any operation beyond the **Over-Excitation Limit** shall be controlled by the **Over-Excitation Limiter** or stator current limiter without the operation of any **Protection** that could trip the **Onshore Synchronous Power Generating Module**.
- ECC.A.6.2.8.3 The **EU Generator** shall also make provision to prevent any over-excitation restriction of the **Onshore Synchronous Generating Unit** when the **Excitation System** is under manual control, other than that necessary to ensure the **Onshore Power Generating Module** is operating within its design limits.

APPENDIX E7 - PERFORMANCE REQUIREMENTS FOR CONTINUOUSLY ACTING AUTOMATIC VOLTAGE CONTROL SYSTEMS FOR AC CONNECTED ONSHORE POWER PARK MODULES AND OTSDUW PLANT AND APPARATUS AT THE INTERFACE POINT HVDC SYSTEMS AND REMOTE END HVDC CONVERTER STATIONS

- ECC.A.7.1 Scope
- ECC.A.7.1.1 This Appendix sets out the performance requirements of continuously acting automatic voltage control systems for **Onshore Power Park Modules**, **Onshore HVDC Converters Remote End HVDC Converter Stations** and **OTSDUW Plant and Apparatus** at the **Interface Point** that must be complied with by the **User**. This Appendix does not limit any site specific requirements where in **The Company's** reasonable opinion these facilities are necessary for system reasons. The control performance requirements applicable to **Configuration 2 AC Connected Offshore Power Park Modules** and **Configuration 2 DC Connected Power Park Modules** are defined in Appendix E8.
- ECC.A.7.1.2 Proposals by **EU Generators** or **HVDC System Owners** to make a change to the voltage control systems are required to be notified to **The Company** under the **Planning Code** (PC.A.1.2(b) and (c)) as soon as the **Generator** or **HVDC System Owner** anticipates making the change. The change may require a revision to the **Bilateral Agreement**.
- ECC.A.7.1.3 In the case of a **Remote End HVDC Converter** at a **HVDC Converter Station**, the control performance requirements shall be specified in the **Bilateral Agreement**. These requirements shall be consistent with those specified in ECC.6.3.2.4. In the case where the **Remote End HVDC Converter** is required to ensure the zero transfer of **Reactive Power** at the **HVDC Interface Point** then the requirements shall be specified in ECC.A.8. In the case where a wider reactive capability has been specified in ECC.6.3.2.4, then the requirements consistent with those specified in ECC.A.8. In the case where a wider reactive capability has been specified in ECC.6.3.2.4, then the requirements consistent with those specified in ECC.A.7.2 shall apply with any variations being agreed between the **User** and **The Company**.
- ECC.A.7.2 Requirements
- ECC.A.7.2.1 The Company requires that the continuously acting automatic voltage control system for the Onshore Power Park Module, Onshore HVDC Converter or OTSDUW Plant and Apparatus shall meet the following functional performance specification. If a Network Operator has confirmed to The Company that its network to which an Embedded Onshore Power Park Module or Onshore HVDC Converter or OTSDUW Plant and Apparatus is connected is restricted such that the full reactive range under the steady state voltage control requirements (ECC.A.7.2.2) cannot be utilised, The Company may specify alternative limits to the steady state voltage control range that reflect these restrictions. Where the Network Operator subsequently notifies The Company that such restriction has been removed, The Company may propose a Modification to the Bilateral Agreement (in accordance with the CUSC contract) to remove the alternative limits such that the continuously acting automatic voltage control system meets the following functional performance specification. All other requirements of the voltage control system will remain as in this Appendix.
- ECC.A.7.2.2 Steady State Voltage Control
- ECC.A.7.2.2.1 The **Onshore Power Park Module**, **Onshore HVDC Converter** or **OTSDUW Plant and Apparatus** shall provide continuous steady state control of the voltage at the **Onshore Grid Entry Point** (or **Onshore User System Entry Point** if **Embedded**) (or the **Interface Point** in the case of **OTSDUW Plant and Apparatus**) with a **Setpoint Voltage** and **Slope** characteristic as illustrated in Figure ECC.A.7.2.2a.

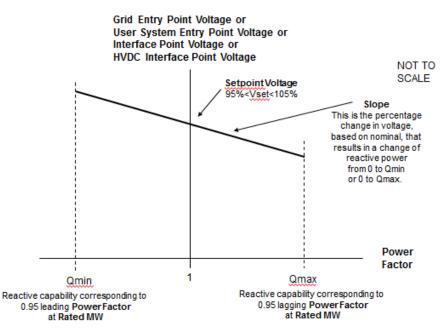
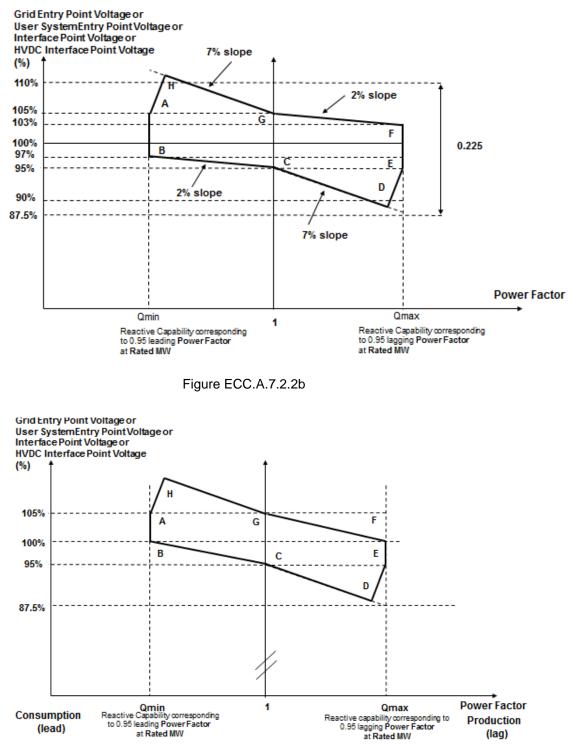
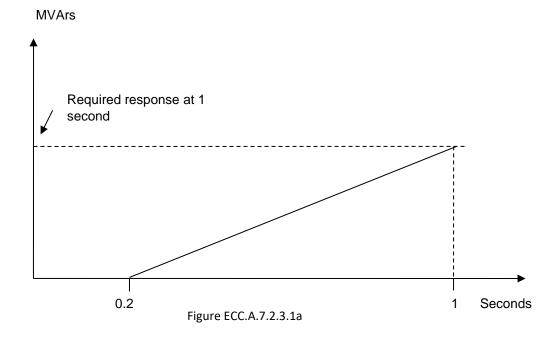



Figure ECC.A.7.2.2a

- ECC.A.7.2.2.2 The continuously acting automatic control system shall be capable of operating to a **Setpoint Voltage** between 95% and 105% with a resolution of 0.25% of the nominal voltage. For the avoidance of doubt values of 95%, 95.25%, 95.5% ... may be specified, but not intermediate values. The initial **Setpoint Voltage** will be 100%. The tolerance within which this **Setpoint Voltage** shall be achieved is specified in BC2.A.2.6. For the avoidance of doubt, with a tolerance of 0.25% and a Setpoint Voltage of 100%, the achieved value shall be between 99.75% and 100.25%. **The Company** may request the **EU Generator** or **HVDC System Owner** to implement an alternative **Setpoint Voltage** within the range of 95% to 105%. For **Embedded Generators** and **Embedded HVDC System Owners** the **Setpoint Voltage** will be discussed between **The Company** and the relevant **Network Operator** and will be specified to ensure consistency with ECC.6.3.4.
- ECC.A.7.2.2.3 The Slope characteristic of the continuously acting automatic control system shall be adjustable over the range 2% to 7% (with a resolution of 0.5%). For the avoidance of doubt values of 2%, 2.5%, 3% may be specified, but not intermediate values. The initial Slope setting will be 4%. The tolerance within which this Slope shall be achieved is specified in BC2.A.2.6. For the avoidance of doubt, with a tolerance of 0.5% and a Slope setting of 4%, the achieved value shall be between 3.5% and 4.5%. The Company may request the EU Generator or HVDC System Owner to implement an alternative slope setting within the range of 2% to 7%. For Embedded Generators and Onshore Embedded HVDC Converter Station Owners the Slope setting will be discussed between The Company and the relevant Network Operator and will be specified to ensure consistency with ECC.6.3.4.



ECC.A.7.2.2.4 Figure ECC.A.7.2.2b shows the required envelope of operation for -, OTSDUW Plant and Apparatus, Onshore Power Park Modules and Onshore HVDC Converters except for those Embedded at 33kV and below or directly connected to the National Electricity Transmission System at 33kV and below. Figure ECC.A.7.2.2c shows the required envelope of operation for Onshore Power Park Modules Embedded at 33kV and below, or directly connected to the National Electricity Transmission System at 33kV and below. Figure ECC.A.7.2.2c shows the required envelope of operation for Onshore Power Park Modules Embedded at 33kV and below, or directly connected to the National Electricity Transmission System at 33kV and below. The enclosed area within points ABCDEFGH is the required capability range within which the Slope and Setpoint Voltage can be changed.

- ECC.A.7.2.2.5 Should the operating point of the, **OTSDUW Plant and Apparatus** or **Onshore Power Park Module**, or **Onshore HVDC Converter** deviate so that it is no longer a point on the operating characteristic (figure ECC.A.7.2.2a) defined by the target **Setpoint Voltage** and **Slope**, the continuously acting automatic voltage control system shall act progressively to return the value to a point on the required characteristic within 5 seconds.
- ECC.A.7.2.2.6 Should the Reactive Power output of the OTSDUW Plant and Apparatus or Onshore Power Park Module or Onshore HVDC Converter reach its maximum lagging limit at a Onshore Grid Entry Point voltage (or Onshore User System Entry Point voltage if Embedded (or Interface Point in the case of OTSDUW Plant and Apparatus) above 95%, the OTSDUW Plant and Apparatus or Onshore Power Park Module or HVDC System shall maintain maximum lagging Reactive Power output for voltage reductions down to 95%. This requirement is indicated by the line EF in figures ECC.A.7.2.2b and ECC.A.7.2.2c as applicable. Should the Reactive Power output of the OTSDUW Plant and Apparatus or Onshore Power Park Module, or Onshore HVDC Converter reach its maximum leading limit at a Onshore Grid Entry Point voltage (or Onshore User System Entry Point voltage if Embedded or Interface Point in the case of OTSDUW Plant and Apparatus) below 105%, the OTSDUW Plant and Apparatus or Onshore Power Park Module, or Onshore HVDC Converter shall maintain maximum leading Reactive Power output for voltage increases up to 105%. This requirement is indicated by the line AB in figures ECC.A.7.2.2b and ECC.A.7.2.2c as applicable.
- ECC.A.7.2.2.7 For Onshore Grid Entry Point voltages (or Onshore User System Entry Point voltages if Embedded-or Interface Point voltages) below 95%, the lagging Reactive Power capability of the OTSDUW Plant and Apparatus or Onshore Power Park Module or Onshore HVDC **Converters** should be that which results from the supply of maximum lagging reactive current whilst ensuring the current remains within design operating limits. An example of the capability is shown by the line DE in figures ECC.A.7.2.2b and ECC.A.7.2.2c. For **Onshore Grid Entry** Point voltages (or User System Entry Point voltages if Embedded or Interface Point voltages) above 105%, the leading Reactive Power capability of the OTSDUW Plant and Apparatus or Onshore Power Park Module or Onshore HVDC System Converter should be that which results from the supply of maximum leading reactive current whilst ensuring the current remains within design operating limits. An example of the capability is shown by the line AH in figures ECC.A.7.2.2b and ECC.A.7.2.2c as applicable. Should the Reactive Power output of the OTSDUW Plant and Apparatus or Onshore Power Park Module or Onshore HVDC Converter reach its maximum lagging limit at an Onshore Grid Entry Connection Point voltage (or Onshore User System Entry Point voltage if Embedded or Interface Point in the case of OTSDUW Plant and Apparatus) below 95%, the Onshore Power Park Module, Onshore HVDC Converter shall maintain maximum lagging reactive current output for further voltage decreases. Should the Reactive Power output of the OTSDUW Plant and Apparatus or Onshore Power Park Module or Onshore HVDC Converter reach its maximum leading limit at a Onshore Grid Entry Point voltage (or User System Entry Point voltage if Embedded or Interface Point voltage in the case of an OTSDUW Plant and Apparatus) above 105%, the OTSDUW Plant and Apparatus or Onshore Power Park Module or Onshore HVDC Converter shall maintain maximum leading reactive current output for further voltage increases.
- ECC.A.7.2.2.8 All **OTSDUW Plant and Apparatus** must be capable of enabling **EU Code Users** undertaking **OTSDUW** to comply with an instruction received from **The Company** relating to a variation of the **Setpoint Voltage** at the **Interface Point** within 2 minutes of such instruction being received.
- ECC.A.7.2.2.9 For **OTSDUW Plant and Apparatus** connected to a **Network Operator's System** where the **Network Operator** has confirmed to **The Company** that its **System** is restricted in accordance with ECC.A.7.2.1, clause ECC.A.7.2.2.8 will not apply unless **The Company** can reasonably demonstrate that the magnitude of the available change in **Reactive Power** has a significant effect on voltage levels on the **Onshore National Electricity Transmission System**.
- ECC.A.7.2.3 <u>Transient Voltage Control</u>

- ECC.A.7.2.3.1 For an on-load step change in **Onshore Grid Entry Point** or **Onshore User System Entry Point** voltage, or in the case of **OTSDUW Plant and Apparatus** an on-load step change in **Transmission Interface Point** voltage, the continuously acting automatic control system shall respond according to the following minimum criteria:
 - (i) the Reactive Power output response of the, OTSDUW Plant and Apparatus or Onshore Power Park Module or Onshore HVDC Converter shall commence within 0.2 seconds of the application of the step. It shall progress linearly although variations from a linear characteristic shall be acceptable provided that the MVAr seconds delivered at any time up to 1 second are at least those that would result from the response shown in figure ECC.A.7.2.3.1a.
 - (ii) the response shall be such that 90% of the change in the Reactive Power output of the, OTSDUW Plant and Apparatus or Onshore Power Park Module, or Onshore HVDC Converter will be achieved within
 - 2 seconds, where the step is sufficiently large to require a change in the steady state **Reactive Power** output from its maximum leading value to its maximum lagging value or vice versa and
 - 1 second where the step is sufficiently large to require a change in the steady state **Reactive Power** output from zero to its maximum leading value or maximum lagging value as required by ECC.6.3.2 (or, if appropriate ECC.A.7.2.2.6 or ECC.A.7.2.2.7);
 - (iii) the magnitude of the **Reactive Power** output response produced within 1 second shall vary linearly in proportion to the magnitude of the step change.
 - (iv) within 5 seconds from achieving 90% of the response as defined in ECC.A.7.2.3.1 (ii), the peak to peak magnitude of any oscillations shall be less than 5% of the change in steady state maximum **Reactive Power**.
 - (v) following the transient response, the conditions of ECC.A.7.2.2 apply.

ECC.A.7.2.3.2 OTSDUW Plant and Apparatus or Onshore Power Park Modules or Onshore HVDC Converters shall be capable of

(a) changing its **Reactive Power** output from its maximum lagging value to its maximum

leading value, or vice versa, then reverting back to the initial level of **Reactive Power** output once every 15 seconds for at least 5 times within any 5 minute period; and

(b) changing its Reactive Power output from zero to its maximum leading value then reverting back to zero Reactive Power output at least 25 times within any 24 hour period and from zero to its maximum lagging value then reverting back to zero Reactive Power output at least 25 times within any 24 hour period. Any subsequent restriction on reactive capability shall be notified to The Company in accordance with BC2.5.3.2, and BC2.6.1.

In all cases, the response shall be in accordance to ECC.A.7.2.3.1 where the change in **Reactive Power** output is in response to an on-load step change in **Onshore Grid Entry Point** or **Onshore User System Entry Point** voltage, or in the case of **OTSDUW Plant and Apparatus** an on-load step change in **Transmission Interface Point** voltage.

ECC.A.7.2.4 <u>Power Oscillation Damping</u>

- ECC.A.7.2.4.1 The requirement for the continuously acting voltage control system to be fitted with a **Power System Stabiliser (PSS)** shall be specified if, in **The Company's** view, this is required for system reasons. However if a **Power System Stabiliser** is included in the voltage control system its settings and performance shall be agreed with **The Company** and commissioned in accordance with BC2.11.2. To allow assessment of the performance before on-load commissioning the **Generator** will provide to **The Company** a report covering the areas specified in ECP.A.3.2.2.
- ECC.A.7.2.5 Overall Voltage Control System Characteristics
- ECC.A.7.2.5.1 The continuously acting automatic voltage control system is required to respond to minor variations, steps, gradual changes or major variations in **Onshore Grid Entry Point** voltage (or **Onshore User System Entry Point** voltage if **Embedded** or **Interface Point** voltage in the case of **OTSDUW Plant and Apparatus**).
- ECC.A.7.2.5.2 The overall voltage control system shall include elements that limit the bandwidth of the output signal. The bandwidth limiting must be consistent with the speed of response requirements and ensure that the highest frequency of response cannot excite torsional oscillations on other plant connected to the network. A bandwidth of 0-5Hz would be judged to be acceptable for this application. All other control systems employed within the **OTSDUW Plant and Apparatus** or **Onshore Power Park Module** or **Onshore HVDC Converter** should also meet this requirement
- ECC.A.7.2.5.3 The response of the voltage control system (including the **Power System Stabiliser** if employed) shall be demonstrated by testing in accordance with ECP.A.6.
- ECC.A.7.3 Reactive Power Control
- ECC.A.7.3.1 As defined in ECC.6.3.8.3.4, **Reactive Power** control mode of operation is not required in respect of **Onshore Power Park Modules** or **OTSDUW Plant and Apparatus** or **Onshore HVDC Converters** unless otherwise specified by **The Company** in coordination with the relevant **Network Operator**. However where there is a requirement for **Reactive Power** control mode of operation, the following requirements shall apply.
- ECC.A.7.3.2 The Onshore Power Park Module or OTSDUW Plant and Apparatus or Onshore HVDC Converter shall be capable of setting the Reactive Power setpoint anywhere in the Reactive Power range as specified in ECC.6.3.2.4 with setting steps no greater than 5 MVAr or 5% (whichever is smaller) of full Reactive Power, controlling the reactive power at the Grid Entry Point or User System Entry Point if Embedded to an accuracy within plus or minus 5MVAr or plus or minus 5% (whichever is smaller) of the full Reactive Power.
- ECC.A.7.3.3 Any additional requirements for **Reactive Power** control mode of operation shall be specified

by The Company in coordination with the relevant Network Operator..

ECC.A.7.4 **Power Factor** Control

- ECC.A.7.4.1 As defined in ECC.6.3.8.4.3, **Power Factor** control mode of operation is not required in respect of **Onshore Power Park Modules** or **OTSDUW Plant and Apparatus** or **Onshore HVDC Converters** unless otherwise specified by **The Company** in coordination with the relevant **Network Operator**. However where there is a requirement for **Power Factor** control mode of operation, the following requirements shall apply.
- ECC.A.7.4.2 The Onshore Power Park Module or OTSDUW Plant and Apparatus or Onshore HVDC Converter shall be capable of controlling the Power Factor at the Grid Entry Point or User System Entry Point (if Embedded) within the required Reactive Power range as specified in ECC.6.3.2.2.1 and ECC.6.3.2.4 to a specified target Power Factor. The Company shall specify the target Power Factor value (which shall be achieved within 0.01 of the set Power Factor), its tolerance and the period of time to achieve the target Power Factor following a sudden change of Active Power output. The tolerance of the target Power Factor shall be expressed through the tolerance of its corresponding Reactive Power. This Reactive Power tolerance shall be expressed by either an absolute value or by a percentage of the maximum Reactive Power of the Onshore Power Park Module or OTSDUW Plant and Apparatus or Onshore HVDC Converter. The details of these requirements being pursuant to the terms of the Bilateral Agreement.
- ECC.A.7.4.3 Any additional requirements for **Power Factor** control mode of operation shall be specified by **The Company** in coordination with the relevant **Network Operator**.

APPENDIX E8 - PERFORMANCE REQUIREMENTS FOR CONTINUOUSLY ACTING AUTOMATIC VOLTAGE CONTROL SYSTEMS FOR CONFIGURATION 2 AC CONNECTED OFFSHORE POWER PARK MODULES AND CONFIGURATION 2 DC CONNECTED POWER PARK MODULES

- ECC.A.8.1 <u>Scope</u>
- ECC.A.8.1.1 This Appendix sets out the performance requirements of continuously acting automatic voltage control systems for Configuration 2 AC Connected Offshore Power Park Modules and Configuration 2 DC Connected Power Park Modules that must be complied with by the EU Code User. This Appendix does not limit any site specific requirements that may be specified where in The Company's reasonable opinion these facilities are necessary for system reasons.
- ECC.A.8.1.2 These requirements also apply to **Configuration 2 DC Connected Power Park Modules**. In the case of a **Configuration 1 DC Connected Power Park Module** the technical performance requirements shall be specified by **The Company**. Where the **EU Generator** in respect of a **DC Connected Power Park Module** has agreed to a wider reactive capability range as defined under ECC.6.3.2.5 and ECC.6.2.3.6 then the requirements that apply will be specified by **The Company** and which shall reflect the performance requirements detailed in ECC.A.8.2 below but with different parameters such as droop and **Setpoint Voltage**.
- ECC.A.8.1.3 Proposals by **EU Generators** to make a change to the voltage control systems are required to be notified to **The Company** under the **Planning Code** (PC.A.1.2(b) and (c)) as soon as the **Generator** anticipates making the change. The change may require a revision to the **Bilateral Agreement**.
- ECC.A.8.2 Requirements
- ECC.A.8.2.1 The Company requires that the continuously acting automatic voltage control system for the Configuration 2 AC connected Offshore Power Park Module and Configuration 2 DC Connected Power Park Module shall meet the following functional performance specification.
- ECC.A.8.2.2 <u>Steady State Voltage Control</u>
- ECC.A.8.2.2.1 The **Configuration 2 AC connected Offshore Power Park Module** and **Configuration 2 DC Connected Power Park Module** shall provide continuous steady state control of the voltage at the **Offshore Connection Point** with a **Setpoint Voltage** and **Slope** characteristic as illustrated in Figure ECC.A.8.2.2a.

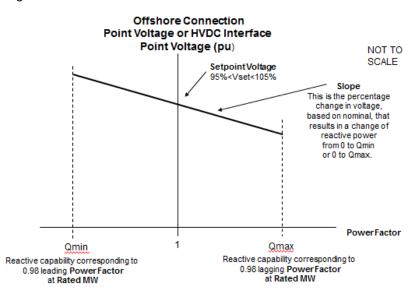
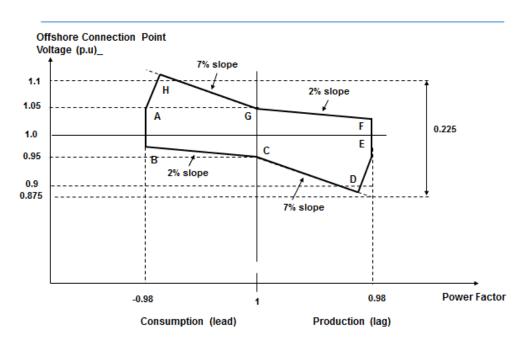
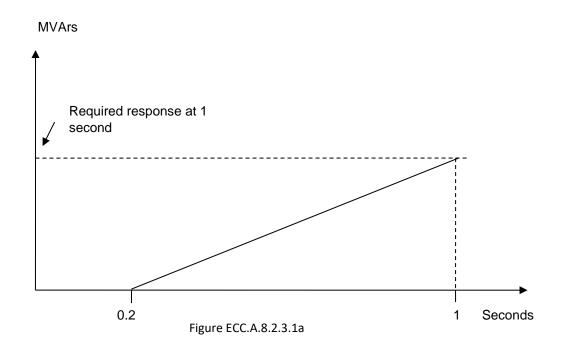



Figure ECC.A.8.2.2a

- ECC.A.8.2.2.2 The continuously acting automatic control system shall be capable of operating to a **Setpoint Voltage** between 95% and 105% with a resolution of 0.25% of the nominal voltage. For the avoidance of doubt values of 95%, 95.25%, 95.5% ... may be specified, but not intermediate values. The initial **Setpoint Voltage** will be 100%. The tolerance within which this **Setpoint Voltage** shall be achieved is specified in BC2.A.2.6. For the avoidance of doubt, with a tolerance of 0.25% and a Setpoint Voltage of 100%, the achieved value shall be between 99.75% and 100.25%. **The Company** may request the **EU Generator** to implement an alternative **Setpoint Voltage** within the range of 95% to 105%.
- ECC.A.8.2.2.3 The **Slope** characteristic of the continuously acting automatic control system shall be adjustable over the range 2% to 7% (with a resolution of 0.5%). For the avoidance of doubt values of 2%, 2.5%, 3% may be specified, but not intermediate values. The initial **Slope** setting will be 4%. The tolerance within which this **Slope** shall be achieved is specified in BC2.A.2.6. For the avoidance of doubt, with a tolerance of 0.5% and a **Slope** setting of 4%, the achieved value shall be between 3.5% and 4.5%. **The Company** may request the **EU Generator** to implement an alternative slope setting within the range of 2% to 7%.


- ECC.A.8.2.2.4 Figure ECC.A.8.2.2b shows the required envelope of operation for **Configuration 2 AC connected Offshore Power Park Module** and **Configuration 2 DC Connected Power Park Module**. The enclosed area within points ABCDEFGH is the required capability range within which the **Slope** and **Setpoint Voltage** can be changed.
- ECC.A.8.2.2.5 Should the operating point of the **Configuration 2 AC connected Offshore Power Park or Configuration 2 DC Connected Power Park Module** deviate so that it is no longer a point on the operating characteristic (Figure ECC.A.8.2.2a) defined by the target **Setpoint Voltage** and **Slope**, the continuously acting automatic voltage control system shall act progressively to return the value to a point on the required characteristic within 5 seconds.

- ECC.A.8.2.2.6 Should the Reactive Power output of the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module reach its maximum lagging limit at an Offshore Grid Entry Point or Offshore User System Entry Point or HVDC Interface Point voltage above 95%, the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module shall maintain maximum lagging Reactive Power output for voltage reductions down to 95%. This requirement is indicated by the line EF in figure ECC.A.8.2.2b. Should the Reactive Power output of the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module reach its maximum leading limit at the Offshore Grid Entry Point or Offshore User System Entry Point or HVDC Interface Point voltage below 105%, the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module reach its maximum leading limit at the Offshore Grid Entry Point or Offshore User System Entry Point or HVDC Interface Point voltage below 105%, the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module shall maintain maximum leading Reactive Power output for voltage increases up to 105%. This requirement is indicated by the line AB in figures ECC.A.8.2.2b.
- ECC.A.8.2.2.7 For Offshore Grid Entry Point or User System Entry Point or HVDC Interface Point voltages below 95%, the lagging Reactive Power capability of the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park **Module** should be that which results from the supply of maximum lagging reactive current whilst ensuring the current remains within design operating limits. An example of the capability is shown by the line DE in figures ECC.A.8.2.2b. For Offshore Grid Entry Point or Offshore User System Entry Point voltages or HVDC Interface Point voltages above 105%, the leading Reactive Power capability of the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module should be that which results from the supply of maximum leading reactive current whilst ensuring the current remains within design operating limits. An example of the capability is shown by the line AH in figures ECC.A.8.2.2b. Should the Reactive Power output of the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module reach its maximum lagging limit at an Offshore Grid Entry Point or Offshore User System Entry voltage or HVDC Interface Point voltage below 95%, the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module shall maintain maximum lagging reactive current output for further voltage decreases. Should the Reactive Power output of the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module reach its maximum leading limit at an Offshore Grid Entry Point or Offshore User System Entry voltage or HVDC Interface Point voltage above 105%, the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module shall maintain maximum leading reactive current output for further voltage increases.

ECC.A.8.2.3 Transient Voltage Control

- ECC.A.8.2.3.1 For an on-load step change in **Offshore Grid Entry Point** or **Offshore User System Entry Point** voltage or **HVDC Interface Point** voltage, the continuously acting automatic control system shall respond according to the following minimum criteria:
 - (i) the Reactive Power output response of the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module shall commence within 0.2 seconds of the application of the step. It shall progress linearly although variations from a linear characteristic shall be acceptable provided that the MVAr seconds delivered at any time up to 1 second are at least those that would result from the response shown in figure ECC.A.8.2.3.1a.
 - (ii) the response shall be such that 90% of the change in the Reactive Power output of the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module will be achieved within
 - 2 seconds, where the step is sufficiently large to require a change in the steady state **Reactive Power** output from its maximum leading value to its maximum lagging value or vice versa and

- 1 second where the step is sufficiently large to require a change in the steady state **Reactive Power** output from zero to its maximum leading value or maximum lagging value as required by ECC.6.3.2 (or, if appropriate ECC.A.8.2.2.6 or ECC.A.8.2.2.7);
- (iii) the magnitude of the **Reactive Power** output response produced within 1 second shall vary linearly in proportion to the magnitude of the step change.
- (iv) within 5 seconds from achieving 90% of the response as defined in ECC.A.8.2.3.1 (ii), the peak to peak magnitude of any oscillations shall be less than 5% of the change in steady state maximum **Reactive Power**.
- (v) following the transient response, the conditions of ECC.A.8.2.2 apply.

ECC.A.8.2.3.2 Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module shall be capable of

- (a) changing their **Reactive Power** output from maximum lagging value to maximum leading value, or vice versa, then reverting back to the initial level of **Reactive Power** output once every 15 seconds for at least 5 times within any 5 minute period; and
- (b) changing Reactive Power output from zero to maximum leading value then reverting back to zero Reactive Power output at least 25 times within any 24 hour period and from zero to its maximum lagging value then reverting back to zero Reactive Power output at least 25 times within any 24 hour period. Any subsequent restriction on reactive capability shall be notified to The Company in accordance with BC2.5.3.2, and BC2.6.1.

In all cases, the response shall be in accordance to ECC.A.8.2.3.1 where the change in **Reactive Power** output is in response to an on-load step change in **Offshore Grid Entry Point** or **Offshore User System Entry Point** voltage or **HVDC Interface Point** voltage.

ECC.A.8.2.4 Power Oscillation Damping

- ECC.A.8.2.4.1 The requirement for the continuously acting voltage control system to be fitted with a **Power System Stabiliser (PSS)** shall be specified if, in **The Company's** view, this is required for system reasons. However if a **Power System Stabiliser** is included in the voltage control system its settings and performance shall be agreed with **The Company** and commissioned in accordance with BC2.11.2. To allow assessment of the performance before on-load commissioning the **Generator** or **HVDC System Owner** will provide to **The Company** a report covering the areas specified in ECP.A.3.2.2.
- ECC.A.8.2.5 Overall Voltage Control System Characteristics
- ECC.A.8.2.5.1 The continuously acting automatic voltage control system is required to respond to minor variations, steps, gradual changes or major variations in **Offshore Grid Entry Point** or **Offshore User System Entry Point** or **HVDC Interface Point** voltage.
- ECC.A.8.2.5.2 The overall voltage control system shall include elements that limit the bandwidth of the output signal. The bandwidth limiting must be consistent with the speed of response requirements and ensure that the highest frequency of response cannot excite torsional oscillations on other plant connected to the network. A bandwidth of 0-5Hz would be judged to be acceptable for this application. All other control systems employed within the **Configuration 2 AC connected Offshore Power Park Module** or **Configuration 2 DC Connected Power Park Module** should also meet this requirement
- ECC.A.8.2.5.3 The response of the voltage control system (including the **Power System Stabiliser** if employed) shall be demonstrated by testing in accordance with ECP.A.6.
- ECC.A.8.3 Reactive Power Control
- ECC.A.8.3.1 Reactive Power control mode of operation is not required in respect of Configuration 2 AC connected Offshore Power Park Modules or Configuration 2 DC Connected Power Park Modules unless otherwise specified by The Company. However where there is a requirement for Reactive Power control mode of operation, the following requirements shall apply.
- ECC.A.8.3.2 Configuration 2 AC connected Offshore Power Park Modules or Configuration 2 DC Connected Power Park Modules shall be capable of setting the Reactive Power setpoint anywhere in the Reactive Power range as specified in ECC.6.3.2.8.2 with setting steps no greater than 5 MVAr or 5% (whichever is smaller) of full Reactive Power, controlling the Reactive Power at the Offshore Grid Entry Point or Offshore User System Entry Point or HVDC Interface Point to an accuracy within plus or minus 5MVAr or plus or minus 5% (whichever is smaller) of the full Reactive Power.
- ECC.A.8.3.3 Any additional requirements for **Reactive Power** control mode of operation shall be specified by **The Company**.
- ECC.A.8.4 **Power Factor** Control
- ECC.A.8.4.1 **Power Factor** control mode of operation is not required in respect of **Configuration 2 AC connected Offshore Power Park Modules** or **Configuration 2 DC Connected Power Park Modules** unless otherwise specified by **The Company**. However where there is a requirement for **Power Factor** control mode of operation, the following requirements shall apply.
- ECC.A.8.4.2 Configuration 2 AC connected Offshore Power Park Modules or Configuration 2 DC Connected Power Park Modules shall be capable of controlling the Power Factor at the Offshore Grid Entry Point or Offshore User System Entry Point or HVDC Interface Point within the required Reactive Power range as specified in ECC.6.3.2.8.2 with a target Power Factor. The Company shall specify the target Power Factor (which shall be achieved to within 0.01 of the set Power Factor), its tolerance and the period of time to achieve the target Power Factor following a sudden change of Active Power output. The tolerance of the target Power Factor shall be expressed through the tolerance of its corresponding Reactive Power.

This **Reactive Power** tolerance shall be expressed by either an absolute value or by a percentage of the maximum **Reactive Power** of the **Configuration 2 AC connected Offshore Power Park Module** or **Configuration 2 DC Connected Power Park Module**. The details of these requirements being specified by **The Company**.

ECC.A.8.4.3 Any additional requirements for **Power Factor** control mode of operation shall be specified by **The Company**.

< END OF EUROPEAN CONNECTION CONDITIONS>

OPERATING CODE NO. 6

(OC6)

DEMAND CONTROL

CONTENTS

(This contents page does not form part of the Grid Code)

Paragraph No/Title	Page Number
OC6.1 INTRODUCTION	2
OC6.2 OBJECTIVE	
OC6.3 SCOPE	3
OC6.4 PROCEDURE FOR THE NOTIFICATION OF DEMAND CONTROL INITIATED BY NET OPERATORS	-
OC6.5 PROCEDURE FOR THE IMPLEMENTATION OF DEMAND CONTROL OF INSTRUCTIONS OF THE COMPANY	
OC6.6 AUTOMATIC LOW FREQUENCY DEMAND DISCONNECTION	
OC6.7 EMERGENCY MANUAL DISCONNECTION	9
OC6.8 OPERATION OF THE BALANCING MECHANISM DURING DEMAND CONTROL	10
APPENDIX 1 - EMERGENCY MANUAL DEMAND REDUCTION/DISCONNECTION SUMMAR	Y SHEET 11

OC6.1 INTRODUCTION

- OC6.1.1 Operating Code No.6 ("OC6") is concerned with the provisions to be made by Network Operators, and in relation to Non-Embedded Customers by The Company, to permit the reduction of Demand in the event of insufficient Active Power generation being available to meet Demand, or in the event of breakdown or operating problems (such as in respect of System Frequency, System voltage levels or System thermal overloads) on any part of the National Electricity Transmission System.
- OC6.1.2 **OC6** deals with the following:
 - (a) **Customer** voltage reduction initiated by **Network Operators** (other than following the instruction of **The Company**);
 - (b) **Customer Demand** reduction by **Disconnection** initiated by **Network Operators** (other than following the instruction of **The Company**);
 - (c) **Demand** reduction instructed by **The Company**;
 - (d) automatic low frequency Demand Disconnection; and
 - (e) emergency manual **Demand Disconnection**.

The term "**Demand Control**" is used to describe any or all of these methods of achieving a **Demand** reduction.

- OC6.1.3 The procedure set out in **OC6** includes a system of warnings to give advance notice of **Demand Control** that may be required by **The Company** under this **OC6**.
- OC6.1.4 Data relating to **Demand Control** should include details relating to MW
- OC6.1.5 The Electricity Supply Emergency Code as reviewed and published from time to time by the appropriate government department for energy emergencies provides that in certain circumstances consumers are given a certain degree of "protection" when rota disconnections are implemented pursuant to a direction under the Energy Act 1976. No such protection can be given in relation to **Demand Control** under the **Grid Code**.

To invoke the Electricity Supply Emergency Code the Secretary of State will issue direction(s) to all **Network Operators** affected, exercising emergency powers under the Electricity Act 1989 or by virtue of an Order in Council under the Energy Act 1976. Following the issuance of such direction, **The Company** will act to coordinate the implementation of an agreed schedule of rota disconnections across all affected **Network Operators'** licence area(s) and to disseminate any information as necessary throughout the period of the emergency in accordance with the instructions **The Company** receives from the Secretary of State or those authorised on their behalf for this purpose.

- OC6.1.6 Connections between Large Power Stations and the National Electricity Transmission System and between such Power Stations and a User System will not, as far as possible, be disconnected by The Company pursuant to the provisions of OC6 insofar as that would interrupt supplies
 - (a) for the purposes of operation of the **Power Station** (including **Start-Up** and shutting down);
 - (b) for the purposes of keeping the **Power Station** in a state such that it could be Started-up when it is off-**Load** for ordinary operational reasons; or
 - (c) for the purposes of compliance with the requirements of a Nuclear Site Licence.

Demand Control pursuant to this **OC6** therefore applies subject to this exception.

OC6.2 <u>OBJECTIVE</u>

- OC6.2.1 The overall objective of OC6 is to require the provision of facilities to enable The Company to achieve reduction in Demand that will either avoid or relieve operating problems on the National Electricity Transmission System, in whole or in part, and thereby to enable The Company to instruct Demand Control in a manner that does not unduly discriminate against, or unduly prefer, any one or any group of Suppliers or Network Operators or Non-Embedded Customers. It is also to ensure that The Company is notified of any Demand Control utilised by Users other than following an instruction from The Company.
- OC6.2.2 For certain **Grid Supply Points** in Scotland it is recognised that it may not be possible to meet the requirements in OC6.4.5(b), OC6.5.3(b) (in respect of **Demand Disconnection** only), OC6.5.6 (ii), OC6.6.2 (c) and OC6.7.2 (b). In these circumstances **The Company** and the relevant **Network Operator(s)** will agree equivalent requirements covering a number of **Grid Supply Points**. If **The Company** and the relevant **Network Operator** fail to agree equivalent requirements covering a number of **Grid Supply Points**, then the relevant **Network Operator** will apply the provisions of OC6.4.5(b), OC6.5.3(b) (in respect of **Demand Disconnection** only), OC6.5.6(ii), OC6.6.2(c) and OC6.7.2(b) as evenly as reasonably practicable over the relevant **Network Operator's** entire **System**.
- OC6.3 SCOPE
- OC6.3.1 OC6 applies to The Company and to Users which in OC6 means:
 - (a) Generators; and
 - (b) Network Operators.

It also applies to The Company in relation to Non-Embedded Customers.

- OC6.3.2 Explanation
- OC6.3.2.1 (a) Although OC6 does not apply to **Suppliers**, the implementation of **Demand Control** may affect their **Customers**.
 - (b) In all situations envisaged in OC6, Demand Control is exercisable:
 - (i) by reference to a Network Operator's System; or
 - (ii) by The Company in relation to Non-Embedded Customers.
 - (c) **Demand Control** in all situations relates to the physical organisation of the **Total System**, and not to any contractual arrangements that may exist.
- OC6.3.2.2 (a) Accordingly, **Demand Control** will be exercisable with reference to, for example, five per cent (or such other figure as may be utilised under OC6.5) tranches of **Demand** by a **Network Operator**.
 - (b) For a **Supplier**, whose **Customers** may be spread throughout a number of **User Systems** (and the **National Electricity Transmission System**), to split its **Customers** into five per cent (or such other figure as may be utilised under OC6.5) tranches of **Demand** would not result in **Demand Control** being implemented effectively on the **Total System**.
 - (c) Where **Demand Control** is needed in a particular area, **The Company** would not know which **Supplier** to contact and (even if it were to) the resulting **Demand Control** implemented, because of the diversity of contracts, may well not produce the required result.
- OC6.3.2.3 (a) **Suppliers** should note, however, that, although implementation of **Demand Control** in respect of their **Customers** is not exercisable by them, their **Customers** may be affected by **Demand Control**.
 - (b) This will be implemented by **Network Operators** where the **Customers** are within **User Systems** directly connected to the **National Electricity Transmission System** and by **The Company** where they are **Non-Embedded Customers**.

- (c) The contractual arrangements relating to **Customers** being supplied by **Suppliers** will, accordingly, need to reflect this.
- (d) The existence of a commercial arrangement for the provision of Customer Demand Management or Commercial Ancillary Services does not relieve a Network Operator from the Demand Control provisions of OC6.5, OC6.6 and OC6.7, which may be exercised from time to time.

OC6.4 PROCEDURE FOR THE NOTIFICATION OF DEMAND CONTROL INITIATED BY NETWORK OPERATORS (OTHER THAN FOLLOWING THE INSTRUCTION OF THE COMPANY)

- OC6.4.1 Pursuant to the provisions of OC1, in respect of the time periods prior to 1100 hours each day, each Network Operator will notify The Company of all Customer voltage reductions and/or restorations and Demand Disconnection or reconnection, on a Grid Supply Point and halfhourly basis, which will or may, either alone or when aggregated with any other Demand Control planned by that Network Operator, result in a Demand change equal to or greater than the Demand Control Notification Level averaged over any half hour on any Grid Supply Point, which is planned to be instructed by the Network Operator other than following an instruction from The Company relating to Demand reduction.
- OC6.4.2 Under OC6, each Network Operator will notify The Company in writing by 1100 hours each day (or such other time specified by The Company from time to time) for the next day (except that it will be for the next 3 days on Fridays and 2 days on Saturdays and may be longer (as specified by The Company at least one week in advance) to cover holiday periods) of Customer voltage reduction or Demand Disconnection which will or may result in a Demand change equal to or greater than the Demand Control Notification Level averaged over any half hour on any Grid Supply Point, (or which when aggregated with any other Demand Control planned by that Network Operator is equal to or greater than the Demand Control Notification Level), planned to take place during the next Operational Day.
- OC6.4.3 When the **Customer** voltage reduction or **Demand Disconnection** which may result in a **Demand** change equal to or greater than the **Demand Control Notification Level** averaged over any half hour on any **Grid Supply Point** (or which when aggregated with any other **Demand Control** planned or implemented by that **Network Operator** is equal to or greater than the **Demand Control Notification Level**) is planned after 1100 hours, each **Network Operator** must notify **The Company** as soon as possible after the decision to implemented immediately after the decision to implement is made, each **Network Operator** must notify **The Company** within five minutes of implementation.
- OC6.4.4 Where, after **The Company** has been notified, whether pursuant to **OC1**, OC6.4.2 or OC6.4.3, the planned **Customer** voltage reduction or **Demand Disconnection** is changed, the **Network Operator** will notify **The Company** as soon as possible of the new plans, or if the **Customer** voltage reduction or **Demand Disconnection** implemented is different to that notified, the **Network Operator** will notify **The Company** of what took place within five minutes of implementation.
- OC6.4.5 Any notification under OC6.4.2, OC6.4.3 or OC6.4.4 will contain the following information on a **Grid Supply Point** and half hourly basis:
 - (a) the proposed (in the case of prior notification) and actual (in the case of subsequent notification) date, time and duration of implementation of the **Customer** voltage reduction or **Demand Disconnection**; and
 - (b) the proposed reduction in **Demand** by use of the **Customer** voltage reduction or **Demand Disconnection**.
- OC6.4.6 Pursuant to the provisions of OC1.5.6, each **Network Operator** will supply to **The Company** details of the amount of **Demand** reduction actually achieved by use of the **Customer** voltage reduction or **Demand Disconnection**.

OC6.5 PROCEDURE FOR THE IMPLEMENTATION OF DEMAND CONTROL ON THE INSTRUCTIONS OF THE COMPANY

- OC6.5.1 A National Electricity Transmission System Warning High Risk of Demand Reduction will, where possible, be issued by The Company, as more particularly set out in OC6.5.4, OC7.4.8 and BC1.5.4 when The Company anticipates that it will or may instruct a Network Operator to implement Demand reduction. It will, as provided in OC6.5.10 and OC7.4.8.2, also be issued to Non-Embedded Customers.
- OC6.5.2 Where **The Company** expects to instruct **Demand** reduction within the following 30 minutes, **The Company** will where possible, issue a **National Electricity Transmission System Warning - Demand Control Imminent** in accordance with OC7.4.8.2(c) and OC7.4.8.6.
- OC6.5.3 (a) Whether a National Electricity Transmission System Warning High Risk of Demand Reduction or National Electricity Transmission System Warning - Demand Control Imminent has been issued or not:
 - (i) provided the instruction relates to not more than 20 per cent of its total **Demand** (measured at the time the **Demand** reduction is required); and
 - (ii) if the instruction relates to less than 20 per cent of its total Demand, is in
 - two voltage reduction stages of between 2 and 4 percent, each of which can be expected to deliver around 1.5 percent **Demand** reduction; and
 - up to three **Demand Disconnection** stages, each of which can reasonably be expected to deliver between four and six percent **Demand** reduction,

each **Network Operator** will abide by the instructions of **The Company**, which should specify whether a voltage reduction or **Demand Disconnection** stage is required; or

(iii) if the instruction relates to less than 20 per cent of its total **Demand**, is in four **Demand Disconnection** stages each of which can reasonably be expected to deliver between four and six per cent **Demand** reduction,

each **Network Operator** will abide by the instructions of **The Company** with regard to **Demand** reduction under OC6.5 without delay.

- (b) The **Demand** reduction must be achieved within the **Network Operator's System** as far as possible uniformly across all **Grid Supply Points** (unless otherwise specified in the **National Electricity Transmission System Warning High Risk of Demand Reduction**) either by **Customer** voltage reduction or by **Demand Disconnection**.
- (c) **Demand Control** initiated by voltage reduction shall be initiated as soon as possible but in any event no longer than two minutes from the instruction being received from **The Company**, and completed within 10 minutes of the instruction being received from **The Company**.
- (d) Demand Control initiated by Demand Disconnection shall be initiated as soon as possible but in any event no longer than two minutes from the instruction being received from The Company, and completed within five minutes of the instruction being received from The Company.
- (e) Each **Network Operator** must notify **The Company** in writing by calendar week 24 each year, for the succeeding **Financial Year** onwards, whether **Demand Control** is to be implemented either:
 - i) by a combination of voltage reduction and Demand Disconnection; or
 - ii) Demand Disconnection alone;

together with the magnitude of the voltage reduction stages (where applicable) and for **Demand Disconnection** stages, the demand reduction anticipated. Thereafter, any changes must be notified in writing to **The Company** at least 10 **Business Days** prior to

the change coming into effect.

- OC6.5.4
- (a) Where The Company wishes to instruct a Demand reduction of more than 20 per cent of a Network Operator's Demand (measured at the time the Demand reduction is required), it shall, if it is able, issue a National Electricity Transmission System Warning - High Risk of Demand Reduction to the Network Operator by 1600 hours on the previous day. The warning will state the percentage level of Demand reduction that The Company may want to instruct (measured at the time the Demand reduction is required).
 - (b) The National Electricity Transmission System Warning High Risk of Demand Reduction will specify the percentage of Demand reduction that The Company may require in integral multiples of the percentage levels notified by Users under OC6.5.3(c) up to (and including) 20 per cent and of five per cent above 20 per cent and will not relate to more than 40 per cent of Demand (measured at the time the Demand reduction is required) of the Demand on the User System of a Network Operator.
 - (c) If The Company has issued the National Electricity Transmission System Warning -High Risk of Demand Reduction by 1600 hours on the previous day, on receipt of it, the relevant Network Operator shall make available the percentage reduction in Demand specified for use within the period of the National Electricity Transmission System Warning.
 - (d) If The Company has not issued the National Electricity Transmission System Warning - High Risk of Demand Reduction by 1600 hours the previous day, but after that time, the Network Operator shall make available as much of the required Demand reduction as it is able, for use within the period of the National Electricity Transmission System Warning.
- OC6.5.5

(a) If The Company has given a National Electricity Transmission System Warning - High Risk of Demand Reduction to a Network Operator, and has issued it by 1600 hours on the previous day, it can instruct the Network Operator to reduce its Demand by the percentage specified in the National Electricity Transmission System Warning.

- (b) The Company accepts that if it has not issued the National Electricity Transmission System Warning - High Risk of Demand Reduction by 1600 hours on the previous day or if it has issued it by 1600 hours on the previous day, but it requires a further percentage of Demand reduction (which may be in excess of 40 per cent of the total Demand on the User System of the Network Operator (measured at the time the Demand reduction is required) from that set out in the National Electricity Transmission System Warning, it can only receive an amount that can be made available at that time by the Network Operator.
- (c) Other than with regard to the proviso, the provisions of OC6.5.3 shall apply to those instructions.
- OC6.5.6 Once a **Demand** reduction has been applied by a **Network Operator** at the instruction of **The Company**, the **Network Operator** may interchange the **Customers** to whom the **Demand** reduction has been applied provided that,
 - (i) the percentage of **Demand** reduction at all times within the **Network Operator's System** does not change; and
 - (ii) at all times it is achieved within the Network Operator's System as far as possible uniformly across all Grid Supply Points (unless otherwise specified in the National Electricity Transmission System Warning - High Risk of Demand Reduction if one has been issued),
 - until The Company instructs that Network Operator in accordance with OC6.

- OC6.5.7 Each **Network Operator** will abide by the instructions of **The Company** with regard to the restoration of **Demand** under OC6.5 without delay. It shall not restore **Demand** until it has received such instruction. The restoration of **Demand** must be achieved as soon as possible and the process of restoration must begin within 2 minutes of the instruction being given by **The Company**.
- OC6.5.8 In circumstances of protracted shortage of generation or where a statutory instruction has been given (eg. a fuel security period) and when a reduction in **Demand** is envisaged by **The Company** to be prolonged, **The Company** will notify the **Network Operator** of the expected duration.
- OC6.5.9 The **Network Operator** will notify **The Company** in writing that it has complied with **The Company's** instruction under OC6.5, within five minutes of so doing, together with an estimation of the **Demand** reduction or restoration achieved, as the case may be.
- OC6.5.10 The Company may itself implement Demand reduction and subsequent restoration on Non-Embedded Customers as part of a Demand Control requirement and it will organise the National Electricity Transmission System so that it will be able to reduce Demand by Disconnection of, or Customer voltage reduction to, all or any Non-Embedded Customers. Equivalent provisions to those in OC6.5.4 shall apply to issuing a National Electricity Transmission System Warning - High Risk of Demand Reduction to Non-Embedded Customers, as envisaged in OC7.4.8.
- OC6.5.11 Pursuant to the provisions of OC1.5.6, the **Network Operator** will supply to **The Company** details of the amount of **Demand** reduction or restoration actually achieved.

OC6.6 AUTOMATIC LOW FREQUENCY DEMAND DISCONNECTION

- OC6.6.1 Each **Network Operator** will make arrangements that will enable automatic low **Frequency Disconnection** of at least:
 - 60 per cent of its total Demand (based on Annual ACS Conditions) at the time of forecast National Electricity Transmission System peak Demand where such Network Operator's System is connected to the National Electricity Transmission System in NGET's Transmission Area
 - (ii) 40 per cent of its total Demand (based on Annual ACS Conditions) at the time of forecast National Electricity Transmission System peak where such Network Operator's System is connected to the National Electricity Transmission System in either SPT's or SHETL's Transmission Area

in order to seek to limit the consequences of a major loss of generation or an **Event** on the **Total System** which leaves part of the **Total System** with a generation deficit. Where a **Network Operator's System** is connected to the **National Electricity Transmission System** in more than one **Transmission Area**, the figure above for the **Transmission Area** in which the majority of the **Network Operator's Demand** is connected shall apply.

- (a) The Demand of each Network Operator which is subject to automatic low Frequency Disconnection will be split into discrete MW blocks.
 - (b) The number, size (% Demand) and the associated low Frequency settings of these blocks, will be as specified in Table CC.A.5.5.1a and Table ECC.A.5.5.1a. The Company will keep the settings under review.
 - (c) The distribution of the blocks will be such as to give a reasonably uniform Disconnection within the Network Operator's System, as the case may be, across all Grid Supply Points.
 - (d) Each Network Operator will notify The Company in writing by calendar week 24 each year of the details of the automatic low Frequency Demand Disconnection on its User System. The information provided should identify, for each Grid Supply Point at the date and time of the annual peak of the National Electricity Transmission System Demand at Annual ACS Conditions (as notified pursuant to OC1.4.2), the frequency settings at which Demand Disconnection will be initiated and the amount of Demand disconnected at each such setting.
- OC6.6.3 Where conditions are such that, following automatic low **Frequency Demand Disconnection**, and the subsequent **Frequency** recovery, it is not possible to restore a large proportion of the total **Demand** so disconnected within a reasonable period of time, **The Company** may instruct a **Network Operator** to implement additional **Demand Disconnection** manually, and restore an equivalent amount of the **Demand** that had been disconnected automatically. The purpose of such action is to ensure that a subsequent fall in **Frequency** will again be contained by the operation of automatic low **Frequency Demand Disconnection**.
- OC6.6.4 Once an automatic low **Frequency Demand Disconnection** has taken place, the **Network Operator** on whose **User System** it has occurred, will not reconnect until **The Company** instructs that **Network Operator** to do so in accordance with **OC6**.
- OC6.6.5 Once the **Frequency** has recovered, each **Network Operator** will abide by the instructions of **The Company** with regard to reconnection under OC6.6 without delay. Reconnection must be achieved as soon as possible and the process of reconnection must begin within 2 minutes of the instruction being given by **The Company**.
- OC6.6.6 (a) Non-Embedded Customers Pumped Storage Generators and Pumped Storage Generators, must provide automatic low Frequency disconnection, which will be split into discrete blocks. For the avoidance of doubt, the data required from Pumped Storage Generators and Electricity Storage Modules would only apply when they operate in a mode analogous to Demand.

OC6.6.2

- (b) The number and size of blocks and the associated low Frequency settings will be as specified by The Company by week 24 each calendar year following discussion with the Non-Embedded Customers and, Pumped Storage Generators in accordance with the relevant Bilateral Agreement. For the avoidance of doubt, the data required Pumped Storage Generators and Electricity Storage Modules would only apply when they operate in a mode analogous to Demand.
- OC6.6.7
- (a) In addition, Generators may wish to disconnect Power Generating Modules and/or Generating Units from the System, either manually or automatically, should they be subject to Frequency levels which could result in Power Generating Module and/or Generating Unit damage.
 - (b) This **Disconnection** facility on such a **Power Generating Module** and/or **Generating Unit** directly connected to the **National Electricity Transmission System**, will be agreed with **The Company** in accordance with the **Bilateral Agreement**.
 - (c) Any **Embedded Power Stations** will need to agree this **Disconnection** facility with the relevant **User** to whose **System** that **Power Station** is connected, which will then need to notify **The Company** of this.
- OC6.6.8 The **Network Operator** or **Non-Embedded Customer**, as the case may be, will notify **The Company** with an estimation of the **Demand** reduction which has occurred under automatic low **Frequency Demand Disconnection** and similarly notify the restoration, as the case may be, in each case within five minutes of the **Disconnection** or restoration.
- OC6.6.9 Pursuant to the provisions of OC1.5.6 the **Network Operator** and **Non-Embedded Customer** will supply to **The Company** details of the amount of **Demand** reduction or restoration actually achieved.
- OC6.6.10 (a) In the case of a User, it is not necessary for it to provide automatic low Frequency disconnection under OC6.6 only to the extent that it is providing, at the time it would be so needed, low Frequency disconnection at a higher level of Frequency as an Ancillary Service, namely if the amount provided as an Ancillary Service is less than that required under OC6.6 then the User must provide the balance required under OC6.6 at the time it is so needed.
 - (b) The provisions of OC7.4.8 relating to the use of **Demand Control** should be borne in mind by **Users**.

OC6.7 EMERGENCY MANUAL DISCONNECTION

- OC6.7.1 Each **Network Operator** will make arrangements that will enable it, following an instruction from **The Company**, to disconnect **Customers** on its **User System** under emergency conditions irrespective of **Frequency** within 30 minutes. It must be possible to apply the **Demand Disconnections** to individual or specific groups of **Grid Supply Points**, as determined by **The Company**.
- OC6.7.2 (a) Each Network Operator shall provide The Company in writing by week 24 in each calendar year, in respect of the next following year beginning week 24, on a Grid Supply Point basis, with the following information (which is set out in a tabular format in the Appendix):
 - (i) its total peak **Demand** (based on **Annual ACS Conditions**); and
 - (ii) the percentage value of the total peak **Demand** that can be disconnected (and must include that which can also be reduced by voltage reduction, where applicable) within timescales of 5/10/15/20/25/30 minutes.
 - (b) The information should include, in relation to the first 5 minutes, as a minimum, the 20% of **Demand** that must be reduced on instruction under OC6.5.

- OC6.7.3 Each **Network Operator** will abide by the instructions of **The Company** with regard to **Disconnection** under OC6.7 without delay, and the **Disconnection** must be achieved as soon as possible after the instruction being given by **The Company**, and in any case, within the timescale registered in OC6.7. The instruction may relate to an individual **Grid Supply Point** and/or groups of **Grid Supply Points**.
- OC6.7.4 **The Company** will notify a **Network Operator** who has been instructed under OC6.7, of what has happened on the **National Electricity Transmission System** to necessitate the instruction, in accordance with the provisions of **OC7** and, if relevant, **OC10**.
- OC6.7.5 Once a **Disconnection** has been applied by a **Network Operator** at the instruction of **The Company**, that **Network Operator** will not reconnect until **The Company** instructs it to do so in accordance with **OC6**.
- OC6.7.6 Each **Network Operator** will abide by the instructions of **The Company** with regard to reconnection under OC6.7 without delay, and shall not reconnect until it has received such instruction and reconnection must be achieved as soon as possible and the process of reconnection must begin within 2 minutes of the instruction being given by **The Company**.
- OC6.7.7 **The Company** may itself disconnect manually and reconnect **Non-Embedded Customers** as part of a **Demand Control** requirement under emergency conditions.
- OC6.7.8 If **The Company** determines that emergency manual **Disconnection** referred to in OC6.7 is inadequate, **The Company** may disconnect **Network Operators** and/or **Non-Embedded Customers** at **Grid Supply Points**, to preserve the security of the **National Electricity Transmission System**.
- OC6.7.9 Pursuant to the provisions of OC1.5.6 the **Network Operator** will supply to **The Company** details of the amount of **Demand** reduction or restoration actually achieved.

OC6.8 OPERATION OF THE BALANCING MECHANISM DURING DEMAND CONTROL

Demand Control will constitute an **Emergency Instruction** in accordance with BC2.9 and it may be necessary to depart from normal **Balancing Mechanism** operation in accordance with BC2 in issuing **Bid-Offer Acceptances**. The Company will inform affected **BM Participants** in accordance with the provisions of **OC7**.

APPENDIX 1 - EMERGENCY MANUAL DEMAND REDUCTION/DISCONNECTION SUMMARY SHEET

(As set out in OC6.7)

NETWORK OPERATOR: _____ [YEAR] PEAK: _____

grid Supply Point	PEAK MW	% OF GROUP DEMAND DISCONNECTION (AND/OR REDUCTION IN THE CASE OF THE FIRST 5 MINUTES) (CUMULATIVE) TIME (MINS)				REMARKS		
(Name)		5	10	15	20	25	30	

Notes:

1. Data to be provided annually by week 24 to cover the following year.

< END OF OPERATING CODE NO. 6 >

OPERATING CODE NO. 8 APPENDIX 1 (OC8A)

SAFETY CO-ORDINATION IN RESPECT OF THE E&W TRANSMISSION SYSTEMS OR THE SYSTEMS OF E&W USERS

CONTENTS

(This contents page does not form part of the Grid Code)

Paragraph No/Title	Page Number
OC8A.1 INTRODUCTION	2
OC8A.2 OBJECTIVE	
OC8A.3 SCOPE	4
OC8A.4 PROCEDURE	4
OC8A.4.1 Approval Of Local Safety Instructions	4
OC8A.4.2 Safety Co-ordinators	5
OC8A.4.3 RISSP	
OC8A.5 SAFETY PRECAUTIONS ON HV APPARATUS	6
OC8A.5.1 Agreement Of Safety Precautions	6
OC8A.5.2 Implementation Of Isolation	6
OC8A.5.3 Implementation Of Earthing	7
OC8A.5.4 RISSP Issue Procedure	
OC8A.5.5 RISSP Cancellation Procedure	10
OC8A.5.6 RISSP Change Control	10
OC8A.6 TESTING AFFECTING ANOTHER SAFETY CO-ORDIN	IATOR'S SYSTEM10
OC8A.7 EMERGENCY SITUATIONS	11
OC8A.8 SAFETY PRECAUTIONS RELATING TO WORKING C	
SYSTEM	
OC8A.8.1 Agreement of Safety Precautions	
OC8A.8.2 Implementation of Isolation and Earthing	
OC8A.8.3 Permit For Work For Proximity Work Issue Proceed	
OC8A.8.4 Permit For Work For Proximity Work Cancellation	
OC8A.9 LOSS OF INTEGRITY OF SAFETY PRECAUTIONS	
OC8A.10 SAFETY LOG	
APPENDIX A - RISSP-R	
APPENDIX B - RISSP-I	
APPENDIX C- FLOWCHARTS	
APPENDIX C1 - RISSP ISSUE PROCESS	
APPENDIX C2 - TESTING PROCESS	
APPENDIX C3 - RISSP CANCELLATION PROCESS	
APPENDIX C4 - PROCESS FOR WORKING NEAR TO SYS	
APPENDIX D - NATIONAL GRID SAFETY CIRCULAR	
APPENDIX E - FORM OF NGET'S PERMIT TO WORK	23

OC8A.1 INTRODUCTION

OC8A.1.1 OC8A specifies the standard procedures to be used by the **Relevant E&W Transmission** Licensee, The Company and E&W Users for the co-ordination, establishment and maintenance of necessary Safety Precautions when work is to be carried out on or near the E&W Transmission System or the System of an E&W User and when there is a need for Safety Precautions on HV Apparatus on the other's System for this work to be carried out safely. OC8A applies to Relevant E&W Transmission Licensees and E&W Users only. Where work is to be carried out on or near equipment on the Scottish Transmission System or Systems of Scottish Users, but such work requires Safety Precautions to be established on the E&W Transmission System or the Systems of E&W Users, OC8A should be followed by the Relevant E&W Transmission Licensee and E&W Users to establish the required Safety Precautions.

> **OC8B** specifies the procedures to be used by the **Relevant Scottish Transmission** Licensees and Scottish Users.

> **The Company** shall procure that the **Relevant E&W Transmission Licensees** shall comply with OC8A where and to the extent that such section applies to them.

In this OC8A the term "work" includes testing, other than **System Tests** which are covered by **OC12**.

- OC8A.1.2 OC8A also covers the co-ordination, establishment and maintenance of necessary safety precautions on the Implementing Safety Co-ordinator's System when work is to be carried out at an E&W User's Site or a Transmission Site (as the case may be) on equipment of the E&W User or the Relevant E&W Transmission Licensee as the case may be where the work or equipment is near to HV Apparatus on the Implementing Safety Co-ordinator's System. In the case of OTSUA, an E&W User's Site or Transmission Site shall, for the purposes of this OC8A, include a site at which there is a Transmission Interface Point until the OTSUA Transfer Time and the provisions of this OC8A and references to OTSUA shall be construed and applied accordingly until the OTSUA Transfer Time at which time arrangements in respect of the Transmission Interface Site will have been put in place between the Relevant E&W Transmission Licensee and the Offshore Transmission Licensee.
- OC8A.1.3 OC8A does not apply to the situation where **Safety Precautions** need to be agreed solely between **E&W Users**. OC8A does not apply to the situation where **Safety Precautions** need to be agreed solely between **Transmission Licensees**.
- OC8A.1.4 OC8A does not seek to impose a particular set of Safety Rules on the Relevant E&W Transmission Licensee and E&W Users; the Safety Rules to be adopted and used by the Relevant E&W Transmission Licensee and each E&W User shall be those chosen by each.
- OC8A.1.5 Site Responsibility Schedules document the control responsibility for each item of Plant and Apparatus for each site.
- OC8A.1.6 Defined Terms
- OC8A.1.6.1 **E&W Users** should bear in mind that in **OC8** only, in order that **OC8** reads more easily with the terminology used in certain **Safety Rules**, the term "**HV Apparatus**" is defined more restrictively and is used accordingly in OC8A. **E&W Users** should, therefore, exercise caution in relation to this term when reading and using OC8A.
- OC8A.1.6.2 In OC8A only the following terms shall have the following meanings:
 - (1) "HV Apparatus" means High Voltage electrical circuits forming part of a System, on which Safety From The System may be required or on which Safety Precautions may be applied to allow work to be carried out on a System.
 - (2) **"Isolation**" means the disconnection of **Apparatus** from the remainder of the **System** in which that **Apparatus** is situated by either of the following:
 - (a) an Isolating Device maintained in an isolating position. The isolating position must

either be:

- (i) maintained by immobilising and Locking the Isolating Device in the isolating position and affixing a Caution Notice to it. Where the Isolating Device is Locked with a Safety Key, the Safety Key must be secured in a Key Safe and the Key Safe Key must be, where reasonably practicable, given to the authorised site representative of the Requesting Safety Co-ordinator and is to be retained in safe custody. Where not reasonably practicable the Key Safe Key must be retained by the authorised site representative of the Implementing Safety Co-ordinator in safe custody; or
- (ii) maintained and/or secured by such other method which must be in accordance with the Local Safety Instructions of the Relevant E&W Transmission Licensee or that E&W User, as the case may be; or
- (b) an adequate physical separation which must be in accordance with, and maintained by, the method set out in the Local Safety Instructions of the Relevant E&W Transmission Licensee or that E&W User, as the case may be, and, if it is a part of that method, a Caution Notice must be placed at the point of separation;
- or
- (c) in the case where the relevant **HV Apparatus** of the **Implementing Safety Co**ordinator is being either constructed or modified, an adequate physical separation as a result of a **No System Connection**.
- (3) "No System Connection" means an adequate physical separation (which must be in accordance with, and maintained by, the method set out in the Local Safety Instructions of the Implementing Safety Co-ordinator) of the Implementing Safety Co-ordinator's HV Apparatus from the rest of the Implementing Safety Co-ordinator's System where such HV Apparatus has no installed means of being connected to, and will not for the duration of the Safety Precaution be connected to, a source of electrical energy or to any other part of the Implementing Safety Co-ordinators System.
- (4) **"Earthing**" means a way of providing a connection between conductors and earth by an **Earthing Device** which is either:
 - (i) immobilised and Locked in the earthing position. Where the Earthing Device is Locked with a Safety Key, the Safety Key must be secured in a Key Safe and the Key Safe Key must be, where reasonably practicable, given to the authorised site representative of the Requesting Safety Co-ordinator and is to be retained in safe custody. Where not reasonably practicable the Key Safe Key must be retained by the authorised site representative of the Implementing Safety Coordinator in safe custody; or
 - (ii) maintained and/or secured in position by such other method which must be in accordance with the Local Safety Instructions of the Relevant E&W Transmission Licensee or that E&W User as the case may be.
- OC8A.1.6.3 For the purpose of the co-ordination of safety relating to **HV Apparatus** the term **"Safety Precautions"** means **Isolation** and/or **Earthing**.

OC8A.2 OBJECTIVE

- OC8A.2.1 The objective of OC8A is to achieve:-
 - Safety From The System when work on or near a System necessitates the provision of Safety Precautions on another System on HV Apparatus up to a Connection Point (or, in the case of OTSUA, Transmission Interface Point); and

- (ii) Safety From The System when work is to be carried out at an E&W User's Site or a Transmission Site (as the case may be) on equipment of the User or the Relevant E&W Transmission Licensee (as the case may be) where the work or equipment is near to HV Apparatus on the Implementing Safety Co-ordinator's System.
- OC8A.2.2 A flow chart, set out in OC8A **Appendix C**, illustrates the process utilised in OC8A to achieve the objective set out in OC8A.2.1. In the case of a conflict between the flow chart and the provisions of the written text of OC8A, the written text will prevail.

OC8A.3 <u>SCOPE</u>

- OC8A.3.1 OC8A applies to the **Relevant E&W Transmission Licensee** and to **E&W Users**, which in OC8A means:
 - (a) **Generators** (including where undertaking **OTSDUW**);
 - (b) Network Operators; and
 - (c) Non-Embedded Customers.

The procedures for the establishment of safety co-ordination by **The Company** in relation to **External Interconnections** are set out in **Interconnection Agreements** with relevant persons for the **External Interconnections**.

OC8A.4 PROCEDURE

OC8A.4.1 Approval of Local Safety Instructions

- OC8A.4.1.1 (a) In accordance with the timing requirements of its **Bilateral Agreement**, each **E&W User** will supply to the **Relevant E&W Transmission Licensee** a copy of its **Local Safety Instructions** relating to its side of the **Connection Point** at each **Connection Site**, or in the case of **OTSUA** a copy of its **Local Safety Instructions** relating to its side of the **Transmission Interface Point** at each **Transmission Interface Site**.
 - (b) In accordance with the timing requirements of each Bilateral Agreement, the Relevant E&W Transmission Licensee will supply to each E&W User a copy of its Local Safety Instructions relating to the Transmission side of the Connection Point at each Connection Site, or in the case of OTSUA a copy of its Local Safety Instructions relating to the Transmission side of the Transmission Interface Point at each Transmission Interface Site.
 - (c) Prior to connection, the Relevant E&W Transmission Licensee and the E&W User must have approved each other's relevant Local Safety Instructions in relation to Isolation and Earthing.
- OC8A.4.1.2 Either party may require that the **Isolation** and/or **Earthing** provisions in the other party's **Local Safety Instructions** affecting the **Connection Site** (or, in the case of **OTSUA**, **Transmission Interface Site**) should be made more stringent in order that approval of the other party's **Local Safety Instructions** can be given. Provided these requirements are not unreasonable, the other party will make such changes as soon as reasonably practicable. These changes may need to cover the application of **Isolation** and/or **Earthing** at a place remote from the **Connection Site** (or, in the case of **OTSUA**, **Transmission Interface Site**), depending upon the **System** layout. Approval may not be withheld because the party required to approve reasonably believes the provisions relating to **Isolation** and/or **Earthing** are too stringent.
- OC8A.4.1.3 If, following approval, a party wishes to change the provisions in its **Local Safety Instructions** relating to **Isolation** and/or **Earthing**, it must inform the other party. If the change is to make the provisions more stringent, then the other party merely has to note the changes. If the change is to make the provisions less stringent, then the other party needs to approve the new provisions and the procedures referred to in OC8A.4.1.2 apply.

OC8A.4.2 <u>Safety Co-ordinators</u>

- OC8A.4.2.1 For each **Connection Point**, (or, in the case of **OTSUA**, **Transmission Interface Point**), the **Relevant E&W Transmission Licensee** and each **E&W User** will at all times have nominated an available a person or persons ("**Safety Co-ordinator(s)**") to be responsible for the co-ordination of **Safety Precautions** when work is to be carried out on a **System** which necessitates the provision of **Safety Precautions** on **HV Apparatus** pursuant to OC8A. A **Safety Co-ordinator** may be responsible for the co-ordination of safety on **HV Apparatus** at more than one **Connection Point** (or, in the case of **OTSUA**, **Transmission Interface Point**).
- OC8A.4.2.2 Each Safety Co-ordinator shall be authorised by the Relevant E&W Transmission Licensee or an E&W User, as the case may be, as competent to carry out the functions set out in OC8A to achieve Safety From The System. Confirmation from the Relevant E&W Transmission Licensee or an E&W User, as the case may be, that its Safety Coordinator(s) as a group are so authorised is dealt with in CC.5.2 or in ECC.5.2. and for the Relevant E&W Transmission Licensees in the STC. Only persons with such authorisation will carry out the provisions of OC8A.
- OC8A.4.2.3 Contact between **Safety Co-ordinators** will be made via normal operational channels, and accordingly separate telephone numbers for **Safety Co-ordinators** need not be provided. At the time of making contact, each party will confirm that they are authorised to act as a **Safety Co-ordinator**, pursuant to OC8A.
- OC8A.4.2.4 If work is to be carried out on a **System**, or on equipment of the **Relevant E&W Transmission Licensee** or an **E&W User** near to a **System**, as provided in this OC8A, which necessitates the provision of **Safety Precautions** on **HV Apparatus** in accordance with the provisions of OC8A, the **Requesting Safety Co-ordinator** who requires the **Safety Precautions** to be provided shall contact the relevant **Implementing Safety Co-ordinator** to co-ordinate the establishment of the **Safety Precautions**.
- OC8A.4.3 RISSP
- OC8A.4.3.1 OC8A sets out the procedures for utilising the **RISSP**, which will be used except where dealing with equipment in proximity to the other's **System** as provided in OC8A.8. Sections OC8A.4 to OC8A.7 inclusive should be read accordingly.
- OC8A.4.3.2 The **Relevant E&W Transmission Licensee** will use the format of the **RISSP** forms set out in Appendix A and Appendix B to OC8A. That set out in OC8A Appendix A and designated as "RISSP-R", shall be used when the **Relevant E&W Transmission Licensee** is the **Requesting Safety Co-ordinator**, and that in OC8A Appendix B and designated as "RISSP-I", shall be used when the **Relevant E&W Transmission Licensee** is the **Implementing Safety Co-ordinator**. Proformas of RISSP-R and RISSP-I will be provided for use by the **Relevant E&W Transmission Licensee** staff.
- OC8A.4.3.3 (a) **E&W Users** may either adopt the format referred to in OC8A.4.3.2, or use an equivalent format, provided that it includes sections requiring insertion of the same information and has the same numbering of sections as RISSP-R and RISSP-I as set out in Appendices A and B respectively.
 - (b) Whether **E&W Users** adopt the format referred to in OC8A.4.3.2, or use the equivalent format as above, the format may be produced and held in, and retrieved from an electronic form by the **E&W User**.
 - (c) Whichever method **E&W Users** choose, each must provide proformas (whether in tangible or electronic form) for use by its staff.
- OC8A.4.3.4 All references to RISSP-R and RISSP-I shall be taken as referring to the corresponding parts of the alternative forms or other tangible written or electronic records used by each **E&W User**.
- OC8A.4.3.5 RISSP-R will have an identifying number written or printed on it, comprising a prefix which identifies the location at which it is issued, and a unique (for each **E&W User** or the **Relevant E&W Transmission Licensee**, as the case may be) serial number which both together uses up to eight characters (including letters and numbers) and the suffix "R".

- OC8A.4.3.6 (a) In accordance with the timing requirements set out in CC.5.2 or in ECC.5.2 each **E&W User** shall apply in writing to the **Relevant E&W Transmission Licensee** for the **Relevant E&W Transmission Licensee's** approval of its proposed prefix.
 - (b) The Relevant E&W Transmission Licensee shall consider the proposed prefix to see if it is the same as (or confusingly similar to) a prefix used by the Relevant E&W Transmission Licensee or another User and shall, as soon as possible (and in any event within ten days), respond in writing to the E&W User with its approval or disapproval.
 - (c) If the **Relevant E&W Transmission Licensee** disapproves, it shall explain in its response why it has disapproved and will suggest an alternative prefix.
 - (d) If the Relevant E&W Transmission Licensee has disapproved, then the E&W User shall either notify the Relevant E&W Transmission Licensee in writing of its acceptance of the suggested alternative prefix or it shall apply in writing to the Relevant E&W Transmission Licensee with revised proposals and the above procedure shall apply to that application.
- OC8A.4.3.7 The prefix allocation will be periodically circulated by **NGET** to all **E&W Users**, for information purposes, using a National Grid Safety Circular in the form set out in OC8A Appendix D.

OC8A.5 SAFETY PRECAUTIONS ON HV APPARATUS

OC8A.5.1 Agreement Of Safety Precautions

- OC8A.5.1.1 The Requesting Safety Co-ordinator who requires Safety Precautions on another System(s) will contact the relevant Implementing Safety Co-ordinator(s) to agree the Location of the Safety Precautions to be established. This agreement will be recorded in the respective Safety Logs.
- OC8A.5.1.2 It is the responsibility of the Implementing Safety Co-ordinator to ensure that adequate Safety Precautions are established and maintained, on their and/or another System connected to their System, to enable Safety From The System to be achieved on the HV Apparatus, specified by the Requesting Safety Co-ordinator which is to be identified in Part 1.1 of the RISSP. Reference to another System in this OC8A.5.1.2 shall not include the Requesting Safety Co-ordinator's System which is dealt with in OC8A.5.1.3.
- OC8A.5.1.3 When the **Implementing Safety Co-ordinator** is of the reasonable opinion that it is necessary for **Safety Precautions** on the **System** of the **Requesting Safety Co-ordinator**, other than on the **HV Apparatus** specified by the **Requesting Safety Co-ordinator**, which is to be identified in Part 1.1 of the **RISSP**, they shall contact the **Requesting Safety Co-ordinator** and the details shall be recorded in part 1.1 of the **RISSP** forms. In these circumstances it is the responsibility of the **Requesting Safety Co-ordinator** to establish and maintain such **Safety Precautions**.

OC8A.5.1.4 In The Event Of Disagreement

In any case where the **Requesting Safety Co-ordinator** and the **Implementing Safety Co-ordinator** are unable to agree the **Location** of the **Isolation** and (if requested) **Earthing**, both shall be at the closest available points on the infeeds to the **HV Apparatus** on which **Safety From The System** is to be achieved as indicated on the **Operation Diagram**.

OC8A.5.2 Implementation Of Isolation

OC8A.5.2.1 Following the agreement of the **Safety Precautions** in accordance with OC8A.5.1 the **Implementing Safety Co-ordinator** shall then establish the agreed **Isolation**.

- OC8A.5.2.2 The Implementing Safety Co-ordinator shall confirm to the Requesting Safety Coordinator that the agreed Isolation has been established, and identify the Requesting Safety Co-ordinator's HV Apparatus up to the Connection Point (or, in the case of OTSUA, Transmission Interface Point), for which the Isolation has been provided. The confirmation shall specify:
 - (a) for each **Location**, the identity (by means of **HV Apparatus** name, nomenclature and numbering or position, as applicable) of each point of **Isolation**;
 - (b) whether **Isolation** has been achieved by an **Isolating Device** in the isolating position, by an adequate physical separation or as a result of a **No System Connection**;
 - (c) where an **Isolating Device** has been used whether the isolating position is either:
 - (i) maintained by immobilising and Locking the Isolating Device in the isolating position and affixing a Caution Notice to it. Where the Isolating Device has been Locked with a Safety Key, the confirmation shall specify that the Safety Key has been secured in a Key Safe and the Key Safe Key has been given to the authorised site representative of the Requesting Safety Co-ordinator where reasonably practicable and is to be retained in safe custody. Where not reasonably practicable (including where Earthing has been requested in OC8A.5.1), the confirmation shall specify that the Key Safe Key will be retained by the authorised site representative of the Implementing Safety Co-ordinator in safe custody; or
 - (ii) maintained and/or secured by such other method which must be in accordance with the Local Safety Instructions of the Relevant E&W Transmission Licensee or that E&W User, as the case may be; and
 - (d) where an adequate physical separation has been used that it will be in accordance with, and maintained by, the method set out in the Local Safety Instructions of the Relevant E&W Transmission Licensee or that E&W User, as the case may be, and, if it is a part of that method, that a Caution Notice has been placed at the point of separation;
 - (e) where a No System Connection has been used, the physical position of the No System Connection shall be defined and shall not be varied for the duration of Safety Precaution and the Implementing Safety Co-ordinator's relevant HV Apparatus will not, for the duration of the Safety Precaution be connected to a source of electrical energy or to any other part of the Implementing Safety Co-ordinator's System.

The confirmation of Isolation shall be recorded in the respective Safety Logs.

- OC8A.5.2.3 Following the confirmation of **Isolation** being established by the **Implementing Safety Co**ordinator and the necessary establishment of relevant **Isolation** on the **Requesting Safety Co-ordinators System**, the **Requesting Safety Co-ordinator** will then request the implementation of **Earthing** by the **Implementing Safety Co-ordinator**, if agreed in section OC8A.5.1. If the implementation of **Earthing** has been agreed, then the authorised site representative of the **Implementing Safety Co-ordinator** shall retain any **Key Safe Key** in safe custody until any **Safety Key** used for **Earthing** has been secured in the **Key Safe**.
- OC8A.5.3 Implementation Of Earthing
- OC8A.5.3.1 The **Implementing Safety Co-ordinator** shall then establish the agreed **Earthing**.
- OC8A.5.3.2 The Implementing Safety Co-ordinator shall confirm to the Requesting Safety Coordinator that the agreed Earthing has been established, and identify the Requesting Safety Co-ordinator's HV Apparatus up to the Connection Point (or, in the case of OTSUA, Transmission Interface Point), for which the Earthing has been provided. The confirmation shall specify:
 - (a) for each **Location**, the identity (by means of **HV Apparatus** name, nomenclature and numbering or position, as is applicable) of each point of **Earthing**; and
 - (b) in respect of the Earthing Device used, whether it is:
 - (i) immobilised and Locked in the earthing position. Where the Earthing Device has

been Locked with a Safety Key, that the Safety Key has been secured in a Key Safe and the Key Safe Key has been given to the authorised site representative of the Requesting Safety Co-ordinator where reasonably practicable and is to be retained in safe custody. Where not reasonably practicable, that the Key Safe Key will be retained by the authorised site representative of the Implementing Safety Co-ordinator in safe custody; or

(ii) maintained and/or secured in position by such other method which is in accordance with the Local Safety Instructions of the Relevant E&W Transmission Licensee or the Relevant Transmission Licensee or that E&W User, as the case may be.

The confirmation of **Earthing** shall be recorded in the respective **Safety Logs**.

- OC8A.5.3.3. The **Implementing Safety Co-ordinator** shall ensure that the established **Safety Precautions** are maintained until requested to be removed by the relevant **Requesting Safety Co-ordinator**.
- OC8A.5.3.4 Certain designs of gas insulated switchgear three position isolator and earth switches specifically provide a combined **Isolation** and **Earthing** function within a single mechanism contained within a single integral unit. Where **Safety Precautions** are required across control boundaries and subject to the requirements of OC8A.5.1, it is permissible to earth before **Points of Isolation** have been established provided that all interconnected circuits are fully disconnected from live **HV Apparatus**.

OC8A.5.4 RISSP Issue Procedure

- OC8A.5.4.1 Where **Safety Precautions** on another **System(s)** are being provided to enable work on the **Requesting Safety Co-ordinator's System**, before any work commences they must be recorded by a **RISSP** being issued. The **RISSP** is applicable to **HV Apparatus** up to the **Connection Point** (or, in the case of **OTSUA**, **Transmission Interface Point**) identified in section 1.1 of the RISSP-R and RISSP-I forms.
- OC8A.5.4.2 Where Safety Precautions are being provided to enable work to be carried out on both sides of the Connection Point (or, in the case of OTSUA, Transmission Interface Point) a RISSP will need to be issued for each side of the Connection Point (or, in the case of OTSUA, Transmission Interface Point) with the Relevant E&W Transmission Licensee and the respective User each enacting the role of Requesting Safety Co-ordinator. This will result in a RISSP-R and a RISSP-I form being completed by each of the Relevant E&W Transmission Licensee and the E&W User, with each Requesting Safety Co-ordinator issuing a separate RISSP number.
- OC8A.5.4.3 Once the **Safety Precautions** have been established (in accordance with OC8A.5.2 and OC8A.5.3), the **Implementing Safety Co-ordinator** shall complete parts 1.1 and 1.2 of a RISSP-I form recording the details specified in OC8A.5.1.3, OC8A.5.2.2 and OC8A.5.3.2. Where **Earthing** has not been requested, Part 1.2(b) will be completed with the words "not applicable" or "N/A". They shall then contact the **Requesting Safety Co-ordinator** to pass on these details.
- OC8A.5.4.4 The **Requesting Safety Co-ordinator** shall complete Parts 1.1 and 1.2 of the RISSP-R, making a precise copy of the details received. On completion, the **Requesting Safety Co-ordinator** shall read the entries made back to the sender and check that an accurate copy has been made.
- OC8A.5.4.5 The **Requesting Safety Co-ordinator** shall then issue the number of the **RISSP**, taken from the RISSP-R, to the **Implementing Safety Co-ordinator** who will ensure that the number, including the prefix and suffix, is accurately recorded in the designated space on the RISSP-I form.
- OC8A.5.4.6 The **Requesting Safety Co-ordinator** and the **Implementing Safety Co-ordinator** shall complete and sign Part 1.3 of the RISSP-R and RISSP-I respectively and then enter the time and date. When signed, no alteration to the **RISSP** is permitted; the **RISSP** may only be cancelled.

OC8A.5.4.7 The **Requesting Safety Co-ordinator** is then free to authorise work (including a test that does not affect the **Implementing Safety Co-ordinator's System**) in accordance with the requirements of the relevant internal safety procedures which apply to the **Requesting Safety Co-ordinator's System**. This is likely to involve the issue of safety documents or other relevant internal authorisations. Where testing is to be carried out which affects the **Implementing Safety Co-ordinator's System**, the procedure set out below in OC8A.6 shall be implemented.

- OC8A.5.5 RISSP Cancellation Procedure
- OC8A.5.5.1 When the **Requesting Safety Co-ordinator** decides that **Safety Precautions** are no longer required, they will contact the relevant **Implementing Safety Co-ordinator** to effect cancellation of the associated **RISSP**.
- OC8A.5.5.2 The **Requesting Safety Co-ordinator** will inform the relevant **Implementing Safety Co-ordinator** of the **RISSP** identifying number (including the prefix and suffix), and agree it is the **RISSP** to be cancelled.
- OC8A.5.5.3 The **Requesting Safety Co-ordinator** and the relevant **Implementing Safety Co-ordinator** shall then respectively complete Part 2.1 of their respective RISSP-R and RISSP-I forms and shall then exchange details. The details being exchanged shall include their respective names and time and date. On completion of the exchange of details, the respective **RISSP** is cancelled. The removal of **Safety Precautions** is as set out in OC8A.5.5.4 and OC8A.5.5.5.
- OC8A.5.5.4 Neither Safety Co-ordinator shall instruct the removal of any Isolation forming part of the Safety Precautions as part of the returning of the HV Apparatus to service until it is confirmed to each by each other that every earth on each side of the Connection Point (or, in the case of OTSUA, Transmission Interface Point), within the points of isolation identified on the RISSP, has been removed or disconnected by the provision of additional Points of Isolation.
- OC8A.5.5.5 Subject to the provisions in OC8A.5.5.4, the **Implementing Safety Co-ordinator** is then free to arrange the removal of the **Safety Precautions**, the procedure to achieve that being entirely an internal matter for the party the **Implementing Safety Co-ordinator** is representing. Where a **Key Safe Key** has been given to the authorised site representative of the **Requesting Safety Co-ordinator**, the **Key Safe Key** must be returned to the authorised site representative of the **Implementing Safety Co-ordinator**. The only situation in which any **Safety Precautions** may be removed without first cancelling the **RISSP** in accordance with OC8A.5.5 or OC8A.5.6 is when **Earthing** is removed in the situation envisaged in OC8A.6.2(b).
- OC8A.5.6 RISSP Change Control

Nothing in this OC8A prevents the **Relevant E&W Transmission Licensee** and **E&W Users** agreeing to a simultaneous cancellation and issue of a new **RISSP**, if both agree. It should be noted, however, that the effect of that under the relevant **Safety Rules** is not a matter with which the Grid Code deals.

OC8A.6 TESTING AFFECTING ANOTHER SAFETY CO-ORDINATOR'S SYSTEM

- OC8A.6.1 The carrying out of the test may affect **Safety Precautions** on **RISSPs** or work being carried out which does not require a **RISSP**. Testing can, for example, include the application of an independent test voltage. Accordingly, where the **Requesting Safety Co-ordinator** wishes to authorise the carrying out of such a test to which the procedures in OC8A.6 apply they may not do so and the test will not take place unless and until the steps in (a)-(c) below have been followed and confirmation of completion has been recorded in the respective **Safety Logs**:
 - (a) confirmation must be obtained from the **Implementing Safety Co-ordinator** that:
 - (i) no person is working on, or testing, or has been authorised to work on, or test, any part of its System or another System(s) (other than the System of the Requesting Safety Co-ordinator) within the points of Isolation identified on the RISSP form relating to the test which is proposed to be undertaken, and
 - (ii) no person will be so authorised until the proposed test has been completed (or cancelled) and the Requesting Safety Co-ordinator has notified the Implementing Safety Co-ordinator of its completion (or cancellation);
 - (b) any other current **RISSPs** which relate to the parts of the **System** in which the testing is to take place must have been cancelled in accordance with procedures set out in OC8A.5.5;

- (c) the **Implementing Safety Co-ordinator** must agree with the **Requesting Safety Co-ordinator** to permit the testing on that part of the **System** between the points of **Isolation** identified in the **RISSP** associated with the test and the points of **Isolation** on the **Requesting Safety Co-ordinator's System**.
- OC8A.6.2 (a) The **Requesting Safety Co-ordinator** will inform the **Implementing Safety Co-ordinator** as soon as the test has been completed or cancelled and the confirmation shall be recorded in the respective **Safety Logs**.
 - (b) When the test gives rise to the removal of **Earthing** which it is not intended to re-apply, the relevant **RISSP** associated with the test shall be cancelled at the completion or cancellation of the test in accordance with the procedure set out in either OC8A.5.5 or OC8A.5.6. Where the **Earthing** is re-applied following the completion or cancellation of the test, there is no requirement to cancel the relevant **RISSP** associated with the test pursuant to this OC8A.6.2.

OC8A.7 <u>EMERGENCY SITUATIONS</u>

- OC8A.7.1 There may be circumstances where **Safety Precautions** need to be established in relation to an unintended electrical connection or situations where there is an unintended risk of electrical connection between the **National Electricity Transmission System** and an **E&W User's System**, for example resulting from an incident where one line becomes attached or unacceptably close to another.
- OC8A.7.2 In those circumstances, if both the **Relevant E&W Transmission Licensee** and the respective **E&W User** agree, the relevant provisions of OC8A.5 will apply as if the electrical connections or potential connections were, solely for the purposes of this OC8A, a **Connection Point** (or, in the case of **OTSUA**, **Transmission Interface Point**).
- OC8A.7.3 (a) The relevant Safety Co-ordinator shall be that for the electrically closest existing Connection Point (or, in the case of OTSUA, Transmission Interface Point) to that E&W User's System or such other local Connection Point (or, in the case of OTSUA, Transmission Interface Point) as may be agreed between the Relevant E&W Transmission Licensee and the E&W User, with discussions taking place between the relevant local Safety Co-ordinators. The Connection Point (or, in the case of OTSUA, Transmission Interface Point) to be used shall be known in this OC8A.7.3 as the "relevant Connection Point" (or, in the case of OTSUA, "relevant Transmission Interface Point").
 - (b) The Local Safety Instructions shall be those which apply to the relevant Connection **Point** (or, in the case of **OTSUA**, **Transmission Interface Point**).
 - (c) The prefix for the **RISSP** will be that which applies for the relevant **Connection Point** (or, in the case of **OTSUA**, **Transmission Interface Point**).

OC8A.8 SAFETY PRECAUTIONS RELATING TO WORKING ON EQUIPMENT NEAR TO THE HV SYSTEM

OC8A.8 applies to the situation where work is to be carried out at an **E&W User's Site** or a **Transmission Site** (as the case may be) on equipment of the **User** or the **Relevant E&W Transmission Licensee** as the case may be, where the work or equipment is near to **HV Apparatus** on the **Implementing Safety Co-ordinator's System**. It does not apply to other situations to which **OC8A** applies. In this part of **OC8A**, a **Permit for Work for proximity work** is to be used, rather than the usual **RISSP** procedure, given the nature and effect of the work, all as further provided in the OC8A.8.

OC8A.8.1 Agreement Of Safety Precautions

- OC8A.8.1.1 The Requesting Safety Co-ordinator who requires Safety Precautions on another System(s) when work is to be carried out at an E&W User's Site or a Transmission Site (as the case may be) on equipment of the User or the Relevant E&W Transmission Licensee, as the case may be, where the work or equipment is near to HV Apparatus on the Implementing Safety Co-ordinator's System will contact the relevant Implementing Safety Co-ordinator(s) to agree the location of the Safety Precautions to be established, having as part of this process informed the Implementing Safety Co-ordinator of the equipment and the work to be undertaken. The respective Safety Co-ordinators will ensure that they discuss the request with their authorised site representative and that the respective authorised site representatives discuss the request at the Connection Site (or, in the case of OTSUA, Transmission Interface Site). This agreement will be recorded in the respective Safety Logs.
- OC8A.8.1.2 It is the responsibility of the Implementing Safety Co-ordinator, working with their authorised site representative as appropriate, to ensure that adequate Safety Precautions are established and maintained, on their and/or another System connected to their System, to enable Safety From The System to be achieved for work to be carried out at an E&W User's Site or a Transmission Site (as the case may be) on equipment and in relation to work which is to be identified in the relevant part of the Permit for Work for proximity work where the work or equipment is near to HV Apparatus of the Implementing Safety Co-ordinator's System specified by the Requesting Safety Co-ordinator. Reference to another System in this OC8A.8.1.2 shall not include the Requesting Safety Co-ordinator's System.
- OC8A.8.1.3 In The Event Of Disagreement

In any case, where the **Requesting Safety Co-ordinator** and the **Implementing Safety Co-ordinator** are unable to agree the **Location** of the **Isolation** and (if requested) **Earthing**, both shall be at the closest available points on the infeeds to the **HV Apparatus** near to which the work is to be carried out as indicated on the **Operation Diagram**.

- OC8A.8.2 Implementation Of Isolation And Earthing
- OC8A.8.2.1 Following the agreement of the **Safety Precautions** in accordance with OC8A.8.1 the **Implementing Safety Co-ordinator** shall then establish the agreed **Isolation** and (if required) **Earthing**.
- OC8A.8.2.2 The **Implementing Safety Co-ordinator** shall confirm to the **Requesting Safety Co-ordinator** that the agreed **Isolation** and (if required) **Earthing** has been established.
- OC8A.8.2.3 The Implementing Safety Co-ordinator shall ensure that the established Safety Precautions are maintained until requested to be removed by the relevant Requesting Safety Co-ordinator.

- OC8A.8.3 <u>Permit For Work For Proximity Work Issue Procedure</u>
- OC8A.8.3.1 Where Safety Precautions on another System(s) are being provided to enable work to be carried out at an E&W User's Site or Transmission Site (as the case may be) on equipment where the work or equipment is in proximity to HV Apparatus of the Implementing Safety Co-ordinator, before any work commences they must be recorded by a Permit for Work for proximity work being issued. The Permit for Work for proximity to the required work.
- OC8A.8.3.2 Once the Safety Precautions have been established (in accordance with OC8A.8.2), the Implementing Safety Co-ordinator shall agree to the issue of the Permit for Work for proximity work with the appropriately authorised site representative of the Requesting Safety Co-ordinator's Site. The Implementing Safety Co-ordinator will inform the Requesting Safety Co-ordinator of the Permit for Work for proximity work identifying number.
- OC8A.8.3.3 The appropriately authorised site representative of the **Implementing Safety Co-ordinator** shall then issue the **Permit for Work for proximity work** to the appropriately authorised site representative of the **Requesting Safety Co-ordinator**. The **Permit for Work for proximity work** will in the section dealing with the work to be carried out, be completed to identify that the work is near the **Implementing Safety Co-ordinator's HV Apparatus**. No further details of the **Requesting Safety Co-ordinator's** work will be recorded, as that is a matter for the **Requesting Safety Co-ordinator** in relation to their work.
- OC8A.8.3.4 The **Requesting Safety Co-ordinator** is then free to authorise work in accordance with the requirements of the relevant internal safety procedures which apply to the **Requesting Safety Co-ordinator's Site**. This is likely to involve the issue of safety documents or other relevant internal authorisations.
- OC8A.8.4 Permit For Work For Proximity Work Cancellation Procedure
- OC8A.8.4.1 When the **Requesting Safety Co-ordinator** decides that **Safety Precautions** are no longer required, they will contact the relevant **Implementing Safety Co-ordinator** to effect cancellation of the associated **Permit for Work for proximity work**.
- OC8A.8.4.2 The **Requesting Safety Co-ordinator** will inform the relevant **Implementing Safety Co**ordinator of the **Permit for Work for proximity work** identifying number, and agree that the **Permit for Work for proximity work** can be cancelled. The cancellation is then effected by the appropriately authorised site representative of the **Requesting Safety Co-ordinator** returning the **Permit for Work for proximity work** to the appropriately authorised site representative of the **Implementing Safety Co-ordinator**.
- OC8A.8.4.3 The **Implementing Safety Co-ordinator** is then free to arrange the removal of the **Safety Precautions**, the procedure to achieve that being entirely an internal matter for the party the **Implementing Safety Co-ordinator** is representing.
- OC8A.9 LOSS OF INTEGRITY OF SAFETY PRECAUTIONS
- OC8A.9.1 In any instance when any **Safety Precautions** may be ineffective for any reason the relevant **Safety Co-ordinator** shall inform the other **Safety Co-ordinator(s)** without delay of that being the case and, if requested, of the reasons why.

OC8A.10 <u>SAFETY LOG</u>

OC8A.10.1 The **Relevant E&W Transmission Licensee** and **E&W Users** shall maintain **Safety Logs** which shall be a chronological record of all messages relating to safety co-ordination under OC8A sent and received by the **Safety Co-ordinator(s)**. The **Safety Logs** must be retained for a period of not less than one year.

APPENDIX A - RISSP-R

[the Relevant E&W Transmission Licensee]

__ CONTROL CENTRE/SITE]

RECORD OF INTER-SYSTEM SAFETY PRECAUTIONS (RISSP-R) (Requesting Safety Co-ordinator's Record)

[_

RISSP NUMBER

<u>PART 1</u>

1.1 HV APPARATUS IDENTIFICATION

Safety Precautions have been established by the Implementing Safety Co-ordinator (or by another User on that User's System connected to the Implementing Safety Co-ordinator's System) to achieve (in so far as it is possible from that side of the Connection Point/Transmission Interface Point) Safety From The System on the following HV Apparatus on the Requesting Safety Co-ordinator's System: [State identity - name(s) and, where applicable, identification of the HV circuit(s) up to the Connection Point/Transmission Interface Point]:

Further Safety precautions required on the Requesting Safety Co-ordinator's System as notified by the Implementing Safety Co-ordinator.

1.2 SAFETY PRECAUTIONS ESTABLISHED

(a) **ISOLATION**

[State the Location(s) at which Isolation has been established (whether on the Implementing Safety Co-ordinator's System or on the System of another User connected to the Implementing Safety Co-ordinator's System). For each Location, identify each point of Isolation. For each point of Isolation, state the means by which the Isolation has been achieved, and whether, immobilised and Locked, Caution Notice affixed, other safety procedures applied, as appropriate.]

(b) EARTHING

[State the Location(s) at which Earthing has been established (whether on the Implementing Safety Co-ordinator's System or on the System of another User connected to the Implementing Safety Co-ordinator's System). For each Location, identify each point of Earthing. For each point of Earthing, state the means by which Earthing has been achieved, and whether, immobilised and Locked, other safety procedures applied, as appropriate].

1.3 <u>ISSUE</u>

I have received confirmation from _______ (name of Implementing Safety Coordinator) at ______ (location) that the Safety Precautions identified in paragraph 1.2 have been established and that instructions will not be issued at their location for their removal until this RISSP is cancelled.

Signed(Requesting Safety Co-ordinator)

<u>PART 2</u>

2.1 CANCELLATION

I have confirmed to ______ (name of the Implementing Safety Co-ordinator) at ______ (location) that the Safety Precautions set out in paragraph 1.2 are no longer required and accordingly the RISSP is cancelled.

Signed(Requesting Safety Co-ordinator)

APPENDIX B - RISSP-I

[the Relevant E&W Transmission Licensee]

_____ CONTROL CENTRE/SITE]

RECORD OF INTER-SYSTEM SAFETY PRECAUTIONS (RISSP-I) (Implementing Safety Co-ordinator's Record)

RISSP NUMBER

[

<u>PART 1</u>

1.1 HV APPARATUS IDENTIFICATION

Safety Precautions have been established by the Implementing Safety Co-ordinator (or by another User on that User's System connected to the Implementing Safety Co-ordinator's System) to achieve (in so far as it is possible from that side of the Connection Point/Transmission Interface Point) Safety From The System on the following HV Apparatus on the Requesting Safety Co-ordinator's System: [State identity - name(s) and, where applicable, identification of the HV circuit(s) up to the Connection Point/Transmission Interface Point]:

Recording of notification given to the **Requesting Safety Co-ordinator** concerning further **Safety Precautions** required on the **Requesting Safety Co-ordinator's System**.

1.2 SAFETY PRECAUTIONS ESTABLISHED

(a) **ISOLATION**

[State the Location(s) at which Isolation has been established (whether on the Implementing Safety Co-ordinator's System or on the System of another User connected to the Implementing Safety Co-ordinator's System). For each Location, identify each point of Isolation. For each point of Isolation, state the means by which the Isolation has been achieved, and whether, immobilised and Locked, Caution Notice affixed, other safety procedures applied, as appropriate.]

(b) EARTHING

[State the Location(s) at which Earthing has been established (whether on the Implementing Safety Co-ordinator's System or on the System of another User connected to the Implementing Safety Co-ordinator's System). For each Location, identify each point of Earthing. For each point of Earthing, state the means by which Earthing has been achieved, and whether, immobilised and Locked, other safety procedures applied, as appropriate].

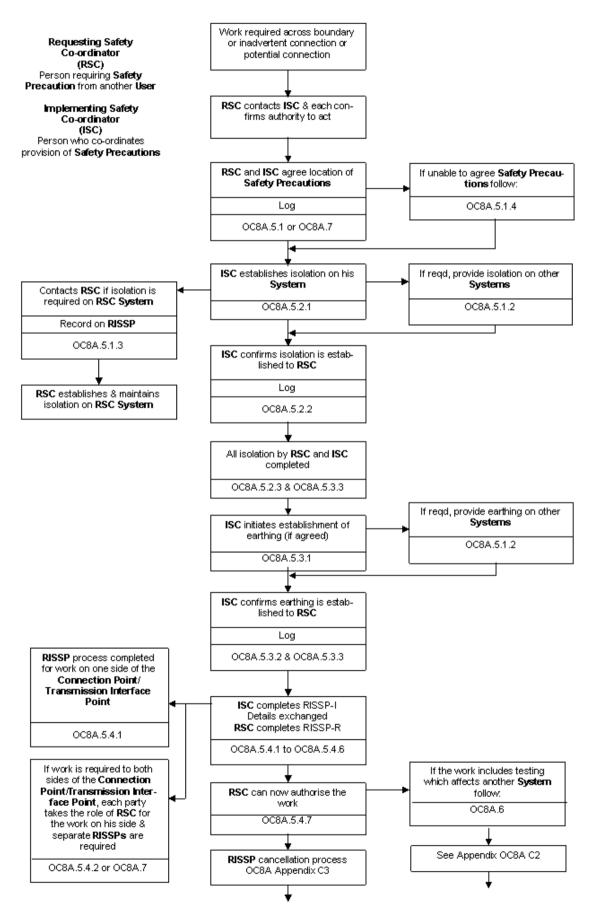
1.3 <u>ISSUE</u>

I have confirmed to	(name of Requesting Safety Co-ordinator) at
	(location) that the Safety Precautions identified in paragraph 1.2 have
been established and th	at instructions will not be issued at my location for their removal until this RISSP is cancelled.
Signed	(Implementing Safety Co-ordinator)

at(Dat	te)
--------	-----

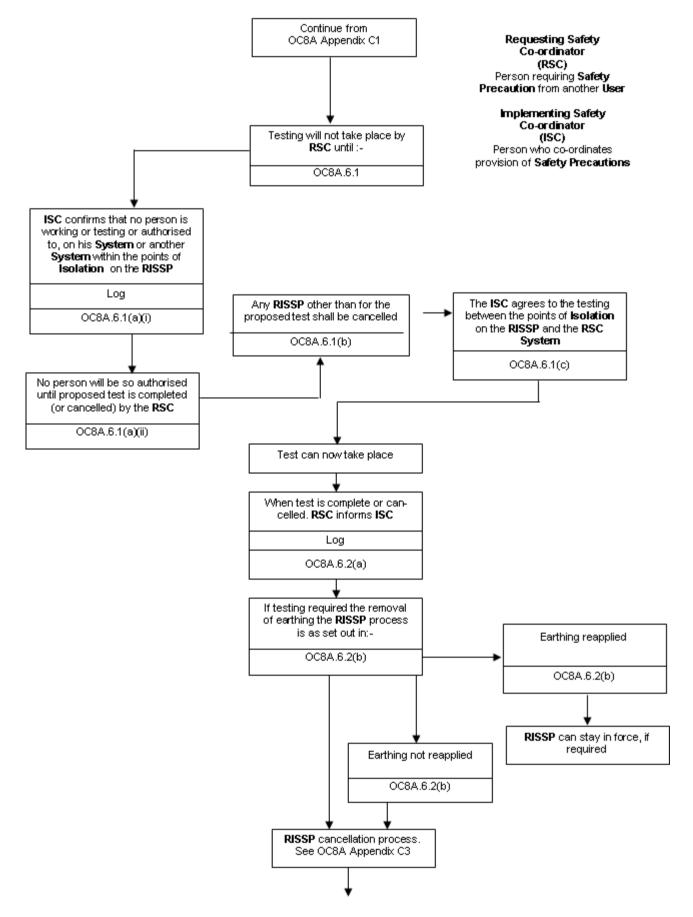
<u>PART 2</u>

2.1 CANCELLATION

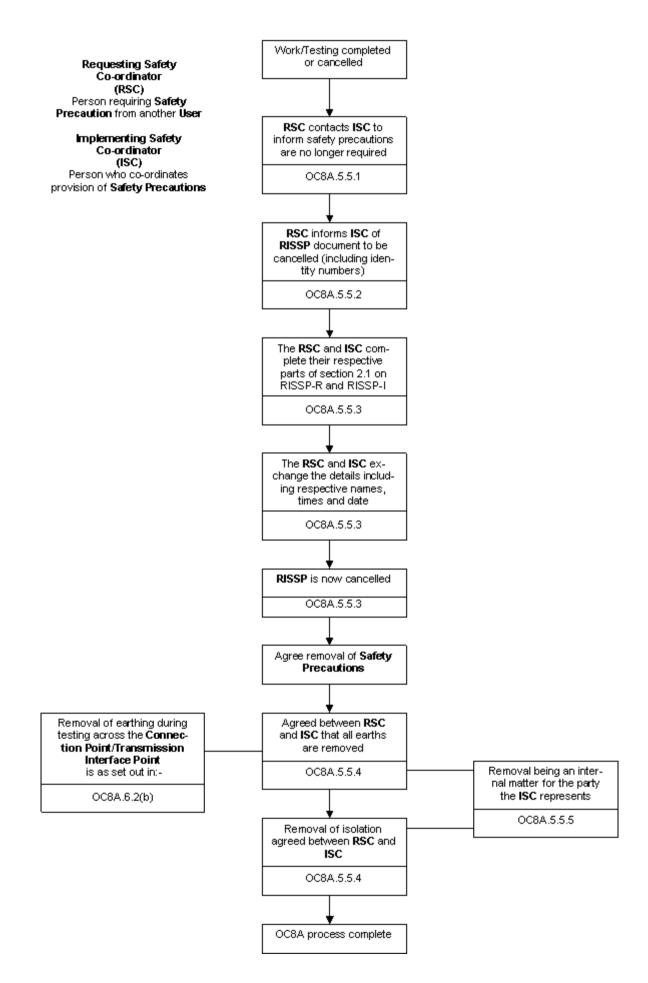

I have received confirmation from ______ (name of the **Requesting Safety Co**ordinator) at ______ (location) that the **Safety Precautions** set out in paragraph 1.2 are no longer required and accordingly the **RISSP** is cancelled.

Signed(Implementing Safety Co-ordinator)

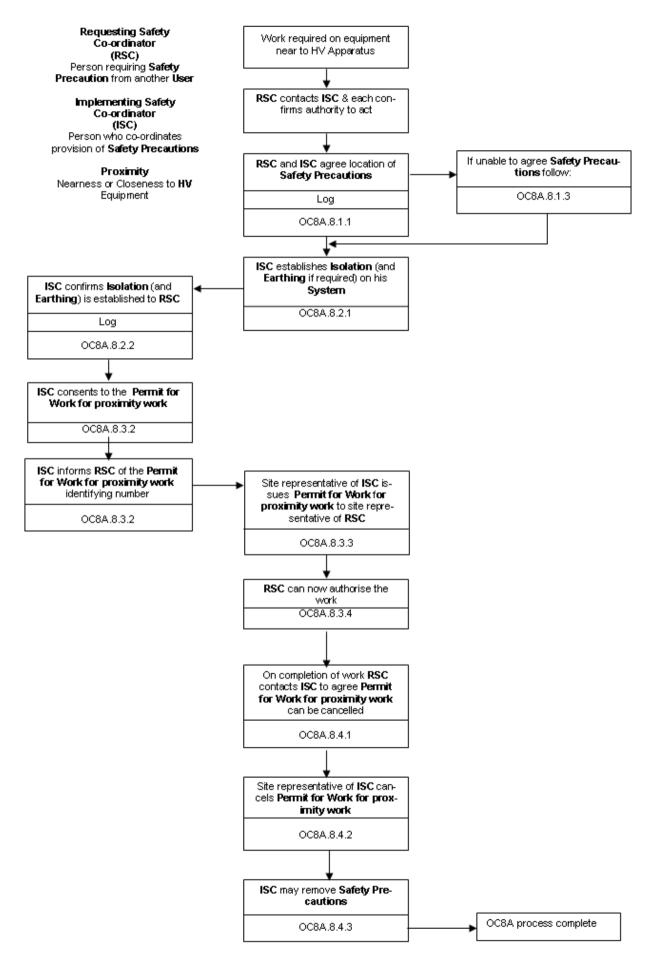
(Note: This form to be of a different colour from RISSP-R)


APPENDIX C - FLOWCHARTS

APPENDIX C1 - RISSP ISSUE PROCESS



APPENDIX C2 - TESTING PROCESS


Where testing affects another Safety Co-ordinator's System

APPENDIX C3 - RISSP CANCELLATION PROCESS

APPENDIX C4 - PROCESS FOR WORKING NEAR TO SYSTEM EQUIPMENT

APPENDIX D - NATIONAL GRID SAFETY CIRCULAR

NGET Safety Circular (NGSC)	NGSC Number:
RISSP prefixes - Issue x	Date: Issued By:
Example	

Pursuant to the objectives of The Grid Code, Operating Code 8A1 - Safety Co-ordination, this circular will be used in relation to all cross boundary safety management issues with the **Relevant E&W Transmission Licensee** customers. Of particular note will be the agreed prefixes for the **Record of Inter System Safety Precautions** (**RISSP**) documents.

APPENDIX E - FORM OF NGET'S PERMIT TO WORK

[Form of the Relevant E&W Transmission Licensee Permit for Work]

PERMIT FOR WORK

No.	

1.	Location
	Equipment Identification
	Work to be done
2.	Precautions taken to achieve Safety from the System Points of Isolation
	Primary Earths
	Actions taken to avoid Danger by draining, venting, purging and containment or dissipation of stored energy*
	Further precautions to be taken during the course of the work to avoid System derived hazards*
3.	Precautions that may be varied*
4.	Preparation Control Person(s) (Safety) giving Consent Key Safe number*
	State whether this Permit for Work must be personally retained yes no
	Signed Time Date Date

5.	Issue & Receipt Key Safe Number*	Safety Keys (No. off)*
	Earthing Schedule Number*	Portable Drain earths (No. off)*
	Recommendations for General Safety Report Number*	Approved (ROMP)#/Card Safe#/ Procedure Number*
	Circuit Identification – Colours/	Flags (No. off)* Wristlets (No. off)*
	Issued (Signed)	
	Senior Authorised Person Received (Signed) Competent Person	Time Date
	Name (Block letters)	Company

delete as appropriate *write N/A if not applicable

February 1995

< END OF OPERATING CODE NO. 8 APPENDIX 1>

OPERATING CODE NO. 8 APPENDIX 2

(OC8B)

SAFETY CO-ORDINATION IN RESPECT OF THE SCOTTISH TRANSMISSION SYSTEMS OR THE SYSTEMS OF SCOTTISH USERS

CONTENTS

(This contents page does not form part of the Grid Code)

Paragraph No/Title	Page Number
OC8B.1 INTRODUCTION	3
OC8B.2 OBJECTIVE	5
OC8B.3 SCOPE	6
OC8B.4 PROCEDURE	6
OC8B.4.1 Approval Of Safety Rules	6
OC8B.4.2 Safety Co-ordinators	6
OC8B.4.3 RISSP	7
OC8B.5 SAFETY PRECAUTIONS ON HV APPARATUS	8
OC8B.5.1 Agreement Of Safety Precautions	8
OC8B.5.2 Implementation Of Isolation	8
OC8B.5.3 Implementation of Earthing	9
OC8B.5.4 RISSP Issue Procedure	10
OC8B.5.5 RISSP Cancellation Procedure	11
OC8B.5.6 RISSP Change Control	12
OC8B.6 TESTING	12
OC8B.7 EMERGENCY SITUATIONS	12
OC8B.8 SAFETY PRECAUTIONS RELATING TO WORKING ON EQUIPMENT NEAF SYSTEM	
OC8B.8.1 Agreement Of Safety Precautions	
OC8B.8.2 Implementation Of Isolation And Earthing	
OC8B.8.3 Permit For Work For Proximity Work Issue Procedure OC8B.8.4 Permit For Work For Proximity Work	
OC8B.9 LOSS OF INTEGRITY OF SAFETY PRECAUTIONS	
OC8B.10 SAFETY LOG	
APPENDIX A - RISSP-R	15
APPENDIX B - RISSP-I	
APPENDIX C- FLOWCHARTS	
APPENDIX C1 - RISSP ISSUE PROCESS	
APPENDIX C2 - TESTING PROCESS	
APPENDIX C3 - RISSP CANCELLATION PROCESS	
APPENDIX C4 - PROCESS FOR WORKING NEAR TO SYSTEM EQUIPMENT	26

APPENDIX D - NOT USED	
APPENDIX E - FORM OF PERMIT TO WORK	29

OC8B.1 INTRODUCTION

OC8B.1.1 OC8B specifies the standard procedures to be used by The Company, the Relevant Scottish Transmission Licensees and Scottish Users for the co-ordination, establishment and maintenance of necessary Safety Precautions when work is to be carried out on or near the Scottish Transmission System or the System of a Scottish User and when there is a need for Safety Precautions on HV Apparatus on the other's System for this work to be carried out safely. OC8B applies to Relevant Scottish Transmission Licensees and Scottish Users. Where work is to be carried out on or near equipment on an E&W Transmission System or the Systems of E&W Users, but such work requires Safety Precautions to be established on a Scottish Transmission System or the Systems of Scottish Users, OC8B should be followed by the Relevant Scottish Transmission Licensee and Scottish Users to establish the required Safety Precautions.

OC8A specifies the procedures to be used by **the Relevant E&W Transmission Licensee** and **E&W Users**.

The Company shall procure that **Relevant Scottish Transmission Licensees** shall comply with OC8B where and to the extent that such section applies to them.

In this OC8B, the term "work" includes testing, other than **System Tests** which are covered by **OC12**.

- OC8B.1.2 OC8B also covers the co-ordination, establishment and maintenance of necessary safety precautions on the Implementing Safety Co-ordinator's System when work is to be carried out at a Scottish User's Site or a Transmission Site (as the case may be) on equipment of the Scottish User or the Relevant Scottish Transmission Licensee as the case may be where the work or equipment is near to HV Apparatus on the Implementing Safety Co-ordinator's System. In the case of OTSUA, a Scottish User's Site or Transmission Site shall, for the purposes of this OC8B, include a site at which there is a Transmission Interface Point until the OTSUA Transfer Time and the provisions of this OC8B and references to OTSUA shall be construed and applied accordingly until the OTSUA Transfer Time at which time arrangements in respect of the Transmission Interface Site will have been put in place between the Relevant Scottish Transmission Licensee and the Offshore Transmission Licensee.
- OC8B.1.3 OC8B does not apply to the situation where **Safety Precautions** need to be agreed solely between **Scottish Users**. OC8B does not apply to the situation where **Safety Precautions** need to be agreed solely between **Transmission Licensees**.
- OC8B.1.4 OC8B does not seek to impose a particular set of Safety Rules on Relevant Scottish Transmission Licensees and Scottish Users. The Safety Rules to be adopted and used by the Relevant Scottish Transmission Licensee and each Scottish User shall be those chosen by each.
- OC8B.1.5 Site Responsibility Schedules document the control responsibility for each item of Plant and Apparatus for each site.
- OC8B.1.6 (a) The Relevant Scottish Transmission Licensee may agree alternative site-specific operational procedures with Scottish Users for the co-ordination, establishment and maintenance of Safety Precautions instead of the Record of Inter-System Safety Precautions ("RISSP") procedure detailed in this OC8B. Such operational procedures shall satisfy the requirements of paragraphs OC8B.1.7, OC8B.2.1, OC8B.4.1, OC8B.4.2, OC8B.9, OC8B.10. These alternative site-specific operational procedures for the co-ordination, establishment and maintenance of Safety Precautions will be referenced in the relevant Site Responsibility Schedule.

- (b) The Relevant Scottish Transmission Licensee may agree with Scottish Users sitespecific procedures for the application of Safety Precautions across the interface between the Relevant Scottish Transmission Licensee and Scottish User in addition to and consistent with either the RISSP procedure or the alternative site-specific operational procedures described in OC8B.1.6 (a). These site-specific procedures will be referenced in the relevant Site Responsibility Schedule.
- (c) The **Relevant Scottish Transmission Licensee** and the **Scottish User** shall comply with the procedures agreed pursuant to OC8B.1.6 (a) and OC8B.1.6 (b).

OC8B.1.7 <u>Defined Terms</u>

- OC8B.1.7.1 **Scottish Users** should bear in mind that in **OC8** only, in order that **OC8** reads more easily with the terminology used in certain **Safety Rules**, the term "**HV Apparatus**" is defined more restrictively and is used accordingly in OC8B. **Scottish Users** should, therefore, exercise caution in relation to this term when reading and using OC8B.
- OC8B.1.7.2 In **OC8** only the following terms shall have the following meanings:
 - (1) "HV Apparatus" means High Voltage electrical circuits forming part of a System, on which Safety From The System may be required or on which Safety Precautions may be applied to allow work to be carried out on a System.
 - (2) **"Isolation**" means the disconnection of **Apparatus** from the remainder of the **System** in which that **Apparatus** is situated by either of the following:
 - (a) an **Isolating Device** maintained in an isolating position. The isolating position must either be:

- (i) maintained by immobilising and Locking the Isolating Device in the isolating position and affixing a Caution Notice to it. Where the Isolating Device is Locked with a Safety Key, the Safety Key must be secured in a Key Safe and the Key Safe Key must be given to the authorised site representative of the Requesting Safety Co-ordinator where reasonably practicable and is to be retained in safe custody. Where not reasonably practicable, the Key Safe Key must be retained by the authorised site representative of the Implementing Safety Co-ordinator in safe custody; or
- (ii) maintained and/or secured by such other method which must be in accordance with the Safety Rules of the Relevant Scottish Transmission Licensee or that Scottish User, as the case may be; or
- (b) an adequate physical separation which must be in accordance with, and maintained by, the method set out in the Safety Rules of the Relevant Scottish Transmission Licensee or that Scottish User, as the case may be, and, if it is a part of that method, a Caution Notice must be placed at the point of separation; or
- (c) in the case where the relevant **HV Apparatus** of the **Implementing Safety Co**ordinator is being either constructed or modified, an adequate physical separation as a result of a **No System Connection**.
- (3) "No System Connection" means an adequate physical separation (which must be in accordance with, and maintained by, the method set out in the Safety Rules of the Implementing Safety Co-ordinator) of the Implementing Safety Co-ordinator's HV Apparatus from the rest of the Implementing Safety Co-ordinator's System where such HV Apparatus has no installed means of being connected to, and will not for the duration of the Safety Precaution be connected to, a source of electrical energy or to any other part of the Implementing Safety Co-ordinator's System.
- (4) **"Earthing**" means a way of providing a connection between conductors and earth by an **Earthing Device** which is either:
 - (i) immobilised and Locked in the earthing position. Where the Earthing Device is Locked with a Safety Key, the Safety Key must be secured in a Key Safe and the Key Safe Key must be given to the authorised site representative of the Requesting Safety Co-ordinator where reasonably practicable and is to be retained in safe custody. Where not reasonably practicable, the Key Safe Key must be retained by the authorised site representative of the Implementing Safety Co-ordinator in safe custody; or
 - (ii) maintained and/or secured in position by such other method which must be in accordance with the Safety Rules of the Relevant Scottish Transmission Licensee or that Scottish User as the case may be.
- OC8B.1.7.3 For the purpose of the co-ordination of safety relating to **HV Apparatus** the term **"Safety Precautions"** means **Isolation** and/or **Earthing**.

OC8B.2 OBJECTIVE

- OC8B.2.1 The objective of OC8B is to achieve:-
 - Safety From The System when work on or near a System necessitates the provision of Safety Precautions on another System on HV Apparatus up to a Connection Point (or, in the case of OTSUA, Transmission Interface Point); and
 - (ii) Safety From The System when work is to be carried out at a Scottish User's Site or a Transmission Site (as the case may be) on equipment of the Scottish User or the Relevant Scottish Transmission Licensee (as the case may be) where the work or equipment is near to HV Apparatus on the Implementing Safety Co-ordinator's System.

- OC8B.2.2 A flow chart, set out in OC8B Appendix C, illustrates the process utilised in OC8B to achieve the objective set out in OC8B.2.1. In the case of a conflict between the flow chart and the provisions of the written text of OC8B, the written text will prevail.
- OC8B.3 <u>SCOPE</u>
- OC8B.3.1 OC8B applies to **The Company**, **Relevant Scottish Transmission Licensees** and to **Scottish Users**, which in **OC8** means:-
 - (a) **Generators** (including where undertaking **OTSDUW**);
 - (b) Network Operators; and
 - (c) Non-Embedded Customers.

The procedures for the establishment of safety co-ordination by **The Company** in relation to **External Interconnections** are set out in **Interconnection Agreements** with relevant persons for the **External Interconnections**.

OC8B.4 PROCEDURE

OC8B.4.1 Approval Of Safety Rules

- OC8B.4.1.1 (a) In accordance with the timing requirements of its **Bilateral Agreement**, each **Scottish User** will supply to the **Relevant Scottish Transmission Licensee** a copy of its **Safety Rules** relating to its side of the **Connection Point** at each **Connection Site** or in the case of **OTSUA** a copy of its **Local Safety Instructions** relating to its side of the **Transmission Interface Point** at each **Transmission Interface Site**.
 - (b) In accordance with the timing requirements of each Bilateral Agreement, the Relevant Scottish Transmission Licensee will supply to each Scottish User a copy of its Safety Rules relating to the Transmission side of the Connection Point at each Connection Site or in the case of OTSUA a copy of its Local Safety Instructions relating to the Transmission side of the Transmission Interface Point at each Transmission Interface Site.
 - (c) Prior to connection the **Relevant Scottish Transmission Licensee** and the **Scottish User** must have approved each other's relevant **Safety Rules** in relation to **Isolation** and **Earthing**.
- OC8B.4.1.2 Either party may require that the **Isolation** and/or **Earthing** provisions in the other party's **Safety Rules** affecting the **Connection Site** (or, in the case of **OTSUA**, **Transmission Interface Site**) should be made more stringent in order that approval of the other party's **Safety Rules** can be given. Provided these requirements are not unreasonable, the other party will make such changes as soon as reasonably practicable. These changes may need to cover the application of **Isolation** and/or **Earthing** at a place remote from the **Connection Site** (or, in the case of **OTSUA**, **Transmission Interface Site**), depending upon the **System** layout. Approval may not be withheld because the party required to approve reasonably believes the provisions relating to **Isolation** and/or **Earthing** are too stringent.
- OC8B.4.1.3 If, following approval, a party wishes to change the provisions in its **Safety Rules** relating to **Isolation** and/or **Earthing**, it must inform the other party. If the change is to make the provisions more stringent, then the other party merely has to note the changes. If the change is to make the provisions less stringent, then the other party needs to approve the new provisions and the procedures referred to in OC8B.4.1.2 apply.
- OC8B.4.2 <u>Safety Co-ordinators</u>

- OC8B.4.2.1 For each Connection Point (or, in the case of OTSUA, Transmission Interface Point), the Relevant Scottish Transmission Licensee and each Scottish User will have nominated to be available, to a timescale agreed in the Bilateral Agreement, a person or persons ("Safety Co-ordinator(s)") to be responsible for the co-ordination of Safety Precautions when work is to be carried out on a System which necessitates the provision of Safety Precautions on HV Apparatus pursuant to OC8B. A Safety Co-ordinator may be responsible for the co-ordination of safety on HV Apparatus at more than one Connection Point (or, in the case of OTSUA, Transmission Interface Point).
- OC8B.4.2.2 Each Safety Co-ordinator shall be authorised by the Relevant Scottish Transmission Licensee or a Scottish User, as the case may be, as competent to carry out the functions set out in OC8B to achieve Safety From The System. Confirmation from the Relevant Scottish Transmission Licensee or a Scottish User, as the case may be, that its Safety Co-ordinator(s) as a group are so authorised is dealt with, for Scottish Users, in CC.5.2 or in ECC.5.2 and for **Relevant Scottish Transmission Licensees** in the **STC**. Only persons with such authorisation will carry out the provisions of OC8B. Each User shall, prior to being connected to the National Electricity Transmission System, give notice in writing to the Relevant Scottish Transmission Licensee of its Safety Co-ordinator(s) and will update the written notice yearly and whenever there is a change to the identity of its Safety Coordinators or to the Connection Points (or, in the case of OTSUA, Transmission Interface Points). The Relevant Scottish Transmission Licensee will, at the time of a Scottish User being connected to the National Electricity Transmission System give notice in writing to that Scottish User of the identity of its Safety Co-ordinator(s) and will update the written notice whenever there is a change to the Connection Points (or, in the case of OTSUA, Transmission Interface Points) or Safety Co-ordinators.
- OC8B.4.2.3 Contact between **Safety Co-ordinators** will be made via normal operational channels, and accordingly separate telephone numbers for **Safety Co-ordinators** need not be provided.
- OC8B.4.2.4 If work is to be carried out on a System, or on equipment of the Relevant Scottish Transmission Licensee or a Scottish User near to a System, as provided in this OC8B, which necessitates the provision of Safety Precautions on HV Apparatus in accordance with the provisions of OC8B, the Requesting Safety Co-ordinator who requires the Safety Precautions to be provided shall contact the relevant Implementing Safety Co-ordinator to co-ordinate the establishment of the Safety Precautions.
- OC8B.4.3 <u>RISSP</u>
- OC8B.4.3.1 OC8B sets out the procedures for utilising the **RISSP**, which will be used except where dealing with equipment in proximity to the other's **System** as provided in OC8B.8. Sections OC8B.4 to OC8B.7 inclusive should be read accordingly.
- OC8B.4.3.2 The **Relevant Transmission Licensee** will use the format of the **RISSP** forms set out in Appendix A and Appendix B to OC8B, or any other format which may be agreed between the **Relevant Scottish Transmission Licensee** and each **User**. That set out in OC8B Appendix A and designated as "RISSP-R", shall be used when the **Relevant Scottish Transmission Licensee** is the **Requesting Safety Co-ordinator**, and that in OC8B Appendix B and designated as "RISSP-I", shall be used when the **Relevant Transmission Licensee** is the **Implementing Safety Co-ordinator**. Proformas of RISSP-R and RISSP-I will be provided for use by **Relevant Scottish Transmission Licensees** staff.
- OC8B.4.3.3 **Scottish Users** may either adopt the format referred to in OC8B.4.3.2 or any other format which may be agreed between the **Relevant Scottish Transmission Licensee** and the **Scottish User** from time to time.
- OC8B.4.3.4 All references to RISSP-R and RISSP-I shall be taken as referring to the corresponding parts of the alternative forms or other tangible written or electronic records used by each **Scottish User** or **Relevant Scottish Transmission Licensee**.
- OC8B.4.3.5 RISSP-R will have an identifying number written or printed on it, comprising a prefix which identifies the location at which it is issued, and a unique (for each **Scottish User** or **Relevant Scottish Transmission Licensee**, as the case may be) serial number which both together uses up to eight characters (including letters and numbers) and the suffix "R".

- OC8B.4.3.6 (a) In accordance with the timing requirements set out in the **Bilateral Agreement** each **Scottish User** shall apply in writing to the **Relevant Scottish Transmission Licensee** for the **Relevant Scottish Transmission Licensee**'s approval of its proposed prefix.
 - (b) The Relevant Scottish Transmission Licensee shall consider the proposed prefix to see if it is the same as (or confusingly similar to) a prefix used by the Relevant Scottish Transmission Licensee or another User and shall, as soon as possible (and in any event within ten days), respond in writing to the Scottish User with its approval or disapproval.
 - (c) If the **Relevant Scottish Transmission Licensee** disapproves, it shall explain in its response why it has disapproved and will suggest an alternative prefix.
 - (d) If the Relevant Scottish Transmission Licensee has disapproved, then the Scottish User shall either notify the Relevant Scottish Transmission Licensee in writing of its acceptance of the suggested alternative prefix or it shall apply in writing to the Relevant Scottish Transmission Licensee with revised proposals and the above procedure shall apply to that application.

OC8B.5 SAFETY PRECAUTIONS ON HV APPARATUS

OC8B.5.1 Agreement Of Safety Precautions

- OC8B.5.1.1 The Requesting Safety Co-ordinator who requires Safety Precautions on another System(s) will contact the relevant Implementing Safety Co-ordinator(s) to agree the Location of the Safety Precautions to be established. This agreement will be recorded in the respective Safety Logs.
- OC8B.5.1.2 It is the responsibility of the Implementing Safety Co-ordinator to ensure that adequate Safety Precautions are established and maintained, on their and/or another System connected to their System, to enable Safety From The System to be achieved on the HV Apparatus, specified by the Requesting Safety Co-ordinator which is to be identified in Part 1.1 of the RISSP. Reference to another System in this OC8B.5.1.2 shall not include the Requesting Safety Co-ordinator's System which is dealt with in OC8B.5.1.3.
- OC8B.5.1.3 When the **Implementing Safety Co-ordinator** is of the reasonable opinion that it is necessary for **Safety Precautions** on the **System** of the **Requesting Safety Co-ordinator**, other than on the **HV Apparatus** specified by the **Requesting Safety Co-ordinator**, which is to be identified in Part 1.1 of the **RISSP**, they shall contact the **Requesting Safety Co-ordinator** and the details shall be recorded in part 1.1 of the **RISSP** forms. In these circumstances it is the responsibility of the **Requesting Safety Co-ordinator** to establish and maintain such **Safety Precautions**.
- OC8B.5.1.4 The location of the **Safety Precautions** should be indicated on each **Scottish User's** operational diagram and labelled as per the local instructions of each **Scottish User**.
- OC8B.5.1.5 In The Event Of Disagreement

In any case where the **Requesting Safety Co-ordinator** and the **Implementing Safety Co-ordinator** are unable to agree the **Location** of the **Isolation** and (if requested) **Earthing**, both shall be at the closest available points on the infeeds to the **HV Apparatus** on which **Safety From The System** is to be achieved as indicated on the **Operation Diagram**.

- OC8B.5.2 Implementation Of Isolation
- OC8B.5.2.1 Following the agreement of the **Safety Precautions** in accordance with OC8B.5.1 the **Implementing Safety Co-ordinator** shall then establish the agreed **Isolation**.
- OC8B.5.2.2 The Implementing Safety Co-ordinator shall confirm to the Requesting Safety Coordinator that the agreed Isolation has been established, and identify the Requesting Safety Co-ordinator's HV Apparatus up to the Connection Point (or, in the case of OTSUA, Transmission Interface Point), for which the Isolation has been provided. The confirmation shall specify:

- (a) for each **Location**, the identity (by means of **HV Apparatus** name, nomenclature and numbering or position, as applicable) of each point of **Isolation**;
- (b) whether **Isolation** has been achieved by an **Isolating Device** in the isolating position, by an adequate physical separation or as a result of a **No System Connection**;
- (c) where an **Isolating Device** has been used whether the isolating position is either :
 - (i) maintained by immobilising and Locking the Isolating Device in the isolating position and affixing a Caution Notice to it. Where the Isolating Device has been Locked with a Safety Key, the confirmation shall specify that the Safety Key has been secured in a Key Safe and the Key Safe Key has been given to the authorised site representative of the Requesting Safety Co-ordinator where reasonably practicable and is to be retained in safe custody. Where not reasonably practicable (including where Earthing has been requested in OC8B.5.1), the confirmation shall specify that the Key Safe Key will be retained by the authorised site representative of the Implementing Safety Co-ordinator in safe custody; or
 - (ii) maintained and/or secured by such other method which must be in accordance with the Safety Rules of the Relevant Scottish Transmission Licensee or that Scottish User, as the case may be; and
- (d) where an adequate physical separation has been used that it will be in accordance with, and maintained by, the method set out in the Safety Rules of the Relevant Scottish Transmission Licensee or that Scottish User, as the case may be, and, if it is a part of that method, that a Caution Notice has been placed at the point of separation;
- (e) where a No System Connection has been used, the physical position of the No System Connection shall be defined and shall not be varied for the duration of the Safety Precaution and the Implementing Safety Co-ordinator's relevant HV Apparatus will not, for the duration of the Safety Precaution be connected to a source of electrical energy or to any other part of the Implementing Safety Co-ordinator's System.

The confirmation of Isolation shall be recorded in the respective Safety Logs.

- OC8B.5.2.3 Following the confirmation of **Isolation** being established by the **Implementing Safety Co**ordinator and the necessary establishment of relevant **Isolation** on the **Requesting Safety Co-ordinators System**, the **Requesting Safety Co-ordinator** will then request the implementation of **Earthing** by the **Implementing Safety Co-ordinator**, if agreed in section OC8B.5.1. If the implementation of **Earthing** has been agreed, then the authorised site representative of the **Implementing Safety Co-ordinator** shall retain any **Key Safe Key** in safe custody until any **Safety Key** used for **Earthing** has been secured in the **Key Safe**.
- OC8B.5.3 Implementation Of Earthing
- OC8B.5.3.1 The Implementing Safety Co-ordinator shall then establish the agreed Earthing.
- OC8B.5.3.2 The Implementing Safety Co-ordinator shall confirm to the Requesting Safety Coordinator that the agreed Earthing has been established, and identify the Requesting Safety Co-ordinator's HV Apparatus up to the Connection Point (or, in the case of OTSUA, Transmission Interface Point), for which the Earthing has been provided. The confirmation shall specify:
 - (a) for each **Location**, the identity (by means of **HV Apparatus** name, nomenclature and numbering or position, as is applicable) of each point of **Earthing**; and
 - (b) in respect of the Earthing Device used, whether it is:
 - (i) immobilised and Locked in the earthing position. Where the Earthing Device has been Locked with a Safety Key, that the Safety Key has been secured in a Key Safe and the Key Safe Key has been given to the authorised site representative of the Requesting Safety Co-ordinator where reasonably practicable and is to be retained in safe custody. Where not reasonably practicable, that the Key Safe Key

will be retained by the authorised site representative of the **Implementing Safety Co-ordinator** in safe custody; or

(ii) maintained and/or secured in position by such other method which is in accordance with the Safety Rules of the Relevant Scottish Transmission Licensee or that Scottish User, as the case may be.

The confirmation of **Earthing** shall be recorded in the respective **Safety Logs**.

- OC8B.5.3.3 The Implementing Safety Co-ordinator shall ensure that the established Safety Precautions are maintained until requested to be removed by the relevant Requesting Safety Co-ordinator.
- OC8B.5.3.4 Certain designs of gas insulated switchgear three position isolator and earth switches specifically provide a combined **Isolation** and **Earthing** function within a single mechanism contained within a single integral unit. Where **Safety Precautions** are required across control boundaries and subject to the requirements of OC8B.5.1, it is permissible to earth before **Points of Isolation** have been established provided that all interconnected circuits are fully disconnected from live **HV Apparatus**.

OC8B.5.4 RISSP Issue Procedure

- OC8B.5.4.1 Where **Safety Precautions** on another **System(s)** are being provided to enable work on the **Requesting Safety Co-ordinator's System**, before any work commences they must be recorded by a **RISSP** being issued. The **RISSP** is applicable to **HV Apparatus** up to the **Connection Point** (or, in the case of **OTSUA**, **Transmission Interface Point**) identified in section 1.1 of the RISSP-R and RISSP-I forms.
- OC8B.5.4.2 Where Safety Precautions are being provided to enable work to be carried out on both sides of the Connection Point (or, in the case of OTSUA, Transmission Interface Point) a RISSP will need to be issued for each side of the Connection Point (or, in the case of OTSUA, Transmission Interface Point) with Relevant Scottish Transmission Licensee and the respective User each enacting the role of Requesting Safety Co-ordinator. This will result in a RISSP-R and a RISSP-I form being completed by each of the Relevant Scottish Transmission Licensee and the Scottish User, with each Requesting Safety Co-ordinator issuing a separate RISSP number.
- OC8B.5.4.3 Once the **Safety Precautions** have been established (in accordance with OC8B.5.2 and OC8B.5.3), the **Implementing Safety Co-ordinator** shall complete parts 1.1 and 1.2 of a RISSP-I form recording the details specified in OC8B.5.1.3, OC8B.5.2.2 and OC8B.5.3.2. Where **Earthing** has not been requested, Part 1.2(b) will be completed with the words "not applicable" or "N/A". They shall then contact the **Requesting Safety Co-ordinator** to pass on these details.
- OC8B.5.4.4 The **Requesting Safety Co-ordinator** shall complete Parts 1.1 and 1.2 of the RISSP-R, making a precise copy of the details received. On completion, the **Requesting Safety Co-ordinator** shall read the entries made back to the sender and check that an accurate copy has been made.
- OC8B.5.4.5 The **Requesting Safety Co-ordinator** shall then issue the number of the **RISSP**, taken from the RISSP-R, to the **Implementing Safety Co-ordinator** who will ensure that the number, including the prefix and suffix (where applicable), is accurately recorded in the designated space on the RISSP-I form.
- OC8B.5.4.6 The **Requesting Safety Co-ordinator** and the **Implementing Safety Co-ordinator** shall complete and sign Part 1.3 of the RISSP-R and RISSP-I respectively and then enter the time and date. When signed no alteration to the **RISSP** is permitted; the **RISSP** may only be cancelled.
- OC8B.5.4.7 The **Requesting Safety Co-ordinator** is then free to authorise work, but not testing, in accordance with the requirements of the relevant internal safety procedures which apply to the **Requesting Safety Co-ordinator's System**. This is likely to involve the issue of safety documents or other relevant internal authorisations. Where testing is to be carried out, the procedure set out below in OC8B.6 shall be implemented.

- OC8B.5.5 RISSP Cancellation Procedure
- OC8B.5.5.1 When the **Requesting Safety Co-ordinator** decides that **Safety Precautions** are no longer required, they will contact the relevant **Implementing Safety Co-ordinator** to effect cancellation of the associated **RISSP**.
- OC8B.5.5.2 The **Requesting Safety Co-ordinator** will inform the relevant **Implementing Safety Co-ordinator** of the **RISSP** identifying number, including the prefix and suffix (where applicable), and agree it is the **RISSP** to be cancelled.
- OC8B.5.5.3 The **Requesting Safety Co-ordinator** and the relevant **Implementing Safety Co-ordinator** shall then respectively complete Part 2.1 of their respective RISSP-R and RISSP-I forms and shall then exchange details. The details being exchanged shall include their respective names and time and date. On completion of the exchange of details the respective **RISSP** is cancelled. The removal of **Safety Precautions** is as set out in OC8B.5.5.4 and OC8B.5.5.5.
- OC8B.5.5.4 Neither Safety Co-ordinator shall instruct the removal of any Isolation forming part of the Safety Precautions as part of the returning of the HV Apparatus to service until it is confirmed to each by each other that every earth on each side of the Connection Point (or, in the case of OTSUA, Transmission Interface Point), within the points of isolation identified on the RISSP, has been removed or disconnected by the provision of additional Points of Isolation.
- OC8B.5.5.5 Subject to the provisions in OC8B.5.5.4, the **Implementing Safety Co-ordinator** is then free to arrange the removal of the **Safety Precautions**, the procedure to achieve that being entirely an internal matter for the party the **Implementing Safety Co-ordinator** is representing. Where a **Key Safe Key** has been given to the authorised site representative of the **Requesting Safety Co-ordinator**, the **Key Safe Key** must be returned to the authorised site representative of the **Implementing Safety Co-ordinator**. The only situation in which any **Safety Precautions** may be removed without first cancelling the **RISSP** in accordance with OC8B.5.5 or OC8B.5.6 is when **Earthing** is removed in the situation envisaged in OC8B.6.2(b).

OC8B.5.6 RISSP Change Control

Nothing in this OC8B prevents **Relevant Scottish Transmission Licensees** and **Scottish Users** agreeing to a simultaneous cancellation and issue of a new **RISSP**, if both agree. It should be noted, however, that the effect of that under the relevant **Safety Rules** is not a matter with which the **Grid Code** deals.

OC8B.6 <u>TESTING</u>

- OC8B.6.1 The carrying out of the test may affect **Safety Precautions** on **RISSPs** or work being carried out which does not require a **RISSP**. Testing can, for example, include the application of an independent test voltage. Accordingly, where the **Requesting Safety Co-ordinator** wishes to authorise the carrying out of such a test to which the procedures in OC8B.6 apply, they may not do so and the test will not take place unless and until the steps in (a)-(c) below have been followed and confirmation of completion has been recorded in the respective **Safety Logs**:
 - (a) confirmation must be obtained from the Implementing Safety Co-ordinator that:
 - (i) no person is working on, or testing, or has been authorised to work on, or test, any part of its System or another System(s) (other than the System of the Requesting Safety Co-ordinator) within the points of Isolation identified on the RISSP form relating to the test which is proposed to be undertaken, and
 - (ii) no person will be so authorised until the proposed test has been completed (or cancelled) and the Requesting Safety Co-ordinator has notified the Implementing Safety Co-ordinator of its completion (or cancellation);
 - (b) any other current **RISSPs** which relate to the parts of the **System** in which the testing is to take place must have been cancelled in accordance with procedures set out in OC8B.5.5;
 - (c) the Implementing Safety Co-ordinator must agree with the Requesting Safety Co-ordinator to permit the testing on that part of the System between the points of Isolation identified in the RISSP associated with the test and the points of Isolation on the Requesting Safety Co-ordinator's System.
- OC8B.6.2 (a) The **Requesting Safety Co-ordinator** will inform the **Implementing Safety Co-ordinator** as soon as the test has been completed or cancelled and the confirmation shall be recorded in the respective **Safety Logs**.
 - (b) When the test gives rise to the removal of **Earthing** which it is not intended to re-apply, the relevant **RISSP** associated with the test shall be cancelled at the completion or cancellation of the test in accordance with the procedure set out in either OC8B.5.5 or OC8B.5.6. Where the **Earthing** is re-applied following the completion or cancellation of the test, there is no requirement to cancel the relevant **RISSP** associated with the test pursuant to this OC8B.6.2.

OC8B.7 <u>EMERGENCY SITUATIONS</u>

- OC8B.7.1 There may be circumstances where **Safety Precautions** need to be established in relation to an unintended electrical connection or situations where there is an unintended risk of electrical connection between the **National Electricity Transmission System** and a **Scottish User's System**, for example resulting from an incident where one line becomes attached or unacceptably close to another.
- OC8B.7.2 In those circumstances, if both the **Relevant Scottish Transmission Licensee** and the **Scottish User** agree, the relevant provisions of OC8B.5 will apply as if the electrical connections or potential connections were, solely for the purposes of this OC8B, a **Connection Point** (or, in the case of **OTSUA**, **Transmission Interface Point**).

- OC8B.7.3 (a) The relevant Safety Co-ordinator shall be that for the electrically closest existing Connection Point (or, in the case of OTSUA, Transmission Interface Point) to that Scottish User's System or such other local Connection Point (or, in the case of OTSUA, Transmission Interface Point) as may be agreed between the Relevant Scottish Transmission Licensee and the Scottish User, with discussions taking place between the relevant local Safety Co-ordinators. The Connection Point (or, in the case of OTSUA, Transmission Interface Point) to be used shall be known in this OC8B.7.3 as the "relevant Connection Point" (or, in the case of OTSUA, relevant "Transmission Interface Point").
 - (b) The **Safety Rules** shall be those which apply to the relevant **Connection Point** (or, in the case of **OTSUA**, **Transmission Interface Point**).
 - (c) The prefix for the **RISSP** (where applicable) will be that which applies for the relevant **Connection Point** (or, in the case of **OTSUA**, **Transmission Interface Point**).

OC8B.8 <u>SAFETY PRECAUTIONS RELATING TO WORKING ON EQUIPMENT NEAR TO THE HV</u> <u>SYSTEM</u>

OC8B.8 applies to the situation where work is to be carried out at a **Scottish User's Site** or a **Transmission Site** (as the case may be) on equipment of the **Scottish User** or a **Relevant Scottish Transmission Licensee** as the case may be, where the work or equipment is near to **HV Apparatus** on the **Implementing Safety Co-ordinator's System**. It does not apply to other situations to which OC8B applies. In this part of OC8B, a **Permit for Work for proximity work** is to be used, rather than the usual **RISSP** procedure, given the nature and effect of the work, all as further provided in the OC8B.8.

OC8B.8.1 Agreement Of Safety Precautions

- OC8B.8.1.1 The Requesting Safety Co-ordinator who requires Safety Precautions on another System(s) when work is to be carried out at a Scottish User's Site or a Transmission Site (as the case may be) on equipment of the Scottish User or a Relevant Scottish Transmission Licensee, as the case may be, where the work or equipment is near to HV Apparatus on the Implementing Safety Co-ordinator's System will contact the relevant Implementing Safety Co-ordinator(s) to agree the Location of the Safety Precautions to be established, having as part of this process informed the Implementing Safety Coordinator of the equipment and the work to be undertaken. The respective Safety Coordinators will ensure that they discuss the request with their authorised site representative and that the respective authorised site representatives discuss the request at the Connection Site (or, in the case of OTSUA, Transmission Interface Site). This agreement will be recorded in the respective Safety Logs.
- OC8B.8.1.2 It is the responsibility of the Implementing Safety Co-ordinator, working with their authorised site representative as appropriate, to ensure that adequate Safety Precautions are established and maintained, on their and/or another System connected to their System, to enable Safety From The System to be achieved for work to be carried out at a Scottish User's Site or a Transmission Site (as the case may be) on equipment and in relation to work which is to be identified in the relevant part of the Permit for Work for proximity work where the work or equipment is near to HV Apparatus of the Implementing Safety Coordinator's System specified by the Requesting Safety Coordinator. Reference to another System in this OC8B.8.1.2 shall not include the Requesting Safety Coordinator's System.

OC8B.8.1.3 In The Event Of Disagreement

In any case where the **Requesting Safety Co-ordinator** and the **Implementing Safety Co-ordinator** are unable to agree the **Location** of the **Isolation** and (if requested) **Earthing**, both shall be at the closest available points on the infeeds to the **HV Apparatus** near to which the work is to be carried out as indicated on the **Operation Diagram**.

OC8B.8.2 Implementation Of Isolation And Earthing

- OC8B.8.2.1 Following the agreement of the **Safety Precautions** in accordance with OC8B.8.1, the **Implementing Safety Co-ordinator** shall then establish the agreed **Isolation** and (if required) **Earthing**.
- OC8B.8.2.2 The **Implementing Safety Co-ordinator** shall confirm to the **Requesting Safety Co-ordinator** that the agreed **Isolation** and (if required) **Earthing** has been established.
- OC8B.8.2.3 The Implementing Safety Co-ordinator shall ensure that the established Safety Precautions are maintained until requested to be removed by the relevant Requesting Safety Co-ordinator.
- OC8B.8.3 Permit For Work For Proximity Work Issue Procedure
- OC8B.8.3.1 Where Safety Precautions on another System(s) are being provided to enable work to be carried out at a Scottish User's Site or Transmission Site (as the case may be) on equipment where the work or equipment is in proximity to HV Apparatus of the Implementing Safety Co-ordinator, before any work commences they must be recorded by a Permit for Work for proximity work being issued. The Permit for Work for proximity to the required work or the required work
- OC8B.8.3.2 Once the Safety Precautions have been established (in accordance with OC8B.8.2), the Implementing Safety Co-ordinator shall agree to the issue of the Permit for Work for proximity work with the appropriately authorised site representative of the Requesting Safety Co-ordinator's Site. The Implementing Safety Co-ordinator will inform the Requesting Safety Co-ordinator of the Permit for Work for proximity work identifying number.
- OC8B.8.3.3 The appropriately authorised site representative of the Implementing Safety Co-ordinator shall then issue the Permit for Work for proximity work to the appropriately authorised site representative of the Requesting Safety Co-ordinator. The Permit for Work for proximity work will in the section dealing with the work to be carried out, be completed to identify that the work is near the Implementing Safety Co-ordinator's HV Apparatus. No further details of the Requesting Safety Co-ordinator's work will be recorded, as that is a matter for the Requesting Safety Co-ordinator in relation to their work.
- OC8B.8.3.4 The **Requesting Safety Co-ordinator** is then free to authorise work in accordance with the requirements of the relevant internal safety procedures which apply to the **Requesting Safety Co-ordinator's Site**. This is likely to involve the issue of safety documents or other relevant internal authorisations.
- OC8B.8.4 Permit For Work For Proximity Work Cancellation Procedure
- OC8B.8.4.1 When the **Requesting Safety Co-ordinator** decides that **Safety Precautions** are no longer required, they will contact the relevant **Implementing Safety Co-ordinator** to effect cancellation of the associated **Permit for Work for proximity work**.
- OC8B.8.4.2 The **Requesting Safety Co-ordinator** will inform the relevant **Implementing Safety Co**ordinator of the **Permit for Work for proximity work** identifying number, and agree that the **Permit for Work for proximity work** can be cancelled. The cancellation is then effected by the appropriately authorised site representative of the **Requesting Safety Co-ordinator** returning the **Permit for Work for proximity work** to the appropriately authorised site representative of the **Implementing Safety Co-ordinator**.
- OC8B.8.4.3 The **Implementing Safety Co-ordinator** is then free to arrange the removal of the **Safety Precautions**, the procedure to achieve that being entirely an internal matter for the party the **Implementing Safety Co-ordinator** is representing.

OC8B.9 LOSS OF INTEGRITY OF SAFETY PRECAUTIONS

OC8B.9.1 In any instance when any **Safety Precautions** may be ineffective for any reason, the relevant **Safety Co-ordinator** shall inform the other **Safety Co-ordinator(s)** without delay of that being the case and, if requested, of the reasons why.

OC8B.10 SAFETY LOG

OC8B.10.1 Relevant Scottish Transmission Licensees and Scottish Users shall maintain Safety Logs which shall be a chronological record of all messages relating to safety co-ordination under OC8 sent and received by the Safety Co-ordinator(s). The Safety Logs must be retained for a period of not less than six years.

APPENDIX A - RISSP-R

RECORD OF INTER-SYSTEM SAFETY PRECAUTIONS (RISSP-R) (Requesting Safety Co-ordinator's Record)

RISSP NUMBER _____

<u>Part 1</u>

1.1 <u>CIRCUIT IDENTIFICATION</u>

Safety Precautions have been established by the Implementing Safety Co-ordinator to achieve Safety From The System on the following HV Apparatus:

1.2 SAFETY PRECAUTIONS ESTABLISHED

(a) ISOLATION

State the Locations(s) at which Isolation has been established on the Implementing Safety Co-ordinator's System. For each Location, identify each point of Isolation. For each point of Isolation state, the means by which the Isolation has been achieved, and whether, immobilised and Locked, Caution Notice affixed, other Safety Precautions applied, as appropriate.

Issue 6 Revision 12

(b) EARTHING

State the Locations(s) at which Earthing has been established on the Implementing Safety Co-ordinator's System. For each Location, identify each point of Earthing. For each point of Earthing state, the means by which the Earthing has been achieved, and whether, immobilised and Locked, other Safety Precautions applied, as appropriate.

1.3 <u>ISSUE</u>

I have received confirmation from	(name of Implementing
Safety Co-ordinator) at	(Location) that the Safety Precautions
identified in paragraph 1.2 have been es issued at their Location for their removal un	tablished and that instructions will not be til this RISSP is cancelled.
Signed (Req	uesting Safety Co-ordinator)

at (time) on (date)

<u>PART 2</u>

2.1 <u>CANCELLATION</u>

I have confirmed to ______ (name of the Implementing Safety Co-ordinator) at ______ (Location) that the Safety Precautions set out in paragraph 1.2 are no longer required and accordingly the RISSP is cancelled.

Signed (Requesting Safety Co-ordinator)

at (time) on (date).....

APPENDIX B - RISSP-I

RECORD OF INTER-SYSTEM SAFETY PRECAUTIONS (RISSP-I) (Implementing Safety Co-ordinator's Record)

RISSP NUMBER _____

<u> PART 1</u>

1.1 <u>CIRCUIT IDENTIFICATION</u>

Safety Precautions have been established by the Implementing Safety Co-ordinator to achieve Safety From The System on the following HV Apparatus:

1.2 SAFETY PRECAUTIONS ESTABLISHED

(a) ISOLATION

State the Location(s) at which isolation has been established on the Implementing Safety Co-ordinator's System. For each Location, identify each point of Isolation. For each point of Isolation state, the means by which the Isolation has been achieved, and whether, immobilised and Locked, Caution Notice affixed, other Safety Precautions applied, as appropriate.

(b) EARTHING

State the Location(s) at which Earthing has been established on the Implementing Safety Co-ordinator's System. For each Location, identify each point of Earthing. For each point of Earthing state, the means by which the Earthing has been achieved, and whether, immobilised and Locked, other Safety Precautions applied, as appropriate.

1.3 <u>ISSUE</u>

I confirmed to ______ (name of Requesting Safety Co-ordinator) at ______ (Location) that the Safety Precautions identified in paragraph 1.2 have been established and that instructions will not be issued at my Location for their removal until this RISSP is cancelled.

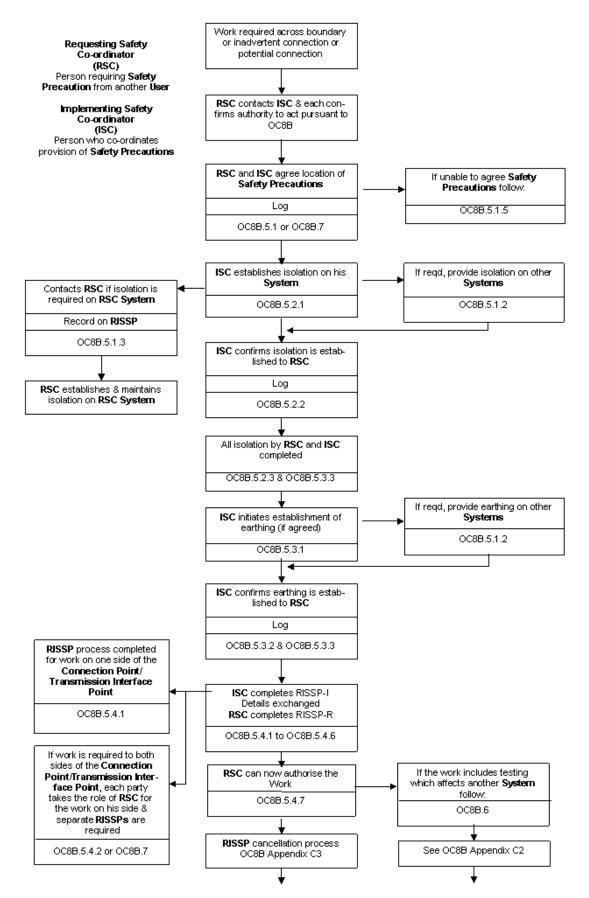
Signed (Implementing Safety Co-ordinator)

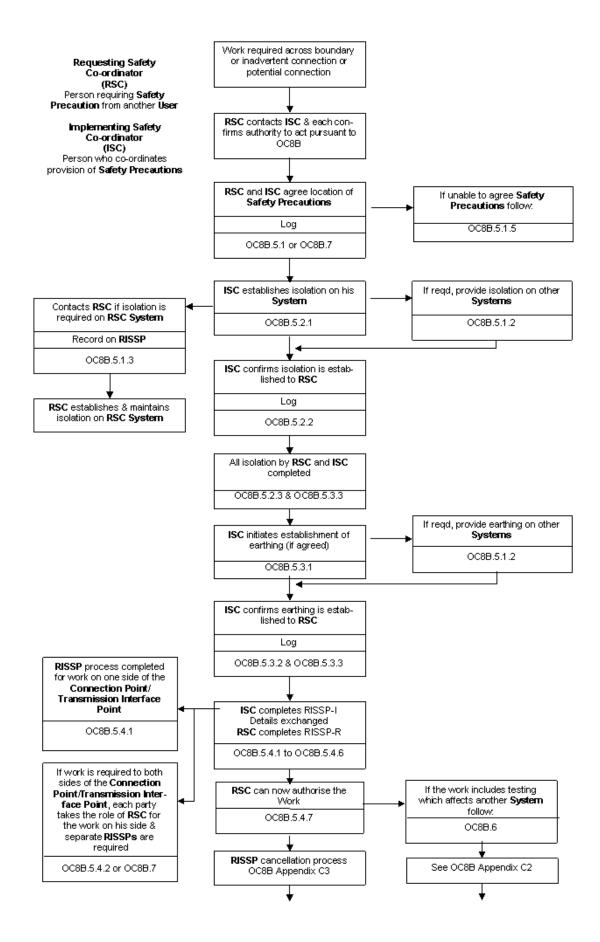
at (time) on (date)

<u> PART 2</u>

2.1 <u>CANCELLATION</u>

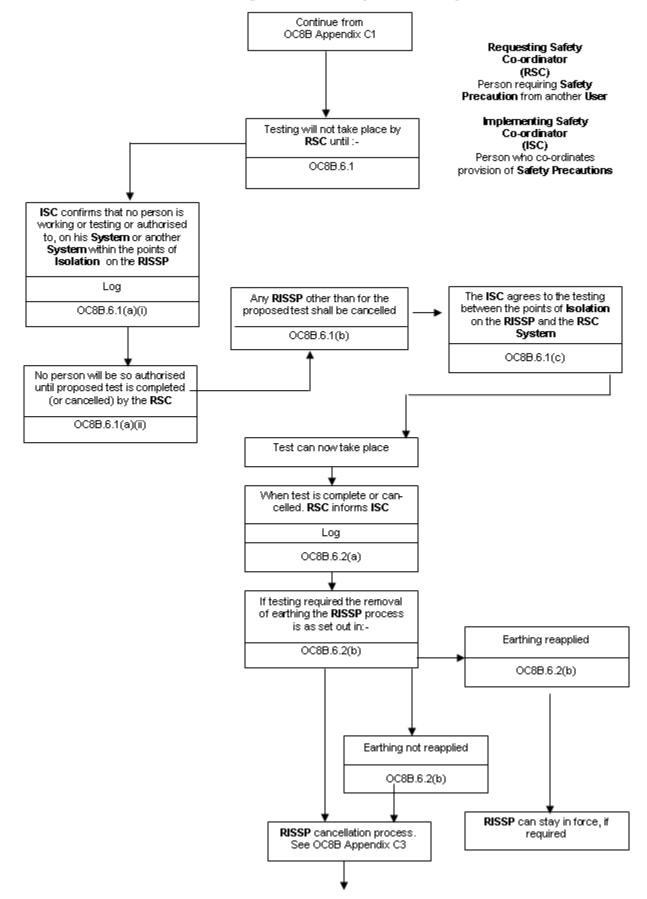
I have received confirmation from ______ (name of the Requesting Safety Co-ordinator) at ______ (Location) that the Safety Precautions set out in paragraph 1.2 are no longer required and accordingly the RISSP is cancelled.

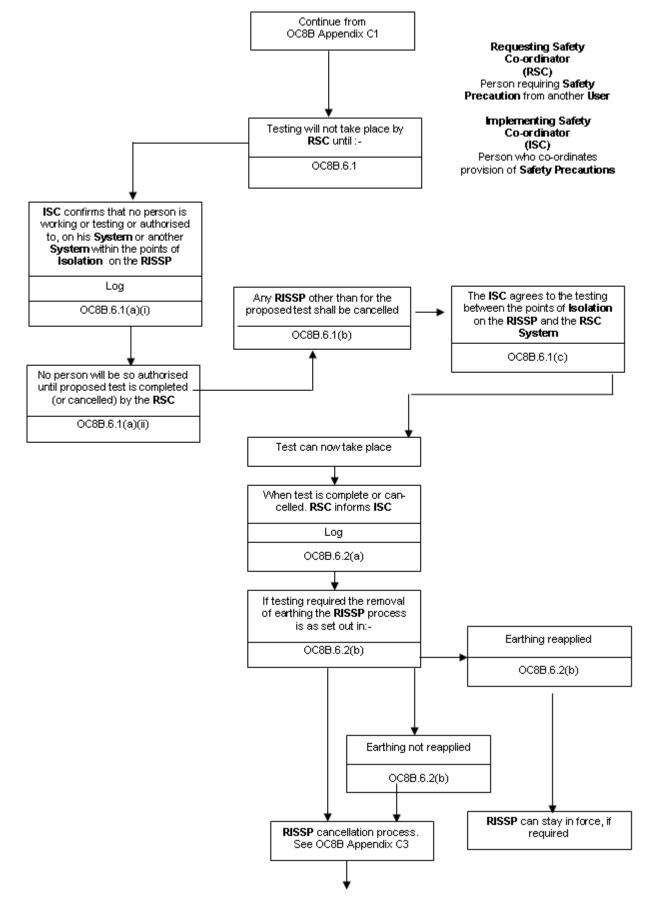

Signed (Implementing Safety Co-ordinator)


at (time) on (date)

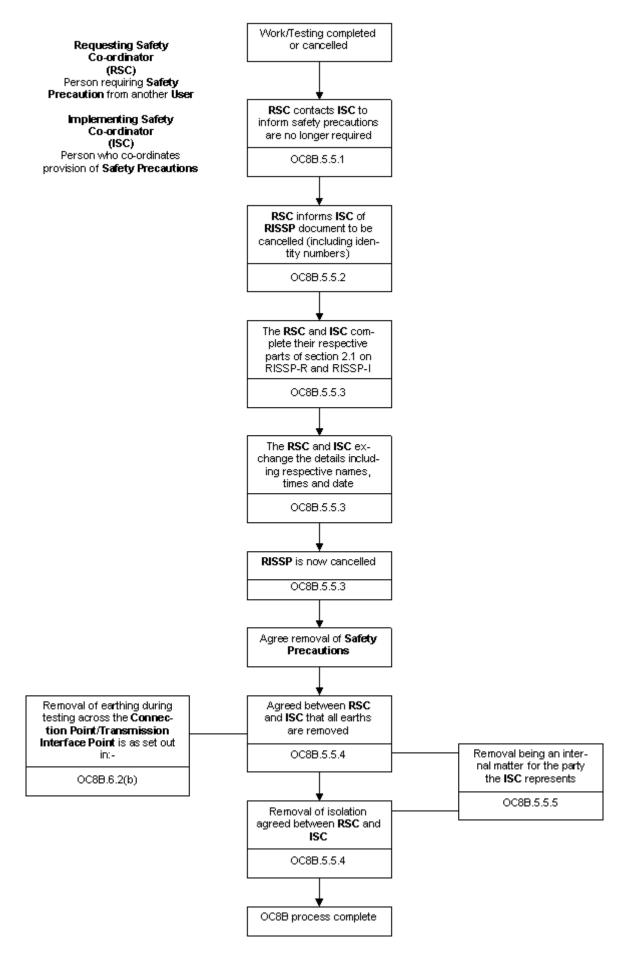
(Note: This form to be of a different colour from RISSP-R.)

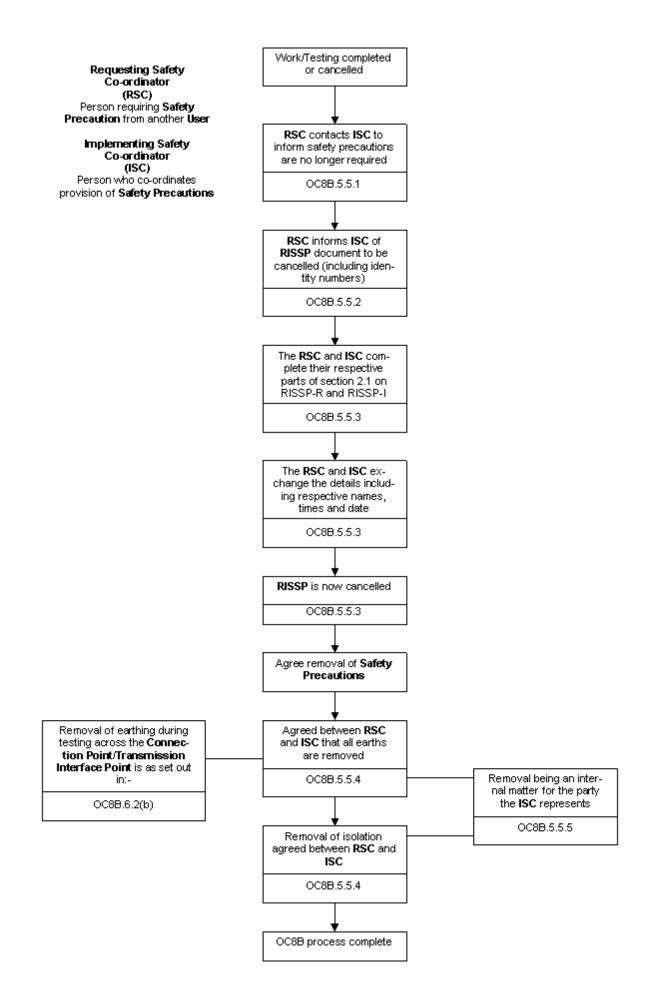
APPENDIX C - FLOWCHARTS


APPENDIX C1 - RISSP ISSUE PROCESS

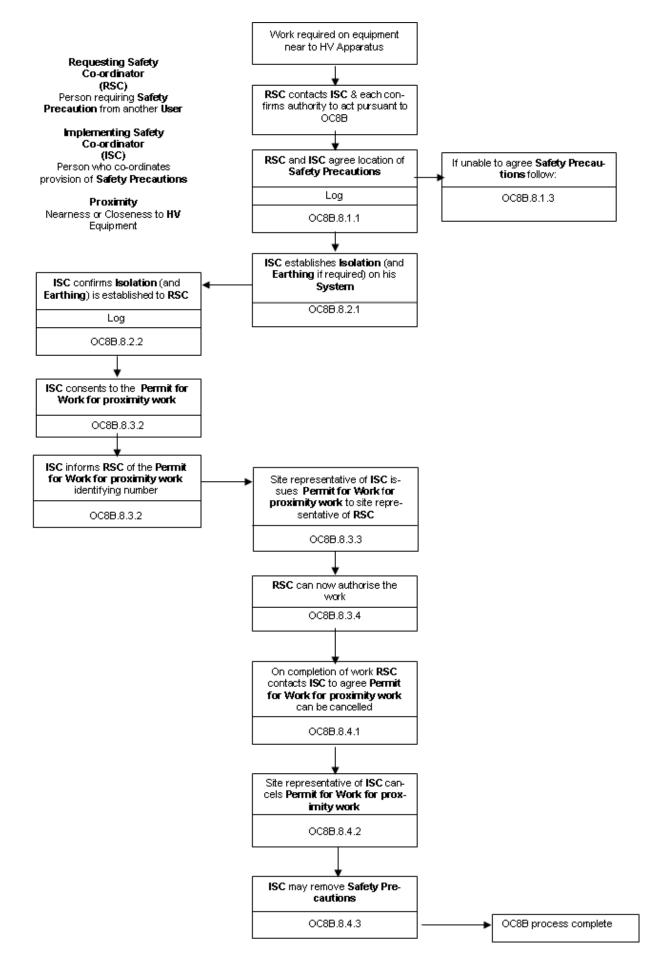


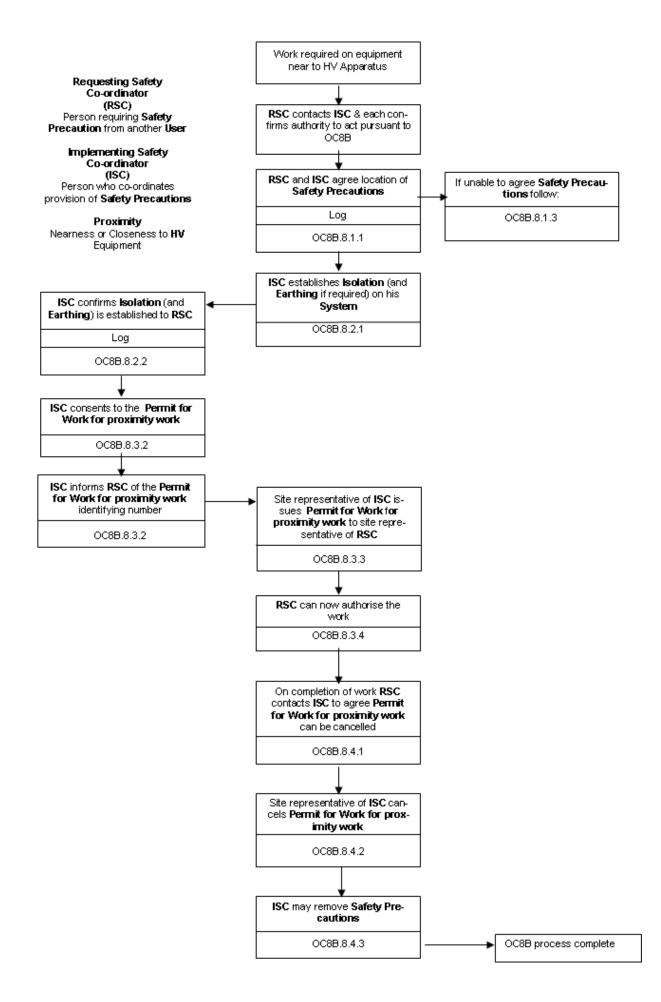
APPENDIX C2 - TESTING PROCESS


Where testing affects another Safety Co-ordinator's System



Where testing affects another Safety Co-ordinator's System




APPENDIX C3 - RISSP CANCELLATION PROCESS

APPENDIX C4 - PROCESS FOR WORKING NEAR TO SYSTEM EQUIPMENT

APPENDIX D - NOT USED

Not Used

APPENDIX E - FORM OF PERMIT TO WORK

Scottish & Southern Energy plc

PERMIT-TO-WORK

No.

1. ISSUE

Τ.	
10	

The following High Voltage Apparatus has been made safe in accordance with the Operational Safety Rules for the work detailed on this Permit-to-Work to proceed:

TREAT ALL OTHER APPARATUS AS LIVE

Circuit Main Earths are applied at:
Other precautions (see Operational Safety Rules 3.2.1(b), 4.6.2(c) and 5.5.3), and any special instructions:
The following work is to be carried out:
Circuit Identification Issued: Colour No. of wristlets No. of step bolts
Name: (print): Date: Date:

2. RECEIPT

I accept responsibility for carrying out the work on the Apparatus detailed on this Permit-to-Work, applying additional earths as necessary. No attempt will be made by me, or by the persons under my charge, to work on any other Apparatus.

Circuit Identification Equipment Checked as above (Initials):

3. CLEARANCE

All persons under my control have be to Work.	en withdrawn and warned that it	t is no longer safe to wor	on the Apparatus detailed on this Permit-		
All gear, tools and additional earths h	ave/have not* been removed.	The works is/is not* co	mplete.		
All circuit identification equipment iss	ued as above has been returned	ł			
Name: (print): Date: Date:					
	* Delete where	not applicable			
4. CANCELLATION					
This Permit-to-Work is cancelled.					
Name: (print):	Signature:	Time:	Date:		

Issue 6 Revision 12

Scottish Power

		PERMIT FOR WORK	No.	
		KEY SAFE	No.	
	~			
1.	(i)	LOCATION		
	(ii)	PLANT/APPARATUS IDENTIFICATION		
	(iii)	WORK TO BE DONE		
2.	(i)	PRECAUTIONS TAKEN TO ACHIEVE SAFETY FROM THE SYSTEM: State Isolated and specify position(s) of Earthing Devices applied. State actions tak purging and containment or dissipation of stored energy.		
Ca	ution	Notices have been affixed to all points of isolation		
	(ii)	FURTHER PRECAUTIONS TO BE TAKEN DURING THE COURSE OF WOR	K TO AVOID SYSTEM DERIV	ED HAZARDS
in S tha	Section t the p	onfirmed with the Control Person(s) * in 2(i) have been carried out and that the Control Person(s) will maintain these precautions in Section 2(i) together with the precautions in Section 2(ii) are adeq of the work in Section 1.	until this Permit for Work is ca	ancelled. I certify
Thi	s Per i	mit for Work must only be transferred under the Personal Supervision of a Se	nior Authorised	
Per	son*	·		
Sig	ned .	being a Senior Authorised Person. Time	: Date:	
3.	ISS	UE		
(i) F	Key S	afe Key (No.)* (ii) Earthing Schedule* (iii) Portable Drain Eart	hs (No. off)*	
(iv)	Seleo	cted Person's Report (No.)* (v) Circuit Identification Flags (I	No. off)*	
(vi)	Circu	uit Identification Wristlets (No. off)* and Colours/Symbols		
Sig	ned	being the Senior Authorised Person respon	sible	
		for the issue of this Permit for Work Time:	Date:	

4. RECEIPT

I understand and accept my responsibilities under the ScottishPower Safety Rules as recipient of this **Permit for Work** and acknowledge receipt of the items in Section 3.

Signed Name (Block Letters)

being a Competent Person in the employ of Firm/Dept Time Time Date

PART 1		PART 2	PART 3			
Person surrendering	Time Date	Senior Authorised Person receiving suspended Document *	Person receiving reissued Document		Senior Authorised	Time Date
Document			Signature	Name (Block Letters)	Person reissuing document	Dale

TRANSFER RECORD

+Signature of Person receiving re-issued Document in accordance with conditions detailed in Section 4.

 CLEARANCE: I certify that all persons working under this Permit for Work have been withdrawn from, and warned not to work on, the Plant/Apparatus in Section 1. All gears, tools, Drain Earths and loose material have been removed and guards and access doors have been replaced, except for:

Signedbeing the Competent Person responsible for			
	clearing this Permit for Work	Time Date	

*N/A if Not Applicable

< END OF OPERATING CODE NO. 8 APPENDIX 2 >

OPERATING CODE NO. 12 (OC12)

SYSTEM TESTS

CONTENTS

(This contents page does not form part of the Grid Code)

Paragraph No/Title	Page Number
OC12.1 INTRODUCTION	2
OC12.2 OBJECTIVE	2
OC12.3 SCOPE	2
OC12.4 PROCEDURE	3
OC12.4.1 Proposal Notice	3
OC12.4.2 Preliminary Notice And Establishment Of Test Panel	
OC12.4.3 Test Panel	<u>4</u> 5
OC12.4.4 Proposal Report	5
OC12.4.5 Test Programme	<u>6</u> 7
OC12.4.6 Final Report	<u>6</u> 7
OC12.4.7 Timetable Reduction	<u>6</u> 7

OC12.1 INTRODUCTION

- OC12.1.1 **Operating Code No.12** ("OC12") relates to **System Tests**, which are tests which involve simulating conditions or the controlled application of irregular, unusual or extreme conditions, on the **Total System** or any part of the **Total System**, but which do not include commissioning or recommissioning tests or any other tests of a minor nature.
- OC12.1.2 OC12 deals with the responsibilities and procedures for arranging and carrying out System Tests which have (or may have) an effect on the Systems of The Company and Users and/or on the System of any Externally Interconnected System Operator. Where a System Test proposed by a User will have no effect on the National Electricity Transmission System, then such a System Test does not fall within OC12 and accordingly OC12 shall not apply to it. A System Test proposed by The Company which will have an effect on the System of a User will always fall within OC12.
- OC12.2 OBJECTIVE

The overall objectives of OC12 are:

- OC12.2.1 to ensure, so far as possible, that **System Tests** proposed to be carried out either by:
 - (a) a User (or certain persons in respect of Systems Embedded within a Network Operator's System) which may have an effect on the Total System or any part of the Total System (in addition to that User's System) including the National Electricity Transmission System; or
 - (b) by **The Company** which may have an effect on the **Total System** or any part of the **Total System** (in addition to the **National Electricity Transmission System**)

do not threaten the safety of either their personnel or the general public, cause minimum threat to the security of supplies and to the integrity of **Plant** and/or **Apparatus**, and cause minimum detriment to **The Company** and **Users**;

- OC12.2.2 to set out the procedures to be followed for establishing and reporting **System Tests**.
- OC12.3 <u>SCOPE</u>

OC12 applies to The Company and to Users, which in OC12 means:-

- (a) Generators other than in respect of Embedded Medium Power Stations and Embedded Small Power Stations (and the term Generator in OC12 shall be constructed accordingly);
- (b) Network Operators;
- (c) Non-Embedded Customers; and
- (d) DC Converter Station owners other than in respect of Embedded DC Converter Stations.
- (e) HVDC System Owners other than in respect of Embedded HVDC Systems.

The procedure for the establishment of **System Tests** on the **National Electricity Transmission System**, with **Externally Interconnected System Operators** which do not affect any **User**, is set out in the **Interconnection Agreement** with each **Externally Interconnected System Operator**. The position of **Externally Interconnected System Operators** and **Interconnector Users** is also referred to in OC12.4.2.

- OC12.3.2 Each **Network Operator** will liaise within **The Company** as necessary in those instances where an **Embedded Person** intends to perform a **System Test** which may have an effect on the **Total System** or any part of the **Total System** (in addition to that **Generator's** or other **User's System**) including the **National Electricity Transmission System**. **The Company** is not required to deal with such persons.
- OC12.3.3 Each **Network Operator** shall be responsible for co-ordinating with the **Embedded Person** or such other person and assessing the effect of any **System** Tests upon:

- (a) any Embedded Medium Power Station, Embedded Small Power Stations, Embedded HVDC System or Embedded DC Converter Station within the Network Operator's System; or
- (b) any other User connected to or within the Network Operator's System.

The Company is not required to deal with such persons.

OC12.4 PROCEDURE

- OC12.4.1 <u>Proposal Notice</u>
- OC12.4.1.1 Where a User (or in the case of a Network Operator, a person in respect of Systems Embedded within its System, as the case may be) has decided that it would like to undertake a System Test it shall submit a notice (a "Proposal Notice") to The Company at least twelve months in advance of the date it would like to undertake the proposed System Test.
- OC12.4.1.2 The **Proposal Notice** shall be in writing and shall contain details of the nature and purpose of the proposed **System Test** and shall indicate the extent and situation of the **Plant** and/or **Apparatus** involved.
- OC12.4.1.3 If **The Company** is of the view that the information set out in the **Proposal Notice** is insufficient, it will contact the person who submitted the **Proposal Notice** (the "**Test Proposer**") as soon as reasonably practicable, with a written request for further information. **The Company** will not be required to do anything under **OC12** until it is satisfied with the details supplied in the **Proposal Notice** or pursuant to a request for further information.
- OC12.4.1.4 If **The Company** wishes to undertake a **System Test**, **The Company** shall be deemed to have received a **Proposal Notice** on that **System Test**
- OC12.4.1.5 Where, under OC12, The Company is obliged to notify or contact the Test Proposer, The Company will not be so obliged where it is The Company that has proposed the System Test. Users and the Test Panel, where they are obliged under OC12 to notify, send reports to or otherwise contact both The Company and the Test Proposer, need only do so once where The Company is the proposer of the System Test.
- OC12.4.2 <u>Preliminary Notice And Establishment Of Test Panel</u>
- OC12.4.2.1 Using the information supplied to it under OC12.4.1 The Company will determine, in its reasonable estimation, which Users, other than the Test Proposer, may be affected by the proposed System Test. If The Company determines, in its reasonable estimation, that an Externally Interconnected System Operator and/or Interconnector User (or Externally Interconnected System Operators and/or Interconnector Users) may be affected by the proposed System Test, then (provided that the Externally Interconnected System Operator and/or Interconnector User (or each Externally Interconnected System Operator and/or Interconnector User where there is more than one affected) undertakes to all the parties to the Grid Code to be bound by the provisions of the Grid Code for the purposes of the **System Test**) for the purposes of the remaining provisions of this **OC12**, that **Externally Interconnected** System Operator and/or Interconnector User (or each of those Externally Interconnected System Operators and/or Interconnector Users) will be deemed to be a User and references to the Total System or to the Plant and/or Apparatus of a User will be deemed to include a reference to the Transmission or distribution System and Plant and/or Apparatus of that Externally Interconnected System Operator and/or Interconnector User or (as the case may be) those Externally Interconnected System Operators and/or Interconnector Users. In the event that the Externally Interconnected System Operator and/or Interconnector User (or any of the Externally Interconnected System Operators and/or Interconnector Users where there is more than one affected) refuses to so undertake, then the System Test will not take place.
- OC12.4.2.2 The Company will appoint a person to co-ordinate the System Test (a "Test Co-ordinator") as soon as reasonably practicable after it has, or is deemed to have, received a Proposal Notice and in any event prior to the distribution of the Preliminary Notice referred to below. The Test Co-ordinator shall act as Chairperson of the Test Panel and shall be an ex-officio member of the Test Panel.

- (a) Where **The Company** decides, in its reasonable opinion, that the **National Electricity Transmission System** will or may be significantly affected by the proposed **System Test**, then the **Test Co-ordinator** will be a suitably qualified person nominated by **The Company** after consultation with the **Test Proposer** and the **Users** identified under OC12.4.2.1.
- (b) Where **The Company** decides, in its reasonable opinion, that the **National Electricity Transmission System** will not be significantly affected by the proposed **System Test**, then the **Test Co-ordinator** will be a suitably qualified person nominated by the **Test Proposer** after consultation with **The Company**.
- (c) The Company will, as soon as reasonably practicable after it has received, or is deemed to have received, a Proposal Notice, contact the Test Proposer where the Test Coordinator is to be a person nominated by the Test Proposer and invite it to nominate a person as Test Co-ordinator. If the Test Proposer is unable or unwilling to nominate a person within seven days of being contacted by The Company then the proposed System Test will not take place.
- OC12.4.2.3 The Company will notify all Users identified by it under OC12.4.2.1 of the proposed System Test by a notice in writing (a "Preliminary Notice") and will send a Preliminary Notice to the Test Proposer. The Preliminary Notice will contain:
 - (a) the details of the nature and purpose of the proposed System Test, the extent and situation of the Plant and/or Apparatus involved and the identity of the Users identified by The Company under OC12.4.2.1 and the identity of the Test Proposer;
 - (b) an invitation to nominate within one month a suitably qualified representative (or representatives, if the **Test Co-ordinator** informs **The Company** that it is appropriate for a particular **User** including the **Test Proposer**) to be a member of the **Test Panel** for the proposed **System Test**;
 - (c) the name of the **The Company** representative (or representatives) on the **Test Panel** for the proposed **System Test**; and
 - (d) the name of the **Test Co-ordinator** and whether they were nominated by the **Test Proposer** or by **The Company**.
- OC12.4.2.4 The **Preliminary Notice** will be sent within one month of the later of either the receipt by **The Company** of the **Proposal Notice**, or of the receipt of any further information requested by **The Company** under OC12.4.1.3. Where **The Company** is the proposer of the **System Test**, the **Preliminary Notice** will be sent within one month of the proposed **System Test** being formulated.
- OC12.4.2.5 Replies to the invitation in the **Preliminary Notice** to nominate a representative to be a member of the **Test Panel** must be received by **The Company** within one month of the date on which the **Preliminary Notice** was sent to the **User** by **The Company**. Any **User** which has not replied within that period will not be entitled to be represented on the **Test Panel**. If the **Test Proposer** does not reply within that period, the proposed **System Test** will not take place and **The Company** will notify all **Users** identified by it under OC12.4.2.1 accordingly.
- OC12.4.2.6 **The Company** will, as soon as possible after the expiry of that one month period, appoint the nominated persons to the **Test Panel** and notify all **Users** identified by it under OC12.4.2.1 and the **Test Proposer**, of the composition of the **Test Panel**.
- OC12.4.3 <u>Test Panel</u>
- OC12.4.3.1 A meeting of the **Test Panel** will take place as soon as possible after **The Company** has notified all **Users** identified by it under OC12.4.2.1 and the **Test Proposer** of the composition of the **Test Panel**, and in any event within one month of the appointment of the **Test Panel**.
- OC12.4.3.2 The **Test Panel** shall consider:
 - (a) the details of the nature and purpose of the proposed System Test and other matters set out in the Proposal Notice (together with any further information requested by The Company under OC12.4.1.3);
 - (b) the economic, operational and risk implications of the proposed **System Test**;

- (c) the possibility of combining the proposed **System Test** with any other tests and with **Plant** and/or **Apparatus** outages which arise pursuant to the **Operational Planning** requirements of **The Company** and **Users**; and
- (d) implications of the proposed **System Test** on the operation of the **Balancing Mechanism**, in so far as it is able to do so.
- OC12.4.3.3 Users identified by The Company under OC12.4.2.1, the Test Proposer and The Company (whether or not they are represented on the Test Panel) shall be obliged to supply that Test Panel, upon written request, with such details as the Test Panel reasonably requires in order to consider the proposed System Test.
- OC12.4.3.4 The **Test Panel** shall be convened by the **Test Co-ordinator** as often as they deem necessary to conduct its business.
- OC12.4.4 Proposal Report
- OC12.4.4.1 Within two months of first meeting, the **Test Panel** will submit a report (a "**Proposal Report**"), which will contain:
 - (a) proposals for carrying out the **System Test** (including the manner in which the **System Test** is to be monitored);
 - (b) an allocation of costs (including un-anticipated costs) between the affected parties (the general principle being that the **Test Proposer** will bear the costs); and
 - (c) such other matters as the **Test Panel** considers appropriate.

The **Proposal Report** may include requirements for indemnities (including an indemnity from the relevant **Network Operator** to **The Company** and other **Users** in relation to its **Embedded Persons**) to be given in respect of claims and losses arising from the **System Test**. All **System Test** procedures must comply with all applicable legislation.

- OC12.4.4.2 If the **Test Panel** is unable to agree unanimously on any decision in preparing its **Proposal Report**, the proposed **System Test** will not take place and the **Test Panel** will be dissolved.
- OC12.4.4.3 The **Proposal Report** will be submitted to **The Company**, the **Test Proposer** and to each **User** identified by **The Company** under OC12.4.2.1.
- OC12.4.4.4 Each recipient will respond to the **Test Co-ordinator** with its approval of the **Proposal Report** or its reason for non-approval within fourteen days of receipt of the **Proposal Report**. If any recipient does not respond, the **System Test** will not take place and the **Test Panel** will be dissolved.
- OC12.4.4.5 In the event of non-approval by one or more recipients, the **Test Panel** will meet as soon as practicable in order to determine whether the proposed **System Test** can be modified to meet the objection or objections.
- OC12.4.4.6 If the proposed **System Test** cannot be so modified, the **System Test** will not take place and the **Test Panel** will be dissolved.
- OC12.4.4.7 If the proposed **System Test** can be so modified, the **Test Panel** will, as soon as practicable, and in any event within one month of meeting to discuss the responses to the **Proposal Report**, submit a revised **Proposal Report** and the provisions of OC12.4.4.3 and OC12.4.4.4 will apply to that submission.
- OC12.4.4.8 In the event of non-approval of the revised **Proposal Report** by one or more recipients, the **System Test** will not take place and the **Test Panel** will be dissolved.

- OC12.4.5 <u>Test Programme</u>
- OC12.4.5.1 If the **Proposal Report** (or, as the case may be, the revised **Proposal Report**) is approved by all recipients, the proposed **System Test** can proceed and at least one month prior to the date of the proposed **System Test**, the **Test Panel** will submit to **The Company**, the **Test Proposer** and each **User** identified by **The Company** under OC12.4.2.1, a programme (the "**Test Programme**") stating the switching sequence and proposed timings of the switching sequence, a list of those staff involved in carrying out the **System Test** (including those responsible for site safety) and such other matters as the **Test Panel** deems appropriate.
- OC12.4.5.2 The **Test Programme** will, subject to OC12.4.5.3, bind all recipients to act in accordance with the provisions of the **Test Programme** in relation to the proposed **System Test**.
- OC12.4.5.3 Any problems with the proposed **System Test** which arise or are anticipated after the issue of the **Test Programme** and prior to the day of the proposed **System Test**, must be notified to the **Test Co-ordinator** as soon as possible in writing. If the **Test Co-ordinator** decides that these anticipated problems merit an amendment to, or postponement of, the **System Test**, they shall notify the **Test Proposer** (if the **Test Co-ordinator** was not appointed by the **Test Proposer**), **The Company** and each **User** identified by **The Company** under OC12.4.2.1 accordingly.
- OC12.4.5.4 If on the day of the proposed **System Test**, operating conditions on the **Total System** are such that any party involved in the proposed **System Test** wishes to delay or cancel the start or continuance of the **System Test**, they shall immediately inform the **Test Co-ordinator** of this decision and the reasons for it. The **Test Co-ordinator** shall then postpone or cancel, as the case may be, the **System Test** and shall, if possible, agree with the **Test Proposer** (if the **Test Co-ordinator** was not appointed by the **Test Proposer**), **The Company** and all **Users** identified by **The Company** under OC12.4.2.1 another suitable time and date. If they cannot reach such agreement, the **Test Co-ordinator** shall reconvene the **Test Panel** as soon as practicable, which will endeavour to arrange another suitable time and date for the **System Test**, in which case the relevant provisions of **OC12** shall apply.
- OC12.4.6 Final Report
- OC12.4.6.1 At the conclusion of the **System Test**, the **Test Proposer** shall be responsible for preparing a written report on the **System Test** (the "**Final Report**") for submission to **The Company** and other members of the **Test Panel**. The **Final Report** shall be submitted within three months of the conclusion of the **System Test** unless a different period has been agreed by the **Test Panel** prior to the **System Test** taking place.
- OC12.4.6.2 The **Final Report** shall not be submitted to any person who is not a member of the **Test Panel** unless the **Test Panel**, having considered the confidentiality issues arising, shall have unanimously approved such submission.
- OC12.4.6.3 The **Final Report** shall include a description of the **Plant** and/or **Apparatus** tested and a description of the **System Test** carried out, together with the results, conclusions and recommendations.
- OC12.4.6.4 When the **Final Report** has been prepared and submitted in accordance with OC12.4.6.1, the **Test Panel** will be dissolved.
- OC12.4.7 <u>Timetable Reduction</u>
- OC12.4.7.1 In certain cases a **System Test** may be needed on giving less than twelve months notice. In that case, after consultation with the **Test Proposer** and **User(s)** identified by **The Company** under OC12.4.2.1, **The Company** shall draw up a timetable for the proposed **System Test** and the procedure set out in OC12.4.2 to OC12.4.6 shall be followed in accordance with that timetable.

< END OF OPERATING CODE NO. 12 >

BALANCING CODE NO. 2 (BC2)

POST GATE CLOSURE PROCESS

CONTENTS

(This contents page does not form part of the Grid Code)

Paragraph No	/Title	Page Number
BC2.1 INTRO	DDUCTION	3
BC2.2 OBJE	CTIVE	3
BC2.3 SCOF	PE	3
BC2.4 INFOR	MATION USED	3
BC2.5 PHYS	ICAL OPERATION OF BM UNITS	4
BC2.5.1	Accuracy Of Physical Notifications	4
BC2.5.2	Synchronising And De-Synchronising Times	5
BC2.5.3	Revisions To BM Unit Data	6
BC2.5.4	Operation In The Absence Of Instructions From NGC	7
BC2.5.5	Commencement Or Termination Of Participation In The Balancing Mechanism.	9
BC2.6 COM	MUNICATIONS	9
BC2.6.1	Normal Communications With Control Points	9
BC2.6.2	Communication With Control Points In Emergency Circumstances	10
BC2.6.3	Communication With Network Operators In Emergency Circumstances	10
BC2.6.4 Circumst	Communication With Externally Interconnected System Operators In Enances	
	Communications During Planned Outages Of Electronic Data Communication	
BC2.7 BID-C	OFFER ACCEPTANCES	11
BC2.7.1	Acceptance Of Bids And Offers By NGC	11
BC2.7.2	Consistency With Export And Import Limits, Qpns And Dynamic Parameters	11
BC2.7.3	Confirmation And Rejection Of Acceptances	12
BC2.7.4	Action Required From BM Participants	12
BC2.7.5	Additional Action Required From Generators	12
BC2.8 ANCI	LARY SERVICES	13
BC2.8.1	Call-Off Of Ancillary Services By NGET	13
BC2.8.2	Consistency With Export And Import Limits, Qpns And Dynamic Parameters	13
BC2.8.3	Rejection Of Ancillary Service Instructions	13
BC2.8.4	Action Required From BM Units	14
BC2.8.5	Reactive Despatch Network Restrictions	14
	RGENCY CIRCUMSTANCES	
Issue 6 Revision		09 March 2022

BC2.9.1 Emergency Actions14
BC2.9.2 Implementation Of Emergency Instructions 15
BC2.9.3 Examples of Emergency Instructions16
BC2.9.4 Maintaining Adequate System And Localised NRAPM (Negative Reserve Active Power Margin)
BC2.9.5 Maintaining Adequate Frequency Sensitive Generating Units
BC2.9.6 Emergency Assistance To And From External Systems
BC2.9.7 Unplanned Outages Of Electronic Communication And Computing Facilities
BC2.10 OTHER OPERATIONAL INSTRUCTIONS AND NOTIFICATIONS
BC2.11 LIAISON WITH GENERATORS FIR RISK OF TRIP AND AVR TESTING
BC2.12 LIAISON WITH EXTERNALLY INTERCONNECTED SYSTEM OPERATORS
APPENDIX 1 - FORM OF BID-OFFER ACCEPTANCES
APPENDIX 2 - TYPE AND FORM OF ANCILLARY SERVICE INSTRUCTIONS
APPENDIX 3 - SUBMISSION OF REVISED MVAr CAPABILITY
APPENDIX 3 ANNEXURE 1
APPENDIX 3 ANNEXURE 2
APPENDIX 3 ANNEXURE 3
APPENDIX 4 - SUBMISSION OF AVAILABILITY OF FREQUENCY SENSITIVE MODE
APPENDIX 4 ANNEXURE 1

BC2.1 INTRODUCTION

Balancing Code No 2 (BC2) sets out the procedure for:

- (a) the physical operation of **BM Units** and **Generating Units** (which could be part of a **Power Generating Module**) in the absence of any instructions from **The Company**;
- (b) the acceptance by The Company of Balancing Mechanism Bids and Offers,
- (c) the calling off by The Company of Ancillary Services;
- (d) the issuing and implementation of **Emergency Instructions**; and
- (e) the issuing by **The Company** of other operational instructions and notifications.

In addition, BC2 deals with any information exchange between The Company and BM Participants or specific Users that takes place after Gate Closure.

In this BC2, "consistent" shall be construed as meaning to the nearest integer MW level.

In this **BC2**, references to "a **BM Unit** returning to its **Physical Notification**" shall take account of any **Bid-Offer Acceptances** already issued to the **BM Unit** in accordance with BC2.7 and any **Emergency Instructions** already issued to the **BM Unit** or **Generating Unit** (which could be part of a **Power Generating Module**) in accordance with BC2.9.

BC2.2 <u>OBJECTIVE</u>

The procedure covering the operation of the **Balancing Mechanism** and the issuing of instructions to **Users** is intended to enable **The Company** as far as possible to maintain the integrity of the **National Electricity Transmission System** together with the security and quality of supply.

Where reference is made in this **BC2** to **Power Generating Modules** or **Generating Units** (unless otherwise stated) it only applies:

- (a) to each **Generating Unit** which forms part of the **BM Unit** of a **Cascade Hydro Scheme**; and
- (b) at an **Embedded Exemptable Large Power Station** where the relevant **Bilateral Agreement** specifies that compliance with **BC2** is required:
 - (i) to each **Generating Unit** which could be part of a **Synchronous Power Generating Module**, or
 - (ii) to each **Power Park Module** where the **Power Station** comprises **Power Park Modules**.

BC2.3 SCOPE

BC2 applies to The Company and to Users, which in this BC2 means:-

- (a) **BM Participants**;
- (b) Externally Interconnected System Operators, and
- (c) Network Operators.

BC2.4 INFORMATION USED

- BC2.4.1 The information which **The Company** shall use, together with the other information available to it, in assessing:
 - (a) which bids and offers to accept;

- (b) which **BM Units** and/or **Generating Units** to instruct to provide **Ancillary Services**;
- (c) the need for and formulation of Emergency Instructions; and
- (d) other operational instructions and notifications which **The Company** may need to issue will be:
 - the Physical Notification and Bid-Offer Data submitted under BC1; (a)
 - Export and Import Limits in respect of that BM Unit and/or Generating Unit (b) supplied under BC1 (and any revisions under BC1 and BC2 to the data); and
 - Dynamic Parameters submitted or revised under this BC2. (c)
- BC2.4.2 As provided for in BC1.5.4, **The Company** will monitor the total of the Maximum Export Limit component of the Export and Import Limits against forecast Demand and the Operating Margin and will take account of Dynamic Parameters to see whether the anticipated level of System Margin is insufficient. This will reflect any changes in Export and Import Limits which have been notified to The Company, and will reflect any Demand Control which has also been so notified. The Company may issue new or revised National Electricity Transmission System Warnings - Electricity Margin Notice or High Risk of Demand **Reduction** in accordance with BC1.5.4.

BC2.5 PHYSICAL OPERATION OF BM UNITS

BC2.5.1 Accuracy Of Physical Notifications

> As described in BC1.4.2(a). Physical Notifications must represent the BM Participant's best estimate of expected input or output of Active Power and shall be prepared in accordance with Good Industry Practice.

> Each BM Participant must, applying Good Industry Practice, ensure that each of its BM Units follows the Physical Notification in respect of that BM Unit (and each of its Generating Units follows the Physical Notification in the case of Physical Notifications supplied under BC1.4.2(a)(2)) that is prevailing at Gate Closure (the data in which will be utilised in producing the Final Physical Notification Data in accordance with the BSC) subject to variations arising from:

- (a) the issue of **Bid-Offer Acceptances** which have been confirmed by the **BM Participant**; or
- (b) instructions by **The Company** in relation to that **BM Unit** (or a **Generating Unit**) which require, or compliance with which would result in, a variation in output or input of that BM Unit (or a Generating Unit); or
- (c) compliance with provisions of BC1, BC2 or BC3 which provide to the contrary.

Except where variations from the **Physical Notification** arise from matters referred to at (a), (b) or (c) above, in respect only of BM Units (or Generating Units) powered by an Intermittent Power Source, where there is a change in the level of the Intermittent Power Source from that forecast and used to derive the Physical Notification, variations from the Physical Notification prevailing at Gate Closure may, subject to remaining within the Registered Capacity, occur providing that the Physical Notification prevailing at Gate Closure was prepared in accordance with Good Industry Practice.

If variations and/or instructions as described in (a),(b) or (c) apply in any instance to BM Units (or Generating Units) powered by an Intermittent Power Source (e.g. a Bid Offer Acceptance is issued in respect of such a BM Unit and confirmed by the BM Participant) then such provisions will take priority over the third paragraph of BC2.5.1 above such that the **BM Participant** must ensure that the **Physical Notification** as varied in accordance with (a). (b) or (c) above applies and must be followed, subject to this not being prevented as a result of an unavoidance event as described below.

For the avoidance of doubt, this gives rise to an obligation on each **BM Participant** (applying **Good Industry Practice**) to ensure that each of its **BM Units** (and **Generating Units**), follows the **Physical Notifications** prevailing at **Gate Closure** as amended by such variations and/or instructions unless in relation to any such obligation it is prevented from so doing as a result of an unavoidable event (existing or anticipated) in relation to that **BM Unit** (or a **Generating Unit**).

Examples (on a non-exhaustive basis) of such an unavoidable event are:

- plant breakdowns;
- events requiring a variation of input or output on safety grounds (relating to personnel or plant);
- events requiring a variation of input or output to maintain compliance with the relevant Statutory Water Management obligations; and
- uncontrollable variations in output of **Active Power**.

Any anticipated variations in input or output post **Gate Closure** from the **Physical Notification** for a **BM Unit** (or a **Generating Unit**) prevailing at **Gate Closure** (except for those arising from instructions as outlined in (a), (b) or (c) above) must be notified to **The Company** without delay by the relevant **BM Participant** (or the relevant person on its behalf). For the avoidance of doubt, where a change in the level of the **Intermittent Power Source** from that forecast and used to derive the **Physical Notification** results in the **Shutdown** or **Shutdown** of part of the **BM Unit** (or **Generating Unit**), the change must be notified to **The Company** without delay by the relevant **BM Participant** (or the relevant person on its behalf).

Implementation of this notification should normally be achieved by the submission of revisions to the **Export and Import Limits** in accordance with BC2.5.3 below.

BC2.5.2 Synchronising And De-Synchronising Times

BC2.5.2.1 The Final Physical Notification Data provides indicative Synchronising and De-Synchronising times to The Company in respect of any BM Unit which is De-Synchronising or is anticipated to be Synchronising post Gate Closure.

Any delay of greater than five minutes to the **Synchronising** or any advancement of greater than five minutes to the **De-Synchronising** of a **BM Unit** must be notified to **The Company** without delay by the submission of a revision of the **Export and Import Limits**.

- BC2.5.2.2 Except in the circumstances provided for in BC2.5.2.3, BC2.5.2.4, BC2.5.5.1 or BC2.9, no BM Unit (nor a Generating Unit) is to be Synchronised or De-Synchronised unless:-
 - (a) a **Physical Notification** had been submitted to **The Company** prior to **Gate Closure** indicating that a **Synchronisation** or **De-Synchronisation** is to occur; or
 - (b) The Company has issued a Bid-Offer Acceptance requiring Synchronisation or De-Synchronisation of that BM Unit (or a Generating Unit).

BC2.5.2.3 BM Participants must only Synchronise or De-Synchronise BM Units (or a Generating Unit);

- (a) at the times indicated to The Company, or
- (b) at times consistent with variations in output or input arising from provisions described in BC2.5.1,

(within a tolerance of +/- 5 minutes) or unless that occurs automatically as a result of **Operational Intertripping** or **Low Frequency Relay** operations or an **Ancillary Service** pursuant to an **Ancillary Services Agreement**

BC2.5.2.4 **De-Synchronisation** may also take place without prior notification to **The Company** as a result of plant breakdowns or if it is done purely on safety grounds (relating to personnel or plant). If that happens, **The Company** must be informed immediately that it has taken place and a revision to **Export and Import Limits** must be submitted in accordance with BC2.5.3.3. Following any **De-Synchronisation** occurring as a result of plant failure, no **Synchronisation** of that **BM Unit** (or a **Generating Unit**) is to take place without **The Company's** agreement, such agreement not to be unreasonably withheld.

In the case of **Synchronisation**, following an unplanned **De-Synchronisation** within the preceding 15 minutes, a minimum of 5 minutes notice of its intention to **Synchronise** should normally be given to **The Company** (via a revision to **Export and Import Limits**). In the case of any other unplanned **De-Synchronisation** where the **User** plans to **Synchronise** before the expiry of the current **Balancing Mechanism** period, a minimum of 15 minutes notice of **Synchronisation** should normally be given to **The Company** (via a revision to **Export and Import Limits**). In addition, the rate at which the **BM Unit** is returned to its **Physical Notification** is not to exceed the limits specified in **BC1**, Appendix 1 without **The Company's** agreement.

The Company will either agree to the Synchronisation or issue a Bid-Offer Acceptance in accordance with BC2.7 to delay the Synchronisation. The Company may agree to an earlier Synchronisation if System conditions allow.

BC2.5.2.5 Notification Of Times To Network Operators

The Company will make changes to the Synchronising and De-Synchronising times available to each Network Operator, but only relating to BM Units Embedded within its User System and those BM Units directly connected to the National Electricity Transmission System which The Company has identified under OC2 and/or BC1 as being those which may, in the reasonable opinion of The Company, affect the integrity of that User System and shall inform the relevant BM Participant that it has done so, identifying the BM Unit concerned.

Each **Network Operator** must notify **The Company** of any changes to its **User System** data as soon as practicable in accordance with BC1.6.1(c).

BC2.5.3 Revisions To BM Unit Data

Following Gate Closure for any Settlement Period, no changes to the Physical Notification or to Bid-Offer Data for that Settlement Period may be submitted to The Company.

BC2.5.3.1 At any time, any **BM Participant** (or the relevant person on its behalf) may, in respect of any of its **BM Units**, submit to **The Company** the data listed in **BC1**, Appendix 1 under the heading of **Dynamic Parameters** from the **Control Point** of its **BM Unit** to amend the data already held by **The Company** (including that previously submitted under this BC2.5.3.1) for use in preparing for and operating the **Balancing Mechanism**. The change will take effect from the time that it is received by **The Company**. For the avoidance of doubt, the **Dynamic Parameters** submitted to **The Company** under BC1.4.2(e) are not used within the current **Operational Day**. The **Dynamic Parameters** submitted under this BC2.5.3.1 shall reasonably reflect the true current operating characteristics of the **BM Unit** and shall be prepared in accordance with **Good Industry Practice**.

Following the **Operational Intertripping** of a **System** to **Generating Unit** or a **System** to **CCGT Module** and/or a **System** to **Power Generating Module**, the **BM Participant** shall as soon as reasonably practicable re-declare its MEL to reflect more accurately its output capability.

- BC2.5.3.2 Revisions to Export and Import Limits or Other Relevant Data supplied (or revised) under BC1 must be notified to The Company without delay as soon as any change becomes apparent to the BM Participant (or the relevant person on its behalf) via the Control Point for the BM Unit (or a Generating Unit) to ensure that an accurate assessment of BM Unit (or a Generating Unit) capability is available to The Company at all times. These revisions should be prepared in accordance with Good Industry Practice and may be submitted by use of electronic data communication facilities or by telephone.
- BC2.5.3.3 Revisions to Export and Import Limits must be made by a BM Participant (or the relevant person on its behalf) via the Control Point in the event of any De-Synchronisation of a BM Unit (or a Generating Unit) in the circumstances described in BC2.5.2.4 if the BM Unit (or a Generating Unit) is no longer available for any period of time. Revisions must also be submitted in the event of plant failures causing a reduction in input or output of a BM Unit (or a Generating Unit) even if that does not lead to De-Synchronisation. Following the correction of a plant failure, the BM Participant (or the relevant person on its behalf) must notify The Company via the Control Point of a revision to the Export and Import Limits, if appropriate, of the BM Unit (or a Generating Unit), using reasonable endeavours to give a minimum of 5 minutes notice of its intention to return to its Physical Notification. The rate at which the BM Unit (or a Generating Unit) is returned to its Physical Notification is not to exceed the limits specified in BC1, Appendix 1 without The Company's agreement.

BC2.5.4 Operation in the Absence of Instructions from The Company

In the absence of any **Bid-Offer Acceptances**, **Ancillary Service** instructions issued pursuant to BC2.8 or **Emergency Instructions** issued pursuant to BC2.9:

- (a) as provided for in BC3, each Synchronised Genset producing Active Power must operate at all times in Limited Frequency Sensitive Mode (unless instructed in accordance with BC3.5.4 to operate in Frequency Sensitive Mode);
- (b) (i) in the absence of any MVAr Ancillary Service instructions, the MVAr output of each Synchronised Genset located Onshore should be 0 MVAr upon Synchronisation at the circuit-breaker where the Genset is Synchronised. For the avoidance of doubt, in the case of a Genset located Onshore comprising of Non-Synchronous Generating Units, Power Park Modules, HVDC Systems or DC Converters, the steady state tolerance allowed in CC.6.3.2(b) or ECC.6.3.2.4.4 may be applied;
 - (ii) In the absence of any MVAr Ancillary Service instructions, the MVAr output of each Synchronised Genset comprising Synchronous Generating Units located Offshore (which could be part of a Synchronous Power Generating Module) should be 0MVAr at the Grid Entry Point upon Synchronisation. For the avoidance of doubt, in the case of a Genset located Offshore comprising of Non-Synchronous Generating Units, Power Park Modules, HVDC Systems or DC Converters, the steady state tolerance allowed in CC.6.3.2(e) or ECC.6.3.2.5.1 or ECC.6.3.2.6.2 (as applicable) may be applied;
- (c) (i) subject to the provisions of 2.5.4(c) (ii) and 2.5.4 (c) (iii) below, the excitation system or the voltage control system of a Genset located Offshore which has agreed an alternative Reactive Power capability range under CC.6.3.2 (e) (iii) or ECC.6.3.2.5.2 or ECC.6.3.2.6.3 (as applicable) or a Genset located Onshore, unless otherwise agreed with The Company, must be operated only in its constant terminal voltage mode of operation with VAR limiters in service, with any constant Reactive Power output control mode or constant Power Factor output control mode always disabled, unless agreed otherwise with The Company. In the event of any change in System voltage, a Generator must not take any action to override automatic MVAr response which is produced as a result of constant terminal voltage mode of operation of the automatic excitation control system unless instructed otherwise by The Company or unless immediate action is necessary to comply with Stability Limits or unless constrained by plant operational limits or safety grounds

(relating to personnel or plant);

- (ii) In the case of all Gensets comprising Non-Synchronous Generating Units, DC Converters, HVDC Systems and Power Park Modules that are located Offshore and which have agreed an alternative Reactive Power capability range under CC.6.3.2 (e) (iii), or ECC.6.3.2.5.2 or ECC.6.3.2.6.3 (as applicable) or that are located Onshore only when operating below 20 % of the Rated MW output, the voltage control system shall maintain the Reactive Power transfer at the Grid Entry Point (or User System Entry Point if Embedded) to 0 MVAr. For the avoidance of doubt, the relevant steady state tolerance allowed for GB Generators in CC.6.3.2(b) or CC.6.3.2 (e) and for EU Generators in ECC.6.3.2.4.4, ECC.6.3.2.5.1 and ECC.6.3.2.6.2 and ECC.6.3.2.8.2.may be applied. In the case of any such Gensets owned or operated by GB Code Users comprising current source DC Converter technology or comprising Power Park Modules connected to the Total System by a current source DC Converter when operating at any power output, the voltage control system shall maintain the **Reactive Power** transfer at the **Grid Entry** Point (or User System Entry Point if Embedded) to 0 MVAr. For the avoidance of doubt, the relevant steady state tolerance allowed in CC.6.3.2(b) or CC.6.3.2 (c) (i) may be applied.
- (iii) In the case of all Gensets located Offshore which are not subject to the requirements of BC2.5.4 (c) (i) or BC2.5.4 (c) (ii) the control system shall maintain the Reactive Power transfer at the Offshore Grid Entry Point at 0MVAr. For the avoidance of doubt the steady state tolerance allowed by CC.6.3.2 (e) or ECC.6.3.2.4.4, ECC.6.3.2.5.1 and ECC.6.3.2.6.2 may be applied.
- (d) In the absence of any MVAr Ancillary Service instructions,
 - (i) the MVAr output of each Genset located Onshore should be 0 MVAr immediately prior to De-Synchronisation at the circuit-breaker where the Genset is Synchronised, other than in the case of a rapid unplanned De-Synchronisation or in the case of a Genset comprising of Power Generating Modules and/or Non-Synchronous Generating Units and/or Power Park Modules and/or HVDC Converters or DC Converters which is operating at less than 20% of its Rated MW output where the requirements of BC2.5.4 (c) part (ii) apply, or;
 - (ii) the MVAr output of each Genset located Offshore should be 0MVAr immediately prior to De-Synchronisation at the Offshore Grid Entry Point, other than in the case of a rapid unplanned De-Synchronisation or in the case of a Genset comprising of Non-Synchronous Generating Units, Power Park Modules, HVDC Converters or DC Converters which is operating at less than 20% of its Rated MW output and which has agreed an alternative Reactive Power capability range (for GB Code Users) under CC.6.3.2 (e) (iii) or ECC.6.3.2.4.4, ECC.6.3.2.5.1 and ECC.6.3.2.6.2 (for EU Code Users) where the requirements of BC2.5.4 (c) (ii) apply.
- (e) a **Generator** should at all times operate its **CCGT Units** in accordance with the applicable **CCGT Module Matrix**;
- (f) in the case of a Range CCGT Module, a Generator must operate that CCGT Module so that power is provided at the single Grid Entry Point (or User System Entry Point if Embedded) identified in the data given pursuant to PC.A.3.2.1 or at the single Grid Entry Point to which The Company has agreed pursuant to BC1.4.2(f);
- (g) in the event of the System Frequency being above 50.3Hz or below 49.7Hz, BM Participants must not commence any reasonably avoidable action to regulate the input or output of any BM Unit in a manner that could cause the System Frequency to deviate further from 50Hz without first using reasonable endeavours to discuss the proposed actions with The Company. The Company shall either agree to these changes in input or output or issue a Bid-Offer Acceptance in accordance with BC2.7 to delay the change.

- (h) a **Generator** should at all times operate its **Power Park Units** in accordance with the applicable **Power Park Module Availability Matrix**.
- BC2.5.5 Commencement or Termination of Participation in the Balancing Mechanism
- BC2.5.5.1 In the event that a **BM Participant** in respect of a **BM Unit** with a **Demand Capacity** with a magnitude of less than 50MW in **NGET's Transmission Area** or less than 10MW in **SHETL's Transmission Area** or less than 30MW in **SPT's Transmission Area** or comprising **Generating Units** (as defined in the Glossary and Definitions and not limited by BC2.2) and/or **Power Generating Modules** and/or **CCGT Modules** and/or **Power Park Modules** at a **Small Power Station**, notifies **The Company** at least 30 days in advance that from a specified **Operational Day** it will:
 - (a) no longer submit Bid-Offer Data under BC1.4.2(d), then with effect from that Operational Day, that BM Participant no longer has to meet the requirements of BC2.5.1 nor the requirements of CC.6.5.8(b) or ECC.6.5.8(b) (as applicable) in relation to that BM Unit. Also, with effect from that Operational Day, any defaulted Physical Notification and defaulted Bid-Offer Data in relation to that BM Unit arising from the Data Validation, Consistency and Defaulting Rules will be disregarded and the provisions of BC2.5.2 will not apply;
 - (b) submit Bid-Offer Data under BC1.4.2(d), then with effect from that Operational Day that BM Participant will need to meet the requirements of BC2.5.1 and the requirements of CC.6.5.8(b) or ECC.6.5.8(b) (as applicable) in relation to that BM Unit.
- BC2.5.5.2 In the event that a BM Participant in respect of a BM Unit with a Demand Capacity with a magnitude of 50MW or more in NGET's Transmission Area or 10MW or more in SHETL's Transmission Area or 30MW or more in SPT's Transmission Area or comprising Generating Units (as defined in the Glossary and Definitions and not limited by BC2.2) and/or Power Generating Modules and/or CCGT Modules and/or Power Park Modules at a Medium Power Station or Large Power Station notifies The Company at least 30 days in advance that from a specified Operational Day it will:
 - (a) no longer submit Bid-Offer Data under BC1.4.2(d), then with effect from that Operational Day that BM Participant no longer has to meet the requirements of CC.6.5.8(b) or ECC.6.5.8(b) (as applicable) in relation to that BM Unit; also, with effect from that Operational Day, any defaulted Bid-Offer Data in relation to that BM Unit arising from the Data Validation, Consistency and Defaulting Rules will be disregarded;
 - (b) submit Bid-Offer Data under BC1.4.2(d), then with effect from that Operational Day that BM Participant will need to meet the requirements of CC.6.5.8(b) or ECC.6.5.8(b) (as applicable) in relation to that BM Unit.

BC2.6 <u>COMMUNICATIONS</u>

Electronic communications are always conducted in GMT. However, the input of data and display of information to **Users** and **The Company** and all other communications are conducted in London time.

BC2.6.1 Normal Communication With Control Points

(a) With the exception of BC2.6.1(c) below, Bid-Offer Acceptances and, unless otherwise agreed with The Company, Ancillary Service instructions shall be given by automatic logging device and will be given to the Control Point for the BM Unit. For all Planned Maintenance Outages the provisions of BC2.6.5 will apply. For Generating Units (including DC Connected Power Park Modules (if relevant)) communications under BC2 shall be by telephone unless otherwise agreed by The Company and the User.

- (b) Bid-Offer Acceptances and Ancillary Service instructions must be formally acknowledged immediately by the BM Participant (or the relevant person on its behalf) via the Control Point for the BM Unit or Generating Unit in respect of that BM Unit or that Generating Unit. The acknowledgement and subsequent confirmation or rejection, within two minutes of receipt, is normally given electronically by automatic logging device. If no confirmation or rejection is received by The Company within two minutes of the Bid-Offer Acceptance, then The Company will contact the Control Point for the BM Unit by telephone to determine the reason for the lack of confirmation or rejection. Any rejection must be given in accordance with BC2.7.3 or BC2.8.3.
- (c) In the event of a failure of the logging device or **The Company** computer system outage, **Bid-Offer Acceptances** and instructions will be given, acknowledged, and confirmed or rejected by telephone. The provisions of BC2.9.7 are also applicable.
- (d) In the event that in carrying out the Bid-Offer Acceptances or providing the Ancillary Services, or when operating at the level of the Final Physical Notification Data as provided in BC2.5.1, an unforeseen problem arises, caused on safety grounds (relating to personnel or plant), The Company must be notified without delay by telephone.
- (e) The provisions of BC2.5.3 are also relevant.
- (f) Submissions of revised MVAr capability may be made by facsimile transmission, using the format given in Appendix 3 to **BC2**.
- (g) Communication will normally be by telephone for any purpose other than **Bid-Offer Acceptances**, in relation to **Ancillary Services** or for revisions of MVAr data.
- (h) Submissions of revised availability of Frequency Sensitive Mode may be made by facsimile transmission, using the format given in Appendix 4 to BC2. This process should only be used for technical restrictions to the availability of Frequency Sensitive Mode.

BC2.6.2 Communication With Control Points In Emergency Circumstances

The Company will issue Emergency Instructions direct to the Control Point for each BM Unit [or Generating Unit] in Great Britain. Emergency Instructions to a Control Point will normally be given by telephone (and will include an exchange of operator names).

BC2.6.3 Communication With Network Operators In Emergency Circumstances

The Company will issue Emergency Instructions direct to the Network Operator at each Control Centre in relation to actions including special actions as set out in BC1.7, actions in the categories set out under BC2.9.3.3, Embedded Generation Control and Demand Control actions. Emergency Instructions to a Network Operator will normally be given by telephone (and will include an exchange of operator names). OC6 contains further provisions relating to Demand Control instructions; OC6B contains further provisions relating to Embedded Generation Control instructions.

BC2.6.4 <u>Communication with Externally Interconnected System Operators in Emergency</u> <u>Circumstances</u>

> The Company will issue Emergency Instructions directly to the Externally Interconnected System Operator at each Control Centre. Emergency Instructions to an Externally Interconnected System Operator will normally be given by telephone (and will include an exchange of operator names).

BC2.6.5 Communications during Planned Outages of Electronic Data Communication Facilities

Planned Maintenance Outages will normally be arranged to take place during periods of low data transfer activity. Upon any such **Planned Maintenance Outage** in relation to a post **Gate Closure** period:-

- (a) BM Participants should operate in relation to any period of time in accordance with the Physical Notification prevailing at Gate Closure current at the time of the start of the Planned Maintenance Outage in relation to each such period of time. Such operation shall be subject to the provisions of BC2.5.1, which will apply as if set out in this BC2.6.5. No further submissions of BM Unit Data (other than data specified in BC1.4.2(c) and BC1.4.2(e)) should be attempted or Generating Unit Data. Plant failure or similar problems causing significant deviation from Physical Notification should be notified to The Company by the submission of a revision to Export and Import Limits in relation to the BM Unit or Generating Unit so affected;
- (b) during the outage, revisions to the data specified in BC1.4.2(c) and BC1.4.2(e) may be submitted. Communication between Users Control Points and The Company during the outage will be conducted by telephone;
- (c) The Company will issue Bid-Offer Acceptances by telephone; and
- (d) no data will be transferred from **The Company** to the **BMRA** until the communication facilities are re-established.
- (e) The provisions of BC2.9.7 may also be relevant.

BC2.7 BID-OFFER ACCEPTANCES

BC2.7.1 Acceptance Of Bids And Offers By The Company

Bid-Offer Acceptances may be issued to the **Control Point** at any time following **Gate Closure**. Any **Bid-Offer Acceptance** will be consistent with the **Dynamic Parameters** and **Export and Import Limits** of the **BM Unit** in so far as the **Balancing Mechanism** timescales will allow (see BC2.7.2).

- (a) **The Company** is entitled to assume that each **BM Unit** is available in accordance with the **BM Unit Data** submitted unless and until it is informed of any changes.
- (b) Bid-Offer Acceptances sent to the Control Point will specify the data necessary to define a MW profile to be provided (ramp rate break-points are not normally explicitly sent to the Control Point) and to be achieved consistent with the respective BM Unit's Export and Import Limits provided or modified under BC1 or BC2, and Dynamic Parameters given under BC2.5.3 or, if agreed with the relevant User, such rate within those Dynamic Parameters as is specified by The Company in the Bid-Offer Acceptances.
- (c) All **Bid-Offer Acceptances** will be deemed to be at the current "**Target Frequency**", namely where a **Genset** is in **Frequency Sensitive Mode** they refer to target output at **Target Frequency**.
- (d) The form of and terms to be used by **The Company** in issuing **Bid-Offer Acceptances** together with their meanings are set out in Appendix 1 in the form of a non-exhaustive list of examples.

BC2.7.2 Consistency With Export And Import Limits And Dynamic Parameters

 (a) Bid-Offer Acceptances will be consistent with the Export and Import Limits provided or modified under BC1 or BC2 and the Dynamic Parameters provided or modified under BC2. Bid-Offer Acceptances may also recognise Other Relevant Data provided or modified under BC1 or BC2 (b) In the case of consistency with **Dynamic Parameters** this will be limited to the time until the end of the Settlement Period for which Gate Closure has most recently occurred. If The Company intends to issue a Bid-Offer Acceptance covering a period after the end of the Settlement Period for which Gate Closure has most recently occurred, based upon the then submitted Dynamic Parameters, Export and Import Limits and Bid-Offer Data applicable to that period, The Company will indicate this to the BM Participant at the Control Point for the BM Unit. The intention will then be reflected in the issue of a Bid-Offer Acceptance to return the BM Unit to its previously notified Physical Notification after the relevant Gate Closure, provided the submitted data used to formulate this intention has not changed and subject to **System** conditions which may affect that intention. Subject to that, assumptions regarding Bid-Offer Acceptances may be made by BM Participants for Settlement Periods for which Gate Closure has not yet occurred when assessing consistency with Dynamic Parameters in Settlement Periods for which Gate Closure has occurred. If no such subsequent Bid-Offer Acceptance is issued, the original **Bid-Offer Acceptance** will include an instantaneous return to Physical Notification at the end of the Balancing Mechanism period.

BC2.7.3 Confirmation And Rejection Of Acceptances

Bid-Offer Acceptances may only be rejected by a BM Participant :

- (a) on safety grounds (relating to personnel or plant) as soon as reasonably possible and in any event within five minutes; or
- (b) because they are not consistent with the **Export and Import Limits** or **Dynamic Parameters** applicable at the time of issue of the **Bid-Offer Acceptance**.

A reason must always be given for rejection by telephone.

Where a **Bid-Offer Acceptance** is not confirmed within two minutes or is rejected, **The Company** will seek to contact the **Control Point** for the **BM Unit**. **The Company** must then, within 15 minutes of issuing the **Bid-Offer Acceptance**, withdraw the **Bid-Offer Acceptance** or log the **Bid-Offer Acceptance** as confirmed. **The Company** will only log a rejected **Bid-Offer Acceptance** as confirmed following discussion and if the reason given is, in **The Company's** reasonable opinion, not acceptable, **The Company** will inform the **BM Participant** accordingly.

BC2.7.4 Action Required From BM Participants

- (a) Each BM Participant in respect of its BM Units will comply in accordance with BC2.7.1 with all Bid-Offer Acceptances given by The Company with no more than the delay allowed for by the Dynamic Parameters unless the BM Unit has given notice to The Company under the provisions of BC2.7.3 regarding non-acceptance of a Bid-Offer Acceptance.
- (b) Where a **BM Unit's** input or output changes in accordance with a **Bid-Offer Acceptance** issued under BC2.7.1, such variation does not need to be notified to **The Company** in accordance with BC2.5.1.
- (c) In the event that while carrying out the Bid-Offer Acceptance an unforeseen problem arises caused by safety reasons (relating to personnel or plant), The Company must be notified immediately by telephone and this may lead to revision of BM Unit Data in accordance with BC2.5.3
- BC2.7.5 Additional Action Required when responding to Bid-Offer Acceptances
 - (a) When complying with **Bid-Offer Acceptances** for a **CCGT Module**, a **Generator** will operate its **CCGT Units** in accordance with the applicable **CCGT Module Matrix**.

- (b) When complying with Bid-Offer Acceptances for a CCGT Module which is a Range CCGT Module, a Generator must operate that CCGT Module so that power is provided at the single Grid Entry Point identified in the data given pursuant to PC.A.3.2.1 or at the single Grid Entry Point to which The Company has agreed pursuant to BC1.4.2 (f).
- (c) On receiving a new MW **Bid-Offer Acceptance**, no tap changing shall be carried out to change the MVAr output unless there is a new MVAr **Ancillary Service** instruction issued pursuant to BC2.8.
- (d) When complying with **Bid-Offer Acceptances** for a **Power Park Module**, a **Generator** will operate its **Power Park Units** in accordance with the applicable **Power Park Module Availability Matrix**.
- (e) When complying with **Bid-Offer Acceptances** for a **Synchronous Power Generating Module**, a **Generator** will operate its **Generating Units** in accordance with the applicable **Synchronous Power Generating Module Availability Matrix**.
- (f) When complying with **Bid-Offer Acceptances** for an **Additional BM Unit** or **Secondary BM Unit** they will operate in accordance with the applicable **Aggregator Impact Matrix**.

BC2.8 ANCILLARY SERVICES

This section primarily covers the call-off of **System Ancillary Services**. The provisions relating to **Commercial Ancillary Services** will normally be covered in the relevant **Ancillary Services Agreement**.

BC2.8.1 Call-Off Of Ancillary Services By The Company

- (a) Ancillary Service instructions may be issued at any time.
- (b) **The Company** is entitled to assume that each **BM Unit** (or **Generating Unit**) is available in accordance with the **BM Unit Data** (or the **Generating Unit Data**) and data contained in the **Ancillary Services Agreement** unless and until it is informed of any changes.
- (c) **Frequency** control instructions may be issued in conjunction with, or separate from, a **Bid-Offer Acceptance**.
- (d) The form of and terms to be used by **The Company** in issuing **Ancillary Service** instructions together with their meanings are set out in Appendix 2 in the form of a non-exhaustive list of examples including **Reactive Power** and associated instructions.
- (e) In the case of Generating Units that do not form part of a BM Unit any change in Active Power as a result of, or required to enable, the provision of an Ancillary Service will be dealt with as part of that Ancillary Service Agreement and/or provisions under the CUSC.
- (f) A **System to Generator Operational Intertripping Scheme** will be armed in accordance with BC2.10.2(a).

BC2.8.2 Consistency With Export And Import Limits And Dynamic Parameters

Ancillary Service instructions will be consistent with the Export and Import Limits provided or modified under BC1 or BC2 and the Dynamic Parameters provided or modified under BC2. Ancillary Service instructions may also recognise Other Relevant Data provided or modified under BC1 or BC2.

BC2.8.3 Rejection Of Ancillary Service Instructions

- (a) Ancillary Service instructions may only be rejected, by automatic logging device or by telephone, on safety grounds (relating to personnel or plant) or because they are not consistent with the applicable Export and Import Limits, Dynamic Parameters, Other Relevant Data or data contained in the Ancillary Services Agreement and a reason must be given immediately for non-acceptance.
- (b) The issue of Ancillary Service instructions for Reactive Power will be made with due regard to any resulting change in Active Power output. The instruction may be rejected if it conflicts with any Bid-Offer Acceptance issued in accordance with BC2.7 or with the Physical Notification.
- (c) Where Ancillary Service instructions relating to Active Power and Reactive Power are given together, and to achieve the Reactive Power output would cause the BM Unit to operate outside Dynamic Parameters as a result of the Active Power instruction being met at the same time, then the timescale of implementation of the Reactive Power instruction may be extended to be no longer than the timescale for implementing the Active Power instruction but in any case to achieve the MVAr Ancillary Service instruction as soon as possible.

BC2.8.4 Action Required From BM Units

- (a) Each BM Unit (or Generating Unit) will comply in accordance with BC2.8.1 with all Ancillary Service instructions relating to Reactive Power properly given by The Company within 2 minutes or such longer period as The Company may instruct, and all other Ancillary Service instructions without delay, unless the BM Unit or Generating Unit has given notice to The Company under the provisions of BC2.8.3 regarding nonacceptance of Ancillary Service instructions.
- (b) Each BM Unit may deviate from the profile of its Final Physical Notification Data, as modified by any Bid-Offer Acceptances issued in accordance with BC2.7.1, only as a result of responding to Frequency deviations when operating in Frequency Sensitive Mode in accordance with the Ancillary Services Agreement.
- (c) Each Generating Unit that does not form part of a BM Unit may deviate from the profile of its Final Physical Notification Data where agreed by The Company and the User, including but not limited to, as a result of providing an Ancillary Service in accordance with the Ancillary Service Agreement.
- (d) In the event that while carrying out the Ancillary Service instructions an unforeseen problem arises caused by safety reasons (relating to personnel or plant), The Company must be notified immediately by telephone and this may lead to revision of BM Unit Data or Generating Unit Data in accordance with BC2.5.3.

BC2.8.5 Reactive Despatch Network Restrictions

Where The Company has received notification pursuant to the Grid Code that a Reactive Despatch to Zero MVAr Network Restriction is in place with respect to any Embedded Power Generating Module and/or Embedded Generating Unit and/or Embedded Power Park Module or HVDC Converter at an Embedded HVDC Converter Station or DC Converter at an Embedded DC Converter Station, then The Company will not issue any Reactive Despatch Instruction with respect to that Power Generating Module and/or Generating Unit and/or Power Park Module or DC Converter or HVDC Converter until such time as notification is given to The Company pursuant to the Grid Code that such Reactive Despatch to Zero MVAr Network Restriction is no longer affecting that Power Generating Module and/or Generating Unit and/or Power Park Module or DC Converter or HVDC Converter or HVDC Converter or HVDC Converter Other Station is no longer affecting that Power Generating Module and/or Generating Unit and/or Power Park Module or DC Converter or HVDC Converter or HVDC Converter or HVDC Converter or HVDC Converter Other Station is no longer affecting that Power Generating Module and/or Generating Unit and/or Power Park Module or DC Converter or HVDC Converter.

BC2.9 EMERGENCY CIRCUMSTANCES

- BC2.9.1.1 In certain circumstances (as determined by **The Company** in its reasonable opinion) it will be necessary, in order to preserve the integrity of the **National Electricity Transmission System** and any synchronously connected **External System**, for **The Company** to issue **Emergency Instructions**. In such circumstances, it may be necessary to depart from normal **Balancing Mechanism** operation in accordance with BC2.7 in issuing **Bid-Offer Acceptances**. **BM Participants** must also comply with the requirements of **BC3**.
- BC2.9.1.2 Examples of circumstances that may require the issue of Emergency Instructions include:-
 - (a) Events on the National Electricity Transmission System or the System of another User; or
 - (b) the need to maintain adequate **System** and **Localised NRAPM** in accordance with BC2.9.4 below; or
 - (c) the need to maintain adequate **Frequency** sensitive **Gensets** in accordance with BC2.9.5 below; or
 - (d) the need to implement Demand Control in accordance with OC6; or
 - (e) (i) the need to invoke the **Black Start** process or the **Re-Synchronisation** of **De-Synchronised Island** process in accordance with OC9; or
 - (ii) the need to request provision of a Maximum Generation Service; or
 - (iii) the need to issue an Emergency Deenergisation Instruction in circumstances where the condition or manner of operation of any Transmission Plant and/or Apparatus is such that it may cause damage or injury to any person or to the National Electricity Transmission System; or

(f) the need to implement Embedded Generation Control in accordance with OC6B.

- BC2.9.1.3 In the case of **BM Units** and **Generating Units** in **Great Britain**, **Emergency Instructions** will be issued by **The Company** direct to the **User** at the **Control Point** for the **BM Unit** or **Generating Unit** and may require an action or response which is outside its **Other Relevant Data** or **Export and Import Limits** submitted under **BC1**, or revised under **BC1** or **BC2**, or **Dynamic Parameters** submitted or revised under **BC2**.
- BC2.9.1.4 In the case of a **Network Operator** or an **Externally Interconnected System Operator**, **Emergency Instructions** will be issued to its **Control Centre**.
- BC2.9.2 Implementation Of Emergency Instructions
- BC2.9.2.1 Users will respond to Emergency Instructions issued by The Company without delay and using all reasonable endeavours to so respond. Emergency Instructions may only be rejected by an User on safety grounds (relating to personnel or plant) and this must be notified to The Company immediately by telephone.
- BC2.9.2.2 **Emergency Instructions** will always be prefixed with the words "This is an **Emergency Instruction**" except in the case of:
 - (i) **Maximum Generation Service** instructed by electronic data communication facilities where the instruction will be issued in accordance with the provisions of the **Maximum Generation Service Agreement**; and
 - (ii) an Emergency Deenergisation Instruction, where the Emergency Deenergisation Instruction will be pre-fixed with the words 'This is an Emergency Deenergisation Instruction'; and
 - (iii) during a Black Start situation where the Balancing Mechanism has been suspended, any instruction given by The Company will (unless The Company specifies otherwise) be deemed to be an Emergency Instruction and need not be pre-fixed with the words 'This is an Emergency Instruction'; and

(iv) during a Black Start situation where the Balancing Mechanism has not been suspended, any instruction in relation to Black Start Stations, Black Start HVDC Systems and to Network Operators which are part of an invoked Local Joint Restoration Plan will (unless The Company specifies otherwise) be deemed to be an Emergency Instruction and need not be prefixed with the words 'This is an Emergency Instruction'.

In Scotland, any instruction in relation to **Gensets** that are not at **Black Start Stations** or to **HVDC Systems** or **DC Converter Stations** that are not part of **Black Start HVDC Systems**, but which are part of an invoked **Local Joint Restoration Plan** and are instructed in accordance with the provisions of that **Local Joint Restoration Plan**, will be deemed to be an **Emergency Instruction** and need not be prefixed with the words 'This is an **Emergency Instruction**'.

- BC2.9.2.3 In all cases under this BC2.9, except BC2.9.1.2 (e) where **The Company** issues an **Emergency Instruction** to a **BM Participant** which is not rejected under BC2.9.2.1, the **Emergency Instruction** shall be treated as a **Bid-Offer Acceptance**. For the avoidance of doubt, any **Emergency Instruction** issued to a **Network Operator** or to an **Externally Interconnected System Operator** or in respect of a **Generating Unit** that does not form part of a **BM Unit**, will not be treated as a **Bid-Offer Acceptance**.
- BC2.9.2.4 In the case of BC2.9.1.2 (e) (ii) where **The Company** issues an **Emergency Instruction** pursuant to a **Maximum Generation Service Agreement**, payment will be dealt with in accordance with the **CUSC** and the **Maximum Generation Service Agreement**.
- BC2.9.2.5 In the case of BC2.9.1.2 (e) (iii) where **The Company** issues an **Emergency Deenergisation Instruction**, payment will be dealt with in accordance with the **CUSC**, Section 5.
- BC2.9.2.6 In the case of BC2.9.1.2 (e) (i), upon receipt of an **Emergency Instruction** by a **Generator** during a **Black Start**, the provisions of Section G of the **BSC** relating to compensation shall apply.
- BC2.9.3 Examples Of Emergency Instructions
- BC2.9.3.1 In the case of a **BM Unit** or a **Generating Unit**, **Emergency Instructions** may include an instruction for the **BM Unit** or the **Generating Unit** to operate in a way that is not consistent with the **Dynamic Parameters** and/or **Export and Import Limits**.
- BC2.9.3.2 In the case of a **Generator**, **Emergency Instructions** may include:
 - (a) an instruction to trip one or more Gensets (excluding Operational Intertripping); or
 - (b) an instruction to trip **Mills** or to **Part Load** a **Generating Unit** (as defined in the Glossary and Definitions and not limited by BC2.2); or
 - (c) an instruction to Part Load a Power Generating Module and/or CCGT Module or Power Park Module; or
 - (d) an instruction for the operation of CCGT Units within a CCGT Module (on the basis of the information contained within the CCGT Module Matrix) when emergency circumstances prevail (as determined by The Company in The Company's reasonable opinion); or
 - (e) an instruction to generate outside normal parameters, as allowed for in 4.2 of the CUSC; or
 - (f) an instruction for the operation of Generating Units within a Cascade Hydro Scheme (on the basis of the additional information supplied in relation to individual Generating Units) when emergency circumstances prevail (as determined by The Company in The Company's reasonable opinion); or

- (g) an instruction for the operation of a **Power Park Module** (on the basis of the information contained within the **Power Park Module Availability Matrix**) when emergency circumstances prevail (as determined by **The Company** in **The Company's** reasonable opinion).
- BC2.9.3.3 Instructions to **Network Operators** relating to the **Operational Day** may include:
 - (a) a requirement for **Demand** reduction and disconnection or restoration pursuant to **OC6**;
 - (b) an instruction to effect a load transfer between Grid Supply Points;
 - (c) an instruction to switch in a System to Demand Intertrip Scheme;
 - (d) an instruction to split a network;
 - (e) an instruction to disconnect an item of **Plant** or **Apparatus** from the **System**.
 - (f) a requirement for Embedded Generation Control or restoration pursuant to OC6B
- BC2.9.4 <u>Maintaining Adequate System And Localised NRAPM (Negative Reserve Active Power</u> Margin)
- BC2.9.4.1 Where **The Company** is unable to satisfy the required **System NRAPM** or **Localised NRAPM** by following the process described in BC1.5.5, **The Company** will issue an **Emergency Instruction** to exporting **BM Units** for **De-Synchronising** on the basis of **Bid-Offer Data** submitted to **The Company** in accordance with BC1.4.2(d). If **The Company** is still unable to satisfy the required **System NRAPM** or **Localised NRAPM** then **The Company** may issue **Emergency Instructions** to **Network Operator(s)** as set out under OC6B to carry out **Embedded Generation Control**.
- BC2.9.4.2 In the event that **The Company** is unable to differentiate between exporting **BM Units** according to **Bid-Offer Data**, **The Company** will instruct a **BM Participant** to **Shutdown** a specified exporting **BM Unit** for such period based upon the following factors:
 - (a) effect on power flows (resulting in the minimisation of transmission losses);
 - (b) reserve capability;
 - (c) **Reactive Power** worth;
 - (d) **Dynamic Parameters**;
 - (e) in the case of **Localised NRAPM**, effectiveness of output reduction in the management of the **System Constraint**.
- BC2.9.4.3 Where **The Company** is still unable to differentiate between exporting **BM Units**, having considered all the foregoing, **The Company** will decide which exporting **BM Unit** to **Shutdown** by the application of a quota for each **BM Participant** in the ratio of each **BM Participant's Physical Notifications**.
- BC2.9.4.4 Other than as provided in BC2.9.4.5 and BC2.9.4.6 below, in determining which exporting **BM Units** to **De-Synchronise** under this BC2.9.4, **The Company** shall not consider in such determination (and accordingly shall not instruct to **De-Synchronise**) any **Generating Unit** (as defined in the Glossary and Definitions and not limited by BC2.2) within an **Existing Gas Cooled Reactor Plant**.
- BC2.9.4.5 **The Company** shall be permitted to instruct a **Generating Unit** (as defined in the Glossary and Definitions and not limited by BC2.2) within an **Existing AGR Plant** to **De-Synchronise** if the relevant **Generating Unit** within the **Existing AGR Plant** has failed to offer to be flexible for the relevant instance at the request of **The Company** within the **Existing AGR Plant Flexibility Limit**.

- BC2.9.4.6 Notwithstanding the provisions of BC2.9.4.5 above, if the level of **System NRAPM** (taken together with **System** constraints) or **Localised NRAPM** is such that it is not possible to avoid instructing a **Generating Unit** (as defined in the Glossary and Definitions and not limited by BC2.2) within an **Existing Magnox Reactor Plant** and/or an **Existing AGR Plant** whether or not it has met requests within the **Existing AGR Flexibility Limit** to **De-Synchronise**, **The Company** may, provided the power flow across each **External Interconnection** is either at zero or results in an export of power from the **Total System**, so instruct a **Generating Unit** (as defined in the Glossary and Definitions and not limited by BC2.2) within an **Existing Magnox Reactor Plant** and/or an **Existing AGR Plant** to **De-Synchronise** in the case of **System NRAPM**, in all cases and in the case of **Localised NRAPM**, when the power flow would have a relevant effect.
- BC2.9.4.7 When instructing exporting **BM Units** which form part of an **On-Site Generator Site** to reduce generation or export under this BC2.9.4, **The Company** will not issue an instruction which would reduce generation or export below the reasonably anticipated **Demand** of the **On-Site Generator Site**. For the avoidance of doubt, it should be noted that the term "**On-Site Generator Site**" only relates to Trading Units which have fulfilled the Class 1 or Class 2 requirements.

BC2.9.5 Maintaining an adequate level of Frequency Sensitive Generation

- BC2.9.5.1 If, post **Gate Closure**, **The Company** determines, in its reasonable opinion, from the information then available to it (including information relating to a **Generating Unit** (as defined in the Glossary and Definitions and not limited by BC2.2) breakdown) that the number of, and level of **Primary**, **Secondary** and **High Frequency Response** available from **Gensets** (other than those units within **Existing Gas Cooled Reactor Plant**, which are permitted to operate in **Limited Frequency Sensitive Mode** at all times under BC3.5.3) available to operate in **Frequency Sensitive Mode**, is such that it is not possible to avoid **De-Synchronising Existing Gas Cooled Reactor Plant** then provided that:
 - (a) there are (or, as the case may be, that **The Company** anticipates, in its reasonable opinion, that at the time that the instruction is to take effect there will be) no other **Gensets** generating and exporting on to the **Total System** which are not operating in **Frequency Sensitive Mode** (or which are operating with only a nominal amount in terms of level and duration) (unless, in **The Company's** reasonable opinion, necessary to assist the relief of **System** constraints or necessary as a result of other **System** conditions); and
 - (b) the power flow across each **External Interconnection** is (or, as the case may be, is anticipated to be at the time that the instruction is to take effect) either at zero or results in an export of power from the **Total System**,

then **The Company** may instruct such of the **Existing Gas Cooled Reactor Plant** to **De-Synchronise** as it is, in **The Company's** reasonable opinion, necessary to **De-Synchronise** and for the period for which the **De-Synchronising** is, in **The Company's** reasonable opinion, necessary.

- BC2.9.5.2 If in **The Company's** reasonable opinion it is necessary for both the procedure in BC2.9.4 and that set out in BC2.9.5.1 to be followed in any given situation, the procedure in BC2.9.4 will be followed first, and then the procedure set out in BC2.9.5.1. For the avoidance of doubt, nothing in this sub-paragraph shall prevent either procedure from being followed separately and independently of the other.
- BC2.9.6 Emergency Assistance to and from External Systems

- (a) An Externally Interconnected System Operator (in its role as operator of the External System) may request that The Company takes any available action to increase the Active Energy transferred into its External System, or reduce the Active Energy transferred into the National Electricity Transmission System by way of emergency assistance if the alternative is to instruct a demand reduction on all or part of its External System (or on the system of an Interconnector User using its External System). Such request must be met by The Company providing this does not require a reduction of Demand on the National Electricity Transmission System, or lead to a reduction in security on the National Electricity Transmission System.
- (b) The Company may request that an Externally Interconnected System Operator takes any available action to increase the Active Energy transferred into the National Electricity Transmission System, or reduce the Active Energy transferred into its External System by way of emergency assistance if the alternative is to instruct a Demand reduction on all or part of the National Electricity Transmission System. Such request must be met by the Externally Interconnected System Operator providing this does not require a reduction of Demand on its External System (or on the system of Interconnector Users using its External System), or lead to a reduction in security on such External System or system.

BC2.9.7 Unplanned Outages of Electronic Communication and Computing Facilities

- BC2.9.7.1 In the event of an unplanned outage of the electronic data communication facilities or of **The Company's** associated computing facilities or in the event of a **Planned Maintenance Outage** lasting longer than the planned duration, in relation to a post-**Gate Closure** period **The Company** will, as soon as it is reasonably able to do so, issue a **The Company** Computing System Failure notification by telephone or such other means agreed between **Users** and **The Company** indicating the likely duration of the outage.
- BC2.9.7.2 During the period of any such outage, the following provisions will apply:
 - (a) The Company will issue further The Company Computing System Failure notifications by telephone or such other means agreed between Users and The Company to all BM Participants to provide updates on the likely duration of the outage;
 - (b) (i) BM Participants, not subject to the provisions of BC2.9.7.2(b)(ii), should operate in relation to any period of time in accordance with the last Physical Notification prevailing at Gate Closure received prior to the computer system failure in relation to each such period of time. Such operation shall be subject to the provisions of BC2.5.1, which will apply as if set out in this BC2.9.7.2. No further submissions of BM Unit Data or Generating Unit Data (other than data specified in BC1.4.2(c) (Export and Import Limits) and BC1.4.2(e) (Dynamic Parameters) should be attempted. Plant failure or similar problems causing significant deviation from Physical Notification should be notified to The Company by telephone by the submission of a revision to Export and Import Limits in relation to the BM Unit or Generating Unit Data so affected;

(ii) **BM Participants**, who are not required to have **Control Telephony** or **System Telephony** staffed at all times as provided for in CC7.9 or ECC7.9, should during periods when their telephones are not staffed operate in relation to any period of time in accordance with the last **Physical Notification** prevailing at **Gate Closure** received at the prior of the computer system failure in relation to each such period of time. Such operation shall be subject to the provisions of BC2.5.1, which will apply as if set out in this BC2.9.7.2. If the BM Participants automatic equipment identifies there has been a computer system failure then no further submissions of **BM Unit Data** or **Generating Unit Data** (other than data specified in BC1.4.2(c) (**Export and Import Limits**) and BC1.4.2(e) (**Dynamic Parameters**) should be attempted. For the avoidance of doubt between 08:00 and 18:00 hours the provisions of BC2.9.7.2(b)(i) shall apply.

(c) Revisions to **Export and Import Limits** and to **Dynamic Parameters** should be notified to **The Company** by telephone and will be recorded for subsequent use;

- (d) **The Company** will issue **Bid-Offer Acceptances** by telephone which will be recorded for subsequent use;
- (e) No data will be transferred from **The Company** to the **BMRA** until the communication facilities are re-established.
- BC2.9.7.3 **The Company** will advise **BM Participants** of the withdrawal of **The Company** Computing System Failure notification following the re-establishment of the communication facilities.

BC2.9.8 Market Suspension

- BC2.9.8.1 Within the **GB Synchronous Area**, the **National Electricity Transmission System** shall be determined to be in an emergency state when operational security analysis indicates one or more of the following situations occurring:
 - a) A situation where there is (or could be) a violation of one or more operational criteria as defined under the **Security and Quality of Supply Standard (SQSS)**; or
 - b) A situation when Unacceptable Frequency Conditions as defined under the **System Security and Quality of Supply Standard (SQSS)** have occurred; or
 - c) At least one measure of the System Defence Plan is activated; or
 - d) There is a failure of the computing facilities used to control and operate the National Electricity Transmission System or unplanned outages of Electronic Communication and Computing Facilities as provided for in BC2.9.7 or the loss of communication, computing and data facilities with other Transmission Licensees as provided for in STCP 06-4.
- BC2.9.8.2 While the National Electricity Transmission System is in an emergency state if, after issuing National Electricity Transmission System Warnings and Emergency Instructions in accordance with (but not limited to) the requirements under OC7.4 and BC2.9, the situation deteriorates to such an extent that it results in:
 - a) a **Total Shutdown**, **The Company** will suspend the market in accordance with the provisions of OC9.4.6; or
 - b) a **Partial Shutdown**, **The Company** will suspend the market but only where the **Market Suspension Threshold** has been met in accordance with OC9.4.6.

BC2.10 OTHER OPERATIONAL INSTRUCTIONS AND NOTIFICATIONS

- BC2.10.1 **The Company** may, from time to time, need to issue other instructions or notifications associated with the operation of the **National Electricity Transmission System**.
- BC2.10.2 Such instructions or notifications may include:

Intertrips

(a) an instruction to arm or disarm an **Operational Intertripping** scheme;

Tap Positions

(b) a request for a **Genset** step-up transformer tap position (for security assessment);

<u>Tests</u>

 (c) an instruction to carry out tests as required under OC5, which may include the issue of an instruction regarding the operation of CCGT Units within a CCGT Module at a Large Power Station;

Future BM Unit Requirements

 (d) a reference to any implications for future BM Unit requirements and the security of the National Electricity Transmission System, including arrangements for change in output to meet post fault security requirements;

Changes to Target Frequency

- (e) a notification of a change in **Target Frequency**, which will normally only be 49.95, 50.00, or 50.05Hz but in exceptional circumstances as determined by **The Company** in its reasonable opinion, may be 49.90 or 50.10Hz.
- BC2.10.3 Where an instruction or notification under BC2.10.2 (c) or (d) results in a change to the input or output level of the **BM Unit** then **The Company** shall issue a **Bid-Offer Acceptance** or **Emergency Instruction** as appropriate.

BC2.11 LIAISON WITH GENERATORS FOR RISK OF TRIP AND AVR TESTING

- BC2.11.1 A Generator at the Control Point for any of its Large Power Stations may request The Company's agreement for one of the Gensets at that Power Station to be operated under a risk of trip. The Company's agreement will be dependent on the risk to the National Electricity Transmission System that a trip of the Genset would constitute.
- BC2.11.2 (a) Each Generator at the Control Point for any of its Large Power Stations will operate its Synchronised Gensets (excluding Power Park Modules) with:
 - AVRs in constant terminal voltage mode with VAR limiters in service at all times. AVR constant Reactive Power or Power Factor mode should, if installed, be disabled; and
 - (ii) its generator step-up transformer tap changer selected to manual mode,

unless released from this obligation in respect of a particular Genset by The Company.

- (b) Each Generator at the Control Point for any of its Large Power Stations will operate its Power Park Modules with a Completion Date before 1st January 2006 at unity Power Factor at the Grid Entry Point (or User System Entry Point if Embedded).
- (c) Each Generator at the Control Point for any of its Large Power Stations will operate its Power Park Modules with a Completion Date on or after 1st January 2006 in voltage control mode at the Grid Entry Point (or User System Entry Point if Embedded). Constant Reactive Power or Power Factor mode should, if installed, be disabled.
- (d) Where a Power System Stabiliser is fitted as part of the excitation system or voltage control system of a Genset, it requires on-load commissioning which must be witnessed by The Company. Only when the performance of the Power System Stabiliser has been approved by The Company, shall it be switched into service by a Generator and then it will be kept in service at all times unless otherwise agreed with The Company. Further reference is made to this in CC.6.3.8 or ECC.6.3.8.
- BC2.11.3 A Generator at the Control Point for any of its Power Stations may request The Company's agreement for one of its Gensets at that Power Station to be operated with the AVR in manual mode, or Power System Stabiliser switched out, or VAR limiter switched out. The Company's agreement will be dependent on the risk that would be imposed on the National Electricity Transmission System and any User System. Provided that in any event a Generator may take such action as is reasonably necessary on safety grounds (relating to personnel or plant).

BC2.11.4 Each Generator shall operate its dynamically controlled OTSDUW Plant and Apparatus to ensure that the reactive capability and voltage control performance requirements as specified in CC.6.3.2, CC.6.3.8, CC.A.7 or ECC.6.3.2, ECC.6.3.8, ECC.A.7, ECC.A.8 and the Bilateral Agreement can be satisfied in response to the Setpoint Voltage and Slope as instructed by The Company at the Transmission Interface Point.

BC2.12 LIAISON WITH EXTERNALLY INTERCONNECTED SYSTEM OPERATORS

BC2.12.1 Co-Ordination Role Of Externally Interconnected System Operators

- (a) The Externally Interconnected System Operator will act as the Control Point for Bid-Offer Acceptances on behalf of Interconnector Users and will co-ordinate instructions relating to Ancillary Services and Emergency Instructions on behalf of Interconnector Users using its External System in respect of each Interconnector Users BM Units.
- (b) **The Company** will issue **Bid-Offer Acceptances** and instructions for **Ancillary Services** relating to **Interconnector Users BM Units** to each **Externally Interconnected System Operator** in respect of each **Interconnector User** using its **External System**.
- (c) If, as a result of a reduction in the capability (in MW) of the External Interconnection, the total of the Physical Notifications and Bid-Offer Acceptances issued for the relevant period using that External Interconnection, as stated in the BM Unit Data, exceeds the reduced capability (in MW) of the respective External Interconnection in that period, then The Company shall notify the Externally Interconnected System Operator accordingly. The Externally Interconnected System Operator should seek a revision of Export and Import Limits from one or more of its Interconnector Users for the remainder of the Balancing Mechanism period during which Physical Notifications cannot be revised.

BC2.13 LIAISON WITH INTERCONNECTOR OWNERS

- (a) Calculate the Interconnector Scheduled Transfer
 - i) Interconnector Owners shall use best endeavours to deliver an updated Interconnector Scheduled Transfer to NGET by 10 minutes after each Intraday Cross-Zonal Gate Closure Time.
 - ii) The updated Interconnector Scheduled Transfer shall fully reflect the results of the Single Intraday Coupling.
 - iii) Interconnector Owners must ensure that the updated Interconnector Scheduled Transfer is received in its entirety and logged into NGET's computer systems by the time of 10 minutes after each Intraday Crosszonal Gate Closure Time.

APPENDIX 1 - FORM OF BID-OFFER ACCEPTANCES

- BC2.A.1.1 This Appendix describes the forms of **Bid-Offer Acceptances**. As described in BC2.6.1 **Bid-Offer Acceptances** are normally given by an automatic logging device, but in the event of failure of the logging device, **Bid-Offer Acceptances** will be given by telephone.
- BC2.A.1.2 For each **BM Unit** the **Bid-Offer Acceptance** will consist of a series of MW figures and associated times.

BC2.A.1.3 The **Bid-Offer Acceptances** relating to **CCGT Modules** will assume that the **CCGT Units** within the **CCGT Module** will operate in accordance with the **CCGT Module Matrix**, as required by **BC1**. The **Bid-Offer Acceptances** relating to **Cascade Hydro Schemes** will assume that the **Generating Unit** forming part of the **Cascade Hydro Scheme** will operate, where submitted, in accordance with the **Cascade Hydro Scheme Matrix** submitted under **BC1**. The **Bid-Offer Acceptances** relating to **Synchronous Power Generating Modules** will assume that the **Synchronous Generating Units** within the **Synchronous Power Generating Module** will operate in accordance with the **Synchronous Power Generating Module Matrix**, as required by **BC1**.

BC2.A.1.4 Bid-Offer Acceptances Given By Automatic Logging Device

- (a) The complete form of the **Bid-Offer Acceptance** is given in the EDL Message Interface Specification which can be made available to **Users** on request.
- (b) **Bid-Offer Acceptances** will normally follow the form:
 - (i) BM Unit Name
 - (ii) Instruction Reference Number
 - (iii) Time of instruction
 - (iv) Type of instruction
 - (v) BM Unit Bid-Offer Acceptance number
 - (vi) Number of MW/Time points making up instruction (minimum 2, maximum 5)
 - (vii) MW value and Time value for each point identified in (vi)

The times required in the instruction are input and displayed in London time, but communicated electronically in GMT.

BC2.A.1.5 Bid-Offer Acceptances Given By Telephone

- (a) All run-up/run-down rates will be assumed to be constant and consistent with Dynamic Parameters. Each Bid-Offer Acceptance will, wherever possible, be kept simple, drawing as necessary from the following forms and BC2.7
- (b) Bid-Offer Acceptances given by telephone will normally follow the form:
 - (i) an exchange of operator names;
 - (ii) BM Unit Name;
 - (iii) Time of instruction;
 - (iv) Type of instruction;
 - (v) Number of MW/Time points making up instruction (minimum 2, maximum 5)
 - (vi) MW value and Time value for each point identified in (v)

The times required in the instruction are expressed in London time.

For example, for a **BM Unit** ABCD-1 acceptance logged with a start time at 1400 hours and with a FPN at 300MW:

"BM Unit ABCD-1 **Bid-Offer Acceptance** timed at 1400 hours. Acceptance consists of 4 MW/Time points as follows:

300MW at 1400 hours 400MW at 1415 hours 400MW at 1450 hours 300MW at 1500 hours"

BC2.A.1.6 Submission Of Bid-Offer Acceptance Data To The BMRA

The relevant information contained in **Bid-Offer Acceptances** issued by **The Company** will be converted into "from" and "to" MW levels and times before they are submitted to the **BMRA** by **The Company**.

APPENDIX 2 - TYPE AND FORM OF ANCILLARY SERVICE INSTRUCTIONS

BC2.A.2.1 This part of the Appendix consists of a non-exhaustive list of the forms and types of instruction for a **Genset** to provide **System Ancillary Services**. There may be other types of **Commercial Ancillary Services** and these will be covered in the relevant **Ancillary Services Agreement**. In respect of the provision of **Ancillary Services** by **Generating Units** the forms and types of instruction will be in the form of this Appendix 2 unless amended in the **Ancillary Services Agreement**.

As described in CC.8 or ECC.8, **System Ancillary Services** consist of Part 1 and Part 2 **System Ancillary Services**.

Part 1 System Ancillary Services Comprise:

- (a) Reactive Power supplied other than by means of synchronous or static compensators. This is required to ensure that a satisfactory System voltage profile is maintained and that sufficient Reactive Power reserves are maintained under normal and fault conditions. Ancillary Service instructions in relation to Reactive Power may include:
 - (i) MVAr Output
 - (ii) Target Voltage Levels
 - (iii) Tap Changes
 - (iv) Maximum MVAr Output ('maximum excitation')
 - (v) Maximum MVAr Absorption ('minimum excitation')
- (b) Frequency Control by means of Frequency sensitive generation. Gensets may be required to move to or from Frequency Sensitive Mode in the combinations agreed in the relevant Ancillary Services Agreement. They will be specifically requested to operate so as to provide Primary Response and/or Secondary Response and/or High Frequency Response.

Part 2 System Ancillary Services Comprise:

- (c) Frequency Control by means of Fast Start.
- (d) Black Start Capability
- (e) System to Generator Operational Intertripping
- BC2.A.2.2 As **Ancillary Service** instructions are not part of **Bid-Offer Acceptances** they do not need to be closed instructions and can cover any period of time, not just limited to the period of the **Balancing Mechanism**.
- BC2.A.2.3 As described in BC2.6.1, unless otherwise agreed with **The Company**, **Ancillary Service** instructions are normally given by automatic logging device, but in the absence of, or in the event of failure of the logging device, instructions will be given by telephone.

BC2.A.2.4 Instructions Given By Automatic Logging Device

- (a) The complete form of the **Ancillary Service** instruction is given in the EDL Message Interface Specification which is available to **Users** on request from **The Company**.
- (b) Ancillary Service instructions for Frequency Control will normally follow the form:
 - (i) BM Unit Name
 - (ii) Instruction Reference Number
 - (iii) Time of instruction
 - (iv) Type of instruction

- (v) Reason Code
- (vi) Start Time
- (c) Ancillary Service instructions for Reactive Power will normally follow the form:
 - (i) BM Unit Name
 - (ii) Instruction Reference Number
 - (iii) Time of instruction
 - (iv) Type of instruction (MVAr, VOLT or TAPP)
 - (v) Target Value
 - (vi) Target Time

The times required in the instruction are input and displayed in London time, but communicated electronically in GMT.

BC2.A.2.5 Instructions Given By Telephone

- (a) Ancillary Service instructions for Frequency Control will normally follow the form:
 - (i) an exchange of operator names;
 - (ii) **BM Unit** Name;
 - (iii) Time of instruction;
 - (iv) Type of instruction;
 - (v) Start Time.

The times required in the instruction are expressed in London time.

For example, for **BM Unit** ABCD-1 instructed at 1400 hours to provide **Primary** and **High Frequency** response starting at 1415 hours:

"BM Unit ABCD-1 message timed at 1400 hours. Unit to **Primary and High Frequency Response** at 1415 hours"

- (b) **Ancillary Service** instructions for **Reactive Power** will normally follow the form:
 - (a) an exchange of operator names;
 - (b) **BM Unit** Name;
 - (c) Time of instruction;
 - (d) Type of instruction (MVAr, VOLT, SETPOINT, **SLOPE** or TAPP)
 - (e) Target Value
 - (f) Target Time.

The times required in the instruction are expressed as London time.

For example, for **BM Unit** ABCD-1 instructed at 1400 hours to provide 100MVAr by 1415 hours:

"BM Unit ABCD-1 message timed at 1400 hours. MVAr instruction. Unit to plus 100 MVAr target time 1415 hours."

BC2.A.2.6 Reactive Power

As described in BC2.A.2.4 and BC2.A.2.5 instructions for **Ancillary Services** relating to **Reactive Power** may consist of any of several specific types of instruction. The following table describes these instructions in more detail:

Instruction Name	Description	Type of Instruction
MVAr Output	The individual MVAr output from the Genset onto the National Electricity Transmission System at the Grid Entry Point (or onto the User System at the User System Entry Point in the case of Embedded Power Stations), namely on the higher voltage side of the generator step-up transformer or Grid Entry Point or User System Entry Point in the case of a Power Generating Module . In relation to each Genset , where there is no HV indication, The Company and the Generator will discuss and agree equivalent MVAr levels for the corresponding LV indication. Where a Genset is instructed to a specific MVAr output, the Generator must achieve that output within a tolerance of +/-25 MVAr (for Gensets in England and Wales) or the lesser of +/-5% of rated output or 25MVAr (for Gensets in Scotland) (or such other figure as may be agreed with The Company) by tap changing on the generator step-up transformer, or adjusting the Genset terminal voltage, subject to compliance with CC.6.3.8 (a) (v), or ECC.6.3.8.3.3 (as applicable) to a value that is equal to or higher than 1.0p.u. of the rated terminal voltage, or a combination of both. Once this has been achieved, the Genset terminal voltage without prior consultation with and the agreement of The Company , on the basis that MVAr output will be allowed to vary with System conditions.	MVAr

Instruction Name	Description	Type of Instruction
Target Voltage Levels	Target voltage levels to be achieved by the Genset on the National Electricity Transmission System at the Grid Entry Point (or on the User System at the User System Entry Point in the case of Embedded Power Stations , namely on the higher voltage side of the generator step- up transformer or Grid Entry Point or User System Entry Point in the case of a Power Generating Module . Where a Genset is instructed to a specific target voltage, the Generator must achieve that target within a tolerance of ±1 kV (or such other figure as may be agreed with The Company) by tap changing on the generator step-up transformer, or adjusting the Genset terminal voltage, subject to compliance with CC.6.3.8 (a) (v) or ECC.6.3.8.3.3 (as applicable), to a value that is equal to or higher than 1.0p.u. of the rated terminal voltage, or a combination of both. In relation to each Genset , where there is no HV indication, The Company and the Generator will discuss and agree equivalent voltage levels for the corresponding LV indication. Under normal operating conditions, once this target voltage level has been achieved the Genset terminal voltage without prior consultation with, and with the agreement of, The Company .	VOLT
	However, under certain circumstances, the Generator may be instructed to maintain a target voltage until otherwise instructed and this will be achieved by tap changing on the generator step-up transformer, or adjusting the Genset terminal voltage, subject to compliance with CC.6.3.8 (a) (v) or ECC.6.3.8.3.3 (as applicable), to a value that is equal to or higher than 1.0p.u. of the rated terminal voltage, or a combination of both without reference to The Company .	
Setpoint Voltage	Where a Non-Synchronous Generating Unit, DC Converter or Power Park Module or HVDC Converter is instructed to a specific Setpoint Voltage, the Generator must achieve that Setpoint Voltage within a tolerance of ±0.25% (or such other figure as may be agreed with The Company). The Generator must maintain the specified Setpoint	SETPOINT
	Voltage target until an alternative target is received from The Company.	

Instruction Name	Description	Type of Instruction
Slope	Where a Non-Synchronous Generating Unit, DC Converter or Power Park Module or HVDC Converter is instructed to a specific Slope, the Generator must achieve that Slope within a tolerance of ±0.5% (or such other figure as may be agreed with The Company). The Generator must maintain the specified Slope target until an alternative target is received from The Company. The Generator will not be required to implement a new Slope setting in a time of less than 1 week from the time of the instruction.	SLOPE
Tap Changes	Details of the required generator step-up transformer tap changes in relation to a Genset . The instruction for tap changes may be a Simultaneous Tap Change instruction, whereby the tap change must be effected by the Generator in response to an instruction from The Company issued simultaneously to relevant Power Stations . The instruction, which is normally preceded by advance notice, must be effected as soon as possible, and in any event within one minute of receipt from The Company of the instruction. For a Simultaneous Tap Change , change Genset generator step-up transformer tap position by one [two] taps to raise or lower (as relevant) System voltage, to be executed at time of instruction.	TAPP
Maximum MVAr Output ("maximum excitation")	Under certain conditions, such as low System voltage, an instruction to maximum MVAr output at instructed MW output ("maximum excitation") may be given, and a Generator should take appropriate actions to maximise MVAr output unless constrained by plant operational limits or safety grounds (relating to personnel or plant).	
Maximum MVAr Absorption ("minimum excitation")	Under certain conditions, such as high System voltage, an instruction to maximum MVAr absorption at instructed MW output ("minimum excitation") may be given, and a Generator should take appropriate actions to maximise MVAr absorption unless constrained by plant operational limits or safety grounds (relating to personnel or plant).	

- BC2.A.2.7 In addition, the following provisions will apply to **Reactive Power** instructions:
 - (a) In circumstances where **The Company** issues new instructions in relation to more than one **BM Unit** at the same **Power Station** at the same time, tapping will be carried out by the **Generator** one tap at a time either alternately between (or in sequential order, if more than two), or at the same time on, each **BM Unit**.
 - (b) Where the instructions require more than two taps per **BM Unit** and that means that the instructions cannot be achieved within 2 minutes of the instruction time (or such longer period as **The Company** may have instructed), the instructions must each be achieved with the minimum of delay after the expiry of that period.

- (c) It should be noted that should System conditions require, The Company may need to instruct maximum MVAr output to be achieved as soon as possible, but (subject to the provisions of paragraph (BC2.A.2.7(b) above) in any event no later than 2 minutes after the instruction is issued.
- (d) An Ancillary Service instruction relating to Reactive Power may be given in respect of CCGT Units within a CCGT Module at a Power Station or Generating Units within a Synchronous Power Generating Module at a Power Station where running arrangements and/or System conditions require, in both cases where exceptional circumstances apply and connection arrangements permit.
- (e) In relation to MVAr matters, MVAr generation/output is an export onto the **System** and is referred to as "lagging MVAr", and MVAr absorption is an import from the **System** and is referred to as "leading MVAr".
- (f) It should be noted that the excitation control system constant **Reactive Power** output control mode or constant **Power Factor** output control mode will always be disabled, unless agreed otherwise with **The Company**.

APPENDIX 3 - SUBMISSION OF REVISED MVAr CAPABILITY

- BC2.A.3.1 For the purpose of submitting revised MVAr data the following terms shall apply:
 - Full Output In the case of a Synchronous Generating Unit (as defined in the Glossary and Definitions ((which could be part of a Synchronous Power Generating Module) and not limited by BC2.2) is the MW output measured at the generator stator terminals representing the LV equivalent of the Registered Capacity at the Grid Entry Point, and in the case of a Non-Synchronous Generating Unit (excluding Power Park Units), HVDC Converter or DC Converter or Power Park Module is the Registered Capacity at the Grid Entry Point.
 - Minimum Output In the case of a **Synchronous Generating Unit** (as defined in the Glossary and Definitions ((which could be part of a **Synchronous Power Generating Module**) and not limited by BC2.2) is the MW output measured at the generator stator terminals representing the LV equivalent of the Minimum Generation or Minimum Stable Operating Level at the Grid Entry Point, and in the case of a Non-Synchronous Generating Unit (excluding Power Park Units), HVDC Converter or DC Converter or Power Park Module is the Minimum Generation or Minimum Stable Operating Level or Minimum Active Power Transmission Capacity at the Grid Entry Point.
- BC2.A.3.2 The following provisions apply to faxed submission of revised MVAr data:
 - (a) The fax must be transmitted to **The Company** (to the relevant location in accordance with GC6) and must contain all the sections from the relevant part of Annexure 1 and from either Annexure 2 or 3 (as applicable) but with only the data changes set out. The "notification time" must be completed to refer to the time of transmission, where the time is expressed as London time.
 - (b) Upon receipt of the fax, **The Company** will acknowledge receipt by sending a fax back to the **User**. The acknowledgement will either state that the fax has been received and is legible or will state that it (or part of it) is not legible and will request re-transmission of the whole (or part) of the fax.
 - (c) Upon receipt of the acknowledging fax the **User** will, if requested, re-transmit the whole or the relevant part of the fax.
 - (d) The provisions of paragraphs (b) and (c) then apply to that re-transmitted fax.

APPENDIX 3 - ANNEXURE 1

Optional Logo

09 March 2022

Company name REVISED REACTIVE POWER CAPABILITY DATA

TO: National Electricity Transmission System Control Centre Fax telephone No.

Number of pages inc. header:....

Sent By :			
Return Acknow	ledgement Fax t	0	

For Retransmission or Clarification ring.....

Acknowledged by The Company : (Signatur	e)	
Acknowledgement time and date		
Legibility of FAX :		
Acceptable		
Unacceptable (List pages if appropriate)		(Resend FAX)
Issue 6 Revision 12	BC2 32 0f 39]

APPENDIX 3 - ANNEXURE 2

To: National Electricity Transmission System Control Centre

From : [Company Name & Location]

<u>REVISED REACTIVE POWER CAPABILITY DATA – GENERATING UNITS EXCLUDING POWER PARK</u> <u>MODULES AND DC CONVERTERS</u>

Notification Time (HH:MM):	Notification Date (DD/MM/YY):
Start Time (HH:MM):	Start Date (DD/MM/YY):
Generating Unit*	

* For a Synchronous Power Generating Module and/or CCGT Module and/or a Cascade Hydro Scheme, the redeclaration is for a Generating Unit within a Synchronous Power Generating Module and/or CCGT Module and/or Cascade Hydro Scheme. For BM Units, quote The Company BM Unit id, for other units quote the Generating Unit id used for OC2.4.1.2 Outage Planning submissions. Generating Unit has the meaning given in the Glossary and Definitions and is not limited by BC2.2.

REVISION TO THE REACTIVE POWER CAPABILITY AT THE GENERATING UNIT STATOR TERMINALS (at rated terminal volts) **AS STATED IN THE RELEVANT ANCILLARY SERVICES AGREEMENT**:

	MW	MINIMUM (MVAr +ve for lag, -ve for lead)	MAXIUM (MVAr +ve for lag, -ve for lead)
AT RATED MW			
AT FULL OUTPUT (MW)			
AT MINIMUM OUTPUT (MW)			

COMMENTS e.g. generator transformer tap restrictions, predicted end time if known

Redeclaration made by (Signature)

APPENDIX 3 - ANNEXURE 3

To: National Electricity Transmission System Control Centre

From : [Company Name & Location]

REVISED REACTIVE POWER CAPABILITY DATA – POWER PARK MODULES, HVDC CONVERTERS AND DC CONVERTERS

Notification Time (HH:MM):	Notification Date (DD/MM/YY):
Start Time (HH:MM):	Start Date (DD/MM/YY):
Power Park Module / DC Converter*	

* For BM Units quote **The Company BM Unit** id, for other units quote the id used for OC2.4.1.2 Outage Planning submissions

Start Time/Date (if not effective immediately)

REVISION TO THE REACTIVE POWER CAPABILITY AT THE COMMERCIAL BOUNDARY AS STATED IN THE RELEVANT ANCILLARY SERVICES AGREEMENT:

	MINIMUM (MVAr +ve for lag, -ve for lead)	MAXIMUM (MVAr +ve for lag, -ve for lead)
AT RATED MW		
AT 50% OF RATED		
MW		
AT 20% OF RATED MW		
BELOW 20% OF RATED MW		
AT 0% OF RATED		
MW		

COMMENTS e.g. generator transformer tap restrictions, predicted end time if known

Redeclaration made by (Signature)

APPENDIX 4 - SUBMISSION OF AVAILABILITY OF FREQUENCY SENSITIVE MODE

- BC2.A.4.1 For the purpose of submitting availability of **Frequency Sensitive Mode**, this process only relates to the provision of response under the **Frequency Sensitive Mode** and does not cover the provision of response under the **Limited Frequency Sensitive Mode**.
- BC2.A.4.2 The following provisions apply to the faxed submission of the **Frequency Sensitive Mode** availability;
 - (a) The fax must be transmitted to **The Company** (to the relevant location in accordance with GC6) and must contain all the sections relevant to Appendix 4 Annexure1 but with only the data changes set out. The "notification time" must be completed to refer to the time and date of transmission, where the time is expressed in London time.
 - (b) Upon receipt of the fax, **The Company** will acknowledge receipt by sending a fax back to the **User**. This acknowledging fax should be in the format of Appendix 4 – Annexure 1. The acknowledgement will either state that the fax has been received and is legible or will state that it (or part of it) is not legible and will request re-transmission of the whole (or part) of the fax.
 - (c) Upon receipt of the acknowledging fax the **User** will, if requested re-transmit the whole or the relevant part of the fax.
 - (d) The provisions of paragraph (b) and (c) then apply to the re-transmitted fax.
- BC2.A.4.3 The User shall ensure the availability of operating in Frequency Sensitive Mode is restored as soon as reasonably practicable and will notify The Company using the format of Appendix 4 – Annexure 1. In the event of a sustained unavailability of Frequency Sensitive Mode, The Company may seek to confirm compliance with the relevant requirements in the CC or ECC through the process in OC5 or ECP.

APPENDIX 4 - ANNEXURE 1

To: National Electricity Transmission System Control Centre

From : [Company Name & Location]

Submission of availability of Frequency Sensitive Mode

Notification Time (HH:MM):	Notification Date (DD/MM/YY):
Start Time (HH:MM):	Start Date (DD/MM/YY):
Genset or DC Converter	

The availability of the above unit to operate in Frequency Sensitive Mode is as follows:

All contract modes: Available / Unavailable [delete as applicable]; or

<u>Change</u> to the availability of individual contract modes:

Contract Mode e.g. A	Availability for operation in Frequency Sensitive Mode [Y/N]

COMMENTS e.g. reason for submission, predicted end time if known

Redeclaration made by (Signature)_____

Receipt Acknowledgement from The Company

Legible (tick box)	Illegible (tick box)	
Explanation:		
Time:		
Date:		
Signature:		

< END OF BALANCING CODE 2

GOVERNANCE RULES

(GR)

CONTENTS

(This contents page does not form part of the Grid Code)

Paragraph No/Title Page Nur	<u>nber</u>
PART A	
GR.1 INTRODUCTION	2
PART B	
GR.2 CODE ADMINISTRATOR	2
GR.3 GRID CODE REVIEW PANEL	2
GR.4 APPOINTMENT OF PANEL MEMBERS	4
GR.5 TERM OF OFFICE	5
GR.6 REMOVAL FROM OFFICE	5
GR.7 ALTERNATES	6
GR.8 MEETINGS	7
GR.9 PROCEEDINGS AT MEETINGS	9
GR.10 QUORUM	9
GR.11 VOTING	10
GR.12 PROTECTIONS FOR PANEL MEMBERS	10
PART C	
GR.13 GRID CODE MODIFICATION REGISTER	11
GR.14 CHANGE CO-ORDINATION	11
GR.15 GRID CODE MODIFICATION PROPOSALS	12
GR.16 SIGNIFICANT CODE REVIEW	15
GR.17 AUTHORITY LET MODIFICATIONS	17
GR.18 GRID CODE MODIFICATION PROPOSAL EVALUATION	19
GR.19 PANEL PROCEEDINGS	19
GR.20 WORKGROUPS	21
GR.21 THE CODE ADMINISTRATOR CONSULTATION	25
GR.22 GRID CODE MODIFICATION REPORTS	27
GR.23 URGENT MODIFICATIONS	28
GR.24 SELF-GOVERNANCE	33
GR.25 IMPLEMENTATION	36
GR.26 FAST TRACK	37
ANNEX GR.A ELECTION OF USERS' PANEL MEMBERS	39
ANNEX GR.B REGULATED SECTIONS MAPPING OF EGBL ARTICLE 18 TERMS AND CONDITIONS FOR BALANCING SERVICE PROVIDERS AND BALANCING RESPONSIBLE PARTIES TO THE GRID CODE	40

PART A

GR.1 INTRODUCTION

- GR.1.1 This section of the Grid Code sets out how the Grid Code is to be amended and the procedures set out in this section, to the extent that they are dealt with in the Code Administration Code of Practice, are consistent with the principles contained in the Code Administration Code of Practice. Where inconsistencies or conflicts exist between the Grid Code and the Code Administration **Code of Practice**, the Grid Code shall take precedence.
- GR.1.2 There is a need to bring proposed amendments to the attention of **Users** and others, to discuss such proposals and to report on them to the **Authority** and in furtherance of this, the **Governance Rules** set out the functions of a **Grid Code Review Panel** and **Workgroups** and for consultation by the **Code Administrator**.
- GR.1.3 For the purpose of these **Governance Rules** the term "**User**" shall mean any person who is under any obligation or granted any rights under the Grid Code.

PART B

GR.2 <u>CODE ADMINISTRATOR</u>

- GR.2.1 **The Company** shall establish and maintain a **Code Administrator** function, which shall carry out the roles referred to in GR.2.2 and GR.3.2. **The Company** shall ensure the functions are consistent with the **Code Administration Code of Practice.**
- GR.2.2 The Code Administrator shall in conjunction with other code administrators, maintain, publish, review and (where appropriate) amend from time to time the Code Administration Code of Practice approved by the Authority provided that any amendments to the Code Administration Code of Practice proposed by the Code Administrator are approved by the Grid Code Review Panel prior to being raised by the Code Administrator, and any amendments to be made to the Code Administration Code of Practice are approved by the Authority.
- GR.3 THE GRID CODE REVIEW PANEL
- GR.3.1 Establishment and Composition
- GR.3.1.1 The **Grid Code Review Panel** shall be the standing body to carry out the functions referred to in GR.3.2
- GR.3.1.2 The Grid Code Review Panel shall comprise the following members:
 - (a) the person appointed as the chairperson of the Grid Code Review Panel (the "Panel Chairperson") in accordance with GR.4.1, who shall (subject to GR.11.4) be a voting member unless they are an employee of The Company in which case they will be a non-voting member;
 - (b) the following members, appointed in accordance with GR.4.2 (a), who shall be non-voting members:
 - (i) a representative of the **Code Administrator**;
 - (ii) a representative of the Authority appointed in accordance with GR.4.3;
 - (iii) a person representing the **BSC Panel** appointed in accordance with GR.4.2(d);
 - and
 - (iv) the chairperson of the GCDF;
 - (c) the following members who shall be voting **Panel Members**:

- (i) a representative of **The Company** appointed in accordance with GR.4.2(c);
- (ii) two representatives of the **Network Operators**;
- (iii) a representative of **Suppliers**;
- (iv) a representative of the Onshore Transmission Licensees;
- (v) a representative of the **Offshore Transmission Licensees**;
- (vi) four representatives of the **Generators**;
- (vii) the **Consumer Representative**, appointed in accordance with GR.4.2(b);
- (viii) the person appointed (if the **Authority** so decides) by the Authority in accordance with GR.4.4;
- (d) a secretary (the "Panel Secretary"), who shall be a person appointed and provided by the Code Administrator to assist the Grid Code Review Panel and who shall be responsible for the administration of the Grid Code Review Panel and Grid Code Modification Proposals. The Panel Secretary will be a non-voting member of the Grid Code Review Panel.
- GR.3.2 Functions of the Grid Code Review Panel and the Code Administrator's Role
 - (a) The **Grid Code Review Panel** shall have the functions assigned to it in these **Governance Rules**.
 - (b) Without prejudice to GR.3.2(a) and to the further provisions of these **Governance Rules**, the **Grid Code Review Panel** shall endeavour at all times to operate:
 - (i) in an efficient, economical and expeditious manner, taking account of the complexity, importance and urgency of particular Grid Code Modification Proposals; and
 - (ii) with a view to ensuring that the **Grid Code** facilitates achievement of the **Grid Code Objectives**.
 - (c) The Company shall be responsible for implementing or supervising the implementation of Approved Modifications and Approved Grid Code Self Governance Proposals and Approved Grid Code Fast Track Proposals in accordance with the provisions of the Grid Code which shall reflect the production of the revised Grid Code. The Code Administrator and The Company shall be responsible for implementing and supervising the implementation of any amendments to their respective systems and processes necessary for the implementation of the Approved Modification and the Approved Grid Code Self-Governance Proposals provided there is no successful appeal and the Approved Grid Code Fast Track Proposals provided no objections are received in accordance with GR.26. However, it will not include the implementation of Users' systems and processes. The Code Administrator will carry out its role in an efficient, economical and expeditious manner and (subject to any extension granted by the Authority where the Code Administrator has applied for one in accordance with GR.3.2(d) or (e) in accordance with the Implementation Date.
 - (d) Subject to notifying Users, the Code Administrator will, with the Authority's approval, apply to the Authority for a revision or revisions to the Implementation Date where the Code Administrator becomes aware of any circumstances which is likely to mean that the Implementation Date is unachievable, which shall include as a result of a Legal Challenge, at any point following the approval of the Grid Code Modification Proposal.
 - (e) In the event that the Authority's decision to approve or not to approve a Grid Code Modification Proposal is subject of Legal Challenge (and the party raising such Legal Challenge has received from the relevant authority the necessary permission to proceed) then the Code Administrator will, with the Authority's approval, apply to the Authority for a revision or revisions to the Proposed Implementation Date in the Grid Code Modification Report in respect of such Grid Code Modification Proposal as necessary such that if such Grid Code Modification Proposal were to be approved following such Legal Challenge the Proposed Implementation Date

(f) Prior to making any request to the Authority for any revision pursuant to GR.3.2(d) (including where it is necessary as a result of a Legal Challenge) or GR.3.2(e) the Code Administrator shall consult on the revision with Users and such other person who may properly be considered to have an appropriate interest in it in accordance with GR.21.2 and GR.21.8. The request to the Authority shall contain copies of (and a summary of) all written representations or objections made by consultees during the consultation period.

GR.3.3 Duties of Panel Members

- (a) A person appointed as a **Panel Member**, or an **Alternate Member**, by **Users** under GR.3.1 or GR.7.2, by the **Authority** under GR.4.3 and the person appointed as **Panel Chairperson** under GR.4.1, and each of their alternates when acting in that capacity:
 - (i) shall act impartially and in accordance with the requirements of the **Grid Code**; and
 - (ii) shall not be representative of, and shall act without undue regard to the particular interests of the persons or body of persons by whom they were appointed as **Panel Member** and any **Related Person** from time to time.
- (b) Such a person shall not be appointed as a **Panel Member** or an **Alternate Member** (as the case may be) unless they shall have first:
 - (i) confirmed in writing to the Code Administrator for the benefit of all Users that they agree to act as a Panel Member or Alternate Member in accordance with the Grid Code and acknowledges the requirements of GR.3.3 (a) and GR.3.3(c);
 - (ii) where that person is employed, provided to the **Panel Secretary** a letter from their employer agreeing that they may act as **Panel Member** or **Alternate Member**, and that the requirement in GR.3.3(a)(ii) shall prevail over their duties as an employee.
- (c) A **Panel Member** or **Alternate Member** shall, at the time of appointment and upon any change in such interests, disclose (in writing) to the **Panel Secretary** any such interests (in relation to the **Grid Code**) as are referred to in GR.3.3(a)(ii).
- (d) Upon a change in employment of a **Panel Member** or **Alternate Member**, they shall so notify the **Panel Secretary** and shall endeavour to obtain from their new employer and provide to the **Panel Secretary** a letter in the terms required in GR.3.3(b)(ii); and they shall be removed from office if they do not do so within a period of sixty (60) days after such change in employment.

GR.4 <u>APPOINTMENT OF PANEL MEMBERS</u>

GR.4.1 Panel Chairperson

- (a) The **Panel Chairperson** shall be a person appointed (or re-appointed) by **The Company**, having particular regard to the views of the **Grid Code Review Panel**, and shall act independently of **The Company**.
- (b) A person shall be appointed or re-appointed as the Panel Chairperson where the Authority has approved such appointment or reappointment and The Company has given notice to the Panel Secretary of such appointment, with effect from the date of such notice or (if later) with effect from the date specified in such notice.

GR.4.2 <u>Other Panel Members:</u>

(a) the Network Operators, Suppliers, Onshore Transmission Licensees, Offshore

Transmission Licensees and **Generators** may appoint **Panel Members** by election in accordance with Annex GR.A.

- (b) The Citizens Advice or the Citizens Advice Scotland may appoint one person as a Panel Member representing customers by giving notice of such appointment to the Panel Secretary, and may remove and re-appoint by notice.
- (c) **The Company** shall appoint the **The Company** representative referred to at GR.3.1.2(c)(i) and shall give notice of the identity of such person to the **Panel Secretary**, and may remove and re-appoint by notice to the **Panel Secretary**.
- (d) The BSC Panel shall appoint a representative to be the member of the Grid Code Review Panel referred to at GR.3.1.2(c) (iii) and shall give notice of the identity of such person to the Panel Secretary, and may remove and re-appoint by notice to the Panel Secretary.
- GR.4.3. The **Authority** shall from time to time notify the **Panel Secretary** of the identity of the **Authority** representative referred to at GR.3.1.2(b)(ii).
- GR.4.4 Appointment of Further Member:
 - (a) If in the opinion of the **Authority** there is a class or category of person (whether or not a **User**) who have interests in respect of the **Grid Code** but whose interests:
 - (i) are not reflected in the composition of **Panel Members** for the time being appointed; but
 - (ii) would be so reflected if a particular person was appointed as an additional Panel Member, then the Authority may at any time appoint (or re-appoint) that person as a Panel Member by giving notice of such appointment to the Panel Secretary but in no event shall the Authority be able to appoint more than one person so that there could be more than one such Panel Member.
 - (b) A person appointed as a **Panel Member** pursuant to this GR.4.4 shall remain appointed, subject to GR.5 and GR.6, notwithstanding that the conditions by virtue of which they were appointed (for example that the interests they reflect are otherwise reflected) may cease to be satisfied.

GR.4.5 Natural Person

No person other than an individual shall be appointed a **Panel Member** or their alternate.

GR.5 <u>TERM OF OFFICE</u>

The term of office of a **Panel Member**, the **Panel Chairperson** and **Alternate Members** shall be a period expiring on 31 December every second year. A **Panel Member**, the **Panel Chairperson** and **Alternate Member** shall be eligible for reappointment on expiry of their term of office.

GR.6 <u>REMOVAL FROM OFFICE</u>

- GR.6.1 A person shall cease to hold office as the **Panel Chairperson**, a **Panel Member** or an **Alternate Member**:
 - (a) upon expiry of their term of office unless re-appointed;
 - (b) if they:
 - (i) resign from office by notice delivered to the **Panel Secretary**;
 - (ii) become bankrupt or makes any arrangement or composition with their creditors generally;
 - (iii) are or may be suffering from a mental disorder and either are admitted to hospital in pursuance of an application under the Mental Health Act 1983 or the Mental Health (Scotland) Act 1960 or an order is made by a court having jurisdiction in matters concerning mental disorder for their detention or for the appointment of a

receiver, curator bonis or other person with respect to their property or affairs;

- (iv) become prohibited by law from being a director of a company under the Companies Act 1985;
- (v) die; or
- (vi) are convicted on an indictable offence; or
- (c) as provided for in GR.3.3(d);
- (d) if the Grid Code Review Panel resolves (and the Authority does not veto such resolution by notice in writing to the Panel Secretary within fifteen (15) Business Days) that they should cease to hold office on grounds of their serious misconduct;
- (e) if the Grid Code Review Panel resolves (and the Authority does not veto such resolution by notice in writing to the Panel Secretary within fifteen (15) Business Days) that they should cease to hold office due to a change in employer notwithstanding compliance with GR.3.3(d).
- GR.6.2 A **Grid Code Review Panel** resolution under GR.6.1(d) or (e) shall, notwithstanding any other paragraph, require the vote in favour of at least all **Panel Members** less one (other than the **Panel Member** or **Alternate Member** who is the subject of such resolution) and for these purposes an abstention shall count as a vote cast in favour of the resolution. A copy of any such resolution shall forthwith be sent to the **Authority** by the **Panel Secretary**.
- GR.6.3 A person shall not qualify for appointment as a **Panel Member** or **Alternate Member** if at the time of the proposed appointment they would be required by the above to cease to hold that office.
- GR.6.4 The **Panel Secretary** shall give prompt notice to **The Company**, all **Panel Members**, all **Users** and the **Authority** of the appointment or re-appointment of any **Panel Member** or **Alternate Member** or of any **Panel Member** or **Alternate Member** ceasing to hold office and publication on the **Website** and (where relevant details are supplied to the **Panel Secretary**) despatch by electronic mail shall fulfil this obligation.
- GR.7 <u>ALTERNATES</u>

GR.7.1 <u>Alternate: Panel Chairperson</u>

The **Panel Chairperson** shall preside at every meeting of the **Grid Code Review Panel** at which they are present. If they are unable to be present at a meeting, they may appoint an alternate (who shall be a senior employee of **The Company**) to act as the **Panel Chairperson**, who may or may not be a **Panel Member**. If neither the **Panel Chairperson** nor their alternate is present at the meeting within half an hour of the time appointed for holding the meeting, the **Panel Members** present may appoint one of their number to be the chairperson of the meeting.

GR.7.2 <u>Alternate(s): other Panel Members</u>

- (a) At the same time that the parties entitled to vote in the relevant election appoint **Elected Panel Members** under GR.4.2(a), they shall appoint the following **Alternate Members**:
 - (i) one alternate representative of the **Suppliers**;
 - (ii) one alternate representative of the **Onshore Transmission Licensees**;
 - (iii) one alternate representative of the **Offshore Transmission Licensees**; and
 - (iv) two alternate representatives of the Generators.

In the event that the election process fails to appoint an **Alternate Member** for any of the **Elected Panel Members**, each **Elected Panel Member** shall be entitled (but not obligated) to each at their own discretion nominate their own **Alternate Member**.

- (b) Any **Panel Member** that is not an **Elected Panel Member** shall be entitled (but not obligated) to each at their own discretion nominate their own **Alternate Member**.
- (c) A **Panel Member** shall give notice to the **Panel Secretary** in the event it will be represented by an **Alternate Member** for any one **Grid Code Review Panel** meeting.

- (d) Where a Panel Member has nominated an Alternate Member in accordance with GR.7.2(a) or (b), they may remove such Alternate Member, by giving notice of such removal, and any nomination of a different Alternate Member, to the Panel Secretary. A Panel Member may not choose as their Alternate Member: any party who is already acting as an Alternate Member for another Panel Member; or another Panel Member.
- (e) All information to be sent by the **Panel Secretary** to **Panel Members** pursuant to these **Governance Rules** shall also be sent by the **Panel Secretary** to each **Alternate Member** by electronic mail (where relevant details shall have been provided by each **Alternate Member**).

GR.7.3 <u>Alternates: General Provisions</u>

- (a) The appointment or removal by a **Panel Member** of an **Alternate Member** shall be effective from the time when such notice is given to the **Panel Secretary** or (if later) the time specified in such notice.
- (b) The **Panel Secretary** shall promptly notify all **Panel Members** and **Users** of appointment or removal by any **Panel Member** of any alternate and publication on the **Website** and (where relevant details have been provided to the **Panel Secretary**) despatch by electronic mail shall fulfil this obligation.

GR.7.4 <u>Alternates: Rights, Cessation and References</u>

- (a) Where the **Panel Chairperson** or a **Panel Member** has appointed an alternate:
 - (i) the alternate shall be entitled:
 - unless the appointing Panel Member shall otherwise notify the Panel Secretary, to receive notices of meetings of the Grid Code Review Panel;
 - to attend, speak and vote at any meeting of the Grid Code Review Panel at which the Panel Member by whom they were appointed is not present, and at such meeting to exercise and discharge all of the functions, duties and powers of such Panel Member;
 - (ii) the **Alternate Member** shall have the same voting rights the **Panel Member** in whose place they are attending;
 - (iii) GR.8, GR.9, GR.10, GR.11 and GR.12 shall apply to the Alternate Member as if they were the appointing Panel Member and a reference to a Panel Member elsewhere in the Grid Code shall, unless the context otherwise requires, include their duly appointed Alternate Member.
 - (iv) for the avoidance of doubt, the appointing Panel Member shall not enjoy any of the rights transferred to the Alternate Member at any meeting at which, or in relation to any matter on which, the Alternate Member acts on their behalf.
- (b) A person appointed as an **Alternate Member** shall automatically cease to be such **Alternate Member**:
 - (i) if the appointing **Panel Member** ceases to be a **Panel Member**;
 - (ii) if any of the circumstances in GR.6.1(b) applies in relation to such person, but, in the case of a person elected as an Alternate Member, they shall continue to be an Alternate Member available for appointment under GR.7.2.

GR.8 <u>MEETINGS</u>

GR.8.1 Meetings of the **Grid Code Review Panel** shall be held at regular intervals and at least every 2 months at such time and such place as the **Grid Code Review Panel** shall decide.

GR.8.2	A regular meeting of the Grid Code Review Panel may be cancelled if:
	(a) the Panel Chairperson considers, having due regard to the lack of business in the agenda, that there is insufficient business for the Grid Code Review Panel to conduct and requests the Panel Secretary to cancel the meeting;
	(b) the Panel Secretary notifies all Panel Members , not less than five (5) Business Days before the date for which the meeting is to be convened, of the proposal to cancel the meeting; and
	(c) by the time three (3) Business Days before the date for which the meeting is or is to be convened, no Panel Member has notified the Panel Secretary that they object to such cancellation.
GR.8.3	If any Panel Member wishes, acting reasonably, to hold a special meeting (in addition to regular meetings under GR.8.1) of the Grid Code Review Panel :
	 (a) they shall request the Panel Secretary to convene such a meeting and inform the Panel Secretary of the matters to be discussed at the meeting;
	(b) the Panel Secretary shall promptly convene the special meeting for a day as soon as practicable but not less than five (5) Business Days after such request.
GR.8.4	Any meeting of the Grid Code Review Panel shall be convened by the Panel Secretary by notice (which will be given by electronic mail if the relevant details are supplied to the Panel Secretary) to each Panel Member (and to the Authority):
	 (a) setting out the date, time and place of the meeting and (unless the Grid Code Review Panel has otherwise decided) given at least five (5) Business Days before the date of the meeting;
	(b) accompanied by an agenda of the matters for consideration at the meeting and any supporting papers available to the Panel Secretary at the time the notice is given (and the Panel Secretary shall circulate to Panel Members any late papers as and when they are received by them).
GR.8.5	The Panel Secretary shall send a copy of the notice convening a meeting of the Grid Code Review Panel , and the agenda and papers accompanying the notice, to the Panel Members and Alternate Members , and publication on the Website and despatch by electronic mail (if the relevant details are supplied to the Panel Secretary) shall fulfil this obligation.
GR.8.6	Any Panel Member (or, at the Panel Member's request, the Panel Secretary) may notify matters for consideration at a meeting of the Grid Code Review Panel in addition to those notified by the Panel Secretary under GR.8.4 by notice to all Panel Members and persons entitled to receive notice under GR.8.5, not less than three (3) Business Days before the date of the meeting.
GR.8.7	The proceedings of a meeting of the Grid Code Review Panel shall not be invalidated by the accidental omission to give or send notice of the meeting or a copy thereof or any of the accompanying agenda or papers to, or failure to receive the same by, any person entitled to receive such notice, copy, agenda or paper.
GR.8.8	A meeting of the Grid Code Review Panel may consist of a conference between Panel Members who are not all in one place but who are able (by telephone or otherwise) to speak to each of the others and to be heard by each of the others simultaneously.
GR.8.9	With the consent of all Panel Members (whether obtained before, at or after any such meeting) the requirements of this GR.8 as to the manner in and notice on which a meeting of the Grid Code Review Panel is convened may be waived or modified provided that no meeting of the Grid Code Review Panel shall be held unless notice of the meeting and its agenda has been sent to the persons entitled to receive the same under GR.8.5 at least 24 hours before the time of the meeting.

- GR.8.10 Subject to GR.8.11, no matter shall be resolved at a meeting of the **Grid Code Review Panel** unless such matter was contained in the agenda accompanying the **Panel Secretary's** notice under GR.8.4 or was notified in accordance with GR.8.6.
- GR.8.11 Where:
 - (a) any matter (not contained in the agenda and not notified pursuant to GR.8.4 and GR.8.6) is put before a meeting of the **Grid Code Review Panel**, and
 - (b) in the opinion of the Grid Code Review Panel it is necessary (in view of the urgency of the matter) that the Grid Code Review Panel resolve upon such matter at the meeting, the Grid Code Review Panel may so resolve upon such matter, and the Grid Code Review Panel shall also determine at such meeting whether the decision of the Grid Code Review Panel in relation to such matter should stand until the following meeting of the Grid Code Review Panel, in which case (at such following meeting) the decision shall be reviewed and confirmed or (but not with effect earlier than that meeting, and only so far as the consequences of such revocation do not make implementation of the Grid Code or compliance by Users with it impracticable) revoked.

GR.9 PROCEEDINGS AT MEETINGS

- GR.9.1 Subject as provided in the **Grid Code**, the **Grid Code Review Panel** may regulate the conduct of and adjourn and reconvene its meetings as it sees fit.
- GR.9.2 Meetings of the Grid Code Review Panel shall be open to attendance by a representative of any User (including any Authorised Electricity Operator; The Company or a Materially Affected Party), the Citizens Advice or the Citizens Advice Scotland and any person invited by the Panel Chairperson and/or any other Panel Member.
- GR.9.3 The **Panel Chairperson** and any other **Panel Member** may invite any person invited by them under GR.9.2, and/or any attending representative of a **User**, to speak at the meeting (but such person shall have no vote).
- GR.9.4 As soon as practicable after each meeting of the **Grid Code Review Panel**, the **Panel Secretary** shall prepare and send (by electronic mail or otherwise) to **Panel Members** the minutes of such meeting, which shall be (subject to GR.9.5) approved (or amended and approved) at the next meeting of the **Grid Code Review Panel** after they were so sent, and when approved (excluding any matter which the **Grid Code Review Panel** decided was not appropriate for such publication) shall be placed on the **Website**.
- GR.9.5 If, following the circulation of minutes (as referred to in GR.9.4), the meeting of the **Grid Code Review Panel** at which they were to be approved is cancelled pursuant to GR.8.2, such minutes (including any proposed changes thereto which have already been received) shall be recirculated with the notification of the cancellation of the meeting of the **Grid Code Review Panel. Panel Members** shall confirm their approval of such minutes to the **Panel Secretary** (by electronic mail) no later than five (5) **Business Days** following such minutes being re-circulated. If no suggested amendments are received within such five (5) **Business Days** period, the minutes will be deemed to have been approved. If the minutes are approved, or deemed to have been approved, (excluding any matter which the **Grid Code Review Panel** decided was not appropriate for such publication) they shall be placed on the **Website**. If suggested amendments are received within such five (5) **Business Days** period, the minutes shall remain unapproved and the process for approval (or amendment and approval) of such minutes at the next meeting of the **Grid Code Review Panel**, as described in GR.9.4, shall be followed.
- GR.10 <u>QUORUM</u>
- GR.10.1 No business shall be transacted at any meeting of the **Grid Code Review Panel** unless a quorum is present throughout the meeting.
- GR.10.2 Subject to GR.10.4, a quorum shall be 6 Panel Members who have a vote present

(subject to GR.8.8) in person or by their alternates, of whom at least one shall be appointed by **The Company**. Where a **Panel Member** is represented by an **Alternate Member**, that **Alternate Member** cannot represent any other **Panel Member** at the same meeting.

- GR.10.3 If within half an hour after the time for which the meeting of the **Grid Code Review Panel** has been convened a quorum is not present (and provided the **Panel Secretary** has not been notified by **Panel Members** that they have been delayed and are expected to arrive within a reasonable time):
 - (a) the meeting shall be adjourned to the same day in the following week (or, if that day is not a **Business Day** the next **Business Day** following such day) at the same time;
 - (b) the **Panel Secretary** shall give notice of the adjourned meeting as far as practicable in accordance with GR.8.
- GR.10.4 If at the adjourned meeting there is not a quorum present within half an hour after the time for which the meeting was convened, those present shall be a quorum.

GR.11 VOTING

- GR.11.1 At any meeting of the **Grid Code Review Panel** any matter to be decided which shall include the **Grid Code Review Panel Recommendation Vote** shall be put to a vote of those **Panel Members** entitled to vote in accordance with these **Governance Rules** upon the request of the **Panel Chairperson** or any **Panel Member**.
- GR.11.2 Subject to GR.11.4, in deciding any matter at any meeting of the Grid Code Review Panel each Panel Member other than the Panel Chairperson shall cast one vote.
- GR.11.3 Except as otherwise expressly provided in the Grid Code, and in particular GR.6.2, any matter to be decided at any meeting of the **Grid Code Review Panel** shall be decided by simple majority of the votes cast at the meeting (an abstention shall not be counted as a cast vote).
- GR11.4 The **Panel Chairperson** shall not cast a vote as a **Panel Member** but shall have a casting vote on any matter where votes are otherwise cast equally in favour of and against the relevant motion. Where the vote is in respect of a **Grid Code Modification Proposal** the **Panel Chairperson** may only use such casting vote to vote against such **Grid Code Modification Proposal**. The **Panel Chairperson** will have a free vote in respect of any other vote. Where any person other than the actual **Panel Chairperson** is acting as chairperson they shall not have a casting vote.
- GR.11.5 Any resolution in writing signed by or on behalf of all **Panel Members** shall be valid and effectual as if it had been passed at a duly convened and quorate meeting of the **Grid Code Review Panel.** Such a resolution may consist of several instruments in like form signed by or on behalf of one or more **Panel Members**.

GR.12 PROTECTIONS FOR PANEL MEMBERS

- GR.12.1 Subject to GR.12.2 all **CUSC Parties** shall jointly and severally indemnify and keep indemnified each **Panel Member**, the **Panel Secretary** and each member of a **Workgroup** ("Indemnified Persons") in respect of all costs (including legal costs), expenses, damages and other liabilities properly incurred or suffered by such Indemnified Persons when acting in or in connection with their office under the **Grid Code**, or in what they in good faith believe to be the proper exercise and discharge of the powers, duties, functions and discretions of that office in accordance with the **Grid Code**, and all claims, demands and proceedings in connection therewith other than any such costs, expenses, damages or other liabilities incurred or suffered as a result of the wilful default or bad faith of such Indemnified Person.
- GR.12.2 The indemnity provided in GR.12.1 shall not extend to costs and expenses incurred in the ordinary conduct of being a **Panel Member** or **Panel Secretary**, or member of a **Workgroup** including, without limitation, accommodation costs and travel costs or any

remuneration for their services to the Grid Code Review Panel or Workgroup.

- GR.12.3 The **Users** agree that no Indemnified Person shall be liable for anything done when acting properly in or in connection with their office under the **Grid Code**, or anything done in what they in good faith believe to be the proper exercise and discharge of the powers, duties, functions and discretions of that office in accordance with the **Grid Code**. Each **CUSC Party** hereby irrevocably and unconditionally waives any such liability of any Indemnified Person and any rights, remedies and claims against any Indemnified Person in respect thereof.
- GR.12.4 Without prejudice to GR.12.2, nothing in GR.12.3 shall exclude or limit the liability of an Indemnified Person for death or personal injury resulting from the negligence of such Indemnified Person.

PART C

GR.13 GRID CODE MODIFICATION REGISTER

- GR.13.1 The **Code Administrator** shall establish and maintain a register ("**Grid Code Modification Register**") in a form as may be agreed with the **Authority** from time to time, which shall record the matters set out in GR.13.3.
- GR.13.2 The purpose of the Grid Code Modification Register shall be to assist the Grid Code Review Panel and to enable the Grid Code Review Panel, Users and any other persons who may be interested to be reasonably informed of the progress of Grid Code Modification Proposals and Approved Modifications from time to time.
- GR.13.3 The Grid Code Modification Register shall record in respect of current outstanding Grid Code Review Panel business:
 - (a) details of each Grid Code Modification Proposal (including the name of the Proposer, the date of the Grid Code Modification Proposal and a brief description of the Grid Code Modification Proposal);
 - (b) whether such Grid Code Modification Proposal is an Urgent Modification;
 - (c) the current status and progress of each **Grid Code Modification Proposal**, if appropriate the anticipated date for reporting to the **Authority** in respect thereof, and whether it has been withdrawn, rejected or implemented for a period of three (3) months after such withdrawal, rejection or implementation or such longer period as the **Authority** may determine;
 - (d) the current status and progress of each Approved Modification, each Approved Grid Code Self-Governance Proposal, and each Approved Fast Track Proposal; and
 - (e) such other matters as the **Grid Code Review Panel** may consider appropriate from time to time to achieve the purpose of GR.13.2.
- GR.13.4 The **Grid Code Modification Register** (as updated from time to time and indicating the revisions since the previous issue) shall be published on the **Website** or (in the absence, for whatever reason, of the **Website**) in such other manner and with such frequency (being not less than once per month) as the **Code Administrator** may decide in order to bring it to the attention of the **Grid Code Review Panel**, **Users** and other persons who may be interested.
- GR.14 CHANGE CO-ORDINATION
- GR.14.1 The **Code Administrator** shall establish (and, where appropriate, revise from time to time) joint working arrangements for change co-ordination with each **Core Industry Document Owner** and with the **STC Modification Panel** to facilitate the identification, co-ordination, making and implementation of change to **Core Industry Documents** and the **STC** consequent on a **Grid Code Modification Proposal**, including, but not limited

to, changes that are appropriate in order to avoid conflict or inconsistency as between the **Grid Code** and any **Core Industry Document** and the **STC**, in a full and timely manner.

GR.14.2 The working arrangements referred to in GR.14.1 shall be such as to enable the consideration, development and evaluation of Grid Code Modification Proposals, and the implementation of Approved Modifications, to proceed in a full and timely manner and enable changes to Core Industry Documents and the STC consequent on an amendment to be made and given effect wherever possible (subject to any necessary consent of the Authority) at the same time as such Grid Code Modification Proposal is made and given effect.

GR.15 GRID CODE MODIFICATION PROPOSALS

- GR.15.1 A proposal to modify the Grid Code may be made:
 - (a) by any **User**; any **Authorised Electricity Operator** liable to be materially affected by such a proposal; the **Citizens Advice** or the **Citizens Advice Scotland**;
 - (b) under GR.25.5, by the Grid Code Review Panel; or
 - (c) by the **Authority**:
 - (i) following publication of its Significant Code Review conclusions; or
 - (ii) under GR.17; or
 - (iii) in order to comply with or implement the **Electricity Regulation** and/or any relevant **Legally Binding Decisions of the European Commission and/or the Agency**.
- GR.15.2 A Standard Modification shall follow the procedure set out in GR.18 to GR.22.
- GR.15.3 A Grid Code Modification Proposal shall be submitted in writing to the Panel Secretary and, subject to the provisions of GR.15.4 below, shall contain the following information in relation to such proposal:
 - (a) the name of the **Proposer**;
 - (b) the name of the representative of the **Proposer** who shall represent the **Proposer** in person for the purposes of this GR.15;
 - (c) a description (in reasonable but not excessive detail) of the issue or defect which the proposed modification seeks to address;
 - (d) a description (in reasonable but not excessive detail) of the proposed modification and of its nature and purpose;
 - (e) where possible, an indication of those parts of the Grid Code which would require amendment in order to give effect to (and/or would otherwise be affected by) the proposed modification and an indication of the nature of those amendments or effects;
 - (f) the reasons why the **Proposer** believes that the proposed modification would better facilitate achievement of the **Grid Code Objectives** as compared with the current version of the Grid Code together with background information in support thereof;
 - (g) the reasoned opinion of the **Proposer** as to why the proposed modification should not fall within a current **Significant Code Review**, whether the proposed modification should be treated as a **Self-Governance Modification** or whether the proposed modification fails to meet the **Self- Governance Criteria** and as a result should proceed along the **Standard Modification** route;
 - (h) the reasoned opinion of the **Proposer** as to whether that impact is likely to be material and if so an assessment of the quantifiable impact of the proposed modification on greenhouse gas emissions, to be conducted in accordance with such

current guidance on the treatment of carbon costs and evaluation of the greenhouse gas emissions as may be issued by the **Authority** from time to time;

- (i) where possible, an indication of the impact of the proposed modification on **Core Industry Documents** and the **STC**;
- (j) where possible, an indication of the impact of the proposed modification on relevant computer systems and processes used by **Users**.
- (k) whether or not (and to the extent) that in the proposer's view the Grid Code Modification Proposal constitutes an amendment to the Regulated Sections of the Grid Code.
- GR.15.4 The **Proposer** of a **Grid Code Fast Track Proposal** is not required to provide the items referenced at GR.15.3 (f) (j) inclusive, unless either:
 - (a) the **Grid Code Review Panel** has, pursuant to GR.26.5 or GR.26.6, not agreed unanimously that the **Grid Code Fast Track Proposal** meets the **Fast Track Criteria**, or has not unanimously approved the **Grid Code Fast Track Proposal**; or
 - (b) there has been an objection to the Approved Fast Track Proposal pursuant to GR.26.12, whereupon the Proposer shall be entitled to provide the additional information required pursuant to GR.15.3 for a Grid Code Modification Proposal within 28 days of the Panel Secretary's request. Where the Proposer fails to provide the additional information in accordance with such timescales, the Panel Secretary may reject such proposal in accordance with GR.15.5.
- GR.15.5 If a proposal fails in any material respect to provide the information in GR.15.3 (excluding (e), (i) and (j) thereof), the **Panel Secretary** may reject such proposal provided that:
 - (a) the **Panel Secretary** shall furnish the **Proposer** with the reasons for such rejection;
 - (b) the **Panel Secretary** shall report such rejection to the **Grid Code Review Panel** at the next **Grid Code Review Panel** meeting, with details of the reasons;
 - (c) if the Grid Code Review Panel decides or the Authority directs to reverse the Panel Secretary's decision to refuse the submission, the Panel Secretary shall notify the Proposer accordingly and the proposal shall be dealt with in accordance with these Governance Rules;
 - (d) nothing in these **Governance Rules** shall prevent a **Proposer** from submitting a revised proposal in compliance with the requirements of GR.15.3 in respect of the same subject-matter.
- GR.15.6 Without prejudice to the development of a Workgroup Alternative Grid Code Modification(s) pursuant to GR.20.13 and GR.20.18, the Grid Code Review Panel shall direct in the case of (a), and may direct in the case of (b), the Panel Secretary to reject a proposal pursuant to GR.15, other than a proposal submitted by The Company pursuant to a direction issued by the Authority following a Significant Code Review in accordance with GR.16.4, or an Authority Led modification, if and to the extent that such proposal has, in the opinion of the Grid Code Review Panel, substantially the same effect as:
 - (a) a Pending Grid Code Modification Proposal; or
 - (b) a Rejected Grid Code Modification Proposal, where such proposal is made at any time within two (2) months after the decision of the Authority not to direct The Company to modify the Grid Code pursuant to the Transmission Licence in the manner set out in such Grid Code Modification Proposal, and the Panel Secretary shall notify the Proposer accordingly.
- GR.15.7 Promptly upon receipt of a Grid Code Modification Proposal, the Panel Secretary shall:

- (a) allocate a unique reference number to the Grid Code Modification Proposal;
- (b) enter details of the **Grid Code Modification Proposal** on the **Grid Code Modification Register**;
- (c) reserve the right to modify the title or summary of the Grid Code Modification Proposal to better reflect the content or intent of the proposal. If such changes are made these shall be agreed by the Proposer, or where this cannot be achieved by the Grid Code Review Panel at their next meeting; and
- (d) note whether in the proposer's view the **Grid Code Modification Proposal** constitutes an amendment to the **Regulated Sections** of the Grid Code.
- GR.15.8 Subject to GR.8.6 and GR.26, where the **Grid Code Modification Proposal** is received more than ten (10) **Business Days** prior to the next **Grid Code Review Panel** meeting, the **Panel Secretary** shall place the **Grid Code Modification Proposal** on the agenda of the next **Grid Code Review Panel** meeting and otherwise shall place it on the agenda of the next succeeding **Grid Code Review Panel** meeting.
- GR.15.9 It shall be a condition to the right to make a proposal to modify the **Grid Code** under this GR.15 that the **Proposer**:
 - (a) grants a non-exclusive royalty free licence to all **Users** who request the same covering all present and future rights, **IPRs** and moral rights it may have in such proposal (as regards use or application in Great Britain); and
 - (b) warrants that, to the best of its knowledge, information and belief, no other person has asserted to the **Proposer** that such person has any **IPRs** or normal rights or rights of confidence in such proposal, and, in making a proposal, a **Proposer** which is a **Grid Code Party** shall be deemed to have granted the licence and given the warranty in (a) and (b) above.
 - (c) The provisions of this GR.15.9 shall apply to any WG Consultation Alternative Request, and also to a Relevant Party supporting a Grid Code Modification Proposal in place of the original Proposer in accordance with GR.15.10 (a) for these purposes the term Proposer shall include any such Relevant Party or a person making such a WG Consultation Alternative Request.
- GR.15.10 Subject to GR.16.1, which deals with the withdrawal of a Grid Code Modification Proposal made pursuant to a direction following a Significant Code Review, a Proposer may withdraw their support for a Standard Modification by notice to the Panel Secretary at any time prior to the Grid Code Review Panel Recommendation Vote undertaken in relation to that Standard Modification pursuant to GR.22.4, and a Proposer may withdraw their support for a Grid Code Modification Proposal that meets the Self-Governance Criteria by notice to the Panel Secretary at any time prior to the Grid Code Review Panel Self-Governance Vote undertaken in relation to that Grid Code Modification Proposal pursuant to GR.24.9, and a Proposer may withdraw their support for a Grid Code Fast Track Proposal by notice to the Panel Secretary at any time prior to the Panel's vote on whether to approve the Grid Code Fast Track Proposal pursuant to GR.26 in which case the Panel Secretary shall forthwith:
 - (a) notify those parties specified in GR.15.1 as relevant in relation to the Grid Code Modification Proposal in question (a "Relevant Party") that they have been notified of the withdrawal of support by the Proposer by publication on the Website and (where relevant details are supplied) by electronic mail. A Relevant Party may within five (5) Business Days notify the Panel Secretary that it is prepared to support the Grid Code Modification Proposal in place of the original Proposer. If such notice is received, the name of such Relevant Party shall replace that of the original Proposer as the Proposer, and the Grid Code Modification Proposal shall continue. If more than one notice is received, the first received shall be utilised;

- (b) if no notice of support is received under (a), the matter shall be discussed at the next Grid Code Review Panel meeting. If the Grid Code Review Panel so agrees, it may notify Relevant Parties that the Grid Code Modification Proposal is to be withdrawn, and a further period of five (5) Business Days shall be given for support to be indicated by way of notice;
- (c) if no notice of support is received under (a) or (b), the **Grid Code Modification Proposal** shall be marked as withdrawn on the **Grid Code Modification Register**; **Code Administrator** as Critical Friend.
- GR.15.11 The **Code Administrator** shall provide assistance insofar as is reasonably practicable and on reasonable request to parties with an interest in the **Grid Code Modification Proposal** process that request it in relation to the **Grid Code**, as provided for in the **Code Administration Code of Practice**, including, but not limited to, assistance with:
 - (a) Drafting a Grid Code Modification Proposal;
 - (b) Understanding the operation of the Grid Code;
 - (c) Their involvement in, and representation during, the Grid Code Modification Proposal process (including but not limited to Grid Code Review Panel, and/or Workgroup meetings) as required or as described in the Code Administration Code of Practice;
 - (d) Helping the Proposer and Workgroup by producing draft legal text once a clear solution has been developed to support the discussion and understanding of a Grid Code Modification Proposal; and
 - (e) accessing information relating to Grid Code Modification Proposals and/or Approved Modifications.

GR.16 SIGNIFICANT CODE REVIEW

- GR.16.1 If any party specified under GR.15.1 (other than the Authority) makes a Grid Code Modification Proposal during a Significant Code Review Phase, unless exempted by the Authority or unless GR.16.4(b) applies, the Grid Code Review Panel shall assess whether the Grid Code Modification Proposal falls within the scope of a Significant Code Review and the applicability of the exceptions set out in GR.16.4 and shall notify the Authority of its assessment, its reasons for that assessment and any representations received in relation to it as soon as practicable.
- GR.16.2 The **Grid Code Review Panel** shall proceed with the **Grid Code Modification Proposal** made during a **Significant Code Review Phase** in accordance with GR.18 (notwithstanding any consultation undertaken pursuant to GR.16.5 and its outcome), unless directed otherwise by the **Authority** pursuant to GR.16.3.
- GR.16.3 Subject to GR.16.4, the Authority may at any time direct that a Grid Code Modification Proposal made during a Significant Code Review Phase falls within the scope of a Significant Code Review and must not be made during the Significant Code Review Phase. If so directed, the Grid Code Review Panel will not proceed with that Grid Code Modification Proposal, and the Proposer shall decide whether the Grid Code Modification Proposal shall be withdrawn or suspended until the end of the Significant Code Review Phase. If the Proposer fails to indicate its decision whether to withdraw or suspend the Grid Code Modification Proposal within twenty-eight (28) days of the Authority's direction, it shall be deemed to be suspended. If the Grid Code Modification Proposal is suspended, it shall be open to the Proposer at the end of the Significant Code Review Phase to indicate to the Grid Code Review Panel that it wishes that Grid Code Modification Proposal to proceed, and it shall be considered and taken forward in the manner decided upon by the Grid Code Review Panel at the next meeting, and it is open to the Grid Code Review Panel to take into account any work previously undertaken in respect of that Grid Code Modification Proposal. If the **Proposer** makes no indication to the **Grid Code Review Panel** within twenty-eight (28) days of the end of the Significant Code Review Phase as to whether or not it wishes the

Grid Code Modification Proposal to proceed, it shall be deemed to be withdrawn.

- GR.16.4 A Grid Code Modification Proposal that falls within the scope of a Significant Code Review may be made where:
 - (a) the Authority so determines, having taken into account (among other things) the urgency of the subject matter of the Grid Code Modification Proposal; or
 - (b) the **Grid Code Modification Proposal** is made by **The Company** pursuant to a direction from the **Authority**; or
 - (c) it is raised by the Authority pursuant to GR15.1(c)(i) who reasonably considers the Grid Code Modification Proposal to be necessary to comply with or implement the Electricity Regulation and/or any relevant Legally Binding Decisions of the European Commission and/or the Agency;
 - (d) it is raised by the **Authority** and is in respect of a **Significant Code Review**.
- GR.16.5 Where a direction under GR.16.3 has not been issued, GR.16.4 does not apply and the **Grid Code Review Panel** considers that a **Grid Code Modification Proposal** made during a **Significant Code Review Phase** falls within the scope of a **Significant Code Review**, the **Grid Code Review Panel** may consult on its suitability as part of the **Standard Modification** route set out in GR.19, GR.20, GR.21 and GR.22.
- GR.16.6 If, within twenty eight (28) days after the **Authority** has published its **Significant Code Review** conclusions:
 - (a) the Authority issues directions to The Company, including directions to The Company to make a Grid Code Modification Proposal, The Company shall comply with those directions and The Company and all Users shall treat the Significant Code Review Phase as ended on the date on which The Company makes a Grid Code Modification Proposal in accordance with the Authority's directions;
 - (b) the Authority issues to the The Company a statement that no directions under sub-paragraph (a) will be issued in relation to a Grid Code Modification Proposal, The Company and all Users shall treat the Significant Code Review Phase as ended on the date of such statement;
 - (c) the Authority raises a Grid Code Modification Proposal in accordance with GR.15.1(c) or GR.17 The Company and all Users shall treat the Significant Code Review Phase as ended;
 - (d) the Authority issues a statement that it will continue work on the Significant Code Review, The Company and all Users shall treat the Significant Code Review Phase as continuing until it is brought to an end in accordance with GR.16.7;
 - (e) neither directions under sub-paragraph (a) nor a statement under sub-paragraphs (b) or (d) have been issued, nor a Grid Code Modification Proposal under sub-paragraph (c) has been made, the Significant Code Review Phase will be deemed to have ended. The Authority's published conclusions and directions to The Company will not fetter any voting rights of the Panel Members or the procedures informing the Grid Code Modification Report.
- GR.16.7 If the **Authority** issues a statement under GR.16.6(d) and/or a direction in accordance with GR.16.10, the **Significant Code Review Phase** will be deemed to have ended when:

	 (a) the Authority issues a statement that the Significant Code Review Phase has ended;
	(b) one of the circumstances in sub-paragraphs GR.16.6(a) or (c) occurs (irrespective of whether such circumstance occurs within twenty-eight (28) days after the Authority has published its Significant Code Review conclusions); or
	(c) the Authority makes a decision consenting, or otherwise, to an Authority- Led Modification following the Grid Code Review Panel's submission of its Grid Code Modification Report.
GR.16.8	Any Grid Code Modification Proposal in respect of a Significant Code Review that is not an Authority-Led Modification raised pursuant to GR.17 shall be treated as a Standard Modification and shall proceed through the process for Standard Modifications set out in GR.18, GR.19, GR.20, GR.21 and GR.22.
GR.16.9	The Company may not, without the prior consent of the Authority, withdraw a Grid Code Modification Proposal made pursuant to a direction issued by the Authority pursuant to GR.16.4(b)).
GR.16.10	Where a Grid Code Modification Proposal has been raised in accordance with GR.16.4(b) or GR.15.1(a), or by the Authority under GR.15.1(c) and it is in respect of a Significant Code Review , the Authority may issue a direction (a "backstop direction"), which requires such proposal(s) and any alternatives to be withdrawn and which causes the Significant Code Review Phase to recommence.

GR.17 <u>AUTHORITY LED MODIFICATIONS</u>

Power to develop a proposed modification

- GR.17.1 The Authority may develop an Authority-Led Modification in respect of a Significant Code Review, in accordance with the procedures set out in this GR.17.
- GR.17.2 An Authority-led Modification may be submitted where the Significant Code Review Phase is extended by a statement issued by the Authority as described in GR.16.6(d), or where a direction is issued under GR.16.10.

Authority-Led Modification Report

- GR.17.3 The Authority may submit its proposed Authority-Led Modification to the Code Administrator, together with such supplemental information as the Authority considers appropriate.
- GR.17.4 Upon receipt of the Authority's proposal under GR.17.3, the Code Administrator shall prepare a written report on the proposal (the "Authority-Led Modification Report"). Where the Code Administrator does not reasonably believe the information provided by the Authority under 17.3 to be sufficient for it to prepare an Authority-Led Modification Report the Code Administrator will notify the Authority as soon as reasonably practical. The Authority-Led Modification Report must be consistent with the information provided by the Authority under GR.17.3, and shall:
 - (a) be addressed and delivered to the Grid Code Review Panel;
 - (b) set out the legal text of the proposed Authority-Led Modification;
 - (c) include a description of the proposed Authority-Led Modification;
 - (d) include a summary of the views (including any recommendations) from parties

consulted in respect of the proposed Authority-Led Modification;

- (e) include an analysis of whether (and, if so, to what extent) the proposed Authority-Led Modification would better facilitate achievement of the Grid Code Objective(s) with a detailed explanation of the Authority's reasons for its assessment, including, where the impact is likely to be material, an assessment of the quantifiable impact of the proposed Authority-Led Modification on greenhouse gas emissions, to be conducted in accordance with such current guidance on the treatment of carbon costs and evaluation of the greenhouse gas emissions as may be issued by the Authority from time to time, and providing a detailed explanation of the Authority's reasons for that assessment;
- (f) specify the proposed implementation timetable (including the **Proposed Implementation Date**);
- (g) provide an assessment of:
 - (i) the impact of the proposed Authority-Led Modification on the Core Industry Documents and the STC;
 - (ii) the changes which would be required to the **Core Industry Documents** and the **STC** in order to give effect to the proposed **Authority-Led Modification**;
 - (iii) the mechanism and likely timescale for the making of the changes referred to in (ii);
 - the changes and/or developments which would be required to central computer systems and, if practicable, processes used in connection with the operation of arrangements established under the Core Industry Documents and the STC;
 - (v) the mechanism and likely timescale for the making of the changes referred to in (iv);
 - (vi) an estimate of the costs associated with making and delivering the changes referred to in (ii) and (iv), such costs are expected to relate to: for (ii) the costs of amending the Core Industry Document(s) and STC and for (iv) the costs of changes to computer systems and possibly processes which are established for the operation of the Core Industry Documents and the STC, together with an analysis and a summary of representations in relation to such matters, including any made by Small Participants, the Citizens Advice and the Citizens Advice Scotland;
- (h) contain, to the extent such information is available to the Code Administrator, an assessment of the impact of the proposed Authority-Led Modification on Users in general (or classes of Users), including the changes which are likely to be required to their internal systems and processes and an estimate of the development, capital and operating costs associated with implementing the changes to the Grid Code and to Core Industry Documents and the STC;
- (i) include copies of (and a summary of) all written representations or objections made by parties consulted by the Authority in respect of the proposed Authority-Led Modification and subsequently maintained; and
- (j) have appended a copy of any impact assessment prepared by Core Industry Document Owners and the STC committee and the views and comments of the Code Administrator in respect thereof.
- GR.17.5 Where the Authority-Led Modification Report is received more than ten (10) Business Days prior to the next Grid Code Review Panel meeting, the Panel Secretary shall place the proposed Authority-Led Modification on the agenda of the next Grid Code Review Panel meeting and otherwise shall place it on the agenda of the next succeeding Grid Code Review Panel meeting.

Grid Code Review Panel Decision

GR.17.6 In the case of Authority-Led Modifications GR.22 shall apply, save for GR.22.1 and GR.22.2 and the Authority-Led Modification Report shall be used as the draft Grid

Code Modification Report.

- GR.17.7 Where an **Authority-Led Modification** has been approved in accordance with Section GR.22, GR.25 (Implementation) shall apply.
- GR.18 GRID CODE MODIFICATION PROPOSAL EVALUATION
- GR.18.1 This GR.18 is subject to the **Urgent Modification** procedures set out in GR.23 and the **Significant Code Review** procedures set out in GR.16.
- GR.18.2 A Grid Code Modification Proposal shall, subject to GR.15.8, be discussed by the Grid Code Review Panel at the next following Grid Code Review Panel meeting convened.
- GR.18.3 The **Proposer's** representative shall attend such **Grid Code Review Panel** meeting and the **Grid Code Review Panel** may invite the **Proposer's** representative to present their **Grid Code Modification Proposal** to the **Grid Code Review Panel**.
- GR.18.4 The **Grid Code Review Panel** shall evaluate each **Grid Code Modification Proposal** against the **Self-Governance Criteria**.
- GR.18.5 The Grid Code Review Panel shall follow the procedure set out in GR.24 in respect of any Modification that the Grid Code Review Panel considers meets the Self-Governance Criteria unless the Authority makes a direction in accordance with GR.24.2 and in such a case that Modification shall be a Standard Modification and shall follow the procedure set out in GR.19, GR.20, GR.21 and GR.22.
- GR.18.6 Unless the **Authority** makes a direction in accordance with GR.24.4, a **Modification** that the **Grid Code Review Panel** considers does not meet the **Self-Governance Criteria** shall be a **Standard Modification** and shall follow the procedure set out in GR.19, GR.20, GR.21 and GR.22.
- GR.18.7 The **Grid Code Review Panel** shall evaluate each **Grid Code Fast Track Proposal** against the **Fast Track Criteria**.
- GR.18.8 The **Grid Code Review Panel** shall follow the procedure set out in GR.26 in respect of any **Grid Code Fast Track Proposal.** The provisions of GR.19 to GR.24 shall not apply to a **Grid Code Fast Track Proposal**.
- GR.18.9 The **Grid Code Review Panel** shall evaluate each **Grid Code Modification Proposal** and determine whether the **Grid Code Modification Proposal** constitutes an amendment to the **Regulated Sections** of the Grid Code and, if a change to the areas set out in Table 1 of the GR.B annex which details the **Regulated Sections**, its expected impact on the objectives of **Retained EU Law** (Commission Regulation (EU) 2017/2195) (and in the event of disagreement **The Company's** view shall prevail).

GR.19 PANEL PROCEEDINGS

- GR.19.1
- (a) The **Code Administrator** and the **Grid Code Review Panel** shall together establish a timetable to apply for the **Grid Code Modification Proposal** process. That timetable must comply with any direction(s) issued by the **Authority** setting and/or amending a timetable in relation to a **Grid Code Modification Proposal** that is in the respect of a **Significant Code Review**.
- (b) The Grid Code Review Panel shall establish the part of the timetable for the consideration by the Grid Code Review Panel and by a Workgroup (if any) which shall be no longer than six months unless in any case the particular circumstances of the Grid Code Modification Proposal (taking due account of its complexity, importance and urgency) justify an extension of such timetable, and provided the Authority, after receiving notice, does not object, taking into account all those issues.
- (c) The Code Administrator shall establish the part of the timetable for the consultation

to be undertaken by the **Code Administrator** under these **Governance Rules** and separately the preparation of a **Grid Code Modification Report** to the **Authority**. Where the particular circumstances of the **Grid Code Modification Proposal** (taking due account of its complexity, importance and urgency) justify an extension of such timescales and provided the **Authority**, after receiving notice, does not object, taking into account all those issues, the **Code Administrator** may revise such part of the timetable.

- (d) In setting such a timetable, the Grid Code Review Panel and the Code Administrator shall exercise their respective discretions such that, in respect of each Grid Code Modification Proposal, a Grid Code Modification Report may be submitted to the Authority as soon after the Grid Code Modification Proposal is made as is consistent with the proper evaluation of such Grid Code Modification Proposal, taking due account of its complexity, importance and urgency.
- (e) Having regard to the complexity, importance and urgency of particular Grid Code Modification Proposals, the Grid Code Review Panel may determine the priority of Grid Code Modification Proposals and may (subject to any objection from the Authority taking into account all those issues) adjust the priority of the relevant Grid Code Modification Proposal accordingly.
- GR.19.2 In relation to each Grid Code Modification Proposal, the Grid Code Review Panel shall determine at any meeting of the Grid Code Review Panel whether to:
 - (a) amalgamate the Grid Code Modification Proposal with any other Grid Code Modification Proposal;
 - (b) invite the **Proposer** to further develop their **Grid Code Modification Proposal** before presenting it to a subsequent meeting of the **Grid Code Review Panel** or to withdraw their modification proposal;
 - (c) establish a Workgroup of the Grid Code Review Panel, to consider the Grid Code Modification Proposal;
 - (d) review the evaluation made pursuant to GR.18.4, taking into account any new information received; or
 - (e) proceed directly to wider consultation (in which case the **Proposer's** right to vary their **Grid Code Modification Proposal** shall lapse).
- GR.19.3 The Grid Code Review Panel may decide to amalgamate a Grid Code Modification Proposal with one or more other Grid Code Modification Proposals where the subjectmatter of such Grid Code Modification Proposals is sufficiently proximate to justify amalgamation on the grounds of efficiency and/or where such Grid Code Modification Proposals are logically dependent on each other. Such amalgamation may only occur with the consent of the Proposers of the respective Grid Code Modification Proposals. The Authority shall be entitled to direct that a Grid Code Modification Proposal is not amalgamated with one or more other Grid Code Modification Proposals.
- GR.19.4 Without prejudice to each **Proposer's** right to withdraw their **Grid Code Modification Proposal** prior to the amalgamation of their **Grid Code Modification Proposal** where **Grid Code Modification Proposals** are amalgamated pursuant to GR.19.3:
 - (a) such Grid Code Modification Proposals shall be treated as a single Grid Code Modification Proposal;
 - (b) references in these **Governance Rules** to a **Grid Code Modification Proposal** shall include and apply to a group of two or more **Grid Code Modification Proposals** so amalgamated; and
 - (c) the **Proposers** of each such **Grid Code Modification Proposal** shall cooperate in deciding which of them is to provide a representative for any **Workgroup** in respect of the amalgamated **Grid Code Modification Proposal** and, in default of agreement,

the Panel Chairperson shall nominate one of the Proposers for that purpose.

- GR.19.5 In respect of any Grid Code Modification Proposal that the Grid Code Review Panel determines to proceed directly to wider consultation in accordance with GR.19.2, the Grid Code Review Panel, may at any time prior to the Grid Code Review Panel Recommendation Vote having taken place decide to establish a Workgroup of the Grid Code Review Panel and the provisions of GR.20 shall apply. In such case the Grid Code Review Panel shall be entitled to adjust the timetable referred to at GR.19.1(b) and the Code Administrator shall be entitled to adjust the timetable referred to at GR.19.1(c), provided that the Authority, after receiving notice, does not object.
- GR.19.6 Where the **Grid Code Review Panel** according to GR.19.2(b) invites the **Proposer** to further develop their **Grid Code Modification Proposal**, on presenting this to a subsequent meeting of the **Grid Code Review Panel**, the **Panel** will determine a way forward from the options in GR.19.2 (a), (c), (d) and (e) or invite the **Proposer** to withdraw their modification proposal.
- GR.19.7 Where the **Grid Code Review Panel** according to GR.19.2(b) or GR.19.6 invites the **Proposer** to further develop or withdraw their modification and this is declined, the **Panel** will determine a way forward from the options in GR.19.2 (a), (c), (d) or (e).

GR.20 WORKGROUPS

- GR.20.1 If the **Grid Code Review Panel** has decided not to proceed directly to wider consultation (or where the provisions of GR.19.5, GR.23.10 or GR.25.5 apply), a **Workgroup** will be established by the **Grid Code Review Panel** to assist the **Grid Code Review Panel** in evaluating whether a **Grid Code Modification Proposal** better facilitates achieving the **Grid Code Objectives** and whether a **Workgroup Alternative Grid Code Modification(s)** would, as compared with the **Grid Code Modification Proposal**, better facilitate achieving the **Grid Code Objectives** in relation to the issue or defect identified in the **Grid Code Modification Proposal**.
- GR.20.2 A single **Workgroup** may be responsible for the evaluation of more than one **Grid Code Modification Proposal** at the same time, but need not be so responsible.
- GR.20.3 A Workgroup shall comprise at least five (5) persons (who may be Panel Members) selected by the Grid Code Review Panel from those nominated by Users, the Citizens Advice or the Citizens Advice Scotland for their relevant experience and/or expertise in the areas forming the subject-matter of the Grid Code Modification Proposal(s) to be considered by such Workgroup (and the Grid Code Review Panel shall ensure, as far as possible, that an appropriate cross-section of representation, experience and expertise is represented on such Workgroup) provided that there shall always be at least one member representing The Company and if, and only if, the Grid Code Review Panel is of the view that a Grid Code Modification Proposal is likely to have an impact on the STC, the Grid Code Review Panel may invite the STC committee to appoint a representative to become a member of the Workgroup. A representative of the Authority may attend any meeting of a Workgroup as an observer and may speak at such meeting.
- GR.20.4 The **Code Administrator** shall in consultation with the **Grid Code Review Panel** appoint the chairperson of the **Workgroup** who shall act impartially and as an independent chairperson.
- GR.20.5 No Workgroup or meeting of a Workgroup will be considered quorate with less than five (5) persons, not including the Code Administrator representative or the chairperson of the Workgroup. Where insufficient persons are nominated to a Workgroup for it to be quorate, the Code Administrator will report this to the next meeting of the Grid Code Review Panel. The Panel may:
 - (a) Request the **Code Administrator** to seek further nominations;
 - (b) Reconsider their decision on how to progress the Grid Code Modification Proposal

as allowed under GR.19.2; or

(c)	Request that those parties that have nominated themselves to a Workgroup which is
	less than quorate should proceed as a Limited Membership Workgroup, subject to
	the following additional checks and balances:

- (i) A Limited Membership Workgroup shall always hold a Workgroup Consultation in addition to the mandatory Code Administrator Consultation.
- (ii) Prior to the Workgroup Consultation, a draft of this shall be circulated to the Grid Code Review Panel for five (5) days or another timescale as agreed by the Panel for approval.
- (iii) At the same time as the Workgroup Consultation is initiated, the Code Administrator shall again formally seek nominations and if quoracy is not established then again seek advice from the Panel on how to proceed from the options set out in GR.20.5.

Where a **Workgroup** remains non-quorate, and with the permission of the **Panel**, a **Limited Membership Workgroup** may continue following a **Workgroup Consultation** as if it were a standard **Workgroup**.

GR.20.6 A Limited Membership Workgroup may at any point be instructed by the Authority to either:

- (a) Stop work; or
- (b) To provide a report on progress to the next meeting of the **Grid Code Review Panel.**

The **Authority** may also at any point instruct the **Code Administrator** to seek further nominations for membership.

- GR.20.7 Where a specific meeting of an otherwise quorate **Workgroup** is not quorate, or where member(s) of a **Limited Membership Workgroup** are unable to attend a meeting:
 - (a) A member of the **Workgroup** unable to attend will be invited by the **Code Administrator** to send an alternate;
 - (b) All members will be invited to participate by telephone, webinar or other equivalent if not able to attend in person;
 - (c) A meeting may proceed as a Workgroup meeting as long as none of the members either present or absent raise an objection to this, however no voting can take place unless the Code Administrator has obtained enough votes to be quorate from members not in attendance or from all members of a Limited Membership Workgroup. This shall include where there has not been an opportunity to check with all Workgroup members to see if they have an objection (typically where a change of plans or circumstances has occurred too late to achieve this);
 - (d) If any Workgroup member objects to the progressing of a Workgroup without them, they must communicate this to the Code Administrator at least 24 hours before the meeting indicating that they will not be present and do not wish the meeting to take place. The Code Administrator will then endeavour to rearrange the meeting to accommodate such a member's availability;
 - (e) Where a Workgroup member is repeatedly unavailable, as guidance on 3 consecutive occasions, and does not give permission for the Workgroup to proceed without them as in (d), under GR.20.7 the Grid Code Review Panel may choose to replace or remove them.
- GR.20.8 The **Grid Code Review Panel** may add further members or the **Workgroup** chairperson may add or vary members to a **Workgroup**.

- GR.20.9 The **Grid Code Review Panel** may (but shall not be obliged to) replace or remove any member or observer of a **Workgroup** appointed pursuant to GR.20.3 at any time if such member is unwilling or unable for whatever reason to fulfil that function and/or is deliberately and persistently disrupting or frustrating the work of the **Workgroup**.
- GR.20.10 The **Grid Code Review Panel** shall determine the terms of reference of each **Workgroup** and may change those terms of reference from time to time as it sees fit.
- GR.20.11 The terms of reference of a **Workgroup** must include provision in respect of the following matters:
 - (a) those areas of a **Workgroup's** powers or activities which require the prior approval of the **Grid Code Review Panel**;
 - (b) the seeking of instructions, clarification or guidance from the Grid Code Review Panel, including on the suspension of a Workgroup Alternative Grid Code Modification(s) during a Significant Code Review Phase;
 - (c) the timetable for the work to be done by the **Workgroup**, in accordance with the timetable established pursuant to GR.19.1 (save where GR.19.5 applies); and
 - (d) the length of any Workgroup Consultation.

In addition, prior to the taking of any steps which would result in the undertaking of a significant amount of work (including the production of draft legal text to modify the **Grid Code** in order to give effect to a **Grid Code Modification Proposal** and/or **Workgroup Alternative Grid Code Modification(s)**, with the relevant terms of reference setting out what a significant amount of work would be in any given case), the **Workgroup** shall seek the views of the **Grid Code Review Panel** as to whether to proceed with such steps and, in giving its views, the **Grid Code Review Panel** may consult the **Authority** in respect thereof.

- GR.20.12 Subject to the provisions of this GR.20.12 and unless otherwise determined by the **Grid Code Review Panel**, the **Workgroup** shall develop and adopt its own internal working procedures for the conduct of its business and shall provide a copy of such procedures to the **Panel Secretary** in respect of each **Grid Code Modification Proposal** for which it is responsible. Unless the **Grid Code Review Panel** otherwise determines, meetings of each **Workgroup** shall be open to attendance by a representative of any **User**, (including any **Authorised Electricity Operator**; **The Company** or a **Materially Affected Party**), the **Citizens Advice**, the **Citizens Advice Scotland**, the **Authority** and any person invited by the chairperson, and the chairperson of a **Workgroup** may invite any such person to speak at such meetings, other than the **Authority** who may speak at any time as per GR.20.3.
- GR.20.13 After development by the Workgroup of the Grid Code Modification Proposal, and (if applicable) after development of any draft Workgroup Alternative Grid Code Modification(s), the Workgroup may (subject to the provisions of GR.20.19) consult ("Workgroup Consultation") on the Grid Code Modification Proposal and, if applicable, on any draft Workgroup Alternative Grid Code Modification(s) with:
 - (a) Users; and
 - (b) such other persons who may properly be considered to have an appropriate interest in it.
- GR.20.14 The **Workgroup Consultation** will be undertaken by issuing a **Workgroup Consultation** paper (and its provision in electronic form on the **Website** and in electronic mails to **Users** and such other persons, who have supplied relevant details, shall meet this requirement).

Such Workgroup Consultation paper will include:

(a) Issues which arose in the **Workgroup** discussions;

- (b) Details of any draft Workgroup Alternative Grid Code Modification(s);
- (c) The date proposed by the **Code Administrator** as the **Proposed Implementation Date**.
- GR.20.15 Workgroup Consultation papers will be copied to Core Industry Document Owners and the secretary of the STC committee.
- GR.20.16 Any Authorised Electricity Operator; the Citizens Advice or the Citizens Advice Scotland, The Company or a Materially Affected Party may (subject to GR.20.20) raise a Workgroup Consultation Alternative Request in response to the Workgroup Consultation. Such Workgroup Consultation Alternative Request must include:
 - (a) the information required by GR.15.3 (which shall be read and construed so that any references therein to "amendment proposal" or "proposal" shall be read as "request" and any reference to "Proposer" shall be read as "requester"); and
 - (b) sufficient detail to enable consideration of the request including details as to how the request better facilitates the Grid Code Objectives than the current version of the Grid Code, than the Grid Code Modification Proposal and than any draft Workgroup Alternative Grid Code Modification(s).
- GR.20.17 The Workgroup shall consider and analyse any comments made or any Workgroup Consultation Alternative Request made by any User (including any Authorised Electricity Operator; The Company or a Materially Affected Party), the Citizens Advice and the Citizens Advice Scotland in response to the Workgroup Consultation.
- GR.20.18 If a majority of the members of the Workgroup or the chairperson of the Workgroup believe that the Workgroup Consultation Alternative Request may better facilitate the Grid Code Objectives than the Grid Code Modification Proposal, the Workgroup shall develop it as a Workgroup Alternative Grid Code Modification(s) or, where the chairperson of the Workgroup agrees, amalgamate it with one or more other draft Workgroup Alternative Grid Code Modification(s) or Workgroup Consultation Alternative Request(s);
- GR.20.19 Unless the Grid Code Review Panel directs the Workgroup otherwise pursuant to GR.20.20, and provided that a Workgroup Consultation has been undertaken in respect of the Grid Code Modification Proposal, no further Workgroup Consultation will be required in respect of any Workgroup Alternative Grid Code Modification(s) developed in respect of such Grid Code Modification Proposal.
- GR.20.20 The Grid Code Review Panel may, at the request of the chairperson of the Workgroup, direct the Workgroup to undertake further Workgroup Consultation(s). At the same time as such direction the Grid Code Review Panel shall adjust the timetable referred to at GR.19.1(b) and the Code Administrator shall be entitled to adjust the timetable referred to at GR.19.1 (c), provided that the Authority, after receiving notice, does not object. No Workgroup Consultation Alternative Request may be raised by any User (including any Authorised Electricity Operator; The Company or a Materially Affected Party), the Citizens Advice and the Citizens Advice Scotland during any second or subsequent Workgroup Consultation.
- GR.20. 21 The **Workgroup** shall finalise the **Workgroup** Alternative Grid Code Modification(s) for inclusion in the report to the Grid Code Review Panel.
 - (a) Each **Workgroup** chairperson shall prepare a report to the **Grid Code Review Panel** responding to the matters detailed in the terms of reference in accordance with the timetable set out in the terms of reference.
 - (b) If a **Workgroup** is unable to reach agreement on any such matter, the report must reflect the views of the members of the **Workgroup**.
 - (c) The report will be circulated in draft form to **Workgroup** members and a period of not less than five (5) **Business Days** or if all **Workgroup** members agree three

(3) **Business Days** given for comments thereon. Any unresolved comments made shall be reflected in the final report.

- GR.20.23 The chairperson or another member (nominated by the chairperson) of the **Workgroup** shall attend the next **Grid Code Review Panel** meeting following delivery of the report and may be invited to present the findings and/or answer the questions of **Panel Members** in respect thereof. Other members of the **Workgroup** may also attend such **Grid Code Review Panel** meeting.
- GR.20.24 At the meeting referred to in GR.20.23 the **Grid Code Review Panel** shall consider the **Workgroup's** report and shall determine whether to:-
 - (a) refer the proposed **Grid Code Modification Proposal** back to the **Workgroup** for further analysis (in which case the **Grid Code Review Panel** shall determine the timetable and terms of reference to apply in relation to such further analysis); or
 - (b) proceed then to wider consultation as set out in GR.21; or
 - (c) decide on another suitable course of action.
- GR.20.25 Subject to GR.16.4 if, at any time during the assessment process carried out by the Workgroup pursuant to this GR.20, the Workgroup considers that a Grid Code Modification Proposal or any Workgroup Alternative Grid Code Modification(s) falls within the scope of a Significant Code Review, it shall consult on this as part of the Workgroup Consultation and include its reasoned assessment in the report to the Grid Code Review Panel prepared pursuant to GR.20.22. If the Grid Code Review Panel considers that the Grid Code Modification Proposal or the Workgroup Alternative Grid Code Modification(s) falls within the scope of a Significant Code Review, it shall consult with the Authority. If the Authority directs that the Grid Code Modification Proposal or Workgroup Alternative Grid Code Modification(s) falls within the scope of the Significant Code Review, the Grid Code Modification Proposal and any Workgroup Alternative Grid Code Modification(s) shall be suspended or withdrawn during the Significant Code Review Phase, in accordance with GR.16.3.
- GR.20.26 The **Proposer** may, at any time prior to the final evaluation by the **Workgroup** (in accordance with its terms of reference and working practices) of that **Grid Code Modification Proposal** against the **Grid Code Objectives**, vary their **Grid Code Modification Proposal** on notice (which may be given verbally) to the chairperson of the **Workgroup** provided that such varied **Grid Code Modification Proposal** shall address the same issue or defect originally identified by the **Proposer** in their **Grid Code Modification Proposal**.
- GR.20.27 The Grid Code Review Panel may (but shall not be obliged to) require a Grid Code Modification Proposal to be withdrawn if, in the Panel's opinion, the Proposer of that Grid Code Modification Proposal is deliberately and persistently disrupting or frustrating the work of the Workgroup and that Grid Code Modification Proposal shall be deemed to have been so withdrawn. In the event that a Grid Code Modification Proposal is so withdrawn, the provisions of GR.15.10 shall apply in respect of that Grid Code Modification Proposal.
- GR.21 THE CODE ADMINISTRATOR CONSULTATION
- GR.21.1 In respect of any **Grid Code Modification Proposal** where a **Workgroup** has been established GR.21.2 to GR.21.6 shall apply.
- GR.21.2 After consideration of any Workgroup report on the Grid Code Modification Proposal and if applicable any Workgroup Alternative Grid Code Modification(s) by the Grid Code Review Panel and a determination by the Grid Code Review Panel to proceed to wider consultation, the Code Administrator shall bring to the attention of and consult on the Grid Code Modification Proposal and if applicable any Workgroup Alternative Grid Code Modification(s) with:

- (i) Users; and
- (ii) such other persons who may properly be considered to have an appropriate interest in it, including **Small Participants**, the **Citizens Advice** and the **Citizens Advice Scotland**.
- GR.21.3 The consultation will be undertaken by issuing a Consultation Paper (and its provision in electronic form on the **Website** and in electronic mails to **Users** and such other persons, who have supplied relevant details, shall meet this requirement). The consultation shall last for a minimum of one month unless it is deemed to be an **Urgent Modification**. For **Urgent Modifications** the **Grid Code Review Panel** shall confirm the proposed drafting for the **Grid Code Modification Proposal** and any **Workgroup Alternative Grid Code Modification(s)** do not include changes to **Regulated Sections**; provided there are no proposed changes to a **Regulated Section** then a shorter consultation duration can be applied if approved by the **Authority**, otherwise the standard one month consultation will apply.

GR.21.4 The Consultation Paper will contain:

- (a) the proposed drafting for the Grid Code Modification Proposal and any Workgroup Alternative Grid Code Modification(s) (unless the Authority decides none is needed in the Grid Code Modification Report under GR.21.5) and will indicate the issues which arose in the Workgroup discussions, where there has been a Workgroup and will incorporate The Company's and the Grid Code Review Panel's initial views on the way forward; and
 - (b) the date proposed by the Code Administrator as the Proposed Implementation Date and, where the Workgroup terms of reference require and the dates proposed by the Workgroup are different from those proposed by the Code Administrator, those proposed by the Workgroup. In relation to a Grid Code Modification Proposal that meets the Self-Governance Criteria, the Code Administrator may not propose an implementation date earlier than the sixteenth (16) Business Day following the publication of the Grid Code Review Panel's decision to approve or reject the Grid Code Modification Proposal. Views will be invited on these dates.
- GR.21.5 Where the Grid Code Review Panel is of the view that the proposed text to amend the Grid Code for a Grid Code Modification Proposal or Workgroup Alternative Grid Code Modification(s) is not needed in the Grid Code Modification Report, the Grid Code Review Panel shall consult (giving its reasons as to why it is of this view) with the Authority as to whether the Authority would like the Grid Code Modification Report to include the proposed text to amend the Grid Code. If it does not, no text needs to be included. If it does, and no detailed text has yet been prepared, the Code Administrator shall prepare such text to modify the Grid Code in order to give effect to such Grid Code Modification(s) and shall seek the conclusions of the relevant Workgroup before consulting those identified in GR.21.2.
- GR.21.6 Consultation Papers will be copied to **Core Industry Document Owners** and the secretary of the **STC** committee.
- GR.21.7 In respect of any **Grid Code Modification Proposal** where a **Workgroup** has not been established GR.21.8 to GR.21.11 shall apply.
- GR.21.8 After determination by the **Grid Code Review Panel** to proceed to wider consultation, such consultation shall be conducted by the **Code Administrator** on the **Grid Code Modification Proposal** with:
 - (i) **Users**; and
 - (ii) such other persons who may properly be considered to have an appropriate interest in it, including Small Participants, the Citizens Advice and the Citizens Advice Scotland.

- GR.21.9 The consultation will be undertaken by issuing a Consultation Paper (and its provision in electronic form on the **Website** and in electronic mails to **Users** and such other persons, who have supplied relevant details, shall meet this requirement). The consultation shall last for a minimum of one month unless it is deemed to be an **Urgent Modification**. For **Urgent Modifications** the **Grid Code Review Panel** shall confirm the proposed drafting for the **Grid Code Modification Proposal** and any **Workgroup Alternative Grid Code Modification(s)** do not include changes to **Regulated Sections**; provided there are no proposed changes to a **Regulated Section** then a shorter consultation duration can be applied if approved by the **Authority**, otherwise the standard one month consultation will apply.
- GR.21.10 The Consultation Paper will contain:
 - (a) the proposed drafting for the Grid Code Modification Proposal (unless the Authority decides none is needed in the Grid Code Modification Report under GR.21.11) and will incorporate The Company's and the Grid Code Review Panel's initial views on the way forward; and
 - (b) the date proposed by the **Code Administrator** as the **Proposed Implementation Date**. Views will be invited on this date.
- GR.21.11 Where the Grid Code Review Panel is of the view that the proposed text to amend the Grid Code for a Grid Code Modification Proposal is not needed, the Grid Code Review Panel shall consult (giving its reasons to why it is of this view) with the Authority as to whether the Authority would like the Grid Code Modification Report to include the proposed text to amend the Grid Code. If it does not, no text needs to be included. If it does, and no detailed text has yet been prepared, the Code Administrator shall prepare such text to modify the Grid Code in order to give effect to such Grid Code Modification Proposal and consult those identified in GR.21.2.

GR.22 GRID CODE MODIFICATION REPORTS

- GR.22.1 Subject to the **Code Administrator's** consultation having been completed, the **Grid Code Review Panel** shall prepare and submit to the **Authority** a report (the "**Grid Code Modification Report**") in accordance with this GR.22 for each **Grid Code Modification Proposal** which is not withdrawn.
- GR.22.1A Where a Grid Code Modification Proposal or any Workgroup Alternative Grid Code Modification constitutes an amendment to the Regulated Sections, the Panel will consider any consultation responses received and any further work required to assess these as required under GR.18.9.
- GR.22.2 The matters to be included in a Grid Code Modification Report shall be the following (in respect of the Grid Code Modification Proposal):
 - (a) A description of the Grid Code Modification Proposal and any Workgroup Alternative Grid Code Modification(s), including the details of, and the rationale for, any variations made (or, as the case may be, omitted) by the Proposer together with the views of the Workgroup;
 - (b) the Panel Members' Recommendation;
 - (c) a summary (agreed by the Grid Code Review Panel) of the views (including any recommendations) from Panel Members in the Grid Code Review Panel Recommendation Vote and the conclusions of the Workgroup (if there is one) in respect of the Grid Code Modification Proposal and of any Workgroup Alternative Grid Code Modification(s);
 - (d) an analysis of whether (and, if so, to what extent) the Grid Code Modification Proposal and any Workgroup Alternative Grid Code Modification(s) would better facilitate achievement of the Grid Code Objective(s) with a detailed explanation of the Grid Code Review Panel's reasons for its assessment, including, where the

impact is likely to be material, an assessment of the quantifiable impact of the **Grid Code Modification Proposal** and any **Workgroup Alternative Grid Code Modification(s)** on greenhouse gas emissions, to be conducted in accordance with such current guidance on the treatment of carbon costs and evaluation of the greenhouse gas emissions as may be issued by the **Authority** from time to time, and providing a detailed explanation of the **Grid Code Review Panel's** reasons for that assessment;

- (e) an analysis of whether (and, if so, to what extent) any Workgroup Alternative Grid Code Modification(s) would better facilitate achievement of the Grid Code Objective(s) as compared with the Grid Code Modification Proposal and any other Workgroup Alternative Grid Code Modification(s) and the current version of the Grid Code, with a detailed explanation of the Grid Code Review Panel's reasons for its assessment, including, where the impact is likely to be material, an assessment of the quantifiable impact of the Workgroup Alternative Grid Code Modification(s) on greenhouse gas emissions, to be conducted in accordance with such current guidance on the treatment of carbon costs and evaluation of the greenhouse gas emissions as may be issued by the Authority from time to time, and providing a detailed explanation of the Grid Code Review Panel's reasons for that assessment;
- (f) the Proposed Implementation Date taking into account the views put forward during the process described at GR.21.4 (b) such date to be determined by the Grid Code Review Panel in the event of any disparity between such views and those of the Code Administrator;
- (g) an assessment of:
 - the impact of the Grid Code Modification Proposal and any Workgroup Alternative Grid Code Modification(s) on the Core Industry Documents and the STC;
 - the changes which would be required to the Core Industry Documents and the STC in order to give effect to the Grid Code Modification Proposal and any Workgroup Alternative Grid Code Modification(s);
 - (iii) the mechanism and likely timescale for the making of the changes referred to in (ii);
 - (iv) the changes and/or developments which would be required to central computer systems and, if practicable, processes used in connection with the operation of arrangements established under the **Core Industry Documents** and the **STC**;
 - (v) the mechanism and likely timescale for the making of the changes referred to in (iv);
 - (vi) an estimate of the costs associated with making and delivering the changes referred to in (ii) and (iv), such costs are expected to relate to: for (ii) the costs of amending the Core Industry Document(s) and STC and for (iv) the costs of changes to computer systems and possibly processes which are established for the operation of the Core Industry Documents and the STC, together with an analysis and a summary of representations in relation to such matters, including any made by Small Participants, the Citizens Advice and the Citizens Advice Scotland;
- (h) to the extent such information is available to the Code Administrator, an assessment of the impact of the Grid Code Modification Proposal and any Workgroup Alternative Grid Code Modification(s) on Users in general (or classes of Users in general), including the changes which are likely to be required to their internal systems and processes and an estimate of the development, capital and operating costs associated with implementing the changes to the Grid Code and to Core Industry Documents and the STC;
- (i) copies of (and a summary of) all written representations or objections made by consultees during the consultation in respect of the Grid Code Modification Proposal and any Workgroup Alternative Grid Code Modification(s) and subsequently maintained;

- (j) a copy of any impact assessment prepared by Core Industry Document Owners and the STC committee and the views and comments of the Code Administrator in respect thereof;
- (k) whether or not, in the opinion of The Company, the Grid Code Modification Proposal (or any Workgroup Alternative Grid Code Modification(s)) should be made.
- (I) **The Company's** justification for including or not including the views resulting from the relevant consultation in the **Grid Code Modification Report**.
- (m) where a Grid Code Modification Proposal or any Workgroup Alternative Grid Code Modification(s) constitutes an amendment to the areas set out in table 1 of the GR.B annex which details the Regulated Sections, the expected impact on the objectives of Retained EU Law (Commission Regulation (EU) 2017/2195).
- GR.22.3 A draft of the Grid Code Modification Report will be circulated by the Code Administrator to Users, Panel Members and such other persons who may properly be considered to have an appropriate interest in it (and its provision in electronic form on the Website and in electronic mails to Users and Panel Members, who must supply relevant details, shall meet this requirement) and a period of no less than five (5) Business Days given for comments to be made thereon. Any unresolved comments made shall be reflected in the final Grid Code Modification Report.
- GR.22.4 A draft of the **Grid Code Modification Report** shall be tabled at a meeting of the **Grid Code Review Panel** prior to submission of that **Grid Code Modification Report** to the **Authority** as set in accordance with the timetable established pursuant to GR.19.1, and at which the **Panel** may consider any minor changes to the legal drafting, which may include any issues identified through the **Code Administrator** consultation, and:
 - (i) if the change required is a typographical error the **Grid Code Review Panel** may instruct the **Code Administrator** to make the appropriate change and the **Panel Chairperson** will undertake the **Grid Code Review Panel Recommendation Vote**; or
 - (ii) if the change required is not considered to be a typographical error then the Grid Code Review Panel may direct the Workgroup to review the change. If the Workgroup unanimously agree that the change is minor the Grid Code Review Panel may instruct the Code Administrator to make the appropriate change and the Panel Chairperson will undertake the Grid Code Review Panel Recommendation Vote, otherwise for changes that are not considered to be minor the Code Administrator shall issue the Grid Code Modification Proposal for further Code Administrator consultation, after which the Panel Chairperson will undertake the Grid Code Review Panel Recommendation Vote; or
 - In the case of a modification that had been directed pursuant to GR.19.2(e) to (iii) proceed directly to wider consultation without the formation of a Workgroup, and if the change required is not considered to be a typographical error, then the Grid Code Review Panel may direct the Code Administrator in conjunction with the **Proposer** to review the change. If the **Grid Code Review** Panel, the Code Administrator and the Proposer agree that the change is minor the Grid Code Review Panel may instruct the Code Administrator to make the appropriate change and the **Panel Chairperson** will undertake the Grid Code Review Panel Recommendation Vote, otherwise for changes that are not considered to be minor the Code Administrator shall issue the Grid Code Modification Proposal for further Code Administrator consultation after which the Panel Chairperson will undertake the Grid Code Review Panel **Recommendation Vote**. In the case of a change that is not considered to be minor, the Grid Code Review Panel may also consider whether to establish a Workgroup of the Grid Code Review Panel, to further consider the Grid Code Modification Proposal, in which case the procedures set out within GR.20 will

be followed as required; or

- (iv) if a change is not required after consideration, the **Panel Chairperson** will undertake the **Grid Code Review Panel Recommendation Vote**.
- GR.22.5 A draft of the Grid Code Modification Report following the Grid Code Review Panel Recommendation Vote will be circulated by the Code Administrator to Panel Members (and in electronic mails to Panel Members, who must supply relevant details, shall meet this requirement) and a period of no less than five (5) Business Days given for comments to be made on whether the Grid Code Modification Report accurately reflects the views of the Panel Members as expressed at the Grid Code Review Panel Recommendation Vote. Any unresolved comments made shall be reflected in the final Grid Code Modification Report.
- GR.22.6 Each **Grid Code Modification Report** shall be addressed and furnished to the **Authority** and none of the facts, opinions or statements contained in such may be relied upon by any other person.
- GR.22.7 Subject to GR.22.9 to GR.22.12, in accordance with the **Transmission Licence**, the **Authority** may approve the **Grid Code Modification Proposal** or a **Workgroup Alternative Grid Code Modification(s)** contained in the **Grid Code Modification Report** (which shall then be an "**Approved Modification**" until implemented).
- GR.22.8 The **Code Administrator** shall copy (by electronic mail to those persons who have supplied relevant details to the **Code Administrator**) the **Grid Code Modification Report** to:
 - (i) each **Panel Member**; and
 - (ii) any person who may request a copy, and shall place a copy on the **Website**.

GR.22.9 Revised Fixed Proposed Implementation Date

- GR.22.9.1 Where the **Proposed Implementation Date** included in a **Grid Code Modification Report** is a **Fixed Proposed Implementation Date** and the **Authority** considers that the **Fixed Proposed Implementation Date** is or may no longer be appropriate or might otherwise prevent the **Authority** from making such decision by reason of the effluxion of time the **Authority** may direct the **Grid Code Review Panel** to recommend a revised **Proposed Implementation Date**.
- GR.22.9.2 Such direction may:
 - (a) specify that the revised **Proposed Implementation Date** shall not be prior to a specified date;
 - (b) specify a reasonable period (taking into account a reasonable period for consultation) within which the Grid Code Review Panel shall be requested to submit its recommendation; and
 - (c) provide such reasons as the **Authority** deems appropriate for such request (and in respect of those matters referred to in GR.22.9.2 (a) and (b) above).
- GR.22.9.3 Before making a recommendation to the Authority, the Grid Code Review Panel will consult on the revised Proposed Implementation Date, and may in addition consult on any matters relating to the Grid Code Modification Report which in the Grid Code Review Panel's opinion have materially changed since the Grid Code Modification Report was submitted to the Authority and where it does so the Grid Code Review Panel shall report on such matters as part of its recommendation under Grid Code GR.22.9.4, with:
 - (a) Users; and
 - (b) such other persons who may properly be considered to have an appropriate interest in it. Such consultation will be undertaken in

- GR.22.9.4 Following the completion of the consultation held pursuant to GR.22.9.3 the **Grid Code Review Panel** shall report to the **Authority** with copies of all the consultation responses and recommending a **Revised Proposed Implementation Date**.
- GR.22.9.5 The Authority shall notify the Grid Code Review Panel as to whether or not it intends to accept the Revised Proposed Implementation Date and where the Authority notifies the Grid Code Review Panel that it intends to accept the Revised Proposed Implementation Date, the Revised Proposed Implementation Date shall be deemed to be the Proposed Implementation Date as specified in the Grid Code Modification Report.
- GR.22.10 <u>Authority Approval</u>

lf:

- (a) the Authority has not given notice of its decision in respect of a Grid Code Modification Report within two (2) calendar months (in the case of an Urgent Modification), or four (4) calendar months (in the case of all other Grid Code Modification Proposals) from the date upon which the Grid Code Modification Report was submitted to it; or
- (b) the Grid Code Review Panel is of the reasonable opinion that the circumstances relating to the Grid Code Modification Proposal and/or Workgroup Alternative Grid Code Modification which is the subject of a Grid Code Modification Report have materially changed, the Grid Code Review Panel may request the Panel Secretary to write to the Authority requesting the Authority to give an indication of the likely date by which the Authority's decision on the Grid Code Modification Proposal will be made.
- GR.22.11 If the Authority determines that the Grid Code Modification Report is such that the Authority cannot properly form an opinion on the Grid Code Modification Proposal and any Workgroup Alternative Grid Code Modification(s), or where the Grid Code Modification Proposal and/or any Workgroup Alternative Grid Code Modification(s) constitutes an amendment to the Regulated Sections of the code, where the Authority requires an amendment to the Grid Code Modification Proposal and/or any Workgroup Alternative Grid Code Modification(s) in order to approve it, it may issue a direction to the Grid Code Review Panel:
 - (a) specifying the additional steps (including drafting or amending existing drafting associated with the Grid Code Modification Proposal and any Workgroup Alternative Grid Code Modification(s), revision (including revision to the timetable), analysis or information that it requires in order to form such an opinion; and
 - (b) requiring the **Grid Code Modification Report** to be revised and to be resubmitted.
- GR.22.12 If a Grid Code Modification Report is to be revised and re-submitted in accordance with a direction issued pursuant to GR.22.11, it shall be re-submitted as soon after the Authority's direction as is appropriate (and in the case of an amendment to the areas set out in table 1 of the GR.B annex which details the Regulated Sections of the code within 2 months), taking into account the complexity, importance and urgency of the Grid Code Modification Proposal and any Workgroup Alternative Grid Code Modification(s). The Grid Code Review Panel shall decide on the level of analysis and consultation required in order to comply with the Authority's direction and shall agree an appropriate timetable for meeting its obligations. Once the Grid Code Modification Report is revised, the Grid Code Review Panel shall carry out its Grid Code Review Panel Recommendation Vote again in respect of the revised Grid Code Modification Report and re-submit it to the Authority in compliance with GR.22.4 to GR.22.6.
- GR.23 URGENT MODIFICATIONS
- GR.23.1 If a **Relevant Party** recommends to the **Panel Secretary** that a proposal should be

treated as an **Urgent Modification** in accordance with this GR.23, the **Panel Secretary** shall notify the **Panel Chairperson** who shall then, in accordance with GR.23.2 (a) to (e) inclusive, and notwithstanding anything in the contrary in these **Governance Rules**, endeavour to obtain the views of the **Grid Code Review Panel** as to the matters set out in GR.23.3. If for any reason the **Panel Chairperson** is unable to do that, the **Panel Secretary** shall attempt to do so (and the measures to be undertaken by the **Panel Chairperson** in the following paragraphs shall in such case be undertaken by the **Panel Secretary**).

- GR.23.2
- (a) The Panel Chairperson shall determine the time by which, in their opinion, a decision of the Grid Review Panel is required in relation to such matters, having regard to the degree of urgency in all circumstances, and references in this GR.23.1 to the "time available" shall mean the time available, based on any such determination by the Panel Chairperson;
 - (b)The **Panel Secretary** shall, at the request of the **Panel Chairperson**, convene a meeting or meetings (including meetings by telephone conference call, where appropriate) of the **Grid Code Review Panel** in such manner and upon such notice as the **Panel Chairperson** considers appropriate, and such that, where practicable within the time available, as many **Panel Members** as possible may attend;
 - (c) Each **Panel Member** shall be deemed to have consented, for the purposes of GR.8.9. to the convening of such meeting or meetings in the manner and on the notice determined by the **Panel Chairperson.** GR.8.10 shall not apply to any such business.
 - (d) Where:
 - (i) it becomes apparent, in seeking to convene a meeting of the **Grid Code Review Panel** within the time available, that quorum will not be present; or
 - (ii) it transpires that the meeting of the Grid Code Review Panel is not quorate and it is not possible to rearrange such meeting within the time available, the Panel Chairperson shall endeavour to contact each Panel Member individually in order to ascertain such Panel Member's vote, and (subject to GR.23.2 (e)) any matter to be decided shall be decided by a majority of those Panel Members who so cast a vote. Where, for whatever reason no decision is reached, the Panel Chairperson shall proceed to consult with the Authority in accordance with GR.23.5;
 - (e) Where the **Panel Chairperson** is unable to contact at least four **Panel Members** within the time available and where:
 - (i) It is only **The Company**, who has recommended that the proposal should be treated as an **Urgent Modification**, then those **Panel Members** contacted shall decide such matters, such decision may be a majority decision. Where in such cases no decision is made for whatever reason, the **Panel Chairperson** shall proceed to consult with the **Authority** in accordance with GR.23.5; or
 - (ii) any User (including any Authorised Electricity Operator; The Company or a Materially Affected Party), the Citizens Advice or the Citizens Advice Scotland has recommended that the proposal should be treated as an Urgent Modification, then the Panel Chairperson may decide the matter (in consultation with those Panel Members (if any) which they manage to contact) provided that the Panel Chairperson shall include details in the relevant Grid Code Modification Report of the steps which they took to contact other Panel Members first.
- GR.23.3 The matters referred to in GR.23.1 are:
 - (a) whether such proposal should be treated as an **Urgent Modification** in accordance with this GR.23 and
 - (b) the procedure and timetable to be followed in respect of such Urgent Modification.

- GR.23.4 The **Panel Chairperson** or, in their absence, the **Panel Secretary** shall forthwith provide the **Authority** with the recommendation (if any) ascertained in accordance with GR.23.2 (a) to (e) inclusive, of the **Grid Code Review Panel** as to the matters referred to in GR.23.2, and shall consult the **Authority** as to whether such **Grid Code Modification Proposal** is an **Urgent Modification** and, if so, as to the procedure and timetable which should apply in respect thereof.
- GR.23.5 If the **Grid Code Review Panel** has been unable to make a recommendation in accordance with GR.23.2.(d) or GR.23.2(e) as to the matters referred to in GR.23.3 then the **Panel Chairperson** or, in their absence, the **Panel Secretary** may recommend whether they consider that such proposal should be treated as an **Urgent Modification** and shall forthwith consult the **Authority** as to whether such **Grid Code Modification Proposal** is an **Urgent Modification** and, if so, as to the procedure and timetable that should apply in respect thereof.

GR.23.6 The Grid Code Review Panel shall:

- (a) not treat any **Grid Code Modification Proposal** as an **Urgent Modification** except with the prior consent of the **Authority**;
- (b) comply with the procedure and timetable in respect of any **Urgent Modification** approved by the **Authority**; and
- (c) comply with any direction of the **Authority** issued in respect of any of the matters on which the **Authority** is consulted pursuant to GR.23.4 or GR.23.5.
- GR.23.7 For the purposes of this GR.23.7, the procedure and timetable in respect of an **Urgent Modification** may (with the approval of the **Authority** pursuant to GR.23.4 or GR.23.5) deviate from all or part of the **Grid Code Modification Procedures** or follow any other procedure or timetable approved by the **Authority** except for the duration of the **Code Administrator** consultation for modifications relating to **Regulated Sections** which shall be for one month. Where the procedure and timetable approved by the **Authority** in respect of an **Urgent Modification** do not provide for the establishment (or designation) of a **Workgroup** the **Proposer's** right to vary the **Grid Code Modification Proposal** pursuant to GR.15.10 and GR.20.26 shall lapse from the time and date of such approval.
- GR.23.8 The Grid Code Modification Report in respect of an Urgent Modification shall include:
 - (a) a statement as to why the **Proposer** believes that such **Grid Code Modification Proposal** should be treated as an **Urgent Modification**;
 - (b) any statement provided by the **Authority** as to why the **Authority** believes that such **Grid Code Modification Proposal** should be treated as an **Urgent Modification**;
 - (c) any recommendation of the Grid Code Review Panel (or any recommendation of the Panel Chairperson) provided in accordance with GR.23 in respect of whether any Grid Code Modification Proposal should be treated as an Urgent Modification; and
 - (d) the extent to which the procedure followed deviated from the process for **Standard Modifications** (other than the procedures in this GR.23).
- GR.23.9 Each **Panel Member** shall take all reasonable steps to ensure that an **Urgent Modification** is considered, evaluated and (subject to the approval of the **Authority**) implemented as soon as reasonably practicable, having regard to the urgency of the matter and, for the avoidance of doubt, an **Urgent Modification** may (subject to the approval of the **Authority**) result in the **Grid Code** being amended on the day on which such proposal is submitted.
- GR.23.10 Where an **Urgent Modification** results in an amendment being made in accordance with GR.25, the **Grid Code Review Panel** may or (where it appears to the **Grid Code Review**

Panel that there is a reasonable level of support for a review amongst **Users**) shall following such amendment, establish a **Workgroup** on terms specified by the **Grid Code Review Panel** to consider and report as to whether any alternative amendment could, as compared with such amendment better facilitate achieving the **Grid Code Objectives** in respect of the subject matter of that **Urgent Modification**.

- GR.24 <u>SELF-GOVERNANCE</u>
- GR.24.1 If the Grid Code Review Panel, having evaluated a Grid Code Modification Proposal against the Self-Governance Criteria, pursuant to GR.18.4, considers that the Grid Code Modification Proposal meets the Self-Governance Criteria, the Grid Code Review Panel shall submit to the Authority a Self-Governance Statement setting out its reasoning in reasonable detail.
- GR.24.2 The Authority may, at any time prior to the Grid Code Review Panel's determination made pursuant to GR.24.9, give written notice that it disagrees with the Self-Governance Statement and may direct that the Grid Code Modification Proposal proceeds through the process for Standard Modifications set out in GR.19, GR.20, GR.21 and GR.22.
- GR.24.3 Subject to GR.24.2, after submitting a **Self-Governance Statement**, the **Grid Code Review Panel** shall follow the procedure set out in GR.19, GR.20, GR.21 and GR.22.
- GR.24.4 The Authority may issue a direction to the Grid Code Review Panel in relation to a Modification to follow the procedure set out for Modifications that meet the Self-Governance Criteria, notwithstanding that no Self-Governance Statement has been submitted or a Self-Governance Statement has been retracted.
- GR.24.5 Subject to the Code Administrator's consultation having been completed pursuant to GR.21, the Grid Code Review Panel shall prepare a report (the "Grid Code Modification Self-Governance Report").
- GR.24.6 The matters to be included in a Grid Code Modification Self-Governance Report shall be the following (in respect of the Grid Code Modification Proposal):
 - (a) details of its analysis of the Grid Code Modification Proposal against the Self-Governance Criteria;
 - (b) copies of all consultation responses received;
 - (c) the date on which the Grid Code Review Panel Self-Governance Vote shall take place, which shall not be earlier than seven (7) days from the date on which the Grid Code Modification Self- Governance Report is furnished to the Authority in accordance with GR.24.8; and
 - (d) such other information that is considered relevant by the Grid Code Review Panel.
- GR.24.7 A draft of the Grid Code Modification Self-Governance Report will be circulated by the Code Administrator to Users and Panel Members (and its provision in electronic form on the Website and in electronic mails to Users and Panel Members, who must supply relevant details, shall meet this requirement) and a period of no less than five (5) Business Days given for comments to be made thereon. Any unresolved comments made shall be reflected in the final Grid Code Modification Self-Governance Report.
- GR.24.8 Each Grid Code Modification Self-Governance Report shall be addressed and furnished to the Authority and none of the facts, opinions or statements contained in such Grid Code Modification Self-Governance Report may be relied upon by any other person.

GR.24.9 Subject to GR.24.11, if the **Authority** does not give written notice that its decision is required pursuant to GR.24.2, or if the **Authority** determines that the **Self-Governance Criteria** are satisfied in accordance with GR.24.4, then the **Grid Code Modification Self-Governance Report** shall be tabled at the **Panel Meeting** following

submission of that Grid Code Modification Self-Governance Report to the Authority at which the Panel Chairperson will undertake the Grid Code Review Panel Self-Governance Vote and the Code Administrator shall give notice of the outcome of such vote to the Authority as soon as possible thereafter.

- GR.24.10 If the **Grid Code Review Panel** vote to approve the **Grid Code Modification Proposal** pursuant to GR.24.9 (which shall then be an "**Approved Grid Code Self-Governance Proposal**") until implemented).
- GR.24.11 The Grid Code Review Panel may at any time prior to the Grid Code Review Panel's determination retract a Self-Governance Statement subject to GR.24.4, or if the Authority notifies the Grid Code Review Panel that it has determined that a Grid Code Modification Proposal does not meet the Self-Governance Criteria the Grid Code Review Panel shall treat the Grid Code Modification Proposal as a Standard Modification and shall comply with GR.22, using the Grid Code Modification Self-Governance Report as a basis for its Grid Code Modification Report.
- GR.24.12 The **Code Administrator** shall make available on the **Website** and copy (by electronic mail to those persons who have supplied relevant details to the **Code Administrator**) the **Grid Code Modification Self-Governance Report** prepared in accordance with GR.24 to:
 - (i) each **Panel Member**; and
 - (ii) any person who may request a copy, and shall place a copy on the **Website**.
- GR.24.13 A User (including any Authorised Electricity Operator; The Company or a Materially Affected Party), the Citizens Advice or the Citizens Advice Scotland may appeal to the Authority the approval or rejection by the Grid Code Review Panel of a Grid Code Modification Proposal and any Workgroup Alternative Grid Code Modification(s) in accordance with GR.24.9, provided that the Panel Secretary is also notified, and the appeal has been made up to and including fifteen (15) Business Days after the Grid Code Review Panel Self-Governance Vote has been undertaken pursuant to GR.24.9. If such an appeal is made, implementation of the Grid Code Modification Proposal shall be suspended pending the outcome. The appealing User (including any Authorised Electricity Operator; The Company or a Materially Affected Party), the Citizens Advice or the Citizens Advice Scotland must notify the Panel Secretary of the appeal when the appeal is made.
- GR.24.14 The **Authority** shall consider whether the appeal satisfies the following criteria:
 - (a) The appealing party is, or is likely to be, unfairly prejudiced by the implementation or non-implementation of that Grid Code Modification Proposal or Workgroup Alternative Grid Code Modification(s); or
 - (b) The appeal is on the grounds that, in the case of implementation, the **Grid Code Modification Proposal** or **Workgroup Alternative**; or
 - (c) Grid Code Modification(s) may not better facilitate the achievement of at least one of the Grid Code Objectives; or
 - (d) The appeal is on the grounds that, in the case of non-implementation, the Grid Code Modification Proposal or Workgroup Alternative Grid Code Modification(s) may better facilitate the achievement of at least one of the Grid Code Objectives; and
 - (e) It is not brought for reasons that are trivial, vexatious or have no reasonable prospect of success and if the **Authority** considers that the criteria are not satisfied, it shall dismiss the appeal.
- GR.24.15 Following any appeal to the **Authority**, a **Grid Code Modification Proposal** or **Workgroup Alternative Grid Code Modification(s)** shall be treated in accordance with any decision and/or direction of the **Authority** following that appeal.

- GR.24.16 If the Authority quashes the Grid Code Review Panel's determination in respect of a Grid Code Modification Proposal or Workgroup Alternative Grid Code Modification(s) made in accordance with GR.24.9 and takes the decision on the relevant Grid Code Modification Proposal and any Workgroup Alternative Grid Code Modification(s) itself, following an appeal to the Authority, the Grid Code Review Panel's determination of that Grid Code Modification Proposal and any Workgroup Alternative Grid Code Modification(s) contained in the relevant Grid Code Modification Self Governance Report shall be treated as a Grid Code Modification Report submitted to the Authority pursuant to GR.22.6 (for the avoidance of doubt, subject to GR.22.8 to GR.22.12) and the Grid Code Review Panel's determination shall be treated as its recommendation pursuant to GR.22.4.
- GR.24.17 If the Authority quashes the Grid Code Review Panel's determination in respect of a Grid Code Modification Proposal or Workgroup Alternative Grid Code Modification(s) made in accordance with GR.24.9, the Authority may, following an appeal to the Authority, refer the Grid Code Modification Proposal back to the Grid Code Review Panel for further re-consideration and a further Grid Code Review Panel Self-Governance Vote.
- GR.24.18 Following an appeal to the Authority, the Authority may confirm the Grid Code Review Panel's determination in respect of a Grid Code Modification Proposal or Workgroup Alternative Grid Code Modification(s) made in accordance with GR.24.9.
- GR.25 IMPLEMENTATION
- GR.25.1 The Grid Code shall be modified either in accordance with the terms of the direction by the Authority relating to, or other approval by the Authority of, the Grid Code Modification Proposal or any Workgroup Alternative Grid Code Modification(s) contained in the relevant Grid Code Modification Report, or in respect of Grid Code Modification Proposals or any Workgroup Alternative Grid Code Modification(s) that are subject to the determination of the Grid Code Review Panel pursuant to GR.24.9, in accordance with the relevant Grid Code Modification Self-Governance Report subject to the appeal procedures set out in GR.24.13 to GR.24.18.
- GR.25.2 The **Code Administrator** shall forthwith notify (by publication on the **Website** and, where relevant details are supplied by electronic mail):
 - (a) each User;
 - (b) each Panel Member;
 - (c) the Authority;
 - (d) each Core Industry Document Owner;
 - (e) the secretary of the STC committee;
 - (f) each Materially Affected Party; and
 - (g) the **Citizens Advice** and the **Citizens Advice Scotland** of the change so made and the effective date of the change.
- GR.25.3 A modification of the **Grid Code** shall take effect from the time and date specified in the direction, or other approval, from the **Authority** referred to in GR.25.1 or, in the absence of any such time and date in the direction or approval, from 00:00 hours on the day falling ten (10) **Business Days** after the date of such direction, or other approval, from the **Authority**. A modification of the **Grid Code** pursuant to GR.24.9 shall take effect, subject to the appeal procedures set out in GR.24.1313 to GR.24.18, from the time and date specified by the **Code Administrator** in its notice given pursuant to GR.25.2, which shall be given after the expiry of the fifteen (15) **Business Day** period set out in GR.24.13, on conclusion of the appeal in accordance with GR.24.15 or GR.24.18 but where conclusion of the appeal is earlier than the fifteen (15) **Business Day** period set out in GR.24.13, notice shall be given after the expiry of this period. A modification of the **Grid Code** pursuant to GR.26 shall take effect from the date specified in the **Grid Code Modification Fast Track Report**.

- GR.25.4 A modification made pursuant to and in accordance with GR.25.1 shall not be impaired or invalidated in any way by any inadvertent failure to comply with or give effect to this Section.
- GR.25.5 If a modification is made to the Grid Code in accordance with the **Transmission Licence** but other than pursuant to the other **Grid Code Modification Procedures** in these **Governance Rules**, the **Grid Code Review Panel** shall determine whether or not to submit the modification for review by a **Workgroup** established on terms specified by the **Grid Code Review Panel** to consider and report as to whether any alternative modification could, as compared with such modification better facilitate achieving the **Grid Code Objectives** in respect of the subject matter of the original modification. Where such a **Workgroup** is established the provisions of GR.20 shall apply as if such a modification were a **Grid Code Modification Proposal**.

Transitional Issues

GR.25.6 Notwithstanding the provisions of GR.25.3, Modification GC0132 changes the **Grid Code** process for **Grid Code Modification Proposals** and therefore may affect other **Grid Code Modification Proposals** which have not yet become **Approved Modifications**. Consequently, this GR.25.6 deals with issues arising out of the implementation of **Modification** GC0132. In particular this deals with which version of the **Grid Code** process for **Grid Code Modification Proposals** will apply to **Grid Code Modification Proposal(s)** which were already instigated prior to the implementation of **Modification** GC0132.

> Any Grid Code Modification Proposal in respect of which a Grid Code Modification Report has been sent to the Authority prior to the date and time of implementation of Modification GC0132 is known as an "Old Modification". Any Grid Code Modification Proposal in respect of which a Grid Code Modification Report has not been sent to the Authority as at the date and time of implementation of Modification GC0132 is known as a "New Modification". The Grid Code provisions which will apply to any Old Modification(s) are the provisions of the Grid Code in force immediately prior to the implementation of GC0132. The provisions of the Grid Code which will apply to any New Modifications are the provisions of the Grid Code in force and as amended from time to time.

GR.25.7 Notwithstanding the provisions of GR.25.3, Modification GC0131 changes the Grid Code process for Grid Code Modification Proposals and therefore may affect other Grid Code Modification Proposals which have not yet become Approved Modifications. Consequently, this GR.25.7 deals with issues arising out of the implementation of Modification GC0131. In particular this deals with which version of the Grid Code process for Grid Code Modification Proposals will apply to Grid Code Modification Proposal(s) which were already instigated prior to the implementation of Modification GC0131.

> Any Grid Code Modification Proposal in respect of which a Grid Code Modification Report has been sent to the Authority prior to the date and time of implementation of Modification GC0131 is known as an "Old GC0131 Modification". Any Grid Code Modification Proposal in respect of which a Grid Code Modification Report has not been sent to the Authority as at the date and time of implementation of Modification GC0131 is known as a "New GC0131 Modification". The Grid Code provisions which will apply to any Old GC0131 Modification(s) are the provisions of the Grid Code in force immediately prior to the implementation of GC0131. The provisions of the Grid Code which will apply to any New GC0131 Modifications are the provisions of the Grid Code in force from time to time.

GR.26 FAST TRACK

GR.26.1 Where a **Proposer** believes that a modification to the **Grid Code** which meets the **Fast Track Criteria** is required, a **Grid Code Fast Track Proposal** may be raised. In such case the **Proposer** is only required to provide the details listed in GR.15.3 (a), (b), (c), (d), (e) and (k).

- GR.26.2 Provided that the **Panel Secretary** receives any modification to the **Grid Code** which the **Proposer** considers to be a **Grid Code Fast Track Proposal**, not less than ten (10) **Business Days** (or such shorter period as the **Panel Secretary** may agree, provided that the **Panel Secretary** shall not agree any period shorter than five (5) **Business Days**) prior to the next **Grid Code Review Panel** meeting, the **Panel Secretary** shall place the **Grid Code Fast Track Proposal** on the agenda of the next **Grid Code Review Panel** meeting, and otherwise, shall place it on the agenda of the next succeeding **Grid Code Review Panel** meeting.
- GR.26.3 To facilitate the discussion at the Grid Code Review Panel meeting, the Code Administrator will circulate a draft of the Grid Code Modification Fast Track Report to Users, the Authority and Panel Members (and its provision in electronic form on the Website and in electronic mails to Users, the Authority and Panel Members, who must supply relevant details, shall meet this requirement) for comment not less than five (5) Business Days ahead of the Grid Code Review Panel meeting which will consider whether or not the Fast Track Criteria are met and whether or not to approve the Grid Code Fast Track Proposal.
- GR.26.4 It is for the Grid Code Review Panel to decide whether or not a Grid Code Fast Track Proposal meets the Fast Track Criteria and if it does, to determine whether or not to approve the Grid Code Fast Track Proposal.
- GR.26.5 The Grid Code Review Panel's decision that a Grid Code Fast Track Proposal meets the Fast Track Criteria pursuant to GR.26.4 must be unanimous.
- GR.26.6 The Grid Code Review Panel's decision to approve the Grid Code Fast Track Proposal pursuant to GR.26.4 must be unanimous.
- GR.26.7 If the Grid Code Review Panel vote unanimously that the Grid Code Fast Track Proposal meets the Fast Track Criteria and to approve the Grid Code Fast Track Proposal (which shall then be an "Approved Fast Track Proposal") until implemented, or until an objection is received pursuant to GR.26.12), then subject to the objection procedures set out in GR.26.12 the Grid Code Fast Track Proposal will be implemented by The Company without the Authority's approval. If the Grid Code Review Panel do not unanimously agree that the Grid Code Modification Proposal meets the Fast Track Criteria and/or do not unanimously agree that the Grid Code Fast Track Proposal should be made, then the Panel Secretary shall, in accordance with GR.15.4(a) notify the Proposer that additional information is required if the Proposer wishes the Grid Code Modification Proposal to continue.
- GR.26.8 Provided that the Grid Code Review Panel have unanimously agreed to treat a Grid Code Modification Proposal as a Grid Code Fast Track Proposal and unanimously approved that Grid Code Fast Track Proposal, the Grid Code Review Panel shall prepare and approve the Grid Code Modification Fast Track Report for issue in accordance with GR.26.11.
- GR.26.9 The matters to be included in a Grid Code Modification Fast Track Report shall be the following (in respect of the Grid Code Fast Track Proposal):
 - (a) a description of the proposed modification and of its nature and purpose;
 - (b) details of the changes required to the Grid Code, including the proposed legal text to modify the Grid Code to implement the **Grid Code Fast Track Proposal**;
 - (c) details of the votes required pursuant to GR.26.5 and GR.26.6;
 - (d) the intended implementation date, from which the Approved Fast Track Proposal will take effect, which shall be no sooner than fifteen (15) Business Days after the date of notification of the Grid Code Review Panel's decision to approve; and
 - (e) details of how to object to the Approved Fast Track Proposal being made

- GR.26.10 Upon approval by the Grid Code Review Panel of the Grid Code Modification Fast Track Report, the Code Administrator will issue the report in accordance with GR.26.11.
- GR.26.11 The **Code Administrator** shall copy (by electronic mail to those persons who have supplied relevant details to the **Code Administrator**) the **Grid Code Modification Fast Track Report** prepared in accordance with GR.26 to:
 - (i) each **Panel Member**;
 - (ii) the **Authority**; and
 - (iii) any person who may request a copy, and shall place a copy on the Website.
- GR.26.12 A User, any Authorised Electricity Operator; The Company or a Materially Affected Party, the Citizens Advice, the Citizens Advice Scotland or the Authority may object to the Approved Fast Track Proposal being implemented, and shall include with such objection the reasons for the objection. Any such objection must be made in writing (including by email) and be clearly stated to be an objection to the Approved Fast Track Proposal in accordance with this GR.26 of the Grid Code and be notified to the Panel Secretary by the date up to and including fifteen (15) Business Days after notification of the Grid Code Review Panel's decision to approve the Grid Code Fast Track Proposal. If such an objection is made the Approved Fast Track Proposal shall not be implemented. The Panel Secretary will notify each Panel Member and the Authority of the objection. The Panel Secretary shall notify the Proposer, in accordance with GR.15.4A that additional information is required if the Proposer wishes the Grid Code Modification Proposal to continue.

ANNEX GR.A - ELECTION OF USERS' PANEL MEMBERS

Grid Code Review Panel Election Process

- 1. The election process has two main elements: nomination and selection.
- 2. The process will be used to appoint **Panel Members** in the category of **Supplier**, **Generator**, **Offshore Transmission Owner** and **Onshore Transmission Owner**.
- 3. The **Code Administrator** will publish the Election timetable by [September] in the year preceding the start of each term of office of **Panel Members**.
- 4. Each step of the process set out below will be carried out in line with the published timetable.
- 5. The **Code Administrator** will establish an Electoral Roll from representatives of parties listed on CUSC Schedule 1 or designated by the **Authority** as a **Materially Affected Party** as at 31st August in the year preceding the start of each term of office of **Panel Members**.
- 6. The **Code Administrator** will keep the Electoral Roll up to date.

Nomination Process

- 7. Each party on the Electoral Roll may nominate a candidate to stand for election for the **Grid Code Review Panel**.
- 8. Parties may only nominate a candidate for their own category; a **Supplier** may nominate a candidate for the **Supplier Panel Member** seat and a **Generator** may nominate a candidate for the **Generator Panel Member** seats. If a party able to nominate a candidate is both a **Supplier** and a **Generator**, they may nominate a candidate in each category.
- 9. The nominating party must complete the nomination form which will be made available by the **Code Administrator** and return it to the **Code Administrator** by the stated deadline.
- 10. The Code Administrator will draw up a list of candidates for each category of election.
- 11. Where there are fewer candidates than seats available or the same number of candidates as seats available, no election will be required and the nominated candidate(s) will be elected. The **Code Administrator** will publish a list of the successful candidates on the Grid Code website and circulate the results by email to the Grid Code circulation list.

Selection Process

- 12. The **Code Administrator** will send a numbered voting paper to each party on the electoral roll for each of the elections in which they are eligible to vote. The voting paper will contain a list of candidates for each election and will be sent by email.
- 13. Each eligible party may vote for one [1] candidate for each of the **Supplier**, **Offshore Transmission Owner** and **Onshore Transmission Owner** seats and four [4] candidates for the **Generator** seats.
- 14. **Panel Members** will be elected using the First Past the Post method.
- 15. In the event of two or more candidates receiving the same number of votes, the **Code Administrator** will draw lots to decide who is elected.
- 16. The **Code Administrator** will publish the results of the election on the Grid Code website and circulate the results by email to the Grid Code circulation list.
- 17. The **Code Administrator** will send an Election Report to Ofgem after the election is complete.

ANNEX GR.B Regulated Sections

The Grid Code sections identified in Tables 1 and 2 are considered to be **Regulated Sections**.

Table 1 - Mapping of Electricity Balancing Regulation Article 18 Terms and Conditions for Balancing
Service Providers and BalancingResponsible Parties to the Grid Code

Commission Regulation (EU) 2017/2195 Reference	Description	Grid Code Reference
(Retained EU Law)		
 The terms and conditions pursuant to paragraph 1 shall also include the rules for suspension and restoration of market activities pursuant to Article 36 of Regulation (EU) 2017/2196 and rules for settlement in case of market suspension pursuant to Article 39 of Regulation (EU) 2017/2196 once approved in accordance with Article 4 of Regulation (EU) 2017/2196. 		OC9.4
18.4.a	18.4.a define reasonable and justified requirements for the provisions of balancing services;	
18.4.b	 allow the aggregation of demand facilities, energy storage facilities and power generating facilities in a scheduling area to offer balancing services subject to conditions referred to in paragraph 5 (c); 	
18.5.a	18.5.a the rules for the qualification process to become a balancing service provider pursuant to Article 16;	
18.5.c	18.5.c the rules and conditions for the aggregation of demand facilities, energy storage facilities and power generating facilities in a scheduling area to become a balancing service provider;	
18.5.d the requirements on data and information to be delivered to the connecting TSO and, where relevant, to the reserve connecting DSO during the prequalification process and operation of the balancing market;		DRC, <i>BC5 BC1.4</i> ,
18.5. fthe requirements on data and information to be delivered to the connecting TSO and, where relevant, to the reserve connecting DSO to evaluate the provisions of balancing services pursuant to Article 154(1), Article 154(8), Article 158(1)(e), Article 158(4)(b), Article 161(1)(f) and Article 161(4)(b) of Regulation (EU) 2017/1485;		BC1.4, BC1.A.10,
18.5. g	the definition of a location for each standard product and each specific product taking into account paragraph 5 (c);	BC1.4

18.6. d	the requirements on data and information to be delivered to the connecting TSO to calculate the imbalances;	BC1.4.2,3,4, BC1 Appendix 1 BC2.5.1,
18.6. e	the rules for balance responsible parties to change their schedules prior to and after the intraday energy gate closure time pursuant to paragraphs 3 and 4 of Article 17;	BC1.4.3,4,

Table 2 - Mapping of Network Code on Emergency and Restoration (NCER) Article 4(4) Terms and Conditions for System Defence and System Restoration Service Providers to the Grid Code

Commission Regulation (EU) 2017/2196 Reference (Retained EU Law)	Description	Grid Code Reference				
4(4)(a)	The terms and conditions to act as defence service provider and as restoration service provider shall be established either in the national legal framework or on a contractual basis. If established on a contractual basis, each TSO shall develop by 18 December 2018 a proposal for the relevant terms and conditions, which shall define at least: (a) the characteristics of the service to be provided	Restoration services: Re-energisation procedure- OC.9.2.5, OC.9.4.7 Re-synchronisation procedure- OC.9.4.7, BC2.9.2.2(iii)) Frequency deviation management -BC3.4, BC.3.5, BC3.6, BC3.7 BC2.5.4 Defence services: Frequency deviation management- BC3.4, BC.3.5, BC3.6, BC3.7 BC2.5.4, Fast Start- CC/ECC.6.3.14 Limited Frequency Sensitive Mode- ECC.6.3.7.1, ECC.6.3.7.2, BC3.7.2 Low Frequency Demand disconnection- CC/ECC.6.4.3, CC/ECC.A.5, OC6.5, OC6.6 Over Frequency control- ECC.6.3.7.1, ECC.6.3.7.3, BC.3.7.1, BC.3.7.2 Frequency deviation management- BC3.4, BC.3.5, BC3.6, BC3.7, CC/ECC.6.3.3, CC.6.3.7(a), ECC.6.3.7.3, CC.6.3.6(a)/ECC.6.3.6, CC/ECC.6.3.9, DRSC 5.1, DRSC 6.1, DRSC 7.1, BC.1.4.2, BC1. A.1.1, BC2.6.1, BC2.7, BC.2.9, OC7.4.5, OC6.7, OC6.5, OC.10, Voltage deviation management- CC/ECC.6.1.4, CC/ECC.6.3.9, BC2. A.2, DRSC 5, Power flow management- CC/ECC.6.3.7.3, 1, CC/ECC.6.3.9, BC2. A.2, DRSC 5, Power flow management- CC.6.3.7(a), ECC.6.3.9, BC1.4.2, BC1.5.5, BC1.7, BC1. A.1.1, BC2.6.1, BC2.7, BC2.9, OC7.4.5, OC6.7, OC10, DRSC 5.1, Assistance for active power- BC2.7, BC2.9, OC9.4, OC9.5, OC7.4.8 Manual Demand disconnection- OC6.5, OC6.7, BC2.9				

4(4) (b)	(b) the possibility of and conditions for aggregation; and	DRSC1, DRSC2, DRSC4 ECC/CC 6.5 BC1.4 BC1. A.10 BC

< END OF GOVERNANCE RULES >

REVISIONS

(R)

(This section does not form part of the Grid Code)

- R.1 **The Company's Transmission Licence** sets out the way in which changes to the Grid Code are to be made and reference is also made to **The Company's** obligations under the General Conditions.
- R.2 All pages re-issued have the revision number on the lower left hand corner of the page and date of the revision on the lower right hand corner of the page.
- R.3 The Grid Code was introduced in March 1990 and the first issue was revised 31 times. In March 2001 the New Electricity Trading Arrangements were introduced and Issue 2 of the Grid Code was introduced which was revised 16 times. At British Electricity Trading and Transmission Arrangements (BETTA) Go-Active Issue 3 of the Grid Code was introduced and subsequently revised 35 times. At Offshore Go-active Issue 4 of the Grid Code was introduced and has been revised 13 times since its original publication. Issue 5 of the Grid Code was published to accommodate the changes made by Grid Code Modification A/10 which has incorporated the **Generator** compliance process into the Grid Code, which was revised 47 times. Issue 6 was published to incorporate all the non-material amendments as a result of modification GC0136.
- R.4 This Revisions section provides a summary of the sections of the Grid Code changed by each revision to Issue 6.
- R.5 All enquiries in relation to revisions to the Grid Code, including revisions to Issues 1, 2, 3, 4 and 5 should be addressed to the Grid Code development team at the following email address:

Grid.Code@nationalgrideso.com

Revision	Section	Related Modification	Effective Date
0	Glossary Definitions	GC0136	05 March 2021
0	Planning Code	GC0136	05 March 2021
0	Connection Conditions	GC0136	05 March 2021
0	European Connection Conditions	GC0136	05 March 2021
0	Demand Response Services	GC0136	05 March 2021
0	Compliance Processes	GC0136	05 March 2021
0	Europeans Compliance Processes	GC0136	05 March 2021
0	Operating Code 1	GC0136	05 March 2021
0	Operating Code 2	GC0136	05 March 2021
0	Operating Code 5	GC0136	05 March 2021
0	Operating Code 6	GC0136	05 March 2021
0	Operating Code 7	GC0136	05 March 2021
0	Operating Code 8	GC0136	05 March 2021
0	Operating Code 8A	GC0136	05 March 2021
0	Operating Code 8B	GC0136	05 March 2021
0	Operating Code 9	GC0136	05 March 2021
0	Operating Code 11	GC0136	05 March 2021
0	Operating Code 12	GC0136	05 March 2021
0	Balancing Code 2	GC0136	05 March 2021

Revision	Section	Related Modification	Effective Date
0	Balancing Code 3	GC0136	05 March 2021
0	Balancing Code 4	GC0136	05 March 2021
0	Balancing Code 5	GC0136	05 March 2021
0	Data Registration Code	GC0136	05 March 2021
0	General Conditions	GC0136	05 March 2021
0	Governance Rules	GC0136	05 March 2021
1	Glossary Definitions	GC0130	18 March 2021
1	Operating Code 2	GC0130	18 March 2021
1	Data Registration Code	GC0130	18 March 2021
1	General Conditions	GC0130	18 March 2021
2	Glossary Definitions	GC0147	17 May 2021
2	Operating Code 6B	GC0147	17 May 2021
2	Operating Code 7	GC0147	17 May 2021
2	Balancing Code 1	GC0147	17 May 2021
2	Balancing Code 2	GC0147	17 May 2021
3	Balancing Code 2	GC0144	26 May 2021
3	Balancing Code 4	GC0144	26 May 2021
4	Preface	GC0149	03 August 2021
4	Glossary Definitions	GC0149	03 August 2021
4	Planning Code	GC0149	03 August 2021

Revision	Section	Related Modification	Effective Date
4	European Connection Conditions	GC0149	03 August 2021
4	European Compliance Processes	GC0149	03 August 2021
4	Demand Response Services Code	GC0149	03 August 2021
4	Operating Code 2	GC0149	03 August 2021
4	Balancing Code 4	GC0149	03 August 2021
4	Data Registration Code	GC0149	03 August 2021
4	Governance Rules	GC0149	03 August 2021
5	Operating Code 7	GC0109	23 August 2021
6	Connection Conditions	GC0134	1 September 2021
6	European Connection Conditions	GC0134	1 September 2021
6	Balancing Code 2	GC0134	1 September 2021
7	Operating Code 6B	GC0150	4 October 2021
8	Operating Code 2	GC0151	8 November 2021
8	Operating Code 3	GC0151	8 November 2021
8	Operating Code 5	GC0151	8 November 2021
9	Governance Rules	GC0152	29 December 2021
10	General Conditions	Electrical Standards - EDL Instruction Interface Valid Reason Codes	20 January 2022
11	Glossary Definitions	GC0137	14 February 2022
11	Planning Code	GC0137	14 February 2022

Revision	Section	Related Modification	Effective Date
11	Connection Conditions	GC0137	14 February 2022
11	European Connection Conditions	GC0137	14 February 2022
11	European Compliance Processes	GC0137	14 February 2022
11	Data Registration Code	GC0137	14 February 2022
12	Glossary Definitions	GC0153	09 March 2022
12	Connection Conditions	GC0153	09 March 2022
12	European Connection Conditions	GC0153	09 March 2022
12	Operating Code 6	GC0153	09 March 2022
12	Operating Code 8A	GC0153	09 March 2022
12	Operating Code 8B	GC0153	09 March 2022
12	Operating Code 12	GC0153	09 March 2022
12	Balancing Code 2	GC0153	09 March 2022
12	Governance Rules	GC0153	09 March 2022

< END OF REVISIONS>