Future of Reactive Power Project Commercial and Technical Conclusions Workshop

17 February 2022

Agenda

Housekeeping, introduction and work so far

Market Analysis Recap

DER Participation Conclusions

Technical Analysis Conclusions

Commercial Conclusions

Next steps

Yuting Dai

AFRY

Vicci Page

David Gregory & Energynautics

AFRY

Yuting Dai

nationalgridESO

Housekeeping, introduction and work so far

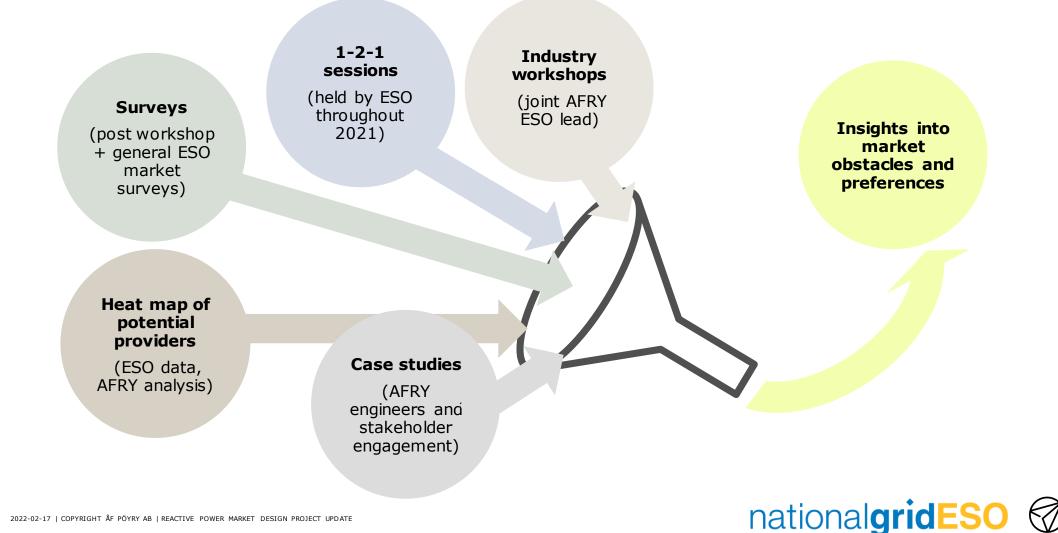
Yuting Dai

Objective of today

- Update the progress and plan next for reactive market design NIA project
- Share the latest technical and commercial design proposed from project
- Discuss the specific design questions with participants for comments and feedback – Mural board

The journey of work done so far and what next

Dec 2020 Problem analysis through internal and external industry engagement; Share the output in Industry webinar		Apr – May 2021 Develop and start market survey through emails and 121 meetings; Initiate innovation project support and start RFI		Sep – Feb 2022 Project kicked off to start delivering the output (Co- creation with industry) Industry webinars and workshops to share progress and discuss the feedback		April 2022 onwards Industry webinar to discuss the Q&A for final report; Develop the actions required from recommendation	
	Jan - Mar 2021 Gap analysis to identify key focused area and scope of work next and share in industry webinar		Jun to Sep 2021 Analyse market survey result; Assess innovation RFI options; Develop project plan incl detailed scope and deliverables Establish project team		Mar 2022 Share the final project report with industry Develop recommendation for the next step of reactive market		


nationalgridESO

Market Analysis Recap

AFRY – Stephen Woodhouse

nationalgridESO

The market analysis workstream has been informed by a large range of inputs from participants and own analysis

AFRY

The insight revealed by market participants has informed our thinking throughout the project

Participants expressed an interest in a **hybrid** approach with long term contracts available and short term options with short term only and long term only being the least preferred options

Most participants either provide **ORPS**, were participating in **pathfinders**, or were DNO connected with **no route to market** Providers felt that as the issue of reactive becomes **more salient**, **transparency** and **focus** on it should increase

Some providers have **additional capability** able to provide reactive power outside of ORPS ranges Several providers quoted TO/DNO connection agreement terms as a barrier to utilising their full capability

Some providers felt **ORPS** didn't cover **total cost** of service provision when **heavily utilised**

> Providers identified **opportunity cost** outside ORPS ranges as a **key consideration** (lost subsidy payments, active energy sales, etc.)

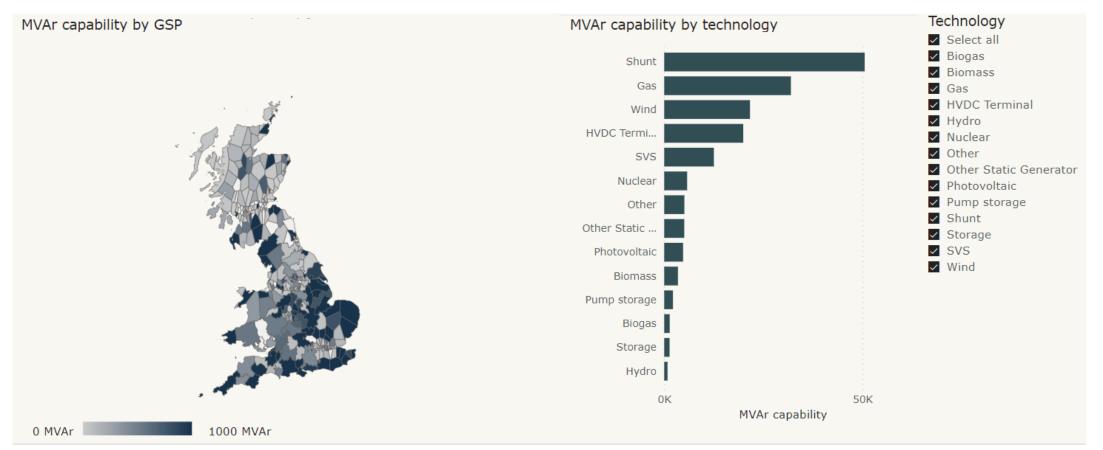
Industry workshops

Some existing ORPS providers can't understand why they are **not instructed** for their MVAr capability (transparency issues) There was **disagreement** between providers on whether **availability payments** or **utilisation payments** were appropriate for remuneration

Notes: Some views were expressed across multiple engagement activities

8 2022-02-17 | COPYRIGHT ÅF PÖYRY AB | REACTIVE POWER MARKET DESIGN PROJECT UPDATE

Surveys


1-2-1 feedback

Most commercial barriers are related to uncertainty and variability

Тес	chnology affected	Key blocker	Key enabler	Preferred solution
\$	Batteries/converter connected storage	High opportunity costs in valuable/high demand periods	Need to allow plant to participate when service is most valuable	Short term market
	Variable converter connected technologies (e.g. wind)	Low availability certainty	Need to allow plant to participate at point where availability becomes more visible/certain	Short term market
	Traditional thermal providers	High and uncertain fuel cost + uncertain requirement (difficult to hedge)	Need to allow plant to participate when costs are known and when requirements are highest	Short term market
		Additional Capex and Opex associated with higher MVA rating of equipment (if relevant)	If there is a low incremental cost, but long term commitment is inappropriate need to allow some short-term revenue to encourage deployment	Short term market
	All capacity	Complex relationship between power factor, MW output, and heat losses (additional costs)	Need to give the opportunity for participants to bid portions of capacity to reflect non-linear cost	ST market, availability and utilisation fee (or volume visibility)
		Poor visibility over dispatch commitments	Dispatch risk should sit with ESO (to the extent possible), availability only fee requires participant to forecast dispatch and price in	Both availability and utilisation fee (or volume visibility/cap)

We have created a heat-map of providers to understand the potential for these resources in a reactive power market

Example – 2025, all providers MVAr injection capability (accessible today + additional capability from known assets)

nationalgridESO

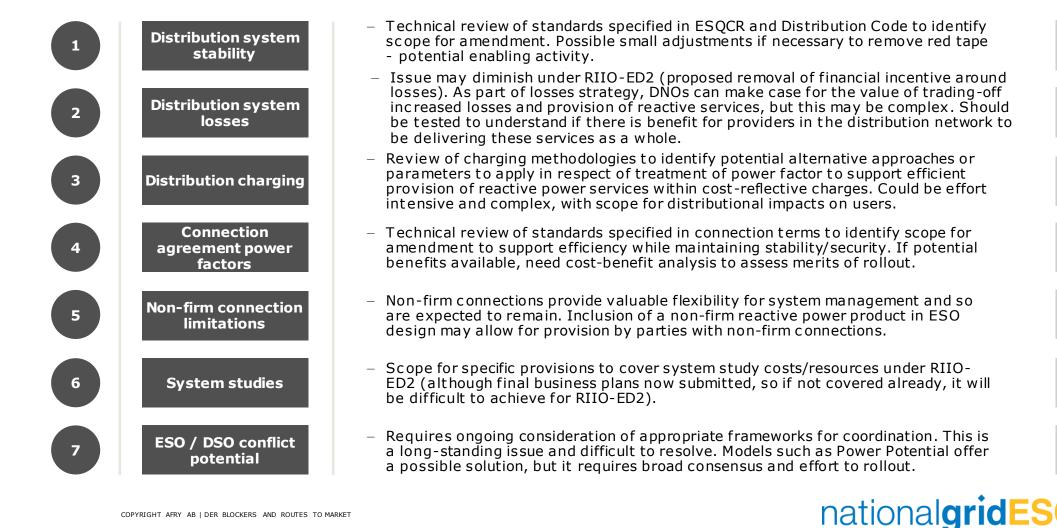
AFRY

Notes: Under ETYS scenario for 2025

10 2022-02-17 | COPYRIGHT ÅF PÖYRY AB | REACTIVE POWER MARKET DESIGN PROJECT UPDATE

DER Participation Conclusions

Vicci Page


Reactive Power Provision from Distribution Connected Assets

- Enabling distribution connected assets to deliver reactive power to the ESO is complicated I'll
 go on to share the detail around this complexity
- Actions taken at a Transmission level can significantly impact the stability of the Distribution network and operational limits and vice versa
- The DER workstream has identified a number of key areas where further work is required to enable DER to participate in a reactive power market
- Keen to understand:
 - Are the areas well defined
 - Are the enabling initiatives reasonably characterised
 - Are there other options

POTENTIAL ENABLERS

Possible ways forward to allow routes for overcoming DER participation barriers Relative ease

(provisional)

Technical Analysis Conclusions David Gregory, Energynautics

Technical Analysis - Recap

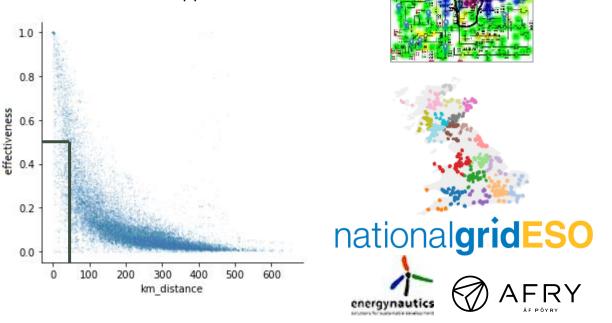
- Current NGESO processes to define reactive power requirements:
 - Are focused on management of high voltages (low voltages/voltage stability are considered as transmission constraints)
 - Are based on locations of BMUs which can be accessed through the BM for their reactive power range
 - Don't specify actual MVAr requirement, just a "number of units" or regions with high voltage issues based on high level criteria

(See Week Ahead Overnight Voltage Requirement on Data Portal and the Voltage Screening Report)

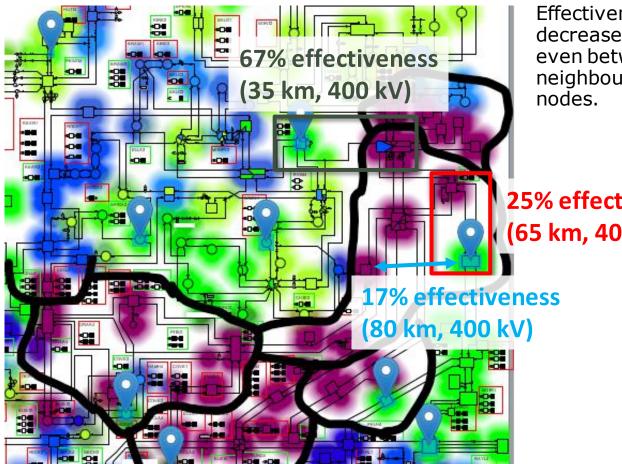
- Are manual and time consuming
- For a reactive power market, participants need to know
 - A numerical reactive power requirement
 - Locational information (location of requirement, effectiveness, etc.)
- Current process don't provide that information, so the technical workstream has investigated:
 - A suitable methodology for defining requirements in a transparent way
 - Zoning (or otherwise) of the requirement
 - Effectiveness (or otherwise)

Technical Analysis - Products

- Four products are being considered:
 - Steady state/pre-fault absorption
 - Steady state/pre-fault injection
 - Response/post-fault absorption
 - Response/post-fault injection
- Aim is to meet SQSS voltage requirements
 - Assumption that system is stable following an event
 - Steady state/pre-fault product allows pre-fault steady-state voltages to be maintained
 - Instructed to deliver following receipt of the instruction (by tapping step up transformer, changing set point voltage, switching reactor/capacitor, etc.)
 - Response/post-fault product allows voltage steps and steady-state voltages to be maintained following an event or operational switching
 - Delivered within 5 seconds following an initiating event (in line with SQSS definition of *Transient Time Phase*)
 - Instructed to be available (delivered as needed by automatic control system action, automatic switching of reactors/capacitors, etc.)
- Intention is that this will not exclude technologies and lines up with current Grid Code requirements

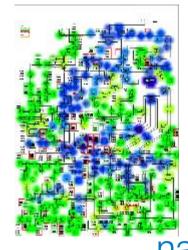

Defining the Demand – Top-down Zoning Issues

ZONING


- Assumptions
 - Reactive power providers can be grouped according to where they are technically able to contribute to supplying the reactive power demand.
 - Conversely, for a given provider location, transmission nodes can be grouped according to where the provider can effectively contribute.
 - If we can pre-determine these grouping structures, we can use them to aggregate, communicate, and optimize the reactive power allocation between the providers. Can we?
- Investigation
 - Locational effectiveness determines what grouping structure sizes are reasonable and, thereby, how many are needed. How precisely does the effectiveness relate to transmission distance?
 - How to cluster the transmission system nodes according to (electrical) proximity?

INVESTIGATION RESULTS – Effectiveness can be e

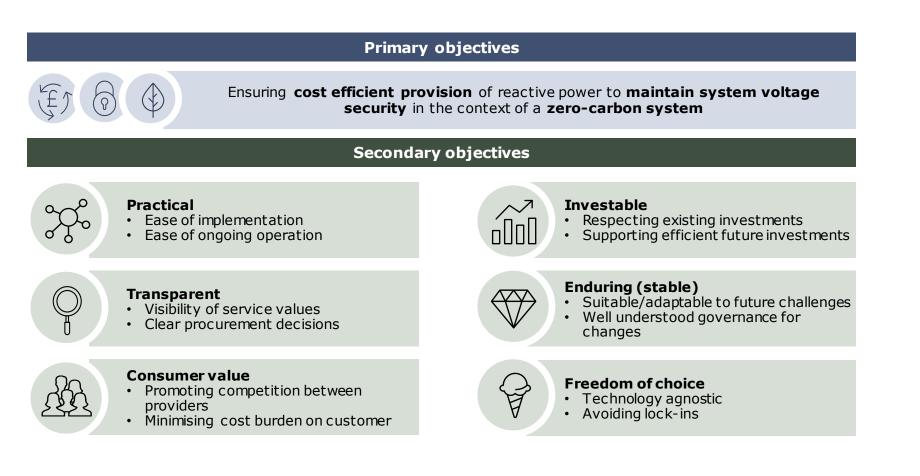
- Effectiveness can be estimated to 50% at 50 kilometres transmission distance.
- Top-down zoning approach would require 100+ grouping structures.
- 100+ grouping structures would hardly be transparent to providers.
 ⇒ not recommended
 - \Rightarrow look into nodal approach instead


REACTIVE POWER MARKET Defining the Demand – Top-down Zoning Issues

Effectiveness decreases quickly even between neighbouring

25% effectiveness (65 km, 400 kV)

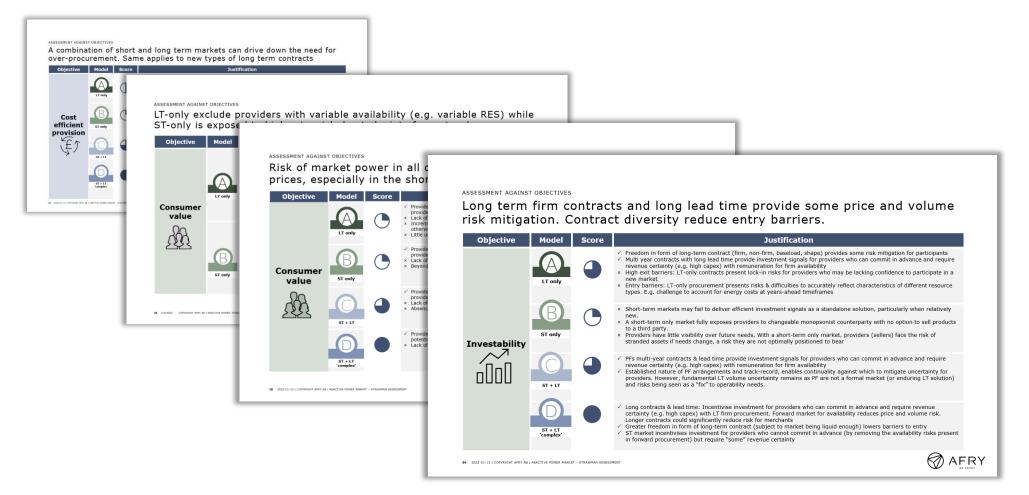
Areas with reactive power needs vary significantly between scenarios.



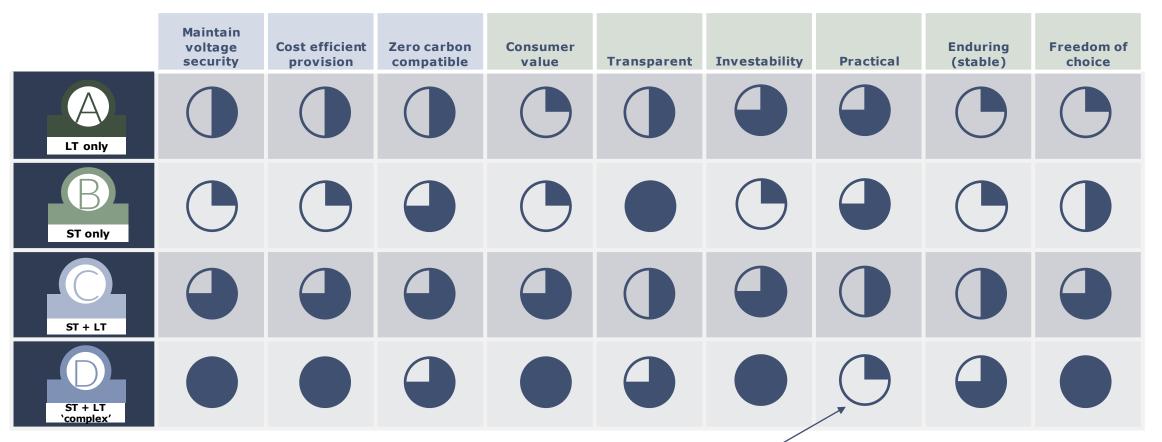
Commercial Conclusions

AFRY – Simon Bradbury, Stephen Woodhouse

Market objectives create a framework for evaluation of market design performance based on desired outcomes


4 broad design (strawman) options created based on combination of long and short timeframe; existing arrangements; different contract types; and other market feature variations

Note: Adjustment to arrangements such as ORPS are not considered within the scope of this project



A thorough appraisal of the merits and drawbacks of each model has been undertaken and will be shared

Overall, strawman D scores highest, reducing some of the complexity (trending towards option C) will make it more practical

Option D scores the highest but lacks practicality for both ESO and providers – conclusion is to go with a simplified version of D/more complex version of C

nationalgridESO

AFRY

The assessment concludes that a hybrid of C and D is the most pragmatic way forward whilst maximising benefits against the objectives

- Not preferred option because of unpredictability of demand.
- × Leads to over-procurement to maintain adequate system security, raising cost
- All risks needs to be mitigated by NGESO in the long term when degree of predictability is low
- × High barriers of entry for some technologies

Not a viable option because:

- × Exposing ESO to system security risk (beyond point of no return)
- × Limited incentives for new investment, limited suppliers and competition

✓ Combination of long term and short term market gives the best balance between system security and cost efficiency, while increasing consumer value by promoting competition from a wider range of technologies

- ✓ Adding peak contracts allows reducing over-procurement compared to baseload only, thus can save cost while also increasing freedom of choice.
- × Introducing overly-complex contracts makes market less practical and value less transparent

Long Term market with simple product(s) + Short Term dayahead market

Preferred solutions

			Long-term market	Short-term market	Description / rationale
Type of products		Products	 Pre-fault injection Pre-fault absorption Post-fault injection Post-fault absorption 	 Pre-fault injection Pre-fault absorption Post-fault injection Post-fault absorption 	4 products in both markets : – Pre and post fault – Absorption and injection
	÷	Product linking	 Possible to submit mutually exclusive bids or bundled bids for a combination of products 	 Possible to submit mutually exclusive bids or bundled bids for a combination of products 	 Participants can link products and make their offers mutually exclusive. Applicable for technologies capable of providing both injection and absorption, pre and post fault.
		Contract type	Baseload availability [+ Potential for Fixed shape/peak window products TBC]	4 hour EFA blocks	The different contract types are targeted at different needs and provider segments. ESO and some providers' preference for short term is EFA blocks initially.
nd provider ity	Locational Requirement	No	Requirements are assessed and communicated per node.		
		Procurement		ESO buys (expected) shortfall plus the	
ents and p eligibility		strategy	Shortfall + C	pportunistic	economically desirable (opportunistic) – incl. ORPS if it is cheaper than alternatives.

		Long-term market	Short-term market	Description / rationale		
Timeframe	Frequency of procurement	National annual procurement	National daily procurement for next day (D-1)	For the long-term market, the assessment of the forecast demand for additional reactive power will be run annual, potentially leading to no new need, and therefore no new long-term procurement.		
	Lead Time	[T-3]&[T-1]	D-1	Sufficient lead time for asset deployment, closure decisions, and operational decisions across the three time frames.		
	Product duration	[15 year]	[4 hour EFA blocks]	Aligns with other long-term contracts (CM, CfD) for the long-term market, control room preference for short-term arrangements		
mechanism	Payment structure	 Availability [+ utilisation] £/MVAr/h availability payment [£/MVAr/h utilisation via ORPS payment mechanism] 	 Availability + utilisation £/MVAr/h availability payment £/MVAr/h utilisation via ORPS payment mechanism 	Long term market mainly targeting high-capex & low variable cost – utilisation TBC. Short term market targeting high availability & variable cost or low availability & variable cost providers.		
	Clearing principles	Pay-a	Due to nodal nature of requirement and bundled products (multi-clearing price impractical)			
Pricing mech	Price cap	 TO owned asset solution depreciated over [15y] horizon for new build. Forecasted short term cost for opportunistic procurement 	Real-time alternative cost forecast (cost of meeting demand in balancing timeframes)	One tool to mitigate potential manifestation of market power given nature of reactive needs		
ά.	Settlement schedule	Monthly payments with annual availability reconciliation payment	Monthly payments	 Long term payment schedule in line with current pathfinders. Short term payment schedule in line with STOR market. 		
26 2022-02-17 COPYRIGHT &F PÖYRY AB REACTIVE POWER MARKET DESIGN PROJECT UPDATE						

Preferred solutions

		Long-term market	Short-term market	Description / rationale
ility ment	Availability requirement	High [95%]	Self-declared availability (firm) per market time unit	Failing to deliver (declared) availability/utilisation results in facing non- performance process
Availability Requiremen	Non- performance process	Penalties: Non-payment, becoming more `penal' below availability requirement (similar to current pathfinder approach)	Firm 'penalty' for non-delivery of declared availability (beyond non- payment [strong fixed penalty agreed price * X or agreed price + X])	Strong incentives to `show up' due to criticality of need. Simple to start with – desirable end state may be to expose participants to alternative costs depending on time frame.
Provider location	Effectiveness factor	 Effectiveness factor defined individually per node. Fixed at point of contracting for the whole contract duration 	 Effectiveness factor defined individually per node. Dynamic, i.e. changing frequently, to reflect changes towards reference node 	Provider effectiveness same as the node it connects to. Effectiveness factor for one period adjusted to minimum effectiveness of the contingency scenarios.

Q&A See link in the chat

nationalgridESO

Next steps

Yuting Dai

national**gridESO**

Next steps

- Final project report will be shared by the end of March
- Industry Webinar in April to discuss any points of clarification or questions on final report through Q&A
- All project information, recordings and outputs from previous work:

https://www.nationalgrideso.com/balancing-services/reactive-powerservices/reactive-reform-market-design

 Contact us via our Future of Balancing Services email address: <u>box.futureofbalancingservices@nationalgrideso.com</u>

Thank you all for listening to this recording.

