

TAC-2 agenda

ltem	Duration	Time	Topic	Presenter / lead	Notes
1	10 mins	09:00 - 09:10	Welcome and introductions	Vernon Everitt – Chair	Opportunity for a pologies from TAC-1 to introduce themselves
2	10 mins	09:10 - 09:20	Minutes of last meeting and matters arising	Vernon Everitt – Chair	Approve terms of reference
3	10 mins	09:20 - 09:30	Business Plan summary	Craig Dyke – Head of Strategy & Regulation	
4	10 mins	09:30 – 09:40	Introduction to Role 1 (Control Centre Operations)	Gavin Brown – Power System Manager and Head of ENCC Future Design	
5	10 mins	09:40 – 09:50	Introduction to the Balancing and Network Control programmes	Graham Dolamore Ian Dytham	Introduction to Axis collaboration tool
6	40 mins	09:50 – 10:30	Control Centre: Balancing Programme overview and technology	Graham Dolamore Sree Menon Gary White	 20 minutes presentation, 20 minutes Q&A and discussion Ask of TAC – input, experience, validation, advice
	10 mins	10:30 - 10:40		BREAK	
7	40 mins	10:40 – 11:20	Control Centre: Network Control overview and technology	lan Dytham Keith Eller Gary White	 20 minutes presentation, 20 minutes Q&A and discussion Ask of TAC – input, experience, validation, advice
8	20 mins	11:20 – 11:40	Balancing and Network Control wash-up		 Review, discussion and voting on feedback using Axis collaboration tool Decide topics for further discussion
9	20 mins	11:40 – 12:00	Open data and digital market enablement	Colm Murphy	
10	10 mins	12:00 – 12:10	Ways of working	Vernon Everitt – Chair	 Thoughts and reflections on the first two meetings Ideas for how they could be improved
11	5 mins	12:10 – 12:15	Next meeting and calendar	Vernon Everitt – Chair	Confirm date and agenda for next meetingAgree calendar
12	5 mins	12:15 – 12:20	AOB	Vernon Everitt - Chair	
		12:20	Close		

Annex

Balancing and Network Control programme two-year delivery schedules

TAC member introductions

Name: Teodora Kavena

Current role: Programme Manager – Smarter UK, TechUK

Name: Ulrika Wising

Current role: Global VP Customer Solutions, Shell New Energies

TAC member introductions

Name: Judith Ward

Current role: Associate, Sustainability First

Name: Emma Pinchbeck

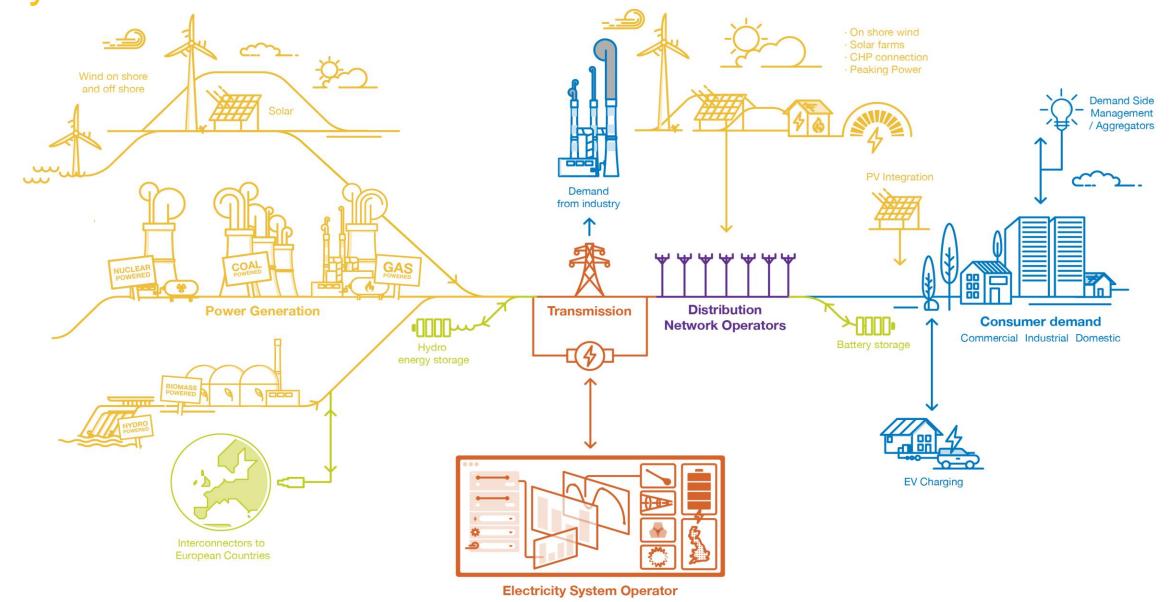
Current role: CEO, Energy UK



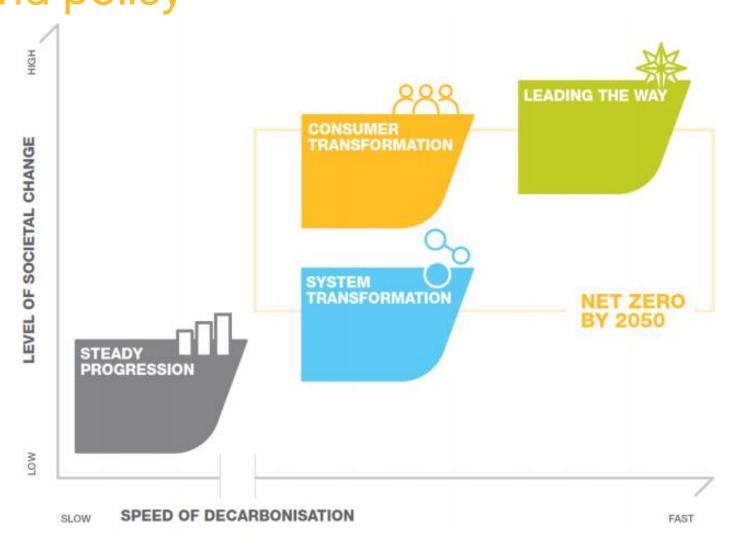
Minutes of last meeting and matters arising

We will use this section of the agenda to:

- Agree the minutes from TAC-1
- Discuss any comments on the terms of reference and approve them


can operate carbon free by 2025

that support net zero by 2050


partner

Our business plan will enable us to manage the energy system of the future...

...and provide flexibility to respond to new technology and policy

Consumer Transformation

- Electrified heating
- High energy efficiency
- Demand side flexibility

System Transformation

- Hydrogen for heating
- Lower energy efficiency
- Supply side flexibility

Leading the Way

- Significant lifestyle change
- Mix of hydrogen and electrification for heat

Steady Progression

- Minimal behaviour change
- Decarbonisation in power and transport but not heat

Our RIIO-2 Business Plan is ambitious

Role and overall grading	Delivery schedule area	Ofgem delivery schedule ambition grading
	1a System operation	Exceeds
Role 1 – Control centre operations (Ambition 5/5)	1b System restoration	Exceeds
	1c Transparency, data and forecasting	Exceeds
Role 2 – Market development and	2a Market design	Exceeds
transactions	2b Electricity Market Reform	Exceeds
(Ambition 4/5)	2c Industry codes and charging	Meets
Role 3 – System insight, planning and	3a Connections and access	Exceeds
network development	3b Strategy and insights	Exceeds
(Ambition 4/5)	3c Long term network planning	Meets

£2 billion net consumer benefits

in RIIO-2

Consumer bills £3 lower.

Role 1 – Control centre operations

1a System operation

- Transforming our control centre architecture and systems, to be able to operate a zero carbon electricity system by 2025
- **Upgrading our control centre training and simulation capabilities**, to be able to operate the system under range of scenarios, in partnership with the wider energy industry

1b System restoration

• Evolving our restoration procedures to ensure the reliance and reliability of the future and ensuring they meet the expectations of consumers in a highly-electrified world.

1c Transparency, data and forecasting

We will adopt the Energy Data Task Force recommendations including "presumed open"

Role 2 – Market development and transactions

2a Market design

• Build the future balancing service and wholesale markets – to attract the volume of flexibility we will need in the future, to achieve the UK's commitment to net zero emissions by 2050

2b Electricity market reform

• Transform access to the Capacity Market – to deliver security of supply with a plant mix that supports the UK's 2050 carbon target at an appropriate cost to consumers.

2c Industry codes and charging

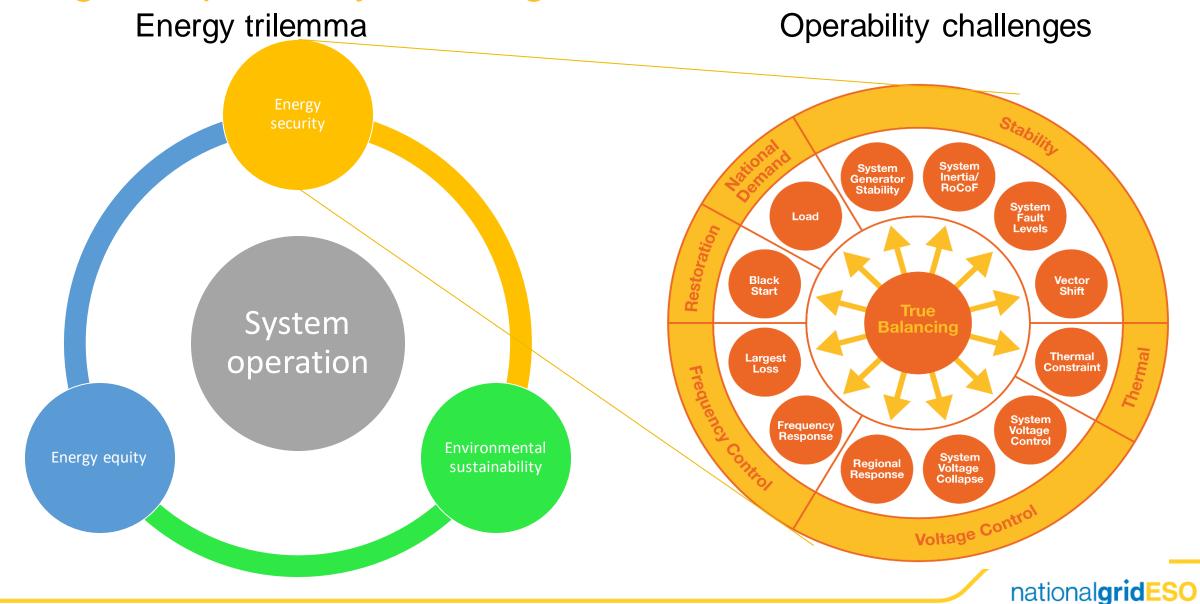
• **Develop codes and charging arrangements that are fit for the future** – that will facilitate the rapid change needed to deliver the low carbon energy system of the future. Code governance will be seen as an enabler of change, not a barrier

Role 3 – System insight, planning and network development

3a Connections and access

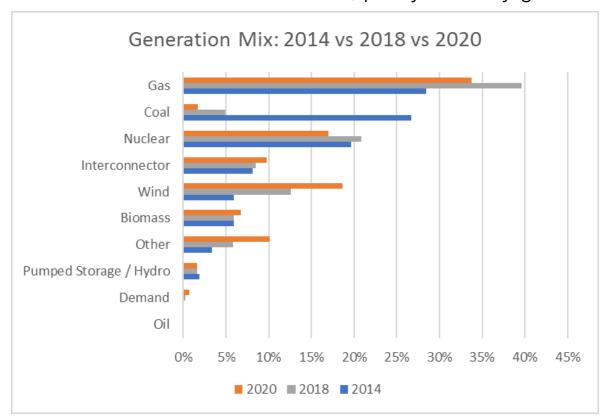
- Working more closely with Distribution Network Operators (DNOs) and Transmission Owners (TOs) to streamline the
 connection process, so that parties can take a more efficient, whole electricity system view
- Developing a whole electricity system approach to accessing networks, therefore tackling an area of significant consumer cost.

3b Strategy and insights

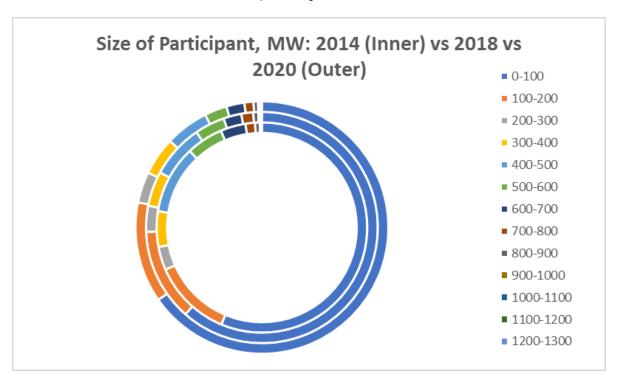

Leading the debate on decarbonisation of the GB energy industry, harnessing our significant expertise to identify
ways to achieve the 2050 net zero target, and policy decisions that must be made

3c Long term network planning

- Deliver new competitive processes so asset and non-asset based solutions can compete to meet future system needs.
- Extend and enhance the Network Options Assessment (NOA) approach bringing the significant cost savings the NOA has already achieved for consumers to other areas, such as end of life asset replacement decisions

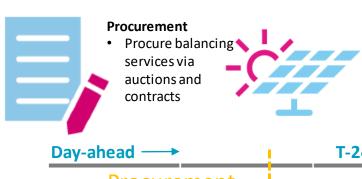


In real-time, we need to manage the energy trilemma and a range of operability challenges



This is becoming more challenging with increased variable generation and decentralisation

- Large increase in wind and solar
- Dramatic decrease in coal, partly offset by gas



• 28% of installed capacity is at distribution level

Current control room process for one settlement period: Day-ahead to real-time

Forecasting

- Forecasts demand, wind, solar
- Historic generation and demand data
- TV pick-ups
- Constraints
- Largest loss

Calculate reserve level

Create resource stack

- Comparing supply and demand
- Run margin analysis

T-24 hours

→

T-18 hours -

T-12 hours

Procurement

Forecasting

Scheduling

Validate SOP

- Generation changes
- Demand changes
- Forecast errors
- "What if" analysis
- Constraint analysis

Publish System Operating Plan

- Generation and demand forecasts
- Margin/shortfall
- Reserve
- Largest loss

Iterative scheduling

- Trading
- Commercial contracts
- Updated forecasts
- Updated constraint and margin analysis

Dispatch

←T-4 hours

Scheduling

— T-8 hours

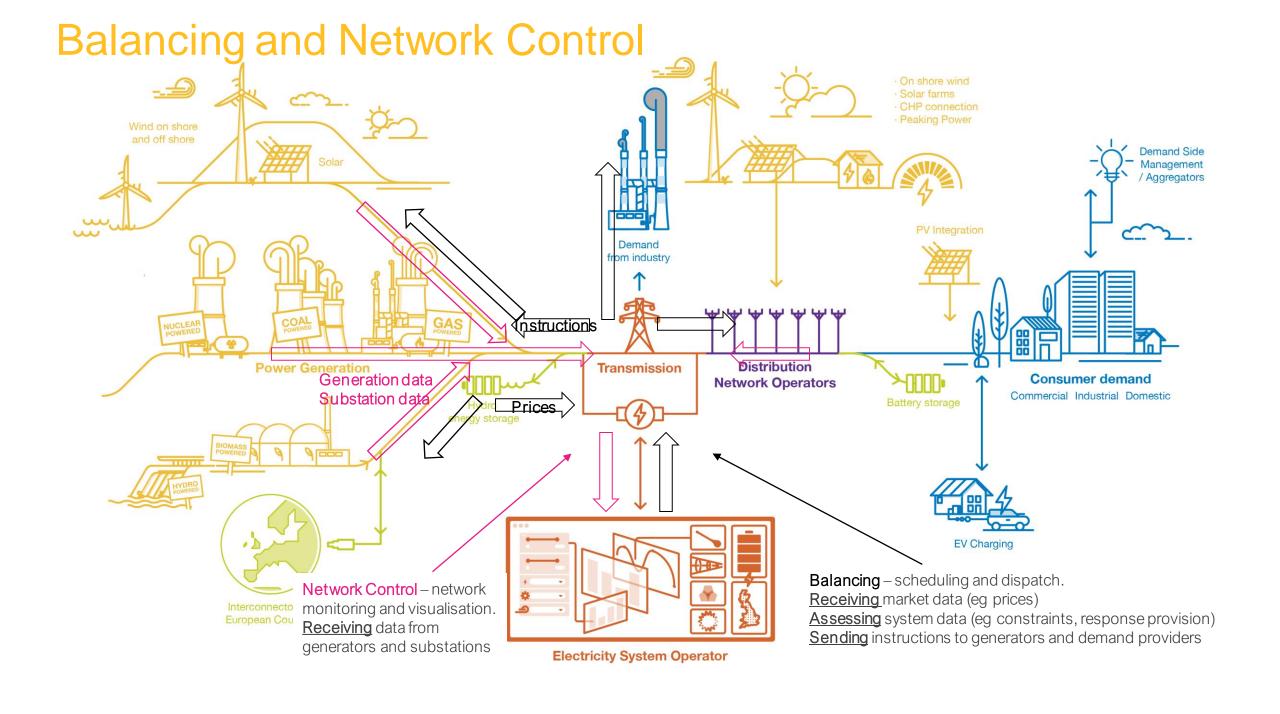
Generate advice instructions

- · Confirm commitment decisions
- Re-optimise if possible

Sync data prior to instruction

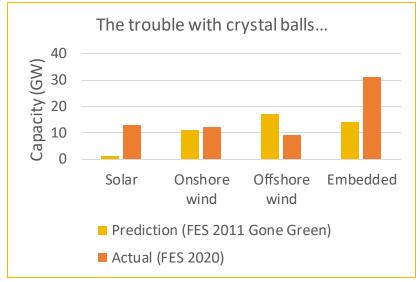
- Balancing Mechanism sync/desyncinstructions
- Ancillary service instructions

Final instruction and monitoring


- Assess final supply and demand from physical notifications
- Allocation generation targets to zones
 - Issue bid-offer acceptances (BOAs) to meet targets
- Review, monitor and re-instruct as needed

T-2 hours ----

T-89 minutes to T-2 minutes



We value your expertise and input

- We need to transform to be a digital and data-orientated company
- To do so, we must change internally people, process and technology, and will adopt the Agile approach → →
- The Balancing and Network Control programmes are two of our major transformation programmes to do this
- We will seek TAC input on these programmes through the project lifecycles, focusing on:

A waterfall approach could lead to suboptimal outcomes if we finalise requirements right now

People

- How do we move quickly but keep the pace of change manageable for the control room?
- How do we manage risk aversion with CNI systems?

Process

- How does a regulated, connected utility adopt a startup mentality?
- What are the pitfalls of applying Agile with legacy systems and technology?

Technology

- Insight of major technology projects
- Help us understand the future of real-time data within the industry
- Offer advice on how to make best use of cloud computing, including secure cloud
- Partnerships with suppliers and academia

Accenture have kindly agreed we can use the Axis collaboration tool to capture feedback as we go – challenges, considerations and solutions

What is Balancing?

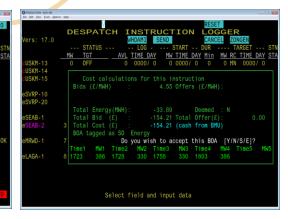
- Generation data
- Demand forecasts
- Response and reserve provision
- •Transmission status (eg constraints)
- Market data (eg prices)

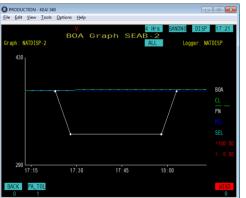
Inputs

Process

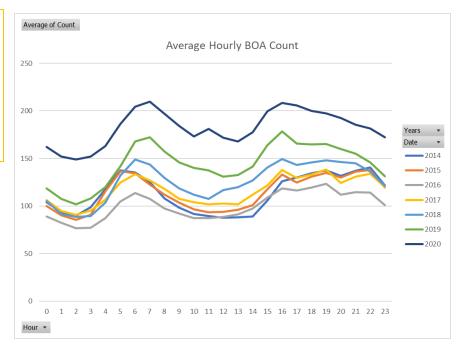
- Scheduling
- Manual dispatch
- Need for redundancy

- •Instructions (Bid-Offer Acceptances)
- Current spend of £1.6bn + per

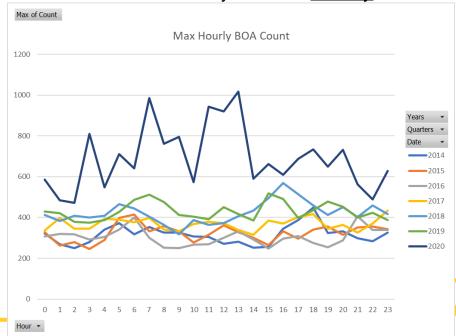

Outputs


Key technology

Oracle


database CPLEX scheduler Fortran dispatch

optimiser



Control room user interfaces, including BOA input screens (left and centre) and BOA graph (right)

We typically send 150-200 instructions per hour...but some days we send an instruction every 3 seconds - manually!

Future Control Tools | Balancing Transformation

Energy System

- ZERO CARBON SYSTEM OPERATION
- 1 MW DISPATCH CAPABILITY
- LEVEL PLAYING FIELD FOR ALL TECHNOLOGY
- GREATER LEVELS OF AUTOMATION
- COMPETITION IN ALL MARKETS
- TRANSPARENCY IN DECISION MAKING

Technology

- MODERN CONTROL ROOM SYSTEMS
- ACCESSIBLE PLATFORMS
- MODULAR, MICROSERVICE ARCHITECTURE

Delivery

- CO-CREATION WITH THE INDUSTRY
- INCREMENTAL AND ITERATIVE
- AGILE APPROACH
- USING EXTERNAL EXPERTISE
- RESPECTING CONTROL ROOM DEMANDS

UNLOCKS £2BN CONSUMER BENEFIT

ENABLES ZERO-CARBON OPERATION

FACILIATES NEW MARKET
PARTICIPANTS AND TECHNOLOGY

FLEXIBLE FOR FUTURE UPGRADES

OPERATE THE FUTURE ENERGY SYSTEM

UNDERPINS THE RIIO-2 TRANSFORMATION



Building the open balancing platform

What are the problems today?

- **Data quality** leading to additional steps across all business processes
- **Information volumes** and manual data cleansing in the time required—manual process
- **Transparency of actions** not a prerequisite feature of the systems. Manual or secondary systems required

- GUI are not intuitive and dated
- **ENCC** access multiple data sources & applications
- Video wall displaying limited operational data
- MP experience additional costs to backward engineer and connect

Agility

Data & **Analytics**

> Current Pain **Points**

User Experience

Optimisation

- **Slow to respond to change** Current speed of change fails to deliver/ keep up with the market changes
- **Silo'ed Projects** Project coordination impared because of multiple systems of varying vintage.

Tools & **Technology**

- Legacy systems with limited scalability
- Decreasing knowledge of existing Balancing systems
- Multiple disparate systems doing similar tasks
- Aged systems => Technical Debt

Business Processes

- 300+ User defined applications
- **Workarounds and manual process** make balancing complex across:
- Situational awareness improvements required

Services are not co-optimised

Current process improvements impaired by the technology

Existing optimisers not suitable for Whole System decisions (DER's etc)

Where do we want to be in 2025?

- Market provides accurate data
- Systems that can handle increased volumes
- **Data-driven mindset**
- Transparency of Actions readily available

- Able to flex with new technology and changing policy
- Products co-ordinated across markets e2e solution (registration=>balancing=>settlements)

Data & Analytics

Future balancing ambition

Optimisation

Agility

Tools & Technology

Modern systems that can adapt with increased number of market participants and changing market products

- Volume based dispatch
- Automation and decision support reducing the Human decision variable

Flexible Operator UX allowing

User Experience

Business **Processes**

- Integrated balancing capability
- Workarounds or bespoke user tools quickly incorporated into main capability
- High levels of situational awareness informing decisions

Services co-optimised

GUI are intuitive and user

all data to be displayed

Standard Connection

friendly

experience

- Zonal approach for optimisation is efficient
- New optimisers that are suitable for all MPs

Balancing Transformation – Building Foundations

Development Enablers

Transformation Enablers

Define capabilities that business need and by when

Determine technologies required to build the new Balancing platform

Develop transform & transition journey from current to new balancing platform

Define ways of working to deliver large scale and complex transformations incrementally

Define governance required to deliver complex and large-scale transformations

Define process to manage demand on current and the new balancing platform

Define operating model to support the business capabilities enabled by the new platform

Develop a robust solution architecture for the new Balancing platform

Build the base platform(s) for solution development

Define capabilities/features for new Balancing platform and build the product backlog

Complete delivery lifecycle methodologies, associated procedures and practices that support incremental delivery

Derive a programme and solution development team structure that supports incremental delivery

Obtain feedback from customers and continuously improve the features as the capabilities and architecture evolves

Populate the backlog with features and user stories for the first iteration

Value Streams represent the series of steps that an organization uses to implement Solutions that provide a continuous flow of value to a customer

Value Stream 1

Capability & Solution

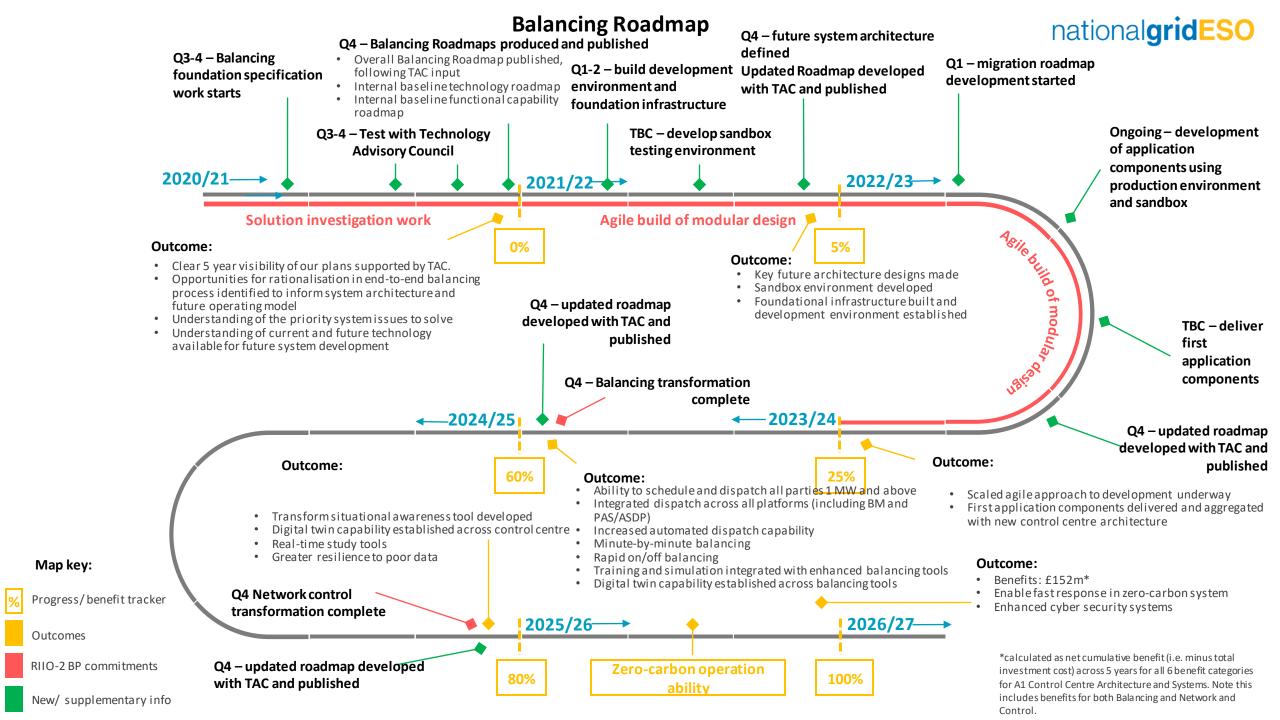
uture Business Strateg

Future Technology Strategy

lodular Architecture

Application Transformation
Strategy

Value Stream 2

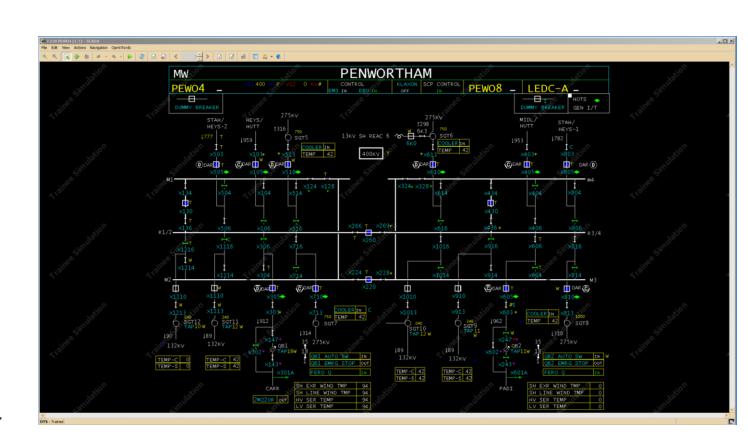

Deliver & Operate

ntelligent Demand Planning

Scaled Agile with Engineering

DevSecOps

Complex Delivery Governance


Balancing Programme discussion

- Questions
- Review of challenges, considerations and solutions (from Axis tool)
- Discussion

The current system – Integrated Energy Management System (iEMS)

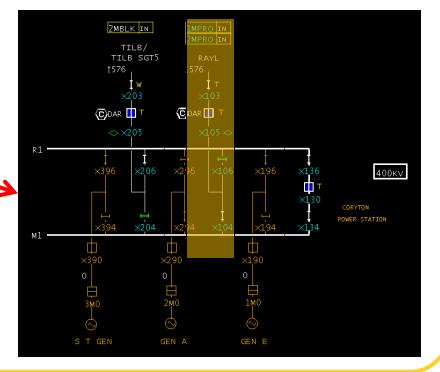
- PowerOn Reliance system supplied by GE
- Gathers and displays real time data (voltage levels, power flows and plant states) from substations all over the country
- Allows control of plant in remote substations
- Processes data and transmits it to other systems e.g. Balancing and Energy Forecasting tools.

How does it work?

Key considerations

- **Data packets received**: billions per day
- Redundancy: needs to work in a restoration situation

Bay controller reads values from transducers of one bay of substation



Substation
Control
System
collates data
from all bays
at the site

IEMS scans SCSs at all GB substations

Who uses the current system?

- Electricity National Control Centre (ENCC)
 - System operation
- Transmission Network Control Centre (TNCC)
 - Operational Switching
 - Safety Switching
 - Response (alarm management)
- Planning and Analysis teams
 - Real time studies and queries
 - System topology
 - Post-event analysis

Database teams

- SCADA data amendments
- PNA data amendments

CNI teams

- Support the hardware and software
- Responsible for software enhancements

What are the problems today?

- Real-time data has to flow through iEMS system to reach other tools (e.g. Balancing)
- Real-time data protected within iEMS tools
 not available for wider use
- Analysis suite not aligned with latest industry developments

Refresh / replace cycles take 5 years, with kit often close to end of support life within a similar timeframe

 Changes require significant periods of development with GE

Data & Analytics

Tools & Technology

- **Ageing system** with end of support issues
- **Decreasing resource availability** with legacy experience

GUI are not intuitive and dated

 User experience compromised by having to perform multiple functions of a shared product

Interface relies on user to interpret alarms to understand what situation the system is in

Current
Pain
Points

Agility

User Experience Business Processes

- Many custom software additions that are expensive and difficult to maintain
- Resource intensive processes to update models and user interface

 Training and simulation environments are single snapshot and lack real-time data capability

 Very little integration between products (e.g thermal ratings, protection schedules)

Where do we want to be in 2025?

- Real-Time data can be made accessible to all through common data platform
- Streaming real-time analytics within products
- Powerful network analysis tools focused on providing situational awareness

Agility

Modular design can be modified and maintained with no impact to real-time operations

Evergreen environment that is under constant refresh cycle

GUI are intuitive and user friendly

Product separated from NGFT and focused on Situational Awareness

Single integration layer links **Balancing and Network** Control products

Data & Analytics

User Experience

Technology Future Network Control

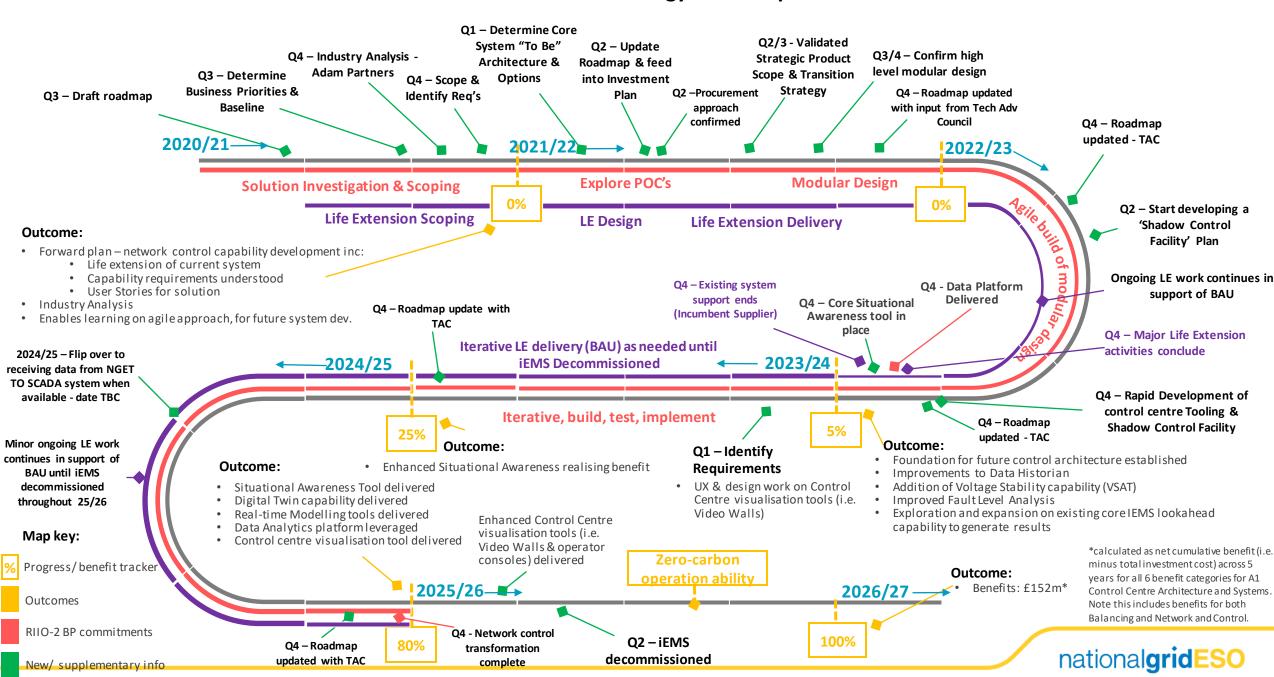
Processes

Business

Tools &

- Standardised connectivity (e.g. APIs) to allow greater volume of third party apps to be utilised
- Use of cloud based computing to improve processing power when needed
- Modern technology increases resource pool availability

- **Partnership** with suppliers that ensures custom user requests are integrated into standard product
- Manual work intensive processes replaced by automation


Optimisation

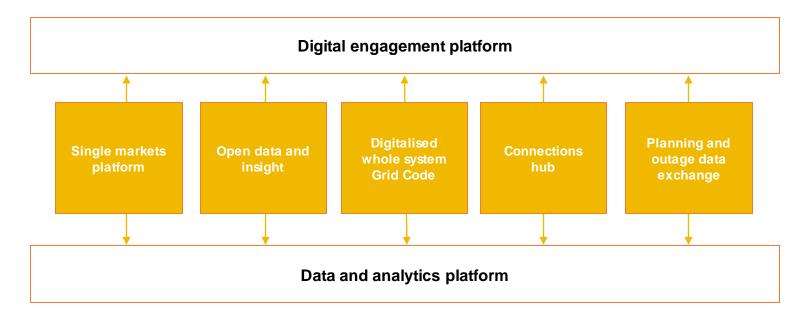
ambition

- **Sandbox environments** that use real-time data to enhance our training and simulation capability
- Integration with other company products

Network Control Strategy Roadmap

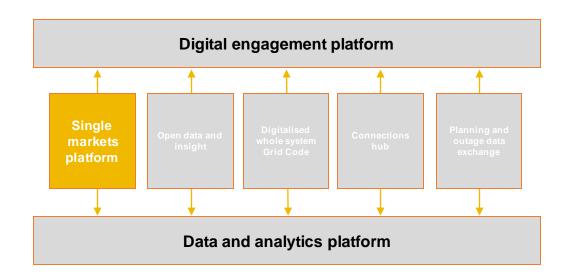
Network Control discussion

- Questions
- Review of challenges, considerations and solutions (from Axis tool)
- Discussion


Balancing and Network Control wash-up

- Voting using the Axis collaboration tool
- Further discussion on priority topics identified
- Agree topics for further discussion at next meeting

Delivering open data and digital market enablement


- Stakeholders have told us we need to make it easier for them to do business with us
- Pillar 1 of our ESO Digitalisation Strategy Deliver open data and digital market enablement and our RIIO-2 Business Plan outline our approach for using digital technology to improve the user experience
- We have proposed a suite of foundational investments that will transform how the market interacts with the ESO

All ESO markets will be accessed through a Single Markets Platform

- Accessed via the Digital Engagement Platform, this onestop-shop will provide a portal for parties of 1 MW and above to participate in all our balancing services markets.
- It will also provide access to the Capacity Market and the Contracts for Difference (CfD) auctions.
- The platform will be based on an asset registry which identifies all characteristics of each unique asset on the system.
- The Single Markets Platform (SMP) will interface with a new auction capability scalable to new services and products, with multiple algorithms for auctions at different frequencies, spanning from yearly to day ahead.
- The SMP and other systems will be delivered in an agile and modular in collaboration with our stakeholders

The Single Markets Platform will transform the end to end process of offering services to the ESO

Information in one place

Communications on processes including contracting, testing, procurement events, performance monitoring and reporting, payment and portfolio management will all move from email to communication via the platform.

Data input

Data input and management for processes including procurement events and performance monitoring will move from offline spreadsheets to data management and communication via the single markets platform.

Online Decision Support

Messaging capabilities and validation rules will enable online decision support, for example by telling market participants which markets their assets are eligible for. The system will also notify them if they are submitting noncompliant information.

There are significant challenges to delivering the Single Markets Platform

Key challenges will include:

- Getting high quality input from users of the system who have many demands on their time
- Ensuring the project is joined up with wider industry market and platform developments (whilst delivering at pace)
- Coordinating delivery with the wider transformation of ESO systems and transitioning to new tools and processes whilst maintaining resilience of supply
- Future-proofing the systems to facilitate future, currently unseen, market transformation

Ways of working

Group discussion on:

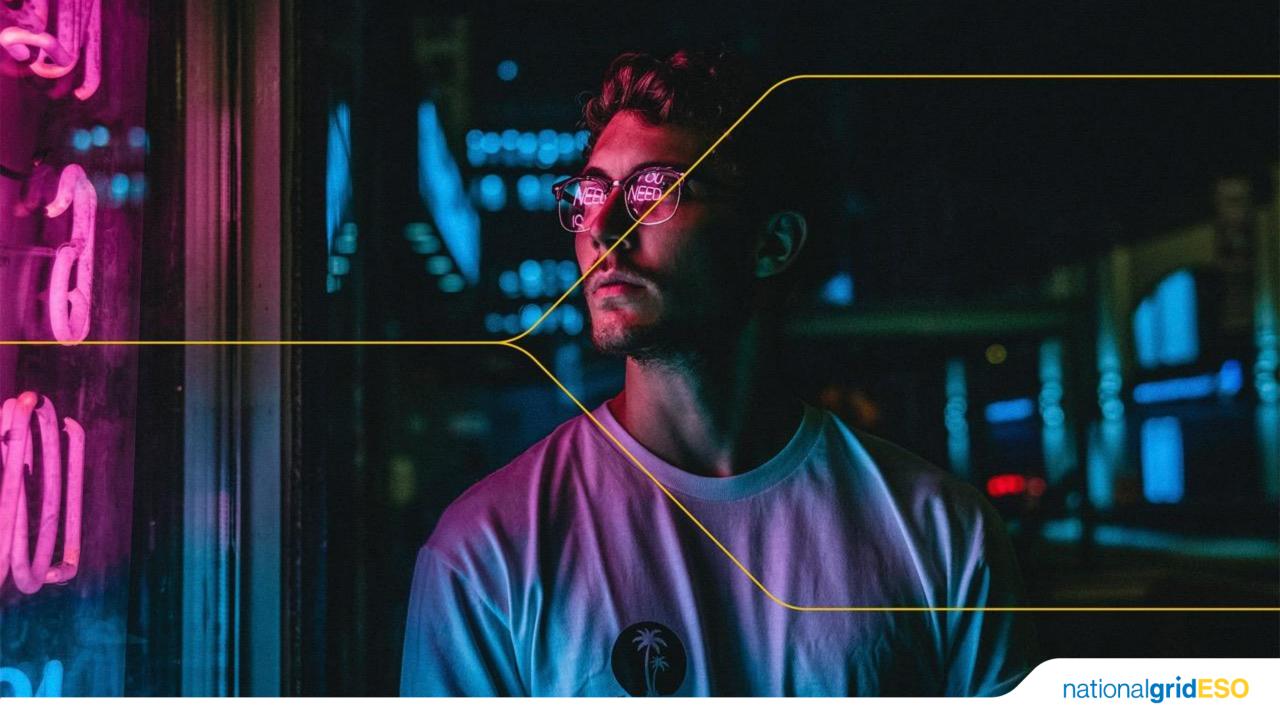
- Reflections on the first two meetings
- Suggestions for improvements

Next meeting and calendar

- Propose meeting every quarter for a half-day on the first Friday morning of the month, 9am-12.30pm
 - 5 March 2021
 - 4 June 2021
 - 3 September 2021
 - 3 December 2021
 - 4 March 2022
 - 3 June 2022
 - 2 September 2022
 - 2 December 2022
 - 3 March 2023

Topics for next meeting

Topic	Discussion items			
Data and analytics platform	Introduction (similar to Balancing and Network Control today)			
Digital engagement platform				
Balancing	Deepardives into an edition estions (based on TAC feedback			
Network Control	Deeper dives into specific sections (based on TAC feedbac			



Balancing Programme two-year delivery schedule

RIIO-1 end point	2021/22 milestones	2022/23 milestones	First year success	Second year success	Expected final delivery date and what success looks like
Balancing Roadmap developed with Technology Advisory Council (TAC) and published. It will contain a high-level view of: • Key drivers and priority user requirements. • User stories and user journeys, including how participants will interact with our systems. • Backlog and when the first items will be delivered, focusing on 2021/22 and 2022/23, based on the user requirements and asset health. • Outputs and outcomes. • Dependencies. • Progress updates (for later revisions). Early technology proof of concept working completed to: • Inform technology is appropriate • Inform programme structure, resourcing and ways of working • Inform future system architecture work Included in the above is reviewing the approach taken to develop the Modern Dispatch Optimiser, which is a trial for our RIIO-2 ways of working. Internal baseline roadmap for technology delivery (for iterative ongoing development), taking outputs of proof-of concept work and combining with known technologies. This provides an overview of what technology is available to us for future system development. Internal baseline roadmap for functional capability being delivered for key processes including scheduling and dispatch, based on current known requirements. This provides an overview of what the key system is sues to solve are. Identify opportunities for end-to-end balancing process rationalisation, to inform future operating model and system architecture. Programme structure defined and resourcing strategy confirmed reflecting previously described FTE numbers). Clear governance structure defined, including TAC and internal sign-off processes.	Q1 – start developing foundational infrastructure and tooling to support applications: • Testing and automation tools • Capacity management tools • Alarmand event management • Monitoring tools • Incident management • Coding tools • Change management tools • Containerisation tools • Cyber security tools Q1 – build a platform environment to create applications in (collaborations pace with servers, storage and code development infrastructure). Q2 – complete foundational infrastructure tooling work. Q2 – updated Roadmap agreed with TAC and published. Q4 – future system architecture defined, including in-scope modules for future development. Q4 - updated Roadmap agreed with TAC and published Sandbox testing environment developed (timescale TBC): • Define data inputs and data sets to test components • Define expected outputs to compare test against • Start testing priority components (to be determined).	Q1 - Migration roadmapdevelopment started, providing a view of when new systems will come online, and legacy ones switched off. Q2 - updated Roadmap agreed with TAC and published. Q4 - updated Roadmap agreed with TAC and published. Deliver first application components (timescales TBC): Build the production environment to safely and securely develop code for 24/7 systems Testing in sandbox environment. Ongoing agile delivery of application components, using production environment and sandbox (will be determined by Roadmap at end of RIIO-1).	Sandbox environment developed for testing components to prove components work, giving industry confidence. Key decisions on architectural design made incorporating feedback from the TAC. Priority technology identified and sourcing decisions made. Potential code changes required to support operation of the tool identified and timeline agreed with codes team. Expected development timeline agreed and roadmap published. Incremental targets for Metric 2 – CNI system reliability met. Updated programme costs to feed efficient cost benchmark review. Incremental benefits identified in cost-benefit analysis realised.	Production environment developed. Technology sourcing decisions for further application development completed. Scaled agile approach to development underway and on track against roadmap. Initial modules integrated with new control centre architecture (Activity A1.4). Updated roadmap published. Incremental targets for Metric 2 – CNI system reliability met. Updated programme costs to feed efficient cost benchmark review. Incremental benefits identified in cost- benefit analysis realised.	By March 2024 Control Centre engineers can schedule and dispatch a far greater number of market participants at once than they can in 2020, which is a key enabler of our ability to operate the network carbon free. Using increased automation provides market participants with greater confidence in our decision-making. ASDP has become one module of the 180 Enhanced balancing capability, integrated with other operational tools. Benefits identified in cost-benefit analysis realised. The practical improvements to system operation are: • Ability to operate the electricity system carbon-free • Ability to efficiently and transparently schedule and dispatch significantly more market participants than today • Stakeholder confidence in our control room decision making. This helps our zero-carbon operation because: • We will have the control centre tools to be able to operate the system carbon-free.
					100000000000000000000000000000000000000

Network Control Programme two-year delivery schedule

RIIO-1 end point	2021/22 milestones	2022/23 milestones	First year success	Second year success	Expected final delivery date and what success looks like
IEMS Life Extension	IEMS Life Extension	IEMS Life Extension	IEMS Life Extension	IEMS Life Extension	IEMS Life Extension
	Q1 & Q2 – Vendor negotiations to	Q1 & Q2 - Deliver	Design work completed.	Life extension of current systems continued including	Final delivery in March 2026 with the
Detailed asset health	support life extension.	medium priority		development work where necessary to manage changing	decommissioning of IEMS
assessment undertaken.		softwareand	Agile delivery starting.	network.	
	Q3 & Q4 – Deliver high priority software	hardware life			Network Control Strategy
Technical approach with	and hardware life extension projects.	extension projects.	Life extension of current	Voltage stability analysis capability implemented	By March 2025:
stakeholders and vendors			systems continued including	Improved fault level analysis implemented	Business process implemented
agreed.	Network Control Strategy	Q3 & Q4 – Deliver	development work where		ensuring Control Centre engineers
	Q1 – validate scope and transition	low priority software	necessary to manage changing	Delivery continuing in an agile manner.	can manage and visualise far greater
In-depth technical options	strategy, based on Roadmap.	and hardware life	network.		volumes of data than in 2020 which
analysis developed.	Q1 – start procurement activity for core	extension projects.		Incremental targets for Metric 2 – CNI system reliability	is a key enabler of our ability to
	system.		Incremental targets for CNI	met.	operate the network carbon free.
Asset risk mitigation options	Q1 – commence proof of concept work.	Network Control	system reliability metric met.		
determined.	Q1 – determine core system "to be"	Strategy		Network Control Strategy	This information is used to better
	architecture and options		Network Control Strategy	Core situational awareness tool delivered (but not yet in	understand the operating envelope,
Network Control Strategy	Q1 – commence core system	Q1-4 - build of core	Supplier engagement and	operation). This will be the core system, that links to the	allowing Control Centre engineers to
	requirements.	situational	sourcing strategy in action.	control centre architecture (Activity A1.4), including the	run a more efficient system safely
Forward Plan - Control capability		awareness system.		data and analytics platform, and other modules.	and at lower cost to consumers.
development, including life	Q2 – procurement approach confirmed.		Project scope for new tools	Core system delivered at this time is likely to comprise	
extension of current system,	Q2 – finish core system requirements	Q2 – roadmap	developed through	(subject to change):	Specific deliverables include:
capability requirements work	work.	updated with input	stakeholder engagement (e.g.	 Foundation architecture established 	 Integration with new NGET
ongoing between SO-TO in prep	Q2 – roadmap updated with input from	from TAC.	TAC) and finalised.	 Data acquisition from Transmission Owners (TOs) 	SCADA system complete
for separation of systems, user	TAC.			 Integration with Data & Analytics platform for data 	• Enhanced situational awareness
stories for new product.	Q2 – finish work with NGET on capability	Q4 – finish proof of	Core system requirements	storage	capability delivered
	mapping.	concept work.	work completed.	State estimator	 Enhanced real-time modelling
Network Control Roadmap	Q2 – validate scope and transition	Q4 – roadmap		Basic alarm management	tools and look-ahead capability
developed with TAC and	strategy, based on Roadmap	updated with input	Core system design work		delivered
published. Will contain high-		from TAC.	complete.	Other potential in-scope items delivered at this stage	 Enhanced control room
level view of:	Q3 – validate scope and transition	Q4 – start project to		(subject to change):	visualisation delivered
 Key drivers and priority 	strategy, based on Roadmap	integrate core	Proof of concepts work	Display capability	 Full training simulator integration
deliverables	Q3 – confirm high level modular design	system with data	ongoing.	 Contingency analysis. 	(D2.3.1/IT investment ref 200)
 What will be delivered and 	Q3 – commence core system design	and analytics			 Shadow control room live.
when (within the detail possible)	work.	platform.	Potential code changes	Core system initially running in a non-operational	
Outputs and outcomes			required to support operation	sandboxalongside IEMS, allowing for testing and tuning	Benefits identified in cost-benefit
• Dependencies	Q4 – finish core system design work.		of the tool identified and	of modules.	analysis realised
 Progress updates (for later 	Q4 – finish procurement activity.		agreed with codes team		
revisions).	Procurement approach confirmed.			Updated roadmap agreed with TAC and published.	IEMS decommissioned (for ESO use)
	Q4 – roadmap updated with input from		Incremental benefits identified		
	TAC.		in cost-benefit analysis	Incremental benefits identified in cost-benefit analysis	
			realised	realised.	

