
TS 3.24.70 (RES) Dynamic System Monitoring (DSM)

Murray Yelland And Pooja Rughoo

ontents

Presentation Objective
What is Dynamic System Monitoring
Changes from previous specification.
Comparison to G99
Future Development Work

Presentation Objectives

To present an update to the TS3.24.70 Dynamic System Monitoring (DSM).

Provide some of the supporting ideas:

- Why are DSMs required.
- What changes have been made.
- Parallel/Future work.

Dynamic System Monitor (DSM)

What is DSM?

A Dynamic System Monitor (DSM) can capture:

- Transient events, in a similar manner to a fault recorder.
- Slow disturbances such as voltage depressions that last over multiple seconds.
- Harmonic data (limited).

Data is captured against an accurate time standard which makes it possible to compare the effects of an event across the system.

Technical Specification

The implementation of DSMs must comply with:

TS3.24.70 (RES) Dynamic System Monitoring (DSM) – Issue 1 – October 2014.

Current published standard is TS3.24.70 (RES) – Issue 2 – February 2018.

https://www.nationalgrideso.com/industryinformation/codes/grid-code/electrical-standardsdocuments

Why is the DSM required?

Codes and Contracts

Clause "ECC.6.6.1-System Monitoring" of the Grid Code has placed an explicit requirement on connectees to install DSM.

There is no explicit requirement on the ESO within the code.

History of the DSM

- First specifications that I have found date back to about 2006.
- "STCP 27-1 System Monitoring Performance Requirements" introduced requirement for TOs to provide data.
- The European code however brought in the requirement for Generators to install DSMs in 2019.

Changes from the previous specification

- Aligned to ENA G99.
 - Removal of text around server based architecture and other hardware specific requirements. The ESO is unconcerned about the underlying implementation of the device.
- Improved time specifications. Timing accuracy specifications have been included.

Changes from the previous specification

- **Increased sampling rate:** Sampling rate increased to 512 (from 256) samples per cycle. This increases bandwidth to 25.6kHz.
- Changes to accuracy requirements: The accuracy requirement is now gain based as opposed to offset based.
- Relaxation of the supporting software specification.
- Minimum instrument transformer specification added.

Comparison of TS3.24.70 and G99

- **G99:** Is more prescriptive on the hardware and on software.
- Timing specification is equivalent.
- Accuracy and triggering standards are equivalent.
 - Power Quality Monitoring is omitted in TS3.24.70 (RES).
 - Fault Recording is described in TS3.24.71 (RES).
- Instrument transformer specification are less prescriptive in T3.24.70 (RES).

Parallel Work

- In E&W some generator-installed DSMs are connected to a network. In Scotland functionally no units are connected via a network.
- For units not connected to networking data must be downloaded by customer and passed to the ESO.
- Project in progress to scope a solution for connecting an increased number of customers.

Future Work

• Optionally: Add in "Power Quality Metering" to specification.