TNUoS DCLF ICRP Transport & Tariff Model

11 December 2019

Housekeeping

Revenue team: TNUoS Tariff Forecasting & Setting

Rebecca Yang

Forecasting, setting and billing TNUoS to recover £2.8bn of TO revenue per year from generators, demand and suppliers

- Offshore
- Annual Load Factors (ALFs)

Jo Zhou

- Revenue
- Onshore Local Circuits

Matt Wootton

- Generation
- Local substation

- Demand
- EET

Introductions

1 Who are you and where have you come from?

2 What do you want to get out of this session?

3 How do you plan on using the TNUoS model?

Agenda

5

Time	Торіс
10:00	Welcome & Introductions
10:15	Overview of Transport & Tariff Model
11:00	How to Change Key Transport Model Inputs: • Demand & Generation (Contracted)
11:30	Coffee
11:40	How to Change Key Transport Model Inputs: • Circuits
12:00	How to Change Key Tariff Model Inputs:RevenueCharging Base (Demand & Generation)
12:45	Lunch Running the Model Interactive Session: Worked Example
13:40	Trouble Shooting!
14:10	Other TNUoS FAQs
14:30	Sli.do and Q&A
15:00	Finish

Sli.do

We want your feedback! #tariffs

Using a 0-10 scale: How likely is it that you would recommend this training to a friend or colleague?

Which part did you find the most useful and why?

How could we improve this training session?

What is TNUoS?

- TNUoS is the Transmission Network Use of System charge, and recovers the allowed revenue for Transmission Owners for the cost of building and maintaining transmission infrastructure.
- ESO recovers the charges on behalf of the TOs, including SPT, SHET, NGET and OFTOs.
- The tariffs are set annually and in advance.
- Charges are split between generation and demand.

Generation

- Generation tariffs are capped by a €2.50/MWh
 limit set by the EU
- Generations charges are charged against transmission entry capacity (TEC)

Demand

- Demand charges charged based on usage:
 - HH Triad demand
 - NHH Annual usage between 16:00 & 19:00

What is the Transport and Tariff Model & what does it do?

Calculates Transmission Network Use of System Charges (TNUoS) consistent with the methodology set out in the CUSC (Section 14, Part 2, Section 1).

It has two fundamental purposes:

Produce cost-reflective tariffs with locational signals, to incentivise the efficient siting of generation and demand across the transmission system

Ensure accurate revenue recovery for the TOs

What is the Transport and Tariff Model & what does it do?

1

Within the transport model is a simplified GB onshore transmission network model with demand and generation assumptions for each node

2

The transport model adds on 1MW of generation and then 1MW of demand to derive the approximate long run marginal costs of transmission. These are measured in MWkm

3 The model applies different

generation profiles for peak & year round conditions

4

It then converts MWkm incremental cost into £/kW by applying a "unit cost" (in £/MWkm) for different types of circuits. This gives locational tariffs.

•e.g. 400kV OHL, 275kV underground cable...

5

The tariff models uses revenue, generation and demand assumptions to calculate the residual element and final tariffs

Inputs in to TNUoS Charges

TNUoS Liability

The Transport Sheet & Week 24 Demand

Inputs in to TNUoS Charges -

The Transport Sheet & Week 24 Demand

Principles of locational signal

North: More Generation than Demand Higher Generation Charges Lower Demand Charges

South: More Demand than Generation Lower Generation Charges Higher Demand Charges

Flow of electricity under an "artificial" background

Cost reflective signal reflects incremental network development to meet flows

Transport Model – how to derive locational signals

Marginal Cost at each Node

Jargon Buster

How much does it cost the TO(s) to move 1MW of power, along 1km of 400kV overhead line?

The Expansion Constant (in £/MWkm)

How many times as expensive as the EC, if we move 1MW of power, along 1km of other types of circuits (e.g. 275/132kV OHL/cable, or 400kV cable, or HVDC etc)?

The transmission network requires redundancy, for maintenance / construction / resilience. How many times as much as the "no-redundancy" network capacity is needed?

Transport Model – dual backgrounds

Peak Security - Reflects how the system is used by peaking generation (Conventional Carbon generators)

Load Factor Scaling for Contracted Generation

	Peak	Year Round
Wind, Solar, Tidal	Fixed 0%	Fixed 70%
Nuclear	Variable	Fixed 85%
Interconnectors	Fixed 0%	Fixed 100%
Hydro	Variable	Variable
Pumped Storage	Variable	Fixed 50%
Peaking	Variable	Fixed 0%
Other	Variable	Variable

	Transport Mo	odel Demand
Peak		Year Round
	Winter Peak fror	m Week 24 Data

Year Round – Reflects how the system needs to be built to accommodate less flexible generation under SQSS economic criteria (Low Carbon and Intermittent generators)

The "T" Shape Layout

Column A – O: Nodes

Column P – AL: Branches

Column AN and beyond: Nodes

Nodes Information

Same as on GenInput tab (and

Green text box – auto calculated values

	Colou	r Key	У		oth	ers)					
Validate DCLF Injuts Calc DCUF 8	Text Colour H Bold Black Black Blue Green	ey Labels Ied Data Input	Jos rirans Last Time V Last Time H Last Time H Last Time C	pol c wloter - alidation Run: VDC Initialisation VDC Calculation alculation Run:	Snaring Run: Run:	04 Apr 10:00 29 Jan 20:57 04 Apr 10:03 04 Apr 10:05	(which w	CMP 21	13 <mark>- Original Proj</mark> Peak Sec Sca Year Round S	20531 with Di 1.0000000 1.0000000	Tersi (
MWk	Red	Error		Sum Demand 52141	Total PS Gen 52141	Total YR Gen 52141					
DC Load Nodal Inp	ut			52140.99999					4144	Nodal Cal	cula
DC Load <u>Nodal Inp</u> Bu: /ID	ut Bus Name	Outpu t Resul	Voltage	52140.999999 Demand	Generation A - Peak Security (Transport	Generation B - Year Round (Transport	ETYS Zone	Gen Zone	4144 Dem Zone	<u>Nodal Cal</u> Bus Order	lcula Bu: nsl
DC Load <u>Nodal Inp</u> Bu r ID	Bus Name	Outpu t Resul ts	Voltage 400	52140.99999 Demand	Generation A – Peak Security (Transport Model) 0.0000	Generation B - Year Round (Transport Model) 0,0000	ETYS Zone	Gen Zone 27	4144 Dem Zone 14	Nodal Cal Bus Order 602	Cula Bu: nsl
t	1 ABHA4A 2 ABHA4B	Outpu t Resul ts No No	Voltage 400 400	52140.99999 Demand 115.42 115.42	Generation A - Peak Security (Transport Model) 0.0000 0.0000	Generation B - Year Round (Transport Model) 0.0000 0.0000	ETYS Zone F6 F6	Gen Zone	4144 Dem Zone 14 14	Nodal Cal Bus Order 602 432	Cula Bu: nsl
DC Load <u>Nodal Inp</u> Bur ID	1 ABHA4A 2 ABHA4B 3 ABNE10	Outpu t Resul ts No No No	Voltage 400 400 132	52140.999999 Demand 115.42 115.42 36.22	Generation A - Peak Security (Transport Model) 0.0000 0.0000 0.0000	Generation B - Year Round (Transport Model) 0.0000 0.0000 0.0000	ETYS Zone F6 F6 T4	Gen Zone 27 27 27 5	4144 Dem Zone 14 14 14	Nodal Cal Bus Order 602 492 382	cula Bu: nsl
DC Load <u>Nodal Inp</u> Bu: ID	1 ABHA4A 2 ABHA4B 3 ABNE10 4 ABTH20	Outpu t Resul ts No No No	Voltage 400 400 132 275	52140.999999 Demand 115.42 115.42 36.22 168.43	Generation A - Peak Security (Transport Model) 0.0000 0.0000 1574.9038	Generation B - Year Round (Transport Model) 0.0000 0.0000 0.0000 1160.0085	ETYS Zone F6 F6 T4 H2	Gen Zone 27 27 27 5 21	4144 Dem Zone 14 14 14 1	Nodal Cal Bus Order 602 492 382 841	cula Bu: nsl -1 -1 -1 14(
t	1 ABHA4A 2 ABHA4B 3 ABNE10 4 ABTH20 5 ACHR1R	Outpu t Resul ts No No No No	Voltage 400 400 132 275 132	52140.99999 Demand 115.42 115.42 36.22 168.43 0.00	Generation A - Peak Security (Transport Model) 0.0000 0.0000 0.0000 1574.9098 0.0000	Generation B - Year Round (Transport Model) 0.0000 0.0000 1160.0085 30.1000	ETYS Zone F6 F6 T4 H2 T3 T1	Gen Zone 27 27 27 5 21 7	4144 Dem Zone 14 14 14 10 10	Nodal Cal Bus Order 602 492 382 841 455	Cula Bu: nsl -1 -1 -3 14(
DC Load Nodal Inp Bu: /ID	Bus Name 1 ABHA4A 2 ABHA4B 3 ABNE10 4 ABTH20 5 ACHR1R 6 AIGA1Q 7 ALIGA1Q	Outpu t Resul ts No No No No No No	Voltage 400 400 132 275 132 132 132	52140.99999 Demand 115.42 115.42 36.22 168.43 0.00 0.00 81.00	Generation A - Peak Security (Transport Model) 0.0000 0.0000 0.0000 1574.9098 0.0000 18.7378 0.0000	Generation B - Year Round (Transport Model) 0.0000 0.0000 0.0000 1160.0085 30.1000 13.8014 0.0000	ETYS Zone F6 F6 T4 H2 T3 T1 P3	Gen Zone 27 27 5 21 7 1 15	4144 Dem Zone 14 14 14 10 10 1	Nodal Cal Bus Order 602 492 382 841 455 1 657	Cula Bu: nsl -1 -1 -3 14(18.
DC Load Nodal Inp Bur ID	Bus Name 1 ABHA4A 2 ABHA4B 3 ABNE10 4 ABTH20 5 ACHR1R 6 AIGA1Q 7 ALDW20 8 ALINE10	Outpu t Resul ts No No No No No No No No No	Voltage 400 400 132 275 132 132 132 132 132	52140.99999 Demand 115.42 115.42 36.22 168.43 0.00 0.00 81.00 3.83	Generation A - Peak Security (Transport Model) 0.0000 0.0000 0.0000 1574.9098 0.0000 18.7378 0.0000 0.0000	Generation B - Year Round (Transport Model) 0.0000 0.0000 0.0000 1160.0085 30.1000 13.8014 0.0000 0.0000	ETYS Zone F6 F6 T4 H2 T3 T1 P3 T5	Gen Zone 27 27 5 21 7 1 16 16	4144 Dem Zone 14 14 14 10 10 1 10 1 1 5	Nodal Cal Bus Order 602 492 382 841 455 1 667 2	Cula Bu: nsl -1 -1 -3 14(-3 14(
DC Load Nodal Inp Bu: /ID	I ABHA4A Bus Name Bus Name ABHA4A ABHA4B ABHA4B ABHA4B ABHA4B ABHA4B ABHA4B ABHA4B ABHA4B ABHA4B ABHA4B ABHA4B ABHA4B ABHA4A A ABHA4A A ABHA4A A ABHA4A A A ABHA4A A A ABHA4A A A ABHA4A A A A A A A A A A A A A A A A A A A	Outpu t Resul ts No No No No No No No No No No No No No	Voltage 400 400 132 275 132 132 275 132 132 132 132	52140.99999 Demand 115.42 115.42 36.22 168.43 0.00 0.00 81.00 3.83 3.83	Generation A - Peak Security (Transport Model) 0.0000 0.0000 0.0000 1574.9098 0.0000 18.7378 0.0000 0.0000 0.0000	Generation B - Year Round (Transport Model) 0.0000 0.0000 1160.0085 30.1000 13.8014 0.0000 0.0000 0.0000	ETYS Zone F6 F6 T4 H2 T3 T1 P3 T5 T5	Gen Zone 27 27 5 21 7 1 16 11 16	4144 Dem Zone 14 14 14 10 10 1 10 1 1 10 1 1 10 1 1 1 1	Nodal Cal Bus Order 602 492 382 841 455 1 667 2 3	Cula Bu: nsl -1 -1 -3 14(-3 14(-3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3
DC Load Nodal Inp Bu: /ID	Bus Name 1 ABHA4A 2 ABHA4B 3 ABNE10 4 ABTH20 5 ACHR1R 6 AIGA1Q 7 ALDW20 8 ALNE1Q 9 ALNE1R 10 ALVE4A	Outpu t Resul ts No No No No No No No No No No No No No	Voltage 400 400 132 275 132 132 275 132 132 132 132 400	52140.999999 Demand 115.42 115.42 36.22 168.43 0.00 0.00 81.00 3.83 3.83 3.83 98.91	Generation A - Peak Security (Transport Model) 0.0000 0.0000 1574.9098 0.0000 1574.9098 0.0000 18.7378 0.0000 0.0000 0.0000 0.0000	Generation B - Year Round (Transport Model) 0.0000 0.0000 0.0000 1160.0085 30.1000 13.8014 0.0000 0.0000 0.0000 0.0000	ETYS Zone F6 F6 T4 H2 T3 T1 P3 T5 T5 T5 F6	Gen Zone 27 27 5 21 7 1 16 16 1 27	4144 Dem Zone 14 14 14 10 10 1 10 1 1 10 1 1 11	Nodal Cal Bus Order 602 492 382 841 455 1 667 2 3 318	Cula Bu: nsl -1 -1 -3 14(-3 -3 -3 -3 -3
DC Load Nodal Inp Bur ID	Bus Name 1 ABHA4A 2 ABHA4B 3 ABNE10 4 ABTH20 5 ACHR1R 6 AIGA1Q 7 ALDW20 8 ALNE1Q 9 ALNE1Q 9 ALNE1Q 10 ALVE4A 11 ALVE4B	Outpu t Resul ts No No No No No No No No No No No No No	Voltage 400 400 132 275 132 132 275 132 132 132 132 400 400	52140.99999 Demand 115.42 115.42 36.22 168.43 0.00 0.00 81.00 3.83 3.83 3.83 3.83 98.91 98.91	Generation A - Peak Security (Transport Model) 0.0000 0.0000 1574.9098 0.0000 18.7378 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Generation B - Year Round (Transport Model) 0.0000 0.0000 1160.0085 30.1000 13.8014 0.0000 0.0000 0.0000 0.0000 0.0000	ETYS Zone F6 F6 T4 H2 T3 T1 P3 T5 T5 F6 F6 F6	Gen Zone 27 27 5 21 7 1 16 1 1 27 27	4144 Dem Zone 14 14 14 14 10 10 1 10 1 10 1 10 1 1 14 14	Nodal Cal Bus Order 602 492 382 841 455 1 667 2 3 318 318 327	-1 -1 -1 -3 14(-3 18. -3 -3 -3 -3 -3
DC Load Nodal Inp Bu: ID	Bus Name 1 ABHA4A 2 ABHA4B 3 ABNE10 4 ABTH20 5 ACHR1R 6 AIGA1Q 7 ALDW20 8 ALNE1Q 9 ALNE1R 10 ALVE4A 11 ALVE4B 12 AMEM4A_EPN	Outpu t Resul ts No No No No No No No No No No No No No	Voltage 400 400 132 275 132 132 275 132 132 132 132 400 400 400	52140.99999 Demand 115.42 115.42 36.22 168.43 0.00 0.00 81.00 3.83 3.83 3.83 3.83 3.83 3.83 3.83 3	Generation A - Peak Security (Transport Model) 0.0000 0.0000 0.0000 1574.9098 0.0000 18.7378 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Generation B - Year Round (Transport Model) 0.0000 0.0000 1160.0085 30.1000 13.8014 0.0000 0.0000 0.0000 0.0000 0.0000	ETYS Zone F6 F6 T4 H2 T3 T1 P3 T5 T5 F6 F6 F6 A6	Gen Zone 27 27 5 21 7 1 16 1 1 27 27 27 25	4144 Dem Zone 14 14 14 14 10 10 11 10 11 10 11 11 14 14 3	Nodal Cal Bus Order 602 492 382 841 455 1 667 2 3 318 318 327 328	-1 -1 -1 -3 14(-3 -3 -3 -3 -3

each scenario

Circuits Information

				C	ircuit	infor	mati	on.								
P	Q	R	S		n oun		main			Z	AA	AB	AC	AD	AE	AF
				f 1/	na la	nath	and									
				נא	$\mu c, ic$	ngun	anu									
					odes (conn	ecte									
Alloved:	1.00E+07	7								Spare-Ca	apacity Factor:	100%				
																C
																Sum
																enecuv oot km
Sum Tran	ef					•						Num Snare-Cai	Num Cete Or		SumII	(Post
													0.00		551.94	16.028
					_		_					0.00	0.00	Peak Secur	it	.0,020.
Networl	k loout Data													Network out	ny	Derived o
	Bus 1	Bus 2	B	X (Peak	XfYear	OHL	Cable	Link	Code	Link Type	Link	Spare-Cap?	Outaged		LineLoss	Cct floy
) Region				Security)	Round)	Length	Length	Limit			specific expansion factor	opare oup:	Suugeu	Linci io	LIIILLUUU	"cost"/M
8 NGC	ABHA4A	EXET40	0.10	1.02	1.02	48.79	0.00	1390	A833	OHL		No	No	98.8643263	0.09774155	48.
B NGC	ABHA4A	LAGA40	0.06	0.54	0.54	26.12	0.00	1390	A83D	OHL		No	No	-214.28444	0.27550693	26
7 NGC	ABHA4B	EXET40	0.11	1.03	1.03	49.05	0.00	1390	A879	OHL		No	No	98.2346172	0.10615044	49.
1 NGC	ABHA4B	LAGA40	0.06	0.54	0.54	26.12	0.00	1390	A83F	OHL		No	No	-213.65473	0.27389007	26
2 NGC	ABTH20	COWT2A	0.05	0.54	0.54	13.32	0.00	935	6 B82J	OHL		No	No	229.339399	0.2629828	15
B NGC	ABTH20	PYLE20	0.18	1.45	1.45	35.39	0.00	935	B829	OHL		No	No	31.2024541	0.01752468	42
B NGC	ABTH20	TREM20	0.23	2.14	2.14	46.45	0.00	680	B854	OHL		No	No	280.142919	1.80504127	55
I NGC	ABTH20	UPPB21	0.12	1.16	1.16	27.03	0.55	770	B821	Composite		No	No	431.480962	2.23410984	38
1 NGC	ABTH20	UPPB22	0.12	1.14	1.14	27.00	0.00	955	6 B820	OHL		No	No	434.310345	2.26350571	32
1 NGC	ALDW20	BRIN20	0.14	0.76	0.76	17.96	0.00	625	B339	OHL		No	No	-25.427019	0.00905147	21
1 NGC	ALDW20	WMEL20	0.04	0.39	0.39	8.96	0.00	955	B338	OHL		No	No	-55.572981	0.01235342	10.
I NGC	ALVE4A	INDQ40	0.21	1.94	1.94	97.18	0.00	1390	A876	UHL		No	No	37.6894988	0.02983046	97
NGC	ALVE4A	TAUN4A	0.16	1.53	1.53	73.29	0.00	1390	A834	UHL		No	No	-136.60155	0.29855973	13.
NGC	ALVE4B	INDU40	0.21	1.94	1.94	97.29	0.00	1390	A829	UHL		No	No	37.6894988	0.02983046	97
NGC 1 NGC	ALVE4B	TAUN4B	0.16	1.53	1.53	73.30	0.00	1390	A877	OHL		No	No	-136.60155	0.23855373	(3.
I NGU	AMEMIAA_EPN	AMEMIAA_SEP	0.00	0.01	0.01	0.00	0.00	1200	None	Construct		No	No No	24.6263101	U COCOPECIE C	0.
	AMEMIAA_EPIN	ECCA40_WPD	0.07	0.70	0.70	35.31	0.00	1330	A037			No No	NO No	-672,1163	3. IDZ IOZZZ	35
	AMEM4A_EPN	IVER9A	0.04	0.40	0.40	20.26	0.00	1390	MOIU Nee-	Construct		NO M-	NO No	24 6262404	1.5167243	<u> </u>
2 NCC	AMEM48 EPN	AMEMAB_SEP		0.01	0.70	25.01	0.00	20150	None	Construct		No.	NO No	24.6263101	2 69742720	
	AMEM46_EPN	ECEA40_WPD	0.07	0.70	0.70	35.31	0.00	2010	A030			NO Ma	NO No	-020,72367 Ee4 20040	2.03/13/28	35
	AMEMIND EPIN	iversity Figal 7	0.04 Taviffa / Taviff	0.40	0.40	20.26	0.00	2010	THOUS		A sea t Change in a	INO T	INO	504.33018	1.2741451	20.

Data freeze by 31 October each year

Nodal Cost Information (Output)

	AR	AQ	AP	AO	AN	AM
•						
•						
-	Scenario 1 Gen	Scenario 1 Gen	Scenario 1 Gen	Scenario 1	Scenario 1	Ellard
	Local	Wider Peak	Wider Year Hound	Demand Peak	Demand Year	
•		Security		Security	Rouna	
	0.00	0.46	-201.00	0.46	-201.00	
	0.00	0.53	-201.05	0.53	-201.05	
	0.00	-74.23	928.07	-74.23	928.07	
Calculates cos	0.00	278.30	-158.79	278.30	-158.79	
	161.24	58.78	1339.58	58.78	1389.46	
under each	44.31	7.69	1140.49	31.73	1140.49	
	0.00	143.60	-25.66	143.60	-25.66	
scenario: 2	0.00	2.36	1157.16	2.36	1157.16	
		2.36	1157.16	2.36	1157.16	
scenarios, 2 typ		1.79	-226.59	1.79	-226.59	
		1.78	-226.54	1.78	-226.54	
ot ivivy, plus th		-31.70	-111.00	-31.70	-111.00	
local aircuit colu	0.05	-31.10	-1100	-31.70	-11.00	
local circuit colu	0.00	-18.57	-119.02	-18.57	-119.02	
	0.00	-100.35	349.86	-100.35	949.86	
	0.00	-103.03	1122.39	-103.03	1122.39	
	0.00	-98.11	948.44	-98.11	948.44	
	0.00	-101.01	1121,10	-101.01	1121.10	
	115.40	39.42	1252.75	39.42	1288.44	
•	0.00	-40.89	865.67	-40.89	865.67	
	0.00	-37.96	887.48	-37.96	887.48	
	0.00	56.33	1150,21	56.33	1150.21	
-	140.73	14.76	814.39	14.76	931.91	
	0.00		Leo meos	000 74	ADATE OF	200000000000000000000000000000000000000

21

Exercise 1

- Open the DCLF ICRP model
- On the "GenInput" sheet, change the fuel type of "Windy Standard II" from "Wind Onshore" to "Wind"
- Go back to the "Transport" sheet, and spot the errors
- Find column F
- Search for #N/A within column F
- Locate the nodes with #N/A errors, and try to trace the source of error

Local circuits (for generators)

Local Circuit/Substation Tariffs: Directly Connected Generators

The LocalAssetCharging Sheet

	A	В	С	D	E	F	G	н	1	J	К	L	м	N
1	NGC O	fficial G	B DCLF T	NUoS Trans	sport Model -	Local Asset Cha	araina		CHR 245 - Automatics	and all blocks	HARA CREEK			
2														
2		Task Cal	aar Kar	Last Time Re	lidation Root		06 Exk 13-21	(ukish use susseeful)		I wool areat France	ring Courtout Par			
4	Validate	B-IJ BL	c Labela	Last Time H	Ine laisialiaasiaa	B	29.Jan 20.57	(amenaaracearra)		Link Limit	Circuit Constant	13268 OHI F	aine Fau	
5		Black	Dorinod Data	Last Time H	IDC Calculation B	t==	06 Exk 13-04			-244	Single	10 331		
6		Blue	Inout	Lart Time Co	Iculation Res-		06 Eak 13-06			/200	Daubla	8 388		
7	Calc DCUF	Groop	Output								Single	5 912		
*	& MWkm	Bad	Error							-1200	Dauble	3,950		
9														
10	DC Land F	- -												
11	etuark l	aput Data						Derived auteutr		Hadal Apat				
							Link		A		Lacal		Lacal	Tarifi
					Local Arrest	132kV OHL Circuit	specific				Substation		Secur	Madal 💽
42	TORegion	Bur1	Bur 2	Cade	Grouping	construction Type	expension	Oct flow "cort"/MW	Total Oct Flow Cart	Byr Name	Hame	Local Arret Grouping	ity	TEC
3	SSE	INVE10	ACHR1R	T20151682	Achruach	Dauble		177.58	3865.07	CHRIR	Achruach	Achruach	1.8	0.043
14	SSE	PORA1R	ACHR1R	T20151685	Achrusch	Double		119.36	994.82	IGA10	Aigar	Aigar	1	0.02
15	SSE	AIGA10	KIOR10	0106	Aigar	Dauble		30.93	426.92	NSU10	An Suidha	An Suidhe	1.8	0.0193
16	SSE	BEAU10	KIOR10	C1EW	Aigar	Dauble		13.38	369.36	REC10	Arecleach	Auchenerarh	1	0.1462
17	SSE	INVE10	ANSU10	CG05	An Suidhe	Daublo		93.36	979.15	BAGB20	Baqlan Bay	Baglan Bay	1.8	0.552
18	SSE	PORA10	ANSU10	T20161789	An Suidha	Dauble		203.58	615.24	PEIN10	Beinneun Wind Farm	Livinhia	1	0.109
19	SP	AREC10	MAHII0	C12W	Auchencrarh	Single		\$1.40	\$330.52	HLA10	Bhlaraidh Wind Farm	Bhlaraidh	1	0.108
20	SP	MAHI20	MAHII0	S11N	Auchencrarh			0.00	0.00	LAC10	BlackHill	New Cumnack	1	0.113
21	SP	AUCH20	MAHI20	B11A	Auchencrarh			17.38	1390.24	BLCW10	BlackCraiq Wind Far	Margree	1	0.0575
22	SP	COYL20	MAHI20	B10X	Auchencrarh			59.32	22486.53	BLKL10	BlackLau	BlackLau	1	0.118
23	SP	KILG20	MAHI20	T201617117	Auchencrarh			11.98	1912.78	LK810	BlackLauExtension	BlackLau Extension	1	0.06
24	NGC	BAGB20	MAGA20	B82F	Baglan Bay			20.86	4598.85	ODE40	Badeluyddan	Guynt Y Mar	1.8	0.828
25	NGC	BAGB20	SWANZA	BSZE	Baglan Bay			38.32	6150.14	CARR40	Carrington	Carrington	1.8	0.91
26	NGC	SWAN20_S	F SWANZO_SW	None	Baglan Bay			0.00	0.00	CLYNZQ	Clyde (North)	Clyde (North)	1	0.3745
21	NGC	SWAN4A	SWAN20_SP	F 819	Baglan Bay			0.00	0.00	LYSZR	Clyde (South)	Clyde (South)		0.1472
28	NGC	SWAN44	SWANZA	FREZ	Baglan Bay			0.00	0.00	OGA10	Corriogarth	Fayors	1	0.069
29	556	CEANIQ	BEIMIU	1201617118	Liverhie	Single		29.44	620.86	00600	Corriemaillie	Luichart	1.8	0.1165
30	556	MILWIS	BEIM10	1201617119	Livenie	Single		5.02	489.36	005040	Coryton	Coryton	1.0	0.8
31	556	LAGGIQ	MILWIS	CIHP	Livenie	Dinglo		58,89	8919.23	NUA20	Gruachan Orus (D)	Oruachan Oruachan	1.8	0.44
32	000	FALCES.	LAGGIO	CIVE CIA2	Livenie	Dinglo Charles		27.00	1220.00	DTD99	Cryrtal hig	Crystaling		0.1918
24	000	GLEN10	LAGGIO	CHAT	Livenio	Dingle Start		51.04	7232.40	DEANIO	Dunain	Culligran		0.0191
24	200	BLAC10	DUNHIO	100	Livernie Neue Companyle	Dauble		31.00	224.07	PERSIO	Deanie	Cumpran Descellant		0.038
26	or co	PLAC10	DUNHIE	120151625	New Comencie	Dauble		4.54	270.27	IDC40	Didant	Didant	4.0	1 66
27	CP	BLAC10	GLGL10	120151024	New Comencie	Dauble		207.02	6426.22	INO40	Diservia	Discusio	1.0	1644
2.0	SP	BLAC10	GLGL18	T20161764	Neu Cumenck	Dauble		307.08	6426.28	DUNE10	Duplay Extension	Duplay Extension	1.2	0.07365
39	SP	DUNH10	NECUIO	T20151625	Neu Cumanck	Daukia		52.42	d£22.29	DUNH10	Brachlack	Nau Cumanck	1.2	0.0375
dù	SP	DUNH18	NECU10	T20151626	Nou Cumonak	Double		52.42	4622.20	UNHIB	Brochlock	Nau Cumpack	1.0	0.0375
41	SP	BLCW10	MARGIO	C504	Mararoo	Single		12.60	742.49	UNM10	Dumpaglarr	Envore	1.0	0.094
42	SP	NECU10	MARG10	SPNBauto2	Mararee	Single		d07.93	28555.25	EDIN10	Edinbane	Edinbane		0.0414
43	SP	BLKX10	LINM10	T2016177	BlackLauExtension	Single		251.07	10545.04	EHAU10	Early have Wind Fare	Moffat	1	0
44	SP	BLKL10	WISH10	SICE	BlackLau	Single		118.40	9779.44	WEH10	EueHill	Eue Hill	1	0.039
45	SP	WISH10	WISH20	N	BlackLau			0.00	0.00	AAB10	Farr Windfarm	FarrWindfarm	1.8	0.046
1	NGC	GWYN4A	BODE40	15	Guynt Y Mar			8.16	2365.40	FAABIB	Farr Windfarm	Farr Windfarm	1.8	0.046
4	NGC	GWYN			uynt Y Mar			0.50	144.90	FALL40	Fallago	Crystal Ria	1.8	0.144
48	NGC	CARR			arrington								1	0.046
49	NEC	CARR			arrington								1.8	0.36
50	NGL	CARR			arrington				on-MILS			VS -	1	0.015
51	NGC	B			arrivatas									0.3
I.	4 F F				xpansionEa	ctors / ETY	S Boundar	ries / (Transr	ortDe
					repartment a		o oounaan	A				A	anop	

Local Circuits by Groups

NGC Of	ficial GB D	CLF TNUo	S Transport	Model - Local As	set Charging			CMP 213 - Original F
	Text Colour	Кеу	Last Time Valida	tion Run:		06 Feb 13:21	(which was succes	sful)
Validate	Bold Black	Labels	Last Time HVDC	Initialisation Run:		29 Jan 20:57		
	Black	Derived Data	Last Time HVDC	Calculation Run:		06 Feb 13:04		
	Blue	Input	Last Time Calcu	lation Run:		06 Feb 13:06		
CalcDCLF	Green	Output	t					
& MVVKM	Red	Error						
DC Load Flow	W						Beinderte te	
Network Inp	ut Data						Derived outputs	
						Link specific		
		_			132kV OHL Circuit	expansion		
TO Region	Bus 1	Bus 2	Code	Local Asset Grouping	construction Type	factor (local)	Cct flow "cost"/MW	Total Cct Flow Cost
SSE	INVE10	ACHR1R	T20151682	Achruach	Double		177.58	3865.07
SSE	PORA1R	ACHR1R	T20151685	Achruach	Double		119.36	994.82
SSE	AIGA1Q	KIOR1Q	C1U6	Aigas	Double		30.93	426.92
SSE	BEAU10	KIOR1Q	C1EW	Aigas	Double		13.38	369.36
SSE	INVE10	ANSU10	CG05	n Suidhe	Double		93.36	979.15
SSE	PORA1Q	ANSU10	T20161789	Suidhe	Double		203.58	615.24
SP	AREC10	MAHI10	C12W	chencrosh	Single		81.40	8330.52
SP	MAHI20	MAHI10	cal circui	te with			0.00	0.00
SP	AUCH20	MAHI20	cal circui				17.38	1390.24
SP	COYL20	MAHI20 SC	veral nod	es/circuits			59.32	22486.53
SP	KILG20	MAHI20	to al lass and				11.98	1912.78
NGC	BAGB20	MAGA20	ted by gro	oups			20.86	4598.85
NGC	RACR20	SWAN24					28 33	6150 14

Non-MITS Substations

Constant Parameters			
Circuit Construction	132kV OHL Expansion	Factor	
Single	10.331		
Double	8.388		
Single	5.912		
Double	3.950		
		Local	Tariff
Local Substation	l l	Security	Model
Name	Local Asset Grouping	Factor	TEC
Achruach	Achruach	1.8	0.043
Aigas	Aigas	1	0.02
An Suidhe	An Suidhe	1.8	0.0193
Arecleoch	Auchencrosh	1	0.1462
Baglan Bay	Baglan Bay	1.8	0.552
Beinneun Wind	Livishia	1	0 109
	Circuit Construction Single Double Single Double Local Substation Name Achruach Aigas An Suidhe Arecleoch Baglan Bay	Constant Parameters 132kV OHL Expansion Circuit Construction 132kV OHL Expansion Single 10.331 Double 8.388 Single 5.912 Double 3.950 Local Substation Achruach Achruach Achruach Aigas Aigas An Suidhe An Suidhe Arecleoch Auchencrosh Baglan Bay Baglan Bay Bainnoun Windowrm Livichio	Constant Parameters 132kV OHL Expansion Factor Single 10.331 Double 8.388 Single 5.912 Double 3.950 Local Substation Local Security Name Local Asset Grouping Achruach Achruach 1.8 Aigas Aigas 1 An Suidhe An Suidhe 1.8 Arecleoch Auchencrosh 1 Baglan Bay Baglan Bay 1.8

These names appear in the local circuit tariff table (Tariff sheet)

Local Circuits – a worked example (existing network)

The "Transport" tab

Local Circuits – a worked example (adding a new generator)

Step 1, revise the "Transport" tab: adding a new node, and revising the existing circuit records

Step 2, revise the "LocalAssetCharging" tab, to enable the model to calculate local circuit tariffs

Local Circuits – a worked example (adding a new generator)

Local Circuits – a worked example (adding a new generator)

31

Local Circuits – a worked example (adding a new generator)

Step 2, revise the "LocalAssetCharging" tab, to enable the model to calculate local circuit tariffs

J	K	L	М	N
=>200	Single	5.912		
=>200	Double	3.950		
Nodal Input				
Bus Name	Local Substation Name	Local Asset Grouping	Local Security Factor	Tariff Model TEC
NTEE1A	New Tee Point	My windfarm group	1	0.05

1	A	В	C	D	E	F	G
8	& MVVKM	Red	Error				
9							
10	DC Load Flow	1					
11	Network Inpu	t Data					
						132kV OHL Circuit	Link specific expansion
12	TO Region	Bus 1	Bus 2	Code	Local Asset Grouping	construction Type	factor (local)
180	ATO	TONA10	NTEE1A	NewCCT1	My windfarm group	Single	
181	ATO	NTEE1A	SUBB10	NewCCT2	My windfarm group	Single	
182	ATO	SUBB10	BCIT10	Existing02	My windfarm group	Single	

GenInput Sheet – How to change generation?

Inputs into TNUoS Charges

GenInput Sheet

Input text should be in

GenInput Parameters Table

Summary of the input data table below

Peak/Year Round scaling of TEC

Generator Type	Fuel Class	TEC	Peak Security Transport Model Scaling	Year Round Transport Model Scaling	Peak Security Liability Flag	Carbon / Lo Carbon Flag
Biomass	Other (Conventional)	1,905.0	94%	69%	100%	Carbon
CCGT	Other (Conventional)	27,546.0	94%	69%	100%	Carbon
CHP	Other (Conventional)	1,651.0	94%	69%	100%	Carbon
Coal	Other (Conventional)	11,680.0	94%	69%	100%	Carbon
Hydro	Hydro	665.4	94%	69%	100%	Low Carbon
nterconnectors	Interconnectors	4,785.0	0%	100%	0%	Carbon
Nuclear	Nuclear & CCS	9,297.0	94%	85%	100%	Low Carbon
OCGT	Peaking	140.0	94%	0%	100%	Carbon
Pump Storage	Pumped Storage	2,769.0	94%	50%	100%	Carbon
Tidal	Intermittent	-	0%	70%	0%	Low Carbon
Nave	Intermittent	-	0%	70%	0%	Low Carbon
Wind Offshore	Intermittent	6,952.9	0%	70%	0%	Low Carbon
Wind Onshore	Intermittent	4,600.4	0%	70%	0%	Low Carbon
	Total Generation	71,991.660	52,140.99999	52,140.99999		
	Total Gen Check	71,991.660				
	Total Demand	52,141.000				
aritt Model:		71991.66	67,206.66			
Check Totals:		71.991.66	67,206.66			

Will be inconsistent if input data is changed before the 'Validate' function is run (see later slides)

Removal of interconnector TEC from calculation
Generation Input Data

Inputting Generation Data Into the Model

You can copy and paste data from a table from another source... IN ALPHABETICAL ORDER (by Station)

	Generation Specific Data								
	Generation Input Data								Derived Data
	Station	Generator Type	Max Contracted TEC at Peak (Transport Model TEC)	(Tan el TEC	e Node 1 C)	Node 2	Node 3	ALF	Carbon / Low Carbon
A	A	В	С	D	E	F	G	Н	1
8	Uskmouth	Coal	230		230 USKM20			36.57%	Carbon
9	Walney 3 Offshore Wind Farm	Wind Offshore	330		330 HEYS40			47.99%	Low C bon
0	Walney 4 Offshore Wind Farm	Wind Offshore	330		330 HEYS40			47.99%	rbon
1	Walney I Offshore Wind Farm	Wind Offshore	182		182 HEYS40			49.47%	Loy C rbon
2	Walney II Offshore Wind Farm	Wind Offshore	182		182 STAH4A	STAH4B		51.99%	V Carbon
3	West Burton A	Coal	1987		1987 WBUR40			58.33%	arbon
4	West Burton B	CCGT	1295		1295 WBUR40			45.50	Carbon
5	West of Duddon Sands Offshore Wind Farr	Wind Offshore	382		382 HEYS40			42.6	Low Carbon
3	Westermost Rough Offshore Wind Farm	Wind Offshore	205		205 HEDO20			43 5%	Low Carbon
7	Whitelee	Wind Onshore	305		305 WLEE20			3 15%	Low Carbon
3	Whitelee Extension	Wind Onshore	206		206 WLEX20			7.18%	Low Carbon
9	Whiteside Hill Wind Farm	Wind Onshore	27		27 GLGL1Q	GLGL1R		37.81%	Low Carbon
)	Wilton	CCGT	141		141 GRSA20	GRSB20		11.11%	Carbon
1	Windy Standard II (Brockloch Rig 1) Wind Fa	Wind Onshore	75		75 DUNH1R	DUNH1Q		37.81%	Low Carbon
2	TomGen	CCGT	1200		1200 TORN40			99.90%	
	Or you car input indiv	n manı vidual	ually lines	A o n	At least one node leeded	Don' in co Furth	t worry lumn I c ner colu	about g onward mns wi	gaps s… ill be
			Generation different fo Transport/	TEC ca r Fariff m	an be odels	popu valid	lated di ate proc	uring th cess	ne

Input Generators Alphabetically By Station

1	Text Colour Key		Last Time Validation Run:			03 Apr 11:33
Validate	Bold Black	Labels	Last Time HVDC Initialisat	ion Run:		29 Jan 20:57
	Black	Derived Data	Last Time HVDC Calculation	on Run:		06 Feb 13:04
	Blue	Input	Last Time Calculation Run	:		06 Feb 13:06
Calc DCLF	Green	Output				
& MVVKM	Red	Error				
Concration Type Darameters						
Selleration Type Farameters				Year Round		
Generator Type	Fuel Class	TEC	Model Scaling	I ransport Model Scaling	Liability Flag	Carbon / Lov Carbon Flag
Biomass	Other (Conventional)	1,905.0	92%	67%	100%	Carbon
CGT	Other (Conventional)	28,746.0	92%	67%	100%	Carbon
:HP	Other (Conventional)	1,651.0	92%	67%	100%	Carbon
Coal	Other (Conventional)	11,680.0	92%	67%	100%	Carbon
lydro	Hydro	665.4	92%	67%	100%	Low Carbon
nterconnectors	Interconnectors	4,785.0	0%	100%	0%	Carbon
luclear	Nuclear & CCS	9,297.0	92%	85%	100%	Low Carbon
CGT	Peaking	140.0	92%	0%	100%	Carbon
ump Storage	Pumped Storage	2,769.0	92%	50%	100%	Carbon
īdal	Intermittent	-	0%	70%	0%	Low Carbon
Vave	Intermittent	-	0%	70%	0%	Low Carbon
Vind Offshore	Intermittent	6,952.9	0%	70%	0%	Low Carbon
Vind Onshore	Intermittent	4,600.4	0%	70%	0%	Low Carbon
	Total Generation	73,191.660	52,140.99999	52,140.99999		
	Total Gen Check	73,191.660				
	Total Demand	52,141.000				
ariff Model:		71991.66	68,406.66			
1 I. T - I - I	~	73 101 66	68,406,66			

There is a risk that if the stations are not in alphabetical order, their TEC won't be picked up by the model

Zonal generation tariffs

	A	в		D	E	F	G	Н	
79	Derivatio	n of Zonal Generation Tariffs - Pea	Securit	_	_				
80			Generation	Unadjusted	Final				
81			Charge Base:	Transport	Peak Security	Peak Security			
82		1	EC Net Stn * PS L	Zonal Vtd	Zonal	Zonal Revenue			
83	Zone	Zone Name	55.65	Marginal (km)	Tariff (£łk∀)	(£m)			
84	1	North Scotland	0.468	5.18	0.13	0.06			
85	2	East Aberdeenshire	0.400	42.70	1.04				
86	3	Western Highlands	0.203	-14.16	-0.35	Chau	ld ha	aroon oo io	
87	4	Skye and Lochalsh	0.000	-252.33	-6.17			green, as is	
88	5	Eastern Grampian and Tayside	0.136	-2.80	-0.07		· · · · · · · · · · · · · · · · · · ·	.	
89	6	Central Grampian	0.064			DOW	nonul	atad	
90	7	Argyll	0.015				popula	aleu	
91	8	The Trossachs	0.520	68.45	1.67				
92	9	Stirlingshire and Fife	0.120	-4.15	-0.10	autor	natica		
93	10	South West Scotlands	1.074	72.40	1.77		nauca		
94	11	Lothian and Borders	1.215	119.85	2.93				
- 95	12	Solway and Cheviot	0.000	27.57	0.67	0.00			
96	13	North East England	1.749	135.15	3.30	5.78			
97	14	North Lancashire and The Lakes	2.588	53.43	1.31	3.38			
- 98	15	South Lancashire, Yorkshire and Humber	9.044	171.98	4.20	38.00			
- 99	16	North Midlands and North Wales	11.645	151.62	3.70	43.14			
100	17	South Lincolnshire and North Norfolk	1.944	84.37	2.06	4.01			
101	18	Mid Wales and The Midlands	4.783	47.51	1.16	5.55			
102	19	Anglesey and Snowdon	1.644	183.59	4.49	7.37			
103	20	Pembrokeshire	2.199	368.53	9.00	19.80			
104	21	South Wales & Gloucester	3.384	249.93	6.11	20.67			
105	22	Cotswold	1.234	126.83	3.10	3.82			
106	23	Central London	0.000	-177.88	-4.35	0.00			
107	24	Essex and Kent	6.071	-153.41	-3.75	-22.76			
108	25	Oxfordshire, Surrey and Sussex	1.970	-49.74	-1.22	-2.39			
109	26	Somerset and Wessex	2.139	-53.24	-1.30	-2.78			
110	27	West Devon and Cornwall	1.045	5.75	0.14	0.15			
111			55.65			130.61			
112									

Locational tariffs calculated automatically by the Tariff macro, using data from GenInput and Transport sheets, residual ensures that £ from generation doesn't exceed the cap

Validating Model Inputs

Validate Inputs

Validate buttor checks genera nputs for erro	n tion rs	Validation Messages Beginning validation at 10:5 Validating Input D Validation Comple Validation Comple Validation Comple Validation Gomplet Validation complete at 10:53	9:42 ata on Transport Sheet te for Transport Sheet te for LocalAssetCharging Sheet ata on GenInput Sheet ts for LocalAssetCharging Sheet. ata on GenInput Sheet	Details of preventing model from running w appear he	errors g the m ill re	
NGC Official GB TNUoS Tau	sport & Tariff Mode	el - Generation Input S	Sheet			
	Text Colour Key		Last Time Validation Run:		06 Feb 13:21	(which was succes
	Delel Disels	Labels	Last Time HVDC Initialisation Run:		29 Jan 20:57	
Validate	BOID Black		Last Time HVDC Calculation Dury		06 Feb 13:04	
Validate	Black	Derived Data	Last Time hybe Calculation Run:			
Validate Calc DCLF	Black Blue Blue Blue Blue Blue Blue Blue Blue	Derived Data Input	Last Time Calculation Run:		06 Feb 13:06	
Validate Calc DCLF & MWkm	Black Blue Green Bud	Derived Data Input Output	Last Time Calculation Run:		06 Feb 13:06	

Data on when the last successful validation took place

Exercise 2

- 1. On the Final Tariffs sheet, copy and paste the existing tariffs to the right of the tables
- 2. Add a new line in the GenInput sheet (lower table)
 - 1. Station: (give the generator a name)
 - 2. Type: CCGT
 - 3. Transport Model TEC: 1200MW
 - 4. Tariff Model TEC: 1200MW
 - 5. Node 1: LOAN20
 - 6. ALF: 70%
- 3. Validate the model
- 4. Run the DCLF & MWkm model
- 5. Check the changes to the tariffs

Running the Model

Running the Transport model

Running the Transport model

NGC Official GB TNUo	S Transport & Tariff Model - G	eneration Input S	iheet			
Validate Calc DCLF	Text Colour Key Bold Black Black Blue	Labels Derived Data Input	Last Time Validation Run: Last Time HVDC Initialisation Run: Last Time HVDC Calculation Run: Last Time Calculation Run:	I	06 Feb 13:21 29 Jan 20:57 06 Feb 13:04 06 Feb 13:06	(which was successfu
& MWkm	Green Red	Output Error	Calculate DCLF & MWkm Calculate BusBar Order Numbers Recalculate HVDC Cct Impedances	X	ţ	
When you have validated the inputs,	Use Scenaric ONLY) 1	Scenario Description Demand Wider			
and there are no errors, you can	It is NOT possible to create multip "Scenarios";	ole	Local Output to new scenario Overwrite existing scenario	0	Scenario 1	
the model	Save a new version of the spreadsheet after each ru	e n	Expansion Constant Paramete Separate EC for NGC, SP & SSE Pure GB (Global)	ers E © C	Cancel	Calculate

Running the Tariff model

Running the Tariff model

Revenue Inputs

Inputs in to TNUoS Charges

TNUoS Revenue and TNUoS Charges

The G/D split

Generation Revenue 2018/19

Revenue inputs & Gen residual

Demand Charging Base Inputs

Inputs in to TNUoS Charges

HH peak demand inputs

	Net syste	em peak by z	one		
Derivatio	n of Zonal Gross HH and Embedde	d Export Tariff	~		
Zone	Zone Name	Total Demand Net Triad Demand (G₩)	Total Demand Gross Triad Demand (G₩)	Chargeable Export Volume (G₩)	
1	Northern Scotland	0.476	1.477	1.001	
2	Southern Scotland	2.831	3.500	0.670	
3	Northern	2.083	2.664	0.581	Gross system
4	North West	3.773	4.117	0.343	
5	Yorkshire	3.284	3.920	0.635	peak is the
6	N Wales & Mersey	2.140	2.678		
7	East Midlands	4.286	4.763		first of these
8	Midlands	4.159	4.371	0.211	
9	Eastern	5.980	6.605	0.624	two columns
10	South Wales	1.511	1.843	0.331	
11	South East	3.681	3.999	0.318	
12	London	4.174	4.323	0.149	
13	Southern	5.147	5.584	0.437	
14	South Western	2.420	2.621	0.200	
		45.947	52.463	6.516	

		Locational Demar	nd Tariff (derived	l from Trar	nsport Mod	del)								
		Peak Security	Peak Security	Peak Sec	curity Ye	ear Round	Year R	ound Ye	ar Roun	d				
LLL	toriff	Unadjusted	Transport	Transp	ort U	nadjusted	Trans	port T	ransport					
пп	lailli	Zonal Wtd	Zonal	Zona	1 Z	Zonal Wtd	Zon	al	Zonal					
		Marginal (km)	Tariff (£/k₩)	Revenue	(£m) Ma	arginal (km)	Tariff (f	£/k₩) Rev	enue (£i	m)				
		-120.83	3.06		4.52	958.01		-24.29	-35	.87				
		-5.32	0.13		0.47	733.38		-18.59	-65	.08				
		122.21	-3.10		-8.25	260.82		-6.61	-17	<u>7.61</u>				
		47.92	-1.21		-5.00	98.83		-2.51	-10).31				
		114.49	-2.90		-11.38	21.73		-0.55	-2	2.16				
		92.11	-2.33		-6.25	-12.67		0.32	0.	.86				
		89.07	-2.26		-10.75	-88.09		2.23	10.	.64				
		71.04	-1.80		-7.87	-121.17		3.07	13	.42				
		-44.98	1.14		7.53	-30.05		0.76	5	.03				
		242.67	-6.15		-11.34	-1/4./4		4.43	5	6. 161	Res	dual tari	iffs:	
		-152.65	3.87		iedded Cx	port l'arifr					TTD		,	
		-201.93 5.12			EET Locational EET		SIC II	Phased He	sid Fina	itti ianti t	EI Be Fina	l tariffs		
		-04.00	1.04	_					1	red at zero) I				
		40	-1.03	_	CILU	241	, I	CILU		มมม	<u>_</u>			
					-21.2	22	2.22	20	20	11.20	L			
	_				-21.2	46	3.22	20	1.00	14.12				
		Location	al dama	nd	- 10.4	+0 71	3.22	20	1.30	22.97				
		LUCATION	al uema	ina	-3.	72	3.22		136	22.01				
		touille o			-3.	15	3.22	20	136	20.00	18.50			
		tarins c	alculate		-3	+3 01	3.22	20	136	30.57	16.30			
					-0.0	12	3.22	20	136	32.56	15.52			
					12	27	3.22	Gross HH	Demand	Tariff				
					19	90	3.22	Gross	HH	Gross HH	Gross Demand	Filal	Final	
					-17	72	3.22	Peak Sec	urity '	Year Round	Residual	Gross HH	Zonal	
					4.5	58	3.22	Location	Tariff L	ocation Tariff	Tariff	Zonal	Revenue	
					▲ 7.3	38	3.22	(€/k₩	n –	(€/k₩)	(€/k₩)	Tariff (£/k₩)	Recovery (£m)	
					5.8	89	3.22	-	3.06	-24.29	46.93	25.71	37.98	
					1	34	3.22	-	0.13	-18.59	46.93	28.48	99.69	
							· · ·		-3.10	-6.61	46.93	37.22	99.16	
									-1.21	-2.51	46.93	43.21	177.90	
			En	hod	dad c	vnort			-2.90	-0.55	46.93	43.48	170.43	
				incu		- About			-2.33	0.32	46.93	44.92	120.28	
			+0	riffe (latod			-2.26	2.23	46.93	46.91	223.43	
			la	1115 (Jaicu	naleu			-1.80	3.07	46.93	48.20	210.68	
									1.14	0.76	46.93	48.84	322.53	
									-6.15	4.43	46.93	45.21	83.31	
									3.87	0.71	46.93	51.52	206.03	
									5.12	2.26	46.93	54.31	234.79	• • • • •
58									1.64	4.26	46.93	52.83	294.98	aridESO
									-1.03	5.37	46.93	51.27	134.37	
													2,415.56	

HH & NHH Charging Bases

			lr	nput HH d at Tria	ema ad	nd	In	ou 7	t NHH de pm, 365	emand (4· days)
Derivation Zone	of Capped Zonal Demand NHH Tar Zone Name	iffs Total Demand Charge Base: Triad Demand (MW)	F Trij	Chargeable H Gross Zonal d Demand (M₩)	HH Triac Dema Recov	Zonal 1 Gross 1 d Rev. 1 ery (£m)	Required NHH Zonal Revenue Recovery (£m)	De	HH Zonal 600-1500 nand (TWh)	NHH Zonal Tariff (p/k₩h)
1	Northern Scotland	476.21		489.059		12.57	25.40		0.741	3.43
2	Southern Scotland	2,830.97		1,258.785		35.85	63.84		1.663	3.84
3	Northern	2,083.25		1,078.299		40.14	59.03		1.200	4.92
4	North West	3,773.44		1,522.520		65.79	112.11		1.932	5.80
5	Yorkshire	3,284.43		1,609.735		69.99	100.44		1.761	5.71
6	N Wales & Mersey	2,139.64		1,085.298		48.75	71.52		1.223	5.85
7	East Midlands	4,286.33		1,878.074		88.10	135.33		2,160	6.26
8	Midlands	4,159.05		1,616.958		77.94	132.73		1.995	6.65
9	Eastern	5,980.31		2,132.611		104.15	218.39		3.086	7.08
10	South Wales	1,511.30		838.743		37.92	45.39		0.829	5.47
11	South East	3,680.97		1,168.967		60.22	145.81		1.910	7.63
12	London	4,173.79		2,285.730		15	110.64		1.836	6.03
13	Southern	5,147.26		2,072.206		_	185.51		2,563	7.24
14	South Western	2,420.32		764.182		9,18	95.19		1.273	7.48
		45,947.27		19 801 17		22	1 501 33		24 17	

For each zone, calculates £ revenue to be collected from HH based on triad demand forecast, and therefore remaining £ that must be collected from NHH demand

Zonal NHH tariffs calculated = remaining revenue / NHH demand

Excercise

Exercise 3

- 1. Open the DCLF ICRP model
- 2. Add a new line in the GenInput sheet (lower table)
 - 1. Station: (give the generator a name)
 - 2. Type: CCGT
 - 3. Transport Model TEC: 500MW
 - 4. Tariff Model TEC: 500MW
 - 5. Node 1: EXER20
 - 6. ALF: 70%
- 3. Add the Node EXER20 to the Transport sheet (on the left) and add the circuit EXER20 HADH10 (middle table)
 - 1. TO region SP, Demand zone 2, generation zone 10, ETYS zone S1
 - 2. 132kV
 - 3. 10MW of nodal demand
 - 4. OHL

- 4. Update Hadyard Hill local circuit on LocalAssetCharging Tab
 - 1. Local asset grouping: Hadyard Hill
 - 2. Single construction type
- 5. Validate the model

Summary

The DCLF ICRP model: aka T&T model

Calculating TNUoS tariffs

Transport Model

- used to calculated the locational investment signals (wider and local)
- if you add 1MW of generation capacity, what impact does it have?
- the impact is measured in terms of additional flows
- proxy for level of investment across the network

Tariff Model

- used to ensure correct <u>revenue recovery</u>
- also ensures that revenue recovered in desired G / D proportions

Troubleshooting

Troubleshooting

If you click the Validate button, there are some issues with the inputs.

Can you work out what the issues are?

Do you know how to fix them?

Changes to future forecasts

The lot of the lot of

Whe	n do inputs change in	quarterly fo	precasts?			
		Five-year forecast	March	July	DRAFT Nov	FINAL Jan
	Methodology		Open	to industry gove	mance	
_	DNO/DCC Demand Data	Previous year			Week 24 updated	
cationa	Contracted TEC	Latest TEC	Latest TEC	Latest TEC	TEC Register Frozen at 31 October	
Loc	Network Model	Previous year (except new local	circuits)	Latest version based on ETYS	
	Allowed Revenue	Update financial parameters	Update financial parameters	Update financial parameters	Latest TO Forecasts	From TOs
Jal	Demand Charging Bases	Revised Forecast	Revised Forecast	Revised Forecast	Only by exception	Only by exception
esidu	Generation Charging Base	NG Best View	NG Best View	NG Best View	NG Best View	NG Final Best View
Ř	Generation ALFs	Previous Year			New ALFs published	
	Generation Revenue	Forecast	Forecast	Fixed Gen Rev £m		

Impact of next price control on Tariffs

- The next RIIO-T2 price control is expected to start on 1 April 2021.
- The CUSC requires various parameters to be updated at that point for the 2021/22 tariffs, but are dependent on each TOs RIIO 'deal'

Feedback

Type sli.do into your browser

Enter code **#Tariffs**

Click on the POLLS tab

😑 Tariffs Training July 2018 💄	-
QUESTIONS POLLS	
Live poll 0 🚉	
Tariffs training	
1. Using a 0-10 scale: How likely is it that you would recommend this training to a friend or colleague?	
Give your rating: ជំជំជំជំជំជំជំជំជំ	
2. Which part did you find the most useful and why?	
Type your answer	
3. How could we improve this training	+

Any questions?
Sli.do

We want your feedback!

Using a 0-10 scale: How likely is it that you would recommend this training to a friend or colleague?

Which part did you find the most useful and why?

How could we improve this training session?

Tariffs Training	July 2018 💄
QUESTIONS	POLLS
Live poll	0 🚢
Tariffs training	
1. Using a 0-10 scale: H that you would recomm to a friend or colleague	How likely is it nend this training ??
Give your r	ating:
* * * * * *	* * * * *
2. Which part did you fi useful and why?	ind the most
Type your answer	
3. How could we impro	we this training

nationalgridESO

Thank you

Data sources

nationalgridESO

Data sources: Generation

TEC, Embedded and Interconnector registers

https://www.nationalgrideso.com/connections/registers-reports-and-guidance

Offshore: OFTO tenders & asset transfer values

https://www.ofgem.gov.uk/electricity/transmission-networks/offshore-transmission/offshoretransmission-tenders

Future Energy Scenarios (FES): Future generation & demand volumes

http://fes.nationalgrid.com/

CfD & Capacity Market information

https://lowcarboncontracts.uk/cfds

https://www.emrdeliverybody.com/cm/home.aspx

BEIS renewable energy planning database

https://www.gov.uk/government/publications/renewable-energy-planning-database-monthly-extract

national**gridESO**

Data sources: Generation (continued)

Digest of UK Energy Statistics (DUKES) – generator volumes & fuel types

https://www.gov.uk/government/publications/digest-of-uk-energy-statistics-dukes-archive

BM Reports – outturn generation

https://www.bmreports.com/

Data sources: G/D Split

G/D Split: £:€ rate – OBR Economic & Fiscal Outlook

http://obr.uk/report/economic-and-fiscal-outlook/

G/D Split: Generation output TWh volumes

Derived from FES – average over all four scenarios of transmission connected generation output (minus interconnectors) per year

Please note that FES data is January to December; we use April to March data (individual months are not published), so using published FES data will not quite match the data we use to calculate TNUoS.

http://fes.nationalgrid.com/

Data sources: Demand

Triads

https://www.nationalgrideso.com/charging/transmission-network-use-system-tnuoscharges/triads-data

BM Reports – past outturn demand

https://www.bmreports.com/

Data sources: Transport & network inputs

Electricity Ten Year Statement (ETYS)

Appendix A: Existing power stations, network maps and ETYS zone boundaries Appendix B: Node name codes and circuit data

https://www.nationalgrideso.com/insights/electricity-ten-year-statement-etys

Transmission works register

May help to provide information about local circuit characteristics

https://www.nationalgrideso.com/connections/registers-reports-and-guidance

Data sources: Revenue

RPI

Indexation of offshore local tariffs, expansion constant, AGIC etc.

https://www.ons.gov.uk/economy/inflationandpriceindices

OFTO tenders

Asset transfer values, cost assessment publications & OFTOt values

https://www.ofgem.gov.uk/electricity/transmission-networks/offshore-transmission/offshore-transmission-tenders

Data sources: Methodology

Ofgem CUSC decisions

https://www.ofgem.gov.uk/licences-industry-codes-and-standards/industry-codes/electricitycodes/connection-and-use-system-code-cusc

CUSC text & development

https://www.nationalgrideso.com/codes/connection-and-use-system-code-cusc

Data sources: Elexon portal & BM Reports

Registered BM units

Loss factors (BSUoS only)

https://www.elexonportal.co.uk/

BM Reports – past outturn demand & generation

https://www.bmreports.com/

