GC0151 WAGCM2 Alternative Proposal Legal Text

Proposed changes legal text in CC

CC.6.3.15 Fault Ride Through

This section sets out the fault ride through requirements on Generating Units, Power Park Modules, DC Converters and OTSDUW Plant and Apparatus. Onshore Generating Units, Onshore Power Park Modules, Onshore DC Converters (including Embedded Medium Power Stations and Embedded DC Converter Stations not subject to a Bilateral Agreement and with an Onshore User System Entry Point (irrespective of whether they are located Onshore or Offshore)) and OTSDUW Plant and Apparatus are required to operate through System faults and disturbances as defined in CC.6.3.15.1 (a), CC.6.3.15.1 (b) and CC.6.3.15.3. Offshore GB Generators in respect of Offshore Generating Units at a Large Power Station, Offshore Power Park Modules at a Large Power Station and DC Converter Station owners in respect of Offshore DC Converters at a Large Power Station shall have the option of meeting either:

- (i) CC.6.3.15.1 (a), CC.6.3.15.1 (b) and CC.6.3.15.3, or:
- (ii) CC.6.3.15.2 (a), CC.6.3.15.2 (b) and CC.6.3.15.3

Offshore GB Generators and Offshore DC Converter owners, should notify The Company which option they wish to select within 28 days (or such longer period as The Company may agree, in any event this being no later than 3 months before the Completion Date of the offer for a final CUSC Contract which would be made following the appointment of the Offshore Transmission Licensee).

CC.6.3.15.1 Fault Ride through applicable to Generating Units, Power Park Modules and DC Converters and OTSDUW Plant and Apparatus

- (a) Short circuit faults on the **Onshore Transmission System** (which may include an **Interface Point**) at **Supergrid Voltage** up to 140ms in duration.
 - (i)(a)Each Generating Unit, DC Converter, or Power Park Module and any constituent Power Park Unit thereof and OTSDUW Plant and Apparatus shall be designed to remain transiently stable and connected to the System without tripping of any Generating Unit, DC Converter or Power Park Module and / or any constituent Power Park Unit, OTSDUW Plant and Apparatus, and for Plant and Apparatus installed on or after 1 December 2017, reactive compensation equipment, for a close-up solid three-phase short circuit fault or any unbalanced short circuit fault on the Onshore Transmission System (including in respect of OTSDUW Plant and Apparatus, the Interface Point) operating at Supergrid Voltages for a total fault clearance time of up to 140 ms. A solid three-phase or unbalanced earthed fault results in zero voltage on the faulted phase(s) at the point of fault. The duration of zero voltage is dependent on local Protection and circuit breaker operating times. Where The Company or Transmission Owner have agreed the duration of zero voltage and the fault clearance times are less than 140ms this will be specified in the Bilateral Agreement. Following fault clearance, recovery of the Supergrid Voltage on the Onshore Transmission System to 90% may take longer than 140ms as illustrated in Figure CC.6.3.15(a)(i)(a) and Appendix 4A Figures CC.A.4A.1 (a) and (b).

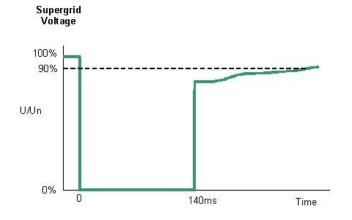
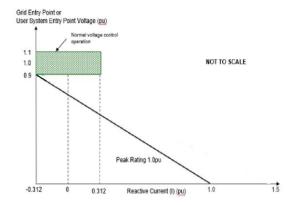



Figure CC.6.3.15(a)(i)(a)

- (i)(b)Each Generating Unit, DC Converter, or Power Park Module and any constituent Power Park Unit thereof and OTSDUW Plant and Apparatus shall remain transiently stable and connected to the System without tripping of any Generating Unit, DC Converter or Power Park Module and / or any constituent Power Park Unit, OTSDUW Plant and Apparatus, and for Plant and Apparatus installed on or after 1 December 2017, reactive compensation equipment, for any balanced and unbalanced fault where subjected to a voltage dip at either the Onshore Grid Entry Point or Interface Point as applicable where the voltage remains either on or within the envelope shown in figure CC.6.3.15(a)(i)(a) except where:
 - (i) the fault is on the User's System, when the Generating Unit, DC Converter, or Power Park Module and any constituent Power Park Unit thereof and OTSDUW Plant and Apparatus shall trip to clear the fault from the Transmission System._The protection schemes and settings should not jeopardise Fault Ride Through performance as specified in CC.6.3.15.1
 - (ii) the location of the fault means it cannot be fully cleared without tripping the of Generating Unit, DC Converter, or Power Park Module and any constituent Power Park Unit thereof and OTSDUW Plant shall trip as required.
 - (iii) clearance of the fault results in the Generating Unit, DC Converter, or Power Park Module or OTSDUW Plant becoming islanded and disconnected from the Total System and not supplying Customers (where CC.6.3.7(c)(i) applies), then the Generating Unit, DC Converter, or OTSDUW Plants shall be permitted to trip as required.
 - (iv) the Generating Unit, DC Converter, or Power Park Module and any constituent Power Park Unit thereof and OTSDUW Plant is part of combined protection scheme with the Transmission Operator, then the Generating Unit, DC Converter, or Power Park Module and any constituent

Power Park Unit thereof and **OTSDUW Plants** shall be permitted to trip as required.

- (v) the Generating Unit, DC Converter, or Power Park Module and any constituent Power Park Unit thereof and OTSDUW Plant is part of an intertripping scheme which is switched into service and triggered, then the Generating Unit, DC Converter, or Power Park Module and any constituent Power Park Unit thereof and OTSDUW Plants shall be permitted to trip as required.
- (vi) It should be noted in the case of an Offshore Generating Unit, Offshore DC Converter or Offshore Power Park Module (including any Offshore Power Park Unit thereof) which is connected to an Offshore Transmission System which includes a Transmission DC Converter as part of that Offshore Transmission System, the Offshore Grid Entry Point voltage may not indicate the presence of a fault on the Onshore Transmission System. The fault will affect the level of Active Power that can be transferred to the Onshore Transmission System and therefore subject the Offshore Generating Unit, Offshore DC Converter or Offshore Power Park Module (including any Offshore Power Park Unit thereof) to a load rejection
- (ii) Each Generating Unit, Power Park Module and OTSDUW Plant and Apparatus, shall be designed such that upon both clearance of the fault on the Onshore Transmission System as detailed in CC.6.3.15.1 (a) (i)(a) and within 0.5 seconds of the restoration of the voltage at the Onshore Grid Entry Point (for Onshore Generating Units or Onshore Power Park Modules) or Interface Point (for Offshore Generating Units, Offshore Power Park Modules or OTSDUW Plant and Apparatus) to the minimum levels specified in CC.6.1.4 (or within 0.5 seconds of restoration of the voltage at the User System Entry Point to 90% of nominal or greater if Embedded), Active Power output or in the case of OTSDUW Plant and Apparatus, Active Power transfer capability, shall be restored to at least 90% of the level available immediately before the fault within a tolerance of plus or minus 10% of the Registered Capacity. Once the Active Power output, or in the case of OTSDUW Plant and Apparatus, Active Power transfer capability, has been restored to the required level, Active Power oscillations shall be acceptable provided that:
 - the total **Active Energy** delivered during the period of the oscillations is at least that which would have been delivered if the **Active Power** was constant
 - the oscillations are adequately damped
- (iii) During the period of the fault as detailed in CC.6.3.15.1 (a) (i) (a) for which the voltage at the Grid Entry Point (or Interface Point in the case of OTSDUW Plant and Apparatus) is outside the limits specified in CC.6.1.4, each Generating Unit or Power Park Module or OTSDUW Plant and Apparatus shall generate maximum reactive current_inject a reactive current above the heavy black line shown in Figure CC.6.3.15(b)_without exceeding the transient rating limit of the Generating Unit, OTSDUW Plant and Apparatus or Power Park Module and / or any constituent Power Park Unit or reactive compensation equipment.

Figure CC.6.3.15(b)

For **Plant and Apparatus** installed on or after 1 December 2017, switched reactive compensation equipment (such as mechanically switched capacitors and reactors) shall be controlled such that it is not switched in or out of service during the fault but may act to assist in post fault voltage recovery.

- (iv) Each DC Converter shall be designed to meet the Active Power recovery characteristics (and OTSDUW DC Converter shall be designed to meet the Active Power transfer capability at the Interface Point) as specified in the Bilateral Agreement upon clearance of the fault on the Onshore Transmission System as detailed in CC.6.3.15.1 (a) (i).
- (b) **Supergrid Voltage** dips on the **Onshore Transmission System** greater than 140ms in duration
- (1b) Requirements applicable to Synchronous Generating Units subject to Supergrid Voltage dips on the Onshore Transmission System greater than 140ms in duration.

In addition to the requirements of CC.6.3.15.1 (a) each **Synchronous Generating Unit**, each with a **Completion Date** on or after **1 April 2005** shall:

(i) remain transiently stable and connected to the System without tripping of any Synchronous Generating Unit for balanced Supergrid Voltage dips and associated durations on the Onshore Transmission System (which could be at the Interface Point) anywhere on or above the heavy black line shown in Figure 5a. Appendix 4A and Figures CC.A.4A.3.2 (a), (b) and (c) provide an explanation and illustrations of Figure 5a; and,

NOT TO SCALE

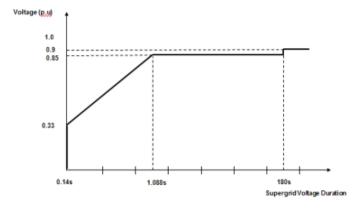


Figure 5a

- (ii) provide Active Power output at the Grid Entry Point, during Supergrid Voltage dips on the Onshore Transmission System as described in Figure 5a, at least in proportion to the retained balanced voltage at the Onshore Grid Entry Point (for Onshore Synchronous Generating Units) or Interface Point (for Offshore Synchronous Generating Units) (or the retained balanced voltage at the User System Entry Point if Embedded) and shall generate maximum reactive current inject a reactive current above the heavy black line shown in Figure CC.6.3.15(b)_(where the voltage at the Grid Entry Point is outside the limits specified in CC.6.1.4) without exceeding the transient rating limits of the Synchronous Generating Unit and,
- (iii) restore Active Power output following Supergrid Voltage dips on the Onshore Transmission System as described in Figure 5a, within 1 second of restoration of the voltage to 1.0p.u of the nominal voltage at the:

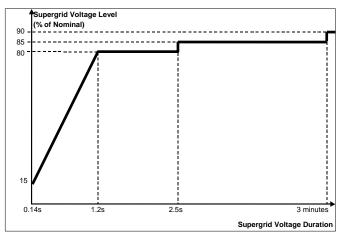
Onshore Grid Entry Point for directly connected Onshore Synchronous Generating Units or,

Interface Point for Offshore Synchronous Generating Units or,

User System Entry Point for Embedded Onshore Synchronous Generating Units or,

User System Entry Point for Embedded Medium Power Stations not subject to a Bilateral Agreement which comprise Synchronous Generating Units and with an Onshore User System Entry Point (irrespective of whether they are located Onshore or Offshore)

to at least 90% of the level available immediately before the occurrence of the dip. Once the **Active Power** output has been restored to the required level, **Active Power** oscillations shall be acceptable provided that:


- the total Active Energy delivered during the period of the oscillations is at least that which would have been delivered if the Active Power was constant
- the oscillations are adequately damped.

For the avoidance of doubt a balanced **Onshore Transmission System Supergrid Voltage** meets the requirements of CC.6.1.5 (b) and CC.6.1.6.

(2b) Requirements applicable to OTSDUW Plant and Apparatus and Power Park Modules subject to Supergrid Voltage dips on the Onshore Transmission System greater than 140ms in duration

In addition to the requirements of CC.6.3.15.1 (a) each **OTSDUW Plant and Apparatus** or each **Power Park Module** and / or any constituent **Power Park Unit**, each with a **Completion Date** on or after the 1 April 2005 shall:

(i) remain transiently stable and connected to the System without tripping of any OTSDUW Plant and Apparatus, or Power Park Module and / or any constituent Power Park Unit, for balanced Supergrid Voltage dips and associated durations on the Onshore Transmission System (which could be at the Interface Point) anywhere on or above the heavy black line shown in Figure 5b. Appendix 4A and Figures CC.A.4A.3.4 (a), (b) and (c) provide an explanation and illustrations of Figure 5b; and,

Figure 5b

(ii) provide Active Power output at the Grid Entry Point or in the case of an OTSDUW, Active Power transfer capability at the Transmission Interface Point, during Supergrid Voltage dips on the Onshore Transmission System as described in Figure 5b, at least in proportion to the retained balanced voltage at the Onshore Grid Entry Point (for Onshore Power Park Modules) or Interface Point (for OTSDUW Plant and Apparatus and Offshore Power Park Modules) (or the retained balanced voltage at the User System Entry Point if Embedded) except in the case of a Non-Synchronous Generating Unit or OTSDUW Plant and Apparatus or Power Park Module where there has been a reduction in the Intermittent Power Source or in the case of OTSDUW Active Power transfer capability in the time range in Figure 5b that restricts the Active Power output or in the case of an OTSDUW Active Power transfer capability below this level and shall generate maximum reactive current inject a reactive current above the heavy black line shown in Figure CC.6.3.15(b) (where the voltage at the Grid

Entry Point, or in the case of an OTSDUW Plant and Apparatus, the Interface Point voltage, is outside the limits specified in CC.6.1.4) without exceeding the transient rating limits of the OTSDUW Plant and Apparatus or Power Park Module and any constituent Power Park Unit; and,

(iii) restore Active Power output (or, in the case of OTSDUW, Active Power transfer capability), following Supergrid Voltage dips on the Onshore Transmission System as described in Figure 5b, within 1 second of restoration of the voltage at the:

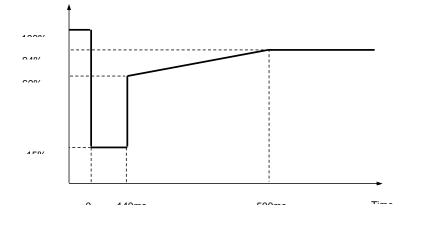
Onshore Grid Entry Point for directly connected Onshore Power Park Modules or,

Interface Point for OTSDUW Plant and Apparatus and Offshore Power Park Modules or,

User System Entry Point for Embedded Onshore Power Park Modules or,

User System Entry Point for Embedded Medium Power Stations which comprise Power Park Modules not subject to a Bilateral Agreement and with an Onshore User System Entry Point (irrespective of whether they are located Onshore or Offshore)

to the minimum levels specified in CC.6.1.4 to at least 90% of the level available immediately before the occurrence of the dip except in the case of a Non-Synchronous Generating Unit, OTSDUW Plant and Apparatus or Power Park Module where there has been a reduction in the Intermittent Power Source in the time range in Figure 5b that restricts the Active Power output or, in the case of OTSDUW, Active Power transfer capability below this level. Once the Active Power output or, in the case of OTSDUW, Active Power transfer capability has been restored to the required level, Active Power oscillations shall be acceptable provided that:


- the total Active Energy delivered during the period of the oscillations is at least that which would have been delivered if the Active Power was constant
- the oscillations are adequately damped.

For the avoidance of doubt a balanced **Onshore Transmission System Supergrid Voltage** meets the requirements of CC.6.1.5 (b) and CC.6.1.6.

CC.6.3.15.2 Fault Ride Through applicable to Offshore Generating Units at a Large Power Station, Offshore Power Park Modules at a Large Power Station and Offshore DC Converters at a Large Power Station who choose to meet the fault ride through requirements at the LV side of the Offshore Platform

- (a) Requirements on Offshore Generating Units, Offshore Power Park Modules and Offshore DC Converters to withstand voltage dips on the LV Side of the Offshore Platform for up to 140ms in duration as a result of faults and / or voltage dips on the Onshore Transmission System operating at Supergrid Voltage
 - (i) Each Offshore Generating Unit, Offshore DC Converter, or Offshore Power Park Module and any constituent Power Park Unit thereof shall remain transiently stable and connected to the System without tripping of any Offshore Generating Unit, or Offshore DC Converter or Offshore Power Park Module and / or any constituent Power Park Unit or, in the case of Plant and Apparatus installed on or after 1 December 2017, reactive

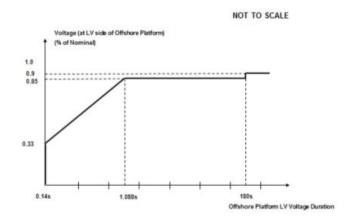
compensation equipment, for any balanced or unbalanced voltage dips on the LV Side of the Offshore Platform whose profile is anywhere on or above the heavy black line shown in Figure 6. For the avoidance of doubt, the profile beyond 140ms in Figure 6 shows the minimum recovery in voltage that will be seen by the generator following clearance of the fault at 140ms. Appendix 4B and Figures CC.A.4B.2 (a) and (b) provide further illustration of the voltage recovery profile that may be seen. It should be noted that in the case of an Offshore Generating Unit, Offshore DC Converter or Offshore Power Park Module (including any Offshore Power Park Unit thereof) which is connected to an Offshore Transmission System which includes a Transmission DC Converter as part of that Offshore Transmission System, the Offshore Grid Entry Point voltage may not indicate the presence of a fault on the Onshore Transmission System. The voltage dip will affect the level of Active Power that can be transferred to the Onshore Transmission System and therefore subject the Offshore Generating Unit, Offshore DC Converter or Offshore Power Park Module (including any Offshore Power Park Unit thereof) to a load rejection.

Figure 6

 V/V_N is the ratio of the actual voltage on one or more phases at the LV Side of the Offshore Platform to the nominal voltage of the LV Side of the Offshore Platform.

(ii) Each Offshore Generating Unit, or Offshore Power Park Module and any constituent Power Park Unit thereof shall provide Active Power output, during voltage dips on the LV Side of the Offshore Platform as described in Figure 6, at least in proportion to the retained voltage at the LV Side of the Offshore Platform except in the case of an Offshore Non-Synchronous Generating Unit or Offshore Power Park Module where there has been a reduction in the Intermittent Power Source in the time range in Figure 6 that restricts the Active Power output below this level and shall generate maximum reactive current inject a reactive current above the heavy black line shown in Figure CC.6.3.15(b)_without exceeding the transient rating limits of the Offshore Generating Unit or Offshore Power Park Module and any constituent Power Park Unit or, in the case of Plant and Apparatus installed on or after 1 December 2017, reactive compensation equipment. Once the

Active Power output has been restored to the required level, Active Power oscillations shall be acceptable provided that:


- the total Active Energy delivered during the period of the oscillations is at least that which would have been delivered if the Active Power was constant
- the oscillations are adequately damped

and;

- (iii) Each Offshore DC Converter shall be designed to meet the Active Power recovery characteristics as specified in the Bilateral Agreement upon restoration of the voltage at the LV Side of the Offshore Platform.
- (b) Requirements of Offshore Generating Units, Offshore Power Park Modules, to withstand voltage dips on the LV Side of the Offshore Platform greater than 140ms in duration.
- (1b) Requirements applicable to Offshore Synchronous Generating Units to withstand voltage dips on the LV Side of the Offshore Platform greater than 140ms in duration.

In addition to the requirements of CC.6.3.15.2. (a) each **Offshore Synchronous Generating Unit** shall:

(i) remain transiently stable and connected to the System without tripping of any Offshore Synchronous Generating Unit for any balanced voltage dips on the LV side of the Offshore Platform and associated durations anywhere on or above the heavy black line shown in Figure 7a. Appendix 4B and Figures CC.A.4B.3.2 (a), (b) and (c) provide an explanation and illustrations of Figure 7a. It should be noted that in the case of an Offshore Synchronous Generating Unit which is connected to an Offshore Transmission System which includes a Transmission DC Converter as part of that Offshore Transmission System, the Offshore Grid Entry Point voltage may not indicate the presence of a voltage dip on the Onshore Transmission System. The voltage dip will affect the level of Active Power that can be transferred to the Onshore Transmission System and therefore subject the Offshore Generating Unit, to a load rejection.

- (ii) provide Active Power output, during voltage dips on the LV Side of the Offshore Platform as described in Figure 7a, at least in proportion to the retained balanced or unbalanced voltage at the LV Side of the Offshore Platform and shall generate maximum reactive current_inject a reactive current above the heavy black line shown in Figure CC.6.3.15(b)_(where the voltage at the Offshore Grid Entry Point is outside the limits specified in CC.6.1.4) without exceeding the transient rating limits of the Offshore Synchronous Generating Unit and,
- (iii) within 1 second of restoration of the voltage to 1.0p.u of the nominal voltage at the LV Side of the Offshore Platform, restore Active Power to at least 90% of the Offshore Synchronous Generating Unit's immediate predisturbed value, unless there has been a reduction in the Intermittent Power Source in the time range in Figure 7a that restricts the Active Power output below this level. Once the Active Power output has been restored to the required level, Active Power oscillations shall be acceptable provided that:
 - the total Active Energy delivered during the period of the oscillations is at least that which would have been delivered if the Active Power was constant
 - the oscillations are adequately damped
- (2b) Requirements applicable to Offshore Power Park Modules to withstand voltage dips on the LV Side of the Offshore Platform greater than 140ms in duration.

In addition to the requirements of CC.6.3.15.2. (a) each Offshore Power Park Module and / or any constituent Power Park Unit, shall:

(i) remain transiently stable and connected to the System without tripping of any Offshore Power Park Module and / or any constituent Power Park Unit, for any balanced voltage dips on the LV side of the Offshore Platform and associated durations anywhere on or above the heavy black line shown in Figure 7b. Appendix 4B and Figures CC.A.4B.5. (a), (b) and (c) provide an explanation and illustrations of Figure 7b. It should be noted that in the case of an Offshore Power Park Module (including any Offshore Power Park Unit thereof) which is connected to an Offshore Transmission System which includes a Transmission DC Converter as part of that Offshore Transmission System, the Offshore Grid Entry Point voltage may not indicate the presence of a voltage dip on the Onshore Transmission System. The voltage dip will affect the level of Active Power that can be transferred to the Onshore Transmission System and therefore subject the Offshore Power Park Module (including any Offshore Power Park Unit thereof) to a load rejection.

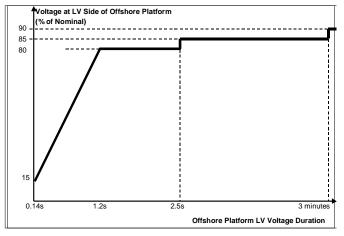


Figure 7b

- provide Active Power output, during voltage dips_on the LV Side of the (ii) Offshore Platform as described in Figure 7b, at least in proportion to the retained balanced or unbalanced voltage at the LV Side of the Offshore Platform except in the case of an Offshore Non-Synchronous Generating Unit or Offshore Power Park Module where there has been a reduction in the Intermittent Power Source in the time range in Figure 7b that restricts the Active Power output below this level and shall generate maximum reactive current inject a reactive current above the heavy black line shown in Figure CC.6.3.15(b) (where the voltage at the Offshore Grid Entry Point is outside the limits specified in CC.6.1.4) without exceeding the transient rating limits of the Offshore Power Park Module and any constituent Power Park Unit or reactive compensation equipment. For Plant and Apparatus installed on or after 1 December 2017, switched reactive compensation equipment (such as mechanically switched capacitors and reactors) shall be controlled such that it is not switched in or out of service during the fault but may act to assist in post fault voltage recovery; and,
- (iii) within 1 second of the restoration of the voltage at the LV Side of the Offshore Platform (to the minimum levels specified in CC.6.1.4) restore Active Power to at least 90% of the Offshore Power Park Module's immediate pre-disturbed value, unless there has been a reduction in the Intermittent Power Source in the time range in Figure 7b that restricts the Active Power output below this level. Once the Active Power output has been restored to the required level, Active Power oscillations shall be acceptable provided that:

- the total Active Energy delivered during the period of the oscillations is at least that which would have been delivered if the Active Power was constant
- the oscillations are adequately damped

CC.6.3.15.3 Other Requirements

- (i) In the case of a Power Park Module (comprising of wind-turbine generator units), the requirements in CC.6.3.15.1 and CC.6.3.15.2 do not apply when the Power Park Module is operating at less than 5% of its Rated MW or during very high wind speed conditions when more than 50% of the wind turbine generator units in a Power Park Module have been shut down or disconnected under an emergency shutdown sequence to protect GB Code User's Plant and Apparatus.
- (ii) In addition to meeting the conditions specified in CC.6.1.5(b) and CC.6.1.6, each Non-Synchronous Generating Unit, OTSDUW Plant and Apparatus or Power Park Module with a Completion Date after 1 April 2005 and any constituent Power Park Unit thereof will be required to withstand, without tripping, the negative phase sequence loading incurred by clearance of a close-up phase-tophase fault, by System Back-Up Protection on the Onshore Transmission System operating at Supergrid Voltage.
- (iii) In the case of an Onshore Power Park Module in Scotland with a Completion Date before 1 January 2004 and a Registered Capacity less than 30MW the requirements in CC.6.3.15.1 (a) do not apply. In the case of an Onshore Power Park Module in Scotland with a Completion Date on or after 1 January 2004 and before 1 July 2005 and a Registered Capacity less than 30MW the requirements in CC.6.3.15.1 (a) are relaxed from the minimum Onshore Transmission System Supergrid Voltage of zero to a minimum Onshore Transmission System Supergrid Voltage of 15% of nominal. In the case of an Onshore Power Park Module in Scotland with a Completion Date before 1 January 2004 and a Registered Capacity of 30MW and above the requirements in CC.6.3.15.1 (a) are relaxed from the minimum Onshore Transmission System Supergrid Voltage of zero to a minimum Onshore Transmission System Supergrid Voltage of zero to a minimum Onshore Transmission System Supergrid Voltage of zero to a minimum Onshore Transmission System Supergrid Voltage of zero to a minimum Onshore Transmission System Supergrid Voltage of 15% of nominal.
- (iv) To avoid unwanted island operation, Non-Synchronous Generating Units in Scotland (and those directly connected to a Scottish Offshore Transmission System), Power Park Modules in Scotland (and those directly connected to a Scottish Offshore Transmission System), or OTSDUW Plant and Apparatus with an Interface Point in Scotland shall be tripped for the following conditions:
 - (1) Frequency above 52Hz for more than 2 seconds
 - (2) Frequency below 47Hz for more than 2 seconds
 - (3) Voltage as measured at the Onshore Connection Point or Onshore User System Entry Point or Offshore Grid Entry Point or Interface Point in the case of OTSDUW Plant and Apparatus is below 80% for more than 2.5 seconds
 - (4) Voltage as measured at the Onshore Connection Point or Onshore User System Entry Point or Offshore Grid Entry Point or Interface Point in the case of OTSDUW Plant and Apparatus is above 120% (115% for 275kV) for more than 1 second.

The times in sections (1) and (2) are maximum trip times. Shorter times may be used to protect the **Non-Synchronous Generating Units**, or **OTSDUW Plant and Apparatus** or **Power Park Modules**.

(v) Users and Network Operators shall ensure voltage sensitive relays installed to protect the User's plant and / or apparatus or Network Operator's asset are configured such that they will not prevent correct operation of the Fault-Ride-Through capability of the User's equipment (or Network Operator's assets) against the relevant Voltage-Time curves. For example,

- Over-voltage protection shall be configured to be insensitive to transient overvoltages of at least 1.20pu for at least 0.5 seconds.
- Under-voltage protection shall be configured to be insensitive for transient undervoltages of below 0.8pu for at least 3 seconds

Proposed changes legal text in ECC

ECC.6.3.15 FAULT RIDE THROUGH

- ECC.6.3.15.1 General Fault Ride Through requirements, principles and concepts applicable to Type B, Type C and Type D Power Generating Modules and OTSDUW Plant and Apparatus subject to faults up to 140ms in duration
- ECC.6.3.15.1.1 ECC.6.3.15.1 ECC.6.3.15.8 section sets out the Fault Ride Through requirements on Type B, Type C and Type D Power Generating Modules, OTSDUW Plant and Apparatus and HVDC Equipment that shall apply in the event of a fault lasting up to 140ms in duration.
- ECC.6.3.15.1.2 Each Power Generating Module, Power Park Module, HVDC Equipment and OTSDUW Plant and Apparatus is required to remain connected and stable for any balanced and unbalanced fault where the voltage at the Grid Entry Point or User System Entry Point or (HVDC Interface Point in the case of Remote End DC Converter Stations or Interface Point in the case of OTSDUW Plant and Apparatus) remains on or above the heavy black line defined in sections ECC.6.3.15.2 – ECC.6.3.15.7 below.
- ECC.6.3.15.1.3 The voltage against time curves defined in ECC.6.3.15.2 ECC.6.3.15.7 expresses the lower limit (expressed as the ratio of its actual value and its reference 1pu) of the actual course of the phase to phase voltage (or phase to earth voltage in the case of asymmetrical/unbalanced faults) on the **System** voltage level at the **Grid Entry Point** or **User System Entry Point** (or **HVDC Interface Point** in the case of **Remote End HVDC Converter Stations** or **Interface Point** in the case of **OTSDUW Plant and Apparatus**) during a symmetrical or asymmetrical/unbalanced fault, as a function of time before, during and after the fault.
- ECC.6.3.15.2 Voltage against time curve and parameters applicable to Type B Synchronous Power Generating Modules

Commented [TB1]: Requires legal review

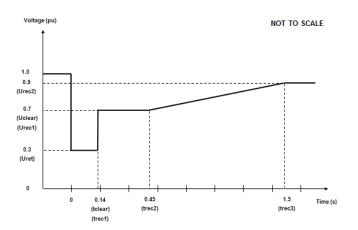
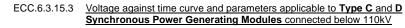
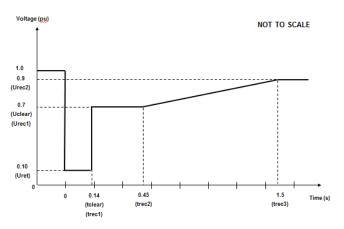




Figure ECC.6.3.15.2 - Voltage against time curve applicable to Type B Synchronous Power Generating Modules

Voltage parameters (pu)		Time parameters (seconds)	
Uret	0.3	tclear	0.14
Uclear	0.7	trec1	0.14
Urec1	0.7	trec2	0.45
Urec2	0.9	trec3	1.5

Table ECC.6.3.15.2 Voltage against time parameters applicable to **Type B** Synchronous Power Generating Modules

Voltage parameters (pu)		Time parameters (seconds)	
Uret	0.1	tclear	0.14
Uclear	0.7	trec1	0.14
Urec1	0.7	trec2	0.45
Urec2	0.9	trec3	1.5

Figure ECC.6.3.15.3 - Voltage against time curve applicable to **Type C** and **D Synchronous Power Generating Modules** connected below 110kV

Table ECC.6.3.15.3 Voltage against time parameters applicable to ${\bf Type}~{\bf C}$ and ${\bf D}~{\bf Synchronous}~{\bf Power}~{\bf Generating}~{\bf Modules}$ connected below 110kV

ECC.6.3.15.4 Voltage against time curve and parameters applicable to **Type D Synchronous Power Generating Modules** connected at or above 110kV

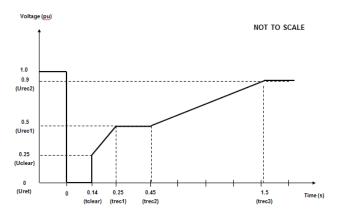


Figure ECC.6.3.15.4 - Voltage against time curve applicable to Type D Synchronous Power Generating Modules connected at or above 110kV

Voltage parameters (pu)		Time parameters (seconds)	
Uret	0	tclear	0.14
Uclear	0.25	trec1	0.25
Urec1	0.5	trec2	0.45
Urec2	0.9	trec3	1.5

Table ECC.6.3.15.4 Voltage against time parameters applicable to **Type D** Synchronous Power Generating Modules connected at or above 110kV

ECC.6.3.15.5 Voltage against time curve and parameters applicable to **Type B**, **C** and **D Power** Park Modules connected below 110kV

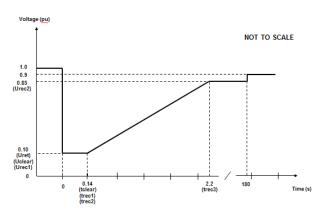


Figure ECC.6.3.15.5 - Voltage against time curve applicable to ${\bf Type}~{\bf B},~{\bf C}$ and ${\bf D}~{\bf Power}~{\bf Park}~{\bf Modules}$ connected below 110kV

Voltage parameters (pu)		Time parameters (seconds)	
Uret	0.10	tclear	0.14
Uclear	0.10	trec1	0.14
Urec1	0.10	trec2	0.14
Urec2	0.85	trec3	2.2

Table ECC.6.3.15.5 Voltage against time parameters applicable to Type B, C and D Power Park Modules connected below 110kV

ECC.6.3.15.6 Voltage against time curve and parameters applicable to Type D Power Park Modules with a Grid Entry Point or User System Entry Point at or above 110kV, DC Connected Power Park Modules at the HVDC Interface Point or OTSDUW Plant and Apparatus at the Interface Point.

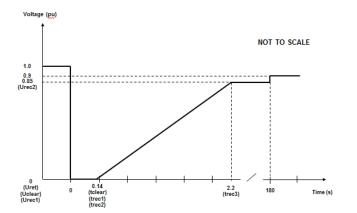
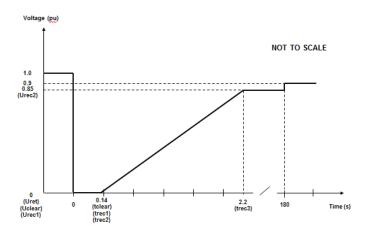
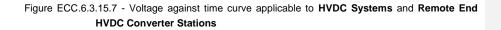




Figure ECC.6.3.15.6 - Voltage against time curve applicable to **Type D Power Park Modules** with a **Grid Entry Point** or **User System Entry Point** at or above 110kV, **DC Connected Power Park Modules** at the **HVDC Interface Point** or **OTSDUW Plant and Apparatus** at the **Interface Point**.

Voltage parameters (pu)		Time parameters (seconds)	
Uret	0	tclear	0.14
Uclear	0	trec1	0.14
Urec1	0	trec2	0.14
Urec2	0.85	trec3	2.2
		.	*

- Table ECC.6.3.15.6 Voltage against time parameters applicable to a **Type D Power Park Modules** with a **Grid Entry Point** or **User System Entry Point** at or above 110kV, **DC Connected Power Park Modules** at the **HVDC Interface Point** or **OTSDUW Plant and Apparatus** at the **Interface Point**.
- ECC.6.3.15.7 Voltage against time curve and parameters applicable to HVDC Systems and Remote End HVDC Converter Stations

Voltage parameters (pu)		Time parameters (seconds)	
Uret	0	tclear	0.14
Uclear	0	trec1	0.14
Urec1	0	trec2	0.14
Urec2	0.85	trec3	2.2

Table ECC.6.3.15.7 Voltage against time parameters applicable to HVDC Systems and Remote End HVDC Converter Stations

ECC.6.3.15.8 In addition to the requirements in ECC.6.3.15.1 – ECC.6.3.15.7:

- (i) Each Type B, Type C and Type D Power Generating Module at the Grid Entry Point or User System Entry Point, HVDC Equipment (or OTSDUW Plant and Apparatus at the Interface Point) shall be capable of satisfying the above requirements when operating at Rated MW output and maximum leading Power Factor.
- (ii) The Company will specify upon request by the User the pre-fault and post fault short circuit capacity (in MVA) at the Grid Entry Point or User System Entry Point (or HVDC Interface Point in the case of a remote end HVDC Converter Stations or Interface Point in the case of OTSDUW Plant and Apparatus).
- (iii) The pre-fault voltage shall be taken to be 1.0pu and the post fault voltage shall not be less than 0.9pu.

- (iv) To allow a User to model the Fault Ride Through performance of its Type B, Type C and/or Type D Power Generating Modules or HVDC Equipment, The Company will provide additional network data as may reasonably be required by the EU Code User to undertake such study work in accordance with PC.A.8. Alternatively, The Company may provide generic values derived from typical cases.
- (v) The Company will publish fault level data under maximum and minimum demand conditions in the Electricity Ten Year Statement.
- (vi) Each EU Generator (in respect of Type B, Type C, Type D Power Generating Modules and DC Connected Power Park Modules) and HVDC System Owners (in respect of HVDC Systems) shall satisfy the requirements in ECC.6.3.15.8(i) – (vii) unless the protection schemes and settings for internal electrical faults trips the Type B, Type C and Type D Power Generating Module, HVDC Equipment (or OTSDUW Plant and Apparatus) from the System. Specifically when subjected to a voltage dip shall satisfy the requirements in ECC.6.3.15.8(i) – (vii) except where:
 - the location of the fault means it cannot be fully cleared without tripping of Type B, Type C and Type D Power Generating Module, HVDC Equipment (or OTSDUW Plant and Apparatus) shall trip as required.
 - (ii) clearance of the fault results in the Type B, Type C and Type D Power Generating Module, HVDC Equipment (or OTSDUW Plant and Apparatus) becoming islanded and disconnected from the Total System and not supplying Customers (where ECC.6.3.5.5 and ECC.6.3.7.1.5 apply), then the Type B, Type C and Type D Power Generating Module, HVDC Equipment (or OTSDUW Plant and Apparatus) shall be permitted to trip as required.
 - (iii) the Type B, Type C and Type D Power Generating Module, HVDC Equipment (or OTSDUW Plant and Apparatus) is part of a combined protection scheme with the Transmission Operator, then the Type B, Type C and Type D Power Generating Module, HVDC Equipment (or OTSDUW Plant and Apparatus) shall be permitted to trip as required.
 - (iv) the Type B, Type C and Type D Power Generating Module, HVDC Equipment (or OTSDUW Plant and Apparatus) is part of an intertrip scheme which is switched into service and triggered, then the Type B, Type C and Type D Power Generating Module, HVDC Equipment (or OTSDUW Plant and Apparatus) shall be permitted to trip as required.

The protection schemes and settings should not jeopardise Fault Ride Through performance as specified in ECC.6.3.15.8(i) – (vii). The undervoltage protection at the Grid Entry Point or User System Entry Point (or HVDC Interface Point in the case of a Remote End HVDC Converter Stations or Interface Point in the case of OTSDUW Plant and Apparatus) shall be set by the EU Generator (or HVDC System Owner or OTSDUA in the case of OTSDUW Plant and Apparatus) according to the widest possible range unless The Company and the EU Code User have agreed to narrower settings. All protection settings associated with undervoltage protection shall be agreed between the EU Generator and/or HVDC System Owner with The Company and Relevant Transmission Licensee's and relevant Network Operator (as applicable).

- (vii) Each Type B, Type C and Type D Power Generating Module, HVDC System and OTSDUW Plant and Apparatus at the Interface Point shall be designed such that upon clearance of the fault on the Onshore Transmission System and within 0.5 seconds of restoration of the voltage at the Grid Entry Point or User System Entry Point or HVDC Interface Point in the case of a Remote End HVDC Converter Stations or Interface Point in the case of OTSDUW Plant and Apparatus to 90% of nominal voltage or greater, Active Power output (or Active Power transfer capability in the case of OTSDW Plant and Apparatus or Remote End HVDC Converter Stations) shall be restored to at least 90% of the level immediately before the fault within a tolerance of plus or minus 10% of the Rated Capacity. Once Active Power output (or Active Power transfer capability in the case of OTSDUW Plant and Apparatus or Remote End HVDC Converter Stations) has been restored to the required level, Active Power oscillations shall be acceptable provided that:
 - The total **Active Energy** delivered during the period of the oscillations is at least that which would have been delivered if the **Active Power** was constant
 - The oscillations are adequately damped.
 - In the event of power oscillations, **Power Generating Modules** shall retain steady state stability when operating at any point on the **Power Generating Module Performance Chart**.

For AC Connected **Onshore** and **Offshore Power Park Modules** comprising switched reactive compensation equipment (such as mechanically switched capacitors and reactors), such switched reactive compensation equipment shall be controlled such that it is not switched in or out of service during the fault but may act to assist in post fault voltage recovery.

- ECC.6.3.15.9 General Fault Ride Through requirements for faults in excess of 140ms in duration.
- ECC.6.3.15.9.1 <u>General Fault Ride Through requirements applicable to HVDC Equipment and</u> <u>OTSDUW DC Converters subject to faults and voltage dips in excess of 140ms.</u>
- ECC.6.3.15.9.1.1 The requirements applicable to HVDC Equipment including OTSDUW DC Converters subject to faults and voltage disturbances at the Grid Entry Point or User System Entry Point or Interface Point or HVDC Interface Point, including Active Power transfer capability shall be specified in the Bilateral Agreement.
- ECC.6.3.15.9.2 Fault Ride Through requirements for Type C and Type D Synchronous Power Generating Modules and Type C and Type D Power Park Modules and OTSDUW Plant and Apparatus subject to faults and voltage disturbances on the Onshore Transmission System in excess of 140ms

- ECC.6.3.15.9.2.1 The Fault Ride Through requirements for Type C and Type D Synchronous Power Generating Modules subject to faults and voltage disturbances <u>on the</u> <u>Onshore Transmission System</u> in excess of 140ms are defined in ECC.6.3.15.9.2.1(a) and the Fault Ride Through Requirements for Power Park Modules and OTSDUW Plant and Apparatus subject to faults and voltage disturbances <u>on the Onshore Transmission System</u> greater than 140ms in <u>duration are defined in ECC.6.3.15.9.2.1(b).</u>
 - (a) Requirements applicable to Synchronous Power Generating Modules subject to Supergrid Voltage dips on the Onshore Transmission System greater than 140ms in duration.

In addition to the requirements of ECC.6.3.15.1 – ECC.6.3.15.8 each Synchronous Power Generating Module shall:

(i) remain transiently stable and connected to the System without tripping of any Synchronous Power Generating Module for balanced Supergrid Voltage dips and associated durations on the Onshore Transmission System (which could be at the Interface Point) anywhere on or above the heavy black line shown in Figure ECC.6.3.15.9(a) Appendix 4 and Figures EA.4.3.2(a), (b) and (c) provide an explanation and illustrations of Figure ECC.6.3.15.9(a); and,

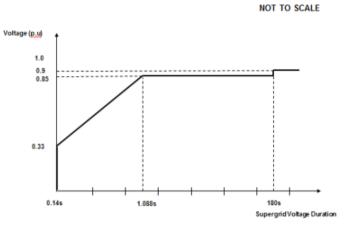
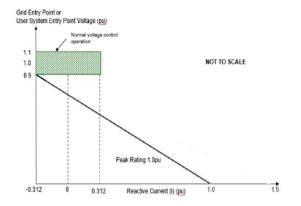



Figure ECC.6.3.15.9(a)

(ii) provide Active Power output at the Grid Entry Point, during Supergrid Voltage dips on the Onshore Transmission System as described in Figure ECC.6.3.15.9(a), at least in proportion to the retained balanced voltage at the Onshore Grid Entry Point (for Onshore Synchronous Power Generating Modules) or Interface Point (for Offshore Synchronous Power Generating Modules) (or the retained balanced voltage at the User System Entry Point if Embedded) and shall generate maximum reactive current inject a reactive current above the heavy black line shown in Figure ECC.6.3.15.9(b)_ (where the voltage at the Grid Entry Point is outside the limits specified in ECC.6.1.4) without exceeding the transient rating limits of the Synchronous Power Generating Module and,

Figure ECC.6.3.15.9(b)

 (iii) restore Active Power output following Supergrid Voltage dips on the Onshore Transmission System as described in Figure ECC.6.3.15.9(a), within 1 second of restoration of the voltage to 1.0pu of the nominal voltage at the:

> Onshore Grid Entry Point for directly connected Onshore Synchronous Power Generating Modules or,

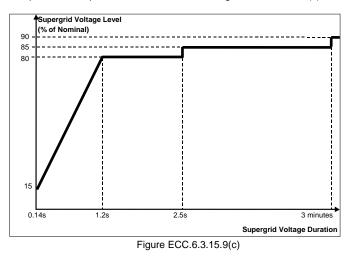
Interface Point for Offshore Synchronous Power Generating Modules

User System Entry Point for Embedded Onshore Synchronous Power Generating Modules

or,

or.

User System Entry Point for Embedded Medium Power Stations not subject to a Bilateral Agreement which comprise Synchronous Generating Units and with an Onshore User System Entry Point (irrespective of whether they are located Onshore or Offshore)


to at least 90% of the level available immediately before the occurrence of the dip. Once the **Active Power** output has been restored to the required level, **Active Power** oscillations shall be acceptable provided that:

- the total Active Energy delivered during the period of the oscillations is at least that which would have been delivered if the Active Power was constant
- the oscillations are adequately damped.

For the avoidance of doubt a balanced **Onshore Transmission System Supergrid Voltage** meets the requirements of ECC.6.1.5 (b) and ECC.6.1.6.

(b) Requirements applicable to Type C and Type D Power Park Modules and OTSDUW Plant and Apparatus (excluding OTSDUW DC Converters) subject to Supergrid Voltage dips on the Onshore Transmission System greater than 140ms in duration. In addition to the requirements of ECC.6.3.15.5, ECC.6.3.15.6 and ECC.6.3.15.8 (as applicable) each **OTSDUW Plant and Apparatus** or each **Power Park Module** and / or any constituent **Power Park Unit**, shall:

(i) remain transiently stable and connected to the System without tripping of any OTSDUW Plant and Apparatus, or Power Park Module and / or any constituent Power Park Unit, for balanced Supergrid Voltage dips and associated durations on the Onshore Transmission System (which could be at the Interface Point) anywhere on or above the heavy black line shown in Figure ECC.6.3.15.9(c). Appendix 4 and Figures EA.4.3.4 (a), (b) and (c) provide an explanation and illustrations of Figure ECC.6.3.15.9(c); and,

- (ii) be required to satisfy the requirements of ECC.6.3.16. In the case of a Non-Synchronous Generating Unit or OTSDUW Plant and Apparatus or Power Park Module where there has been a reduction in the Intermittent Power Source or in the case of OTSDUW Active Power transfer capability in the time range in Figure ECC.6.3.15.9(c) an allowance shall be made for the fall in input power and the corresponding reduction of real and reactive current.
- (iii) restore Active Power output (or, in the case of OTSDUW, Active Power transfer capability), following Supergrid Voltage dips on the Onshore Transmission System as described in Figure ECC.6.3.15.9(c), within 1 second of restoration of the voltage at the:

Onshore Grid Entry Point for directly connected Onshore Power Park Modules or,

Interface Point for OTSDUW Plant and Apparatus and Offshore Power Park Modules or,

User System Entry Point for Embedded Onshore Power Park Modules or ,

User System Entry Point for Embedded Medium Power Stations which comprise Power Park Modules not subject to a Bilateral Agreement and with an Onshore User System Entry Point (irrespective of whether they are located Onshore or Offshore)

to the minimum levels specified in ECC.6.1.4 to at least 90% of the level available immediately before the occurrence of the dip except in the case of a Non-Synchronous Generating Unit, OTSDUW Plant and Apparatus or Power Park Module where there has been a reduction in the Intermittent Power Source in the time range in Figure ECC.6.3.15.9(c) that restricts the Active Power output or, in the case of OTSDUW, Active Power transfer capability below this level. Once the Active Power output or, in the case of OTSDUW, Active Power transfer capability has been restored to the required level, Active Power oscillations shall be acceptable provided that:

- the total Active Energy delivered during the period of the oscillations is at least that which would have been delivered if the Active Power was constant
- the oscillations are adequately damped.

For the avoidance of doubt a balanced **Onshore Transmission System Supergrid Voltage** meets the requirements of ECC.6.1.5 (b) and ECC.6.1.6.

ECC.6.3.15.10 Other Fault Ride Through Requirements

- (i) In the case of a Power Park Module, the requirements in ECC.6.3.15.9 do not apply when the Power Park Module is operating at less than 5% of its Rated MW or during very high primary energy source conditions when more than 50% of the Power Park Units in a Power Park Module have been shut down or disconnected under an emergency shutdown sequence to protect User's Plant and Apparatus.
- (ii) In addition to meeting the conditions specified in ECC.6.1.5(b) and ECC.6.1.6, each Non-Synchronous Generating Unit, OTSDUW Plant and Apparatus or Power Park Module and any constituent Power Park Unit thereof will be required to withstand, without tripping, the negative phase sequence loading incurred by clearance of a close-up phase-to-phase fault, by System Back-Up Protection on the Onshore Transmission System operating at Supergrid Voltage.
- (iii) Generators in respect of Type B, Type C and Type D Power Park Modules and HVDC System Owners are required to confirm to The Company, their repeated ability to operate through balanced and unbalanced faults and System disturbances each time the voltage at the Grid Entry Point or User System Entry Point falls outside the limits specified in ECC.6.1.4. Demonstration of this capability would be satisfied by EU Generators and HVDC System Owners supplying the protection settings of their plant, informing The Company of the maximum number of repeated operations that can be performed under such conditions and any limiting factors to repeated operation such as protection or thermal rating; and
- (iv) Notwithstanding the requirements of ECC.6.3.15(v), Power Generating Modules shall be capable of remaining connected during single phase or three phase autoreclosures to the National Electricity Transmission System and operating without power reduction as long as the voltage and frequency remain within the limits defined in ECC.6.1.4 and ECC.6.1.2; and
- (v) For the avoidance of doubt the requirements specified in ECC.6.3.15 do not apply to Power Generating Modules connected to either an unhealthy circuit and/or islanded from the Transmission System even for delayed auto reclosure times.
- (vi) To avoid unwanted island operation, Non-Synchronous Generating Units in Scotland (and those directly connected to a Scottish Offshore Transmission System), Power Park Modules in Scotland (and those directly connected to a Scottish Offshore Transmission System), or OTSDUW Plant and Apparatus with an Interface Point in Scotland shall be tripped for the following conditions:
 - (1) **Frequency** above 52Hz for more than 2 seconds
 - (2) Frequency below 47Hz for more than 2 seconds

(3) Voltage as measured at the Onshore Connection Point or Onshore
User System Entry Point or Offshore Grid Entry Point or Interface Point
in the case of OTSDUW Plant and Apparatus is below 80% for more than
2.5 seconds

Voltage as measured at the Onshore Connection Point or Onshore User System Entry Point or Offshore Grid Entry Point or Interface Point in the case of OTSDUW Plant and Apparatus is above 120% (115% for 275kV) for more than 1 second. The times in sections (1) and (2) are maximum trip times. Shorter times may be used to protect the Non-Synchronous Generating Units, or OTSDUW Plant and Apparatus.

(v) Users and Network Operators shall ensure voltage sensitive relays installed to protect the User's plant and / or apparatus or Network Operator's asset are configured such that they will not prevent correct operation of the Fault-Ride-Through capability of the User's equipment (or Network Operator's assets) against the relevant Voltage-Time curves. For example,

- Over-voltage protection shall be configured to be insensitive to transient overvoltages of at least 1.20pu for at least 0.5 seconds
- Under-voltage protection shall be configured to be insensitive for transient undervoltages of below 0.8pu for at least 3 seconds

ECC.6.3.15.11 HVDC System Robustness

- ECC.6.3.15.11.1 The **HVDC System** shall be capable of finding stable operation points with a minimum change in **Active Power** flow and voltage level, during and after any planned or unplanned change in the **HVDC System** or AC **System** to which it is connected. **The Company** shall specify the changes in the System conditions for which the **HVDC Systems** shall remain in stable operation.
- ECC.6.3.15.11.2 The HVDC System owner shall ensure that the tripping or disconnection of an HVDC Converter Station, as part of any multi-terminal or embedded HVDC System, does not result in transients at the Grid Entry Point or User System Entry Point beyond the limit specified by The Company in co-ordination with the Relevant Transmission Licensee.
- ECC.6.3.15.11.3 The **HVDC System** shall withstand transient faults on HVAC lines in the network adjacent or close to the **HVDC System**, and shall not cause any of the equipment in the **HVDC System** to disconnect from the network due to autoreclosure of lines in the **System**.
- ECC.6.3.15.11.4 The **HVDC System Owner** shall provide information to **The Company** on the resilience of the **HVDC System** to AC **System** disturbances.

Commented [TB2]: Requires legal review