APl Specification

Wider Access
GB Balancing Mechanism

September 2021

nationalgrid




nationalgrid

Contents
(@0 =7 o | £ PP 2
T Y00 11 Td 1 o] o I 3
L@ 1Y =SSP 3
FUITNEE INTOIMALION ..utitiiiiitt e 3
A P LS e e 4
N[ €] S @ ISV o] 1 01151 [ IS 4
N[€] S @ R (= Te [=Ted F= 1= 1o ) o [ S 19
N[ =T @ T [ 1511 0T 1 26
AN L] ST @ T 1= 111 29
N[ €7 T @ i N[ 11 =112 L1 o] o I 31
Participant_Submission Responses (Acknowledgment/Acceptance/Rejection) ............c.......... 33
PartiCipant_REUECIAIATION .........uuuuiiiiiiiiiiiiiii bbb nenee 37
Participant_INSIIUCLION .........oouiiiiii e e e e e e e e e e e e e e e e e e e ara e e aeeaes 39
PartiCipant_HEAITN ... ... 44
o I 0] 1SRRI 45
S CUIIEY ettt 45
SUBSCIIPLON KBY ... 45
S [0 g = LU [ =SS 45
[N .0 F= 2= 11 0] o 45
=T o] Y o SRRSO 45
Sequence number (SUBMISSION API) ... 45
Reference number (Instruction and Redeclaration API) ............vieiiiiiiiiiiiice e, 46
IS 0 =T 0 (0] £ TSRO 47
(@ U1 1A (0] =T PP 50
(@ 7 |1 o T 0 ] 50
(@70 0)Y7=] o1 [0] o 15T R 51
S (=T =7 o o = PSSR 52



nationalgrid

Introduction

Overview

This document aims to give a closer look at the APIs which the National Grid Electricity System Operator
(NGESO) has in put place, to enable access to the GB Balancing Mechanism (BM) for small generating units
(BMUSs), via the Wider Access Application Programming Interface (WA API).

NGESO has embraced the Internet of Things ethos, making the WA API available to market participants. This
enables faster, more flexible connections to the BM. This in turn offers a reduced cost to end-consumers as a
consequence of establishing new connections. All new small BM participants can connect directly to the new
APl infrastructure. However, they may also opt to use an intermediate hosting service, provided by a preferred
commercial vendor. The API solution is one of the deliverables for the overall Wider Access initiative.

NGESO now offers two options for dynamic exchange of data:

Connections of new private circuits using NGESO'’s telecommunications network provider via traditional, fixed-
line technology

Connection to the WA API infrastructure using web services and internet-based connectivity.

This document aims to give an overview of the APIs that are published by the WA API infrastructure, to give
smaller BM patrticipants a detailed understanding of the requirements to join the BM via this route. Both WA
API and Private Circuits provide functional equivalence in terms of Electronic Data Transfer (EDT) and
Dispatch & Logging (EDL).

Further information

More information about Wider Access to the BM and connection via the API is available on the Balancing
Mechanism Wider Access page of the NGESO website.

To discuss opportunities offered by Wider Access and the API, please contact NGESO via your account
manager or email Commercial.Operation@nationalgrideso.com.



https://www.nationalgrideso.com/balancing-services/wider-access
https://www.nationalgrideso.com/balancing-services/wider-access
mailto:Commercial.Operation@nationalgrideso.com

nationalgrid

APIs

NGESO_Submission

Overview

The Submission API allows the Market Participants to submit Physical Notifications (PN), Quiescent Physical
Notifications (QPN), Bids & Offers (BOD), & Maximum Export/Import Limits (MEL/MIL), before the Balancing
Mechanism Gate is closed. It is the principal mechanism by which participants in the existing Pool submit their
offer data to NGESO.

Day-ahead Dynamic Parameters have been removed from the Grid Code and are not used by National Grid.
For the purposes of backwards compatibility, Trading Agents may still submit day ahead Dynamic Parameters
by EDT and these will be accepted by National Grid without any validation or consistency checks.

Notification Time

The System Time of the Host shall be in GMT and shall be kept referenced to a recognised global time base.
It is this time, which shall determine gate closure for submissions. Each invocation successfully transferred to
the Host will be deemed to be a submission. The natification time of this file, and hence all data contained
within it, shall be deemed to be the point in time that the submission was made.

Submission Acknowledgment

The acknowledgement message will contain the notification time of the submission processed by BM. The
notification time will use the standard Time format defined in the Convention paragraph.

Submission Acceptance

Acceptance are produced once a submission request has been validated in its entirety. The acceptance
response will contain a list of all BMUs for which all submitted data has passed formatting, consistency and
validation tests.

Submission Rejection

Submission rejection are also produced once a submission has been validated in its entirety. Each record
contained is checked for formatting, validity and consistency. Should formatting prove incorrect the request
will not proceed to validation and will be rejected at that stage. Thus, a record that has invalid data and is also
incorrectly formatted for the type of data will only have a message stating that it was rejected owing to a
formatting error. The validity of the record will not be considered. Once a record has completed and passed
formatting checks, it will be checked against each applicable validation and consistency rule. Any and all of
these failures will be reported individually for each submitted record. Hence a single row that does not comply
with multiple validation or consistency rules, will give rise to multiple error messages within a reject request.

Compression process
In the case of a large payload, compression can be utilised following the steps below.

1. Compress the payload by using gZip (more information at https://www.gzip.org/)

2. Signing the compressed payload from (1)
3. Including the additional x-compress field in the header part
4

Sending the following wrapped payload including the compressed payload from (1) in the data field

{
“mpid”: “Market Participant ID”,
“‘number”: “Sequence Number”,
“data”; “Compressed Payload”
}


https://www.gzip.org/

nationalgridES0O

The x-compress field in the header can have the following states;
e yes, when the payload being sent is wrapped.

e no, when the payload being sent is the normal one (as stated below). If the x-compress field is not
included in the header, the request will be considered as not compressed

Please note that when a wrapped payload is sent;
e itis not necessary to normalize the payload before compressing it

o the Acceptance/Rejection response from NGESO will be in the same format while the Acknowledgment
will be not compressed. As a consequence, it is necessary to uncompress the received payload (in the
data field) by using gZip.

Submission examples
Example 1 Submission of all data types for 1 BMU

{

"sequence": "1099",
"tradingAgent™: "TR_AGT",
"BMUSubmissionElements": [

"bmUnitName"; "BM_UNIT_1",
"pn™: [
{
"timeFrom": "2018-10-31 18:30",
"levelFrom": "10",
"timeTo": "2018-10-31 19:00",
"levelTo": "20"

}

gpn™: [
{
"timeFrom": "2018-10-31 18:30",
"levelFrom": "-15",
"timeTo"; "2018-10-31 19:00",
"levelTo": "0"
}
],
"bod": [
{
"timeFrom": "2018-10-31 18:30",
"timeTo"; "2018-10-31 19:00",
"pairNumber": "1",
"levelFrom": "100",
"levelTo":; "100",
"offerPrice": "13.00",
"bidPrice": "8.00"

]

"timeFrom": "2018-10-31 18:30",
"timeTo"; "2018-10-31 19:00",
"pairNumber"; "-1",

"levelFrom": "-100",

"levelTo": "-100",

"offerPrice": "13.00",

"bidPrice": "8.00"



nationalgridES0

{
“timeFrom": "2018-10-31 18:30",

"maximumExportLevelFrom™: "0",
"timeTo": "2018-10-31 19:00",
"maximumExportLevelTo"; "9999"

}

mil*: [

]

"timeFrom": "2018-10-31 18:30",
"maximumimportLevelFrom": "-9999",
"timeTo": "2018-10-31 19:00",
"maximumimportLevelTo": "0"
}
1.
“rure: [
{
"effectiveTime": "2018-10-31 19:00",
“ratel™: "15.0",
"elBow2": "140",
"rate2": "3.4",
"elBow3": "145",
"rate3": "12.7"
}
1,
"ruri”: [
{
"effectiveTime": "2018-10-31 19:00",
“ratel": "010.0",
"elBow2": "-0340",
"rate2": "015.0",
"elBow3": "-140",
"rate3": "15.0"
}
1.
“rdre": [
{
"effectiveTime": "2018-10-31 19:00",
“ratel": "015.0",
"elBow2": "+0140",
“"rate2": "015.0",
"elBow3": "+0145",
"rate3": "015.0"
}
1.
“rdri": [

{
"effectiveTime": "2018-10-31 19:00",
"ratel": "015.0",
"elBow?2": "-0140",
"rate2": "015.0",
"elBow3": "-0140",
"rate3": "015.0"

}

I
"ndz": [
{

"effectiveTime": "2018-10-31 19:00",
"timeValue": "30"




nationalgridES0

}

nto": [

]

{
"effectiveTime": "2018-10-31 19:00",
"timeValue": "59"
}
I
"ntb": [

{
"effectiveTime": "2018-10-31 19:00",
"timeValue": "59"
}
I
"mzt"; [
{

"effectiveTime": "2018-10-31 19:00",
"timeValue™": "999"

}
]1
"mnzt": [
{
"effectiveTime": "2018-10-31 19:00",
"timeValue": "999"
}
]1
"sel": [
{
"effectiveTime": "2018-10-31 19:00",
"MWilevel": "9999"

}
1,

"sil": [

{
"effectiveTime": "2018-10-31 19:00",
"MW!level": "-9999"
}
I
"mdvp": [

{
"effectiveTime": "2018-10-31 19:00",
"MDV": "99999",
"MDP"; "239"
}
1,
"rrb": [
{
"TimeFrom": "2018-10-31 18:30",
"Direction"; "UP",
"MaxLevel": "1000",
"MinLevel": "0",
"Divisible": "TRUE",
"Price"; "13.00",
"BidID": "ABCDEFGHI",
"AssociatedBidType": "LINK",
"AssociatedBidSet": "ABCDEFGHI"




nationalgridES0

]
}

Example 2 Submission of multiple PN for 1 BMU
{

"sequence": "1099",
"tradingAgent”: "TR_AGT",
"BMUSubmissionElements™: [

"bmUnitName": "BM_UNIT_1",
"pn": [
{
"timeFrom": "2018-10-31 18:30",
"levelFrom™: "10",
"timeTo"; "2018-10-31 19:00",
"levelTo": "20"

h
{

"timeFrom": "2018-10-31 19:30",
"levelFrom": "30",
"timeTo": "2018-10-31 20:00",
"levelTo": "40"
}
]
}
]
}

Example 3 Submission of multiple PN for multiple BMUs

{

"sequence": "1099",
"tradingAgent™: "TR_AGT",
"BMUSubmissionElements": [

"bmUnitName": "BM_UNIT_1",
"pn": [
{
"timeFrom"; "2018-10-31 18:30",
"levelFrom": "10",
"timeTo": "2018-10-31 19:00",
"levelTo": "20"
|3

{
"timeFrom": "2018-10-31 19:30",

"levelFrom": "30",
"timeTo"; "2018-10-31 20:00",

"levelTo"; "40"
}
]
}!
{
"bmUnitName": "BM_UNIT_2",
"pn": [
{

"timeFrom™: "2018-10-31 18:30",
"levelFrom™: "10",

"timeTo"; "2018-10-31 19:00",
"levelTo": "20"




nationalgrid

"timeFrom": "2018-10-31 19:30",
"levelFrom": "30",

"timeTo": "2018-10-31 20:00",
"levelTo":; "40"

POST /submission Add a new submission [Market Participant -> NGESO]

Request header and responses will be provided during the onboarding process.

Models
Submission Request data {
sequence* string
pattern: Md{1,4}$
example: 1099
tradingAgent* string
minLength: 1
maxLength: 9
example: TR_AGT
BMUSubmissionElements* [...]

}

BMU Submission Element {

mzt

bmuUnitName* string
title: Unit Name
example:
BM_UNIT_1
minLength: 1
maxLength: 9
pn [...]
qpn [...]
bod [...]
mil [...]
rure [...]
ruri [...]
rdre [...]
rdri [...]
ndz [...]
nto [...]
ntb [...]
[-..]



nationalgrid

mnzt
sel

sil
mdvp
rrb

}

Physical Notification

timeFrom*

levelFrom*

timeTo*

levelTo*

}

—_r————
[ T S S —

{

string

g]allttern: N2([0-91{3})[-1(0[1-9]|110]11|12)[-](O[1-
[12]\d[3[01])[ ](([0-1][0-9D)I(2[0-3]))[:1([0-5][0-9])$
example: 2018-10-31 18:30

string

pattern: A([+-]2\d{1,4})$

example: 10

string

g]ellttern: N2([0-9){31)[-1(0[1-9]|110]11|12)[-](O[1-
[12]\d[3[01])[ 1(([0-1][0-9D)I(2[0-3]))[:1([0-5][0-9)$
example: 2018-10-31 19:00

string

pattern: A([+-]?\d{1,4})$

example: 20

Quiescent Physical Notification {

timeFrom*

levelFrom*

timeTo*

levelTo*

string
Sﬁttem: ~(2([0-9){31)[-1(0[1-9]|10]11|12)[-](O[1-
ngé\dIS[OH)[ 1(([0-1][0-9])I(2[0-3D)[:1([0-5][O-

example: 2018-10-31 18:30

string

pattern: ~(([-]\d{1,4})|[0])$

example: -15

string

Sﬁttem: ~(2([0-9K3})[-1(0[1-9]]10]11|12)[-](O[1-
ngS]S\dB[Ol])[ 1(([0-1][0-9])[(2[0-3]))[:1([0-5][0-
eL)ampIe: 2018-10-31 19:00

string

pattern: ~(([-\d{1,4})|[0])$

example: 0

10



nationalgrid

Bid-Offer Data

timeFrom*

timeTo*

pairNumber*
levelFrom*
levelTo*
offerPrice*

bidPrice*

}

Maximum Export Limit

timeFrom*

{

string

Sﬁttern: ~(2([0-9K3}1)I-1(0[1-9]|10]11|12)[-](O[1-
gll)Z%\dB[Ol])[ 1(([0-1][0-9])I(2[0-3)[:1([0-5][O-
example: 2018-10-31 18:30

string

Sﬁttern: N2([0-91{31)[-1(0[1-9]|10]11|12)[-](O[1-
[91])2%\d|3[01])[ 1(([0-1][0-9DI(2[0-3D)[:1([0-5][O-
example: 2018-10-31 19:00

string

pattern: A[+-]?[1-5){1}$

example: 1

string

pattern: ~([+-]2\d{1,4})$

example: 100

string

pattern: ~([+-]?2\d{1,4})$

example: 100

string

pattern: (M[+-]?2\d{1,5}[.]\d{2})$

example: 13.00

string

pattern: (M[+-]?2\d{1,5}[.]\d{2})$

example: 8.00

{

string

pg)iallttern: N2([0-9){3})[-1(0[1-9]|110]11|12)[-](O[1-
gll)Z%\dIS[OH)[ 1(([0-1][0-9D)I(2[0-3D)[:1([0-5][0-
example: 2018-10-31 18:30

maximumExportLevelFrom* string

timeTo*

maximumExportLevelTo*

pattern: ~([+]?\d{1,4)$

example: 0

string

Sﬁttemi ~(2([0-9){31)[-1(0[1-9]|10]11|12)[-](O[1-
gll)Zé\dB[Ol])[ 1(([0-1][0-9])[(2[0-3]))[:]1([0-5][0-
example: 2018-10-31 19:00

string

pattern: A([+]?\d{1,4})$

example: 9999



nationalgrid

}

Maximum Import Limit

timeFrom*

{

string

pattern: ~(2([0-9]{3}))[-](0[1-9]|10|11]12)[-](O[1-

9
512%\dl3[01])[ 1(([0-1]{0-9D)1(2[0-3D)[:1([0-5][0-

example: 2018-10-31 18:30

maximumlImportLevelFrom* string

timeTo*

maximumlimportLevelTo*

}

Run Up Rate Export

effectiveTime*

ratel*

elBow2

rate2

elBow3

rate3

pattern: ~([-]\d{1,4}|[0])$
example: -9999
string

pattern: ~(2([0-9]{3}))[-](0[1-9]|10]11|12)[-](O[1-

9]|
gll)Z%\dB[Ol])[ 1(([0-1][0-9])I(2[0-3]))[:1([0-5][O-
example: 2018-10-31 19:00

string
pattern: ~([-]\d{1,4}|[0])$
example: 0

{

string
gﬁttern: N2([0-9){31)[-1(0[1-9]|110]11|12)[-](O[1-
ngé\dIS[OH)[ 1(([0-1]{0-9])[(2[0-3]))[:]1([0-5][0-

example: 2018-10-31 19:00
string

pattern: ~([+]?\d{1,3}[.)\d{1})$
example: 15.0

string

pattern: ~([+]?\d{1,4)$
example: 140

string

pattern: ~([+]?\d{1,3}[.\d{1})$
example: 3.4

string

pattern: ~([+]?\d{1,4))$
example: 145

string

pattern: A([+]?\d{1,3}[.\d{1})$
example: 12.7

12



nationalgrid

Run Up Rate Import

effectiveTime*

ratel*
elBow?2
rate2
elBow3

rate3

}

Run Down Rate Export

effectiveTime*

ratel*
elBow?2
rate2
elBow3

rate3

{

string

pattern: ~(2([0-9]{3}))[-](0[1-9]|10]11|12)[-](O[1-

9|
gll)Z%\dB[Ol])[ 1(([0-1][0-9])I(2[0-3)[:1([0-5][O-
example: 2018-10-31 19:00

string

pattern: ~([+]?\d{1,3}[.)\d{1})$
example: 010.0

string

pattern: A([-]\d{1,4})$
example: -0340

string

pattern: ~([+]?\d{1,3}[.\d{1})$
example: 015.0

string

pattern: A([-]\d{1,4})$
example: -140

string

pattern: A([+]?\d{1,3}[.\d{1})$
example: 15.0

{

string

pattern: ~(2([0-91{3}))[-](0[1-9]|10]11]|12)[-](O[1-

9l
gll)Z%\dB[Ol])[ 1(([0-1]{0-9])[(2[0-3]))[:]1([0-5][0-
example: 2018-10-31 19:00

string

pattern: A([+]?\d{1,3}[.\d{1})$
example: 015.0

string

pattern: ~([+]?\d{1,4}))$
example: +0140

string

pattern: A([+]?2\d{1,3}[.\d{1})$
example: 015.0

string

pattern: ~([+]?\d{1,4})$
example: +0145

string

pattern: A([+]?2\d{1,3}[.\d{1})$
example: 015.0

13



nationalgrid

Run Down Rate Import

effectiveTime*

ratel*
elBow?2
rate2
elBow3

rate3

}

{

string

pattern: ~(2([0-9]{3}))[-](0[1-9]|10]11|12)[-](O[1-

9|
gll)Z%\dB[Ol])[ 1(([0-1][0-9])I(2[0-3)[:1([0-5][O-
example: 2018-10-31 19:00

string

pattern: A([+]?\d{1,3}[.\d{1})$
example: 015.0

string

pattern: A([-]\d{1,4})$
example: -0140

string

pattern: ~([+]?\d{1,3}[.)\d{1})$
example: 015.0

string

pattern: A([-]\d{1,4})$
example: -0140

string

pattern: ~([+]?\d{1,3}[.)\d{1})$
example: 015.0

Notice to Deviate From Zero {

effectiveTime*

timeValue*

}

Notice to Deliver Offers

effectiveTime*

timeValue*

string

pattern: ~(2([0-9]{3}))[-](0[1-9]|10]11|12)[-](O[1-

9l
gll)Z%\dB[Ol])[ 1(([0-1]{0-9])[(2[0-3]))[:]1([0-5][0-
example: 2018-10-31 19:00

string
pattern: Md{1,3}$
example: 30

{

string

pattern: ~(2([0-91{3}))[-1(0[1-9]|10]11]|12)[-](O[1-

ol
glﬂ\dl3[01])[ 1(([0-1]{0-9D)](2[0-3])[:1([0-5][0-

example: 2018-10-31 19:00
string

pattern: Md{1,2}$
maximum: 59

14



nationalgrid

}

Notice to Deliver Bids

effectiveTime*

timeValue*

}

Minimum Zero Time

effectiveTime*

timeValue*

}

Minimum Non Zero Time

effectiveTime*

timeValue*

example: 59

{

string

pattern: ~(2([0-9){3}))[-](0[1-9]|10]11|12)[-](O[1-

9l
gll)Z%\dB[Ol])[ 1(([0-1]{0-9])[(2[0-3]))[:1([0-5][0-
example: 2018-10-31 19:00

string

pattern: M\d{1,2}$
maximum: 59
example: 59

{

string

pattern: ~(2([0-91{3}))[-](0[1-9]|10]11|12)[-](O[1-

9]|
gl])Zé\dB[Ol])[ 1(([0-1][0-9D)I(2[0-3])[:1([0-5][0-
example: 2018-10-31 19:00

string
pattern: M\d{1,3}$
example: 999

{

string

pattern: ~(2([0-9]{3}))[-](0[1-9]|10|11|12)[-](O[1-

9|

gl])Z%\dIB[Oll)[ 1(([0-1][0-9])I(2[0-3]))[:1([0-5][O-
example: 2018-10-31 19:00

string

pattern: Md{1,3}$

example: 999

15



nationalgrid

Stable Export Limit

effectiveTime*

MW!level*

}

Stable Import Limit

effectiveTime*

MWIlevel*

}

{

string

pattern: ~(2([0-9]{3}))[-](0[1-9]|10]11|12)[-](O[1-

9|
gll)Z%\dB[Ol])[ 1(([0-1][0-9])I(2[0-3)[:1([0-5][O-
example: 2018-10-31 19:00

string
pattern: Md{1,4}$
example: 9999

{

string

pattern: ~(2([0-9]{3}))[-](0[1-9]|10|11|12)[-](O[1-

9|

gl])Z%\dB[Ol])[ 1(([0-1][0-9])I(2[0-3]))[:1([0-5][0-
example: 2018-10-31 19:00

string

pattern: ~([-\d{1,4})$

example: -9999

Maximum Delivery Volume and Period {

effectiveTime*

MDV

MDP

string

pattern: ~(2([0-9]{3}))[-](0[1-9]|10|11|12)[-](O[1-

9
EBl])Z%\dB[Ol])[ 1(([0-1][0-9D)](2[0-3D)[:1([0-5][0-

example: 2018-10-31 19:00

string

title: Max Delivery Volume (MW hours)
pattern: ~([-+]?\d{1,5})$

example: 99999

string

title: Max. Delivery Period (minutes)
pattern: Md{1,3}$

example: 239

16



nationalgrid

RR Bid

TimeFrom*

Direction*

MaxLevel*
MinLevel
Divisible*
Price*
BidID

AssociatedBidType
AssociatedBidSet

}

{

string

Sﬁttern: ~(2([0-9K3}1)I-1(0[1-9]|10]11|12)[-](O[1-
gll)Z%\dB[Ol])[ 1(([0-1][0-9])I(2[0-3)[:1([0-5][O-
example: 2018-10-31 18:30

string
example: UP
Enum:
Array [ 2]
string
pattern: N[+-]\d{1,9}$
example: 1000
string
pattern: A[+-]2\d{1,9}$
example: 0
string
Enum:
Array [ 2]
string
pattern: M[+-]?\d{1,5}.\d{2}$
example: 13.00
string
pattern: \w{9}$
example: ABCDEFGHI
string
example: LINK
Enum:
Array [ 3]
string
pattern: \w{9}$
example: ABCDEFGHI

Successful Submission Response {

message*

version*

}

Error payload

message*

string

example: Successful request
string

example: 1.0

{

string
example: Error message

17



nationalgrid

version*
code*

detail

string

example: 1.0

string

example: 400

string

example: Error information

18



nationalgrid

NGESO_Redeclaration

Overview

Redeclaration of availability and dynamic parameters to NGESO can be done by using this API. The
redeclaration undergoes syntax and validation checking.

If the submission is valid, a successful technical acknowledgement will be returned to the Market Participant.
If an error is encountered, a technical error will be sent.

The following data can be submitted,;

e Maximum Export/Import Limit (MIL/MEL)
e Run Up/Down Rate Export (RURE/RDRE)
e Notice to Deviate From Zero (NDZ)

e Stable Export/Import Limit(SEL/SIL)

e  Minimum Zero Time (MZT)

e Minimum Non Zero Time (MNZT)

e Run Up/Down Rate Import (RURI/RDRI)
e Notice to Deliver Offers/Bids(NTO/NTB)

e Maximum Delivery Volume (MDVP)

Please note that only one of the redeclaration data type above can be submitted. For example, a
redeclaration payload for MEL will be as below.

{
"controlPoint": "XX_YY",

"bmUnitName": "XX-YYY45",
"logTime": "18-OCT-2018 06:00",
"refNumber": "10584466",
"BMURedeclarationElements"”: [
{
"mel": {
"timeFrom": "18-OCT-2018 06:00",
"maximumExportLevelFrom": "0",
"timeTo": "18-OCT-2018 06:30",
"maximumExportLevelTo": "9999"

POST /redeclaration Add a new redeclaration [Market Participant -> NGESO]

Request header and responses will be provided during the onboarding process.

Models
Redeclaration Data {
controlPoint* string

minLength: 1
maxLength: 9
example: CP_EX

19



nationalgrid

bmUnitName*

logTime*

refNumber*

string

minLength: 1

maxLength: 9

title: BM Unit Name

example: EF-FLEO45

string

pattern: ~([1-9]|[012]\d|3[01])[-]
(JAN|FEB|MAR|APR|MAY|JUN|JUL|AUG|SEP|OCT|NOV|DEC)[-
1((2[0-9]
{3MI1(([0-1][0-9][(2[0-3])):([0-5][0-9])$
title: Redeclaration Reference Number
example: 18-OCT-2018 06:00

string

pattern: M\d{1,10}$

title: Redeclaration Reference Number
example: 10584466

BMURedeclarationElements* BMURedeclarationElements [ . ..]

}

BMURedeclarationElements {

minltems: 1
maxltems: 1

BMURedeclarationElements {

mel
mil
rure
rdre
ndz
sel
mzt
mnzt
ruri
Rdr
nto
ntb
sil
mdvp

1]

Maximum Export Limit  {...}
Maximum Import Limit  {...}
Run Up Rate Export  {...}

Run Down Rate Export {...}
Notice to Deviate From Zero {...}
Stable Export Limit  {...}
Minimum Zero Time {...}
Minimum Non Zero Time {...}
Run Up Rate Import  {...}

Run Down Rate Import {...}
Notice to Deliver Offers  {...}
Notice to Deliver Bids {...}
Stable Import Limit  {...}
Maximum Delivery Volume {...}

20



nationalgrid

Maximum Export Limit

timeFrom*

maximumExportLevelFrom*

timeTo*

maximumExportLevelTo*

}

Maximum Import Limit

timeFrom*

maximumlImportLevelFrom*

timeTo*

{

string
pattern: ~([1-9]|[012]\d|3[01])[-]

(JAN|FEB|MAR|APR|MAY|JUN]JUL|AUG|SEP|OCT|NOV|DEC)[-

1((210-9]
{3MI1(([0-1][0-9])](2[0-3])):([0-5][0-9])$
example: 18-OCT-2018 06:00

string

pattern: ~([+]?\d{1,4))$

example: 0

string

pattern: ~([1-9]|[012]\d|3[01])[-]

(JAN|FEB|MAR|APR|MAY|JUN|JUL|AUG|SEP|OCT|NOV|DEC)[-

1((2[0-9]
{BMI1(([0-1]{0-9D)I(2[0-3])):([0-5][0-9])$
example: 18-OCT-2018 06:30

string

pattern: A([+]?\d{1,4})$

example: 9999

{

string
pattern: ~([1-9]|[012]\d|3[01])[-]

(JAN|FEB|MAR|APR|MAY|JUN]JUL|AUG|SEP|OCT|NOV|DEC)|-

1((2[0-9]

{3 1(([0-1][0-9])[(2[0-3])):([0-5][0-9])$
example: 18-OCT-2018 06:00

string

pattern: ~([-\d{1,4}|[0])$

example: -9999

string

pattern: ~([1-9][[012]\d|3[01])[-]

(JAN|FEB|MAR|APR|MAY|JUN|JUL|AUG|SEP|OCT|NOV|DEC)[-

1((2[0-9]
{BMI(([0-1][0-9])I(2[0-3])):([0-5][0-9])$
example: 18-OCT-2018 06:30

maximumlImportLevelTo* string
pattern: ~([-)\d{1,4}|[0])$
example: 0
}
Run Up Rate Export {
ratel* string

pattern: A([+]?\d{1,3}[.]\d{1})$

21



nationalgrid

elBow2
rate2
elBow3

rate3

}

Run Up Rate Import

ratel*
elBow?2
rate2
elBow3

rate3

}

Run Down Rate Export

ratel*
elBow2
rate2

elBow3

example: 15.0

string

pattern: A([+]?\d{1,4})$
example: 140

string

pattern: ~([+]?\d{1,3}[.\d{1})$
example: 3.4

string

pattern: ~([+]?\d{1,41)$
example: 145

string

pattern: A([+]?\d{1,3}[.]\d{1})$
example: 12.7

{

string

pattern: A([+]?\d{1,3}[.]\d{1})$
example: 010.0

string

pattern: A([-\d{1,4})$
example: -0340

string

pattern: A([+]?\d{1,3}[.]\d{1})$
example: 015.0

string

pattern: ~([-)\d{1,4)$
example: -140

string

pattern: A([+]?\d{1,3}[.\d{1})$
example: 15.0

{

string

pattern: A([+]?\d{1,3}[.]\d{1})$
example: 015.0

string

pattern: ~([+]?\d{1,41)$
example: +0140

string

pattern: A([+]?\d{1,3}[.]\d{1})$
example: 015.0

string

pattern: ~([+]?\d{1,41)$

22



nationalgrid

rate3

}

Run Down Rate Import

ratel*
elBow?2
rate2
elBow3

rate3

}

example: +0145

string

pattern: A([+]?\d{1,3}[.]\d{1})$
example: 015.0

{

string

pattern: ~([+]?\d{1,3}[.]\d{1})$
example: 015.0

string

pattern: ~([-)\d{1,4))$
example: -0140

string

pattern: A([+]?\d{1,3}[.]\d{1})$
example: 015.0

string

pattern: A([-\d{1,4})$
example: -0140

string

pattern: A([+]?\d{1,3}[.]\d{1})$
example: 015.0

Notice to Deviate From Zero {

timeValue*

}

Notice to Deliver Offers

timeValue*

}

Notice to Deliver Bids

timeValue*

string
pattern: M\d{1,3}$
example: 30

{

string

pattern: M\d{1,2}$
maximum: 59
example: 59

{

string

pattern: M\d{1,2}$
maximum: 59
example: 59

23



nationalgrid

}
Minimum Zero Time {
timeValue* string
pattern: M\d{1,3}$
example: 999
}

Minimum Non Zero Time {

timeValue* string
pattern: M\d{1,3}$
example: 999

}
Stable Export Limit {
MWilevel* string
pattern: Md{1,4}$
example: 9999
}
Stable Import Limit {
MWIlevel* string
pattern: ~([-)\d{1,4)$
example: -9999
}

Maximum Delivery Volume {

MDV* string
title: Max Delivery Volume (MW hours)
pattern: ~([-+]?\d{1,5})$
example: 99999

MDP* string
title: Max. Delivery Period (minutes)
pattern: M\d{1,3}$
example: 239

}

Error payload {

message* string
maxLength: 200
example: Error message
version* string



nationalgrid

example: 1.0
code* string

example: 400
detail string

example: Error information

Successful Redeclaration Response {

version* string
example: 1.0
message* string

maxLength: 200
example: Successful Request

25



nationalgrid

NGESOQO _Instruction

Overview

This API will be used by Market Participant to send Instruction response to NGESO. Responses can include;
e UserACK

e Acceptance

e Rejection

e Error

The type of response must be specified in the instructionResp field of the payload.

Acceptance is done in two steps using the same service. First the Market Participant will send status
“UserACK” that is translated in the BM to “IU” as specified in [2], they will then use the same interface to send
the “Acceptance” that is translated into “IA”. In the case where National Grid receives an “Acceptance” but not
“UserACK”, the process will still be completed. An error can be received at any stage.

An UserACK payload to a received BOA instruction will be structured as follow;

{
"controlPoint": "CP_EX",

"refNumber"; "0010584466",
"instructionResp”: "UserACK",
"instructionType": "BOA",
"omUnitName": "XY-MNLX01",
"logTime": "18-OCT-2018 00:00"

}

An error payload to a received BOA instruction will be structured as follow. Please note that in this particular
case the instructionResp field must be equal to "Error" and the detail field must contain the error code as
mentioned in reference [2] and [3].

{
"controlPoint": "CP_EX",

"refNumber": "0010584466",
"instructionResp™: "Error",
"instructionType": "BOA",
"bmUnitName": " XY-MNLX01",
"logTime": "18-OCT-2018 00:00",
"detail": "1001"

}

Market Participants can receive instruction for the following business entities.

e Pumped Storage

e \Voltage / MVAR

e Reason Code

e Bid/Offer

e Status Change

The type of instruction must be specified in the instructionType field of the payload.

Request header and responses will be provided during the onboarding process.

POST finstructionresp MP Operational Response of an Instruction [Market Participant -> NGESO ]

26



nationalgrid

Models

Successful Instruction Response {

message*

version*

}

Error payload
message*

version*

code*

detail

}

Instruction response
controlPoint*

refNumber*

instructionResp*

instructionType*

bmUnitName*

logTime*

string

maxLength: 200

example: Successful request
string

example: 1.0

{

string

maxLength: 200

example: Error message
string

example: 1.0

string

example: 400

string

example: Error information

{

string
minLength: 1
maxLength: 9
example: CP_EX
string
pattern: M\d{1,10}$
example: 0010584466
string
example: Error
Enum:
[ UserAck, Accepted, Rejected, Error |

string
Enum:

[ BOAI, VoltageMVAR, ReasonCode, StatusChange,
PumpedStorage ]
string
maxLength: 9
titte: BM Unit Name
example: AG-FFLX01
string
pattern: A([1-9]|[012]\d|3[01])[-]
(JAN|FEB|MAR|APR|MAY|JUN|JUL|AUG|SEP|OCT|NOV|DEC)][-
1((2[0-9]
{3MI1(([0-1][0-9D)I(2[0-3])):([0-5][0-9])$
example: 18-OCT-2018 00:03

27



nationalgrid

detail

string
maxLength: 140
example: 1001

28



nationalgrid=S(

NGESO_Health

Overview

In addition to the operational interfaces (EDT and EDL), the Health API will have the functionality of testing the
connectivity between Market Participants and National Grid. In each side of the communication between
National Grid and the Market Participants, there will be a service (heartbeat service) that will provide a
response to indicate whether a connectivity exists.

The functionalities implemented with the NGESO_Health API are the following.

1. Checking whether the Wider Access APIs hosted on NGESO are reachable

2. Checking whether each individual API (submission & redeclaration) is up and running
3. The NGESO credentials are valid

GET /health Checks the connectivity health and credentials

Request header and responses will be provided during the onboarding process.

Models
Health of APIs {
version* string
example: 1.0
APIs* [...]
}
List of APIs {
apiname* string
example: WASubmissionEDT
Enum:
[ WASubmissionEDT, WARedeclarationEDL,
WAInstructionEDL ]
status* string
example: Up
Enum:
[ Up, Down ]
version* string
example: 1.0
}

29



nationalgrid

Error payload

message*
version*
code*

detail

{

string

example: Error message
string

example: 1.0

string

example: 400

string

example: Error information

30



nationalgrid

NGESO_Normalization

Normalization process

In order to standardise the Normalization process of a payload to be signed, the NGESO_Normalization API
must be used.

Steps below describe the process to follow in order to obtain a correct signature to be included as part of the
payload header;

1. Calling the NGESO_Normalization API;

2. Signing the resulted payload from point (1) (ensure that you are not adding any \r character in the
normalized payload before signing it)

Please note that, the payload to be sent in point (1) must be the one to be signed. In the specification below,
a generic example is included but it may be one of the following;

e EDT Submission payload;
o EDL Redeclaration payload;
e« EDL Instruction Response payload.

/normalization Normalize the payload

Request header and responses will be provided during the onboarding process.

Models

Example of a payload sent {

field1 string
example: field 1
field3 string
example: field 3
field2 string

example: field 2

}
Example of a payload normalized {
field1 string
example: field 1
field2 string
example: field 2
field3 string

example: field 3

31



nationalgrid

Error payload
message*
version*
code*

detail

{

string

example: Error message
string

example: 1.0

string

example: 400

string

example: Error information

32



nationalgrid

Participant_Submission Responses (Acknowledgment/Acceptance/Rejection)

Overview

The Submission Response (Acknowledgment) API allows NGESO to send Acknowledgment of a received
submission request.

The Submission Response (Acceptance/Rejection) API allows NGESO to send Acceptance and/or Rejection
of a received submission request.

Notification Time

The System Time of the Host shall be in GMT and shall be kept referenced to a recognised global time base.
It is this time, which shall determine gate closure for submissions. Each invocation successfully transferred to
the Host will be deemed to be a submission. The natification time of this file, and hence all data contained
within it, shall be deemed to be the point in time that the submission was made.

Submission Acknowledgment

The acknowledgement message will contain the notification time of the submission processed by BM. The
notification time will use the standard Time format defined in the Convention paragraph.

Submission Acceptance

Acceptance are produced once a submission request has been validated in its entirety. The acceptance
response will contain a list of all BMUs for which all submitted data has passed formatting, consistency and
validation tests.

Submission Rejection

Submission rejection are also produced once a submission has been validated in its entirety. Each record
contained is checked for formatting, validity and consistency. Should formatting prove incorrect the request
will not proceed to validation and will be rejected at that stage. Thus, a record that has invalid data and is also
incorrectly formatted for the type of data will only have a message stating that it was rejected owing to a
formatting error. The validity of the record will not be considered. Once a record has completed and passed
formatting checks, it will be checked against each applicable validation and consistency rule. Any and all
these failures will be reported individually for each submitted record. Hence a single row that does not comply
with multiple validation or consistency rules, will give rise to multiple error messages within a reject request.

Compression process

When a wrapped payload has been sent for submission, the Acceptance/Rejection response will also be in
the same format, as for the example below.

{

“mpid”: “Market Participant ID”,

“number”: “Sequence Number”,

“data”: “Compressed Payload (ACK, ACC/REJ)”
}

The compressed payload included in the data field must be uncompressed, by using gZip.
Please note that, in order to verify the signature, the compressed payload in the data field must be used.

Acknowledgment/Acceptance/Rejection examples

Example 1 Acknowledgment. The notificationTime is the same sent by BM

{

"sequence": "1234",
"notificationTime": "2018-10-11 01:03"

33



nationalgridES¢

Example 2 Acceptance of multiple BMUs

{

"sequence": "1234",
"tradingAgent": "TR_AGT",
"acceptance": [

"bmUnitName™: "BM_UNIT_1"
}l
{

"bmUnitName™: "BM_UNIT_2"

}
]
}

Example 3 Rejection of a submission

{

"sequence": "1234",

"tradingAgent": "TR_AGT",

"rejection™: [

{

"code": "V_RURE_2",
"message": "An invalid combination of NULL rates and breakpoints was
encountered”,
"record": "RURE, TR_AGT, BM_UNIT_3, 2001-11-03 05:00, , , 12,"

}
]
}

POST /submissionack BM Acknowledgment Response for a submission [NGESO -> Market Participant]

POST /submissionresp BM Acceptance/Rejection Response of a submission [NGESO -> Market
Participant]

Request header and responses will be provided during the onboarding process.

Models

Market Participant Acknowledgement {

sequence* string
title: Sequence
pattern: Md{1,4}$
example: 1234

notificationTime* string
pattern: A(2([0-9{3}))[-1(0[1-9]|10]11|12)[-](O[1-9]|
[12]\d[3[01])[ ](([0-1][0-9D)I(2[0-3D)[:1([0-5][0-9])$
example: 2018-10-11 01:03

34



nationalgrid

BM Acceptance Response {

bmUnitName* string
title: Unit Name
example: BM_UNIT_1
minLength: 1
maxLength: 9

{
BM Rejection Response {
code* string
example: V_RURE_2
message* string

maxLength: 200
example: An invalid combination of NULL rates and breakpoints
was encountered
record* string
example: RURE, TR_AGT, BMUNITO01, 2001-11-03 05:00, , , 12,

}
Successful Submission Response {
message* string

maxLength: 200
example: Successful request

version* string
example: 1.0
}
Error payload {
message* string

maxLength: 200
example: Error message

version* string
example: 1.0
code* string
example: 400
detail string

example: Error detailed information

35



nationalgrid

Acceptance Rejection Response {

sequence* string
title: Sequence
pattern: Md{1,4}$

example: 1234
tradingAgent* string

minLength: 1

maxLength: 9

example: TR_AGT
acceptance [BM Acceptance Response {...}]
rejection [BM Rejection Response {...}]

36



nationalgrid

Participant_Redeclaration

Overview
This API is used by NGESO to send responses to a Market Participant redeclaration.

Type of response will be included in the redeclarationResp field of the payload being sent; possible
responses are;

o Wait

e Accepted
e Rejected
e Expired

In case a Rejection payload is sent, the error code as specified in [2] will be provided as part of the detail
field.

In case no responses are received by BM, a payload with redeclarationResp "Expired” will be sent and a
new redeclaration should be sent.

Redeclaration, Acceptance and Rejection

Data validation is concerned with checking that data is in the correct format and within the correct limits, e.qg.
is it an integer, is it between given limits etc. Data consistency concerns itself with checking if a particular data
record is consistent with other data records, and defaulting rules are applied in cases of missing data which
should have been submitted. Failure to comply with the validation or consistency rules will result in rejection of
the redeclaration for the BM Unit affected.

/redeclarationresp BM Operational Response of a redeclaration [NGESO -> Market Participant]

Request header and responses will be provided during the onboarding process.

Models

Redeclaration Acceptance/Rejection {

controlPoint* string
minLength: 1
maxLength: 9
example: CP_EX
refNumber* string
pattern: M\d{1,10}$
example: 0010584466

redeclarationResp* string
example: Rejected
Enum:
Array [ 4]
logTime* string($string)

pattern: ~([1-9]|[012]\d|3[01])[-]
(JAN|FEB|MAR|APR|MAY|[JUN|JUL|AUG|SEP|OCT|INOV|DEC)[-
1((2[0-9]

{3MI1(([0-1][0-9D)I(2[0-3])):([0-5][0-9])$

example: 18-OCT-2018 06:00

37



nationalgrid

bmUnitName*

detail

}

string

minLength: 1
maxLength: 9

titte: BM Unit Name
example: AG-FFLX01
string

maxLength: 140
example: R999

Successful Redeclaration Response {

version*

message*

}

Error payload

message*

version*

code*

detail

string

example: 1.0

string

maxLength: 200

example: Successful Request

{

string

maxLength: 200

example: Error message
string

example: 1.0

string

example: 400

string

example: Error information

38



nationalgrid

Participant_Instruction

Overview

The Instruction API will be used by NGESO to send instructions to the Market Participants. As explained in
more detail in [2], the following instructions can be sent;

e Pumped Storage

e Voltage / MVAR

e Reason Code

e Bid/Offer

e Status Change

Please note that;

only one of the instruction types above can be sent at time.
The expected process after an instruction is;

o Market Participant sending Wait

e Market Participant sending User Acknowledgement
o Market Participant sending Acceptance or Rejection
e Error can be sent at any stage of the process
Please note that;

e the full instruction process must be completed within 2 minutes since the logTime. In case of time
expiration, an expiration response will be sent with "instructionType":"Expired"

/instruction Add a new Instruction [NGESO -> Market Participant]

Request header and responses will be provided during the onboarding process.

Models

Instruction Request data  {

controlPoint* string

minLength: 1

maxLength: 9

example: CP_EX
bmuUnitName* string

minLength: 1

maxLength: 9

titte: BM Unit Name

example: CLCPU-01
refNumber* string

pattern: M\d{1,10}$

title: Instruction Reference Number

example: 0011513095
logTime* string

pattern: ~([1-9]|[012]\d|3[01])[-]



nationalgrid

instructionType*

statusChange

boaMsg
reasonCodelnstruction
mvarinstruction

pumpedInstruction

}

Error payload

message*

version*
code*

detail

}

(JAN|FEB|MAR|APR|MAY|JUN|JUL|AUG|SEP|OCT|NOV|DEC)[-
1((2[0-9]
{3MI1(([0-1][0-9])I(2[0-3])):([0-5][0-9])$
example: 20-FEB-2020 16:00
string
Enum:
Array [ 6]
Message Data Part for Status Change Instruction Messages

Message Data Part for BOA and Deemed Closed Instruction
Messages {...}

Message Data Part for Change of Reason Code Instruction

Messages {...}

Message Data Part for Voltage/MVAR Instruction Messages

Message Data Part for Pumped Storage Unit Instruction
Messages {...}

{

string

maxLength: 200

example: Error message
string

example: 1.0

string

example: 400

string

example: Error information

BM Element Instruction Response {

version*

timestamp*

bmUnitName*

refNumber*

string

example: 1.0

string

example: 20-FEB-2020 16:00

pattern: ~([1-9]|[012]\d|3[01])[-]
(JAN|FEB|MAR|APR|MAY|JUN|JUL|AUG|SEP|OCT|NOV|DEC)]-
1((2[0-9]
{3MI1(([0-1][0-9D)I(2[0-3])):([0-5][0-9])$
string

maxLength: 9

titte: BM Unit Name

example: CLCPU-01

string

pattern: M\d{1,10}$

title: Instruction Reference Number
example: 0011513095

{

{

40



nationalgrid

instructionResp*

}

string
example: Wait
Enum:

Array [1]

Message Data Part for Status Change Instruction Messages {

startInstructionCode*

startTime*

ReasonCode*

targetinstructionCode*

TargetTime*

}

string
Enum:

Array [ 3]
string
example: 20-FEB-2020 16:00
pattern: ~([1-9]|[012]\d|3[01])[-]
(JAN|FEB|MAR|APR|MAY |[JUN|JUL|AUG|SEP|OCT|NOV|DEC)|-
1((2[0-9]
{3MI1(([0-1][0-9])|(2[0-3])):([0-5][0-9])$
string
pattern: "w{1,3}$
example: MFB
string
Enum:

Array [ 4]
string
example: 20-FEB-2020 16:00
pattern: ~([1-9]|[012]\d|3[01])[-]
(JAN|FEB|MAR|APR|MAY|JUN|JUL|AUG|SEP|OCT|NOV|DEC)I-
1((2[0-9]
{3 1(([0-1][0-9])[(2[0-3])):([0-5][0-9])$

Message Data Part for BOA and Deemed Closed Instruction Messages {

type*

boaNumber*

numberDataPoints*

mw1*

t1*

string
example: DEEM
Enum:

Array [ 2]
string
pattern: M\d{1,10}$
example: 70382
string
pattern: ~(0[2-5){1}))$
example: 04
string
pattern: N[+-]?\d{1,4}$
example: +2000
string
example: 20-FEB-2020 16:00

41



nationalgrid

mw?2*

t2*

mw3

t3

mw4

t4

mwb

t5

}

pattern: ~([1-9]|[012]\d|3[01])[-]
(JAN|FEB|MAR|APR|MAY|[JUN|JUL|AUG|SEP|OCT|NOV|DEC)I[-
1((2[0-9]

{3MI1(([0-1][0-9D)I(2[0-3])):([0-5][0-9])$

string

pattern: A[+-]?\d{4}$

example: +2000

string

example: 20-FEB-2020 16:00

pattern: ~([1-9]|[12]\d|3[01])[-]
(JAN|FEB|MAR|APR|MAY|[JUN|JUL|AUG|SEP|OCT|NOV|DEC)I[-
1(([0-9]

{21 1(([0-1][0-9D)I(2[0-3])):([0-5][0-9))$

string

pattern: N[+-]2\d{4}$

example: +2000

string

example: 20-FEB-2020 16:00

pattern: ~([1-9]|[012]\d|3[01])[-]
(JAN|FEB|MAR|APR|MAY[JUN|JUL|AUG|SEP|OCT|NOV|DEC)|-
1((2[0-9]

{8MLI(([0-1][0-9D)I(2[0-3])):([0-5][0-9))$

string

pattern: A[+-]?\d{4}$

example: +2000

string

example: 20-FEB-2020 16:00

pattern: ~([1-9]|[012]\d|3[01])[-]
(JAN|FEB|MAR|APR|MAY|[JUN|JUL|AUG|SEP|OCT|NOV|DEC)I[-
1((2[0-9]

{3MI1(([0-1][0-9])|(2[0-3])):([0-5][0-9])$

string

pattern: N[+-]?\d{4}$

example: +2000

string

example: 20-FEB-2020 16:00

pattern: ~([1-9]|[012]\d|3[01])[-]

(JAN|FEB|MAR|APR|MAY [JUN|JUL|AUG|SEP|OCT|NOV|DEC)|-
1((2[0-9]

{3MI1(([0-1][0-9))I(2[0-3])):([0-5][0-9])$

Message Data Part for Change of Reason Code Instruction Messages {

type*

ReasonCode*

string
example: REAS
Enum:

Array [ 1]
string

42



nationalgrid

startTime*

}

pattern: \w{1,3}$

string

pattern: ~([1-9]|[012]\d|3[01])[-]
(JAN|FEB|MAR|APR|MAY|JUN|JUL|AUG|SEP|OCT|NOV|DEC)[-
1((2[0-9]

{3MI1(([0-1][0-9D)I(2[0-3])):([0-5][0-9])$

example: 20-FEB-2020 16:00

Message Data Part for Voltage/MVAR Instruction Messages {

type*

value*

targetTime*

}

string
Enum:
Array [ 2]
string
pattern: A([+-]?\d{1,3})$
example: +123
string
example: 20-FEB-2020 16:00
pattern: ~([1-9]|[012]\d|3[01])[-]
(JAN|FEB|MAR|APR|MAY|[JUN|JUL|AUG|SEP|OCT|INOV|DEC)[-
1((2[0-9]
{3MI1((10-1][0-9))I(2[0-3])):([0-5][0-9])$

Message Data Part for Pumped Storage Unit Instruction Messages {

ReasonCode*

startTime*

target*

targetTime*

string
pattern: N\w{1,4}$
Enum:
Array [ 7]
string
example: 20-FEB-2020 16:00
pattern: ~([1-9]|[012]\d|3[01])[-]
(JAN|FEB|MAR|APR|MAY [JUN|JUL|AUG|SEP|OCT|NOV|DEC)|-
1(2[0-9]
{3MI1(([0-1][0-9D)I(2[0-3])):([0-5][0-9])$
string
example: MW
pattern: N(MW/|SH|SG|SP|[0-9]{1,2}.[0-9}{1,2})$
string
example: 20-FEB-2020 16:00
pattern: ~([1-9]|[012]\d|3[01])[-]
(JAN|FEB|MAR|APR|MAY|[JUN|JUL|AUG|SEP|OCT|NOV|DEC)I[-
1((2[0-9]
{3MLI(([0-1][0-9D)I(2[0-3])):([0-5][0-9))$

43



nationalgrid=S0

Participant_Health

Overview

In addition to the operational interfaces (EDT and EDL), the Health API will have the functionality of testing the
connectivity between Market Participants and National Grid. In each side of the communication between
National Grid and the Market Participants, there will be a service (heartbeat service) that will provide a
response to indicate whether a connectivity exists.

The functionalities implemented with the NGESO_Health API are the following;
1. Checking the connectivity between NGESO and a Market Participant
2. Validate that the NGESO credentials are accepted by the Wider Access Participant

GET /health Checks the connectivity health and credentials

Request header and responses will be provided during the onboarding process.

Models

Successful Health Response {

message* string
example: Successful request
version* string
example: 1.0
}
Error payload {
message* string
example: Error message
version* string
example: 1.0
code* string
example: 400
detail string
example: Error information
}

44



nationalgrid

APl rules

Security
All the requests must be secured over HTTPS by using SSL/TLS 1.2 or above.

All the APIs are configured as protected OAuth2 resources and therefore will reject anonymous requests. In
order to be able to consume an API exposed by NGESO and make a submission correctly, a token (also
called JSON Web Token - JWT) must be provided as part of the payload header.

A token can be obtained using the 'Client ID' and 'Client Secret' provided to the Market Participant as part of
the onboarding process and making a request to the Identity Provider. A token does expire and must be
included in each request.

Additionally, when making a request for a token, a Scope and an Audience must be specified, based on the
API being consumed.

The Audience will be always the same, i.e. NGESO. Details of the Scope used to protect the different
resources will be provided during the registration process.

Subscription Key

When sending a submission or instruction payload to NGESO, an OSCGAppKeyHeader must be included
which will be used to provide usage analytics of the APIs for the Market Participants.

OSCGAppKeyHeader is not needed for requests done by NGESO to APIs exposed by Market Participant.

Signature

To prevent disputes in the authorship of a payload, the requesting party (NGESO or Market Participant) will
include a signature as part of the payload header.

More details on how to generate signatures and the verification of these will be provided during the
registration process.

Normalization

As specified in the security section, each payload being sent must be signed. A signature must be applied to
the normalized payload being sent.

In order to standardise the process of nhormalization of a payload, the Normalization endpoint must be called.
For all the details about the process, please refer to the NGESO_Normalization API.

Please note that;

e Normalised payload is only used for signature purposes, but a normal payload must be sent during a
submission.

Reply To

In order to identify the Market Participant for Acknowledgment, Acceptance and Rejection responses, the
Fully Qualified Domain Name (FQDN) of the APl exposed by Market Participant must be shared with
NGESO via email.

Sequence number (Submission API)

For the Submission API, each submission payload will include a sequence number sequence as a mandatory
field. As specified in [4] in more detail, the sequence number should be incremented by one after each
submission. Should a submission be out of sequence, it will be rejected in its entirety. The last sequence
number sent will be included in the rejection payload as part of the Market Participant's API for
Acceptance/Rejection.

45



nationalgrid

Please note that, sequence number should not be increased by one after receiving a technical error (e.g.
400, 401, 500) in response to a submission.

For example;

e asubmission is made with a sequence number 0001;
e atechnical error 400 is received;

e next submission should have sequence number 0001.

Please note that, as the technical response is synchronous with the request which has been made, Market
Participant cannot submit a new request until the technical response is received.

If a submission response (ACK, ACC and/or REJ) is not received within 5 minutes, a new submission must
be sent to NGESO. The sequence number of the new submission request will depend on the success or not
of the previous request.

Reference number (Instruction and Redeclaration API)

For the Instruction API, each submission payload will include a reference number refNumber as a mandatory
field. The reference number must be the same of the one associated to the instruction received.

For the Redeclaration API, each submission payload will include a reference number refNumber as a
mandatory field.

Reference number should be incremented by one after each redeclaration.
Please note that;

o reference number should not be increased by one after receiving a technical error (e.g. 400, 401, 500) in
response to a redeclaration;

e as the technical response is synchronous with the request which has been made, Market Participants
cannot submit a new request until the technical response is received.

If a redeclaration response is not received within 2 minutes, a new redeclaration must be sent to NGESO.
The reference number of the new redeclaration request will depend on the success or not of the previous
request.

46



nationalgrid

List of errors

When errors are encountered in an API request, a technical error payload will be sent. The table below
includes the list of error codes, descriptions and details which can be received.

Error code Message Details HTTPS Error
Code
WABEO001 Verify Token Error (parse Token is invalid 401

token/token invalid)

WABEO0002 Verify Signature Error The signature does not match 401
WABEO0003 Verify Signature Error (Wrong 401
key)
WATEO001 SecurityOperations Identity Provider ID was not 500
o set up
Initialization
WATEO0002 SecurityOperations Service to retrieve Public Key 500
o is not set up
Initialization
WATEO003 SecurityOperations Exception while initializating ~ 500
o Token Parser
Initialization
WATEO0004 SecurityOperations Exception while initializating 500
o Non Repudiation
Initialization
WATEO0005 Controller Initialization Identity Certificate (jwt) is not 500
setup
WATEOO006 Resource not Found 500
WATEO0007 Unexpected Error 500
WATEO008 Mandatory Arguments not 500
informed
WATEO0009 Create Signature Error 500

WABE1001 Market Participant Id mismatch  Market Participant Id in the 401
payload does not match with
the one received after
signature verification

WABE1002 Error verifying the signature Signature Verification process 500
ended in error

WABE1004 Request in error 400



nationalgrid

WABE2001

WABE2001

WABE3001

WABE3004

WABE3005

WABE3007

WABE3008

WABE2004

WABE2002

WABE2006

WABES5002

WABES003

WABES004

WABES5005

WABEG6001

WABEG6002

WABEG6009

WABEG6008

WABE6013

WABE9001

WATE3001

Internal server error

Internal server error
Internal server error

Wrong number of elements

Duplicated Message

Input data invalid
Wrapper data invalid

Request Duplicated

Request not valid
Internal server error

Error in retrieving token

Error calling Market Participant

Request in error

Wrong Scope

Instruction Response not

valid

Instruction Response not sent

Error in verifying Token

Request not valid
Error received from BM
Invalid request

Internal server error

A technical error when
processing the request

Internal server error
Internal server error

Only one element can be re-
submitted

There is a running instance for
same reference number

Payload sent is incorrect

Another Submission with the
same sequence number is
already in process

Invalid Payload received
Request Timeout

WATokenManagement
service ended in error

Error received while calling
Market Participant

Wrong Scope passed to the
service

Error verifying the signature
and token for incoming

Instruction Response

Technical error received while
sending Instruction Response

Instruction could not be sent to
BM

Invalid Payload received

Error received from BM

Internal server error

500

500

400

500

400

400

400

400

500

401

500

500

401

500

500

500

500

500

400

500

48



nationalgrid

WATE9004

WATE9005

WATE9006

WATE9007

WATE9008

WATE9011

WABE9001

Requested Control Point not
found

Cannot write

Cannot open the Selector

The Channel is Closed

The Channel is Not Connected

The Socket is not ready

Invalid request

UnAuthorized to access the

resource.

Failed to authenticate

application

content size [-] exceed

MaxMessageSize [1024000]

Error : Application has
reached its limit for this

minute.

API Rate Limit has been

reached

The Control Point was not
among the ones configured in
the DB

The channel is offline

A message cannot be sent
before the Channel with BM is
ready

500

500

500

500

500

500

400

401

401

413

429

429

49



nationalgrid

OAuth2 tokens

In order to consume the Wider Access APIs, the consumers will have to be authenticated with a JSON Web
Token (JWT). The process to issue such a token will follow the OAuth2 protocol, and specifically the
client_credentials flow.

NGESO will implement an Identity Provider where all the Market Participant identities, including those of
NGESO, will be stored. The identities are created as part of the enrolment process and will consist of:

A set of user and password to access the Development Portal - not required to consume APIs
A 'Client ID' and 'Client Secret', needed to obtain a token to consume an API

More information on the generation and validation of a token will be provided during the registration process.

OAuth Roles
OAuth defines three roles in the process of issuing and validating token:
e Authentication Server. In charge of issuing new tokens. This role will be fulfilled by NGESO

e Resource Provider. The party that provides the APIs to be consumed. It is responsible for validating that
the token associated to the API request is a valid token.

e NGESO will play the role of Resource Provider for the EDT Submission, EDL Redeclaration, EDL
Instruction User ACK, EDL Instruction ACC/REJ

e The Market Participants will play the role of Resource Provider for the EDT User ACK, EDT
ACC/REJ, EDL redeclaration ACC/REJ and EDL Instruction

e Client. Party that wants to consume a protected Resource. It can be represented by both NGESO and
Market Participants

50



nationalgrid

Conventions

e timeFrom = DD-MON-YYYY hh:mm
timeTo = DD-MON-YYYY hh:mm

o levelFrom = MW

e levelTo = MW

o offerPrice = £/ MWh
e bidPrice = £/ MWh

e rate = MW/ minute

Date/Time Format:

e YYYY =year (numeric)

e MON = month from the set {JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC}
e DD =day (numeric)

a single space separator between date and time

e hh =hours

e mm = minutes

51



nationalgrid

Reference
[1] National Grid ESO

[2] EDL Message Interface Specification

[3] Data Validation and Consistency Checking

[4] EDT Message Interface Specification

52


https://www.nationalgrideso.com/
https://www.nationalgrideso.com/document/33346/download
https://www.nationalgrideso.com/document/146871/download
https://www.nationalgrideso.com/sites/eso/files/documents/EDT%20Message%20Interface%20Specification%20Issue%205%202nd%20Draft.pdf

