National Grid ESO Faraday House, Gallows Hill Warwick, CV34 6DA

All Recipients of the Serviced Grid Code

Rachel.Beaufoy@nationalgrideso.com Mob: 07800527310 www.nationalgrideso.com

17 June 2020

Dear Sir/Madam

THE SERVICED GRID CODE - ISSUE 5 REVISION 44

Issue 5 Revision 44 of the Grid Code has been approved by the Authority for implementation on **17 June 2020.**

In order to ensure your copy of the Grid Code remains up to date, you will need to replace the section affected with the revised version available on the National Grid Electricity System Operator website.

The revisions document provides an overview of the changes made to the Grid Code since the previous issue.

Yours faithfully

Rachel Beaufoy

Frameworks Officer

Code Administrator

Future Markets

national gridESO

THE GRID CODE - ISSUE 5 REVISION 44

INCLUSION OF REVISED SECTIONS

- Glossary and Definitions
- Planning Code
- Connection Conditions
- European Connection Conditions
- Operating Code 5

SUMMARY OF CHANGES

The changes arise from the implementation of modifications proposed in the following Consultation Paper:

 GC0129 – Updating the Grid Code to use Engineering Recommendation G5/5 -Harmonics

Summary of GC0129 and Impact:

Engineering Recommendation G5 is being updated to Version 5, this change seeks to align the references to G5 within the Grid Code

Low Impact:

National Grid Electricity System Operator, Relevant Transmission Licensees, Distribution Network Owners and Users connecting harmonic sources and/or resonant plant

THE GRID CODE

ISSUE 5

REVISION 44

17 June 2020

© 2020 Copyright owned by National Grid Electricity System Operator Limited, all rights reserved.

No part of this publication may be reproduced in any material form (including photocopying and restoring in any medium or electronic means and whether or not transiently or incidentally) without the written permission of National Grid Electricity System Operator Limited, except:

- 1. to the extent that any party who is required to comply (or is exempt from complying) with the provisions under the Electricity Act 1989 reasonably needs to reproduce this publication to undertake its licence or statutory duties within Great Britain (or any agent appointed so to act on that party's behalf); and
- 2. in accordance with the provisions of the Copyright, Designs and Patents Act 1988.

GLOSSARY & DEFINITIONS (GD)

GD.1 In the Grid Code the following words and expressions shall, unless the subject matter or context otherwise requires or is inconsistent therewith, bear the following meanings:

Access Group	A group of Connection Points within which a User declares under the Planning Code
	(a) An interconnection and/or
	(b) A need to redistribute Demand between those Connection Points either pre-fault or post-fault
	Where a single Connection Point does not form part of an Access Group in accordance with the above, that single Connection Point shall be considered to be an Access Group in its own right.
Access Period	A period of time in respect of which each Transmission Interface Circuit is to be assessed as whether or not it is capable of being maintained as derived in accordance with PC.A.4.1.4. The period shall commence and end on specified calendar weeks.
Act	The Electricity Act 1989 (as amended by the Utilities Act 2000 and the Energy Act 2004).
Active Energy	The electrical energy produced, flowing or supplied by an electric circuit during a time interval, being the integral with respect to time of the instantaneous power, measured in units of watt-hours or standard multiples thereof, ie:
	1000 Wh = 1 kWh
	1000 kWh = 1 MWh
	1000 MWh = 1 GWh
	1000 GWh = 1 TWh
Active Power	The product of voltage and the in-phase component of alternating current measured in units of watts and standard multiples thereof, ie:
	1000 Watts = 1 kW
	1000 kW = 1 MW
	1000 MW = 1 GW
	1000 GW = 1 TW

Additional BM Unit Has the meaning as set out in the BSC Affiliate In relation to any person, any holding company or subsidiary of such person or any subsidiary of a holding company of such person, in each case within the meaning of Section 736, 736A and 738B of the Companies Act 1985 as substituted by section 144 of the Companies Act 1989 and, if that latter section is not in force at the Transfer Date, as if such section were in force at such date. AF Rules Has the meaning given to "allocation framework" in section 13(2) of the Energy Act 2013. Agency As defined in The Company's Transmission Licence. Aggregator A BM Participant who controls one or more Additional BM Units or Secondary BM Units. Aggregator Impact Matrix Defined for an Additional BM Unit or a Secondary BM Unit. Provides data allowing The Company to model the result of a Bid-Offer Acceptance on each of the Grid Supply Points within the GSP Group over which the Additional BM Unit or Secondary BM Unit is defined Alternate Member Shall mean an alternate member for the Panel Members elected or appointed in accordance with this GR.7.2(a) or (b). Ancillary Service A System Ancillary Service and/or a Commercial Ancillary Service, as the case may be. An Ancillary Service may include one or more Demand Response Services. Ancillary Services An agreement between a User and The Company for the payment by The Company to that User in respect of the provision by such User of Ancillary Services and for the provision by such User of Ancillary Services and sendent within a Financial Year which has a 50% chance of being exceeded as a result of weather elements which gives rise to a level of peak Demand within a Financial Year which has a 50% chance of being exceeded as a result of weather variation alone. Apparent Power The product of voltage and of alternating current measured in units of voltamperes and standard multiples thereof, ie: 1000 VA = 1 kVA 1000 kVA = 1 kVA 1000 kVA = 1 hVA Other than in OC8, means all equipment in which electrica		
person or any subsidiary of a holding company of such person, in each case within the meaning of Section 736, 736A and 736B of the Companies Act 1985 as substituted by section 144 of the Companies Act 1985 as substituted by section 144 of the Companies Act 1989 and, if that latter section is not in force at the Transfer Date, as if such section were in force at such date. AF Rules Has the meaning given to "allocation framework" in section 13(2) of the Energy Act 2013. Agency As defined in The Company's Transmission Licence. Aggregator ABM Participant who controls one or more Additional BM Units or Secondary BM Units. Aggregator Impact Matrix Defined for an Additional BM Unit or a Secondary BM Unit. Provides data allowing The Company to model the result of a Bid-Offer Acceptance on each of the Grid Supply Points within the GSP Group over which the Additional BM Unit or Secondary BM Unit is defined Alternate Member Shall mean an alternate member for the Panel Members elected or appointed in accordance with this GR.7.2(a) or (b). Ancillary Service A System Ancillary Service and/or a Commercial Ancillary Service, as the case may be. An Ancillary Service may include one or more Demand Response Services. An agreement between a User and The Company for the payment by The Company to that User in respect of the provision by such User of Ancillary Services. Annual Average Cold Spell Conditions or ACS Conditions Apparent Power The product of voltage and of alternating current measured in units of voltage and standard multiples thereof, ie: 1000 VA = 1 kVA 1000 kVA = 1 MVA Apparatus Other than in OC8, means all equipment in which electrical conductors are used, supported or of which they may form a part. In OC8 it means High Voltage electrical circuits forming part of a System on which Safety Precautions may be applied to allow work and/or testing to be carried out on a System.	Additional BM Unit	Has the meaning as set out in the BSC
Agency As defined in The Company's Transmission Licence. Aggregator A BM Participant who controls one or more Additional BM Units or Secondary BM Units. Aggregator Impact Matrix Defined for an Additional BM Unit or a Secondary BM Unit. Provides data allowing The Company to model the result of a Bid-Offer Acceptance on each of the Grid Supply Points within the GSP Group over which the Additional BM Unit or Secondary BM Unit is defined Alternate Member Shall mean an alternate member for the Panel Members elected or appointed in accordance with this GR.7.2(a) or (b). Ancillary Service A System Ancillary Service and/or a Commercial Ancillary Service, as the case may be. An Ancillary Service may include one or more Demand Response Services. Anaillary Services An agreement between a User and The Company for the payment by The Company to that User in respect of the provision by such User of Ancillary Services. Annual Average Cold Spell Conditions or ACS Conditions Apparent Power The product of voltage and of alternating current measured in units of voltamperes and standard multiples thereof, ie: 1000 VA = 1 kVA 1000 kVA = 1 MVA Apparatus Other than in OC8, means all equipment in which electrical conductors are used, supported or of which they may form a part. In OC8 it means High Voltage electrical circuits forming part of a System on which Safety Precautions may be applied to allow work and/or testing to be carried out on a System. Approved Fast Track Has the meaning given in GR.26.7, provided that no objection is received	Affiliate	person or any subsidiary of a holding company of such person, in each case within the meaning of Section 736, 736A and 736B of the Companies Act 1985 as substituted by section 144 of the Companies Act 1989 and, if that latter section is not in force at the Transfer Date , as if such section
Aggregator A BM Participant who controls one or more Additional BM Units or Secondary BM Units. Aggregator Impact Matrix Defined for an Additional BM Unit or a Secondary BM Unit. Provides data allowing The Company to model the result of a Bid-Offer Acceptance on each of the Grid Supply Points within the GSP Group over which the Additional BM Unit or Secondary BM Unit is defined Alternate Member Shall mean an alternate member for the Panel Members elected or appointed in accordance with this GR.7.2(a) or (b). Ancillary Service A System Ancillary Service and/or a Commercial Ancillary Service, as the case may be. An Ancillary Service may include one or more Demand Response Services. An agreement between a User and The Company for the payment by The Company to that User in respect of the provision by such User of Ancillary Services. Annual Average Cold Spell Conditions or ACS Conditions Apparent Power The product of voltage and of alternating current measured in units of voltamperes and standard multiples thereof, ie: 1000 VA = 1 kVA 1000 kVA = 1 MVA Apparatus Other than in OC8, means all equipment in which electrical conductors are used, supported or of which they may form a part. In OC8 it means High Voltage electrical circuits forming part of a System on which Safety Precautions may be applied to allow work and/or testing to be carried out on a System. Approved Fast Track Has the meaning given in GR.26.7, provided that no objection is received	AF Rules	, ,
Aggregator Impact Matrix Defined for an Additional BM Unit or a Secondary BM Unit. Provides data allowing The Company to model the result of a Bid-Offer Acceptance on each of the Grid Supply Points within the GSP Group over which the Additional BM Unit or Secondary BM Unit is defined Alternate Member Shall mean an alternate member for the Panel Members elected or appointed in accordance with this GR.7.2(a) or (b). Ancillary Service A System Ancillary Service and/or a Commercial Ancillary Service, as the case may be. An Ancillary Service may include one or more Demand Response Services. Ancillary Services An agreement between a User and The Company for the payment by The Company to that User in respect of the provision by such User of Ancillary Services. Annual Average Cold Spell Conditions or ACS Conditions Apparent Power The product of voltage and of alternating current measured in units of voltamperes and standard multiples thereof, ie: 1000 VA = 1 kVA 1000 kVA = 1 MVA Apparatus Other than in OC8, means all equipment in which electrical conductors are used, supported or of which they may form a part. In OC8 it means High Voltage electrical circuits forming part of a System on which Safety Precautions may be applied to allow work and/or testing to be carried out on a System. Approved Fast Track Has the meaning given in GR.26.7, provided that no objection is received	Agency	As defined in The Company's Transmission Licence.
data allowing The Company to model the result of a Bid-Offer Acceptance on each of the Grid Supply Points within the GSP Group over which the Additional BM Unit or Secondary BM Unit is defined Alternate Member Shall mean an alternate member for the Panel Members elected or appointed in accordance with this GR.7.2(a) or (b). Ancillary Service A System Ancillary Service and/or a Commercial Ancillary Service, as the case may be. An Ancillary Service may include one or more Demand Response Services. An agreement between a User and The Company for the payment by The Company to that User in respect of the provision by such User of Ancillary Services. Annual Average Cold Spell Conditions or ACS Conditions Aparticular combination of weather elements which gives rise to a level of peak Demand within a Financial Year which has a 50% chance of being exceeded as a result of weather variation alone. Apparent Power The product of voltage and of alternating current measured in units of voltamperes and standard multiples thereof, ie: 1000 VA = 1 kVA 1000 kVA = 1 MVA Apparatus Other than in OC8, means all equipment in which electrical conductors are used, supported or of which they may form a part. In OC8 it means High Voltage electrical circuits forming part of a System on which Safety Precautions may be applied to allow work and/or testing to be carried out on a System. Approved Fast Track Has the meaning given in GR.26.7, provided that no objection is received	Aggregator	-
appointed in accordance with this GR.7.2(a) or (b). Ancillary Service A System Ancillary Service and/or a Commercial Ancillary Service, as the case may be. An Ancillary Service may include one or more Demand Response Services. Ancillary Services An agreement between a User and The Company for the payment by The Company to that User in respect of the provision by such User of Ancillary Services. Annual Average Cold Spell Conditions or ACS Conditions A particular combination of weather elements which gives rise to a level of peak Demand within a Financial Year which has a 50% chance of being exceeded as a result of weather variation alone. Apparent Power The product of voltage and of alternating current measured in units of voltamperes and standard multiples thereof, ie: 1000 VA = 1 kVA 1000 kVA = 1 MVA Apparatus Other than in OC8, means all equipment in which electrical conductors are used, supported or of which they may form a part. In OC8 it means High Voltage electrical circuits forming part of a System on which Safety Precautions may be applied to allow work and/or testing to be carried out on a System. Approved Fast Track Has the meaning given in GR.26.7, provided that no objection is received		data allowing The Company to model the result of a Bid-Offer Acceptance on each of the Grid Supply Points within the GSP Group over which the
the case may be. An Ancillary Service may include one or more Demand Response Services. An agreement between a User and The Company for the payment by The Company to that User in respect of the provision by such User of Ancillary Services. Annual Average Cold Spell Conditions or ACS Conditions Apparent Power The product of voltage and of alternating current measured in units of voltamperes and standard multiples thereof, ie: 1000 VA = 1 kVA 1000 kVA = 1 MVA Other than in OC8, means all equipment in which electrical conductors are used, supported or of which they may form a part. In OC8 it means High Voltage electrical circuits forming part of a System on which Safety Precautions may be applied to allow work and/or testing to be carried out on a System. Approved Fast Track Has the meaning given in GR.26.7, provided that no objection is received	Alternate Member	
Annual Average Cold Spell Conditions or ACS Conditions Apparent Power The product of voltage and of alternating current measured in units of voltamperes and standard multiples thereof, ie: 1000 VA = 1 kVA 1000 kVA = 1 MVA Apparatus Other than in OC8, means all equipment in which electrical conductors are used, supported or of which they may form a part. In OC8 it means High Voltage electrical circuits forming part of a System on which Safety Precautions may be applied to allow work and/or testing to be carried out on a System. Approved Fast Track Has the meaning given in GR.26.7, provided that no objection is received	Ancillary Service	the case may be. An Ancillary Service may include one or more Demand
Spell Conditions or ACS Conditions peak Demand within a Financial Year which has a 50% chance of being exceeded as a result of weather variation alone. The product of voltage and of alternating current measured in units of voltamperes and standard multiples thereof, ie: 1000 VA = 1 kVA 1000 kVA = 1 MVA Other than in OC8, means all equipment in which electrical conductors are used, supported or of which they may form a part. In OC8 it means High Voltage electrical circuits forming part of a System on which Safety Precautions may be applied to allow work and/or testing to be carried out on a System. Approved Fast Track Has the meaning given in GR.26.7, provided that no objection is received		Company to that User in respect of the provision by such User of
voltamperes and standard multiples thereof, ie: 1000 VA = 1 kVA 1000 kVA = 1 MVA Other than in OC8, means all equipment in which electrical conductors are used, supported or of which they may form a part. In OC8 it means High Voltage electrical circuits forming part of a System on which Safety Precautions may be applied to allow work and/or testing to be carried out on a System. Approved Fast Track Has the meaning given in GR.26.7, provided that no objection is received	Spell Conditions or ACS	peak Demand within a Financial Year which has a 50% chance of being
Apparatus Other than in OC8, means all equipment in which electrical conductors are used, supported or of which they may form a part. In OC8 it means High Voltage electrical circuits forming part of a System on which Safety Precautions may be applied to allow work and/or testing to be carried out on a System. Approved Fast Track Has the meaning given in GR.26.7, provided that no objection is received	Apparent Power	
Apparatus Other than in OC8, means all equipment in which electrical conductors are used, supported or of which they may form a part. In OC8 it means High Voltage electrical circuits forming part of a System on which Safety Precautions may be applied to allow work and/or testing to be carried out on a System. Approved Fast Track Has the meaning given in GR.26.7, provided that no objection is received		1000 VA = 1 kVA
used, supported or of which they may form a part. In OC8 it means High Voltage electrical circuits forming part of a System on which Safety Precautions may be applied to allow work and/or testing to be carried out on a System. Approved Fast Track Has the meaning given in GR.26.7, provided that no objection is received		1000 kVA = 1 MVA
	Apparatus	used, supported or of which they may form a part. In OC8 it means High Voltage electrical circuits forming part of a System on which Safety Precautions may be applied to allow work and/or testing to be carried out

Approved Grid Code Self-Governance Proposal	Has the meaning given in GR.24.10.
Approved Modification	Has the meaning given in GR.22.7
Authorised Certifier	An entity that issues Equipment Certificates and Power Generating Module Documents and whose accreditation is given by the national affiliate of the European cooperation for Accreditation ('EA'), established in accordance with Regulation (EC) No 765/2008 of the European Parliament and of the Council (1).
Authorised Electricity Operator	Any person (other than The Company) who is authorised under the Act to generate, participate in the transmission of, distribute or supply electricity which shall include any Interconnector Owner or Interconnector User
Authority-Led Modification	A Grid Code Modification Proposal in respect of a Significant Code Review, raised by the Authority pursuant to GR.17
Authority-Led Modification Report	Has the meaning given in GR.17.4.
Automatic Voltage Regulator or AVR	The continuously acting automatic equipment controlling the terminal voltage of a Synchronous Generating Unit or Synchronous Power Generating Module by comparing the actual terminal voltage with a reference value and controlling by appropriate means the output of an Exciter , depending on the deviations.
Authority for Access	An authority which grants the holder the right to unaccompanied access to sites containing exposed HV conductors.
Authority, The	The Authority established by section 1 (1) of the Utilities Act 2000.
Auxiliaries	Any item of Plant and/or Apparatus not directly a part of the boiler plant or Power Generating Module or Generating Unit or DC Converter or HVDC Equipment or Power Park Module, but required for the boiler plant's or Power Generating Module's or Generating Unit's or DC Converter's or HVDC Equipment's or Power Park Module's functional operation.
Auxiliary Diesel Engine	A diesel engine driving a Power Generating Module or Generating Unit which can supply a Unit Board or Station Board , which can start without an electrical power supply from outside the Power Station within which it is situated.
Auxiliary Gas Turbine	A Gas Turbine Unit, which can supply a Unit Board or Station Board, which can start without an electrical power supply from outside the Power Station within which it is situated.
Average Conditions	That combination of weather elements within a period of time which is the average of the observed values of those weather elements during equivalent periods over many years (sometimes referred to as normal weather).

Back-Up Protection	A Protection system which will operate when a system fault is not cleared by other Protection .
Balancing and Settlement Code or BSC	The code of that title as from time to time amended.
Balancing Code or BC	That portion of the Grid Code which specifies the Balancing Mechanism process.
Balancing Mechanism	Has the meaning set out in The Company's Transmission Licence
Balancing Mechanism Reporting Agent or BMRA	Has the meaning set out in the BSC .
Balancing Mechanism Reporting Service or BMRS	Has the meaning set out in the BSC .
Balancing Principles Statement	A statement prepared by The Company in accordance with Condition C16 of The Company's Transmission Licence .
Baseline Forecast	Has the meaning given to the term 'baseline forecast' in Section G of the BSC .
Bid-Offer Acceptance	(a) A communication issued by The Company in accordance with BC2.7; or
	(b) an Emergency Instruction to the extent provided for in BC2.9.2.3.
Bid-Offer Data	Has the meaning set out in the BSC .
Bilateral Agreement	Has the meaning set out in the CUSC
Black Start	The procedure necessary for a recovery from a Total Shutdown or Partial Shutdown .
Black Start Capability	In case of a Black Start Station , is the ability for at least one of its Gensets to Start-Up from Shutdown and to energise a part of the System and be Synchronised to the System upon instruction from The Company , within two hours, without an external electrical power supply.
	In the case of a Black Start HVDC System is the ability of an HVDC System to Start-Up from Shutdown and to energise a part of the System and be Synchronised to the System upon instruction from The Company within two hours, without an external electrical power supply from the GB Synchronous Area .
Black Start Contract	An agreement between a Black Start Service Provider and The Company under which the Black Start Service Provider provides Black Start Capability and other associated services.
Black Start HVDC System	An HVDC System or DC Converter Station which are registered, pursuant to the Bilateral Agreement with a User, as having a Black Start Capability.

Black Start HVDC Test	A Black Start Test carried out by an HVDC System Owner or DC Converter Station Owner with a Black Start HVDC System while the Black Start HVDC System is disconnected from all external electrical power supplies from the GB Synchronous Area.
Black Start Service Provider	A Generator with a Black Start Station or an HVDC System Owner or DC Converter Station Owner with a Black Start HVDC System.
Black Start Stations	Power Stations which are registered, pursuant to the Bilateral Agreement with a User, as having a Black Start Capability.
Black Start Station Test	A Black Start Test carried out by a Generator with a Black Start Station while the Black Start Station is disconnected from all external electrical power supplies from the GB Synchronos Area
Black Start Test	A Black Start Test carried out by a Generator with a Black Start Service Provider on the instructions of The Company, in order to demonstrate that a Black Start Station or a Black Start HVDC System has a Black Start Capability. For the avoidance of doubt, a Black Start Test could compromise a Black Start Station Test, a Black Start Unit Test or Black Start HVDC Test.
Block Load Capability	The incremental Active Power steps, from no load to Rated MW , which a Generating Unit or Power Generating Module or Power Park Module or HVDC System can instantaneously supply without causing it to trip or go outside the Frequency range of 47.5 – 52Hz (or an otherwise agreed Frequency range). The time between each incremental step shall also be provided.
BM Participant	A person who is responsible for and controls one or more BM Units or where a Bilateral Agreement specifies that a User is required to be treated as a BM Participant for the purposes of the Grid Code. For the avoidance of doubt, it does not imply that they must be active in the Balancing Mechanism .
BM Unit	Has the meaning set out in the BSC , except that for the purposes of the Grid Code the reference to "Party" in the BSC shall be a reference to User .
BM Unit Data	The collection of parameters associated with each BM Unit , as described in Appendix 1 of BC1 .
Boiler Time Constant	Determined at Registered Capacity or Maximum Capacity (as applicable), the boiler time constant will be construed in accordance with the principles of the IEEE Committee Report "Dynamic Models for Steam and Hydro Turbines in Power System Studies" published in 1973 which apply to such phrase.
British Standards or BS	Those standards and specifications approved by the British Standards Institution.
BSCCo	Has the meaning set out in the BSC .
BSC Panel	Has meaning set out for "Panel" in the BSC .
Black Start Unit Test	A Black Start Test carried out on a Generating Unit or a CCGT Unit or a Power Generating Module, as the case may be, at a Black Start Station while the Black Start Station remains connected to an external alternating current electrical supply.

Business Day	Any week day (other than a Saturday) on which banks are open for domestic business in the City of London.
Cancellation of National Electricity Transmission System Warning	The notification given to Users when a National Electricity Transmission System Warning is cancelled.
Capacity Market Documents	The Capacity Market Rules , The Electricity Capacity Regulations 2014 and any other Regulations made under Chapter 3 of Part 2 of the Energy Act 2013 which are in force from time to time.
Capacity Market Rules	The rules made under section 34 of the Energy Act 2013 as modified from time to time in accordance with that section and The Electricity Capacity Regulations 2014.
Cascade Hydro Scheme	Two or more hydro-electric Generating Units , owned or controlled by the same Generator , which are located in the same water catchment area and are at different ordnance datums and which depend upon a common source of water for their operation, known as: (a) Moriston (b) Killin I Garry (d) Conon (e) Clunie (f) Beauly
	which will comprise more than one Power Station.
Cascade Hydro Scheme Matrix	The matrix described in Appendix 1 to BC1 under the heading Cascade Hydro Scheme Matrix.
Caution Notice	A notice conveying a warning against interference.
Category 1 Intertripping Scheme	A System to Generator Operational Intertripping Scheme arising from a Variation to Connection Design following a request from the relevant User which is consistent with the criteria specified in the Security and Quality of Supply Standard.
Category 2 Intertripping	A System to Generator Operational Intertripping Scheme which is:-
Scheme	(i) required to alleviate an overload on a circuit which connects the Group containing the User's Connection Site to the National Electricity Transmission System; and
	(ii) installed in accordance with the requirements of the planning criteria of the Security and Quality of Supply Standard in order that measures can be taken to permit maintenance access for each transmission circuit and for such measures to be economically justified,
	and the operation of which results in a reduction in Active Power on the overloaded circuits which connect the User's Connection Site to the rest of the National Electricity Transmission System which is equal to the reduction in Active Power from the Connection Site (once any system losses or third party system effects are discounted).

	
Category 3 Intertripping Scheme	A System to Generator Operational Intertripping Scheme which, where agreed by The Company and the User , is installed to alleviate an overload on, and as an alternative to, the reinforcement of a third party system, such as the Distribution System of a Public Distribution System Operator .
Category 4 Intertripping Scheme	A System to Generator Operational Intertripping Scheme installed to enable the disconnection of the Connection Site from the National Electricity Transmission System in a controlled and efficient manner in order to facilitate the timely restoration of the National Electricity Transmission System.
CENELEC	European Committee for Electrotechnical Standardisation.
Citizens Advice	Means the National Association of Citizens Advice Bureaux.
Citizens Advice Scotland	Means the Scottish Association of Citizens Advice Bureaux.
CfD Counterparty	A person designated as a "CfD counterparty" under section 7(1) of the Energy Act 2013.
CfD Documents	The AF Rules , The Contracts for Difference (Allocation) Regulations 2014, The Contracts for Difference (Definition of Eligible Generator) Regulations 2014 and The Contracts for Difference (Electricity Supplier Obligations) Regulations 2014 and any other regulations made under Chapter 2 of Part 2 of the Energy Act 2013 which are in force from time to time.
CfD Settlement Services Provider	means any person: (i) appointed for the time being and from time to time by a CfD Counterparty; or (ii) who is designated by virtue of Section C1.2.1B of the Balancing and Settlement Code, in either case to carry out any of the CFD settlement activities (or any successor entity performing CFD settlement activities).
CCGT Module Matrix	The matrix described in Appendix 1 to BC1 under the heading CCGT Module Matrix.
CCGT Module Planning Matrix	A matrix in the form set out in Appendix 3 of OC2 showing the combination of CCGT Units within a CCGT Module which would be running in relation to any given MW output.
Closed Distribution System or CDSO	A distribution system classified pursuant to Article 28 of Directive 2009/72/EC as a Closed Distribution System by the Authority which distributes electricity within a geographically confined industrial, commercial or shared services site and does not supply household Customers , without prejudice to incidental use by a small number of households located within the area served by the System and with employment or similar associations with the owner of the System .
CM Administrative Parties	The Secretary of State, the CM Settlement Body, and any CM Settlement Services Provider.

CM Settlement Body	the Electricity Settlements Company Ltd or such other person as may from time to time be appointed as Settlement Body under regulation 80 of the Electricity Capacity Regulations 2014.
CM Settlement Services Provider	any person with whom the CM Settlement Body has entered into a contract to provide services to it in relation to the performance of its functions under the Capacity Market Documents .
Code Administration Code of Practice	Means the code of practice approved by the Authority and: (a) developed and maintained by the code administrators in existence from time to time; and
	(b) amended subject to the Authority's approval from time to time; and(c) re-published from time to time;
Code Administrator	Means The Company carrying out the role of Code Administrator in accordance with the General Conditions.
Combined Cycle Gas Turbine Module or CCGT Module	A collection of Generating Units (registered as a CCGT Module (which could be within a Power Generating Module) under the PC) comprising one or more Gas Turbine Units (or other gas based engine units) and one or more Steam Units where, in normal operation, the waste heat from the Gas Turbines is passed to the water/steam system of the associated Steam Unit or Steam Units and where the component units within the CCGT Module are directly connected by steam or hot gas lines which enable those units to contribute to the efficiency of the combined cycle operation of the CCGT Module .
Combined Cycle Gas Turbine Unit or CCGT Unit	A Generating Unit within a CCGT Module.
Commercial Ancillary Services	Ancillary Services, other than System Ancillary Services, utilised by The Company in operating the Total System if a User (or other person such as a Demand Response Provider) has agreed to provide them under an Ancillary Services Agreement or under a Bilateral Agreement with payment being dealt with under an Ancillary Services Agreement or in the case of Externally Interconnected System Operators or Interconnector Users, under any other agreement (and in the case of Externally Interconnected System Operators and Interconnector Users includes ancillary services equivalent to or similar to System Ancillary Services).
Commercial Boundary	Has the meaning set out in the CUSC
Committed Level	The expected Active Power output from a BM Unit after accepting a Bid-Offer Acceptance or RR Instruction or a combination of Bid-Offer Acceptances and RR Instructions
Committed Project Planning Data	Data relating to a User Development once the offer for a CUSC Contract is accepted.
Common Collection Busbar	A busbar within a Power Park Module to which the higher voltage side of two or more Power Park Unit generator transformers are connected.

Completion Date	Has the meaning set out in the Bilateral Agreement with each User to
·	that term or in the absence of that term to such other term reflecting the date when a User is expected to connect to or start using the National Electricity Transmission System . In the case of an Embedded Medium Power Station or Embedded DC Converter Station or Embedded HVDC System having a similar meaning in relation to the Network Operator's System as set out in the Embedded Development Agreement .
Complex	A Connection Site together with the associated Power Station and/or Network Operator substation and/or associated Plant and/or Apparatus, as appropriate.
Compliance Processes or CP	That portion of the Grid Code which is identified as the Compliance Processes .
Compliance Statement	A statement completed by the relevant User confirming compliance with each of the relevant Grid Code provisions, and the supporting evidence in respect of such compliance, of its:
	Generating Unit(s); or,
	Power Generating Modules (including DC Connected Power Park Modules and/or Electricity Storage Modules); or,
	CCGT Module(s); or,
	Power Park Module(s); or,
	DC Converter(s); or
	HVDC Systems; or
	Plant and Apparatus at an EU Grid Supply Point owned or operated by a Network Operator; or
	Network Operator's entire distribution System where such Network Operator's distribution System comprises solely of Plant and Apparatus procured on or after 7 September 2018 and was connected to the National Electricity Transmission System on or after 18 August 2019. In this case, all connections to the National Electricity Transmission System would comprise only of EU Grid Supply Points; or
	Plant and Apparatus at an EU Grid Supply Point owned or operated by a Non-Embedded Customer where such Non-Embedded Customer is defined as an EU Code User;
	in the form provided by The Company to the relevant User or another format as agreed between the User and The Company .
Configuration 1 AC Connected Offshore Power Park Module	One or more Offshore Power Park Modules that are connected to an AC Offshore Transmission System and that AC Offshore Transmission System is connected to only one Onshore substation and which has one or more Interface Points.
Configuration 2 AC Connected Offshore Power Park Module	One or more Offshore Power Park Modules that are connected to a meshed AC Offshore Transmission System and that AC Offshore Transmission System is connected to two or more Onshore substations at its Transmission Interface Points.

Configuration 1 DC Connected Power Park Module	One or more DC Connected Power Park Modules that are connected to an HVDC System or Transmission DC Converter and that HVDC System or Transmission DC Converter is connected to only one Onshore substation and which has one or more Interface Points.
Configuration 2 DC Connected Power Park Module	One or more DC Connected Power Park Modules that are connected to an HVDC System or Transmission DC Converter and that HVDC System or Transmission DC Converter is connected to only more than one Onshore substation at its Transmission Interface Points.
Connection Conditions or CC	That portion of the Grid Code which is identified as the Connection Conditions being applicable to GB Code Existing Users.
Connection Entry Capacity	Has the meaning set out in the CUSC
Connected Planning Data	Data which replaces data containing estimated values assumed for planning purposes by validated actual values and updated estimates for the future and by updated forecasts for Forecast Data items such as Demand .
Connection Point	A Grid Supply Point or Grid Entry Point, as the case may be.
Connection Site	A Transmission Site or User Site, as the case may be.
Construction Agreement	Has the meaning set out in the CUSC
Consumer Representative	Means the person appointed by the Citizens Advice or the Citizens Advice Scotland (or any successor body) representing all categories of customers, appointed in accordance with GR.4.2(b)
Contingency Reserve	The margin of generation over forecast Demand which is required in the period from 24 hours ahead down to real time to cover against uncertainties in Large Power Station availability and against both weather forecast and Demand forecast errors.
Control Calls	A telephone call whose destination and/or origin is a key on the control desk telephone keyboard at a Transmission Control Centre and which, for the purpose of Control Telephony , has the right to exercise priority over (ie. disconnect) a call of a lower status.
Control Centre	A location used for the purpose of control and operation of the National Electricity Transmission System or DC Converter Station owner's System or HVDC System Owner's System or a User System other than a Generator's System or an External System.
Control Engineer	A person nominated by the relevant party for the control of its Plant and Apparatus .
Control Person	The term used as an alternative to "Safety Co-ordinator" on the Site Responsibility Schedule only.

Control Phase	The Control Phase follows on from the Programming Phase and covers the period down to real time.	
Control Point	The point from which:-	
	(a) A Non-Embedded Customer's Plant and Apparatus is controlled; or	
	(b) A BM Unit at a Large Power Station or at a Medium Power Station or representing a Cascade Hydro Scheme or with a Demand Capacity with a magnitude of:	
	(i) 50MW or more in NGET's Transmission Area ; or	
	(ii) 30MW or more in SPT's Transmission Area ; or	
	(iii) 10MW or more in SHETL's Transmission Area ,	
	(iv) 10MW or more which is connected to an Offshore Transmission System	
	is physically controlled by a BM Participant ; or	
	(c) In the case of any other BM Unit or Generating Unit (which could be part of a Power Generating Module), data submission is coordinated for a BM Participant and instructions are received from The Company ,	
	as the case may be. For a Generator this will normally be at a Power Station but may be at an alternative location agreed with The Company . In the case of a DC Converter Station or HVDC System , the Control Point will be at a location agreed with The Company . In the case of a BM Unit of an Interconnector User , the Control Point will be the Control Centre of the relevant Externally Interconnected System Operator .	
Control Telephony	The principal method by which a User's Responsible Engineer/Operator and The Company's Control Engineer(s) speak to one another for the purposes of control of the Total System in both normal and emergency operating conditions.	
Core Industry Document	as defined in the Transmission Licence	
Core Industry Document Owner	In relation to a Core Industry Document , the body(ies) or entity(ies) responsible for the management and operation of procedures for making changes to such document	

cusc	Has the meaning set out in The Company's Transmission Licence
CUSC Contract	One or more of the following agreements as envisaged in Standard Condition C1 of The Company's Transmission Licence :
	(a) the CUSC Framework Agreement;
	(b) a Bilateral Agreement;
	(c) a Construction Agreement
	or a variation to an existing Bilateral Agreement and/or Construction Agreement ;
CUSC Framework Agreement	Has the meaning set out in The Company's Transmission Licence
CUSC Party	As defined in the The Company's Transmission Licence and "CUSC Parties" shall be construed accordingly.
Customer	A person to whom electrical power is provided (whether or not he is the same person as the person who provides the electrical power).
Customer Demand Management	Reducing the supply of electricity to a Customer or disconnecting a Customer in a manner agreed for commercial purposes between a Supplier and its Customer .
Customer Demand Management Notification Level	The level above which a Supplier has to notify The Company of its proposed or achieved use of Customer Demand Management which is 12 MW in England and Wales and 5 MW in Scotland.
Customer Generating Plant	A Power Station or Generating Unit or Power Generating Module of a Customer to the extent that it operates the same exclusively to supply all or part of its own electricity requirements, and does not export electrical power to any part of the Total System .
Data Registration Code or DRC	That portion of the Grid Code which is identified as the Data Registration Code .
Data Validation, Consistency and Defaulting Rules	The rules relating to validity and consistency of data, and default data to be applied, in relation to data submitted under the Balancing Codes , to be applied by The Company under the Grid Code as set out in the document "Data Validation, Consistency and Defaulting Rules" - Issue 8, dated 25 th January 2012. The document is available on the National Grid website or upon request from The Company .
DC Connected Power Park Module	A Power Park Module that is connected to one or more HVDC Interface Points.
DC Converter	Any Onshore DC Converter or Offshore DC Converter as applicable to Existing User's.
DC Converter Station	An installation comprising one or more Onshore DC Converters connecting a direct current interconnector:
	to the National Electricity Transmission System; or,
	(if the installation has a rating of 50MW or more) to a User System ,

DC Network	All items of Plant and Apparatus connected together on the direct current side of a DC Converter or HVDC System .
DCUSA	The Distribution Connection and Use of System Agreement approved by the Authority and required to be maintained in force by each Electricity Distribution Licence holder.
Defence Service Provider	A User with a legal contractual obligation to provide a service contributing to one or several measures of the System Defence Plan.
De-Load	The condition in which a Genset has reduced or is not delivering electrical power to the System to which it is Synchronised .
Δf	Deviation from Target Frequency
Demand	The demand of MW and Mvar of electricity (i.e. both Active and Reactive Power), unless otherwise stated.
Demand Aggregation	A process where one or more Demand Facilities or Closed Distribution Systems can be controlled by a Demand Response Provider either as a single facility or Closed Distribution System for the purposes of offering one or more Demand Response Services .
Demand Capacity	Has the meaning as set out in the BSC .
Demand Control	Any or all of the following methods of achieving a Demand reduction:
	(a) Customer voltage reduction initiated by Network Operators (other than following an instruction from The Company);
	(b) Customer Demand reduction by Disconnection initiated by Network Operators (other than following an instruction from The Company);
	(c) Demand reduction instructed by The Company;
	(d) automatic low Frequency Demand Disconnection;
	(e) emergency manual Demand Disconnection .
Demand Control Notification Level	The level above which a Network Operator has to notify The Company of its proposed or achieved use of Demand Control which is 12 MW in England and Wales and 5 MW in Scotland.
Demand Facility	A facility which consumes electrical energy and is connected at one or more Grid Supply Points to the National Electricity Transmission System or connection points to a Network Operator's System . A Network Operator's System and/or auxiliary supplies of a Power Generating Module do no constitute a Demand Facility .
Demand Facility Owner	A person who owns or operates one or more Demand Units within a Demand Facility . A Demand Facility Owner who owns or operates a Demand Facility which is directed connected to the Transmission System shall be treated as a Non Embedded Customer .
Demand Response Active Power Control	Demand within a Demand Facility or Closed Distribution System that is available for modulation by The Company or Network Operator or Relevant Transmission Licensee , which results in an Active Power modification.

Demand Response Provider	A party (other than The Company) who owns, operates, controls or manages Main Plant and Apparatus (excluding storage equipment) which was first connected to the Total System on or after 18 August 2019 and who had placed Purchase Contracts for its Main Plant and Apparatus on or after 7 September 2018 or is the subject of a Substantial Modification on or after 18 August 2019 and has an agreement with The Company to provide a Demand Response Service (s). The party may be one or more Customers , a Network Operator or Non-Embedded Customer or EU Code User contracting bilaterally with The Company for the provision of services, or may be a third party providing Demand Aggregation from many individual Customers .
Demand Response	A Demand Response Service derived from Reactive Power or Reactive
Reactive Power Control	Power compensation devices in a Demand Facility or Closed Distribution
	System that are available for modulation by The Company or Network
	Operator or Relevant Transmission Licensee.
Demand Response Transmission Constrain Management	A Demand Response Service derived from Demand within a Demand Facility or Closed Distribution System that is available for modulation by The Company or Network Operator or Relevant Transmission Licensee to manage transmission constraints within the System .
Demand Response Service	A Demand Response Service includes one of more of the following services:
	 (a) Demand Response Active Power Control; (b) Demand Response Reactive Power Control; (c) Demand Response Transmission Constraint Management; (d) Demand Response System Frequency Control; (e) Demand Response Very Fast Active Power Control. The above Demand Response Services are not exclusive and do not preclude Demand Response Providers from negotiating other services for demand response capability with The Company. Where such services are negotiated they would still be treated as a Demand Response Service.
Demand Response Services Code (DRSC)	That portion of the Grid Code which is identified as the Demand Response Services Code being applicable to Demand Response Providers .
Demand Response System Frequency Control	A Demand Response Service derived from a Demand within one or more Demand Facilities or Closed Distribution Systems that is available for the reduction or increase in response to Frequency fluctuations, made by an autonomous response from those Demand Facilities or Closed Distribution Systems to diminish these fluctuations.
Demand Response Unit	A document, issued either by the Non Embedded Customer, Demand
Document (DRUD)	Facility Owner or the CDSO to The Company or the Network Operator
	(as the case may be) for Demand Units with demand response and
	providing a Demand Response Service which confirms the compliance of
	the Demand Unit with the technical requirements set out in the Grid
	Code and provides the necessary data and statements, including a statement of compliance.
Demand Response Very	A Demand Response Service derived from a Demand within a Demand
Fast Active Power	Facility or Closed Distribution System that can be modulated very fast
Control	in response to a Frequency deviation, which results in a very fast Active
Demand Unit	Power modification. An indivisible set of installations containing equipment which can be
Demand Onk	actively controlled at one or more sites by a Demand Response Provider , Demand Facility Owner , CDSO or by a Non Embedded Customer , either individually or commonly as part of Demand Aggregation through a third party who has agreed to provide Demand Response Services .

Designed Minimum Operating Level	The output (in whole MW) below which a Genset or a DC Converter at a DC Converter Station (in any of its operating configurations) has no High Frequency Response capability.
De-Synchronise	 (a) The act of taking a Power Generating Module (including a DC Connected Power Park Module), Generating Unit, Power Park Module, HVDC System or DC Converter off a System to which it has been Synchronised, by opening any connecting circuit breaker; or (b) The act of ceasing to consume electricity at an importing BM Unit; and the term "De-Synchronising" shall be construed accordingly.
De-synchronised Island(s)	Has the meaning set out in OC9.5.1(a)
Detailed Planning Data	Detailed additional data which The Company requires under the PC in support of Standard Planning Data , comprising DPD I and DPD II
Detailed Planning Data Category I or DPD I	The Detailed Planning Data categorised as such in the DRC and EDRC , and submitted in accordance with PC.4.4.2 or PC.4.4.4 as applicable.
Detailed Planning Data Category II or DPD II	The Detailed Planning Data categorised as such in the DRC and EDRC , and submitted in accordance with PC.4.4.2 or PC.4.4.4 as applicable.
Discrimination	The quality where a relay or protective system is enabled to pick out and cause to be disconnected only the faulty Apparatus .
Disconnection	The physical separation of Users (or Customers) from the National Electricity Transmission System or a User System as the case may be.
Disputes Resolution Procedure	The procedure described in the CUSC relating to disputes resolution.
Distribution Code	The distribution code required to be drawn up by each Electricity Distribution Licence holder and approved by the Authority , as from time to time revised with the approval of the Authority .
Droop	The ratio of the per unit steady state change in speed, or in Frequency to the per unit steady state change in power output. Whilst not mandatory, it is often common practice to express Droop in percentage terms.
Dynamic Parameters	Those parameters listed in Appendix 1 to BC1 under the heading BM Unit Data – Dynamic Parameters.
E&W Offshore Transmission System	An Offshore Transmission System with an Interface Point in England and Wales.
E&W Offshore Transmission Licensee	A person who owns or operates an E&W Offshore Transmission System pursuant to a Transmission Licence.
E&W Transmission System	Collectively NGET's Transmission System and any E&W Offshore Transmission Systems.
E&W User	A User in England and Wales or any Offshore User who owns or operates Plant and/or Apparatus connected (or which will at the OTSUA Transfer Time be connected) to an E&W Offshore Transmission System.

Earth Fault Factor	At a selected location of a three-phase System (generally the point of installation of equipment) and for a given System configuration, the ratio of the highest root mean square phase-to-earth power Frequency voltage on a sound phase during a fault to earth (affecting one or more phases at any point) to the root mean square phase-to-earth power Frequency voltage which would be obtained at the selected location without the fault.
Earthing	A way of providing a connection between conductors and earth by an Earthing Device which is either: (a) Immobilised and Locked in the earthing position. Where the Earthing Device is Locked with a Safety Key, the Safety Key must be secured in a Key Safe and the Key Safe Key must be, where reasonably practicable, given to the authorised site representative of the Requesting Safety Co-ordinator and is to be retained in safe custody. Where not reasonably practicable the Key Safe Key must be retained by the authorised site representative of the
	Implementing Safety Co-ordinator in safe custody; or (b) maintained and/or secured in position by such other method which must be in accordance with the Local Safety Instructions of NGET or the Safety Rules of the Relevant Transmission Licensee or that User, as the case may be.
Earthing Device	A means of providing a connection between a conductor and earth being of adequate strength and capability.
Elected Panel Members	Shall mean the following Panel Members elected in accordance with GR4.2(a): (a) the representative of the Suppliers ; (b) the representative of the Onshore Transmission Licensees ; (c) the representative of the Offshore Transmission Licensees ; and (d) the representatives of the Generators
Electrical Standard	A standard listed in the Annex to the General Conditions .
Electricity Council	That body set up under the Electricity Act, 1957.
Electricity Distribution Licence	The licence granted pursuant to Section 6(1) (c) of the Act .
Electricity Regulation	As defined in the Transmission Licence .
Electricity Storage	The conversion of electrical energy into a form of energy which can be stored, the storing of that energy, and the subsequent reconversion of that energy back into electrical energy.
Electricity Storage Module	Is either one or more Synchronous Electricity Storage Unit(s) or Non-Synchronous Electricity Storage Unit(s) which could also be part of a Power Generating Module. For the avoidance of doubt, Non-Controllable Electricity Storage Equipment would not be considered to be classed as an Electricity Storage Module or as an Electricity Storage Unit.
Electricity Storage Unit	A Synchronous Electricity Storage Unit or Non-Synchronous Electricity Storage Unit.

Electricity Supply Industry Arbitration Association	The unincorporated members' club of that name formed inter alia to promote the efficient and economic operation of the procedure for the resolution of disputes within the electricity supply industry by means of arbitration or otherwise in accordance with its arbitration rules.
Electricity Supply Licence	The licence granted pursuant to Section 6(1) (d) of the Act .
Electromagnetic Compatibility Level	Has the meaning set out in Engineering Recommendation G5.
Embedded	Having a direct connection to a User System or the System of any other User to which Customers and/or Power Stations are connected, such connection being either a direct connection or a connection via a busbar of another User or of a Relevant Transmission Licensee (but with no other connection to the National Electricity Transmission System).
Embedded Development	Has the meaning set out in PC.4.4.3(a)
Embedded Development Agreement	An agreement entered into between a Network Operator and an Embedded Person , identifying the relevant site of connection to the Network Operator's System and setting out other site specific details in relation to that use of the Network Operator's System .
Embedded Person	The party responsible for a Medium Power Station not subject to a Bilateral Agreement or DC Converter Station not subject to a Bilateral Agreement or HVDC System not subject to a Bilateral Agreement connected to or proposed to be connected to a Network Operator's System.
Emergency Deenergisation Instruction	an Emergency Instruction issued by The Company to De-Synchronise a Power Generating Module (including a DC Connected Power Park Module), Generating Unit, Power Park Module, HVDC System or DC Converter in circumstances specified in the CUSC.
Emergency Instruction	An instruction issued by The Company in emergency circumstances, pursuant to BC2.9, to the Control Point of a User . In the case of such instructions applicable to a BM Unit , it may require an action or response which is outside the Dynamic Parameters or Other Relevant Data , and may include an instruction to trip a Genset .
EMR Administrative Parties	Has the meaning given to "administrative parties" in The Electricity Capacity Regulations 2014 and each CfD Counterparty and CfD Settlement Services Provider.
EMR Documents	The Energy Act 2013, The Electricity Capacity Regulations 2014, the Capacity Market Rules , The Contracts for Difference (Allocation) Regulations 2014, The Contracts for Difference (Definition of Eligible Generator) Regulations 2014, The Contracts for Difference (Electricity Supplier Obligations) Regulations 2014, The Electricity Market Reform (General) Regulations 2014, the AF Rules and any other regulations or instruments made under Chapter 2 (contracts for difference), Chapter 3 (capacity market) or Chapter 4 (investment contracts) of Part 2 of the Energy Act 2013 which are in force from time to time.
EMR Functions	Has the meaning given to "EMR functions" in Chapter 5 of Part 2 of the Energy Act 2013.

Engineering Recommendations	The documents referred to as such and issued by the Energy Networks Association or the former Electricity Council.
Engineering Recommendation G5	Means Engineering Recommendation G5/5.
Energisation Operational Notification or EON	A notification (in respect of Plant and Apparatus (including OTSUA) which is directly connected to the National Electricity Transmission System) from The Company to a User confirming that the User can in accordance with the Bilateral Agreement and/or Construction Agreement , energise such User's Plant and Apparatus (including OTSUA) specified in such notification.
Equipment Certificate	A document issued by an Authorised Certifier for equipment used by a Power Generating Module , Demand Unit , Network Operators System , Non Embedded Customers System , Demand Facility or HVDC System . The Equipment Certificate defines the scope of its validity at a national or other level at which a specific value is selected from the range allowed at a European level. For the purpose of replacing specific parts of the compliance process, the Equipment Certificate may include models or equivalent information that have been verified against actual test results.
Estimated Registered Data	Those items of Standard Planning Data and Detailed Planning Data which either upon connection will become Registered Data, or which for the purposes of the Plant and/or Apparatus concerned as at the date of submission are Registered Data, but in each case which for the seven succeeding Financial Years will be an estimate of what is expected.

EU Code User A User who is any of the following:-

- (a) A Generator in respect of a Power Generating Module (excluding a DC Connected Power Park Module) or OTSDUA (in respect of an AC Offshore Transmission System) whose Main Plant and Apparatus is connected to the System on or after 27 April 2019 and who concluded Purchase Contracts for its Main Plant and Apparatus on or after 17 May 2018
- (b) A Generator in respect of any Type C or Type D Power Generating Module which is the subject of a Substantial Modification which is effective on or after 27 April 2019.
- (c) A Generator in respect of any DC Connected Power Park Module whose Main Plant and Apparatus is connected to the System on or after 8 September 2019 and who had concluded Purchase Contracts for its Main Plant and Apparatus on or after 28 September 2018.
- (d) A **Generator** in respect of any **DC Connected Power Park Module** which is the subject of a **Substantial Modification** which is effective on or after 8 September 2019.
- (e) An HVDC System Owner or OTSDUA (in respect of a DC Offshore Transmission System including a Transmission DC Converter) whose Main Plant and Apparatus is connected to the System on or after 8 September 2019 and who had concluded Purchase Contracts for its Main Plant and Apparatus on or after 28 September 2018.
- (f) An HVDC System Owner or OTSDUA (in respect of a DC Offshore Transmission System including a Transmission DC Converter) whose HVDC System or DC Offshore Transmission System including a Transmission DC Converter) is the subject of a Substantial Modification on or after 8 September 2019.
- (g) A **User** which the **Authority** has determined should be considered as an **EU Code User**.
- (h) A Network Operator whose entire distribution System was first connected to the National Electricity Transmission System on or after 18 August 2019 and who had placed Purchase Contracts for its Main Plant and Apparatus in respect of its entire distribution System on or after 7 September 2018. For the avoidance of doubt, a Network Operator will be an EU Code User if its entire distribution System is connected to the National Electricity Transmission System at EU Grid Supply Points only.
- (i) A Non Embedded Customer whose Main Plant and Apparatus at each EU Grid Supply Point was first connected to the National Electricity Transmission System on or after 18 August 2019 and who had placed Purchase Contracts for its Main Plant and Apparatus at each EU Grid Supply Point on or after 7 September 2018 or is the subject of a Substantial Modification on or after 18 August 2019.
- (j) A Storage User in respect of an Electricity Storage Module whose Main Plant and Apparatus is connected to the System on or after 20 May 2020 and who concluded Purchase Contracts for its Main Plant and Apparatus on or after 20 May 2019.

EU Generator	A Generator or OTSDUA who is also an EU Code User.
EU Grid Supply Point	A Grid Supply Point where either:-
	(i) (a) the Network Operator or Non Embedded Customer had placed Purchase Contracts for all of its Plant and Apparatus at that Grid Supply Point on or after 7 September 2018, and
	(b) All of the Network Operator's or Non Embedded Customer's Plant and Apparatus at that Grid Supply Point was first connected to the Transmission System on or after 18 August 2019; or
	(ii) the Network Operator's or Non Embedded Customer's Plant and Apparatus at a Grid Supply Point is the subject of a Substantial Modification which is effective on or after 18 August 2019.
EU Transparency Availability Data	Such data as Customers and Generators are required to provide under Articles 7.1(a) and 7.1(b) and Articles 15.1(a), 15.1(b), 15.1(c), 15.1(d) of European Commission Regulation (EU) No. 543/2013 respectively (known as the Transparency Regulation), and which also forms part of DRC Schedule 6 (Users' Outage Data).
European Compliance Processes or ECP	That portion of the Grid Code which is identified as the European Compliance Processes.
European Connection Conditions or ECC	That portion of the Grid Code which is identified as the European Connection Conditions being applicable to EU Code Users.
European Regulation (EU) 2016/631	Commission Regulation (EU) 2016/631 of 14 April 2016 establishing a Network Code on Requirements of Generators
European Regulation (EU) 2016/1388	Commission Regulation (EU) 2016/1388 of 17 August 2016 establishing a Network Code on Demand Connection
European Regulation (EU) 2016/1447	Commission Regulation (EU) 2016/1447 of 26 August 2016 establishing a network code on requirements for Grid Connection of High Voltage Direct Current Systems and Direct Current-connected Power Park Modules
European Regulation (EU) 2017/1485	Commission Regulation (EU) 2017/1485 establishing a guideline on electricity transmission system operation
European Regulation (EU) 2017/2195	Commission Regulation (EU) 2017/2195 of 17 December 2017 establishing a guideline on electricity balancing
European Regulation (EU) 2017/2196	Commission Regulation (EU) 2017/2196 of 24 November 2017 establishing a network code on emergency and restoration.
European Specification	A common technical specification, a British Standard implementing a European standard or a European technical approval. The terms "common technical specification", "European standard" and "European technical approval" shall have the meanings respectively ascribed to them in the Regulations .

Event	An unscheduled or unplanned (although it may be anticipated) occurrence on, or relating to, a System (including Embedded Power Stations) including, without limiting that general description, faults, incidents and breakdowns and adverse weather conditions being experienced.
Exciter	The source of the electrical power providing the field current of a synchronous machine.
Excitation System	The equipment providing the field current of a machine, including all regulating and control elements, as well as field discharge or suppression equipment and protective devices.
Excitation System No- Load Negative Ceiling Voltage	The minimum value of direct voltage that the Excitation System is able to provide from its terminals when it is not loaded, which may be zero or a negative value.
Excitation System Nominal Response	Shall have the meaning ascribed to that term in IEC 34-16-1:1991 [equivalent to British Standard BS 4999 Section 116.1 : 1992]. The time interval applicable is the first half-second of excitation system voltage response.
Excitation System On- Load Positive Ceiling Voltage	Shall have the meaning ascribed to the term 'Excitation system on load ceiling voltage' in IEC 34-16-1:1991[equivalent to British Standard BS 4999 Section 116.1 : 1992].
Excitation System No- Load Positive Ceiling Voltage	Shall have the meaning ascribed to the term 'Excitation system no load ceiling voltage' in IEC 34-16-1:1991[equivalent to British Standard BS4999 Section 116.1 : 1992].
Exemptable	Has the meaning set out in the CUSC.
Existing AGR Plant	The following nuclear advanced gas cooled reactor plant (which was commissioned and connected to the Total System at the Transfer Date):-
	(a) Dungeness B
	(b) Hinkley Point B
	(c) Heysham 1
	(d) Heysham 2
	(e) Hartlepool
	(f) Hunterston B
	(g) Torness

Existing AGR Plant Flexibility Limit	In respect of each Genset within each Existing AGR Plant which has a safety case enabling it to so operate, 8 (or such lower number which when added to the number of instances of reduction of output as instructed by The Company in relation to operation in Frequency Sensitive Mode totals 8) instances of flexibility in any calendar year (or such lower or greater number as may be agreed by the Nuclear Installations Inspectorate and notified to The Company) for the purpose of assisting in the period of low System NRAPM and/or low Localised NRAPM provided that in relation to each Generating Unit each change in output shall not be required to be to a level where the output of the reactor is less than 80% of the reactor thermal power limit (as notified to The Company and which corresponds to the limit of reactor thermal power as contained in the "Operating Rules" or "Identified Operating Instructions" forming part of the safety case agreed with the Nuclear Installations Inspectorate).
Existing Gas Cooled Reactor Plant	Both Existing Magnox Reactor Plant and Existing AGR Plant.
Existing Magnox Reactor Plant Export and Import Limits External Interconnection	The following nuclear gas cooled reactor plant (which was commissioned and connected to the Total System at the Transfer Date):- (a) Calder Hall (b) Chapelcross (c) Dungeness A (d) Hinkley Point A (e) Oldbury-on-Severn (f) Bradwell (g) Sizewell A (h) Wylfa Those parameters listed in Appendix 1 to BC1 under the heading BM Unit Data – Export and Import Limits. Apparatus for the transmission of electricity to or from the National Electricity Transmission System or a User System into or out of an External System. For the avoidance of doubt, a single External Interconnection may comprise several circuits operating in parallel.
External Interconnection Circuit	Plant or Apparatus which comprises a circuit and which operates in parallel with another circuit and which forms part of the External Interconnection.
Externally Interconnected System Operator or EISO	A person who operates an External System which is connected to the National Electricity Transmission System or a User System by an External Interconnection.
External System	In relation to an Externally Interconnected System Operator means the transmission or distribution system which it owns or operates which is located outside the National Electricity Transmission System Operator Area any Apparatus or Plant which connects that system to the External Interconnection and which is owned or operated by such Externally Interconnected System Operator.

Fast Fault Current	A current delivered by a Power Park Module or HVDC System during and after a voltage deviation caused by an electrical fault within the System with the aim of identifying a fault by network Protection systems at the initial stage of the fault, supporting System voltage retention at a later stage of the fault and System voltage restoration after fault clearance.
Fast Start	A start by a Genset with a Fast Start Capability .
Fast Start Capability	The ability of a Genset to be Synchronised and Loaded up to full Load within 5 minutes.
Fast Track Criteria	A proposed Grid Code Modification Proposal that, if implemented,
	(a) would meet the Self-Governance Criteria ; and
	(b) is properly a housekeeping modification required
	as a result of some error or factual change,
	including but not limited to:
	(i) updating names or addresses listed in the Grid Code ;
	(ii) correcting any minor typographical errors;
	(iii) correcting formatting and consistency errors, such as paragraph numbering; or
	(iv) updating out of date references to other documents or paragraphs
Fault Current Interruption Time	The time interval from fault inception until the end of the break time of the circuit breaker (as declared by the manufacturers).
Fault Ride Through	The capability of Power Generating Modules (including DC Connected Power Park Modules) and HVDC Systems to be able to remain connected to the System and operate through periods of low voltage at the Grid Entry Point or User System Entry Point caused by secured faults.
Final Generation Outage Programme	An outage programme as agreed by The Company with each Generator and each Interconnector Owner at various stages through the Operational Planning Phase and Programming Phase which does not commit the parties to abide by it, but which at various stages will be used as the basis on which National Electricity Transmission System outages will be planned.
Final Operational Notification or FON	A notification from The Company to a Generator or DC Converter Station owner or HVDC System Owner or Network Operator or Non-Embedded Customer confirming that the User has demonstrated compliance:
	(a) with the Grid Code, (or where they apply, that relevant derogations have been granted), and
	(b) where applicable, with Appendices F1 to F5 of the Bilateral Agreement ,
	in each case in respect of the Plant and Apparatus specified in such notification.
Final Physical Notification Data	Has the meaning set out in the BSC .

Final Report	A report prepared by the Test Proposer at the conclusion of a System Test for submission to The Company (if it did not propose the System Test) and other members of the Test Panel .
Financial Year	Bears the meaning given in Condition A1 (Definitions and Interpretation) of The Company's Transmission Licence.
Fixed Proposed Implementation Date	The proposed date(s) for the implementation of a Grid Code Modification Proposal or Workgroup Alternative Grid Code Modification such date to be a specific date by reference to an assumed date by which a direction from the Authority approving the Grid Code Modification Proposal or Workgroup Alternative Grid Code Modification is required in order for the Grid Code Modification Proposal or any Workgroup Alternative Grid Code Modification , if it were approved, to be implemented by the proposed date.
Flicker Severity (Long Term)	A value derived from 12 successive measurements of Flicker Severity (Short Term) (over a two hour period) and a calculation of the cube root of the mean sum of the cubes of 12 individual measurements, as further set out in Engineering Recommendation P28 as current at the Transfer Date .
Flicker Severity (Short Term)	A measure of the visual severity of flicker derived from the time series output of a flickermeter over a 10 minute period and as such provides an indication of the risk of Customer complaints.
Forecast Data	Those items of Standard Planning Data and Detailed Planning Data which will always be forecast.
Frequency	The number of alternating current cycles per second (expressed in Hertz) at which a System is running.
Frequency Containment Reserves (FCR)	means, in the context of Balancing Services , the active power reserves available to contain system frequency after the occurrence of an imbalance.
Frequency Restoration Reserves (FRR)	means, in the context of Balancing Services , the active power reserves available to restore system frequency to the nominal frequency.
GSP Group	Has the meaning as set out in the BSC
Frequency Sensitive AGR Unit	Each Generating Unit in an Existing AGR Plant for which the Generator has notified The Company that it has a safety case agreed with the Nuclear Installations Inspectorate enabling it to operate in Frequency Sensitive Mode, to the extent that such unit is within its Frequency Sensitive AGR Unit Limit. Each such Generating Unit shall be treated as if it were operating in accordance with BC3.5.1 provided that it is complying with its Frequency Sensitive AGR Unit Limit.
Frequency Sensitive AGR Unit Limit	In respect of each Frequency Sensitive AGR Unit , 8 (or such lower number which when added to the number of instances of flexibility for the purposes of assisting in a period of low System or Localised NRAPM totals 8) instances of reduction of output in any calendar year as instructed by The Company in relation to operation in Frequency Sensitive Mode (or such greater number as may be agreed between The Company and the Generator), for the purpose of assisting with Frequency control, provided the level of operation of each Frequency Sensitive AGR Unit in Frequency Sensitive Mode shall not be outside that agreed by the Nuclear Installations Inspectorate in the relevant safety case.

Frequency Sensitive Mode	A Genset, or Type C Power Generating Module or Type D Power Generating Module or DC Connected Power Park Module or HVDC System operating mode which will result in Active Power output changing, in response to a change in System Frequency, in a direction which assists in the recovery to Target Frequency, by operating so as to provide Primary Response and/or Secondary Response and/or High Frequency Response.
Fuel Security Code	The document of that title designated as such by the Secretary of State , as from time to time amended.
Gas Turbine Unit	A Generating Unit driven by a gas turbine (for instance by an aeroengine).
Gas Zone Diagram	A single line diagram showing boundaries of, and interfaces between, gas-insulated HV Apparatus modules which comprise part, or the whole, of a substation at a Connection Site (or in the case of OTSDUW Plant and Apparatus, Transmission Interface Site), together with the associated stop valves and gas monitors required for the safe operation of the National Electricity Transmission System or the User System, as the case may be.
Gate Closure	Has the meaning set out in the BSC .

GB Code User	A User in respect of:-
	(a) A Generator or OTSDUA whose Main Plant and Apparatus is connected to the System before 27 April 2019, or who had concluded Purchase Contracts for its Main Plant and Apparatus before 17 May 2018, or whose Plant and Apparatus is not the subject of a Substantial Modification which is effective on or after 27 April 2019; or
	(b) A DC Converter Station owner whose Main Plant and Apparatus is connected to the System before 8 September 2019, or who had concluded Purchase Contracts for its Main Plant and Apparatus before 28 September 2018, or whose Plant and Apparatus is not the subject of a Substantial Modification which is effective on or after 8 September 2019; or
	(c) A Non Embedded Customer whose Main Plant and Apparatus was connected to the National Electricity Transmission System at a GB Grid Supply Point before 18 August 2019 or who had placed Purchase Contracts for its Main Plant and Apparatus before 7 September 2018 or that Non Embedded Customer is not the subject of a Substantial Modification which is effective on or after 18 August 2019.2018; or
	(d) A Network Operator whose entire distribution System was connected to the National Electricity Transmission System at one or more GB Grid Supply Points before 18 August 2019 or who had placed Purchase Contracts for its Main Plant and Apparatus in respect of its entire distribution System before 7 September 2018 or its entire distribution System is not the subject of a Substantial Modification which is effective on or after 18 August 2019. For the avoidance of doubt, a Network Operator would still be classed as a GB Code User where its entire distribution System was connected to the National Electricity Transmission System at one or more GB Grid Supply Points, even where that entire distribution System may have one or more EU Grid Supply Points but still comprises of GB Grid Supply Points.
GB Generator	A Generator, or OTSDUA, who is also a GB Code User.
GB Grid Supply Point	A Grid Supply Point which is not an EU Grid Supply Point.
GB Synchronous Area	The AC power System in Great Britain which connects User's, Relevant Transmission Licensee's whose AC Plant and Apparatus is considered to operate in synchronism with each other at each Connection Point or User System Entry Point and at the same System Frequency.
GCDF	Means the Grid Code Development Forum.
General Conditions or GC	That portion of the Grid Code which is identified as the General Conditions .
Generating Plant Demand Margin	The difference between Output Usable and forecast Demand .

Generating Unit	An Onshore Generating Unit and/or an Offshore Generating Unit which could also be part of a Power Generating Module.
Generating Unit Data	The Physical Notification, Export and Import Limits and Other Relevant Data only in respect of each Generating Unit (which could be part of a Power Generating Module):
	(a) which forms part of the BM Unit which represents that Cascade Hydro Scheme ;
	(b) at an Embedded Exemptable Large Power Station, where the relevant Bilateral Agreement specifies that compliance with BC1 and/or BC2 is required:
	(i) to each Generating Unit , or
	(ii) to each Power Park Module where the Power Station comprises Power Park Modules
Generation Capacity	Has the meaning set out in the BSC .
Generation Planning Parameters	Those parameters listed in Appendix 2 of OC2 .
Generator	A person who generates electricity or undertakes Electricity Storage under licence or exemption under the Act acting in its capacity as a generator in Great Britain or Offshore . The term Generator includes a EU Generator and a GB Generator .
Generator Performance Chart	A diagram which shows the MW and Mvar capability limits within which a Generating Unit will be expected to operate under steady state conditions.
Genset	A Power Generating Module (including a DC Connected Power Park Module and/or Electricity Storage Module), Generating Unit, Power Park Module or CCGT Module at a Large Power Station or any Power Generating Module (including a DC Connected Power Park Module), Generating Unit, Power Park Module or CCGT Module which is directly connected to the National Electricity Transmission System.
Good Industry Practice	The exercise of that degree of skill, diligence, prudence and foresight which would reasonably and ordinarily be expected from a skilled and experienced operator engaged in the same type of undertaking under the same or similar circumstances.
Governance Rules or GR	That portion of the Grid Code which is identified as the Governance Rules .
Governor Deadband	An interval used intentionally to make the frequency control unresponsive
	In the case of mechanical governor systems, the Governor Deadband is the same as Frequency Response Insensitivity
Governor Insensitivity	The inherent feature of the control system specified as the minimum magnitude of change in the frequency or input signal that results in a change of output power or output signal
Great Britain or GB	The landmass of England and Wales and Scotland, including internal waters.

Grid Code Fast Track Proposals	A proposal to modify the Grid Code which is raised pursuant to GR.26 and has not yet been approved or rejected by the Grid Code Review Panel .
Grid Code Modification Fast Track Report	A report prepared pursuant to GR.26
Grid Code Modification Register	Has the meaning given in GR.13.1.
Grid Code Modification Report	Has the meaning given in GR.22.1.
Grid Code Modification Procedures	The procedures for the modification of the Grid Code (including the implementation of Approved Modifications) as set out in the Governance Rules .
Grid Code Modification Proposal	A proposal to modify the Grid Code which is not yet rejected pursuant to GR.15.5 or GR.15.6 and has not yet been implemented.
Grid Code Modification Self- Governance Report	Has the meaning given in GR.24.5
Grid Code Objectives	Means the objectives referred to in Paragraph 1b of Standard Condition C14 of The Company's Transmission Licence .
Grid Code Review Panel or Panel	The panel with the functions set out in GR.1.2.
Grid Code Review Panel Recommendation Vote	The vote of Panel Members undertaken by the Panel Chairman in accordance with Paragraph GR.22.4 as to whether in their view they believe each proposed Grid Code Modification Proposal , or Workgroup Alternative Grid Code Modification would better facilitate achievement of the Grid Code Objective(s) and so should be made.
Grid Code Review Panel Self-Governance Vote	The vote of Panel Members undertaken by the Panel Chairman in accordance with GR.24.9 as to whether they believe each proposed Grid Code Modification Proposal, as compared with the then existing provisions of the Grid Code and any Workgroup Alternative Grid Code Modification set out in the Grid Code Modification Self- Governance Report , would better facilitate achievement of the Grid Code Objective(s) .
Grid Code Self- Governance Proposals	Grid Code Modification Proposals which satisfy the Self Governance Criteria.
Grid Entry Point	An Onshore Grid Entry Point or an Offshore Grid Entry Point.
Grid Supply Point	A point of supply from the National Electricity Transmission System to Network Operators or Non-Embedded Customers which could be a GB Grid Supply Point or an EU Grid Supply Point.
Group	Those National Electricity Transmission System sub-stations bounded solely by the faulted circuit(s) and the overloaded circuit(s) excluding any third party connections between the Group and the rest of the National Electricity Transmission System, the faulted circuit(s) being a Secured Event.

Headroom	The Power Available (in MW) less the actual Active Power exported from the Power Park Module (in MW).
High Frequency Response	An automatic reduction in Active Power output in response to an increase in System Frequency above the Target Frequency (or such other level of Frequency as may have been agreed in an Ancillary Services Agreement). This reduction in Active Power output must be in accordance with the provisions of the relevant Ancillary Services Agreement which will provide that it will be released increasingly with time over the period 0 to 10 seconds from the time of the Frequency increase on the basis set out in the Ancillary Services Agreement and fully achieved within 10 seconds of the time of the start of the Frequency increase and it must be sustained at no lesser reduction thereafter. The interpretation of the High Frequency Response to a + 0.5 Hz frequency change is shown diagrammatically in Figure CC.A.3.3 and Figure ECC.A.3.3.
High Voltage or HV	For E&W Transmission Systems , a voltage exceeding 650 volts. For Scottish Transmission Systems , a voltage exceeding 1000 volts.
Historic Frequency Data	System Frequency data at a maximum of one second intervals for the whole month, published by The Company as detailed in OC3.4.4.
Houseload Operation	Operation which ensures that a Power Station is able to continue to supply its in-house load in the event of System faults resulting in Power-Generating Modules being disconnected from the System and tripped onto their auxiliary supplies
HV Connections	Apparatus connected at the same voltage as that of the National Electricity Transmission System, including Users' circuits, the higher voltage windings of Users' transformers and associated connection Apparatus.
HVDC Converter	Any EU Code User Apparatus used to convert alternating current electricity to direct current electricity, or vice versa. An HVDC Converter is a standalone operative configuration at a single site comprising one or more converter bridges, together with one or more converter transformers, reactors, converter control equipment, essential protective and switching devices and auxiliaries, if any, used for conversion. In a bipolar arrangement, an HVDC Converter represents the bipolar configuration.
HVDC Converter Station	Part of an HVDC System which consists of one or more HVDC Converters installed in a single location together with buildings, reactors, filters reactive power devices, control, monitoring, protective, measuring and auxiliary equipment.
HVDC Equipment	Collectively means an HVDC System and a DC Connected Power Park Module and a Remote End HVDC Converter Station.
HVDC Interface Point	A point at which HVDC Plant and Apparatus is connected to an AC System at which technical specifications affecting the performance of the Plant and Apparatus can be prescribed.
HVDC System	An electrical power system which transfers energy in the form of high voltage direct current between two or more alternating current (AC) buses and comprises at least two HVDC Converter Stations with DC Transmission lines or cables between the HVDC Converter Stations.
HVDC System Owner	A party who owns and is responsible for an HVDC System . For the avoidance of doubt a DC Connected Power Park Module owner would be treated as a Generator .

HP Turbine Power Fraction	Ratio of steady state mechanical power delivered by the HP turbine to the total steady state mechanical power delivered by the total steam turbine at Registered Capacity or Maximum Capacity .
IEC	International Electrotechnical Commission.
IEC Standard	A standard approved by the International Electrotechnical Commission.
Implementation Date	Is the date and time for implementation of an Approved Modification as specified in accordance with Paragraph GR.25.3.
Implementing Safety Co-ordinator	The Safety Co-ordinator implementing Safety Precautions.
Import Usable	That portion of Registered Import Capacity which is expected to be available and which is not unavailable due to a Planned Outage .
Incident Centre	A centre established by The Company or a User as the focal point in The Company or in that User , as the case may be, for the communication and dissemination of information between the senior management representatives of The Company , or of that User , as the case may be, and the relevant other parties during a Joint System Incident in order to avoid overloading The Company's , or that User's , as the case may be, existing operational/control arrangements.
Independent Back-Up Protection	A Back-Up Protection system which utilises a discrete relay, different current transformers and an alternate operating principle to the Main Protection systems(s) such that it can operate autonomously in the event of a failure of the Main Protection .
Independent Main Protection	A Main Protection system which utilises a physically discrete relay and different current transformers to any other Main Protection .
Indicated Constraint Boundary Margin	The difference between a constraint boundary transfer limit and the difference between the sum of BM Unit Maximum Export Limits and the forecast of local Demand within the constraint boundary.
Indicated Imbalance	The difference between the sum of Physical Notifications for BM Units comprising Generating Units or CCGT Modules or Power Generating Modules and the forecast of Demand for the whole or any part of the System.
Indicated Margin	The difference between the sum of BM Unit Maximum Export Limits submitted and the forecast of Demand for the whole or any part of the System
Installation Document	A simple structured document containing information about a Type A Power Generating Module or a Demand Unit , with demand response connected below 1000 V, and confirming its compliance with the relevant requirements
Instructor Facilities	A device or system which gives certain Transmission Control Centre instructions with an audible or visible alarm, and incorporates the means to return message acknowledgements to the Transmission Control Centre

Integral Equipment Test or IET	A test on equipment, associated with Plant and/or Apparatus , which takes place when that Plant and/or Apparatus forms part of a Synchronised System and which, in the reasonable judgement of the person wishing to perform the test, may cause an Operational Effect .
Intellectual Property" or "IPRs	Patents, trade marks, service marks, rights in designs, trade names, copyrights and topography rights (whether or not any of the same are registered and including applications for registration of any of the same) and rights under licences and consents in relation to any of the same and all rights or forms of protection of a similar nature or having equivalent or similar effect to any of the same which may subsist anywhere in the world.
Interconnection Agreement	An agreement made between The Company and an Externally Interconnected System Operator and/or an Interconnector User and/or other relevant persons for the External Interconnection relating to an External Interconnection and/or an agreement under which an Interconnector User can use an External Interconnection .
Interconnector Export Capacity	In relation to an External Interconnection means the (daily or weekly) forecast value (in MW) at the time of the (daily or weekly) peak demand, of the maximum level at which the External Interconnection can export to the Grid Entry Point .
Interconnector Import Capacity	In relation to an External Interconnection means the (daily or weekly) forecast value (in MW) at the time of the (daily or weekly) peak demand of the maximum level at which the External Interconnection can import from the Grid Entry Point .
Interconnector Owner	Has the meaning given to the term in the Connection and Use of System Code.
Interconnector User	Has the meaning set out in the BSC .
Interface Agreement	Has the meaning set out in the CUSC.
Interface Point	As the context admits or requires either;
	(a) the electrical point of connection between an Offshore Transmission System and an Onshore Transmission System, or
	(b) the electrical point of connection between an Offshore Transmission System and a Network Operator's User System.
Interface Point Capacity	The maximum amount of Active Power transferable at the Interface Point as declared by a User under the OTSDUW Arrangements expressed in whole MW.
Interface Point Target Voltage/Power factor	The nominal target voltage/power factor at an Interface Point which a Network Operator requires The Company to achieve by operation of the relevant Offshore Transmission System.

Interim Operational Notification or ION	A notification from The Company to a Generator or DC Converter Station owner or HVDC System Operator or Network Operator or Non Embedded Customer acknowledging that the User has demonstrated compliance, except for the Unresolved Issues;
	(a) with the Grid Code, and
	(b) where applicable, with Appendices F1 to F5 of the Bilateral Agreement ,
	in each case in respect of the Plant and Apparatus (including OTSUA) specified in such notification and provided that in the case of the OTSDUW Arrangements such notification shall be provided to a Generator in two parts dealing with the OTSUA and Generator's Plant and Apparatus (called respectively "Interim Operational Notification Part A" or "ION A" and "Interim Operational Notification Part B" or "ION B") as provided for in the CP.
Intermittent Power Source	The primary source of power for a Generating Unit or Power Generating Module that cannot be considered as controllable, e.g. wind, wave or solar. For the avoidance of doubt, the output from an Electricity Storage Module would not be considered to be an Intermittent Power Source .
Intertripping	(a) The tripping of circuit-breaker(s) by commands initiated from Protection at a remote location independent of the state of the local Protection ; or
	(b) Operational Intertripping.
Intertrip Apparatus	Apparatus which performs Intertripping.
IP Turbine Power Fraction	Ratio of steady state mechanical power delivered by the IP turbine to the total steady state mechanical power delivered by the total steam turbine at Registered Capacity or Maximum Capacity .
Isolating Device	A device for achieving Isolation .

Isolation	The disconnection of HV Apparatus (as defined in OC8A.1.6.2 and OC8B.1.7.2) from the remainder of the System in which that HV Apparatus is situated by either of the following:
	(a) an Isolating Device maintained in an isolating position. The isolating position must either be:
	(i) maintained by immobilising and Locking the Isolating Device in the isolating position and affixing a Caution Notice to it. Where the Isolating Device is Locked with a Safety Key, the Safety Key must be secured in a Key Safe and the Key Safe Key must be, where reasonably practicable, given to the authorised site representative of the Requesting Safety Co-Ordinator and is to be retained in safe custody. Where not reasonably practicable the Key Safe Key must be retained by the authorised site representative of the Implementing Safety Co-ordinator in safe custody; or
	(ii) maintained and/or secured by such other method which must be in accordance with the Local Safety Instructions or the Safety Rules of the Relevant Transmission Licensee or that User, as the case may be; or
	(b) an adequate physical separation which must be in accordance with and maintained by the method set out in the Local Safety Instructions or the Safety Rules of the Relevant Transmission Licensee or that User, as the case may be.
Joint System Incident	An Event wherever occurring (other than on an Embedded Medium Power Station or an Embedded Small Power Station) which, in the opinion of The Company or a User, has or may have a serious and/or widespread effect, in the case of an Event on a User(s) System(s) (other than on an Embedded Medium Power Station or Embedded Small Power Station), on the National Electricity Transmission System, and in the case of an Event on the National Electricity Transmission System, on a User(s) System(s) (other than on an Embedded Medium Power Station or Embedded Small Power Station).
Key Safe	A device for the secure retention of keys.
Key Safe Key	A key unique at a Location capable of operating a lock, other than a control lock, on a Key Safe .

Large Power Station	A Power Station which is	
	(a) dir	ectly connected to:
	(i)	NGET's Transmission System where such Power Station has a Registered Capacity of 100MW or more; or
	(ii)	SPT's Transmission System where such Power Station has a Registered Capacity of 30MW or more; or
	(iii)	SHETL's Transmission System where such Power Station has a Registered Capacity of 10MW or more; or
	(iv	an Offshore Transmission System where such Power Station has a Registered Capacity of 10MW or more;
	or,	
	Sy	nbedded within a User System (or part thereof) where such User stem (or part thereof) is connected under normal operating nditions to:
	(i)	NGET's Transmission System and such Power Station has a Registered Capacity of 100MW or more; or
	(ii)	SPT's Transmission System and such Power Station has a Registered Capacity of 30MW or more; or
	(iii)	SHETL's Transmission System and such Power Station has a Registered Capacity of 10MW or more;
	or,	
	Sy	nbedded within a User System (or part thereof) where the User stem (or part thereof) is not connected to the National ectricity Transmission System, although such Power Station in:
	(i)	NGET's Transmission Area where such Power Station has a Registered Capacity of 100MW or more; or
	(ii)	SPT's Transmission Area where such Power Station has a Registered Capacity of 30MW or more; or
	(iii)	SHETL's Transmission Area where such Power Station has a Registered Capacity of 10MW or more;
		avoidance of doubt a Large Power Station could comprise of Type B, Type C or Type D Power Generating Modules.
Legal Challenge		ermitted by law a judicial review in respect of the Authority's to approve or not to approve a Grid Code Modification I.
Licence	_	nce granted to The Company or a Relevant Transmission or a User , under Section 6 of the Act .
Licence Standards	Transmi	andards set out or referred to in Condition C17 of The Company's ssion Licence and/or Condition D3 and/or Condition E16 of a transmission Licensee's Transmission Licence.

Limited Frequency Sensitive Mode	A mode whereby the operation of the Genset or Power Generating Module (or DC Converter at a DC Converter Station or HVDC Systems exporting Active Power to the Total System) is Frequency insensitive except when the System Frequency exceeds 50.4Hz, from which point Limited High Frequency Response must be provided. For Power Generating Modules (including DC Connected Power Park Modules) and HVDC Systems, operation in Limited Frequency Sensitive Mode would require Limited Frequency Sensitive Mode – Overfrequency (LFSM-O) capability and Limited Frequency Sensitive Mode – Underfrequency (LFSM-U) capability.
Limited Frequency Sensitive Mode – Overfrequency or LFSM-O	A Power Generating Module (including a DC Connected Power Park Module) or HVDC System operating mode which will result in Active Power output reduction in response to a change in System Frequency above a certain value.
Limited Frequency Sensitive Mode – Underfrequency or LFSM-U	A Power Generating Module (including a DC Connected Power Park Module) or HVDC System operating mode which will result in Active Power output increase in response to a change in System Frequency below a certain value.
Limited High Frequency Response	A response of a Genset (or DC Converter at a DC Converter Station exporting Active Power to the Total System) to an increase in System Frequency above 50.4Hz leading to a reduction in Active Power in accordance with the provisions of BC3.7.2.1
Limited Operational Notification or LON	A notification from The Company to a Generator or DC Converter Station owner or HVDC System Owner or Network Operator or Non-Embedded Customer stating that the User's Plant and/or Apparatus specified in such notification may be, or is, unable to comply:
	(a) with the provisions of the Grid Code specified in the notice, and
	(b) where applicable, with Appendices F1 to F5 of the Bilateral Agreement ,
	and specifying the Unresolved Issues .
Load	The Active, Reactive or Apparent Power, as the context requires, generated, transmitted or distributed.
Loaded	Supplying electrical power to the System .
Load Factor	The ratio of the actual output of a Generating Unit or Power Generating Module to the possible maximum output of that Generating Unit or Power Generating Module .
Load Management Block	A block of Demand controlled by a Supplier or other party through the means of radio teleswitching or by some other means.
Local Joint Restoration Plan	A plan produced under OC9.4.7.12 detailing the agreed method and procedure by which a Black Start Service Provider will energise part of the Total System and meet complementary blocks of local Demand so as to form a Power Island .
	In Scotland, the plan may also: cover more than one Black Start Service Provider ; including Gensets other than those at a Black Start Station and cover the creation of one or more Power Islands .

Local Safety Instructions	For safety co-ordination in England and Wales, instructions on each User Site and Transmission Site, approved by NGET's or User's relevant manager, setting down the methods of achieving the objectives of NGET's or the User's Safety Rules, as the case may be, to ensure the safety of personnel carrying out work or testing on Plant and/or Apparatus on which his Safety Rules apply and, in the case of a User, any other document(s) on a User Site which contains rules with regard to maintaining or securing the isolating position of an Isolating Device, or maintaining a physical separation or maintaining or securing the position of an Earthing Device.
Local Switching Procedure	A procedure produced under OC7.6 detailing the agreed arrangements in respect of carrying out of Operational Switching at Connection Sites and parts of the National Electricity Transmission System adjacent to those Connection Sites .
Localised Negative Reserve Active Power Margin or Localised NRAPM	That margin of Active Power sufficient to allow transfers to and from a System Constraint Group (as the case may be) to be contained within such reasonable limit as The Company may determine.
Location	Any place at which Safety Precautions are to be applied.
Locked	A condition of HV Apparatus that cannot be altered without the operation of a locking device.
Locking	The application of a locking device which enables HV Apparatus to be Locked .
Low Frequency Relay	Has the same meaning as Under Frequency Relay .
Low Voltage or LV	For E&W Transmission Systems a voltage not exceeding 250 volts. For Scottish Transmission Systems , a voltage exceeding 50 volts but not exceeding 1000 volts.
LV Side of the Offshore Platform	Unless otherwise specified in the Bilateral Agreement , the busbar on the Offshore Platform (typically 33kV) at which the relevant Offshore Grid Entry Point is located.
Main Plant and Apparatus	In respect of a Power Station (including Power Stations comprising of DC Connected Power Park Modules and Electricity Storage Modules) is one or more of the principal items of Plant or Apparatus required to convert or re-convert the primary source of energy into electricity.
	In respect of HVDC Systems or DC Converters or Transmission DC Converters is one of the principal items of Plant or Apparatus used to convert high voltage direct current to high voltage alternating current or vice versa.
	In respect of a Network Operator's equipment or a Non-Embedded Customer's equipment, is one of the principal items of Plant or Apparatus required to facilitate the import or export of Active Power or Reactive Power to or from a Network Operator's or Non Embedded Customer's System.
Main Protection	A Protection system which has priority above other Protection in initiating either a fault clearance or an action to terminate an abnormal condition in a power system.
	1

	-
Manufacturer's Data & Performance Report	A report submitted by a manufacturer to The Company relating to a specific version of a Power Park Unit demonstrating the performance characteristics of such Power Park Unit in respect of which The Company has evaluated its relevance for the purposes of the Compliance Processes .
Manufacturer's Test Certificates	A certificate prepared by a manufacturer which demonstrates that its Power Generating Module has undergone appropriate tests and conforms to the performance requirements expected by The Company in satisfying its compliance requirements and thereby satisfies the appropriate requirements of the Grid Code and Bilateral Agreement .
Market Operation Data Interface System (MODIS)	A computer system operated by The Company and made available for use by Customers connected to or using the National Electricity Transmission System for the purpose of submitting EU Transparency Availability Data to The Company .
Market Suspension Threshold	Has the meaning given to the term 'Market Suspension Threshold' in Section G of the BSC .
Material Effect	An effect causing The Company or a Relevant Transmission Licensee to effect any works or to alter the manner of operation of Transmission Plant and/or Transmission Apparatus at the Connection Site (which term shall, in this definition and in the definition of " Modification " only, have the meaning ascribed thereto in the CUSC) or the site of connection or a User to effect any works or to alter the manner of operation of its Plant and/or Apparatus at the Connection Site or the site of connection which in either case involves that party in expenditure of more than £10,000.
Materially Affected Party	Any person or class of persons designated by the Authority as such.
Maximum Export Capability	The maximum continuous Active Power that a Network Operator or Non Embedded Customer can export to the Transmission System at the Grid Supply Point , as specified in the Bilateral Agreement .
Maximum Export Capacity	The maximum continuous Apparent Power expressed in MVA and maximum continuous Active Power expressed in MW which can flow from an Offshore Transmission System connected to a Network Operator's User System , to that User System .
Maximum Capacity or P _{max}	The maximum continuous Active Power which a Power Generating Module can supply to the Total System, less any demand associated solely with facilitating the operation of that Power Generating Module and not fed into the System. In the case of an Electricity Storage Module, the Maximum Capacity is the maximum continuous Active Power which an Electricity Storage Module can export to the Total System less any demand associated with facilitating the operation of that Electricity Storage Module when fully charged and operating in a mode analogous to Generation.
Maximum Generation Service or MGS	A service utilised by The Company in accordance with the CUSC and the Balancing Principles Statement in operating the Total System .
Maximum Generation Service Agreement	An agreement between a User and The Company for the payment by The Company to that User in respect of the provision by such User of a Maximum Generation Service .
-	

Maximum HVDC Active Power Transmission Capacity (PHmax)	The maximum continuous Active Power which an HVDC System can exchange with the network at each Grid Entry Point or User System Entry Point as specified in the Bilateral Agreement or as agreed between The Company and the HVDC System Owner .	
Maximum Import Capability	The maximum continuous Active Power that a Network Operator or Non Embedded Customer can import from the Transmission System at the Grid Supply Point , as specified in the Bilateral Agreement .	
Maximum Import Capacity	The maximum continuous Apparent Power expressed in MVA and maximum continuous Active Power expressed in MW which can flow to an Offshore Transmission System connected to a Network Operator's User System , from that User System .	
Maximum Import Power	The maximum continuous Active Power which an Electricity Storage Module can import from the Total System , when fully discharged and operating in a mode analogous to Demand .	
Medium Power Station	A Power Station which is	
	(a) directly connected to NGET's Transmission System where such Power Station has a Registered Capacity of 50MW or more but less than 100MW; or,	
	(b) Embedded within a User System (or part thereof) where such User System (or part thereof) is connected under normal operating conditions to NGET's Transmission System and such Power Station has a Registered Capacity of 50MW or more but less than 100MW;	
	or,	
	(c) Embedded within a User System (or part thereof) where the User System (or part thereof) is not connected to the National Electricity Transmission System, although such Power Station is in NGET's Transmission Area and such Power Station has a Registered Capacity of 50MW or more but less than 100MW.	
	For the avoidance of doubt a Medium Power Station could comprise of Type A , Type B , Type C or Type D Power Generating Modules .	
Medium Voltage or MV	For E&W Transmission Systems a voltage exceeding 250 volts but not exceeding 650 volts.	
Mills	Milling plant which supplies pulverised fuel to the boiler of a coal fired Power Station .	
Minimum Generation	The minimum output (in whole MW) which a Genset can generate or DC Converter at a DC Converter Station or Electricity Storage Module can import or export to the Total System under stable operating conditions, as registered with The Company under the PC (and amended pursuant to the PC). For the avoidance of doubt, the output may go below this level as a result of operation in accordance with BC3.7.	
Minimum Active Power Transmission Capacity (PHmin)	The minimum continuous Active Power which an HVDC System can exchange with the System at each Grid Entry Point or User System Entry Point as specified in the Bilateral Agreement or as agreed between The Company and the HVDC System Owner	

Minimum Import Capacity The minimum input (in whole MW) into a DC Converter at a DC Convector Station or HVDC System at an HVDC Converter (in any of its ope configurations) at the Onshore Grid Entry Point (or in the case Embedded DC Converter or an Embedded HVDC Converter at the System Entry Point) at which a DC Converter or HVDC Converter operate in a stable manner, as registered with The Company under PC (and amended pursuant to the PC). Minimum Regulating Level The minimum Active Power, as specified in the Bilateral Agreemed as agreed between The Company and the Generator, down to whice Power Generating Module can control Active Power; Minimum Stable Operating Level The minimum Active Power, as specified in the Bilateral Agreemed as agreed between The Company and the Generator, at which the PGenerating Module can be operated stably for an unlimited time. Modification Any actual or proposed replacement, renovation, modification, alter or construction by or on behalf of a User or The Company to either or construction by or on behalf of a User or The Company to either or construction by or on behalf of a User or The Company to either or construction by or on behalf of a User or The Company to either or construction by or on behalf of a User or The Company to either or construction by or on behalf of a User or The Company to either or construction by or on behalf of a User or The Company to either or construction by or on behalf of a User or The Company to either or construction by or on behalf of a User or The Company to either or construction by or on behalf of a User or The Company to either or construction by or on behalf of a User or The Company to either or construction by or on behalf of a User or The Company to either or construction by or or behalf of a User or The Company to either or construction by or or behalf of a User or The Company to either or construction by or or behalf of a User or The Company to either or construction by or or behalf or the care may be particular Connected Power Park	
Any actual or proposed replacement, renovation, modification, alter or construction by or on behalf of a User or The Company or a User, as the case may be particular Connected Power Park Module Mothballed DC Converter at a DC Converter Station Mothballed HVDC System Mothballed HVDC Converter Mothballed HVDC System Mothballed HVDC Converter Mothballed HVDC Converter Mothballed HVDC Converter Mothballed HVDC Converter Mothballed HVDC System that has previously imported or exported power the remainder of the current Financial Year but which to use to import or export power the remainder of the current Financial Year but which could be returned to service. Mothballed HVDC System that has previously imported or exported power the remainder of the current Financial Year but which could be returned to service. Mothballed HVDC Converter An HVDC Converter which is part of an HVDC System that has previously imported or exported power which the HVDC System Owner plans in to service. Mothballed Generating Mothballed Generating Mothballed Generating A Generating Unit that has previously generated which the Gene plans not to use to generate for the remainder of the current Financial Year but which could be returned to service.	ating of an User r can
And the Generation or exported power Park Module And Converter at a DC Converter Station Mothballed HVDC System Mothballed HVDC System Mothballed HVDC Converter Mothballed HVDC Converter Mothballed HVDC System Mothballed HVDC Converter Mothballed HVDC Converter Mothballed HVDC Converter Mothballed HVDC System Mothballed HVDC Converter An HVDC Converter which is part of an HVDC System that has previously be returned or exported power which the HVDC System Owner plans not to use to import or export power for the remainder of the current Financial Year but which could be returned to service. Mothballed HVDC System Owner plans not to use to import or export power the remainder of the current Financial Year but which could be returned to service. Mothballed HVDC System Owner plans not to use to import or export power the remainder of the current Financial Year but which could be returned to service. Mothballed HVDC System Owner plans not to use to import or export power the remainder of the current Financial Year but which could be returned to service. Mothballed HVDC An HVDC Converter which is part of an HVDC System that has previously imported or exported power which the HVDC System Owner plans not to use to import or export power for the remainder of the current Financial Year but which could be returned to service. Mothballed Generating Unit that has previously generated which the Generating	
or construction by or on behalf of a User or The Company to eithe User's Plant or Apparatus or Transmission Plant or Apparatus, a case may be, or the manner of its operation which has or may he Material Effect on The Company or a User, as the case may be particular Connection Site. Mothballed DC Connected Power Park Module A DC Connected Power Park Module that has previously gene which the Generator plans not to use to generate for the remainder of current Financial Year but which could be returned to service. A DC Converter at a DC Converter Station that has previously imported power which the DC Converter Station owner plans or exported power which the DC Converter Station owner plans or exported power which could be returned to service. Mothballed HVDC System An HVDC System that has previously imported or exported power which the HVDC System that has previously imported or exported power the remainder of the current Financial Year but which could be returned to service. Mothballed HVDC An HVDC Converter which is part of an HVDC System that has previously imported or exported power which the HVDC System Owner plans or to use to import or export power or the remainder of the current Financial Year but which could be returned to service. Mothballed Generating Unit that has previously generated which the Generating Unit that has previously gener	
 Connected Power Park Module which the Generator plans not to use to generate for the remainder of current Financial Year but which could be returned to service. Mothballed DC Converter at a DC Converter Station that has previously imported power which the DC Converter Station owner plans or exported power which the DC Converter Station owner plans or use to import or export power for the remainder of the current Financial Year but which could be returned to service. Mothballed HVDC System Owner plans not to use to import or export power that has previously imported or exported power when the remainder of the current Financial Year but which could be returned to service. Mothballed HVDC Converter which is part of an HVDC System that has previously use to import or exported power which the HVDC System Owner plans use to import or export power for the remainder of the current Financy of the	r that s the ive a
Converter at a DC Converter Station or exported power which the DC Converter Station owner plans to use to import or export power for the remainder of the current Final Year but which could be returned to service. Mothballed HVDC System An HVDC System Owner plans not to use to import or export power the remainder of the current Financial Year but which could be returned to service. Mothballed HVDC Converter An HVDC Converter which is part of an HVDC System that has previously imported or exported power which the HVDC System that has previously imported or export power to service. An HVDC Converter which is part of an HVDC System that has previously of the current Final Year but which could be returned to service. Mothballed Generating Unit A Generating Unit that has previously generated which the Generating plans not to use to generate for the remainder of the current Final Plans not to use to generate for the remainder of the current Final Plans not to use to generate for the remainder of the current Final Plans not to use to generate for the remainder of the current Final Plans not to use to generate for the remainder of the current Final Plans not to use to generate for the remainder of the current Final Plans not to use to generate for the remainder of the current Final Plans not to use to generate for the remainder of the current Final Plans not to use to generate for the remainder of the current Final Plans not to use to generate for the remainder of the current Final Plans not to use to generate for the remainder of the current Final Plans not to use to generate for the remainder of the current Final Plans not to use to generate for the remainder of the current Final Plans not to use to generate for the remainder of the current Final Plans not to use to generate for the remainder of the current Final Plans not to use to generate for the remainder of the current Final Plans not to use to generate for the remainder of the current Final Plans not to use to generate for the current Final Plans not to	
the HVDC System Owner plans not to use to import or export power the remainder of the current Financial Year but which could be returned to service. Mothballed HVDC Converter An HVDC Converter which is part of an HVDC System that has previously of the current Final Year but which could be returned to service. Mothballed Generating Unit The HVDC System Owner plans is the plans of the current Final Year but which could be returned to service. A Generating Unit that has previously generated which the Generating Unit that has p	ot to
imported or exported power which the HVDC System Owner plans use to import or export power for the remainder of the current Final Year but which could be returned to service. Mothballed Generating Unit that has previously generated which the Generating Unit	er for
Unit plans not to use to generate for the remainder of the current Final	not to
Year but which could be returned to service. For the avoidance of a Mothballed Generating Unit could be part of a Power Gener Module.	ncial doubt
Mothballed Power Generating Module A Power Generating Module that has previously generated which Generator plans not to use to generate for the remainder of the cu Financial Year but which could be returned to service.	
Mothballed Power Park Module A Power Park Module that has previously generated which the Gene plans not to use to generate for the remainder of the current Final Year but which could be returned to service.	

Multiple Point of Connection	A double (or more) Point of Connection , being two (or more) Points of Connection interconnected to each other through the User's System .
MSID	Has the meaning a set out in the BSC , covers Metering System Identifier
National Demand	The amount of electricity supplied from the Grid Supply Points plus: that supplied by Embedded Large Power Stations, and National Electricity Transmission System Losses,
	minus:-
	the Demand taken by Station Transformers, Pumped Storage Units' and Electricity Storage Modules'.
	and, for the purposes of this definition, does not include:-
	any exports from the National Electricity Transmission System across External Interconnections.
National Electricity Transmission System	The Onshore Transmission System and, where owned by Offshore Transmission Licensees, Offshore Transmission Systems.
National Electricity Transmission System Demand	 The amount of electricity supplied from the Grid Supply Points plus:- that supplied by Embedded Large Power Stations, and exports from the National Electricity Transmission System across External Interconnections, and National Electricity Transmission System Losses, and, for the purposes of this definition, includes:- the Demand taken by Station Transformers, Pumped Storage Units and Electricity Storage Modules'.
National Electricity Transmission System Losses	The losses of electricity incurred on the National Electricity Transmission System.
National Electricity Transmission System Operator Area	Has the meaning set out in Schedule 1 of The Company's Transmission Licence .
National Electricity Transmission System Study Network Data File	A computer file produced by The Company which in The Company's view provides an appropriate representation of the National Electricity Transmission System for a specific point in time. The computer file will contain information and data on Demand on the National Electricity Transmission System and on Large Power Stations including Genset power output consistent with Output Usable and The Company's view of prevailing system conditions.

National Electricity Transmission System Warning	A warning issued by The Company to Users (or to certain Users only) in accordance with OC7.4.8.2, which provides information relating to System conditions or Events and is intended to:
	(a) alert Users to possible or actual Plant shortage, System problems and/or Demand reductions;
	(b) inform of the applicable period;
	(c) indicate intended consequences for Users ; and
	(d) enable specified Users to be in a state of readiness to receive instructions from The Company .
National Electricity Transmission System Warning - Demand Control Imminent	A warning issued by The Company , in accordance with OC7.4.8.7, which is intended to provide short term notice, where possible, to those Users who are likely to receive Demand reduction instructions from The Company within 30 minutes.
National Electricity Transmission System Warning - High Risk of Demand Reduction	A warning issued by The Company , in accordance with OC7.4.8.6, which is intended to alert recipients that there is a high risk of Demand reduction being implemented and which may normally result from an Electricity Margin Notice .
National Electricity Transmission System Warning - Electricity Margin Notice	A warning issued by The Company , in accordance with OC7.4.8.5, which is intended to invite a response from and to alert recipients to a decreased System Margin .
National Electricity Transmission System Warning - Risk of System Disturbance	A warning issued by The Company , in accordance with OC7.4.8.8, which is intended to alert Users of the risk of widespread and serious System disturbance which may affect Users .
Network Data	The data to be provided by The Company to Users in accordance with the PC , as listed in Part 3 of the Appendix to the PC .
Network Operator	A person with a User System directly connected to the National Electricity Transmission System to which Customers and/or Power Stations (not forming part of the User System) are connected, acting in its capacity as an operator of the User System , but shall not include a person acting in the capacity of an Externally Interconnected System Operator or a Generator in respect of OTSUA .
NGET	National Grid Electricity Transmission plc (NO: 2366977) whose registered office is at 1-3 Strand, London, WC2N 5EH
No-Load Field Voltage	Shall have the meaning ascribed to that term in IEC 34-16-1:1991 [equivalent to British Standard BS 4999 Section 116.1 : 1992].
No System Connection	As defined in OC8A.1.6.2 and OC8B.1.7.2
Non-Synchronous Electricity Storage Module	A Power Park Module comprising soley of one or more Non-Synchronous Electricity Storage Units.

Notification of User's Intention to Operate	A notification from a Network Operator or Non-Embedded Customer to The Company informing The Company of the date upon which any Network Operator's or Non-Embedded Customer's Plant and Apparatus at an EU Grid Supply Point will be ready to be connected to the Transmission System.
Notification of User's Intention to Synchronise	A notification from a Generator or DC Converter Station owner or HVDC System Owner to The Company informing The Company of the date upon which any OTSUA, a Generating Unit(s), CCGT Module(s), Power Park Module(s), Power Generating Module(s) (including a DC Connected Power Park Module(s)), HVDC System or DC Converter(s) will be ready to be Synchronised to the Total System.
Non-Controllable Electricity Storage Equipment	An item of storage Plant, including but not limited to a Synchronous Flywheel or Synchronous Compensation Equipment or Regenerative Braking whose active output power cannot be independently controlled.
Non-Dynamic Frequency Response Service	A Demand Response Service in which the Demand is controlled through discrete switching rather than through continuous load changes in response to System Frequency changes.
Non-Embedded Customer	A Customer in Great Britain, except for a Network Operator acting in its capacity as such, receiving electricity direct from the Onshore Transmission System irrespective of from whom it is supplied.
Non-Synchronous Electricity Storage Module	A Power Park Module comprising solely of one or more Non-Synchronous Electricity Storage Units.
Non-Synchronous Electricity Storage Unit	A Power Park Unit which can produce electrical energy by converting or re-converting another source of energy such that the frequency of the generated voltage is not inherently in synchronism with the frequency of the System .
Non-Synchronous Generating Unit	An Onshore Non-Synchronous Generating Unit or Offshore Non-Synchronous Generating Unit which could form part of a Power Generating Module.
Normal CCGT Module	A CCGT Module other than a Range CCGT Module.
Novel Unit	A tidal, wave, wind, geothermal, or any similar, Generating Unit.
OC9 De-synchronised Island Procedure	Has the meaning set out in OC9.5.4.
Offshore	Means wholly or partly in Offshore Waters , and when used in conjunction with another term and not defined means that the associated term is to be read accordingly.
Offshore DC Converter	Any User Apparatus located Offshore used to convert alternating current electricity to direct current electricity, or vice versa. An Offshore DC Converter is a standalone operative configuration at a single site comprising one or more converter bridges, together with one or more converter transformers, converter control equipment, essential protective and switching devices and auxiliaries, if any, used for conversion.

Offshore HVDC Converter	Any User Apparatus located Offshore used to convert alternating current electricity to direct current electricity, or vice versa. An Offshore HVDC Converter is a standalone operative configuration at a single site comprising one or more converter bridges, together with one or more converter transformers, converter control equipment, essential protective and switching devices and auxiliaries, if any, used for conversion.	
Offshore Development Information Statement	A statement prepared by The Company in accordance with Special Condition C4 of The Company's Transmission Licence .	
Offshore Generating Unit	Unless otherwise provided in the Grid Code, any Apparatus located Offshore which produces electrical energy by converting or re-converting another source of energy, including, an Offshore Synchronous Generating Unit or Offshore Non-Synchronous Generating Unit which could also be part of a Power Generating Module or Electricity Storage Module.	
Offshore Grid Entry	In the case of:-	
Point	(a) an Offshore Generating Unit or an Offshore Synchronous Power Generating Module or an Offshore DC Converter or an Offshore HVDC Converter, as the case may be, which is directly connected to an Offshore Transmission System, the point at which it connects to that Offshore Transmission System, or;	
	(b) an Offshore Power Park Module which is directly connected to an Offshore Transmission System, the point where one Power Park String (registered by itself as a Power Park Module) or the collection of points where a number of Offshore Power Park Strings (registered as a single Power Park Module) connects to that Offshore Transmission System, or;	
	(c) an External Interconnection which is directly connected to an Offshore Transmission System, the point at which it connects to that Offshore Transmission System.	
Offshore Non- Synchronous Generating Unit	An Offshore Generating Unit that is not an Offshore Synchronous Generating Unit including for the avoidance of doubt a Power Park Unit or Non-Synchronous Electricity Storage Unit located Offshore.	
Offshore Platform	A single structure comprising of Plant and Apparatus located Offshore which includes one or more Offshore Grid Entry Points .	
Offshore Power Park Module	A collection of one or more Offshore Power Park Strings (registered as a Power Park Module under the PC). There is no limit to the number of Power Park Strings within the Power Park Module , so long as they either:	
	(a) connect to the same busbar which cannot be electrically split; or	
	(b) connect to a collection of directly electrically connected busbars of the same nominal voltage and are configured in accordance with the operating arrangements set out in the relevant Bilateral Agreement .	

Offshore Power Park String	A collection of Offshore Generating Units or Power Park Units or Non-Synchronous Electricity Storage Unit that are powered by an Intermittent Power Source, joined together by cables forming part of a User System with a single point of connection to an Offshore Transmission System. The connection to an Offshore Transmission System may include a DC Converter or HVDC Converter.
Offshore Synchronous Generating Unit	A Generating Unit or Synchronous Electricity Storage Unit located Offshore which could be part of an Offshore Synchronous Power Generating Module in which, under all steady state conditions, the rotor rotates at a mechanical speed equal to the electrical frequency of the National Electricity Transmission System divided by the number of pole pairs of the Generating Unit.
Offshore Synchronous Power Generating Module	A Synchronous Power Generating Module or Synchronous Electricity Storage Module located Offshore.
Offshore Tender Process	The process followed by the Authority to make, in prescribed cases, a determination on a competitive basis of the person to whom an offshore transmission licence is to be granted.
Offshore Transmission Distribution Connection Agreement	An agreement entered into by The Company and a Network Operator in respect of the connection to and use of a Network Operator's User System by an Offshore Transmission System .
Offshore Transmission Licensee	Such person in relation to whose Transmission Licence the standard conditions in Section E (offshore transmission owner standard conditions) of such Transmission Licence have been given effect, or any person in that prospective role who has acceded to the STC .
Offshore Transmission System	A system consisting (wholly or mainly) of high voltage electric lines and used for the transmission of electricity from one Power Station to a substation or to another Power Station or between sub-stations, and includes any Plant and Apparatus (including OTSUA) and meters in connection with the transmission of electricity but does not include any Remote Transmission Assets . An Offshore Transmission System extends from the Interface Point , or the Offshore Grid Entry Point(s) and may include Plant and Apparatus located Onshore and Offshore and, where the context permits, references to the Offshore Transmission System includes OTSUA .
Offshore Transmission System Development User Works or OTSDUW	In relation to a particular User where the OTSDUW Arrangements apply, means those activities and/or works for the design, planning, consenting and/or construction and installation of the Offshore Transmission System to be undertaken by the User as identified in Part 2 of Appendix I of the relevant Construction Agreement .
Offshore Transmission System User Assets or OTSUA	OTSDUW Plant and Apparatus constructed and/or installed by a User under the OTSDUW Arrangements which form an Offshore Transmission System that once transferred to a Relevant Transmission Licensee under an Offshore Tender Process will become part of the National Electricity Transmission System.
Offshore Waters	Has the meaning given to "offshore waters" in Section 90(9) of the Energy Act 2004.

Offshore Works Assumptions	In relation to a particular User means those assumptions set out in Appendix P of the relevant Construction Agreement as amended from time to time.
Onshore	Means within Great Britain , and when used in conjunction with another term and not defined means that the associated term is to be read accordingly.
Onshore DC Converter	Any User Apparatus located Onshore with a Completion Date after 1 st April 2005 used to convert alternating current electricity to direct current electricity, or vice versa. An Onshore DC Converter is a standalone operative configuration at a single site comprising one or more converter bridges, together with one or more converter transformers, converter control equipment, essential protective and switching devices and auxiliaries, if any, used for conversion. In a bipolar arrangement, an Onshore DC Converter represents the bipolar configuration.
Onshore Generating Unit	Unless otherwise provided in the Grid Code, any Apparatus located Onshore which produces electrical energy by converting or re-converting another source of energy, including, an Onshore Synchronous Generating Unit or Onshore Non-Synchronous Generating Unit which could also be part of a Power Generating Module or an Electricity Storage Module.
Onshore Grid Entry Point	A point at which a Onshore Generating Unit or a CCGT Module or a CCGT Unit or an Onshore Power Generating Module or a Onshore DC Converter or an Onshore HVDC Converter or a Onshore Power Park Module or an Onshore Electricity Storage Module or an External Interconnection, as the case may be, which is directly connected to the Onshore Transmission System connects to the Onshore Transmission System.
Onshore HVDC Converter	Any User Apparatus located Onshore used to convert alternating current electricity to direct current electricity, or vice versa. An Onshore HVDC Converter is a standalone operative configuration at a single site comprising one or more converter bridges, together with one or more converter transformers, converter control equipment, essential protective and switching devices and auxiliaries, if any, used for conversion. In a bipolar arrangement, an Onshore HVDC Converter represents the bipolar configuration.
Onshore Non- Synchronous Generating Unit	A Generating Unit located Onshore that is not a Synchronous Generating Unit or Synchronous Electricity Storage Unit including for the avoidance of doubt a Power Park Unit or Non-Synchronous Electricity Storage Unit located Onshore.
Onshore Power Park Module	A collection of Non-Synchronous Generating Units that are powered by an Intermittent Power Source or connected through power electronic conversion technology or Non-Synchronous Electricity Storage Units, joined together by a System (registered as a Power Park Module under the PC) with a single electrical point of connection directly to the Onshore Transmission System (or User System if Embedded) with no intermediate Offshore Transmission System connections. The connection to the Onshore Transmission System (or User System if Embedded) may include a DC Converter or HVDC Converter.

Onchara Synakianasis	An Onchara Congrating Unit or Onchara Comphysman Floridity
Onshore Synchronous Generating Unit	An Onshore Generating Unit or Onshore Synchronous Electricity Storage Unit (which could also be part of an Onshore Power Generating Module) including, for the avoidance of doubt, a CCGT Unit or Synchronous Electricity Storage Unit in which, under all steady state conditions, the rotor rotates at a mechanical speed equal to the electrical frequency of the National Electricity Transmission System divided by the number of pole pairs of the Generating Unit.
Onshore Synchronous Power Generating Module	A Synchronous Power Generating Module or Synchronous Electricity Storage Module located Onshore.
Onshore Transmission Licensee	NGET, SPT, or SHETL.
Onshore Transmission System	The system consisting (wholly or mainly) of high voltage electric lines owned or operated by Onshore Transmission Licensees or operated by The Company and used for the transmission of electricity from one Power Station to a substation or to another Power Station or between substations or to or from Offshore Transmission Systems or to or from any External Interconnection , and includes any Plant and Apparatus and meters owned or operated by any Onshore Transmission Licensee in connection with the transmission of electricity but does not include any Remote Transmission Assets .
On-Site Generator Site	A site which is determined by the BSC Panel to be a Trading Unit under the BSC by reason of having fulfilled the Class 1 or Class 2 requirements as such terms are used in the BSC .
Operating Code or OC	That portion of the Grid Code which is identified as the Operating Code .
Operating Margin	Contingency Reserve plus Operating Reserve.
Operating Reserve	The additional output from Large Power Stations or the reduction in Demand, which must be realisable in real-time operation to respond in order to contribute to containing and correcting any System Frequency fall to an acceptable level in the event of a loss of generation or a loss of import from an External Interconnection or mismatch between generation and Demand.
Operation	A scheduled or planned action relating to the operation of a System (including an Embedded Power Station).
Operational Data	Data required under the Operating Codes and/or Balancing Codes .
Operational Day	The period from 0500 hours on one day to 0500 on the following day.
Operation Diagrams	Diagrams which are a schematic representation of the HV Apparatus and the connections to all external circuits at a Connection Site (and in the case of OTSDUW , Transmission Interface Site), incorporating its numbering, nomenclature and labelling.
Operational Effect	Any effect on the operation of the relevant other System which causes the National Electricity Transmission System or the System of the other User or Users , as the case may be, to operate (or be at a materially increased risk of operating) differently to the way in which they would or may have operated in the absence of that effect.

Operational Intertripping	The automatic tripping of circuit-breakers to prevent abnormal system conditions occurring, such as over voltage, overload, System instability, etc. after the tripping of other circuit-breakers following power System fault(s) which includes System to Generating Unit, System to CCGT Module, System to Power Park Module, System to Electricity Storage Module, System to DC Converter, System to Power Generating Module, System to HVDC Converter and System to Demand intertripping schemes.
Operational Notifications	Any Energisation Operational Notification, Interim Operational Notification, Final Operational Notification or Limited Operational Notification issued from The Company to a User.
Operational Planning	Planning through various timescales the matching of generation output with forecast National Electricity Transmission System Demand together with a reserve of generation to provide a margin, taking into account outages of certain Generating Units or Power Generating Modules, of parts of the National Electricity Transmission System and of parts of User Systems to which Power Stations and/or Customers are connected, carried out to achieve, so far as possible, the standards of security set out in The Company's Transmission Licence, each Relevant Transmission Licensee's Transmission Licence or Electricity Distribution Licence, as the case may be.
Operational Planning Margin	An operational planning margin set by The Company .
Operational Planning Phase	The period from 8 weeks to the end of the 5 th year ahead of real time operation.
Operational Procedures	Management instructions and procedures, both in support of the Safety Rules and for the local and remote operation of Plant and Apparatus , issued in connection with the actual operation of Plant and/or Apparatus at or from a Connection Site .
Operational Switching	Operation of Plant and/or Apparatus to the instruction of the relevant Control Engineer. For the avoidance of doubt, the operation of Transmission Plant and/or Apparatus forming part of the National Electricity Transmission System will be to the instruction of the Relevant Transmission Licensee.
Other Relevant Data	The data listed in BC1.4.2(f) under the heading Other Relevant Data.
OTSDUW Arrangements	The arrangements whereby certain aspects of the design, consenting, construction, installation and/or commissioning of transmission assets are capable of being undertaken by a User prior to the transfer of those assets to a Relevant Transmission Licensee under an Offshore Tender Process .
OTSDUW Data and Information	The data and information to be provided by Users undertaking OTSDUW , to The Company in accordance with Appendix F of the Planning Code .
OTSDUW DC Converter	A Transmission DC Converter designed and/or constructed and/or installed by a User under the OTSDUW Arrangements and/or operated by the User until the OTSUA Transfer Time .

OTSDUW Development and Data Timetable	The timetable for both the delivery of OTSDUW Data and Information and OTSDUW Network Data and Information as referred to in Appendix F of the Planning Code and the development of the scope of the OTSDUW .
OTSDUW Network Data and Information	The data and information to be provided by The Company to Users undertaking OTSDUW in accordance with Appendix F of the Planning Code .
OTSDUW Plant and Apparatus	Plant and Apparatus, including any OTSDUW DC Converter, designed by the User under the OTSDUW Arrangements.
OTSUA Transfer Time	The time and date at which the OTSUA are transferred to a Relevant Transmission Licensee.
Out of Synchronism	The condition where a System or Generating Unit or Power Generating Module cannot meet the requirements to enable it to be Synchronised .
Output Usable or OU	The (daily or weekly) forecast value (in MW), at the time of the (daily or weekly) peak demand, of the maximum level at which the Genset can export to the Grid Entry Point , or in the case of Embedded Power Stations , to the User System Entry Point . In addition, for a Genset powered by an Intermittent Power Source the forecast value is based upon the Intermittent Power Source being at a level which would enable the Genset to generate at Registered Capacity .
	For the purpose of OC2 only, the term Output Usable shall include the terms Interconnector Export Capacity and Interconnector Import Capacity where the term Output Usable is being applied to an External Interconnection .
Over-excitation Limiter	Shall have the meaning ascribed to that term in IEC 34-16-1:1991 [equivalent to British Standard BS4999 Section 116.1 : 1992].
Panel Chairman	A person appointed as such in accordance with GR.4.1.
Panel Member	Any of the persons identified as such in GR.4.
Panel Members' Recommendation	The recommendation in accordance with the "Grid Code Review Panel Recommendation Vote"
Panel Secretary	A person appointed as such in accordance with GR.3.1.2(d).
Part 1 System Ancillary Services	Ancillary Services which are required for System reasons and which must be provided by Users in accordance with the Connection Conditions. An exhaustive list of Part 1 System Ancillary Services is included in that part of CC.8.1 headed Part 1.
Part 2 System Ancillary Services	Ancillary Services which are required for System reasons and which must be provided by a User if the User has agreed to provide them under a Bilateral Agreement. A non-exhaustive list of Part 2 System Ancillary Services is included in that part of CC.8.1 headed Part 2.
Part Load	The condition of a Genset , or Cascade Hydro Scheme which is Loaded but is not running at its Maximum Export Limit.

Permit for Work for proximity work	In respect of E&W Transmission Systems, a document issued by the Relevant E&W Transmission Licensee or an E&W User in accordance with its respective Safety Rules to enable work to be carried out in accordance with OC8A.8 and which provides for Safety Precautions to be applied and maintained. An example format of a Relevant E&W Transmission Licensee's permit for work is attached as Appendix E to OC8A. In respect of Scottish Transmission Systems, a document issued by a Relevant Scottish Transmission Licensee or a Scottish User in accordance with its respective Safety Rules to enable work to be carried out in accordance with OC8B.8 and which provides for Safety Precautions to be applied and maintained. Example formats of Relevant Scottish Transmission Licensees' permits for work are attached as Appendix E to OC8B.
Partial Shutdown	The same as a Total Shutdown except that all generation has ceased in a separate part of the Total System and there is no electricity supply from External Interconnections or other parts of the Total System to that part of the Total System and, therefore, that part of the Total System is shutdown, with the result that it is not possible for that part of the Total System to begin to function again without The Company's directions relating to a Black Start .
Pending Grid Code Modification Proposal	A Grid Code Modification Proposal in respect of which, at the relevant time, the Authority has not yet made a decision as to whether to direct such Grid Code Modification Proposal to be made pursuant to the Transmission Licence (whether or not a Grid Code Modification Report has been submitted in respect of such Grid Code Modification Proposal) or, in the case of a Grid Code Self Governance Proposals, in respect of which the Grid Code Review Panel has not yet voted whether or not to approve.
Phase (Voltage) Unbalance	The ratio (in percent) between the rms values of the negative sequence component and the positive sequence component of the voltage.
Physical Notification	Data that describes the BM Participant 's best estimate of the expected input or output of Active Power of a BM Unit and/or (where relevant) Generating Unit , the accuracy of the Physical Notification being commensurate with Good Industry Practice .
Planning Code or PC	That portion of the Grid Code which is identified as the Planning Code .
Planned Maintenance Outage	An outage of The Company's electronic data communication facilities as provided for in CC.6.5.8 and The Company's associated computer facilities of which normally at least 5 days notice is given, but in any event of which at least twelve hours notice has been given by The Company to the User and which is anticipated to last no longer than 2 hours. The length of such an outage may in exceptional circumstances be extended where at least 24 hours notice has been given by The Company to the User . It is anticipated that normally any planned outage would only last around one hour.
Planned Outage	An outage of a Large Power Station or of part of the National Electricity Transmission System, or of part of a User System, co-ordinated by The Company under OC2.

Plant	Fixed and movable items used in the generation and/or supply and/or transmission of electricity, other than Apparatus .
Point of Common Coupling	That point on the National Electricity Transmission System electrically nearest to the User installation at which either Demands or Loads are, or may be, connected.
Point of Connection	An electrical point of connection between the National Electricity Transmission System and a User's System.
Point of Isolation	The point on Apparatus (as defined in OC8A.1.6.2 and OC8B.1.7.2) at which Isolation is achieved.
Post-Control Phase	The period following real time operation.
Power Available	A signal prepared in accordance with good industry practice, representing the instantaneous sum of the potential Active Power available from each individual Power Park Unit within the Power Park Module calculated using any applicable combination of electrical or mechanical or meteorological data (including wind speed) measured at each Power Park Unit at a specified time. Power Available shall be a value between 0MW and Registered Capacity or Maximum Capacity which is the sum of the potential Active Power available of each Power Park Unit within the Power Park Module. A unit that is not generating or supplying power will be considered as not available. For the avoidance of doubt, the Power Available signal would be the Active Power output that a Power Park Module could reasonably be expected to export at the Grid Entry Point or User System Entry Point taking all the above criteria into account including Power Park Unit constraints such as optimisation modes but would exclude a reduction in the Active Power export of the Power Park Module instructed by The Company (for example) for the purposes selecting a Power Park Module to operate in Frequency Sensitive Mode or when an Emergency Instruction has been issued.
Power Factor	The ratio of Active Power to Apparent Power.
Power-Generating Module	Either a Synchronous Power Generating Module, a Synchronous Electricity Storage Module, a Power Park Module or a Non-Synchronous Electricity Storage Module owned or operated by an EU Generator.
Power-Generating Module Document (PGMD)	A document provided by the Generator to The Company for a Type B or Type C Power Generating Module which confirms that the Power Generating Module's compliance with the technical criteria set out in the Grid Code has been demonstrated and provides the necessary data and statements, including a statement of compliance.
Power Generating Module Performance Chart	A diagram showing the Real Power (MW) and Reactive Power (MVAr) capability limits within which a Synchronous Power Generating Module or Power Park Module at its Grid Entry Point or User System Entry Point will be expected to operate under steady state conditions.
Power Island	Gensets at an isolated Power Station, together with complementary local Demand. In Scotland a Power Island may include more than one Power Station.

Power Park Module Availability Matrix	The matrix described in Appendix 1 to BC1 under the heading Power Park Module Availability Matrix.
Power Park Module Planning Matrix	A matrix in the form set out in Appendix 4 of OC2 showing the combination of Power Park Units within a Power Park Module which would be expected to be running under normal conditions.
Power Park Unit	A Generating Unit within a Power Park Module.
Power Station	An installation comprising one or more Generating Units or Power Park Modules or Power Generating Modules or Electricity Storage Modules (even where sited separately) owned and/or controlled by the same Generator , which may reasonably be considered as being managed as one Power Station .
Power System Stabiliser or PSS	Equipment controlling the Exciter output via the voltage regulator in such a way that power oscillations of the synchronous machines are dampened. Input variables may be speed, frequency or power (or a combination of these).
Preface	The preface to the Grid Code (which does not form part of the Grid Code and therefore is not binding).
Preliminary Notice	A notice in writing, sent by The Company both to all Users identified by it under OC12.4.2.1 and to the Test Proposer , notifying them of a proposed System Test .
Preliminary Project Planning Data	Data relating to a proposed User Development at the time the User applies for a CUSC Contract but before an offer is made and accepted.
Primary Response	The automatic increase in Active Power output of a Genset or, as the case may be, the decrease in Active Power Demand in response to a System Frequency fall. This increase in Active Power output or, as the case may be, the decrease in Active Power Demand must be in accordance with the provisions of the relevant Ancillary Services Agreement which will provide that it will be released increasingly with time over the period 0 to 10 seconds from the time of the start of the Frequency fall on the basis set out in the Ancillary Services Agreement and fully available by the latter, and sustainable for at least a further 20 seconds. The interpretation of the Primary Response to a – 0.5 Hz frequency change is shown diagrammatically in Figure CC.A.3.2 and Figure ECC.A.3.2
Private Network	A network which connects to a Network Operator's System and that network belongs to a User who is not classified as a Generator , Network Operator or Non Embedded Customer .
Programming Phase	The period between the Operational Planning Phase and the Control Phase . It starts at the 8 weeks ahead stage and finishes at 17:00 on the day ahead of real time.
Proposal Notice	A notice submitted to The Company by a User which would like to undertake a System Test .

Proposal Report	A report submitted by the Test Panel which contains:
	(a) proposals for carrying out a System Test (including the manner in which the System Test is to be monitored);
	(b) an allocation of costs (including un-anticipated costs) between the affected parties (the general principle being that the Test Proposer will bear the costs); and
	(c) such other matters as the Test Panel considers appropriate.
	The report may include requirements for indemnities to be given in respect of claims and losses arising from a System Test .
Proposed Implementation Date	The proposed date(s) for the implementation of a Grid Code Modification Proposal or Workgroup Alternative Grid Code Modification such date(s) to be either (i) described by reference to a specified period after a direction from the Authority approving the Grid Code Modification Proposal or Workgroup Alternative Grid Code Modification or (ii) a Fixed Proposed Implementation Date .
Protection	The provisions for detecting abnormal conditions on a System and initiating fault clearance or actuating signals or indications.
Protection Apparatus	A group of one or more Protection relays and/or logic elements designated to perform a specified Protection function.
Pumped Storage	A hydro unit in which water can be raised by means of pumps and stored to be used for the generation of electrical energy;
Pumped Storage Generating Unit	A Generating Unit at a Pumped Storage Plant
Pumped Storage Generator	A Generator which owns and/or operates any Pumped Storage Plant.
Pumped Storage Plant	A Power Station comprising Pumped Storage Generating Units.
Pumped Storage Unit	A Generating Unit within a Pumped Storage Plant. For the avoidance of doubt, a Pumped Storage Unit is not considered to form part of an Electricity Storage Unit unless specifically declared by the Generator.
Purchase Contracts	A final and binding contract for the purchase of the Main Plant and Apparatus.
Q/Pmax	The ratio of Reactive Power to the Maximum Capacity . The relationship between Power Factor and Q/Pmax is given by the formula:-
	Power Factor = $Cos \left[arctan \left[\frac{Q}{Pmax} \right] \right]$
	For example, a Power Park Module with a Q/P value of +0.33 would equate to a Power Factor of Cos(arctan0.33) = 0.95 Power Factor lag.
Quick Resynchronisation Capability	The capability of a Type C or Type D Power Generating Module as defined in ECC.6.3.5.6. For the avoidance of doubt this requirement only applies to EU Code Generators who own or operate a Type C or Type D Power Generating Module .

Quick Resynchronisation Unit Test	A test undertaken on Generating Unit forming part of a Type C or Type D Power Generating Module as detailed in OC5.7.1 and OC5.7.4 necessary to determine its ability to demonstrate a Quick Resynchronisation Capability .
Range CCGT Module	A CCGT Module where there is a physical connection by way of a steam or hot gas main between that CCGT Module and another CCGT Module or other CCGT Modules , which connection contributes (if open) to efficient modular operation, and which physical connection can be varied by the operator.
Rated Field Voltage	Shall have the meaning ascribed to that term in IEC 34-16-1:1991 [equivalent to British Standard BS4999 Section 116.1 : 1992].
Rated MW	The "rating-plate" MW output of a Power Generating Module , Generating Unit , Power Park Module , Electricity Storage Module , HVDC Converter or DC Converter , being:
	 (a) that output up to which the Generating Unit was designed to operate (Calculated as specified in British Standard BS EN 60034 – 1: 1995); or
	(b) the nominal rating for the MW output of a Power Park Module or Power Generating Module being the maximum continuous electric output power which the Power Park Module or Power Generating Module was designed to achieve under normal operating conditions; or
	(c) the nominal rating for the MW import capacity and export capacity (if at a DC Converter Station or HVDC Converter Station) of a DC Converter or HVDC Converter.
	(d) in an importing mode, is that input up to which an Electricity Storage Module was designed to operate being the maximum continuous electric input which the Electricity Storage Module was designed to achieve under normal operating conditions. In an exporting mode is:-
	(i) that output up to which the Synchronous Electricity Storage Unit was designed to operate (Calculated as specified in British Standard BS EN 60034 – 1: 1995); or
	(ii) the nominal rating for the MW output of a Non-Synchronous Electricity Storage Module being the maximum continuous electric output power which the Non-Synchronous Electricity Storage Module was designed to achieve under normal operating conditions.
Reactive Despatch Instruction	Has the meaning set out in the CUSC.

Reactive Despatch Network Restriction	A restriction placed upon an Embedded Power Generating Module, Embedded Generating Unit, Embedded Power Park Module or DC Converter at an Embedded DC Converter Station or HVDC Converter at an Embedded HVDC Converter Station by the Network Operator that prevents the Generator or DC Converter Station owner or HVDC System Owner in question (as applicable) from complying with any Reactive Despatch Instruction with respect to that Power Generating Module, Generating Unit, Power Park Module or DC Converter at a DC Converter Station or HVDC Converter at a HVDC Converter Station, whether to provide Mvars over the range referred to in CC 6.3.2, ECC.6.3.2 or otherwise.
Reactive Energy	The integral with respect to time of the Reactive Power.
Reactive Power	The product of voltage and current and the sine of the phase angle between them measured in units of voltamperes reactive and standard multiples thereof, ie: 1000 VAr = 1 kVAr 1000 kVAr = 1 Mvar
Record of Inter-System Safety Precautions or RISSP	A written record of inter-system Safety Precautions to be compiled in accordance with the provisions of OC8 .
Regenerative Braking	A method of braking in which energy is extracted from the parts braked, which may be returned directly to the System and the purpose of the braking is motion control.

Registered Capacity

- (a) In the case of a Generating Unit other than that forming part of a CCGT Module or Power Park Module or Power Generating Module, the normal full load capacity of a Generating Unit as declared by the Generator, less the MW consumed by the Generating Unit through the Generating Unit's Unit Transformer when producing the same (the resultant figure being expressed in whole MW, or in MW to one decimal place).
- (b) In the case of a CCGT Module or Power Park Module owned or operated by a GB Generator, the normal full load capacity of the CCGT Module or Power Park Module (as the case may be) as declared by the GB Generator, being the Active Power declared by the GB Generator as being deliverable by the CCGT Module or Power Park Module at the Grid Entry Point (or in the case of an Embedded CCGT Module or Power Park Module, at the User System Entry Point), expressed in whole MW, or in MW to one decimal place. For the avoidance of doubt Maximum Capacity would apply to Power Generating Modules which form part of a Large, Medium or Small Power Stations.
- (c) In the case of a **Power Station**, the maximum amount of **Active Power** deliverable by the **Power Station** at the **Grid Entry Point** (or in the case of an **Embedded Power Station** at the **User System Entry Point**), as declared by the **Generator**, expressed in whole MW, or in MW to one decimal place. The maximum **Active Power** deliverable is the maximum amount deliverable simultaneously by the **Power Generating Modules** and/or **Generating Units** and/or **CCGT Modules** and/or **Power Park Modules** less the MW consumed by the **Power Generating Modules** and/or **Generating Units** and/or **CCGT Modules** in producing that **Active Power** and forming part of a **Power Station**.
- (d) In the case of a DC Converter at a DC Converter Station or HVDC Converter at an HVDC Converter Station, the normal full load amount of Active Power transferable from a DC Converter or HVDC Converter at the Onshore Grid Entry Point (or in the case of an Embedded DC Converter Station or an Embedded HVDC Converter Station at the User System Entry Point), as declared by the DC Converter Station owner or HVDC System Owner, expressed in whole MW, or in MW to one decimal place.
- (e) In the case of a DC Converter Station or HVDC Converter Station, the maximum amount of Active Power transferable from a DC Converter Station or HVDC Converter Station at the Onshore Grid Entry Point (or in the case of an Embedded DC Converter Station or Embedded HVDC Converter Station at the User System Entry Point), as declared by the DC Converter Station owner or HVDC System Owner, expressed in whole MW, or in MW to one decimal place.
- (f) In the case of an Electricity Storage Module, the normal full load amount of Active Power transferable from an Electricity Storage Module at the Grid Entry Point (or in the case of an Embedded Electricity Storage Module at the User System Entry Point), as declared by the Generator, expressed in whole MW, or in MW to one decimal place.

Registered Data

Those items of **Standard Planning Data** and **Detailed Planning Data** which upon connection become fixed (subject to any subsequent changes).

Registered Import Capability	In the case of a DC Converter Station or HVDC Converter Station containing DC Converters or HVDC Converters connected to an External System, the maximum amount of Active Power transferable into a DC Converter Station or HVDC Converter Station at the Onshore Grid Entry Point (or in the case of an Embedded DC Converter Station or Embedded HVDC Converter Station at the User System Entry Point), as declared by the DC Converter Station owner or HVDC System Owner, expressed in whole MW. In the case of a DC Converter or HVDC Converter connected to an External System and in a DC Converter Station or HVDC Converter Station, the normal full load amount of Active Power transferable into a DC Converter or HVDC Converter at the Onshore Grid Entry Point (or in the case of an Embedded DC Converter Station or Embedded HVDC Converter Station at the User System Entry Point), as declared by the DC Converter owner or HVDC System Owner, expressed in whole MW. In the case of an Electricity Storage Module, the maximum amount of Active Power transferable into an Electricity Storage Module at the Grid Entry Point (or in the case of an Embedded Electricity Storage Module at the Grid Entry Point (or in the case of an Embedded Electricity Storage Module at the User System Entry Point), as declared by the Generator, expressed in whole MW.
Regulations	The Utilities Contracts Regulations 1996, as amended from time to time.
Reheater Time Constant	Determined at Registered Capacity , the reheater time constant will be construed in accordance with the principles of the IEEE Committee Report "Dynamic Models for Steam and Hydro Turbines in Power System Studies" published in 1973 which apply to such phrase.
Rejected Grid Code Modification Proposal	A Grid Code Modification Proposal in respect of which the Authority has decided not to direct The Company to modify the Grid Code pursuant to The Company's Transmission Licence in the manner set out herein or, in the case of a Grid Code Self Governance Proposals, in respect of which the Grid Code Review Panel has voted not to approve.
Related Person	means, in relation to an individual, any member of his immediate family, his employer (and any former employer of his within the previous 12 months), any partner with whom he is in partnership, and any company or Affiliate of a company in which he or any member of his immediate family controls more than 20% of the voting rights in respect of the shares of the company;
Relevant E&W Transmission Licensee	As the context requires NGET and/or an E&W Offshore Transmission Licensee .
Relevant Party	Has the meaning given in GR15.10(a).
Relevant Scottish Transmission Licensee	As the context requires SPT and/or SHETL and/or a Scottish Offshore Transmission Licensee.
Relevant Transmission Licensee	Means National Grid Electricity Transmission plc (NGET) in its Transmission Area or SP Transmission Ltd (SPT) in its Transmission Area or Scottish Hydro-Electric Transmission Ltd (SHETL) in its Transmission Area or any Offshore Transmission Licensee in its Transmission Area.
Relevant Unit	As defined in the STC, Schedule 3.
L	I

Remote End HVDC Converter Station	An HVDC Converter Station which forms part of an HVDC System and is not directly connected to the AC part of the GB Synchronous Area.
Remote Transmission	Any Plant and Apparatus or meters owned by NGET which:
Assets	(a) are Embedded in a User System and which are not directly connected by Plant and/or Apparatus owned by NGET to a substation owned by NGET ; and
	(b) are by agreement between NGET and such User operated under the direction and control of such User .
Replacement Reserves (RR)	means, in the context of Balancing Services , the active power reserves available to restore or support the required level of FRR to be prepared for additional system imbalances, including generation reserves;
Requesting Safety Co- ordinator	The Safety Co-ordinator requesting Safety Precautions.
Responsible Engineer/ Operator	A person nominated by a User to be responsible for System control.
Responsible Manager	A manager who has been duly authorised by a User or a Relevant Transmission Licensee to sign Site Responsibility Schedules on behalf of that User or Relevant Transmission Licensee as the case may be.
Restoration Service Provider	A Black Start Service Provider or User with a legal or contractual obligation tp provide a service contributing to one or several measures of the System Resoration Plan.
Re-synchronisation	The bringing of parts of the System which have become Out of Synchronism with any other System back into Synchronism , and like terms shall be construed accordingly.
RR Acceptance	The results of the TERRE auction for each BM Participant
Restricted	Applies to a TERRE Bid which has been marked so that it will be passed to the TERRE Central Platform but will not be used in the auction
RR Instruction	Replacement Reserve Instruction – used for instructing BM Participants after the results of the TERRE auction. An RR Instruction has the same format as a Bid-Offer Acceptance but has type field indicating it is for TERRE
Safety Co-ordinator	A person or persons nominated by a Relevant E&W Transmission Licensee and each E&W User in relation to Connection Points (or in the case of OTSUA operational prior to the OTSUA Transfer Time, Transmission Interface Points) on an E&W Transmission System and/or by the Relevant Scottish Transmission Licensee and each Scottish User in relation to Connection Points (or in the case of OTSUA operational prior to the OTSUA Transfer Time, Transmission Interface Points) on a Scottish Transmission System to be responsible for the co-ordination of Safety Precautions at each Connection Point (or in the case of OTSUA operational prior to the OTSUA Transfer Time, Transmission Interface Points) when work (which includes testing) is to be carried out on a System which necessitates the provision of Safety Precautions on HV Apparatus (as defined in OC8A.1.6.2 and OC8B.1.7.2), pursuant to OC8.

Safety From The System	That condition which safeguards persons when work is to be carried out on or near a System from the dangers which are inherent in the System .
Safety Key	A key unique at the Location capable of operating a lock which will cause an Isolating Device and/or Earthing Device to be Locked .
Safety Log	A chronological record of messages relating to safety co-ordination sent and received by each Safety Co-ordinator under OC8 .
Safety Precautions	Isolation and/or Earthing.
Safety Rules	The rules of the Relevant Transmission Licensee or a User that seek to ensure that persons working on Plant and/or Apparatus to which the rules apply are safeguarded from hazards arising from the System .
Scottish Offshore Transmission System	An Offshore Transmission System with an Interface Point in Scotland.
Scottish Offshore Transmission Licensee	A person who owns or operates a Scottish Offshore Transmission System pursuant to a Transmission Licence .
Scottish Transmission System	Collectively SPT's Transmission System and SHETL's Transmission System and any Scottish Offshore Transmission Systems.
Scottish User	A User in Scotland or any Offshore User who owns or operates Plant and/or Apparatus connected (or which will at the OTSUA Transfer Time be connected) to a Scottish Offshore Transmission System
Secondary BM Unit	Has the same meaning set out in the BSC
Secondary Response	The automatic increase in Active Power output of a Genset or, as the case may be, the decrease in Active Power Demand in response to a System Frequency fall. This increase in Active Power output or, as the case may be, the decrease in Active Power Demand must be in accordance with the provisions of the relevant Ancillary Services Agreement which will provide that it will be fully available by 30 seconds from the time of the start of the Frequency fall and be sustainable for at least a further 30 minutes. The interpretation of the Secondary Response to a -0.5 Hz frequency change is shown diagrammatically in Figure CC.A.3.2 or Figure ECC.A.3.2.
Secretary of State	Has the same meaning as in the Act .
Secured Event	Has the meaning set out in the Security and Quality of Supply Standard .
Security and Quality of Supply Standard (SQSS)	The version of the document entitled 'Security and Quality of Supply Standard' established pursuant to the Transmission Licence in force at the time of entering into the relevant Bilateral Agreement .

Self-Governance Criteria	A proposed Modification that, if implemented,	
	(a) is unlikely to have a material effect on:	
	(i) existing or future electricity consumers; and	
	(ii) competition in the generation, storage, distribution, or supply of electricity or any commercial activities connected with the generation, storage, distribution or supply of electricity; and	
	(iii) the operation of the National Electricity Transmission System; and	
	 (iv) matters relating to sustainable development, safety or security of supply, or the management of market or network emergencies; and 	
	(v) the Grid Code 's governance procedures or the Grid Code 's modification procedures, and	
	(b) is unlikely to discriminate between different classes of Users.	
Self-Governance Modifications	A Grid Code Modification Proposal that does not fall within the scope of a Significant Code Review and that meets the Self-Governance Criteria or which the Authority directs is to be treated as such any direction under GR.24.4.	
Self-Governance Statement	The statement made by the Grid Code Review Panel and submitted to the Authority :	
	(a) confirming that, in its opinion, the Self-Governance Criteria are met and the proposed Grid Code Modification Proposal is suitable for the Self-Governance route; and	
	(b) providing a detailed explanation of the Grid Code Review Panel 's reasons for that opinion	
Setpoint Voltage	The value of voltage at the Grid Entry Point , or User System Entry Point if Embedded , on the automatic control system steady state operating characteristic, as a percentage of the nominal voltage, at which the transfer of Reactive Power between a Power Park Module , DC Converter , HVDC Converter or Non-Synchronous Generating Unit and the Transmission System , or Network Operator's system if Embedded , is zero.	
Settlement Period	A period of 30 minutes ending on the hour and half-hour in each hour during a day.	
Seven Year Statement	A statement, prepared by The Company in accordance with the terms of The Company's Transmission Licence , showing for each of the seven succeeding Financial Years , the opportunities available for connecting to and using the National Electricity Transmission System and indicating those parts of the National Electricity Transmission System most suited to new connections and transport of further quantities of electricity.	
SF ₆ Gas Zone	A segregated zone surrounding electrical conductors within a casing containing SF_6 gas.	
SHETL	Scottish Hydro-Electric Transmission Limited	

In the case of a Generating Unit is the condition of a Generating Unit where the generator rotor is at rest or on barring. In the case of an HVDC System or DC Converter Station, is the condition of an HVDC System or DC Converter Station where the HVDC System or DC Converter Station is de-energised and therefore not importing or exporting Apparent Power to or from the Total System. Significant Code Review Means the period commencing on the start date of a Significant Code Review as stated in the notice issued by the Authority, and ending in the circumstances described in GR.16.6 or GR.16.7, as appropriate. Significant Code Review Phase Means the period commencing on the start date of a Significant Code Review as stated in the notice issued by the Authority, and ending in the circumstances described in GR.16.6 or GR.16.7, as appropriate. Significant Incident An Event which either: (a) was notified by a User to The Company under OC7, and which The Company considers has had or may have had a significant effect on the National Electricity Transmission System, and The Company requires the User to report that Event in writing in accordance with OC10 and notifies the User accordingly; or (b) was notified by The Company to a User under OC7, and which that User's System, and that User's System, and that User considers has had or may have had a significant effect on that User's System, and that User requires The Company to report that Event in writing in accordance with Draw have had a significant effect on that User's System, and that User requires The Company to report that Event in writing in accordance with the provisions of OC10 and notifies The Company accordingly. Simultaneous Tap Change A tap change implemented on the generator step-up transformers of Synchronised Genests, effected by Generators in response to an instruction from The Company issued simultaneously to the relevant Power Stations. The instruction, preceded by advance notice, must be effected as soon as possible, and in any event within o		1		
of an HVDC System or DC Converter Station where the HVDC System or DC Converter Station is de-energised and therefore not importing or exporting Apparent Power to or from the Total System. Significant Code Review Means the period commencing on the start date of a Significant Code Review as stated in the notice issued by the Authority, and ending in the circumstances described in GR.16.6 or GR.16.7, as appropriate. Significant Code Review Phase Means the period commencing on the start date of a Significant Code Review as stated in the notice issued by the Authority, and ending in the circumstances described in GR.16.6 or GR.16.7, as appropriate. Significant Incident An Event, as defined in OC3.4.1. Significant Incident An Event which either: (a) was notified by a User to The Company under OC7, and which The Company considers has had or may have had a significant effect on the National Electricity Transmission System, and The Company requires the User to report that Event in writing in accordance with OC10 and notifies the User accordingly; or (b) was notified by The Company to a User under OC7, and which that User considers has had or may have had a significant effect on that User's System, and that User requires The Company to report that Event in writing in accordance with the provisions of OC10 and notifies The Company accordingly. Simultaneous Tap Change A tap change implemented on the generator step-up transformers of Synchronised Genesets, effected by Generators in response to an instruction from The Company issued simultaneously to the relevant Power Stations. The instruction, preceded by advance notice, must be effected as soon as possible, and in any event within one minute of receipt from The Company of the instruction. Single Line Diagram A schematic representation of a three-phase network in which the three phases are represented by single lines. The diagram shall include (but not necessarily be limited to) busbars, overhead lines, underground cables, power transformers and reactive c	Shutdown			
Review as stated in the notice issued by the Authority, and ending in the circumstances described in GR.16.6 or GR.16.7, as appropriate. Significant Code Review Phase Means the period commencing on the start date of a Significant Code Review as stated in the notice issued by the Authority, and ending in the circumstances described in GR.16.6 or GR.16.7, as appropriate. Significant Event An Event, as defined in OC3.4.1. An Event which either: (a) Was notified by a User to The Company under OC7, and which The Company considers has had or may have had a significant effect on the National Electricity Transmission System, and The Company requires the User to report that Event in writing in accordance with OC10 and notifies the User accordingly; or (b) Was notified by The Company to a User under OC7, and which that User considers has had or may have had a significant effect on that User considers has had or may have had a significant effect on that User considers has had or may have had a significant effect on the User's System, and that User requires The Company to report that Event in writing in accordance with the provisions of OC10 and notifies The Company accordingly. Simultaneous Tap Change implemented on the generator step-up transformers of Synchronised Gensets, effected by Generators in response to an instruction from The Company issued simultaneously to the relevant Power Stations. The instruction, preceded by advance notice, must be effected as soon as possible, and in any event within one minute of receipt from The Company of the instruction. Single Line Diagram A schematic representation of a three-phase network in which the three phases are represented by single lines. The diagram shall include (but not necessarily be limited to) busbars, overhead lines, underground cables, power transformers and reactive compensation equipment. It shall also show where Large Power Stations are connected, and the points at which Demand is supplied. Single Point of Connection, with no interconnection through the		of an HVDC System or DC Converter Station where the HVDC System or DC Converter Station is de-energised and therefore not importing or		
Review as stated in the notice issued by the Authority, and ending in the circumstances described in GR.16.6 or GR.16.7, as appropriate. Signifficant Incident	Significant Code Review	Means the period commencing on the start date of a Significant Code Review as stated in the notice issued by the Authority , and ending in the		
Significant Incident An Event which either: (a) was notified by a User to The Company under OC7, and which The Company considers has had or may have had a significant effect on the National Electricity Transmission System, and The Company requires the User to report that Event in writing in accordance with OC10 and notifies the User accordingly; or (b) was notified by The Company to a User under OC7, and which that User considers has had or may have had a significant effect on that User's System, and that User requires The Company to report that Event in writing in accordance with the provisions of OC10 and notifies The Company accordingly. Simultaneous Tap Change A tap change implemented on the generator step-up transformers of Synchronised Gensets, effected by Generators in response to an instruction from The Company issued simultaneously to the relevant Power Stations. The instruction, preceded by advance notice, must be effected as soon as possible, and in any event within one minute of receipt from The Company of the instruction. Single Line Diagram A schematic representation of a three-phase network in which the three phases are represented by single lines. The diagram shall include (but not necessarily be limited to) busbars, overhead lines, underground cables, power transformers and reactive compensation equipment. It shall also show where Large Power Stations are connected, and the points at which Demand is supplied. Single Point of Connection A single Point of Connection, with no interconnection through the User's System to another Point of Connection. Site Common Drawings Drawings prepared for each Connection Site (and in the case of OTSDUW, Transmission Interface Site) layout drawings, electrical layout drawings, common protection/ control drawings and common services drawings.		Review as stated in the notice issued by the Authority, and ending in the		
(a) was notified by a User to The Company under OC7, and which The Company considers has had or may have had a significant effect on the National Electricity Transmission System, and The Company requires the User to report that Event in writing in accordance with OC10 and notifies the User accordingly; or (b) was notified by The Company to a User under OC7, and which that User's System, and that User requires The Company to report that Event in writing in accordance with the provisions of OC10 and notifies The Company accordingly. Simultaneous Tap Change implemented on the generator step-up transformers of Synchronised Gensets, effected by Generators in response to an instruction from The Company issued simultaneously to the relevant Power Stations. The instruction, preceded by advance notice, must be effected as soon as possible, and in any event within one minute of receipt from The Company of the instruction. Single Line Diagram A schematic representation of a three-phase network in which the three phases are represented by single lines. The diagram shall include (but not necessarily be limited to) busbars, overhead lines, underground cables, power transformers and reactive compensation equipment. It shall also show where Large Power Stations are connected, and the points at which Demand is supplied. Single Point of Connection, with no interconnection through the User's System to another Point of Connection. Site Common Drawings Drawings prepared for each Connection Site (and in the case of OTSDUW, Transmission Interface Site) layout drawings, electrical layout drawings, common protection/ control drawings and common services drawings.	Significant Event	An Event , as defined in OC3.4.1.		
Company considers has had or may have had a significant effect on the National Electricity Transmission System, and The Company requires the User to report that Event in writing in accordance with OC10 and notifies the User accordingly; or (b) was notified by The Company to a User under OC7, and which that User's System, and that User requires The Company to report that Event in writing in accordance with the provisions of OC10 and notifies The Company accordingly. Simultaneous Tap Change A tap change implemented on the generator step-up transformers of Synchronised Gensets, effected by Generators in response to an instruction from The Company issued simultaneously to the relevant Power Stations. The instruction, preceded by advance notice, must be effected as soon as possible, and in any event within one minute of receipt from The Company of the instruction. Single Line Diagram A schematic representation of a three-phase network in which the three phases are represented by single lines. The diagram shall include (but not necessarily be limited to) busbars, overhead lines, underground cables, power transformers and reactive compensation equipment. It shall also show where Large Power Stations are connected, and the points at which Demand is supplied. Single Point of Connection A single Point of Connection, with no interconnection through the User's System to another Point of Connection. Site Common Drawings Drawings prepared for each Connection Site (and in the case of OTSDUW, Transmission Interface Site) which incorporate Connection Site (and in the case of OTSDUW, Transmission Interface Site) layout drawings, electrical layout drawings, common protection/control drawings and common services drawings.	Significant Incident	An Event which either:		
User considers has had or may have had a significant effect on that User's System, and that User requires The Company to report that Event in writing in accordance with the provisions of OC10 and notifies The Company accordingly. Simultaneous Tap Change A tap change implemented on the generator step-up transformers of Synchronised Gensets, effected by Generators in response to an instruction from The Company issued simultaneously to the relevant Power Stations. The instruction, preceded by advance notice, must be effected as soon as possible, and in any event within one minute of receipt from The Company of the instruction. Single Line Diagram A schematic representation of a three-phase network in which the three phases are represented by single lines. The diagram shall include (but not necessarily be limited to) busbars, overhead lines, underground cables, power transformers and reactive compensation equipment. It shall also show where Large Power Stations are connected, and the points at which Demand is supplied. Single Point of Connection, with no interconnection through the User's System to another Point of Connection. Site Common Drawings Drawings prepared for each Connection Site (and in the case of OTSDUW, Transmission Interface Site) which incorporate Connection Site (and in the case of OTSDUW, Transmission Interface Site) layout drawings, electrical layout drawings, common protection/control drawings and common services drawings. Site Responsibility A schedule containing the information and prepared on the basis of the		Company considers has had or may have had a significant effect on the National Electricity Transmission System, and The Company requires the User to report that Event in writing in		
Synchronised Gensets, effected by Generators in response to an instruction from The Company issued simultaneously to the relevant Power Stations. The instruction, preceded by advance notice, must be effected as soon as possible, and in any event within one minute of receipt from The Company of the instruction. Single Line Diagram A schematic representation of a three-phase network in which the three phases are represented by single lines. The diagram shall include (but not necessarily be limited to) busbars, overhead lines, underground cables, power transformers and reactive compensation equipment. It shall also show where Large Power Stations are connected, and the points at which Demand is supplied. Single Point of Connection, with no interconnection through the User's System to another Point of Connection. Site Common Drawings Drawings prepared for each Connection Site (and in the case of OTSDUW, Transmission Interface Site) which incorporate Connection Site (and in the case of OTSDUW, Transmission Interface Site) layout drawings, electrical layout drawings, common protection/ control drawings and common services drawings. Site Responsibility A schedule containing the information and prepared on the basis of the		User considers has had or may have had a significant effect on that User's System, and that User requires The Company to report that Event in writing in accordance with the provisions of OC10 and		
phases are represented by single lines. The diagram shall include (but not necessarily be limited to) busbars, overhead lines, underground cables, power transformers and reactive compensation equipment. It shall also show where Large Power Stations are connected, and the points at which Demand is supplied. Single Point of Connection, with no interconnection through the User's System to another Point of Connection. Site Common Drawings Drawings prepared for each Connection Site (and in the case of OTSDUW, Transmission Interface Site) which incorporate Connection Site (and in the case of OTSDUW, Transmission Interface Site) layout drawings, electrical layout drawings, common protection/control drawings and common services drawings. Site Responsibility A schedule containing the information and prepared on the basis of the	<u>-</u>	Synchronised Gensets, effected by Generators in response to an instruction from The Company issued simultaneously to the relevant Power Stations. The instruction, preceded by advance notice, must be effected as soon as possible, and in any event within one minute of receipt		
Connection System to another Point of Connection. Drawings prepared for each Connection Site (and in the case of OTSDUW, Transmission Interface Site) which incorporate Connection Site (and in the case of OTSDUW, Transmission Interface Site) layout drawings, electrical layout drawings, common protection/ control drawings and common services drawings. Site Responsibility A schedule containing the information and prepared on the basis of the	Single Line Diagram	phases are represented by single lines. The diagram shall include (but not necessarily be limited to) busbars, overhead lines, underground cables, power transformers and reactive compensation equipment. It shall also show where Large Power Stations are connected, and the points at which		
OTSDUW, Transmission Interface Site) which incorporate Connection Site (and in the case of OTSDUW, Transmission Interface Site) layout drawings, electrical layout drawings, common protection/ control drawings and common services drawings. Site Responsibility A schedule containing the information and prepared on the basis of the				
	Site Common Drawings	OTSDUW, Transmission Interface Site) which incorporate Connection Site (and in the case of OTSDUW, Transmission Interface Site) layout drawings, electrical layout drawings, common protection/ control drawings		

	The ratio of the steady state change in voltage, as a percentage of the nominal voltage, to the steady state change in Reactive Power output, in per unit of Reactive Power capability. For the avoidance of doubt, the value indicates the percentage voltage reduction that will result in a 1 per unit increase in Reactive Power generation.		
Small Participant	Has the meaning given in the CUSC.		
Small Power Station	A Po	A Power Station which is	
	(a)	direc	tly connected to:
		(i)	NGET's Transmission System where such Power Station has a Registered Capacity of less than 50MW; or
		(ii)	SPT's Transmission System where such Power Station has a Registered Capacity of less than 30MW; or
		(iii)	SHETL's Transmission System where such a Power Station has a Registered Capacity of less than 10 MW; or
		(iv)	an Offshore Transmission System where such Power Station has a Registered Capacity of less than 10MW;
	or,		
	(b)	Syst	edded within a User System (or part thereof) where such User em (or part thereof) is connected under normal operating itions to:
		(i)	NGET's Transmission System and such Power Station has a Registered Capacity of less than 50MW; or
		(ii)	SPT's Transmission System and such Power Station has a Registered Capacity of less than 30MW; or
		(iii)	SHETL's Transmission System and such Power Station has a Registered Capacity of less than 10MW;
	or,		
	(c)	Syst	edded within a User System (or part thereof) where the User em (or part thereof) is not connected to the National tricity Transmission System, although such Power Station
		(i)	NGET's Transmission Area and such Power Station has a Registered Capacity of less than 50MW; or
		(ii)	SPT's Transmission Area and such Power Station has a Registered Capacity of less than 30MW; or
		(iii)	SHETL's Transmission Area and such Power Station has a Registered Capacity of less than 10MW;
			idance of doubt a Small Power Station could comprise of Type Type C or Type D Power Generating Modules .
Speeder Motor Setting Range	of rat	ed spe	um and maximum no-load speeds (expressed as a percentage eed) to which the turbine is capable of being controlled, by the otor or equivalent, when the Generating Unit terminals are on t.
SPT	SP T	ransm	ission Limited

Standard Contract Terms	The standard terms and conditions applicable to Ancillary Services provided by Demand Response Providers and published on the Website from time to time.	
Standard Modifications	A Grid Code Modification Proposal that does not fall within the scope of a Significant Code Review subject to any direction by the Authority pursuant to GR.16.3 and GR.16.4, nor meets the Self-Governance Criteria subject to any direction by the Authority pursuant to GR.24.4 and in accordance with any direction under GR.24.2.	
Standard Planning Data	The general data required by The Company under the PC . It is generally also the data which The Company requires from a new User in an application for a CUSC Contract , as reflected in the PC .	
Standard Product	means a harmonised balancing product defined by all EU TSOs for the exchange of balance services.	
Specific Product	Means in the context of Balancing Services a product that is not a standard product;	
Start Time	The time named as such in an instruction issued by The Company pursuant to the BC .	
Start-Up	In the case of a Generating Unit is the action of bringing a Generating Unit from Shutdown to Synchronous Speed .	
	In the case of an HVDC System or DC Converter Station, is the action of bringing the HVDC System or DC Converter Station from Shutdown to a state where it is energised.	
Statement of Readiness	Has the meaning set out in the Bilateral Agreement and/or Construction Agreement.	
Station Board	A switchboard through which electrical power is supplied to the Auxiliaries of a Power Station , and which is supplied by a Station Transformer . It may be interconnected with a Unit Board .	
Station Transformer	A transformer supplying electrical power to the Auxiliaries of	
	(a) a Power Station , which is not directly connected to the Generating Unit terminals (typical voltage ratios being 132/11kV or 275/11kV),or	
	(b) a DC Converter Station or HVDC Converter Station.	
STC Committee	The committee established under the STC.	
Steam Unit	A Generating Unit whose prime mover converts the heat-energy in steam to mechanical energy.	

Storage User	A Generator who owns or operates one or more Electricity Storage Modules. For the avoidance of doubt:		
	(a) European Regulation (EU) 2016/631, European Regulation 2016/1388 and European Regulation 2016/1485 shall not apply to Storage Users; and		
	(b) the European Connection Conditions (ECC's) shall apply to Storage Users on the basis set out in Paragraph ECC1.1(d).		
Subtransmission System	The part of a User's System which operates at a single transformation below the voltage of the relevant Transmission System .		
Substantial Modification	A Modification in relation to modernisation or replacement of the User's Main Plant and Apparatus which impacts its technical capabilities, which, following notification by the relevant User to The Company , results in substantial amendment to the Bilateral Agreement .		
Supergrid Voltage	Any voltage greater than 200kV.		
Supplier	(a) A person supplying electricity under an Electricity Supply Licence ; or		
	(b) A person supplying electricity under exemption under the Act ;		
	in each case acting in its capacity as a supplier of electricity to Customers in Great Britain .		
Surplus	A MW figure relating to a System Zone equal to the total Output Usable in the System Zone :		
	(a) minus the forecast of Active Power Demand in the System Zone , and		
	(b) minus the export limit in the case of an export limited System Zone ,		
	or		
	plus the import limit in the case of an import limited System Zone ,		
	and		
	(c) (only in the case of a System Zone comprising the National Electricity Transmission System) minus the Operational Planning Margin.		
	For the avoidance of doubt, a Surplus of more than zero in an export limited System Zone indicates an excess of generation in that System Zone ; and a Surplus of less than zero in an import limited System Zone indicates insufficient generation in that System Zone .		

Synchronised	 (a) The condition where an incoming Power Generating Module, Generating Unit or Power Park Module or DC Converter or HVDC Converter or System is connected to the busbars of another System so that the Frequencies and phase relationships of that Power Generating Module, Generating Unit, Power Park Module, DC Converter, HVDC Converter or System, as the case may be, and the System to which it is connected are identical, like terms shall be construed accordingly e.g. "Synchronism". (b) The condition where an importing BM Unit is consuming electricity.
Synchronous Electricity Storage Module	A Synchronous Power Generating Module which can convert or reconvert electrical energy from another source of energy such that the frequency of the generated voltage, the rotor speed and the frequency of network voltage are in a constant ratio and thus in synchronism. For the avoidance of doubt a Synchronous Electricity Storage Module could comprise of one or more Synchronous Electricity Storage Units .
Synchronous Electricity Storage Unit	A Synchronous Generating Unit which can supply or absorb electrical energy such that the frequency of the generated voltage, the rotor speed and the frequency of the equipment are in constant ratio and thus in synchronism with the network.
Synchronising Generation	The amount of MW (in whole MW) produced at the moment of synchronising.
Synchronising Group	A group of two or more Gensets) which require a minimum time interval between their Synchronising or De-Synchronising times.
Synchronous Area	An area covered by synchronously interconnected Transmission Licensees , such as the Synchronous Areas of Continental Europe, Great Britain, Ireland-Northern Ireland and Nordic and the power systems of Lithuania, Latvia and Estonia, together referred to as 'Baltic' which are part of a wider Synchronous Area ;
Synchronous Compensation	The operation of rotating synchronous Apparatus for the specific purpose of either the generation or absorption of Reactive Power .
Synchronous Compensation Equipment	Apparatus which has the function of providing Synchronous Compensation. For the avoidance of doubt, one or more Synchronous Compensation units would not constitute an Electricity Storage Module unless it could be operated in a controllable manner.
Synchronous Electricity Storage Module	A Synchronous Power Generating Module which can convert and reconvert electrical energy from another source of energy such that the frequency of the generated voltage, the rotor speed and the frequency of network voltage are in a constant ratio and thus in synchronism. For the avoidance of doubt a Synchronous Electricity Storage Module could comprise of one or more Synchronous Electricity Storage Units.
Synchronous Electricity Storage Unit	A Synchronous Generating Unit which can supply and absorb electrical energy such that the frequency of the generated voltage, the rotor speed and the frequency of the equipment are in constant ratio and thus in synchronism with the network.

Synchronous Flywheel	An item of synchronously rotating Plant for the specific purpose of contributing inertia to the System . One or more Synchronous Flywheels would not be considered to form an Electricity Storage Module unless it could be operated in a controllable manner for its AC input and output power.	
Synchronous Generating Unit	Any Onshore Synchronous Generating Unit or Offshore Synchronous Generating Unit.	
Synchronous Generating Unit Performance Chart	A diagram showing the Real Power (MW) and Reactive Power (MVAr) capability limits within which a Synchronous Generating Unit at its stator terminals (which is part of a Synchronous Power Generating Module) will be expected to operate under steady state conditions.	
Synchronous Power- Generating Module	An indivisible set of installations which can convert or re-convert electrical energy from another source of energy such that the frequency of the supplied voltage, the rotor speed and the frequency of network voltage are in a constant ratio and thus in synchronism. For the avoidance of doubt, a Synchronous Power Generating Module could comprise of one or more Synchronous Generating Units or one or more Synchronous Electricity Storage Units.	
Synchronous Power Generating Module Matrix	The matrix described in Appendix 1 to BC1 under the heading Synchronous Power Generating Module Matrix.	
Synchronous Power Generating Module Planning Matrix	A matrix in the form set out in Appendix 5 of OC2 showing the combination of Synchronous Generating Units within a Synchronous Power Generating Module which would be running in relation to any given MW output.	
Synchronous Power Generating Unit	Has the same meaning as a Synchronous Generating Unit and would be considered to be part of a Power Generating Module .	
Synchronous Speed	That speed required by a Generating Unit to enable it to be Synchronised to a System .	
System	Any User System and/or the National Electricity Transmission System , as the case may be.	
System Ancillary Services	Collectively Part 1 System Ancillary Services and Part 2 System Ancillary Services.	
System Constraint	A limitation on the use of a System due to lack of transmission capacity or other System conditions.	
System Constrained Capacity	That portion of Registered Capacity or Regis tered Import Capacity not available due to a System Constraint .	
System Constraint Group	A part of the National Electricity Transmission System which, because of System Constraints , is subject to limits of Active Power which can flow into or out of (as the case may be) that part.	
System Defence Plan	A document prepared by The Company , as published on its Website , outlining how the requirements of the "defence plan" (as provided for European Regulation (EU) 2017/2196) has been implemented within the GB Synchronous Area .	

	-
System Fault Dependability Index or Dp	A measure of the ability of Protection to initiate successful tripping of circuit-breakers which are associated with a faulty item of Apparatus . It is calculated using the formula:
	$Dp = 1 - F_1/A$
	Where:
	A = Total number of System faults
	F ₁ = Number of System faults where there was a failure to trip a circuit-breaker.
System Incidents Report	A report submitted to the GCRP on a monthly basis, containing, but not limited to, a list of Significant Events , as detailed in OC3.4.1.
System Margin	The margin in any period between
	(a) the sum of Maximum Export Limits and
	(b) forecast Demand and the Operating Margin ,
	for that period.
System Negative Reserve Active Power Margin or System NRAPM	That margin of Active Power sufficient to allow the largest loss of Load at any time.
System Operator - Transmission Owner Code or STC	Has the meaning set out in The Company's Transmission Licence
System Restoration Plan	A document prepared by The Company , as published on its Website , outlining how the requirements of the "restoration plan" (as defined in European Regulation (EU) 2017/2196) has been implemented within the GB Synchronous Area .
System Telephony	An alternative method by which a User's Responsible Engineer/Operator and The Company's Control Engineer(s) speak to one and another for the purposes of control of the Total System in both normal operating conditions and where practicable, emergency operating conditions.
System Tests	Tests which involve simulating conditions, or the controlled application of irregular, unusual or extreme conditions, on the Total System , or any part of the Total System , but which do not include commissioning or recommissioning tests or any other tests of a minor nature.
System to Demand Intertrip Scheme	An intertrip scheme which disconnects Demand when a System fault has arisen to prevent abnormal conditions occurring on the System .
System to Generator Operational Intertripping	A Balancing Service involving the initiation by a System to Generator Operational Intertripping Scheme of automatic tripping of the User's circuit breaker(s), or Relevant Transmission Licensee's circuit breaker(s) where agreed by The Company, the User and the Relevant Transmission Licensee, resulting in the tripping of BM Unit(s) or (where relevant) Generating Unit(s) comprised in a BM Unit to prevent abnormal system conditions occurring, such as over voltage, overload, System instability, etc, after the tripping of other circuit-breakers following power System fault(s).

System to Generator Operational Intertripping Scheme	A System to Generating Unit or System to CCGT Module or System to Power Park Module or System to Power Generating Module or System to Electricity Storage Module Intertripping Scheme forming a condition of connection and specified in Appendix F3 of the relevant Bilateral Agreement, being either a Category 1 Intertripping Scheme, Category 2 Intertripping Scheme, Category 3 Intertripping Scheme or Category 4 Intertripping Scheme.	
System Zone	A region of the National Electricity Transmission System within a described boundary or the whole of the National Electricity Transmission System , as further provided for in OC2.2.4, and the term " Zonal " will be construed accordingly.	
Target Frequency	That Frequency determined by The Company , in its reasonable opinion, as the desired operating Frequency of the Total System . This will normally be 50.00Hz plus or minus 0.05Hz, except in exceptional circumstances as determined by The Company , in its reasonable opinion when this may be 49.90 or 50.10Hz. An example of exceptional circumstances may be difficulties caused in operating the System during disputes affecting fuel supplies.	
Technical Specification	In relation to Plant and/or Apparatus ,	
	(a) the relevant European Specification; or	
	(b) if there is no relevant European Specification , other relevant standards which are in common use in the European Community.	
TERRE	Trans European Replacement Reserves Exchange – a market covering the procurement of replacement reserves across Europe as described European Regulation (EU) 2017/2195 (EBGL) and European Regulation (EU) 2017/1485	
TERRE Activation Period	A period of time lasting 15 minutes and starting at either 0, 15, 30 or 45 minutes past the hour (e.g. 10:00 to 10:15). There are 4 TERRE Activation Periods in one TERRE Auction Period	
TERRE Auction Period	A period of time lasting one hour and starting and ending on the hour (e.g. from 10:00 to 11:00). Hence there are 24 TERRE Auction Periods in a day	
TERRE Bid	A submission by a BM Participant covering the price and MW deviation offered into the TERRE auction (please note – in the Balancing Mechanism the term bid has a different meaning – in this case a bid can be an upward or downward MW change)	
TERRE Central Platform	IT system which implements the TERRE auction	
TERRE Gate Closure	60 minutes before the start of the TERRE Auction period (note still ongoing discussions if this may become 55 minutes)	
TERRE Instruction Guide	Details specific rules for creating an RR Instruction from an RR Acceptance	
TERRE Data Validation and Consistency Rules	A document produced by the central TERRE project detailing the correct format of submissions for TERRE	
Test Co-ordinator	A person who co-ordinates System Tests.	
·		

Test Panel	A panel, whose composition is detailed in OC12 , which is responsible, inter alia, for considering a proposed System Test , and submitting a Proposal Report and a Test Programme .	
Test Programme	A programme submitted by the Test Panel to The Company , the Test Proposer , and each User identified by The Company under OC12.4.2.1, which states the switching sequence and proposed timings of the switching sequence, a list of those staff involved in carrying out the System Test (including those responsible for the site safety) and such other matters as the Test Panel deems appropriate.	
Test Proposer	The person who submits a Proposal Notice .	
The Company	National Grid Electricity System Operator Limited (NO: 11014226) whose registered office is at 1-3 Strand, London, WC2N 5EH as the person whose Transmission Licence Section C of such Transmission Licence has been given effect.	
The Company Control Engineer	The nominated person employed by The Company to direct the operation of the National Electricity Transmission System or such person as nominated by The Company .	
The Company Operational Strategy	The Company's operational procedures which form the guidelines for operation of the National Electricity Transmission System.	
Total Shutdown	The situation existing when all generation has ceased and there is no electricity supply from External Interconnections and, therefore, the Total System has shutdown with the result that it is not possible for the Total System to begin to function again without The Company's directions relating to a Black Start .	
Total System	The National Electricity Transmission System and all User Systems in the National Electricity Transmission System Operator Area.	
Trading Point	A commercial and, where so specified in the Grid Code, an operational interface between a User and The Company , which a User has notified to The Company .	
Transfer Date	Such date as may be appointed by the Secretary of State by order under section 65 of the Act .	
Transmission	Means, when used in conjunction with another term relating to equipment or a site, whether defined or not, that the associated term is to be read a being part of or directly associated with the National Electricit Transmission System , and not of or with the User System .	
Transmission Area	Has the meaning set out in the Transmission Licence of a Transmission Licensee .	
Transmission Connected Demand Facilities	A Demand Facility which has a Grid Supply Point to the National Electricity Transmission System	

Transmission DC Converter	Any Transmission Licensee Apparatus (or OTSUA that will become Transmission Licensee Apparatus at the OTSUA Transfer Time) used to convert alternating current electricity to direct current electricity, or vice versa. A Transmission Network DC Converter (which could include an HVDC System owned by an Offshore Transmission Licensee or Generator in respect of OTSUA) is a standalone operative configuration at a single site comprising one or more converter bridges, together with one or more converter transformers, converter control equipment, essential protective and switching devices and auxiliaries, if any, used for conversion.
Transmission Entry Capacity	Has the meaning set out in the CUSC.
Transmission Interface Circuit	In NGET's Transmission Area, a Transmission circuit which connects a System operating at a voltage above 132kV to a System operating at a voltage of 132kV or below
	In SHETL's Transmission Area and SPT's Transmission Area, a Transmission circuit which connects a System operating at a voltage of 132kV or above to a System operating at a voltage below 132kV.
Transmission Interface Point	means the electrical point of connection between the Offshore Transmission System and an Onshore Transmission System.
Transmission Interface Site	the site at which the Transmission Interface Point is located.
Transmission Licence	A licence granted under Section 6(1)(b) of the Act .
Transmission Licensee	The Company and any Onshore Transmission Licensee or Offshore Transmission Licensee
Transmission Site	Means a site owned (or occupied pursuant to a lease, licence or other agreement) by a Relevant Transmission Licensee in which there is a Connection Point . For the avoidance of doubt, a site owned by a User but occupied by the Relevant Transmission Licensee as aforesaid, is a Transmission Site .
Transmission System	Has the same meaning as the term "licensee's transmission system" in the Transmission Licence of a Transmission Licensee.
Turbine Time Constant	Determined at Registered Capacity , the turbine time constant will be construed in accordance with the principles of the IEEE Committee Report "Dynamic Models for Steam and Hydro Turbines in Power System Studies" published in 1973 which apply to such phrase.
Type A Power Generating Module	A Power-Generating Module (including an Electricity Storage Module) with a Grid Entry Point or User System Entry Point below 110 kV and a Maximum Capacity of 0.8 kW or greater but less than 1MW;
Type B Power Generating Module	A Power-Generating Module (including an Electricity Storage Module) with a Grid Entry Point or User System Entry Point below 110 kV and a Maximum Capacity of 1MW or greater but less than 10MW;
Type C Power Generating Module	A Power-Generating Module (including an Electricity Storage Module) with a Grid Entry Point or User System Entry Point below 110 kV and a Maximum Capacity of 10MW or greater but less than 50MW;

Type D Power Generating Module	A Power-generating Module (including an Electricity Storage Module): with a Grid Entry Point or User System Entry Point at, or greater than, 110 kV; or with a Grid Entry Point or User System Entry Point below 110 kV and
Unbalanced Load	with Maximum Capacity of 50MW or greater The situation where the Load on each phase is not equal.
Under-excitation Limiter	Shall have the meaning ascribed to that term in IEC 34-16-1:1991 [equivalent to British Standard BS4999 Section 116.1 : 1992].
Under Frequency Relay	An electrical measuring relay intended to operate when its characteristic quantity (Frequency) reaches the relay settings by decrease in Frequency .
Unit Board	A switchboard through which electrical power is supplied to the Auxiliaries of a Generating Unit and which is supplied by a Unit Transformer . It may be interconnected with a Station Board .
Unit Transformer	A transformer directly connected to a Generating Unit's terminals, and which supplies power to the Auxiliaries of a Generating Unit . Typical voltage ratios are 23/11kV and 15/6.6Kv.
Unit Load Controller Response Time Constant	The time constant, expressed in units of seconds, of the power output increase which occurs in the Secondary Response timescale in response to a step change in System Frequency .
Unresolved Issues	Any relevant Grid Code provisions or Bilateral Agreement requirements identified by The Company with which the relevant User has not demonstrated compliance to The Company's reasonable satisfaction at the date of issue of the Preliminary Operational Notification and/or Interim Operational Notification and/or Limited Operational Notification and/or Interim Operational Notification and/or Interim Operational Notification and/or Limited Operational Notification .
Urgent Modification	A Grid Code Modification Proposal treated or to be treated as an Urgent Modification in accordance with GR.23.
User	A term utilised in various sections of the Grid Code to refer to the persons using the National Electricity Transmission System , as more particularly identified in each section of the Grid Code concerned. In the Preface and the General Conditions the term means any person to whom the Grid Code applies. The term User includes an EU Code User and a GB Code User .
User Data File Structure	The file structure given at DRC 18 which will be specified by The Company which a Generator or DC Converter Station owner or HVDC System Owner must use for the purposes of CP to submit DRC data Schedules and information demonstrating compliance with the Grid Code and, where applicable, with the CUSC Contract(s), unless otherwise agreed by The Company.

User Development	In the PC means either User's Plant and/or Apparatus to be connected to the National Electricity Transmission System, or a Modification relating to a User's Plant and/or Apparatus already connected to the National Electricity Transmission System, or a proposed new connection or Modification to the connection within the User System.
User Self Certification of Compliance	A certificate, in the form attached at CP.A.2.(1) or ECP.A.2.(1) completed by a Generator or DC Converter Station owner or HVDC System Owner to which the Compliance Statement is attached which confirms that such Plant and Apparatus complies with the relevant Grid Code provisions and where appropriate, with the CUSC Contract (s), as identified in the Compliance Statement and, if appropriate, identifies any Unresolved Issues and/or any exceptions to such compliance and details the derogation(s) granted in respect of such exceptions.
User Site	A site owned (or occupied pursuant to a lease, licence or other agreement) by a User in which there is a Connection Point . For the avoidance of doubt, a site owned by a Relevant Transmission Licensee but occupied by a User as aforesaid, is a User Site .
User System	Any system owned or operated by a User comprising:-
	(a) Power Generating Modules or Generating Units; and/or
	(b) Systems consisting (wholly or mainly) of electric lines used for the distribution of electricity from Grid Supply Points or Generating Units or Power Generating Modules or other entry points to the point of delivery to Customers, or other Users;
	and Plant and/or Apparatus (including prior to the OTSUA Transfer Time, any OTSUA) connecting:-
	(c) The system as described above; or
	(d) Non-Embedded Customers equipment;
	to the National Electricity Transmission System or to the relevant other User System , as the case may be.
	The User System includes any Remote Transmission Assets operated by such User or other person and any Plant and/or Apparatus and meters owned or operated by the User or other person in connection with the distribution of electricity but does not include any part of the National Electricity Transmission System.
User System Entry Point	A point at which a Power Generating Module , Generating Unit , a CCGT Module or a CCGT Unit or a Power Park Module , or an Electricity Storage Module or a DC Converter or an HVDC Converter , as the case may be, which is Embedded connects to the User System .
Water Time Constant	Bears the meaning ascribed to the term "Water inertia time" in IEC308.
Website	The site established by The Company on the World-Wide Web for the exchange of information among Users and other interested persons in accordance with such restrictions on access as may be determined from time to time by The Company .

Weekly ACS Conditions	Means that particular combination of weather elements that gives rise to a level of peak Demand within a week, taken to commence on a Monday and end on a Sunday, which has a particular chance of being exceeded as a result of weather variation alone. This particular chance is determined such that the combined probabilities of Demand in all weeks of the year exceeding the annual peak Demand under Annual ACS Conditions is 50%, and in the week of maximum risk the weekly peak Demand under Weekly ACS Conditions is equal to the annual peak Demand under Annual ACS Conditions .
WG Consultation Alternative Request	Any request from an Authorised Electricity Operator; the Citizens Advice or the Citizens Advice Scotland, The Company or a Materially Affected Party for a Workgroup Alternative Grid Code Modification to be developed by the Workgroup expressed as such and which contains the information referred to at GR.20.13. For the avoidance of doubt any WG Consultation Alternative Request does not constitute either a Grid Code Modification Proposal or a Workgroup Alternative Grid Code Modification
Workgroup	a Workgroup established by the Grid Code Review Panel pursuant to GR.20.1;
Workgroup Consultation	as defined in GR.20.10, and any further consultation which may be directed by the Grid Code Review Panel pursuant to GR.20.17;
Workgroup Alternative Grid Code Modification	an alternative modification to the Grid Code Modification Proposal developed by the Workgroup under the Workgroup terms of reference (either as a result of a Workgroup Consultation or otherwise) and which is believed by a majority of the members of the Workgroup or by the chairman of the Workgroup to better facilitate the Grid Code Objectives than the Grid Code Modification Proposal or the current version of the Grid Code ;
Zonal System Security Requirements	That generation required, within the boundary circuits defining the System Zone , which when added to the secured transfer capability of the boundary circuits exactly matches the Demand within the System Zone .

A number of the terms listed above are defined in other documents, such as the **Balancing and Settlement Code** and the **Transmission Licence**. Appendix 1 sets out the current definitions from the other documents of those terms so used in the Grid Code and defined in other documents for ease of reference, but does not form part of the Grid Code.

GD.2 Construction of References

GD.2.1 In the Grid Code:

- a table of contents, a Preface, a Revision section, headings, and the Appendix to this Glossary and Definitions are inserted for convenience only and shall be ignored in construing the Grid Code;
- (ii) unless the context otherwise requires, all references to a particular paragraph, subparagraph, Appendix or Schedule shall be a reference to that paragraph, sub-paragraph Appendix or Schedule in or to that part of the Grid Code in which the reference is made;
- (iii) unless the context otherwise requires, the singular shall include the plural and vice versa, references to any gender shall include all other genders and references to persons shall include any individual, body corporate, corporation, joint venture, trust, unincorporated association, organisation, firm or partnership and any other entity, in each case whether or not having a separate legal personality;
- (iv) references to the words "include" or "including" are to be construed without limitation to the generality of the preceding words;

- (v) unless there is something in the subject matter or the context which is inconsistent therewith, any reference to an Act of Parliament or any Section of or Schedule to, or other provision of an Act of Parliament shall be construed at the particular time, as including a reference to any modification, extension or re-enactment thereof then in force and to all instruments, orders and regulations then in force and made under or deriving validity from the relevant Act of Parliament;
- (vi) where the Glossary and Definitions refers to any word or term which is more particularly defined in a part of the Grid Code, the definition in that part of the Grid Code will prevail (unless otherwise stated) over the definition in the Glossary & Definitions in the event of any inconsistency;
- (vii) a cross-reference to another document or part of the Grid Code shall not of itself impose any additional or further or co-existent obligation or confer any additional or further or coexistent right in the part of the text where such cross-reference is contained;
- (viii) nothing in the Grid Code is intended to or shall derogate from **The Company's** statutory or licence obligations;
- (ix) a "holding company" means, in relation to any person, a holding company of such person within the meaning of section 736, 736A and 736B of the Companies Act 1985 as substituted by section 144 of the Companies Act 1989 and, if that latter section is not in force at the **Transfer Date**, as if such latter section were in force at such date;
- (x) a "subsidiary" means, in relation to any person, a subsidiary of such person within the meaning of section 736, 736A and 736B of the Companies Act 1985 as substituted by section 144 of the Companies Act 1989 and, if that latter section is not in force at the **Transfer Date**, as if such latter section were in force at such date;
- (xi) references to time are to London time; and
- (xii) (a) Save where (b) below applies, where there is a reference to an item of data being expressed in a whole number of MW, fractions of a MW below 0.5 shall be rounded down to the nearest whole MW and fractions of a MW of 0.5 and above shall be rounded up to the nearest whole MW:
 - (b) In the case of the definition of **Registered Capacity** or **Maximum Capacity**, fractions of a MW below 0.05 shall be rounded down to one decimal place and fractions of a MW of 0.05 and above shall be rounded up to one decimal place.
- (xiii) For the purposes of the Grid Code, physical quantities such as current or voltage are not defined terms as their meaning will vary depending upon the context of the obligation. For example, voltage could mean positive phase sequence root mean square voltage, instantaneous voltage, phase to phase voltage, phase to earth voltage. The same issue equally applies to current, and therefore the terms current and voltage should remain undefined with the meaning depending upon the context of the application. European Regulation (EU) 2016/631 defines requirements of current and voltage but they have not been adopted as part of EU implementation for the reasons outlined above.

< END OF GLOSSARY & DEFINITIONS >

PLANNING CODE

(PC)

CONTENTS

(This contents page does not form part of the Grid Code)

Paragraph No/Title Paragraph No/Title	<u>ige Numbei</u>
PC.1 INTRODUCTION	2
PC.2 OBJECTIVE	3
PC.3 SCOPE	4
PC.4 PLANNING PROCEDURES	7
PC.5 PLANNING DATA	10
PC.6 PLANNING STANDARDS	13
PC.7 PLANNING LIAISON	14
PC.8 OTSDUW PLANNING LIAISION	15
APPENDIX A - PLANNING DATA REQUIREMENTS	16
PART 1 - STANDARD PLANNING DATA	20
PC.A.2 USER'S SYSTEM (AND OTSUA) DATA	20
PC.A.3 GENERATING UNIT AND DC CONVERTER DATA	28
PC.A.4 DEMAND AND ACTIVE ENERGY DATA	38
PART 2 - DETAILED PLANNING DATA	44
PC.A.5 POWER GENERATING MODULE, GENERATING UNIT, POWER PARK MODULE CONVERTER AND OTSDUW PLANT AND APPARATUS DATA	
PC.A.6 USERS' SYSTEM DATA	61
PC.A.7 ADDITIONAL DATA FOR NEW TYPES OF POWER STATIONS, DC CONVERTER STATIONS, OTSUA AND CONFIGURATIONS	
PART 3 – DETAILED PLANNING DATA	66
APPENDIX B - SINGLE LINE DIAGRAMS	69
APPENDIX C - TECHNICAL AND DESIGN CRITERIA	72
PART 1 – SHETL's TECHNICAL AND DESIGN CRITERIA	72
PART 2 - SPT's TECHNICAL AND DESIGN CRITERIA	74
APPENDIX D - DATA NOT DISCLOSED TO A RELEVANT TRANSMISSION LICENSEE	75
APPENDIX E - OFFSHORE TRANSMISSION SYSTEM AND OTSDUW PLANT AND APPARATUS TECHNICAL AND DESIGN CRITERIA	77
APPENDIX F - OTSDUW DATA AND INFORMATION AND OTSDUW NETWORK DATA AND INFORMATION	78

PC.1 INTRODUCTION

- PC.1.1 The Planning Code ("PC") specifies the technical and design criteria and procedures to be applied by The Company in the planning and development of the National Electricity Transmission System and to be taken into account by Users in the planning and development of their own Systems. In the case of OTSUA, the PC also specifies the technical and design criteria and procedures to be applied by the User in the planning and development of the OTSUA. It details information to be supplied by Users to The Company, and certain information to be supplied by The Company to Users. The Company has obligations under the STC to inform Relevant Transmission Licensees of data required for the planning of the National Electricity Transmission System. In respect of PC data, The Company may pass on User data to a Relevant Transmission Licensee, as detailed in PC.3.4 and PC.3.5.
- PC.1.1A Provisions of the **PC** which apply in relation to **OTSDUW** and **OTSUA** shall apply up to the **OTSUA Transfer Time**, whereupon such provisions shall (without prejudice to any prior noncompliance) cease to apply, without prejudice to the continuing application of provisions of the **PC** applying in relation to the relevant **Offshore Transmission System** and/or **Connection Site**.
- PC.1.1B As used in the **PC**:
 - (a) National Electricity Transmission System excludes OTSDUW Plant and Apparatus (prior to the OTSUA Transfer Time) unless the context otherwise requires;
 - (b) and User Development includes **OTSDUW** unless the context otherwise requires.
- PC.1.2 The **Users** referred to above are defined, for the purpose of the **PC**, in PC.3.1.
- PC.1.3 Development of the **National Electricity Transmission System**, involving its reinforcement or extension, will arise for a number of reasons including, but not limited to:
 - (a) a development on a **User System** already connected to the **National Electricity Transmission System**;
 - (b) the introduction of a new Connection Site or the Modification of an existing Connection Site between a User System and the National Electricity Transmission System;
 - (c) the cumulative effect of a number of such developments referred to in (a) and (b) by one or more **Users**.
- PC.1.4 Accordingly, the reinforcement or extension of the **National Electricity Transmission System** may involve work:
 - (a) at a substation at a Connection Site where User's Plant and/or Apparatus is connected to the National Electricity Transmission System (or in the case of OTSDUW, at a substation at an Interface Point);
 - (b) on transmission lines or other facilities which join that **Connection Site** (or in the case of **OTSDUW**, **Interface Point**) to the remainder of the **National Electricity Transmission System**;
 - (c) on transmission lines or other facilities at or between points remote from that **Connection Site** (or in the case of **OTSDUW**, **Interface Point**).
- PC.1.5 The time required for the planning and development of the **National Electricity Transmission System** will depend on the type and extent of the necessary reinforcement and/or extension work, the need or otherwise for statutory planning consent, the associated possibility of the need for a public inquiry and the degree of complexity in undertaking the new work while maintaining satisfactory security and quality of supply on the existing **National Electricity Transmission System**.

- PC1.6 For the avoidance of doubt and the purposes of the Grid Code, **DC Connected Power Park Modules** are treated as belonging to **Generators**. **Generators** who own **DC Connected Power Park Modules** would therefore be expected to supply the same data as required under this PC in respect of **Power Stations** comprising **Power Park Modules** other than where specific references to **DC Connected Power Park Modules** are made.
- As defined in the Glossary and Definitions, Electricity Storage Modules are treated as belonging to Storage User's who are a subset of Generator's. Generators who own or operate Electricity Storage Modules would therefore be expected to supply the same data as required under this PC in respect of Power Stations. In general, and not withstanding the requirements of the Glossary and Definitions and the wider requirements specified in the Planning Code, Generators in respect of Synchronous Electricity Storage Modules would be expected to supply the same data as required from Generators in respect of Non-Synchronous Electricity Storage Modules would be expected to supply the same data as required from Generators in respect of Power Park Modules.

PC.2 OBJECTIVE

- PC.2.1 The objectives of the **PC** are:
 - (a) to promote The Company/User interaction in respect of any proposed development on the User System which may impact on the performance of the National Electricity Transmission System or the direct connection with the National Electricity Transmission System;
 - (b) to provide for the supply of information to The Company from Users in order that planning and development of the National Electricity Transmission System can be undertaken in accordance with the relevant Licence Standards, to facilitate existing and proposed connections, and also to provide for the supply of certain information from The Company to Users in relation to short circuit current contributions and OTSUA; and
 - (c) to specify the **Licence Standards** which will be used in the planning and development of the **National Electricity Transmission System**; and
 - (d) to provide for the supply of information required by **The Company** from **Users** in respect of the following to enable **The Company** to carry out its duties under the **Act** and the **Transmission Licence**:
 - (i) Mothballed Generating Units, Mothballed Power Generating Modules; and
 - (ii) capability of gas-fired **Synchronous Power Generating Modules** or **Generating Units** to run using alternative fuels.

The Company will use the information provided under PC.2.1(d) in providing reports to the Authority and the Secretary of State and, where directed by the Authority or the Secretary of State to do so, The Company may publish the information. Where it is known by The Company that such information is intended for wider publication the information provided under PC.2.1(d) shall be aggregated such that individual data items should not be identifiable.

- (e) in the case of **OTSUA**:
 - (i) to specify the minimum technical and design criteria and procedures to be applied by **Users** in the planning and development of **OTSUA**; and thereby
 - (ii) to ensure that the **OTSUA** can from the **OTSUA Transfer Time** be operated as part of the **National Electricity Transmission System**; and
 - (iii) to provide for the arrangements and supply of information and data between **The Company** and a **User** to ensure that the **User** is able to undertake **OTSDUW**; and
 - (iv) to promote **The Company/User** interaction and co-ordination in respect of any proposed development on the **National Electricity Transmission System** or the **OTSUA**, which may impact on the **OTSUA** or (as the case may be) the **National Electricity Transmission System**.

PC.3 SCOPE

- PC.3.1 The **PC** applies to **The Company** and to **Users**, which in the **PC** means:
 - (a) Generators;
 - (b) Generators undertaking OTSDUW;
 - (c) Network Operators;
 - (d) Non-Embedded Customers;
 - (e) DC Converter Station owners; and
 - (f) HVDC System Owners

The above categories of **User** will become bound by the **PC** prior to them generating, operating, or consuming or importing/exporting, as the case may be, and references to the various categories (or to the general category) of **User** should, therefore, be taken as referring to them in that prospective role as well as to **Users** actually connected.

- PC.3.2 In the case of **Embedded Power Stations**, **Embedded DC Converter Stations** and **Embedded HVDC Systems**, unless provided otherwise, the following provisions apply with regard to the provision of data under this **PC**:
 - (a) each Generator shall provide the data direct to The Company in respect of (i) Embedded Large Power Stations, (ii) Embedded Medium Power Stations subject to a Bilateral Agreement and (iii) Embedded Small Power Stations which form part of a Cascade Hydro Scheme;
 - (b) each DC Converter owner or HVDC System Owner shall provide the data direct to The Company in respect of Embedded DC Converter Stations and Embedded HVDC Systems subject to a Bilateral Agreement;
 - (c) each Network Operator shall provide the data to The Company in respect of each Embedded Medium Power Station not subject to a Bilateral Agreement or Embedded DC Converter Station not subject to a Bilateral Agreement or Embedded HVDC System not subject to a Bilateral Agreement connected, or proposed to be connected within such Network Operator's System;
 - (d) although data is not normally required specifically on Embedded Small Power Stations or on Embedded installations of direct current converters which do not form a DC Converter Station or HVDC System under this PC, each Network Operator in whose System they are Embedded should provide the data (contained in the Appendix) to The Company in respect of Embedded Small Power Stations or Embedded installations of direct current converters which do not form a DC Converter Station or Embedded installations of HVDC Systems if:
 - it falls to be supplied pursuant to the application for a CUSC Contract or in the Statement of Readiness to be supplied in connection with a Bilateral Agreement and/or Construction Agreement, by the Network Operator; or
 - (ii) it is specifically requested by **The Company** in the circumstances provided for under this **PC**.
- PC.3.3 Certain data does not normally need to be provided in respect of certain **Embedded Power Stations**, **Embedded DC Converter Stations** or **Embedded HVDC Systems**, as provided in PC.A.1.12.

In summary, **Network Operators** are required to supply the following data in respect of **Embedded Medium Power Stations** not subject to a **Bilateral Agreement** or **Embedded DC Converter Stations** not subject to a **Bilateral Agreement** or **Embedded HVDC Systems** not subject to a **Bilateral Agreement** connected, or is proposed to be connected, within such **Network Operator's System**:

PC.A.2.1.1

PC.A.2.2.2 PC.A.2.5.5.2 PC.A.2.5.5.7 PC.A.2.5.6 PC.A.3.1.5

PC.A.3.2.2 PC.A.3.3.1

PC.A.3.4.1

PC.A.3.4.2

PC.A.5.2.2

PC.A.5.3.2

PC.A.5.4

PC.A.5.5.1

PC.A.5.6

For the avoidance of doubt **Network Operators** are required to supply the above data in respect of **Embedded Medium Power Stations** not subject to a **Bilateral Agreement** and **Embedded DC Converter Stations** not subject to a **Bilateral Agreement** and **Embedded HVDC Systems** not subject to a **Bilateral Agreement** which are located **Offshore** and which are connected or proposed to be connected within such **Network Operator's System**. This is because **Embedded Medium Power Stations** not subject to a **Bilateral Agreement** and **Embedded DC Converter Stations** not subject to a **Bilateral Agreement** and **Embedded HVDC Systems** not subject to a **Bilateral Agreement** are treated as **Onshore Generators** or **Onshore DC Converter Station** owners or **HVDC System Owners** connected to an **Onshore User System Entry Point**.

PC.3.4 The Company may provide to the Relevant Transmission Licensees any data which has been submitted to The Company by any Users pursuant to the following paragraphs of the PC. For the avoidance of doubt, The Company will not provide to the Relevant Transmission Licensees, the types of data specified in Appendix D. The Relevant Transmission Licensees' use of such data is detailed in the STC.

PC.A.2.2

PC.A.2.5

PC.A.3.1

PC.A.3.2.1

PC.A.3.2.2

PC.A.3.3

PC.A.3.4

PC.A.4

PC.A.5.1

PC.A.5.2

PC.A.5.3.1

PC.A.5.3.2

PC.A.5.4.1

PC.A.5.4.2

PC.A.5.4.3.1

PC.A.5.4.3.2

PC.A.5.4.3.3

PC.A.5.4.3.4

PC.A.7

(and in addition in respect of the data submitted in respect of the **OTSUA**)

PC.A.2.2

PC.A.2.3

PC.A.2.4

PC.A.2.5

PC.A.3.2.2

PC.A.3.3.1(d)

PC.A.4

PC.A.5.4.3.1

PC.A.5.4.3.2

PC.A.6.2

PC.A.6.3

PC.A.6.4

PC.A.6.5

PC.A.6.6

PC.A.7

PC.3.5 In addition to the provisions of PC.3.4 **The Company** may provide to the **Relevant Transmission Licensees** any data which has been submitted to **The Company** by any **Users** in respect of **Relevant Units** pursuant to the following paragraphs of the **PC**.

PC.A.2.3

PC.A.2.4

PC.A.5.5

PC.A.5.7

PC.A.6.2

PC.A.6.3

PC.A.6.4

PC.A.6.5

PC.A.6.6

- PC.3.6 In the case of Offshore Embedded Power Stations connected to an Offshore User System which directly connects to an Offshore Transmission System, any additional data requirements in respect of such Offshore Embedded Power Stations may be specified in the relevant Bilateral Agreement with the Network Operator or in any Bilateral Agreement between The Company and such Offshore Embedded Power Station.
- PC.3.7 In the case of a Generator undertaking OTSDUW connecting to an Onshore Network Operator's System, any additional requirements in respect of such OTSDUW Plant and Apparatus will be specified in the relevant Bilateral Agreement with the Generator. For the avoidance of doubt, requirements applicable to Generators undertaking OTSDUW and connecting to a Network Operator's User System, shall be consistent with those applicable requirements of Generators undertaking OTSDUW and connecting to a Transmission Interface Point.

PC.4 PLANNING PROCEDURES

- PC.4.1 Pursuant to Condition C11 of **The Company's Transmission Licence**, the means by which **Users** and proposed **Users** of the **National Electricity Transmission System** are able to assess opportunities for connecting to, and using, the **National Electricity Transmission System** comprise two distinct parts, namely:
 - (a) a statement, prepared by The Company under its Transmission Licence, showing for each of the seven succeeding Financial Years, the opportunities available for connecting to and using the National Electricity Transmission System and indicating those parts of the National Electricity Transmission System most suited to new connections and transport of further quantities of electricity (the "Seven Year Statement"); and
 - (b) an offer, in accordance with its Transmission Licence, by The Company to enter into a CUSC Contract. A Bilateral Agreement is to be entered into for every Connection Site (and for certain Embedded Power Stations and Embedded DC Converter Stations and Embedded HVDC Systems) within the first two of the following categories and the existing Bilateral Agreement may be required to be varied in the case of the third category:
 - existing Connection Sites (and for certain Embedded Power Stations) as at the Transfer Date;
 - (ii) new Connection Sites (and for certain Embedded Power Stations, Embedded DC Converter Stations and Embedded HVDC Systems) with effect from the Transfer Date;
 - (iii) a Modification at a Connection Site (or in relation to the connection of certain Embedded Power Stations, Embedded DC Converter Stations and Embedded HVDC Systems whether or not the subject of a Bilateral Agreement) (whether such Connection Site or connection exists on the Transfer Date or is new thereafter) with effect from the Transfer Date.

In this **PC**, unless the context otherwise requires, "connection" means any of these 3 categories.

PC.4.2 Introduction to Data

User Data

- PC.4.2.1 Under the **PC**, two types of data to be supplied by **Users** are called for:
 - (a) Standard Planning Data; and
 - (b) Detailed Planning Data,

as more particularly provided in PC.A.1.4.

- PC.4.2.2 The **PC** recognises that these two types of data, namely **Standard Planning Data** and **Detailed Planning Data**, are considered at three different levels:
 - (a) Preliminary Project Planning Data;
 - (b) Committed Project Planning Data; and
 - (c) Connected Planning Data,

as more particularly provided in PC.5

- PC.4.2.3 Connected Planning Data is itself divided into:
 - (a) Forecast Data;
 - (b) Registered Data; and
 - (c) Estimated Registered Data,

as more particularly provided in PC.5.5

PC.4.2.4 Clearly, an existing User proposing a new Connection Site (or Embedded Power Station or Embedded DC Converter Station or Embedded HVDC System) in the circumstances outlined in PC.4.1) will need to supply data both in an application for a Bilateral Agreement and under the PC in relation to that proposed new Connection Site (or Embedded Power Station or Embedded DC Converter Station or Embedded HVDC System in the circumstances outlined in PC.4.1) and that will be treated as Preliminary Project Planning Data or Committed Project Planning Data (as the case may be), but the data it supplies under the PC relating to its existing Connection Sites will be treated as Connected Planning Data.

Network Data

PC.4.2.5 In addition, there is **Network Data** supplied by **The Company** in relation to short circuit current contributions and in relation to **OTSUA**.

PC.4.3 Data Provision

PC.4.3.1 Seven Year Statement

To enable the Seven Year Statement to be prepared, each User is required to submit to The Company (subject to the provisions relating to Embedded Power Stations and Embedded DC Converter Stations and Embedded HVDC Systems in PC.3.2) both the Standard Planning Data and the Detailed Planning Data as listed in parts I and 2 of the Appendix. This data should be submitted in calendar week 24 of each year (although Network Operators may delay the submission of data (other than that to be submitted pursuant to PC.3.2(c) and PC.3.2(d)) until calendar week 28) and should cover each of the seven succeeding Financial Years (and in certain instances, the current year). Where, from the date of one submission to another, there is no change in the data (or in some of the data) to be submitted, instead of re-submitting the data, a User may submit a written statement that there has been no change from the data (or in some of the data) submitted the previous time. In addition, The Company will also use the Transmission Entry Capacity and Connection Entry Capacity data from the CUSC Contract, and any data submitted by Network Operators in relation to an Embedded Medium Power Station not subject to a Bilateral Agreement or Embedded DC Converter Station not subject to a Bilateral Agreement, or Embedded HVDC System not subject to a Bilateral Agreement in the preparation of the Seven Year Statement and to that extent the data will not be treated as confidential.

PC.4.3.2 Network Data

To enable **Users** to model the **National Electricity Transmission System** in relation to short circuit current contributions, **The Company** is required to submit to **Users** the **Network Data** as listed in Part 3 of the Appendix. The data will be submitted in week 42 of each year and will cover that **Financial Year**.

PC.4.3.3 To enable **Users** to model the **National Electricity Transmission System** in relation to **OTSUA**, **The Company** is required to submit to **Users** the **Network Data** as listed in Part 3 of Appendix A and Appendix F. **The Company** shall provide the **Network Data** with the offer of a CUSC Contract in the case of the data in PC F2.1 and otherwise in accordance with the **OTSDUW Development and Data Timetable**.

PC.4.4 Offer of Terms for Connection

PC.4.4.1 <u>CUSC Contract – Data Requirements/Offer Timing</u>

The completed application form for a **CUSC Contract** to be submitted by a **User** when making an application for a **CUSC Contract** will include:

(a) a description of the Plant and/or Apparatus (excluding OTSDUW Plant and Apparatus) to be connected to the National Electricity Transmission System or of the Modification relating to the User's Plant and/or Apparatus (and prior to the OTSUA Transfer Time, any OTSUA) already connected to the National Electricity Transmission System or, as the case may be, of the proposed new connection or Modification to the connection within the User System of the User, each of which shall be termed a "User Development" in the PC;

- (b) the relevant **Standard Planning Data** as listed in Part 1 of the Appendix (except in respect of any **OTSUA**); and
- (c) the desired **Completion Date** of the proposed **User Development**.
- (d) the desired Connection Entry Capacity and Transmission Entry Capacity.

The completed application form for a **CUSC Contract** will be sent to **The Company** as more particularly provided in the application form.

Any offer of a CUSC Contract will provide that it must be accepted by the applicant User within the period stated in the offer, after which the offer automatically lapses. Except as provided in the CUSC Contract, acceptance of the offer renders the National Electricity Transmission System works relating to that User Development, reflected in the offer, committed and binds both parties to the terms of the offer. The User shall then provide the Detailed Planning Data as listed in Part 2 of the Appendix (and in the case of OTSUA the Standard Planning Data as listed in Part 1 of Appendix A within the timeline provided in PC.A.1.4). In respect of DPD I this shall generally be provided within 28 days (or such shorter period as The Company may determine, or such longer period as The Company may agree, in any particular case) of acceptance of the offer and in respect of DPD II this shall generally be provided at least two years (or such longer period as The Company may determine, or such shorter period as The Company may agree, in any particular case or in the case of OTSUA such shorter period as The Company shall require) prior to the Completion Date of the User Development.

PC.4.4.3 <u>Embedded Development Agreement - Data Requirements</u>

The Network Operator shall submit the following data in relation to an Embedded Medium Power Station not subject to, or proposed to be subject to, a Bilateral Agreement or Embedded DC Converter Station not subject to, or proposed to be subject to, a Bilateral Agreement as soon as reasonably practicable after receipt of an application from an Embedded Person to connect to its System:

- (a) details of the proposed new connection or variation (having a similar effect on the Network Operator's System as a Modification would have on the National Electricity Transmission System) to the connection within the Network Operator's System, each of which shall be termed an "Embedded Development" in the PC (where a User Development has an impact on the Network Operator's System details shall be supplied in accordance with PC.4.4 and PC.4.5);
- (b) the relevant **Standard Planning Data** as listed in Part 1 of the Appendix;
- (c) the proposed completion date (having a similar meaning in relation to the **Network**Operator's System as Completion Date would have in relation to the **National**Electricity Transmission System) of the Embedded Development; and
- (d) upon the request of **The Company**, the relevant **Detailed Planning Data** as listed in Part 2 of the Appendix.
- PC.4.4.4 The **Network Operator** shall provide the **Detailed Planning Data** as listed in Part 2 of the Appendix. In respect of **DPD I** this shall generally be provided within 28 days (or such shorter period as **The Company** may determine, or such longer period as **The Company** may agree, in any particular case) of entry into the **Embedded Development Agreement** and in respect to **DPD II** this shall generally be provided at least two years (or such longer period as **The Company** may determine, or such shorter period as **The Company** may agree, in any particular case) prior to the **Completion Date** of the **Embedded Development**.

PC.4.5 <u>Complex Connections</u>

- PC.4.5.1 The magnitude and complexity of any National Electricity Transmission System extension or reinforcement will vary according to the nature, location and timing of the proposed User Development which is the subject of the application and it may, in the event, be necessary for The Company to carry out additional more extensive system studies to evaluate more fully the impact of the proposed User Development on the National Electricity Transmission System. Where The Company judges that such additional more detailed studies are necessary the offer may indicate the areas that require more detailed analysis and before such additional studies are required, the User shall indicate whether it wishes The Company to undertake the work necessary to proceed to make a revised offer within the 3 month period normally allowed or, where relevant, the timescale consented to by the Authority.
- PC.4.5.2 To enable **The Company** to carry out any of the above mentioned necessary detailed system studies, the **User** may, at the request of **The Company**, be required to provide some or all of the **Detailed Planning Data** listed in part 2 of the Appendix in advance of the normal timescale referred in PC.4.4.2 provided that **The Company** can reasonably demonstrate that it is relevant and necessary.
- PC.4.5.3 To enable **The Company** to carry out any necessary detailed system studies, the relevant **Network Operator** may, at the request of **The Company**, be required to provide some or all of the **Detailed Planning Data** listed in Part 2 of the Appendix in advance of the normal timescale referred in PC.4.4.4 provided that **The Company** can reasonably demonstrate that it is relevant and necessary.

PC.5 PLANNING DATA

PC.5.1 As far as the **PC** is concerned, there are three relevant levels of data in relation to **Users**. These levels, which relate to levels of confidentiality, commitment and validation, are described in the following paragraphs.

Preliminary Project Planning Data

- PC.5.2 At the time the **User** applies for a **CUSC Contract** but before an offer is made and accepted by the applicant **User**, the data relating to the proposed **User Development** will be considered as **Preliminary Project Planning Data**. Data relating to an **Embedded Development** provided by a **Network Operator** in accordance with PC.4.4.3, and PC.4.4.4 if requested, will be considered as **Preliminary Project Planning Data**. All such data will be treated as confidential within the scope of the provisions relating to confidentiality in the **CUSC**.
- PC.5.3 **Preliminary Project Planning Data** will normally only contain the **Standard Planning Data** unless the **Detailed Planning Data** is required in advance of the normal timescale to enable **The Company** to carry out additional detailed system studies as described in PC.4.5.

Committed Project Planning Data

- Once the offer for a CUSC Contract is accepted, the data relating to the User Development already submitted as Preliminary Project Planning Data, and subsequent data required by The Company under this PC, will become Committed Project Planning Data. Once an Embedded Person has entered into an Embedded Development Agreement, as notified to The Company by the Network Operator, the data relating to the Embedded Development already submitted as Preliminary Project Planning Data, and subsequent data required by The Company under the PC, will become Committed Project Planning Data. Such data, together with Connection Entry Capacity and Transmission Entry Capacity data from the CUSC Contract and other data held by The Company relating to the National Electricity Transmission System will form the background against which new applications by any User will be considered and against which planning of the National Electricity Transmission System will be undertaken. Accordingly, Committed Project Planning Data, Connection Entry Capacity and Transmission Entry Capacity data will not be treated as confidential to the extent that The Company:
 - (a) is obliged to use it in the preparation of the **Seven Year Statement** and in any further information given pursuant to the **Seven Year Statement**;

- (b) is obliged to use it when considering and/or advising on applications (or possible applications) of other **Users** (including making use of it by giving data from it, both orally and in writing, to other **Users** making an application (or considering or discussing a possible application) which is, in **The Company's** view, relevant to that other application or possible application);
- (c) is obliged to use it for operational planning purposes;
- (d) is obliged under the terms of an **Interconnection Agreement** to pass it on as part of system information on the **Total System**;
- (e) is obliged to disclose it under the **STC**;
- (f) is obliged to use and disclose it in the preparation of the **Offshore Development Information Statement**;
- (g) is obliged to use it in order to carry out its **EMR Functions** or is obliged to disclose it under an **EMR Document**.

To reflect different types of data, **Preliminary Project Planning Data** and **Committed Project Planning Data** are themselves divided into:

- (a) those items of **Standard Planning Data** and **Detailed Planning Data** which will always be forecast, known as **Forecast Data**; and
- (b) those items of **Standard Planning Data** and **Detailed Planning Data** which relate to **Plant** and/or **Apparatus** which upon connection will become **Registered Data**, but which prior to connection, for the seven succeeding **Financial Years**, will be an estimate of what is expected, known as **Estimated Registered Data**.

Connected Planning Data

PC.5.5 The PC requires that, at the time that a **Statement of Readiness** is submitted under the **Bilateral Agreement** and/or **Construction Agreement**, any estimated values assumed for planning purposes are confirmed or, where practical, replaced by validated actual values and by updated estimates for the future and by updated forecasts for forecast data items such as **Demand**. In the case of an **Embedded Development** the relevant **Network Operator** will update any estimated values assumed for planning purposes with validated actual values as soon as reasonably practicable after energisation. This data is then termed **Connected Planning Data**.

To reflect the three types of data referred to above, **Connected Planning Data** is itself divided into:

- (a) those items of **Standard Planning Data** and **Detailed Planning Data** which will always be forecast data, known as **Forecast Data**; and
- (b) those items of Standard Planning Data and Detailed Planning Data which upon connection become fixed (subject to any subsequent changes), known as Registered Data; and
- (c) those items of Standard Planning Data and Detailed Planning Data which for the purposes of the Plant and/or Apparatus concerned as at the date of submission are Registered Data but which for the seven succeeding Financial Years will be an estimate of what is expected, known as Estimated Registered Data,

as more particularly provided in the Appendix.

PC.5.6 Connected Planning Data, together with Connection Entry Capacity and Transmission Entry Capacity data from the CUSC Contract, and other data held by The Company relating to the National Electricity Transmission System, will form the background against which new applications by any User will be considered and against which planning of the National Electricity Transmission System will be undertaken. Accordingly, Connected Planning Data, Connection Entry Capacity and Transmission Entry Capacity data will not be treated as confidential to the extent that The Company:

- (a) is obliged to use it in the preparation of the **Seven Year Statement** and in any further information given pursuant to the **Seven Year Statement**;
- (b) is obliged to use it when considering and/or advising on applications (or possible applications) of other **Users** (including making use of it by giving data from it, both orally and in writing, to other **Users** making an application (or considering or discussing a possible application) which is, in **The Company's** view, relevant to that other application or possible application);
- (c) is obliged to use it for operational planning purposes;
- (d) is obliged under the terms of an **Interconnection Agreement** to pass it on as part of system information on the **Total System**.
- (e) is obliged to disclose it under the **STC**;
- (f) is obliged to use it in order to carry out its **EMR Functions** or is obliged to disclose it under an **EMR Document**.
- PC.5.7 Committed Project Planning Data and Connected Planning Data will each contain both Standard Planning Data and Detailed Planning Data.

PC.6 PLANNING STANDARDS

- PC.6.1 The Company shall apply the Licence Standards relevant to it in the planning and development of the National Electricity Transmission System. The Company shall procure that each Relevant Transmission Licensee shall apply the Licence Standards relevant to planning and development, in the planning and development of the Transmission System of each Relevant Transmission Licensee and that a User shall apply the Licence Standards relevant to planning and development, in the planning and development of the OTSUA.
- PC.6.2 In relation to Scotland, Appendix C lists the technical and design criteria applied in the planning and development of each Relevant Transmission Licensee's Transmission System. The criteria are subject to review in accordance with each Relevant Transmission Licensee's Transmission Licensee conditions. Copies of these documents are available from The Company on request. The Company will charge an amount sufficient to recover its reasonable costs incurred in providing this service.
- PC.6.3 In relation to **Offshore**, Appendix E lists the technical and design criteria applied in the planning and development of each **Offshore Transmission System**. The criteria are subject to review in accordance with each **Offshore Transmission Licensee's Transmission Licence** conditions. Copies of these documents are available from **The Company** on request. **The Company** will charge an amount sufficient to recover its reasonable costs incurred in providing this service.
- PC.6.4 In planning and developing the **OTSUA**, the **User** shall comply with (and shall ensure that (as at the **OTSUA Transfer Time**) the **OTSUA** comply with):
 - (a) the Licence Standards; and
 - (b) the technical and design criteria in Appendix E.
- PC.6.5 In addition the **User** shall, in the planning and development of the **OTSUA**, to the extent it is reasonable and practicable to do so, take into account the reasonable requests of **The Company** (in the context of its obligation to develop an efficient, co-ordinated and economical system) relating to the planning and development of the **National Electricity Transmission System**.
- PC.6.6 In planning and developing the **OTSUA** the **User** shall take into account the **Network Data** provided to it by **The Company** under Part 3 of Appendix A and Appendix F, and act on the basis that the **Plant** and **Apparatus** of other **Users** complies with:
 - (a) the minimum technical design and operational criteria and performance requirements set out in either CC.6.1, CC.6.2, CC.6.3 and CC.6.4 or ECC.6.1, ECC.6.2, ECC.6.3 and ECC.6.4; or
 - (b) such other criteria or requirements as **The Company** may from time to time notify the **User** are applicable to specified **Plant** and **Apparatus** pursuant to PC.6.7.
- PC.6.7 Where the **OTSUA** are likely to be materially affected by the design or operation of another **User's Plant** and **Apparatus** and **The Company**:
 - (a) becomes aware that such other **User** has or is likely to apply for a derogation under the Grid Code;
 - (b) is itself applying for a derogation under the Grid Code in relation to the Connection Site
 on which such other User's Plant and Apparatus is located or to which it otherwise
 relates; or
 - (c) is otherwise notified by such other **User** that specified **Plant** or **Apparatus** is normally capable of operating at levels better than those set out in CC.6.1, CC.6.2, CC.6.3 and CC.6.4 or ECC.6.1, ECC.6.2, ECC.6.3 and ECC.6.4,

The Company shall notify the User.

- PC.7 PLANNING LIAISON
- PC.7.1 This PC.7 applies to **The Company** and **Users**, which in PC.7 means
 - (a) Network Operators
 - (b) Non-Embedded Customers
- PC.7.2 As described in PC.2.1 (b) an objective of the **PC** is to provide for the supply of information to **The Company** by **Users** in order that planning and development of the **National Electricity Transmission System** can be undertaken in accordance with the relevant **Licence Standards**.
- PC.7.3 **Grid Code** amendment B/07 ("Amendment B/07") implemented changes to the **Grid Code** which included amendments to the datasets provided by both **The Company** and **Users** to inform the planning and development of the **National Electricity Transmission System**. The **Authority** has determined that these changes are to have a phased implementation. Consequently the provisions of Appendix A to the **PC** include specific years (ranging from 2009 to 2011) with effect from which certain of the specific additional obligations brought about by Amendment B/07 on **The Company** and **Users** are to take effect. Where specific provisions of paragraphs PC.A.4.1.4, PC.A.4.2.2 and PC.A.4.3.1 make reference to a year, then the obligation on **The Company** and the **Users** shall be required to be met by the relevant calendar week (as specified within such provision) in such year.

In addition to the phased implementation of aspects of Amendment B/07, **Users** must discuss and agree with **The Company** by no later than 31 March 2009 a more detailed implementation programme to facilitate the implementation of **Grid Code** amendment B/07.

It shall also be noted by **The Company** and **Users** that the dates set out in PC.A.4 are intended to be minimum requirements and are not intended to restrict a **User** and **The Company** from the earlier fulfilment of the new requirements prior to the specified years. Where **The Company** and a **User** wish to follow the new requirements from earlier dates than those specified, this will be set out in the more detailed implementation programme agreed between **The Company** and the **User**.

The following provisions of PC.7 shall only apply with effect from 1 January 2011.

- PC.7.4 Following the submission of data by a **User** in or after week 24 of each year **The Company** will provide information to **Users** by calendar week 6 of the following year regarding the results of any relevant assessment that has been made by **The Company** based upon such data submissions to verify whether **Connection Points** are compliant with the relevant **Licence Standards**.
- PC.7.5 Where the result of any assessment identifies possible future non-compliance with the relevant **Licence Standards**, **The Company** shall notify the relevant **User(s)** of this fact as soon as reasonably practicable and shall agree with **Users** any opportunity to resubmit data to allow for a reassessment in accordance with PC.7.6.
- PC.7.6 Following any notification by **The Company** to a **User** pursuant to PC.7.5 and following any further discussions held between the **User** and **The Company**:
 - (i) The Company and the User may agree revisions to the Access Periods for relevant Transmission Interface Circuits, such revisions shall not however permit an Access Period to be less than 4 continuous weeks in duration or to occur other than between calendar weeks 10 and 43 (inclusive); and/or,
 - (ii) The **User** shall as soon as reasonably practicable
 - (a) submit further relevant data to **The Company** that is to **The Company's** reasonable satisfaction; and/or,
 - (b) modify data previously submitted pursuant to this **PC**, such modified data to be to **The Company's** reasonable satisfaction; and/or
 - (c) notify **The Company** that it is the intention of the **User** to leave the data as originally submitted to **The Company** to stand as its submission.

- PC.7.7 Where an **Access Period** is amended pursuant to PC.7.6 (i) **The Company** shall notify **The Authority** that it has been necessary to do so.
- PC.7.8 When it is agreed that any resubmission of data is unlikely to confirm future compliance with the relevant **Licence Standards** the **Modification** process in the **CUSC** may apply.
- PC.7.9 A **User** may at any time, in writing, request further specified **National Electricity Transmission System** network data in order to provide **The Company** with viable **User**network data (as required under this **PC**). Upon receipt of such request **The Company** shall consider, and where appropriate provide such **National Electricity Transmission System**network data to the **User** as soon as reasonably practicable following the request.

PC.8 OTSDUW PLANNING LIAISON

- PC.8.1 This PC.8 applies to **The Company** and **Users**, which in PC.8 means **Users** undertaking **OTSDUW**
- PC.8.2 As described in PC.2.1 (e) an objective of the **PC** is to provide for the supply of information between **The Company** and a **User** undertaking **OTSDUW** in order that planning and development of the **National Electricity Transmission System** can be co-ordinated.
- PC.8.3 Where the **OTSUA** also require works to be undertaken by any **Relevant Transmission Licensee** on its **Transmission System The Company** and the **User** shall throughout the construction and commissioning of such works:
 - (a) co-operate and assist each other in the development of co-ordinated construction programmes or any other planning or, in the case of **The Company**, analysis it undertakes in respect of the works; and
 - (b) provide to each other all information relating to, in the case of the User its own works and, in the case of The Company, the works on the Transmission Systems reasonably necessary to assist each other in the performance of that other's part of the works, and shall use all reasonable endeavours to co-ordinate and integrate their respective part of the works; and

the **User** shall plan and develop the **OTSUA**, taking into account to the extent that it is reasonable and practicable to do so the reasonable requests of **The Company** relating to the planning and development of the **National Electricity Transmission System**.

PC.8.4 Where **The Company** becomes aware that changes made to the investment plans of any **Relevant Transmission Licensee** may have a material effect on the **OTSUA**, **The Company** shall notify the **User** and provide the **User** with the necessary information about the relevant **Transmission Systems** sufficient for the **User** to assess the impact on the **OTSUA**.

APPENDIX A - PLANNING DATA REQUIREMENTS

PC.A.1 INTRODUCTION

PC.A.1.1 The Appendix specifies data requirements to be submitted to **The Company** by **Users**, and in certain circumstances to **Users** by **The Company**.

PC.A.1.2 Submissions by Users

- (a) Planning data submissions by **Users** shall be:
 - with respect to each of the seven succeeding Financial Years (other than in the case of Registered Data which will reflect the current position and data relating to Demand forecasts which relates also to the current year);
 - (ii) provided by **Users** in connection with a **CUSC Contract** (PC.4.1, PC.4.4 and PC.4.5 refer);
 - (iii) provided by **Users** on a routine annual basis in calendar week 24 of each year to maintain an up-to-date data bank (although **Network Operators** may delay the submission of data (other than that to be submitted pursuant to PC.3.2(c) and PC.3.2(d)) until calendar week 28). In addition the structural data in DRC Schedule 5 Tables 5(a), 5(b), 5(d), 5(e), 5(f) and DRC Schedule 13 (Lumped system susceptance (PC.A.2.3) only) provided by **Network Operators** by calendar week 28 shall be updated by calendar week 50 of each year (again which may be delayed as above until week 2 of the following calendar year). Where from the date of one annual (or in the case of Schedule 5 or Schedule 13 the calendar week 50) submission to another there is no change in the data (or in some of the data) to be submitted, instead of re-submitting the data, a **User** may submit a written statement that there has been no change from the data (or some of the data) submitted the previous time; and
 - (iv) provided by **Network Operators** in connection with **Embedded Development** (PC.4.4 refers).
- (b) Where there is any change (or anticipated change) in Committed Project Planning Data or a significant change in Connected Planning Data in the category of Forecast Data or any change (or anticipated change) in Connected Planning Data in the categories of Registered Data or Estimated Registered Data supplied to The Company under the PC, notwithstanding that the change may subsequently be notified to The Company under the PC as part of the routine annual update of data (or that the change may be a Modification under the CUSC), the User shall, subject to PC.A.3.2.3 and PC.A.3.2.4, notify The Company in writing without delay.
- (c) The notification of the change will be in the form required under this **PC** in relation to the supply of that data and will also contain the following information:
 - (i) the time and date at which the change became, or is expected to become, effective:
 - (ii) if the change is only temporary, an estimate of the time and date at which the data will revert to the previous registered form.
- (d) The routine annual update of data, referred to in (a)(iii) above, need not be submitted in respect of Small Power Stations or Embedded installations of direct current converters which do not form a DC Converter Station or HVDC System (except as provided in PC.3.2.(c)), or unless specifically requested by The Company, or unless otherwise specifically provided.

PC.A.1.3 Submissions by The Company

Network Data release by The Company shall be:

(a) with respect to the current Financial Year;

(b) provided by **The Company** on a routine annual basis in calendar week 42 of each year. Where from the date of one annual submission to another there is no change in the data (or in some of the data) to be released, instead of repeating the data, **The Company** may release a written statement that there has been no change from the data (or some of the data) released the previous time.

The three parts of the Appendix

PC.A.1.4 The data requirements listed in this Appendix are subdivided into the following four parts:

(a) Standard Planning Data

This data (as listed in Part 1 of the Appendix) is first to be provided by a **User** at the time of an application for a **CUSC Contract** or in accordance with PC.4.4.3. It comprises data which is expected normally to be sufficient for **The Company** to investigate the impact on the **National Electricity Transmission System** of any **User Development** or **Embedded Development** associated with an application by the **User** for a **CUSC Contract**. **Users** should note that the term **Standard Planning Data** also includes the information referred to in PC.4.4.1.(a) and PC.4.4.3.(a). In the case of **OTSUA**, this data is first to be provided by a **User** in accordance with the time line in Appendix F.

(b) Detailed Planning Data

This data (as listed in Part 2 of the Appendix) includes both **DPD I** and **DPD II** and is to be provided in accordance with PC.4.4.2 and PC.4.4.4. It comprises additional, more detailed, data not normally expected to be required by **The Company** to investigate the impact on the **National Electricity Transmission System** of any **User Development** associated with an application by the **User** for a **CUSC Contract** or **Embedded Development Agreement**. **Users** and **Network Operators** in respect of **Embedded Developments** should note that the term **Detailed Planning Data** also includes **Operation Diagrams** and **Site Common Drawings** produced in accordance with the **CC** and **ECC**.

The User may, however, be required by The Company to provide the Detailed Planning Data in advance of the normal timescale before The Company can make an offer for a CUSC Contract, as explained in PC.4.5.

(c) Network Data

The data requirements for **The Company** in this Appendix are in Part 3.

(d) Offshore Transmission System (OTSDUW) Data

Generators who are undertaking **OTSDUW** are required to submit data in accordance with Appendix A as summarised in Schedule 18 of the **Data Registration Code**.

Forecast Data, Registered Data and Estimated Registered Data

- PC.A.1.5 As explained in PC.5.4 and PC.5.5, **Planning Data** is divided into:
 - (i) those items of **Standard Planning Data** and **Detailed Planning Data** known as **Forecast Data**; and
 - (ii) those items of **Standard Planning Data** and **Detailed Planning Data** known as **Registered Data**; and
 - (iii) those items of **Standard Planning Data** and **Detailed Planning Data** known as **Estimated Registered Data**.
- PC.A.1.6 The following paragraphs in this Appendix relate to **Forecast Data**:

3.2.2(b), (h), (i) and (j)

4.2.1

4.3.1

4.3.2

4.3.3 4.3.4 4.3.5 4.5 4.7.1 5.2.1 5.2.2

PC.A.1.7 The following paragraphs in this Appendix relate to **Registered Data** and **Estimated Registered Data**:

2.2.1

5.6.1

2.2.4

2.2.5

2.2.6

2.3.1

2.4.1

2.4.2

3.2.2(a), (c), (d), (e), (f), (g), (i)(part) and (j)

3.4.1

3.4.2

4.2.3

4.5(a)(i), (a)(iii), (b)(i) and (b)(iii)

4.6

5.3.2

5.4

5.4.2

5.4.3

5.5

5.6.3

6.2

6.3

- PC.A.1.8 The data supplied under PC.A.3.3.1, although in the nature of **Registered Data**, is only supplied either upon application for a **CUSC Contract**, or in accordance with PC.4.4.3, and therefore does not fall to be **Registered Data**, but is **Estimated Registered Data**.
- PC.A.1.9 **Forecast Data** must contain the **User's** best forecast of the data being forecast, acting as a reasonable and prudent **User** in all the circumstances.

- PC.A.1.10

 Registered Data must contain validated actual values, parameters or other information (as the case may be) which replace the estimated values, parameters or other information (as the case may be) which were given in relation to those data items when they were Preliminary Project Planning Data and Committed Project Planning Data, or in the case of changes, which replace earlier actual values, parameters or other information (as the case may be). Until amended pursuant to the Grid Code, these actual values, parameters or other information (as the case may be) will be the basis upon which the National Electricity Transmission System is planned, designed, built and operated in accordance with, amongst other things, the Transmission Licences, the STC and the Grid Code, and on which The Company therefore relies. In following the processes set out in the BC, The Company will use the data which has been supplied to it under the BC and the data supplied under OC2 in relation to Gensets, but the provision of such data will not alter the data supplied by Users under the PC, which may only be amended as provided in the PC.
- PC.A.1.11 **Estimated Registered Data** must contain the **User's** best estimate of the values, parameters or other information (as the case may be), acting as a reasonable and prudent **User** in all the circumstances.
- PC.A.1.12 Certain data does not need to be supplied in relation to **Embedded Power Stations** or **Embedded DC Converter Stations** or **Embedded HVDC Systems** where these are connected at a voltage level below the voltage level directly connected to the **National Electricity Transmission System** except in connection with a **CUSC Contract**, or unless specifically requested by **The Company**.
- PC.A.1.13 In the case of **OTSUA**, Schedule 18 of the **Data Registration Code** shall be construed in such a manner as to achieve the intent of such provisions by reference to the **OTSUA** and the **Interface Point** and all **Connection Points**.

PART 1 - STANDARD PLANNING DATA

PC.A.2 USER'S SYSTEM (AND OTSUA) DATA

PC.A.2.1 Introduction

- PC.A.2.1.1 Each User, whether connected directly via an existing Connection Point to the National Electricity Transmission System, or seeking such a direct connection, or providing terms for connection of an Offshore Transmission System to its User System to The Company, shall provide The Company with data on its User System (and any OTSUA) which relates to the Connection Site (and in the case of OTSUA, the Interface Point) and/or which may have a system effect on the performance of the National Electricity Transmission System. Such data, current and forecast, is specified in PC.A.2.2 to PC.A.2.5. In addition each Generator in respect of its Embedded Large Power Stations and its Embedded Medium Power Stations subject to a Bilateral Agreement and each Network Operator in respect of Embedded Medium Power Stations within its System not subject to a Bilateral Agreement connected to the Subtransmission System, shall provide The Company with fault infeed data as specified in PC.A.2.5.5 and each DC Converter owner with Embedded DC Converter Stations subject to a Bilateral Agreement and Embedded HVDC System Owner subject to a Bilateral Agreement, or Network Operator in the case of Embedded DC Converter Stations not subject to a Bilateral Agreement or Embedded HVDC Systems not subject to a Bilateral Agreement, connected to the Subtransmission System shall provide **The Company** with fault infeed data as specified in PC.A.2.5.6.
- PC.A.2.1.2 Each **User** must reflect the system effect at the **Connection Site(s)** of any third party **Embedded** within its **User System** whether existing or proposed.
- PC.A.2.1.3 Although not itemised here, each User with an existing or proposed Embedded Small Power Station, Embedded Medium Power Station, Embedded DC Converter Station or HVDC System with a Registered Capacity of less than 100MW or an Embedded installation of direct current converters which does not form a DC Converter Station or HVDC System in its User System may, at The Company's reasonable discretion, be required to provide additional details relating to the User's System between the Connection Site and the existing or proposed Embedded Small Power Station, Embedded Medium Power Station, Embedded DC Converter Station, Embedded HVDC System or Embedded installation of direct current converters which does not form a DC Converter Station or Embedded installation which does not form an HVDC System.
- PC.A.2.1.4 At **The Company's** reasonable request, additional data on the **User's System** (or **OTSUA**) will need to be supplied. Some of the possible reasons for such a request, and the data required, are given in PC.A.6.2, PC.A.6.4, PC.A.6.5 and PC.A.6.6.
- PC.A.2.2 User's System (and OTSUA) Layout
- PC.A.2.2.1 Each **User** shall provide a **Single Line Diagram**, depicting both its existing and proposed arrangement(s) of load current carrying **Apparatus** relating to both existing and proposed **Connection Points** (including in the case of **OTSUA**, **Interface Points**).
- PC.A.2.2.2 The Single Line Diagram (three examples are shown in Appendix B) must include all parts of the User System operating at Supergrid Voltage throughout Great Britain and, in Scotland and Offshore, also all parts of the User System operating at 132kV, and those parts of its Subtransmission System at any Transmission Site. In the case of OTSDUW, the Single Line Diagram must also include the OTSUA. In addition, the Single Line Diagram must include all parts of the User's Subtransmission System (and any OTSUA) throughout Great Britain operating at a voltage greater than 50kV, and, in Scotland and Offshore, also all parts of the User's Subtransmission System (and any OTSUA) operating at a voltage greater than 30kV, which, under either intact network or Planned Outage conditions:-
 - (a) normally interconnects separate **Connection Points**, or busbars at a **Connection Point** which are normally run in separate sections; or

(b) connects Embedded Large Power Stations, or Embedded Medium Power Stations, or Embedded DC Converter Stations, or Embedded HVDC Systems or Offshore Transmission Systems connected to the User's Subtransmission System, to a Connection Point or Interface Point.

At the User's discretion, the Single Line Diagram can also contain additional details of the User's Subtransmission System (and any OTSUA) not already included above, and also details of the transformers connecting the User's Subtransmission System to a lower voltage. With The Company's agreement, the Single Line Diagram can also contain information about the User's System (and any OTSUA) at a voltage below the voltage of the Subtransmission System.

The Single Line Diagram for a Power Park Module (including DC Connected Power Park Modules) must include all parts of the System connecting generating equipment to the Grid Entry Point (or User System Entry Point if Embedded). As an alternative the User may choose to submit a Single Line Diagram with the equipment between the equivalent Power Park Unit and the Common Collection Busbar reduced to an electrically equivalent network. The format for a Single Line Diagram for a Power Park Module (including DC Connected Power Park Modules) electrically equivalent system is shown in Appendix B.

The **Single Line Diagram** must include the points at which **Demand** data (provided under PC.A.4.3.4 and PC.A.4.3.5, or in the case of **Generators**, PC.A.5.) and fault infeed data (provided under PC.A.2.5) are supplied.

- PC.A.2.2.3 The above mentioned **Single Line Diagram** shall include:
 - (a) electrical circuitry (ie. overhead lines, identifying which circuits are on the same towers, underground cables, power transformers, reactive compensation equipment and similar equipment); and
 - (b) substation names (in full or abbreviated form) with operating voltages.

In addition, for all load current carrying **Apparatus** operating at **Supergrid Voltage** throughout **Great Britain** and, in Scotland and **Offshore**, also at 132kV, (and any **OTSUA**) the **Single Line Diagram** shall include:-

- (a) circuit breakers
- (b) phasing arrangements.
- PC.A.2.2.3.1 For the avoidance of doubt, the **Single Line Diagram** to be supplied is in addition to the **Operation Diagram** supplied pursuant to CC.7.4.
- PC.A.2.2.4 For each circuit shown on the **Single Line Diagram** provided under PC.A.2.2.1, each **User** shall provide the following details relating to that part of its **User System** and **OTSUA**:

Circuit Parameters:

Rated voltage (kV)

Operating voltage (kV)

Positive phase sequence reactance

Positive phase sequence resistance

Positive phase sequence susceptance

Zero phase sequence reactance (both self and mutual)

Zero phase sequence resistance (both self and mutual)

Zero phase sequence susceptance (both self and mutual)

In the case of a **Single Line Diagram** for a **Power Park Module** (including **DC Connected Power Park Modules**) electrically equivalent system the data should be on a 100MVA base. Depending on the equivalent system supplied an equivalent tap changer range may need to be supplied. Similarly mutual values, rated voltage and operating voltage may be inappropriate. Additionally in the case of **OTSUA**, seasonal maximum continuous ratings and circuit lengths are to be provided in addition to the data required under PC.A.2.2.4.

PC.A.2.2.5 For each transformer shown on the **Single Line Diagram** provided under PC.A.2.2.1, each **User** (including those undertaking **OTSDUW**) shall provide the following details:

Rated MVA

Voltage Ratio

Winding arrangement

Positive sequence reactance (max, min and nominal tap)

Positive sequence resistance (max, min and nominal tap)

Zero sequence reactance

PC.A.2.2.5.1. In addition, for all interconnecting transformers between the User's Supergrid Voltage System and the User's Subtransmission System throughout Great Britain and, in Scotland and Offshore, also for all interconnecting transformers between the User's 132kV System and the User's Subtransmission System (and any OTSUA) the User shall supply the following information:-

Tap changer range

Tap change step size

Tap changer type: on load or off circuit

Earthing method: Direct, resistance or reactance

Impedance (if not directly earthed)

- PC.A.2.2.6 Each **User** shall supply the following information about the **User's** equipment installed at a **Transmission Site** (or in the case of **OTSUA**, all **OTSDUW Plant and Apparatus**):-
 - (a) Switchgear. For all circuit breakers:-

Rated voltage (kV)

Operating voltage (kV)

Rated 3-phase rms short-circuit breaking current, (kA)

Rated 1-phase rms short-circuit breaking current, (kA)

Rated 3-phase peak short-circuit making current, (kA)

Rated 1-phase peak short-circuit making current, (kA)

Rated rms continuous current (A)

DC time constant applied at testing of asymmetrical breaking abilities (secs)

In the case of **OTSDUW Plant and Apparatus** operating times for circuit breaker, **Protection**, trip relay and total operating time should be provided.

(b) <u>Substation Infrastructure.</u> For the substation infrastructure (including, but not limited to, switch disconnectors, disconnectors, current transformers, line traps, busbars, through bushings, etc):-

Rated 3-phase rms short-circuit withstand current (kA)

Rated 1-phase rms short-circuit withstand current (kA).

Rated 3-phase short-circuit peak withstand current (kA)

Rated 1- phase short-circuit peak withstand current (kA)

Rated duration of short circuit withstand (secs)

Rated rms continuous current (A)

A single value for the entire substation may be supplied, provided it represents the most restrictive item of current carrying apparatus.

PC.A.2.2.7 In the case of **OTSUA** the following should also be provided

- (a) Automatic switching scheme schedules including diagrams and an explanation of how the **System** will operate and what plant will be affected by the schemes **Operation**.
- (b) **Intertripping** schemes both Generation and **Demand**. In each case a diagram of the scheme and an explanation of how the **System** will operate and what **Plant** will be affected by the schemes **Operation**.

PC.A.2.3 <u>Lumped System Susceptance</u>

- PC.A.2.3.1 For all parts of the **User's Subtransmission System** (and any **OTSUA**) which are not included in the **Single Line Diagram** provided under PC.A.2.2.1, each **User** shall provide the equivalent lumped shunt susceptance at nominal **Frequency**.
- PC.A.2.3.1.1 This should include shunt reactors connected to cables which are <u>not</u> normally in or out of service independent of the cable (ie. they are regarded as part of the cable).
- PC.A.2.3.1.2 This should <u>not</u> include:
 - (a) independently switched reactive compensation equipment connected to the **User's System** specified under PC.A.2.4, or;
 - (b) any susceptance of the **User's System** inherent in the **Demand** (**Reactive Power**) data specified under PC.A.4.3.1.

PC.A.2.4 Reactive Compensation Equipment

- PC.A.2.4.1 For all independently switched reactive compensation equipment (including any OTSUA), including that shown on the Single Line Diagram, not operated by The Company and connected to the User's System at 132kV and above in England and Wales and 33kV and above in Scotland and Offshore (including any OTSDUW Plant and Apparatus operating at High Voltage), other than Power Factor correction equipment associated directly with Customers' Plant and Apparatus, the following information is required:
 - (a) type of equipment (eg. fixed or variable);
 - (b) capacitive and/or inductive rating or its operating range in MVAr;
 - (c) details of any automatic control logic to enable operating characteristics to be determined;
 - (d) the point of connection to the **User's System** (including **OTSUA**) in terms of electrical location and **System** voltage.
 - (e) In the case of OTSDUW Plant and Apparatus the User should also provide:-
 - (i) Connection node, voltage, rating, power loss, tap range and connection arrangement.
 - (ii) A mathematical representation in block diagram format to model the control of any dynamic compensation plant. The model should be suitable for RMS dynamic stability type studies where each time constant should be no less than 10ms.
 - (iii) For Static Var Compensation equipment the **User** should provide:

HV Node

LV Node

Control Node

Nominal Voltage (kV)

Target Voltage (kV)

Maximum MVAr at HV

Minimum MVAr at HV

Slope %

Voltage dependant Q Limit

Normal Running Mode

Positive and zero phase sequence resistance and reactance

Transformer winding type

Connection arrangements

PC.A.2.4.2 **DC Converter Station** owners, **HVDC System Owners** (and a **User** where the **OTSUA** includes an **OTSDUW DC Converter**) are also required to provide information about the reactive compensation and harmonic filtering equipment required to ensure that their **Plant** and **Apparatus** (and the **OTSUA**) complies with the criteria set out in CC.6.1.5 or ECC.6.1.5 (as applicable).

PC.A.2.5 Short Circuit Contribution to National Electricity Transmission System

PC.A.2.5.1 General

- (a) To allow **The Company** to calculate fault currents, each **User** is required to provide data, calculated in accordance with **Good Industry Practice**, as set out in the following paragraphs of PC.A.2.5.
- (b) The data should be provided for the User's System with all Generating Units (including Synchronous Generating Units), Power Park Units, HVDC Systems and DC Converters Synchronised to that User's System (and any OTSUA where appropriate). The User must ensure that the pre-fault network conditions reflect a credible System operating arrangement.
- (c) The list of data items required, in whole or part, under the following provisions, is set out in PC.A.2.5.6. Each of the relevant following provisions identifies which data items in the list are required for the situation with which that provision deals.

The fault currents in sub-paragraphs (a) and (b) of the data list in PC.A.2.5.6 should be based on an a.c. load flow that takes into account any pre-fault current flow across the **Point of Connection** (and in the case of **OTSUA**, **Interface Points** and **Connection Points**) being considered.

Measurements made under appropriate **System** conditions may be used by the **User** to obtain the relevant data.

- (d) The Company may at any time, in writing, specifically request for data to be provided for an alternative System condition, for example minimum plant, and the User will, insofar as such request is reasonable, provide the information as soon as reasonably practicable following the request.
- PC.A.2.5.2 Network Operators and Non-Embedded Customers are required to submit data in accordance with PC.A.2.5.4. Generators, DC Converter Station owners, HVDC System Owners and Network Operators, in respect of Embedded Medium Power Stations not subject to a Bilateral Agreement and Embedded DC Converter Stations not subject to a Bilateral Agreement and Embedded HVDC Systems within such Network Operator's Systems are required to submit data in accordance with PC.A.2.5.5.
- PC.A.2.5.3 Where prospective short-circuit currents on **Transmission** equipment are close to the equipment rating, and in **The Company's** reasonable opinion more accurate calculations of the prospective short circuit currents are required, then **The Company** will request additional data as outlined in PC.A.6.6 below.
- PC.A.2.5.4 Data from Network Operators and Non-Embedded Customers

PC.A.2.5.4.1 Data is required to be provided at each node on the **Single Line Diagram** provided under PC.A.2.2.1 at which motor loads and/or **Embedded Small Power Stations** and/or **Embedded Medium Power Stations** and/or **Embedded** installations of direct current converters which do not form a **DC Converter Station** or **HVDC System** are connected, assuming a fault at that location, as follows:-

The data items listed under the following parts of PC.A.2.5.6:-

(a) (i), (ii), (iii), (iv), (v) and (vi);

and the data items shall be provided in accordance with the detailed provisions of PC.A.2.5.6(c) - (f).

- PC.A.2.5.4.2 **Network Operators** shall provide the following data items in respect of each **Interface Point** within their **User System**:
 - (a) Maximum Export Capacity;
 - (b) Maximum Import Capacity; and,
 - (c) Interface Point Target Voltage/Power Factor

Network Operators shall alongside these parameters include details of any manual or automatic post fault actions to be taken by the owner / operator of the **Offshore Transmission System** connected to such **Interface Point** that are required by the **Network Operator**.

- PC.A.2.5.5

 <u>Data from Generators (including Generators undertaking OTSDUW and those responsible for DC Connected Power Park Modules), DC Converter Station owners, HVDC System Owners and from Network Operators in respect of Embedded Medium Power Stations not subject to a Bilateral Agreement and Embedded DC Converter Stations not subject to a Bilateral Agreement and Embedded HVDC Systems within such Network Operator's Systems.</u>
- PC.A.2.5.5.1 For each Generating Unit (including Synchronous Generating Units forming part of a Synchronous Power Generating Module) with one or more associated Unit Transformers, the Generator, or the Network Operator in respect of Embedded Medium Power Stations not subject to a Bilateral Agreement and Embedded DC Converter Stations not subject to a Bilateral Agreement and Embedded HVDC Systems within such Network Operator's System is required to provide values for the contribution of the Power Station Auxiliaries (including Auxiliary Gas Turbines or Auxiliary Diesel Engines) to the fault current flowing through the Unit Transformer(s).

The data items listed under the following parts of PC.A.2.5.6(a) should be provided:-

- (i), (ii) and (v);
- (iii) if the associated Generating Unit (including Synchronous Generating Units forming part of a Synchronous Power Generating Module) step-up transformer can supply zero phase sequence current from the Generating Unit side to the National Electricity Transmission System;
- (iv) if the value is not 1.0 p.u;

and the data items shall be provided in accordance with the detailed provisions of PC.A.2.5.6(c) - (f), and with the following parts of this PC.A.2.5.5.

- PC.A.2.5.5.2 Auxiliary motor short circuit current contribution and any **Auxiliary Gas Turbine Unit** contribution through the **Unit Transformers** must be represented as a combined short circuit current contribution at the **Generating Unit's** (including **Synchronous Generating Units** forming part of a **Synchronous Power Generating Module**) terminals, assuming a fault at that location.
- PC.A.2.5.5.3 If the **Power Station** or **HVDC System** or **DC Converter Station** (or **OTSDUW Plant and Apparatus** which provides a fault infeed) has separate **Station Transformers**, data should be provided for the fault current contribution from each transformer at its high voltage terminals, assuming a fault at that location, as follows:-

The data items listed under the following parts of PC.A.2.5.6

(a) (i), (ii), (iii), (iv), (v) and (vi);

and the data items shall be provided in accordance with the detailed provisions of PC.A.2.5.6(b) - (f).

- PC.A.2.5.5.4 Data for the fault infeeds through both Unit Transformers and Station Transformers shall be provided for the normal running arrangement when the maximum number of Generating Units (including Synchronous Generating Units forming part of a Synchronous Power Generating Module) are Synchronised to the System or when all the DC Converters at a DC Converter Station or HVDC Converters within an HVDC System are transferring Rated MW in either direction. Where there is an alternative running arrangement (or transfer in the case of a DC Converter Station or HVDC System) which can give a higher fault infeed through the Station Transformers, then a separate data submission representing this condition shall be made.
- PC.A.2.5.5.5 Unless the normal operating arrangement within the **Power Station** is to have the **Station** and **Unit Boards** interconnected within the **Power Station**, no account should be taken of the interconnection between the **Station Board** and the **Unit Board**.
- PC.A.2.5.5.6 Auxiliary motor short circuit current contribution and any auxiliary **DC Converter Station** contribution or **HVDC System** contribution through the **Station Transformers** must be represented as a combined short circuit current contribution through the **Station Transformers**.
- PC.A.2.5.5.7 Where a **Manufacturer's Data & Performance Report** exists in respect of the model of the **Power Park Unit**, the **User** may opt to reference the Manu**facturer's Data & Performance Report** as an alternative to the provision of data in accordance with this PC.A.2.5.5.7. For the avoidance of doubt, all other data provision pursuant to the Grid Code shall still be provided including a Single Line Diagram and those data pertaining thereto.

For each Power Park Module (including DC Connected Power Park Modules) and each type of Power Park Unit (eg. Doubly Fed Induction Generator) (and any OTSDUW Plant and Apparatus which provides a fault infeed), including any Auxiliaries, positive, negative and zero sequence root mean square current values are to be provided of the contribution to the short circuit current flowing at:

- (i) the **Power Park Unit** terminals, or the **Common Collection Busbar** if an equivalent **Single Line Diagram** and associated data as described in PC.A.2.2.2 is provided, and
- (ii) the Grid Entry Point (and in case of OTSUA, Transmission Interface Point), or User System Entry Point if Embedded

for the following solid faults at the **Grid Entry Point** (and in case of **OTSUA**, **Interface Point**), or **User System Entry Point** if **Embedded**:

- (i) a symmetrical three phase short circuit
- (ii) a single phase to earth short circuit
- (iii) a phase to phase short circuit
- (iv) a two phase to earth short circuit

For a **Power Park Module** (including **DC Connected Power Park Modules**) in which one or more of the **Power Park Units** utilise a protective control such as a crowbar circuit, the data should indicate whether the protective control will act in each of the above cases and the effects of its action shall be included in the data. For any case in which the protective control will act, the data for the fault shall also be submitted for the limiting case in which the protective circuit will not act, which may involve the application of a non-solid fault, and the positive, negative and zero sequence retained voltages at

- (i) the **Power Park Unit** terminals, or the **Common Collection Busbar** if an equivalent **Single Line Diagram** and associated data is provided and
- (ii) the Grid Entry Point, or User System Entry Point if Embedded

in this limiting case shall be provided.

For each fault for which data is submitted, the data items listed under the following parts of PC.A.2.5.6(a) shall be provided:-

```
(iv), (vii), (viii), (ix), (x);
```

In addition, if an equivalent **Single Line Diagram** has been provided the data items listed under the following parts of PC.A.2.5.6(a) shall be provided:-

```
(xi), (xii), (xiii);
```

In addition, for a **Power Park Module** (including **DC Connected Power Park Modules**) in which one or more of the **Power Park Units** utilise a protective control such as a crowbar circuit:-

the data items listed under the following parts of PC.A.2.5.6(a) shall be provided:-

```
(xiv), (xv);
```

All of the above data items shall be provided in accordance with the detailed provisions of PC.A.2.5.6(c), (d), (f).

Should actual data in respect of fault infeeds be unavailable at the time of the application for a CUSC Contract or Embedded Development Agreement, a limited subset of the data, representing the maximum fault infeed that may result from all of the plant types being considered, shall be submitted. This data will, as a minimum, represent the root mean square of the positive, negative and zero sequence components of the fault current for both single phase and three phase solid faults at the Grid Entry Point (or User System Entry Point if Embedded) at the time of fault application and 50ms following fault application. Actual data in respect of fault infeeds shall be submitted to The Company as soon as it is available, in line with PC.A.1.2

PC.A.2.5.6 Data Items

- (a) The following is the list of data utilised in this part of the **PC**. It also contains rules on the data which generally apply:-
 - (i) Root mean square of the symmetrical three-phase short circuit current infeed at the instant of fault, (I₁");
 - (ii) Root mean square of the symmetrical three-phase short circuit current after the subtransient fault current contribution has substantially decayed, (I₁');
 - (iii) the zero sequence source resistance and reactance values of the User's System as seen from the node on the Single Line Diagram provided under PC.A.2.2.1 (or Power Generating Module or Station Transformer high voltage terminals or Generating Unit terminals or DC Converter terminals or HVDC System terminals, as appropriate) consistent with the infeed described in PC.A.2.5.1.(b);
 - (iv) root mean square of the pre-fault voltage at which the maximum fault currents were calculated;
 - (v) the positive sequence X/R ratio at the instant of fault;
 - (vi) the negative sequence resistance and reactance values of the User's System seen from the node on the Single Line Diagram provided under PC.A.2.2.1 (or Power Generating Module or Station Transformer high voltage terminals, or Generating Unit terminals or DC Converter terminals or HVDC System terminals as appropriate) if substantially different from the values of positive sequence resistance and reactance which would be derived from the data provided above;
 - (vii) A continuous trace and a table showing the root mean square of the positive, negative and zero sequence components of the short circuit current between zero and 140ms at 10ms intervals;

- (viii) The Active Power (or Interface Point Capacity being exported pre-fault by the OTSDUW Plant and Apparatus) being generated pre-fault by the Power Park Module (including DC Connected Power Park Modules) and by each type of Power Park Unit;
- (ix) The reactive compensation shown explicitly on the **Single Line Diagram** that is switched in:
- (x) The Power Factor of the Power Park Module (including DC Connected Power Park Modules) and of each Power Park Unit type;
- (xi) The positive sequence X/R ratio of the equivalent at the **Common Collection Busbar** or **Interface Point** in the case of **OTSUA**;
- (xii) The minimum zero sequence impedance of the equivalent seen from the **Common Collection Busbar** or **Interface Point** in the case of **OTSUA**;
- (xiii) The number of Power Park Units represented in the equivalent Power Park Unit;
- (xiv) The additional rotor resistance and reactance (if any) that is applied to the **Power Park Unit** under a fault condition;
- (xv) A continuous trace and a table showing the root mean square of the positive, negative and zero sequence components of the retained voltage at the fault point and Power Park Unit terminals, or the Common Collection Busbar if an equivalent Single Line Diagram and associated data as described in PC.A.2.2.2 is provided or Interface Point in the case of OTSUA, representing the limiting case, which may involve the application of a non-solid fault, required to not cause operation of the protective control;
- (b) In considering this data, unless the **User** notifies **The Company** accordingly at the time of data submission, **The Company** will assume that the time constant of decay of the subtransient fault current corresponding to the change from I₁" to I₁', (T") is not significantly different from 40ms. If that assumption is not correct in relation to an item of data, the **User** must inform **The Company** at the time of submission of the data.
- (c) The value for the X/R ratio must reflect the rate of decay of the d.c. component that may be present in the fault current and hence that of the sources of the initial fault current. All shunt elements and loads must therefore be deleted from any system model before the X/R ratio is calculated.
- (d) In producing the data, the **User** may use "time step analysis" or "fixed-point-in-time analysis" with different impedances.
- (e) If a fixed-point-in-time analysis with different impedances method is used, then in relation to the data submitted under (a) (i) above, the data will be required for "time zero" to give I₁". The figure of 120ms is consistent with a decay time constant T" of 40ms, and if that figure is different, then the figure of 120ms must be changed accordingly.
- (f) Where a "time step analysis" is carried out, the X/R ratio may be calculated directly from the rate of decay of the d.c. component. The X/R ratio is not that given by the phase angle of the fault current if this is based on a system calculation with shunt loads, but from the Thévenin equivalent of the system impedance at the instant of fault with all non-source shunts removed.

PC.A.3 <u>POWER GENERATING MODULE, GENERATING UNIT, HVDC SYSTEM AND DC</u> CONVERTER DATA

PC.A.3.1 Introduction

Directly Connected

PC.A.3.1.1 Each Generator, HVDC System Owner and DC Converter Station owner (and a User where the OTSUA includes an OTSDUW DC Converter) with an existing, or proposed, Power Station or DC Converter Station or HVDC System directly connected, or to be directly connected, to the National Electricity Transmission System (or in the case of OTSUA, the Interface Point), shall provide The Company with data relating to that Power Station or DC Converter Station or HVDC System, both current and forecast, as specified in PC.A.3.2 to PC.A.3.4.

Embedded

- PC.A.3.1.2 (a) Each Generator, HVDC System Owner and DC Converter Station owner in respect of its existing, and/or proposed, Embedded Large Power Stations and/or Embedded HVDC Systems and/or Embedded DC Converter Stations and/or its Embedded Medium Power Stations subject to a Bilateral Agreement and each Network Operator in respect of its Embedded Medium Power Stations not subject to a Bilateral Agreement and/or Embedded DC Converter Stations not subject to a Bilateral Agreement and/or Embedded HVDC Systems not subject to a Bilateral Agreement within such Network Operator's System in each case connected to the Subtransmission System, shall provide The Company with data relating to that Power Station or DC Converter Station or HVC System, both current and forecast, as specified in PC.A.3.2 to PC.A.3.4.
 - (b) No data need be supplied in relation to any Small Power Station or any Medium Power Station or installations of direct current converters which do not form a DC Converter Station or HVDC System, connected at a voltage level below the voltage level of the Subtransmission System except:-
 - (i) in connection with an application for, or under, a **CUSC Contract**, or
 - (ii) unless specifically requested by **The Company** under PC.A.3.1.4.
- PC.A.3.1.3 (a) Each **Network Operator** shall provide **The Company** with the data specified in PC.A.3.2.2(c)(i) and (ii) and PC.A.3.2.2(i).
 - (b) **Network Operators** need not submit planning data in respect of an **Embedded Small Power Station** unless required to do so under PC.A.1.2(b) or unless specifically requested under PC.A.3.1.4 below, in which case they will supply such data.
- PC.A.3.1.4 (a) PC.A.4.2.4(b) and PC.A.4.3.2(a) explain that the forecast **Demand** submitted by each **Network Operator** must be net of the output of all **Small Power Stations** and **Medium Power Stations** and **Customer Generating Plant** and all installations of direct current converters which do not form a **DC Converter Station** or **HVDC System**, **Embedded** within that **Network Operator's System**. The **Network Operator** must inform **The Company** of:
 - (i) the number of such Embedded Power Stations and such Embedded installations of direct current converters (including the number of Generating Units or Power Park Modules (including DC Connected Power Park Modules) or DC Converters or HVDC Systems) together with their summated capacity; and
 - (ii) beginning from the 2015 Week 24 data submission, for each Embedded Small Power Station of registered capacity (as defined in the Distribution Code) of 1MW or more:
 - A reference which is unique to each Network Operator;
 - 2. The production type as follows:
 - a) In the case of an Embedded Small Power Station first connected on or after 1 January 2015, the production type must be selected from the list below derived from the Manual of Procedures for the ENTSO-E Central Information Transparency Platform:
 - Biomass;
 - Fossil brown coal/lignite;

- Fossil coal-derived gas;
- Fossil gas;
- Fossil hard coal;
- Fossil oil:
- Fossil oil shale;
- Fossil peat;
- Geothermal;
- Hydro pumped storage;
- Hydro run-of-river and poundage;
- Hydro water reservoir;
- Marine;
- Nuclear;
- Other renewable;
- Solar;
- Waste;
- Wind offshore;
- Wind onshore; or
- Other;

together with a statement as to whether the generation forms part of a CHP scheme;

- (iii) beginning from the 2019 Week 24 data submission, for Embedded Power Stations with Registered Capacity of less than 1MW, their best estimate of the aggregated capacity of all such Embedded Power Stations per production type as defined in the list in PC.A.3.1.4 (a)(ii)(2)(a).
 - b) In the case of an Embedded Small Power Station first connected to the Users' System before 1 January 2015, as an alternative to the production type, the technology type(s) used, selected from the list set out at paragraph 2.23 in Version 2 of the Regulatory Instructions and Guidance relating to the distributed generation incentive, innovation funding incentive and registered power zones, reference 83/07, published by Ofgem in April 2007;
 - c) In the case of an Embedded Small Power Station comprising Electricity Storage Modules or Electricity Storage Units first connected the User's System on or after May 20 2020, the storage type must be selected from the list below:
 - -Chemical

Ammonia

Hydrogen

Synthetic Fuels Drop-in Fuels

Methanol

Synthetic Natural Gas

-Electrical

Supercapacitors

Superconducting Magnetic ES (SMES)

-Mechanical

Adiabatic Compressed Air

Diabatic Compressed Air Liquid Air Energy Storage

```
Pumped Hydro
  Flywheels
-Thermal
  Latent Heat Storage
  Thermochemical Storage
  Sensible Heat Storage
-Electrochemical
  Classic Batteries
     Lead Acid
     Lithium Polymer (Li-Polymer)
     Metal Air
     Nickle Cadmium (Ni-Cd)
     Sodium Nickle Chloride (Na-NiCl<sub>2</sub>)
     Lithium Ion (Li-ion)
     Sodium Ion (Na-ion)
     Lithium Sulphur (Li-S)
     Sodium Sulphur(Na-S
     Nickle – Metal Hydride (Ni-MH)
  Flow Batteries
         Vanadium Red-Oxide
        Zinc – Iron (Zn –Fe)
        Zinc – Bromine (Zn –Br)
  Other
```

together with a statement as to whether the storage forms part of a CHP scheme. Where this information is not held by the **Network Operator** it should provide its best view of the type of storage technology.

- 3. The registered capacity (as defined in the **Distribution Code**) in MW;
- 4. The lowest voltage level node that is specified on the most up-to-date **Single Line Diagram** to which it connects or where it will export most of its power;
- Where it generates electricity from wind or PV, the geographical location using either latitude or longitude or grid reference coordinates of the primary or higher voltage substation to which it connects;
- The reactive power and voltage control mode, including the voltage set-point and reactive range, where it operates in voltage control mode, or the target Power Factor, where it operates in Power Factor mode;
- 7. Details of the types of loss of mains Protection in place and their relay settings which in the case of Embedded Small Power Stations first connected to the Users' System before 1 January 2015 shall be provided on a reasonable endeavours basis.
- (b) On receipt of this data, the Network Operator or Generator (if the data relates to Power Stations referred to in PC.A.3.1.2) may be further required, at The Company's reasonable discretion, to provide details of Embedded Small Power Stations and Embedded Medium Power Stations and Customer Generating Plant and Embedded installations of direct current converters which do not form a DC Converter Station or HVDC System, both current and forecast, as specified in PC.A.3.2 to PC.A.3.4. Such requirement would arise where The Company reasonably considers that the collective effect of a number of such Embedded Power Stations and Customer Generating Plants and Embedded installations of direct current converters may have a significant system effect on the National Electricity Transmission System.

Busbar Arrangements

PC.A.3.1.5 Where Generating Units, which term includes CCGT Units and Synchronous Generating Units within a Synchronous Power Generating Module and Power Park Modules (including DC Connected Power Park Modules), and DC Converters, and HVDC Systems are connected to the National Electricity Transmission System via a busbar arrangement which is or is expected to be operated in separate sections, the section of busbar to which each Generating Unit (including Synchronous Generating Units within a Synchronous Power Generating Module), DC Converter, HVDC System or Power Park Module (including DC Connected Power Park Modules) is connected is to be identified in the submission.

PC.A.3.2 Output Data

PC.A.3.2.1 (a) Large Power Stations and Gensets

Data items PC.A.3.2.2 (a), (b), (c), (d), (e), (f) and (h) are required with respect to each Large Power Station and each Generating Unit (including Synchronous Generating Units within a Synchronous Power Generating Module) and Power Park Module (including DC Connected Power Park Modules) of each Large Power Station and for each Genset (although (a) is not required for CCGT Units and (b), (d) and (e) are not normally required for CCGT Units and (a), (b), (c), (d), (e), (f) and (h) are not normally required for Power Park Units).

(b) Embedded Small Power Stations and Embedded Medium Power Stations

Data item PC.A.3.2.2 (a) is required with respect to each Embedded Small Power Station and Embedded Medium Power Station and each Generating Unit (including Synchronous Generating Units within a Synchronous Power Generating Module) and Power Park Module (including DC Connected Power Park Modules) of each Embedded Small Power Station and Embedded Medium Power Station (although (a) is not required for CCGT Units or Power Park Units).In addition, data item PC.A.3.2.2(c)(ii) is required with respect to each Embedded Medium Power Station.

(c) CCGT Units/Modules

- (i) Data item PC.A.3.2.2 (g) is required with respect to each **CCGT Unit**;
- (ii) data item PC.A.3.2.2 (a) is required with respect to each **CCGT Module**; and
- (iii) data items PC.A.3.2.2 (b), (c), (d) and (e) are required with respect to each **CCGT Module** unless **The Company** informs the relevant **User** in advance of the submission that it needs the data items with respect to each **CCGT Unit** for particular studies, in which case it must be supplied on a **CCGT Unit** basis.

Where any definition utilised or referred to in relation to any of the data items does not reflect **CCGT Units**, such definition shall be deemed to relate to **CCGT Units** for the purposes of these data items. Any **Schedule** in the DRC which refers to these data items shall be interpreted to incorporate the **CCGT Unit** basis where appropriate;

(d) Cascade Hydro Schemes

Data item PC.A.3.2.2(i) is required with respect to each Cascade Hydro Scheme.

(e) Power Park Units/Modules

Data items PC.A.3.2.2 (k) is required with respect to each **Power Park Module** (including **DC Connected Power Park Modules**).

(f) DC Converters and HVDC Systems

Data items PC.A.3.2.2 (a), (b), (c), (d) (e) (f) (h) and (i) are required with respect of each HVDC System, each DC Converter Station and each DC Converter in each DC Converter Station. For installations of direct current converters which do not form a DC Converter Station only data item PC.A.3.2.2.(a) is required.

- PC.A.3.2.2 Items (a), (b), (d), (e), (f), (g), (h), (i), (j) and (k) are to be supplied by each **Generator**, **DC Converter Station** owner, **HVDC System Owner** or **Network Operator** (as the case may be) in accordance with PC.A.3.1.1, PC.A.3.1.2, PC.A.3.1.3 and PC.A.3.1.4. Items (a), and (f)(iv) are to be supplied (as applicable) by a **User** in the case of **OTSUA** which includes an **OTSDUW DC Converter**. Item (c) is to be supplied by each **Network Operator** in all cases:-
 - (a) Registered Capacity (MW), Maximum Capacity (in the case of Power Generating Modules in addition to Registered Capacity on a Power Station basis) or Interface Point Capacity in the case of OTSDUW;
 - (b) Output Usable (MW) on a monthly basis;
 - System Constrained Capacity (MW) ie. any constraint placed on the capacity of the Embedded Generating Unit (including a Synchronous Generating Unit within a Synchronous Power Generating Module), Embedded Power Park Module (including DC Connected Power Park Modules) an Offshore Transmission System at an Interface Point, Embedded HVDC System or DC Converter at an Embedded DC Converter Station due to the Network Operator's System in which it is Embedded. Where Generating Units (which term includes CCGT Units and Synchronous Generating Units within a Synchronous Power Generating Module), Power Park Modules (including DC Connected Power Park Modules), Offshore Transmission Systems at an Interface Point, HVDC Systems or DC Converters are connected to a Network Operator's User System via a busbar arrangement which is or is expected to be operated in separate sections, details of busbar running arrangements and connected circuits at the substation to which the Embedded Generating Unit (including Synchronous Generating Units within a Embedded Synchronous Power Generating Module), Embedded Power Park Module (including DC Connected Power Park Modules), Offshore Transmission System at an Interface Point, or Embedded HVDC System or Embedded DC Converter is connected sufficient for The Company to determine where the MW generated by each Generating Unit (including Synchronous Generating Units within a Synchronous Power Generating Module), Power Park Module (including DC Connected Power Park Modules), HVDC System or DC Converter at that Power Station or DC Converter Station or Offshore Transmission System at an Interface Point would appear onto the National Electricity Transmission System;
 - (ii) any Reactive Despatch Network Restrictions;
 - (d) **Minimum Generation** (MW), and in the case of **Power Generating Modules** only **Minimum Stable Operating Level** (MW) and **Minimum Regulating Level**;
 - (e) MW obtainable from Generating Units (including Synchronous Generating Units within a Synchronous Power Generating Module), Power Park Modules (including DC Connected Power Park Modules), HVDC Systems or DC Converters at a DC Converter Station in excess of Registered Capacity or Maximum Capacity;
 - (f) Generator Performance Chart:
 - (i) GB Code User(s) in respect of Generating Units shall provide a Generator Performance Chart and EU Code Users in respect of Power Generating Modules shall provide a Power Generating Module Performance Chart and a Synchronous Generating Unit Performance Chart.
 - (ii) at the electrical point of connection to the Offshore Transmission System for an Offshore Synchronous Generating Unit and Offshore Synchronous Power Generating Module.
 - (iii) at the electrical point of connection to the National Electricity Transmission System (or User System if Embedded) for a Non Synchronous Generating Unit (excluding a Power Park Unit), Power Park Module (including DC Connected Power Park Modules), HVDC System and DC Converter at a DC Converter Station;

(iv) at the Interface Point for OTSDUW Plant and Apparatus

Where a **Reactive Despatch Network Restriction** applies, its existence and details should be highlighted on the **Generator Performance Chart**, in sufficient detail for **The Company** to determine the nature of the restriction.

- (g) a list of the CCGT Units within a CCGT Module, identifying each CCGT Unit, and the CCGT Module of which it forms part, unambiguously. In the case of a Range CCGT Module, details of the possible configurations should also be submitted, together:-
 - (i) (in the case of a Range CCGT Module connected to the National Electricity Transmission System) with details of the single Grid Entry Point (there can only be one) at which power is provided from the Range CCGT Module;
 - (ii) (in the case of an **Embedded Range CCGT Module**) with details of the single **User System Entry Point** (there can only be one) at which power is provided from the **Range CCGT Module**;

Provided that, nothing in this sub-paragraph (g) shall prevent the busbar at the relevant point being operated in separate sections;

- (h) expected running regime(s) at each Power Station, HVDC System or DC Converter Station and type of Power Generating Module or Generating Unit (as applicable), eg. Steam Unit, Gas Turbine Unit, Combined Cycle Gas Turbine Unit, Power Park Module (including DC Connected Power Park Modules), Novel Units (specify by type), etc;
- (i) a list of Power Stations and Generating Units within a Cascade Hydro Scheme, identifying each Generating Unit (including Synchronous Generating Units within a Synchronous Power Generating Module) and Power Station and the Cascade Hydro Scheme of which each form part unambiguously. In addition:
 - (i) details of the Grid Entry Point at which Active Power is provided, or if Embedded the Grid Supply Point(s) within which the Generating Unit (including Synchronous Generating Units within a Synchronous Power Generating Module) is connected;
 - (ii) where the **Active Power** output of a **Generating Unit** is split between more than one **Grid Supply Points** the percentage that would appear under normal and outage conditions at each **Grid Supply Point**.
- (j) The following additional items are only applicable to **DC Converters** at **DC Converter Stations** and **HVDC Systems**.

Registered Import Capacity (MW);

Import Usable (MW) on a monthly basis;

Minimum Import Capacity (MW);

MW that may be absorbed by a **DC Converter** or **HVDC System** in excess of **Registered Import Capacity** and **Maximum HVDC Active Power Transmission Capacity** under importing conditions and the duration for which this is available;

(k) the number and types of the Power Park Units within a Power Park Module (including DC Connected Power Park Modules), identifying each Power Park Unit, the Power Park Module of which it forms part and identifying the BM Unit of which each Power Park Module forms part, unambiguously. In the case of a Power Station directly connected to the National Electricity Transmission System with multiple Power Park Modules (including DC Connected Power Park Modules) where Power Park Units can be selected to run in different Power Park Modules and/or Power Park Modules can be selected to run in different BM Units, details of the possible configurations should also be submitted. In addition for Offshore Power Park Modules (including DC Connected Power Park Modules), the number of Offshore Power Park Strings that are aggregated into one Offshore Power Park Module should also be submitted.

- (I) the number and types of the Synchronous Generating Units within a Synchronous Power Generating Module, identifying each Synchronous Generating Unit, the Synchronous Power Generating Module of which it forms part and identifying the BM Unit of which each Synchronous Power Generating Module forms part, unambiguously. In the case of a Power Station directly connected to the National Electricity Transmission System with multiple Synchronous Power Generating Modules where Synchronus Generating Units can be selected to run in different Synchronous Power Generating Modules can be selected to run in different BM Units, details of the possible configurations should also be submitted.
- PC.A.3.2.3 Notwithstanding any other provision of this PC, the **CCGT Units** within a **CCGT Module**, details of which are required under paragraph (g) of PC.A.3.2.2, can only be amended in accordance with the following provisions:-
 - (a) if the CCGT Module is a Normal CCGT Module, the CCGT Units within that CCGT Module can only be amended such that the CCGT Module comprises different CCGT Units if The Company gives its prior consent in writing. Notice of the wish to amend the CCGT Units within such a CCGT Module must be given at least 6 months before it is wished for the amendment to take effect;
 - (b) if the CCGT Module is a Range CCGT Module, the CCGT Units within that CCGT Module and the Grid Entry Point at which the power is provided can only be amended as described in BC1.A1.6.4.
- PC.A.3.2.4 Notwithstanding any other provision of this PC, the Power Park Units within a Power Park Module (including DC Connected Power Park Modules), and the Power Park Modules (including DC Connected Power Park Modules) within a BM Unit, details of which are required under paragraph (k) of PC.A.3.2.2, can only be amended in accordance with the following provisions:-
 - (a) if the Power Park Units within that Power Park Module can only be amended such that the Power Park Module comprises different Power Park Units due to repair/replacement of individual Power Park Units if The Company gives its prior consent in writing. Notice of the wish to amend a Power Park Unit within such a Power Park Module (including DC Connected Power Park Modules) must be given at least 4 weeks before it is wished for the amendment to take effect;
 - (b) if the Power Park Units within that Power Park Module (including DC Connected Power Park Modules) and/or the Power Park Modules (including DC Connected Power Park Modules) within that BM Unit can be selected to run in different Power Park Modules and/or BM Units as an alternative operational running arrangement the Power Park Units within the Power Park Module, the BM Unit of which each Power Park Module forms part, and the Grid Entry Point at which the power is provided can only be amended as described in BC1.A.1.8.4.
- PC.A.3.2.5 Notwithstanding any other provision of this **PC**, the **Synchronous Generating Units** within a **Synchronous Power Generating Module**, and the **Synchronous Power Generating Modules** within a **BM Unit**, details of which are required under paragraph (I) of PC.A.3.2.2, can only be amended in accordance with the following provisions:-
 - (a) if the Synchronous Generating Units within that Synchronous Power Generating Module can only be amended such that the Synchronous Power Generating Module comprises different Synchronous Generating Units due to repair/replacement of individual Synchronous Generating Units if The Company gives its prior consent in writing. Notice of the wish to amend a Synchronous Generating Unit within such a Synchronous Power Generating Module must be given at least 4 weeks before it is wished for the amendment to take effect;

(b) if the Synchronous Generating Units within that Synchronous Power Generating Module and/or the Synchronous Power Generating Modules within that BM Unit can be selected to run in different Synchronous Power Generating Modules and/or BM Units as an alternative operational running arrangement the Synchronous Generating Units within the Synchronous Power Generating Module, the BM Unit of which each Synchronous Power Generating Module forms part, and the Grid Entry Point at which the power is provided can only be amended as described in BC1.A.1.9.4(c). The requirements of PC.A.3.2.5 need not be satisfied if Generators have already submitted data in respect of PC.A.3.2.3, PC.A.3.2.4 and PC.A.3.2.5 for the same Power Generating Module.

PC.A.3.3. Rated Parameters Data

- PC.A.3.3.1 The following information is required to facilitate an early assessment, by The Company, of the need for more detailed studies;
 - (a) for all Generating Units (excluding Power Park Units) and Power Park Modules (including DC Connected Power Park Modules):

Rated MVA

Rated MW:

(b) for each Synchronous Generating Unit (including Synchronous Generating Units within a Synchronous Power Generating Module):

Short circuit ratio

Direct axis transient reactance;

Inertia constant (for whole machine), MWsecs/MVA;

(c) for each Synchronous Generating Unit step-up transformer (including the step up transformer of a Synchronous Generating Unit within a Synchronous Power Generating Module):

Rated MVA

Positive sequence reactance (at max, min and nominal tap);

(d) for each DC Converter at a DC Converter Station, HVDC System, DC Converter connecting an exisiting Power Park Module (including DC Connected Power Park Modules) and Transmission DC Converter (forming part of an OTSUA).

DC Converter or **HVDC Converter** type (e.g. current/voltage sourced)

Rated MW per pole for import and export

Number of poles and pole arrangement

Rated DC voltage/pole (kV)

Return path arrangement

Remote AC connection arrangement (excluding **OTSDUW DC Converters**)

Maximum HVDC Active Power Transmission Capacity

Minimum Active Power Transmission Capacity

(e) for each type of Power Park Unit in a Power Park Module not connected to the Total System by a DC Converter or HVDC System:

Rated MVA

Rated MW

Rated terminal voltage

Inertia constant, (MWsec/MVA)

Additionally, for Power Park Units that are squirrel-cage or doubly-fed induction

generators driven by wind turbines:

Stator reactance.

Magnetising reactance.

Rotor resistance (at rated running)

Rotor reactance (at rated running)

The generator rotor speed range (minimum and maximum speeds in RPM) (for doubly-fed induction generators only)

Converter MVA rating (for doubly-fed induction generators only)

For a **Power Park Unit** consisting of a synchronous machine in combination with a back-to-back **DC Converter** or **HVDC Converter**, or for a **Power Park Unit** not driven by a wind turbine, the data to be supplied shall be agreed with **The Company** in accordance with PC.A.7.

This information should only be given in the data supplied in accordance with PC.4.4 and PC.4.5.

- PC.A.3.4 <u>General Generating Unit, Power Park Module (including **DC Connected Power Park Modules)**, Power Generating Module, HVDC System and DC Converter Data</u>
- PC.A.3.4.1 The point of connection to the **National Electricity Transmission System** or the **Total System**, if other than to the **National Electricity Transmission System**, in terms of geographical and electrical location and system voltage is also required.
- PC.A.3.4.2 (a) Type of Generating Unit (ie Synchronous Power Generating Unit within a Power Generating Module, Synchronous Generating Unit, Non-Synchronous Generating Unit, DC Converter, Power Park Module (including DC Connected Power Park Modules) or HVDC System).
 - (b) In the case of a Synchronous Generating Unit (including Synchronous Generating Units within a Synchronous Power Generating Module) details of the Exciter category, for example whether it is a rotating Exciter or a static Exciter or in the case of a Non-Synchronous Generating Unit the voltage control system.
 - (c) Whether a Power System Stabiliser is fitted.
- PC.A.3.4.3 Each **Generator** shall supply **The Company** with the production type(s) used as the primary source of power in respect of each **Generating Unit** (including **Synchronous Generating Units** within a **Synchronous Power Generating Module**), selected from the list set out below:
 - Biomass
 - Fossil brown coal/lignite
 - Fossil coal-derived gas
 - Fossil gas
 - Fossil hard coal
 - Fossil oil
 - Fossil oil shale
 - Fossil peat
 - Geothermal
 - Hydro pumped storage
 - Hydro run-of-river and poundage
 - Hydro water reservoir
 - Marine
 - Nuclear

- Other renewable
- Solar
- Waste
- Wind offshore
- Wind onshore
- Other
- PC.A.3.4.4 In the case of an Electricity Storage Module or Electricity Storage Unit, each Generator shall supply The Company with the production type(s) used as the primary Electricity Storage source (including Synchronous Electricity Storage Units within a Synchronous Electricity Storage Module), selected from the list set out below:

```
-Chemical
    Ammonia
    Hydrogen
    Synthetic Fuels
    Drop-in Fuels
    Methanol
    Synthetic Natural Gas
-Electrical
    Supercapacitors
    Superconducting Magnetic ES (SMES)
-Mechanical
    Adiabatic Compressed Air
    Diabatic Compressed Air
    Liquid Air Energy Storage
    Pumped Hydro
    Flvwheels
-Thermal
    Latent Heat Storage
    Thermochemical Storage
    Sensible Heat Storage
-Electrochemical
     Classic Batteries
         Lead Acid
          Lithium Polymer (Li-Polymer)
          Metal Air
          Nickle Cadmium (Ni-Cd)
          Sodium Nickle Chloride (Na-NiCl<sub>2</sub>)
          Lithium Ion (Li-ion)
          Sodium Ion (Na-ion)
          Lithium Sulphur (Li-S)
          Sodium Sulphur(Na-S
          Nickle -Metal Hydride (Ni-MH)
      Flow Batteries
         Vanadium Red-Oxide
          Zinc – Iron (Zn –Fe)
          Zinc – Bromine (Zn –Br)
      Other
```

PC.A.4 <u>DEMAND AND ACTIVE ENERGY DATA</u>

PC.A.4.1 <u>Introduction</u>

PC.A.4.1.1 Each **User** directly connected to the **National Electricity Transmission System** with **Demand** shall provide **The Company** with the **Demand** data, historic, current and forecast, as specified in PC.A.4.2 and PC.A.4.3. Paragraphs PC.A.4.1.2 and PC.A.4.1.3 apply equally to **Active Energy** requirements as to **Demand** unless the context otherwise requires.

- PC.A.4.1.2 Data will need to be supplied by:
 - (a) each **Network Operator**, in relation to **Demand** and **Active Energy** requirements on its **User System**;
 - (b) each **Non-Embedded Customer, Pumped Storage Generators** (with respect to Pumping **Demand**) and **Generators** in relation to **Electricity Storage Modules** in relation to their **Demand** and **Active Energy** requirements.
 - (c) each **DC Converter Station** owner or **HVDC System Owner** in relation to **Demand** and **Active Energy** transferred (imported) to its **DC Converter Station** or **HVDC System**.
 - (d) each OTSDUW DC Converter in relation to the Demand at each Interface Point and Connection Point.

Demand of **Power Stations** directly connected to the **National Electricity Transmission System** is to be supplied by the **Generator** under PC.A.5.2.

- PC.A.4.1.3 References in this **PC** to data being supplied on a half hourly basis refer to it being supplied for each period of 30 minutes ending on the hour or half-hour in each hour.
- PC.A.4.1.4 Access Periods and Access Groups
- PC.A.4.1.4.1 Each Connection Point must belong to one, and only one, Access Group.
- PC.A.4.1.4.2 Each Transmission Interface Circuit must have an Access Period.
- PC.A.4.1.4.3 The Access Period shall
 - (a) normally be a minimum of 8 continuous weeks and can occur in any one of three maintenance years during the period from calendar week 13 to calendar week 43 (inclusive) in each year; or,
 - (b) exceptionally and provided that agreement is reached between **The Company** and the relevant **User(s)**, such agreement to be sought in accordance with PC.7, the **Access Period** may be of a period not less than 4 continuous weeks and can occur in any one of three maintenance years during the period from calendar week 10 to calendar week 43 (inclusive) in each year.
- PC.A.4.1.4.4 The Company shall submit in writing no later than calendar week 6 in each year:
 - (a) the calendar weeks defining the proposed start and finish of each **Access Period** for each **Transmission Interface Circuit**; and
 - (b) the Connection Points in each Access Group.

The submission by **The Company** under PC.A.4.1.4.4 (a) above shall commence in 2010 and shall then continue each year thereafter. The submission by **The Company** under PC.A.4.1.4.4 (b) shall commence in 2009 and then continue each year thereafter.

- PC.A.4.1.4.5 It is permitted for Access Periods to overlap in the same Access Group and in the same maintenance year. However, where possible Access Periods will be sought by The Company that do not overlap with any other Access Period within that Access Group for each maintenance year. Where it is not possible to avoid overlapping Access Periods, The Company will indicate to Users by calendar week 6 its initial view of which Transmission Interface Circuits will need to be considered out of service concurrently for the purpose of assessing compliance to Licence Standards. The obligation on The Company to indicate which Transmission Interface Circuits will need to be considered out of service concurrently for the purpose of assessing compliance to Licence Standards shall commence in 2010 and shall continue each year thereafter.
- PC.A.4.1.4.6 Following the submission(s) by **The Company** by week 6 in each year and where required by either party, both **The Company** and the relevant **User**(s) shall use their reasonable endeavours to agree the appropriate **Access Group(s)** and **Access Period** for each **Transmission Interface Circuit** prior to week 17 in each year. The requirement on **The Company** and the relevant **User(s)** to agree, shall commence in respect of **Access Groups** only in 2010. This paragraph PC.A.4.1.4.6 shall apply in its entirety in 2011 and shall then continue each year thereafter.

- PC.A.4.1.4.7 In exceptional circumstances, and with the agreement of all parties concerned, where a **Connection Point** is specified for the purpose of the **Planning Code** as electrically independent **Subtransmission Systems**, then data submissions can be on the basis of two (or more) individual **Connection Points**.
- PC.A.4.2 User's User System Demand (Active Power) and Active Energy Data
- PC.A.4.2.1 Forecast daily **Demand** (**Active Power**) profiles, as specified in (a), (b) and (c) below, in respect of each of the **User's User Systems** (each summated over all **Grid Supply Points** in each **User System**) are required for:
 - (a) peak day on each of the User's User Systems (as determined by the User) giving the numerical value of the maximum Demand (Active Power) that in the Users' opinion could reasonably be imposed on the National Electricity Transmission System;
 - (b) day of peak **National Electricity Transmission System Demand (Active Power)** as notified by **The Company** pursuant to PC.A.4.2.2;
 - (c) day of minimum National Electricity Transmission System Demand (Active Power) as notified by The Company pursuant to PC.A.4.2.2.

In addition, the total **Demand** (**Active Power**) in respect of the time of peak **National Electricity Transmission System Demand** in the preceding **Financial Year** in respect of each of the **User's User Systems** (each summated over all **Grid Supply Points** in each **User System**) both outturn and weather corrected shall be supplied.

- PC.A.4.2.2 No later than calendar week 17 each year **The Company** shall notify each **Network Operator** and **Non-Embedded Customer** in writing of the following, for the current **Financial Year** and for each of the following seven **Financial Years**, which will, until replaced by the following year's notification, be regarded as the relevant specified days and times under PC.A.4.2.1:
 - (a) the date and time of the annual peak of the **National Electricity Transmission System Demand**;
 - (b) the date and time of the annual minimum of the **National Electricity Transmission**System Demand;
 - (c) the relevant Access Period for each Transmission Interface Circuit; and,
 - (d) Concurrent **Access Periods** of two or more **Transmission Interface Circuits** (if any) that are situated in the same **Access Group**.

The submissions by **The Company** made under PC.A.4.2.1 (c) and PC.A.4.2.1 (d) above shall commence in 2010 and shall then continue in respect of each year thereafter.

PC.A.4.2.3 The total **Active Energy** used on each of the **Network Operators**' or **Non-Embedded Customers**' **User Systems** (each summated over all **Grid Supply Points** in each **User System**) in the preceding **Financial Year**, both outturn and weather corrected, together with a prediction for the current financial year, is required. Each **Active Energy** submission shall be subdivided into the following categories of **Customer** tariff:

LV1

LV2

LV3

HV

EHV

Traction

Lighting

In addition, the total **User System** losses and the **Active Energy** provided by **Embedded Small Power Stations** and **Embedded Medium Power Stations** shall be supplied.

PC.A.4.2.4 All forecast **Demand** (**Active Power**) and **Active Energy** specified in PC.A.4.2.1 and PC.A.4.2.3 shall:

- (a) in the case of PC.A.4.2.1(a), (b) and (c), be such that the profiles comprise average **Active Power** levels in 'MW' for each time marked half hour throughout the day;
- (b) in the case of PC.A.4.2.1(a), (b) and (c), be that remaining after any deductions reasonably considered appropriate by the User to take account of the output profile of all Embedded Small Power Stations and Embedded Medium Power Stations and Customer Generating Plant and imports across Embedded External Interconnections including imports across Embedded installations of direct current converters which do not form a DC Converter Station or HVDC System and Embedded DC Converter Stations and Embedded HVDC Systems with a Registered Capacity or HVDC Active Power Transmission Capacity of less than 100MW;
- (c) be based upon **Annual ACS Conditions** for times that occur during week 44 through to week 12 (inclusive) and based on **Average Conditions** for weeks 13 to 43 (inclusive).

PC.A.4.3 Connection Point Demand (Active and Reactive Power)

- PC.A.4.3.1 Forecast **Demand** (**Active Power**) and **Power Factor** (values of the **Power Factor** at maximum and minimum continuous excitation may be given instead where more than 95% of the total **Demand** at a **Connection Point** is taken by synchronous motors) to be met at each **Connection Point** within each **Access Group** is required for:
 - (a) the time of the maximum **Demand** (**Active Power**) at the **Connection Point** (as determined by the **User**) that in the **User's** opinion could reasonably be imposed on the **National Electricity Transmission System**;
 - (b) the time of peak **National Electricity Transmission System Demand** as provided by **The Company** under PC.A.4.2.2;
 - (c) the time of minimum **National Electricity Transmission System Demand** as provided by **The Company** under PC.A.4.2.2;
 - (d) the time of the maximum Demand (Apparent Power) at the Connection Point (as determined by the User) during the Access Period of each Transmission Interface Circuit:
 - (e) at a time specified by either **The Company** or a **User** insofar as such a request is reasonable.

Instead of such forecast **Demand** to be met at each **Connection Point** within each **Access Group** the **User** may (subject to PC.A.4.3.4) submit such **Demand** at each node on the **Single Line Diagram**.

In addition, the **Demand** in respect of each of the time periods referred to in PC.A.4.3.1 (a) to (e) in the preceding **Financial Year** in respect of each **Connection Point** within each **Access Group** both outturn and weather corrected shall be supplied. The "weather correction" shall normalise outturn figures to **Annual ACS Conditions** for times that occur during calendar week 44 through to calendar week 12 (inclusive) or **Average Conditions** for the period calendar weeks 13 to calendar week 43 (inclusive) and shall be performed by the relevant **User** on a best endeavours basis.

The submission by a **User** pursuant to PC.A.4.3.1 (d) shall commence in 2011 and shall then continue each year thereafter.

PC.A.4.3.2 All forecast **Demand** specified in PC.A.4.3.1 shall:

(a) be that remaining after any deductions reasonably considered appropriate by the User to take account of the output of all Embedded Small Power Stations and Embedded Medium Power Stations and Customer Generating Plant and imports across Embedded External Interconnections, including Embedded installations of direct current converters which do not form a DC Converter Station, HVDC System and Embedded DC Converter Stations and Embedded HVDC Systems and such deductions should be separately stated;

- (b) include any **User's System** series reactive losses but exclude any reactive compensation equipment specified in PC.A.2.4 and exclude any network susceptance specified in PC.A.2.3;
- (c) be based upon Annual ACS Conditions for times that occur during calendar week 44 through to calendar week 12 (inclusive) and based on Average Conditions for calendar weeks 13 to calendar week 43 (inclusive), both corrections being made on a best endeavours basis;
- (d) reflect the **User's** opinion of what could reasonably be imposed on the **National Electricity Transmission System**.
- PC.A.4.3.3 The date and time of the forecast maximum **Demand** (**Apparent Power**) at the **Connection Point** as specified in PC.A.4.3.1 (a) and (d) is required.
- PC.A.4.3.4 Each **Single Line Diagram** provided under PC.A.2.2.2 shall include the **Demand** (**Active Power**) and **Power Factor** (values of the **Power Factor** at maximum and minimum continuous excitation may be given instead where more than 95% of the **Demand** is taken by synchronous motors) at the time of the peak **National Electricity Transmission System Demand** (as provided under PC.A.4.2.2) at each node on the **Single Line Diagram**. These **Demands** shall be consistent with those provided under PC.A.4.3.1(b) above for the relevant year.
- PC.A.4.3.5 The **Single Line Diagram** must represent the **User's User System** layout under the period specified in PC.A.4.3.1(b) (at the time of peak **National Electricity Transmission System Demand**). Should the **User's User System** layout during the other times specified in PC.A.4.3.1 be planned to be materially different from the **Single Line Diagram** submitted to **The Company** pursuant to PC.A.2.2.1 the **User** shall in respect of such other times submit:
 - an alternative Single Line Diagram that accurately reflects the revised layout and in such case shall also include appropriate associated data representing the relevant changes, or;
 - (ii) submit an accurate and unambiguous description of the changes to the **Single Line Diagram** previously submitted for the time of peak **National Electricity Transmission System Demand**.

Where a **User** does not submit any changes, **The Company** will assume that the **Single Line Diagram** (and associated circuit and node data) provided at the time of peak **National Electricity Transmission System Demand** will be valid for all other times. In respect of such other times, where the **User** does not submit such nodal demands at the times defined in PC.A.4.3.1(a), (c), (d) and (e), the nodal demands will be pro-rata, to be consistent with the submitted **Connection Point Demands**.

- PC.A.4.4 The Company will assemble and derive in a reasonable manner, the forecast information supplied to it under PC.A.4.2.1, PC.A.4.3.1, PC.A.4.3.4 and PC.A.4.3.5 above into a cohesive forecast and will use this in preparing Forecast Demand information in the Seven Year Statement and for use in The Company's Operational Planning. If any User believes that the cohesive forecast Demand information in the Seven Year Statement does not reflect its assumptions on Demand, it should contact The Company to explain its concerns and may require The Company, on reasonable request, to discuss these forecasts. In the absence of such expressions, The Company will assume that Users concur with The Company's cohesive forecast.
- PC.A.4.5 Post Fault User System Layout
- PC.A.4.5.1 Where for the purposes of **The Company** assessing against the Licence Standards an **Access Group**, the **User** reasonably considers it appropriate that revised post fault **User System** layouts should be taken into account by **The Company**, the following information is required to be submitted by the **User**:
 - (i) the specified **Connection Point** assessment period (PC.A.4.3.1,(a)-(e)) that is being evaluated;
 - (ii) an accurate and unambiguous description of the **Transmission Interface Circuits** considered to be switched out due to a fault;

- (iii) appropriate revised **Single Line Diagrams** and/or associated revised nodal **Demand** and circuit data detailing the revised **User System(s)** conditions;
- (iv) where the User's planned post fault action consists of more than one component, each component must be explicitly identified using the Single Line Diagram and associated nodal Demand and circuit data;
- (v) the arrangements for undertaking actions (eg the time taken, automatic or manual and any other appropriate information);.

The **User** must not submit any action that it does not have the capability or the intention to implement during the assessment period specified (subject to there being no further unplanned outages on the **User's User System**).

PC.A.4.6 Control of Demand or Reduction of Pumping Load Offered as Reserve

Magnitude of Demand or pumping load or Electricty Storage	MW
Module charging load which is tripped	
System Frequency at which tripping is initiated	Hz
Time duration of System Frequency below trip setting for tripping to	S
be initiated	
Time delay from trip initiation to tripping	S

PC.A.4.7 <u>General Demand Data</u>

- PC.A.4.7.1 The following information is infrequently required and should be supplied (wherever possible) when requested by **The Company**:
 - (a) details of any individual loads (including (as applicable) the load behaviour of an Electricity Storage Module when operating in a mode analogous to demand) which have characteristics significantly different from the typical range of Domestic, Commercial, Electricity Storage or Industrial loads supplied;
 - (b) the sensitivity of the Demand (Active and Reactive Power) to variations in voltage and Frequency on the National Electricity Transmission System at the time of the peak Demand (Active Power). The sensitivity factors quoted for the Demand (Reactive Power) should relate to that given under PC.A.4.3.1 and, therefore, include any User's System series reactive losses but exclude any reactive compensation equipment specified in PC.A.2.4 and exclude any network susceptance specified in PC.A.2.3;
 - (c) details of any traction loads, e.g. connection phase pairs and continuous load variation with time:
 - (d) the average and maximum phase unbalance, in magnitude and phase angle, which the User would expect its Demand to impose on the National Electricity Transmission System;
 - (e) the maximum harmonic content which the **User** would expect its **Demand** to impose on the **National Electricity Transmission System**;
 - (f) details of all loads which may cause **Demand** fluctuations greater than those permitted under **Engineering Recommendation** P28 Issue 2, Stage 1 at a **Point of Common Coupling** including the **Flicker Severity Short Term** and the **Flicker Severity Long Term**.
 - (g) In the case of Electricity Storage Modules, details of the Maximum Capacity, Maximum Import Power, Registered Import Capability, charge time, discharge time and operating periods.

PART 2 - DETAILED PLANNING DATA

- PC.A.5 POWER GENERATING MODULE, GENERATING UNIT, POWER PARK MODULE (INCLUDING DC CONNECTED POWER PARK MODULES), DC CONVERTER, HVDC EQUIPMENT AND OTSDUW PLANT AND APPARATUS DATA
- PC.A.5.1 Introduction

Directly Connected

PC.A.5.1.1 Each Generator (including those undertaking OTSDUW), with existing or proposed Power Stations directly connected, or to be directly connected, to the National Electricity Transmission System, shall provide The Company with data relating to that Plant and Apparatus, both current and forecast, as specified in PC.A.5.2, PC.A.5.3, PC.A.5.4 and PC.A.5.7 as applicable.

Each **DC** Converter Station owner or **HVDC** System Owner, with existing or proposed **DC** Converter Stations or **HVDC** Systems (including Generators undertaking **OTSDUW** which includes an **OTSDUW DC** Converter) directly connected, or to be directly connected, to the **National Electricity Transmission System**, shall provide **The Company** with data relating to that **Plant** and **Apparatus**, both current and forecast, as specified in PC.A.5.2 and PC.A.5.4.

GB Generators, DC Converter Station owners, EU Generators and HVDC System Owners shall ensure that the models supplied in respect of their Plant and Apparatus provide a true and accurate behaviour of the plant as built as required under PC.A.5.3.2(c), PC.A.5.4.2(a) and PC.A.5.4.3 and verified through the Compliance Processes (CP) or European Compliance Processes (ECP) as applicable.

Embedded

PC.A.5.1.2 Each Generator, in respect of its existing, or proposed, Embedded Large Power Stations and its Embedded Medium Power Stations subject to a Bilateral Agreement and each Network Operator in respect of Embedded Medium Power Stations not subject to a Bilateral Agreement within its System shall provide The Company with data relating to each of those Large Power Stations and Medium Power Stations, both current and forecast, as specified in PC.A.5.2, PC.A.5.3, PC.A.5.4 and PC.A.5.7 as applicable.

Each DC Converter Station owner or HVDC System Owner, or Network Operator in the case of an Embedded DC Converter Station or Embedded HVDC System not subject to a Bilateral Agreement within its System with existing or proposed HVDC Systems or DC Converter Stations shall provide The Company with data relating to each of those HVDC Systems or DC Converter Stations, both current and forecast, as specified in PC.A.5.2 and PC.A.5.4.

However, no data need be supplied in relation to those **Embedded Medium Power Stations** or **Embedded DC Converter Stations** or **Embedded HVDC Systems** if they are connected at a voltage level below the voltage level of the **Subtransmission System** except in connection with an application for, or under a, **CUSC Contract** or unless specifically requested by **The Company** under PC.A.5.1.4.

GB Generators, **DC** Converter Station owners, **EU** Generators and **HVDC** System Owners shall ensure that the models supplied in respect of their **Plant** and **Apparatus** provide a true and accurate behaviour of the plant as built as required under PC.A.5.3.2(c), PC.A.5.4.2(a) and PC.A.5.4.3 and verified through the **Compliance Processes (CP)** or **European Compliance Processes (ECP)** as applicable

PC.A.5.1.3 Each **Network Operator** need not submit **Planning Data** in respect of **Embedded Small Power Stations** unless required to do so under PC.A.1.2(b), PC.A.3.1.4 or unless specifically requested under PC.A.5.1.4 below, in which case they will supply such data.

- PC.A.5.1.4 PC.A.4.2.4(b) and PC.A.4.3.2(a) explained that the forecast **Demand** submitted by each **Network Operator** must be net of the output of all **Medium Power Stations** and **Small Power Stations** and **Customer Generating Plant Embedded** within that **User's System**. In such cases, the **Network Operator** must provide **The Company** with the relevant information specified under PC.A.3.1.4 . On receipt of this data further details may be required at **The Company's** discretion as follows:
 - (i) in the case of details required from the Network Operator for Embedded Medium Power Stations not subject to a Bilateral Agreement and Embedded DC Converter Stations not subject to a Bilateral Agreement and Embedded HVDC Systems not subject to a Bilateral Agreement and Embedded Small Power Stations and Embedded DC Converters and Embedded HVDC Systems in each case within such Network Operator's System and Customer Generating Plant; and
 - (ii) in the case of details required from the **Generator** of **Embedded Large Power Stations** and **Embedded Medium Power Stations** subject to a **Bilateral Agreement**;
 - (iii) in the case of details required from the DC Converter Station owner of an Embedded DC Converter or DC Converter Station or HVDC System Owner of an Embedded HVDC System Owner subject to a Bilateral Agreement.

both current and forecast, as specified in PC.A.5.2 and PC.A.5.3. Such requirement would arise when **The Company** reasonably considers that the collective effect of a number of such **Embedded Small Power Stations**, **Embedded Medium Power Stations**, **Embedded DC Converter Stations**, **Embedded HVDC Systems**, **DC Converters** and **Customer Generating Plants** may have a significant system effect on the **National Electricity Transmission System**.

PC.A.5.1.5 DPD I and DPD II

The **Detailed Planning Data** described in this Part 2 of the Appendix comprises both **DPD I** and **DPD II**. The required data is listed and collated in the **Data Registration Code**. The **Users** need to refer to the **DRC** to establish whether data referred to here is **DPD I** or **DPD II**

PC.A.5.2 Demand

- PC.A.5.2.1 For each **Generating Unit** (including **Synchronous Generating Units** within a **Synchronous Power Generating Module)** which has an associated **Unit Transformer**, the value of the **Demand** supplied through this **Unit Transformer** when the **Generating Unit** is at **Rated MW** output is to be provided.
- PC.A.5.2.2 Where the **Power Station** or **DC Converter Station** or **HVDC System** has associated **Demand** additional to the unit-supplied **Demand** of PC.A.5.2.1 which is supplied from either the **National Electricity Transmission System** or the **Generator's User System** the **Generator, DC Converter Station** owner, **HVDC System Owner** or the **Network Operator** (in the case of **Embedded Medium Power Stations** not subject to a **Bilateral Agreement** within its **System**), as the case may be, shall supply forecasts for each **Power Station** or **DC Converter Station** or **HVDC System** of:
 - (a) the maximum **Demand** that, in the **User's** opinion, could reasonably be imposed on the
 National Electricity Transmission System or the Generator's User System as
 appropriate;
 - (b) the **Demand** at the time of the peak **National Electricity Transmission System Demand**
 - (c) the **Demand** at the time of minimum **National Electricity Transmission System Demand**.

- PC.A.5.2.3 No later than calendar week 17 each year The Company shall notify each Generator in respect of its Large Power Stations and its Medium Power Stations and each DC Converter owner in respect of its DC Converter Station and each HVDC System Owner in respect of its HVDC System subject to a Bilateral Agreement and each Network Operator in respect of each Embedded Medium Power Station not subject to a Bilateral Agreement and each Embedded DC Converter Station or Embedded HVDC System not subject to a Bilateral Agreement within such Network Operator's System in writing of the following, for the current Financial Year and for each of the following seven Financial Years, which will be regarded as the relevant specified days and times under PC.A.5.2.2:
 - (a) the date and time of the annual peak of the **National Electricity Transmission System Demand** at **Annual ACS Conditions**;
 - (b) the date and time of the annual minimum of the National Electricity Transmission System Demand at Average Conditions.
- PC.A.5.2.4 At its discretion, **The Company** may also request further details of the **Demand** as specified in PC.A.4.6
- PC.A.5.2.5 In the case of **OTSDUW Plant and Apparatus** the following data shall be supplied:
 - (a) The maximum **Demand** that could occur at the **Interface Point** and each **Connection Point** (in MW and MVAr);
 - (b) **Demand** at specified time of annual peak half hour of **National Electricity Transmission System Demand** at **Annual ACS Conditions** (in MW and MVAr); and
 - (c) **Demand** at specified time of annual minimum half-hour of **National Electricity Transmission System Demand** (in MW and MVAr).

For the avoidance of doubt, **Demand** data associated with **Generators** undertaking **OTSDUW** which utilise an **OTSDUW DC Converter** should supply data under PC.A.4.

- PC.A.5.3 <u>Synchronous Power Generating Modules, Synchronous Generating Unit and Associated</u> Control System Data
- PC.A.5.3.1 The data submitted below are not intended to constrain any **Ancillary Services Agreement**
- PC.A.5.3.2 The following **Synchronous Generating Unit** (including **Synchronous Generating Units** within a **Synchronous Power Generating Module**) and **Power Station** data should be supplied:
 - (a) Synchronous Generating Unit Parameters

Rated terminal volts (kV)

Maximum terminal voltage set point (kV)

Terminal voltage set point step resolution – if not continuous (kV)

- Rated MVA
- * Rated MW
- Minimum Generation MW
- Short circuit ratio

Direct axis synchronous reactance

* Direct axis transient reactance

Direct axis sub-transient reactance

Direct axis short-circuit transient time constant.

Direct axis short-circuit sub-transient time constant.

Quadrature axis synchronous reactance

Quadrature axis sub-transient reactance

Quadrature axis short-circuit sub-transient time constant.

Stator time constant

Stator leakage reactance

Armature winding direct-current resistance.

Note: The above data item relating to armature winding direct-current resistance need only be supplied with respect to **Generating Units** commissioned after 1st March 1996 and in cases where, for whatever reason, the **Generator** or the **Network Operator**, as the case may be is aware of the value of the relevant parameter.

* Turbogenerator inertia constant (MWsec/MVA)

Rated field current (amps) at **Rated MW** and MVAr output and at rated terminal voltage.

Field current (amps) open circuit saturation curve for **Generating Unit** terminal voltages ranging from 50% to 120% of rated value in 10% steps as derived from appropriate manufacturers test certificates.

(b) Parameters for **Generating Unit** Step-up Transformers

* Rated MVA

Voltage ratio

Positive sequence reactance (at max, min, & nominal tap)

Positive sequence resistance (at max, min, & nominal tap)

Zero phase sequence reactance

Tap changer range

Tap changer step size

Tap changer type: on load or off circuit

(c) Excitation Control System parameters

Note: The data items requested under Option 1 below may continue to be provided in relation to **Generating Units** connected to the **System** at 09 January 1995 (in this paragraph, the "relevant date") or the new data items set out under Option 2 may be provided. **Generators** or **Network Operators**, as the case may be, must supply the data as set out under Option 2 (and not those under Option 1) for **Generating Unit** excitation control systems commissioned after the relevant date, those **Generating Unit** excitation control systems recommissioned for any reason such as refurbishment after the relevant date and **Generating Unit** excitation control systems where, as a result of testing or other process, the **Generator** or **Network Operator**, as the case may be, is aware of the data items listed under Option 2 in relation to that **Generating Unit**.

Option 1

DC gain of Excitation Loop

Rated field voltage

Maximum field voltage

Minimum field voltage

Maximum rate of change of field voltage (rising)

Maximum rate of change of field voltage (falling)

Details of Excitation Loop described in block diagram form showing transfer functions of individual elements.

Dynamic characteristics of **Over-excitation Limiter**.

Option 2

Excitation System Nominal Response

Rated Field Voltage

No-Load Field Voltage

Excitation System On-Load Positive Ceiling Voltage

Excitation System No-Load Positive Ceiling Voltage

Excitation System No-Load Negative Ceiling Voltage

Stator Current Limiter (applicable only to Synchronous Power Generating Modules)

Details of Excitation System (including PSS if fitted) described in block diagram form showing transfer functions of individual elements.

Details of Over-excitation Limiter described in block diagram form showing transfer functions of individual elements.

Details of Under-excitation Limiter described in block diagram form showing transfer functions of individual elements.

The block diagrams submitted after 1 January 2009 in respect of the Excitation System (including the Over-excitation Limiter and the Under-excitation Limiter) for Generating Units with a Completion date after 1 January 2009 or subject to a Modification to the Excitation System after 1 January 2009, should have been verified as far as reasonably practicable by simulation studies as representing the expected behaviour of the system.

(d) Governor Parameters

Incremental Droop values (in %) are required for each Generating Unit at six MW loading points (MLP1 to MLP6) as detailed in PC.A.5.5.1 (this data item needs only be provided for Large Power Stations)

Note: The data items requested under Option 1 below may continue to be provided by Generators in relation to Generating Units on the System at 09 January 1995 (in this paragraph, the "relevant date") or they may provide the new data items set out under Option 2. Generators must supply the data as set out under Option 2 (and not those under Option 1) for Generating Unit governor control systems commissioned after the relevant date, those Generating Unit governor control systems recommissioned for any reason such as refurbishment after the relevant date and Generating Unit governor control systems where, as a result of testing or other process, the **Generator** is aware of the data items listed under Option 2 in relation to that Generating Unit. EU Generators are also required to submit the data as set out in option 2. Additional data required from EU Generators which own or operate Type C or Type D Power Generating Modules are marked in brackets with an asterisk (eg (*)). For the avoidance of doubt, items marked as (*) need not be supplied by GB Generators.

Option 1

Governor Parameters (for Reheat Steam Units)

HP governor average gain MW/Hz

Speeder motor setting range

HP governor valve time constant

HP governor valve opening limits

HP governor valve rate limits

Reheater time constant (**Active Energy** stored in reheater)

PC

IP governor average gain MW/Hz

IP governor setting range

IP governor valve time constant

IP governor valve opening limits

IP governor valve rate limits

Details of acceleration sensitive elements in HP & IP governor loop.

A governor block diagram showing transfer functions of individual elements.

(ii) Governor Parameters (for Non-Reheat Steam Units and Gas Turbine Units)

Governor average gain

Speeder motor setting range

Time constant of steam or fuel governor valve

Governor valve opening limits

Governor valve rate limits

Time constant of turbine

Governor block diagram

The following data items need only be supplied for Large Power Stations:

(iii) Boiler & Steam Turbine Data

Boiler Time Constant (Stored Active Energy)

S

HP turbine response ratio:

proportion of **Primary Response** arising from HP turbine

%

HP turbine response ratio:

proportion of High Frequency Response arising from HP turbine

%

[End of Option 1]

Option 2

 Governor and associated prime mover Parameters - All Generating Units (including Synchronous Generating Units within a Synchronous Power Generating Module)

Governor Block Diagram showing transfer function of individual elements including acceleration sensitive elements.

Governor Time Constant (in seconds)

Speeder Motor Setting Range (%)

Average Gain (MW/Hz)

Governor Deadband (and Governor Insensitivity Governor Deadband*) need only be provided for Large Power Stations (and both Governor Deadband and Governor Insensitivity should be supplied in respect of Type C and D Power Generating Modules within Large Power Station and Medium Power Stations excluding Embedded Medium Power Stations not subject to a Bilateral Agreement*)

Maximum Setting ±Hz
 Normal Setting ±Hz
 Minimum Setting ±Hz

Where the **Generating Unit** governor does not have a selectable **Governor Deadband** (or **Governor Insensitivity***) facility as specified above, then the actual value of the **Governor Deadband** (or **Governor Insensitivity***) need only be provided.

The block diagrams submitted after 1 January 2009 in respect of the Governor system for **Generating Units** with a **Completion date** after 1 January 2009 or subject to a **Modification** to the governor system after 1 January 2009, should have been verified as far as reasonably practicable by simulation studies as representing the expected behaviour of the system.

(ii) Governor and associated prime mover Parameters - Steam Units

HP Valve Time Constant (in seconds)

HP Valve Opening Limits (%)

HP Valve Opening Rate Limits (%/second)

HP Valve Closing Rate Limits (%/second)

HP Turbine Time Constant (in seconds)

IP Valve Time Constant (in seconds)

IP Valve Opening Limits (%)

IP Valve Opening Rate Limits (%/second)

IP Valve Closing Rate Limits (%/second)

IP Turbine Time Constant (in seconds)

LP Valve Time Constant (in seconds)

LP Valve Opening Limits (%)

LP Valve Opening Rate Limits (%/second)

LP Valve Closing Rate Limits (%/second)

LP Turbine Time Constant (in seconds)

Reheater Time Constant (in seconds)

Boiler Time Constant (in seconds)

HP Power Fraction (%)

IP Power Fraction (%)

(iii) Governor and associated prime mover Parameters - Gas Turbine Units

Inlet Guide Vane Time Constant (in seconds)

Inlet Guide Vane Opening Limits (%)

Inlet Guide Vane Opening Rate Limits (%/second)

Inlet Guide Vane Closing Rate Limits (%/second)

Fuel Valve Constant (in seconds)

Fuel Valve Opening Limits (%)

Fuel Valve Opening Rate Limits (%/second)

Fuel Valve Closing Rate Limits (%/second)

Waste Heat Recovery Boiler Time Constant (in seconds)

(iv) Governor and associated prime mover Parameters - Hydro Generating Units

Guide Vane Actuator Time Constant (in seconds)

Guide Vane Opening Limits (%)

Guide Vane Opening Rate Limits (%/second)

Guide Vane Closing Rate Limits (%/second)

Water Time Constant (in seconds)

(v) Governor Parameters - Synchronous Electricity Storage Units

For **Synchronous Electricity Storage Modules** which are derived from compressed air energy storage systems, the following data should be provided. For other **Synchronous Electricity Storage Modules**, data should be supplied as required by **The Company** in accordance with PC.A.7

Valve Actuator Time Constant (in seconds)

Valve Opening Limits (%)

Valve Opening Rate Limits (%/second)

Valve Closing Rate Limits (%/second)

[End of Option 2]

(e) Unit Control Options

The following data items need only be supplied with respect to Large Power Stations:

Maximum **Droop** %

Normal **Droop** %

Minimum **Droop** %

Maximum Governor Deadband (and Governor Insensitivity*)

 $\pm \mathsf{Hz}$

Normal Governor Deadband (and Governor Insensitivity*)

±Hz

Minimum Governor Deadband (and Governor Insensitivity*)

±Ηz

Maximum output Governor Deadband (and Governor Insensitivity*)

 $\pm MW$

Normal output Governor Deadband (and Governor Insensitivity*)

±MW

Minimum output Governor Deadband (and Governor Insensitivity*)

 $\pm MW$

Frequency settings between which Unit Load Controller **Droop** applies:

- Maximum Hz - Normal Hz

- Minimum Hz

State if sustained response is normally selected.

(* GB Generators which are not required to satisfy the requirements of the European Connection Conditions are not required to supply Governor Insensitivity data).

(f) Plant Flexibility Performance

The following data items need only be supplied with respect to **Large Power Stations**, and should be provided with respect to each **Genset**:

- # Run-up rate to Registered Capacity,
- # Run-down rate from Registered Capacity,
- # Synchronising Generation,

Regulating range

Load rejection capability while still **Synchronised** and able to supply **Load**.

Data items marked with a hash (#) should be applicable to a **Genset** which has been **Shutdown** for 48 hours.

- Data items marked with an asterisk are already requested under partx1, PC.A.3.3.1, to facilitate an early assessment by **The Company** as to whether detailed stability studies will be required before an offer of terms for a **CUSC Contract** can be made. Such data items have been repeated here merely for completeness and need not, of course, be resubmitted unless their values, known or estimated, have changed.
- (g) Generating Unit Mechanical Parameters

It is occasionally necessary for **The Company** to assess the interaction between the **Total System** and the mechanical components of **Generating Units**. For **Generating Units** (including **Synchronous Generating Units** within a **Synchronous Power Generating Module**) with a **Completion Date** on or after 01 April 2015, the following data items should be supplied:

The number of turbine generator masses.

Diagram showing the Inertia and parameters for each turbine generator mass (kgm²) and Stiffness constants and parameters between each turbine generator mass for the complete drive train (Nm/rad).

Number of poles.

Relative power applied to different parts of the turbine (%).

Torsional mode frequencies (Hz).

Modal damping decrement factors for the different mechanical modes.

- PC.A.5.4 <u>Power Park Module, Non-Synchronous Generating Unit and Associated Control System</u>
 Data
- PC.A.5.4.1 The data submitted below are not intended to constrain any **Ancillary Services Agreement**
- PC.A.5.4.2 The following **Power Park Unit**, **Power Park Module** and **Power Station** data should be supplied in the case of a **Power Park Module** not connected to the **Total System** by a **DC Converter** or **HVDC System** (and in the case of PC.A.5.4.2(f) any **OTSUA**):

Where a **Manufacturer's Data & Performance Report** exists in respect of the model of the **Power Park Unit**, the **User** may subject to **The Company's** agreement, opt to reference the **Manufacturer's Data & Performance Report** as an alternative to the provision of data in accordance with PC.A.5.4.2 except for:

- (1) the section marked thus # at sub paragraph (b); and
- (2) all of the harmonic and flicker parameters required under sub paragraph (h); and

(3) all of the site specific model parameters relating to the voltage or frequency control systems required under sub paragraphs (d) and (e),

which must be provided by the **User** in addition to the **Manufacturer's Data & Performance Report** reference.

(a) Power Park Unit model

A mathematical model of each type of **Power Park Unit** (including **Electricity Storage Units**) capable of representing its transient and dynamic behaviour under both small and large disturbance conditions. The model shall include non-linear effects and represent all equipment relevant to the dynamic performance of the **Power Park Unit** as agreed with **The Company**. The model shall be suitable for the study of balanced, root mean square, positive phase sequence time-domain behaviour, excluding the effects of electromagnetic transients, harmonic and sub-harmonic frequencies.

The model shall accurately represent the overall performance of the **Power Park Unit** over its entire operating range including that which is inherent to the **Power Park Unit** and that which is achieved by use of supplementary control systems providing either continuous or stepwise control. Model resolution should be sufficient to accurately represent **Power Park Unit** behaviour both in response to operation of **Transmission System** protection and in the context of longer-term simulations.

The overall structure of the model shall include:

- (i) any supplementary control signal modules not covered by (c), (d) and (e) below.
- (ii) any blocking, deblocking and protective trip features that are part of the **Power Park Unit** (e.g. "crowbar").
- (iii) any other information required to model the **Power Park Unit** behaviour to meet the model functional requirement described above.

The model shall be submitted in the form of a transfer function block diagram and may be accompanied by dynamic and algebraic equations.

This model shall display all the transfer functions and their parameter values, any non wind-up logic, signal limits and non-linearities.

The submitted **Power Park Unit** model and the supplementary control signal module models covered by (c), (d) and (e) below shall have been validated and this shall be confirmed by the **Generator**. The validation shall be based on comparing the submitted model simulation results against measured test results. Validation evidence shall also be submitted and this shall include the simulation and measured test results. The latter shall include appropriate short-circuit tests. In the case of an **Embedded Medium Power Station** not subject to a **Bilateral Agreement** the **Network Operator** will provide **The Company** with the validation evidence if requested by **The Company**. The validation of the supplementary control signal module models covered by (c), (d) and (e) below applies only to a **Power Park Module** with a **Completion Date** after 1 January 2009 or **Power Park Modules** within a **Power Generating Module**.

(b) Power Park Unit parameters

- * Rated MVA
- * Rated MW
- Rated terminal voltage
- * Average site air density (kg/m³), maximum site air density (kg/m³) and minimum site air density (kg/m³) for the year (as applicable)

Year for which the air density is submitted (as applicable)

Number of pole pairs (as applicable)

Blade swept area (m²) (as applicable)

Gear box ratio (as applicable)

Mechanical drive train (as applicable)

For each **Power Park Unit**, details of the parameters of the drive train (as applicable) represented as an equivalent two mass model should be provided. This model should accurately represent the behaviour of the complete drive train for the purposes of power system analysis studies and should include the following data items:-

Equivalent inertia constant (MWsec/MVA) of the first mass (e.g. wind turbine rotor and blades) at minimum, synchronous and rated speeds

Equivalent inertia constant (MWsec/MVA) of the second mass (e.g. generator rotor) at minimum, synchronous and rated speeds

Equivalent shaft stiffness between the two masses (Nm/electrical radian)

Additionally, for **Power Park Units** that are induction generators (e.g. squirrel cage, doubly-fed) driven by wind turbines:

- * Stator resistance
- * Stator reactance
- * Magnetising reactance.
- * Rotor resistance.(at starting)
- * Rotor resistance.(at rated running)
- * Rotor reactance (at starting)
- * Rotor reactance (at rated running)

Additionally for doubly-fed induction generators only:

The generator rotor speed range (minimum and maximum speeds in RPM)

The optimum generator rotor speed versus wind speed submitted in tabular format

Power converter rating (MVA)

The rotor power coefficient (C_p) versus tip speed ratio (λ) curves for a range of blade angles (where applicable) together with the corresponding values submitted in tabular format. The tip speed ratio (λ) is defined as $\Omega R/U$ where Ω is the angular velocity of the rotor, R is the radius of the wind turbine rotor and U is the wind speed.

The electrical power output versus generator rotor speed for a range of wind speeds over the entire operating range of the **Power Park Unit**, together with the corresponding values submitted in tabular format.

The blade angle versus wind speed curve together with the corresponding values submitted in tabular format.

The electrical power output versus wind speed over the entire operating range of the **Power Park Unit**, together with the corresponding values submitted in tabular format.

Transfer function block diagram, including parameters and description of the operation of the power electronic converter and fault ride through capability (where applicable).

For a **Power Park Unit** consisting of a synchronous machine in combination with a back to back **DC Converter** or **HVDC System**, or for a **Power Park Unit** not driven by a wind turbine, the data to be supplied shall be agreed with **The Company** in accordance with PC.A.7.

(c) Torque / speed and blade angle control systems and parameters

For the type of **Power Park Unit** (as applicable), details of the torque / speed controller and blade angle controller in the case of a wind turbine and power limitation functions (where applicable) described in block diagram form showing transfer functions and parameters of individual elements.

(d) Voltage/Reactive Power/Power Factor control system parameters

For the **Power Park Unit** and **Power Park Module** details of voltage/**Reactive Power/Power Factor** controller (and **PSS** if fitted) described in block diagram form showing transfer functions and parameters of individual elements.

(e) Frequency control system parameters

For the **Power Park Unit** and **Power Park Module** details of the **Frequency** controller described in block diagram form showing transfer functions and parameters of individual elements.

(f) Protection

Details of settings for the following **Protection** relays (to include): Under **Frequency**, over **Frequency**, under voltage, over voltage, rotor over current, stator over current, high wind speed shut down level.

(g) Complete Power Park Unit model, parameters and controls

An alternative to PC.A.5.4.2 (a), (b), (c), (d), (e) and (f), is the submission of a single complete model that consists of the full information required under PC.A.5.4.2 (a), (b), (c), (d), (e) and (f) provided that all the information required under PC.A.5.4.2 (a), (b), (c), (d), (e) and (f) individually is clearly identifiable.

(h) Harmonic and flicker parameters

When connecting a **Power Park Module**, it is necessary for **The Company** to evaluate the production of flicker and harmonics on the **National Electricity Transmission System** and **User's Systems**. At **The Company's** reasonable request, the **User** (a **Network Operator** in the case of an **Embedded Power Park Module** not subject to a **Bilateral Agreement**) is required to submit the following data (as defined in IEC 61400-21 (2001)) for each **Power Park Unit**:-

Flicker coefficient for continuous operation.

Flicker step factor.

Number of switching operations in a 10 minute window.

Number of switching operations in a 2 hour window.

Voltage change factor.

Current Injection at each harmonic for each **Power Park Unit** and for each **Power Park Module**

PC.A.5.4.3 DC Converter and HVDC Systems

^{*} Data items marked with an asterisk are already requested under part 1, PC.A.3.3.1, to facilitate an early assessment by **The Company** as to whether detailed stability studies will be required before an offer of terms for a **CUSC Contract** can be made. Such data items have been repeated here merely for completeness and need not, of course, be resubmitted unless their values, known or estimated, have changed.

PC.A.5.4.3.1 For a **DC Converter** at a **DC Converter Station** or an **HVDC System** or **Power Park**Module connected to the **Total System** by a **DC Converter** or **HVDC System** (or in the case of **OTSUA** which includes an **OTSDUW DC Converter**) the following information for each **DC Converter**, **HVDC System** and **DC Network** should be supplied:

(a) DC Converter and HVDC System parameters

- * Rated MW per pole for transfer in each direction;
- * **DC Converter** type (i.e. current or voltage source (including a **HVDC Converter** in an **HVDC System**));
- * Number of poles and pole arrangement;
- * Rated DC voltage/pole (kV);
- Return path arrangement;

(b) DC Converter and HVDC System transformer parameters

Rated MVA

Nominal primary voltage (kV);

Nominal secondary (converter-side) voltage(s) (kV);

Winding and earthing arrangement;

Positive phase sequence reactance at minimum, maximum and nominal tap;

Positive phase sequence resistance at minimum, maximum and nominal tap;

Zero phase sequence reactance;

Tap-changer range in %;

number of tap-changer steps;

(c) DC Network parameters

Rated DC voltage per pole;

Rated DC current per pole;

Single line diagram of the complete DC Network and HVDC System;

Details of the complete **DC Network**, including resistance, inductance and capacitance of all DC cables and/or DC lines and **HVDC System**;

Details of any DC reactors (including DC reactor resistance), DC capacitors and/or DC-side filters that form part of the **DC Network** and/or **HVDC System**;

(d) AC filter reactive compensation equipment parameters

Note: The data provided pursuant to this paragraph must not include any contribution from reactive compensation plant.

Total number of AC filter banks.

Type of equipment (e.g. fixed or variable)

Single line diagram of filter arrangement and connections;

Reactive Power rating for each AC filter bank, capacitor bank or operating range of each item of reactive compensation equipment, at rated voltage;

Performance chart showing **Reactive Power** capability of the **DC Converter** and **HVDC System**, as a function of MW transfer, with all filters and reactive compensation plant, belonging to the **DC Converter Station** or **HVDC System** working correctly.

Note: Details in PC.A.5.4.3.1 are required for each **DC Converter** connected to the **DC Network** and **HVDC System**, unless each is identical or where the data has already been submitted for an identical **DC Converter** or **HVDC System** at another **Connection Point**.

Note: For a **Power Park Module** and **DC Connected Power Park Module** connected to the **Grid Entry Point** or (**User System Entry Point** if **Embedded**) by a **DC Converter** or **HVDC System** the equivalent inertia and fault infeed at the **Power Park Unit** should be given.

DC Converter and HVDC System Control System Models

- PC.A.5.4.3.2 The following data is required by **The Company** to represent **DC Converters** and associated **DC Networks** and **HVDC Systems** (and including **OTSUA** which includes an **OTSDUW DC Converter**) in dynamic power system simulations, in which the AC power system is typically represented by a positive sequence equivalent. **DC Converters** and **HVDC Systems** are represented by simplified equations and are not modelled to switching device level.
 - (i) Static V_{DC}-I_{DC} (DC voltage DC current) characteristics, for both the rectifier and inverter modes for a current source converter. Static V_{DC}-P_{DC} (DC voltage - DC power) characteristics, for both the rectifier and inverter modes for a voltage source converter. Transfer function block diagram including parameters representation of the control systems of each DC Converter and of the DC Converter Station and the HVDC System, for both the rectifier and inverter modes. A suitable model would feature the DC Converter or HVDC Converter firing angle as the output variable.
 - (ii) Transfer function block diagram representation including parameters of the **DC**Converter or HVDC Converter transformer tap changer control systems, including time delays
 - (iii) Transfer function block diagram representation including parameters of AC filter and reactive compensation equipment control systems, including any time delays.
 - (iv) Transfer function block diagram representation including parameters of any **Frequency** and/or load control systems.
 - (v) Transfer function block diagram representation including parameters of any small signal modulation controls such as power oscillation damping controls or sub-synchronous oscillation damping controls, that have not been submitted as part of the above control system data.
 - (vi) Transfer block diagram representation of the **Reactive Power** control at converter ends for a voltage source converter.

In addition and where not provided for above, **HVDC System Owners** shall also provide the following dynamic simulation sub-models

- (i) **HVDC Converter** unit models
- (ii) AC component models
- (iii) DC Grid models
- (iv) Voltage and power controller
- (v) Special control features if applicable (eg power oscillation damping (POD) function, subsynchronous torsional interaction (SSTI) control;
- (vi) Multi terminal control, if applicable
- (vii) **HVDC System** protection models as agreed between **The Company** and the **HVDC System Owner**

HVDC System Owners are also required to supply an equivalent model of the control system when adverse control interactions may result with **HVDC Converter Stations** and other connections in close proximity if requested by **The Company**. The equivalent model shall contain all necessary data for the realistic simulation of the adverse control interactions.

Plant Flexibility Performance

- PC.A.5.4.3.3 The following information on plant flexibility and performance should be supplied (and also in respect of **OTSUA** which includes an **OTSDUW DC Converter**):
 - (i) Nominal and maximum (emergency) loading rate with the **DC Converter** or **HVDC Converter** in rectifier mode.
 - (ii) Nominal and maximum (emergency) loading rate with the **DC Converter** or **HVDC**Converter in inverter mode.
 - (iii) Maximum recovery time, to 90% of pre-fault loading, following an AC system fault or severe voltage depression.
 - (iv) Maximum recovery time, to 90% of pre-fault loading, following a transient **DC Network** fault.

Harmonic Assessment Information

- PC.A.5.4.3.4 **DC Converter** owners and **HVDC System Owners** shall provide such additional further information as required by **The Company** in order that compliance with CC.6.1.5 can be demonstrated.
 - * Data items marked with an asterisk are already requested under part 1, PC.A.3.3.1, to facilitate an early assessment by **The Company** as to whether detailed stability studies will be required before an offer of terms for a **CUSC Contract** can be made. Such data items have been repeated here merely for completeness and need not, of course, be resubmitted unless their values, known or estimated, have changed.

PC.A.5.5 Response Data For Frequency Changes

The information detailed below is required to describe the actual frequency response capability profile as illustrated in Figure CC.A.3.1 of the **Connection Conditions** and Figure ECC.A.3.1 of the **European Connection Conditions**, and need only be provided for each:

- (i) Genset at Large Power Stations; and
- (ii) Generating Unit (including Synchronous Generating Units within a Synchronous Power Generating Module), Power Park Module (including a DC Connected Power Park Module) or CCGT Module at a Medium Power Station or DC Converter Station or HVDC System that has agreed to provide Frequency response in accordance with a CUSC Contract.

In the case of (ii) above for the rest of this PC.A.5.5 where reference is made to Gensets, it shall include such Generating Units (including Synchronous Generating Units within a Synchronous Power Generating Module), CCGT Modules, Power Park Modules (including DC Connected Power Park Modules), HVDC Systems and DC Converters as appropriate, but excludes OTSDUW Plant and Apparatus utilising OTSDUW DC Converters.

In this PC.A.5.5, for a CCGT Module with more than one Generating Unit, the phrase Minimum Generation or Minimum Regulating Level applies to the entire CCGT Module operating with all Generating Units (including Synchronous Generating Units within a Synchronous Power Generating Module) Synchronised to the System. Similarly for a Power Park Module (including a DC Connected Power Park Module) with more than one Power Park Unit, the phrase Minimum Generation or Minimum Regulating Level applies to the entire Power Park Module operating with all Power Park Units Synchronised to the System.

PC.A.5.5.1 MW Loading Points At Which Data Is Required

Response values are required at six MW loading points (MLP1 to MLP6) for each **Genset**. **Primary** and **Secondary Response** values need not be provided for MW loading points which are below **Minimum Generation** or **Minimum Stable Operating Level**. MLP1 to MLP6 must be provided to the nearest MW.

Prior to the **Genset** being first **Synchronised**, the MW loading points must take the following values:

MLP1	Designed Minimum Operating Level or Minimum Regulating Level
MLP2	Minimum Generation or Minimum Stable Operating Level
MLP3	70% of Registered Capacity or Maximum Capacity
MLP4	80% of Registered Capacity or Maximum Capacity
MLP5	95% of Registered Capacity or Maximum Capacity
MLP6	Registered Capacity or Maximum Capacity

When data is provided after the **Genset** is first **Synchronised**, the MW loading points may take any value between the **Designed Minimum Operating Level** or **Minimum Regulating Level** and **Registered Capacity** or **Minimum Regulating Level** and **Maximum Capacity** but the value of the **Designed Minimum Operating Level** or **Minimum Regulating Level** must still be provided if it does not form one of the MW loading points.

PC.A.5.5.2 Primary And Secondary Response To Frequency Fall

Primary and **Secondary Response** values for a -0.5Hz ramp are required at six MW loading points (MLP1 to MLP6) as detailed above

PC.A.5.5.3 High Frequency Response To Frequency Rise

High Frequency Response values for a +0.5Hz ramp are required at six MW loading points (MLP1 to MLP6) as detailed above.

PC.A.5.6 Mothballed Power Generating Module, Mothballed Generating Unit, Mothballed Power Park

Module (including DC Connected Power Park Modules), Mothballed HVDC Systems or

Mothballed DC Converter At A DC Converter Station And Alternative Fuel Information

Data identified under this section PC.A.5.6 must be submitted as required under PC.A.1.2 and at **The Company's** reasonable request.

In the case of Embedded Medium Power Stations not subject to a Bilateral Agreement, Embedded HVDC Systems not subject to a Bilateral Agreement and Embedded DC Converter Stations not subject to a Bilateral Agreement, upon request from The Company each Network Operator shall provide the information required in PC.A.5.6.1, PC.A.5.6.2, PC.A.5.6.3 and PC.A.5.6.4 on respect of such Embedded Medium Power Stations and Embedded DC Converters Stations and Embedded HVDC Systems with their System.

PC.A.5.6.1 Mothballed Generating Unit Information

Generators, HVDC System Owners and DC Converter Station owners must supply with respect to each Mothballed Power Generating Module, Mothballed Generating Unit, Mothballed Power Park Module (including a DC Connected Power Park Module), Mothballed HVDC System or Mothballed DC Converter at a DC Converter Station the estimated MW output which could be returned to service within the following time periods from the time that a decision to return was made:

- < 1 month;
- 1-2 months;
- 2-3 months;
- 3-6 months;
- 6-12 months; and
- >12 months.

The return to service time should be determined in accordance with **Good Industry Practice** assuming normal working arrangements and normal plant procurement lead times. The MW output values should be the incremental values made available in each time period as further described in the **DRC**.

PC.A.5.6.2 Generators, HVDC System Owners and DC Converter Station owners must also notify The Company of any significant factors which may prevent the Mothballed Power Generating Module, Mothballed Generating Unit, Mothballed Power Park Module (including DC Connected Power Park Modules), Mothballed HVDC Systems or Mothballed DC Converter at a DC Converter Station achieving the estimated values provided under PC.A.5.6.1 above, excluding factors relating to Transmission Entry Capacity.

PC.A.5.6.3 Alternative Fuel Information

The following data items must be supplied with respect to each **Generating Unit** (including **Synchronous Generating Units** within a **Synchronous Power Generating Module**) whose main fuel is gas.

For each alternative fuel type (if facility installed):

- (a) Alternative fuel type e.g. oil distillate, alternative gas supply
- (b) For the changeover from main to alternative fuel:
 - Time to carry out off-line and on-line fuel changeover (minutes).
 - Maximum output following off-line and on-line changeover (MW).
 - Maximum output during on-line fuel changeover (MW).
 - Maximum operating time at full load assuming typical and maximum possible stock levels (hours).
 - Maximum rate of replacement of depleted stocks (MWh electrical/day) on the basis of **Good Industry Practice**.
 - Is changeover to alternative fuel used in normal operating arrangements?
 - Number of successful changeovers carried out in the last of **The Company's Financial Year** (choice of 0, 1-5, 6-10, 11-20, >20).
- (c) For the changeover back to main fuel:
 - Time to carry out off-line and on-line fuel changeover (minutes).
 - Maximum output during on-line fuel changeover (MW).
- PC.A.5.6.4 **Generators** must also notify **The Company** of any significant factors and their effects which may prevent the use of alternative fuels achieving the estimated values provided under PC.A.5.6.3 above (e.g. emissions limits, distilled water stocks etc.)

PC.A.5.7 Black Start Related Information

Data identified under this section PC.A.5.7 must be submitted as required under PC.A.1.2. This information may also be requested by **The Company** during a **Black Start** and should be provided by **Generators. HVDC System Owners** and **DC Converter Station Owners** where reasonably possible. For the avoidance of doubt, **Generators** in this section PC.A.5.7 means **Generators** only in respect of their **Large Power Stations**.

The following data items/text must be supplied, from each Generator. HVDC System Converter Station Owner - to The Company. In the case of Generators, the data supplied should bewith respect to each BM Unit at a Large Power Station For the avoidance of doubt, the data required under PC.A.5.7 (a) and (b) below, does i) not need to be supplied in respect of Generators that are contracted to provide a Black Start Capability and ii), the data only needs to be supplied in respect of the BM Unit at a Large Power Station and does not need to include Generating Unit data;

- (a) Expected time for each BM Unit to be Synchronised following a Total Shutdown or Partial Shutdown. The assessment should include the Power Station's or HVDC System's or DC Converter Station's ability to re-synchronise all BM Units, if all were running immediately prior to the Total Shutdown or Partial Shutdown. Additionally this should highlight any specific issues (i.e. those that would impact on the BM Unit's time to be Synchronised) that may arise, as time progresses without external supplies being restored.
- (b) Block Loading Capability. This should be provided in either graphical or tabular format showing the estimated block loading capability from 0MW to Registered Capacity. Any particular 'hold' points should also be identified. The data of each BM Unit should be provided for the condition of a Generating Unit (which is considered as both a 'hot' unit and cold unit) that was Synchronised just prior to the Total Shutdown or Partial Shutdown. In the case of an HVDC System or DC Converter Station, data should be provided when the HVDC System or DC Converter Station has been considered to have run immediately before the Total Shutdown or Partial Shutdown and equally when the HVDC System or DC Converter Station has been considered to have been Shutdown for a period of 48 hours or more. The block loading assessment should be done against a frequency variation of 49.5Hz 50.5Hz.

PC.A.6 <u>USERS' SYSTEM DATA</u>

PC.A.6.1 <u>Introduction</u>

- PC.A.6.1.1 Each User, whether connected directly via an existing Connection Point to the National Electricity Transmission System or seeking such a direct connection, or providing terms for connection of an Offshore Transmission System to its User System to The Company or undertaking OTSDUW, shall provide The Company with data on its User System or OTSDUW Plant and Apparatus which relates to the Connection Site containing the Connection Point (or Interface Points or Connection Points in the case of OTSUA) both current and forecast, as specified in PC.A.6.2 to PC.A.6.6.
- PC.A.6.1.2 Each **User** must reflect the system effect at the **Connection Site(s)** of any third party **Embedded** within its **User System** whether existing or proposed.
- PC.A.6.2, and PC.A.6.4 to PC.A.6.7 consist of data which is only to be supplied to **The Company** at **The Company's** reasonable request. In the event that **The Company** identifies a reason for requiring this data, **The Company** shall write to the relevant **User**(s), requesting the data, and explaining the reasons for the request. If the **User**(s) wishes, **The Company** shall also arrange a meeting at which the request for data can be discussed, with the objective of identifying the best way in which **The Company's** requirements can be met. In respect of **EU Code User**(s) only, **The Company** may request the need for electromagnetic transient simulations at **The Company's** reasonable request. **User**(s) with **EU Grid Supply Points** may be required to provide electromagnetic transient simulations in relation to those **EU Grid Supply Points** at **The Company's** reasonable request.

Where **The Company** makes a request to a **User** or **EU Code User** for dynamic models under PC.A.6.7, each relevant **User** shall ensure that the models supplied in respect of their **Plant** and **Apparatus** reflect the true and accurate behaviour of the **Plant** and **Apparatus** as built and verified through the **European Compliance Processes** (**ECP**).

PC.A.6.2 <u>Transient Overvoltage Assessment Data</u>

PC.A.6.2.1 It is occasionally necessary for **The Company** to undertake transient overvoltage assessments (e.g. capacitor switching transients, switchgear transient recovery voltages, etc). At **The Company's** reasonable request, each **User** is required to provide the following data with respect to the **Connection Site** (and in the case of **OTSUA**, **Interface Points** and **Connection Points**), current and forecast, together with a **Single Line Diagram** where not already supplied under PC.A.2.2.1, as follows:

- (a) busbar layout plan(s), including dimensions and geometry showing positioning of any current and voltage transformers, through bushings, support insulators, disconnectors, circuit breakers, surge arresters, etc. Electrical parameters of any associated current and voltage transformers, stray capacitances of wall bushings and support insulators, and grading capacitances of circuit breakers;
- (b) Electrical parameters and physical construction details of lines and cables connected at that busbar. Electrical parameters of all plant e.g., transformers (including neutral earthing impedance or zig-zag transformers, if any), series reactors and shunt compensation equipment connected at that busbar (or to the tertiary of a transformer) or by lines or cables to that busbar;
- (c) Basic insulation levels (BIL) of all **Apparatus** connected directly, by lines or by cables to the busbar;
- (d) characteristics of overvoltage **Protection** devices at the busbar and at the termination points of all lines, and all cables connected to the busbar;
- (e) fault levels at the lower voltage terminals of each transformer connected directly or indirectly to the National Electricity Transmission System (including OTSUA at each Interface Point and Connection Point) without intermediate transformation;
- (f) the following data is required on all transformers operating at Supergrid Voltage throughout Great Britain and, in Scotland and Offshore, also at 132kV (including OTSUA): three or five limb cores or single phase units to be specified, and operating peak flux density at nominal voltage;
- (g) an indication of which items of equipment may be out of service simultaneously during **Planned Outage** conditions.

PC.A.6.3 User's Protection Data

PC.A.6.3.1 Protection

The following information is required which relates only to **Protection** equipment which can trip or inter-trip or close any **Connection Point** circuit-breaker or any **Transmission** circuit-breaker (or in the case of **OTSUA**, any **Interface Point** or **Connection Point** circuit breaker). This information need only be supplied once, in accordance with the timing requirements set out in PC.A.1.4(b), and need not be supplied on a routine annual basis thereafter, although **The Company** should be notified if any of the information changes

- (a) a full description, including estimated settings, for all relays and **Protection** systems installed or to be installed on the **User's System**;
- (b) a full description of any auto-reclose facilities installed or to be installed on the User's System, including type and time delays;
- a full description, including estimated settings, for all relays and Protection systems or to be installed on the generator, generator transformer, Station Transformer and their associated connections;
- (d) for Generating Units (including Synchronous Generating Units forming part of a Synchronous Power Generating Module but excluding Power Park Units) or Power Park Modules (including DC Connected Power Park Modules) or HVDC Systems or DC Converters at a DC Converter Station or OTSDUW Plant and Apparatus having (or intended to have) a circuit breaker at the generator terminal voltage, clearance times for electrical faults within the Generating Unit (including Synchronous Generating Units forming part of a Synchronous Power Generating Module but excluding a Power Park Unit) or Power Park Module (including DC Connected Power Park Modules) zone, or within the OTSDUW Plant and Apparatus;
- (e) the most probable fault clearance time for electrical faults on any part of the User's System directly connected to the National Electricity Transmission System including OTSDUW Plant and Apparatus; and
- (f) in the case of **OTSDUW Plant and Apparatus**, synchronisation facilities and delayed auto reclose sequence schedules (where applicable).

PC.A.6.4 <u>Harmonic Studies</u>

PC.A.6.4.1 It is occasionally necessary for **The Company** to evaluate the production/magnification of harmonic distortion on the **National Electricity Transmission System** and **User's Systems** (and **OTSUA**), especially when **The Company** is connecting equipment such as capacitor banks. At **The Company's** reasonable request, each **User** is required to submit data with respect to the **Connection Site** (and in the case of **OTSUA**, each **Interface Point** and **Connection Point**), current and forecast, and where not already supplied under PC.A.2.2.4 and PC.A.2.2.5, as follows:

PC.A.6.4.2 Overhead lines and underground cable circuits of the **User's Subtransmission System** must be differentiated and the following data provided separately for each type:

Positive phase sequence resistance;

Positive phase sequence reactance;

Positive phase sequence susceptance;

and for all transformers connecting the **User's Subtransmission System** and **OTSDUW Plant and Apparatus** to a lower voltage:

Rated MVA:

Voltage Ratio;

Positive phase sequence resistance;

Positive phase sequence reactance;

and at the lower voltage points of those connecting transformers:

Equivalent positive phase sequence susceptance;

Connection voltage and MVAr rating of any capacitor bank and component design parameters if configured as a filter;

Equivalent positive phase sequence interconnection impedance with other lower voltage points;

The minimum and maximum **Demand** (both MW and MVAr) that could occur;

Harmonic current injection sources in Amps at the Connection voltage points. Where the harmonic injection current comes from a diverse group of sources, the equivalent contribution may be established from appropriate measurements;

Details of traction loads, eg connection phase pairs, continuous variation with time, etc;

An indication of which items of equipment may be out of service simultaneously during **Planned Outage** conditions.

PC.A.6.5 <u>Voltage Assessment Studies</u>

It is occasionally necessary for **The Company** to undertake detailed voltage assessment studies (e.g., to examine potential voltage instability, voltage control co-ordination or to calculate voltage step changes). At **The Company's** reasonable request, each **User** is required to submit the following data where not already supplied under PC.A.2.2.4 and PC.A.2.2.5:

For all circuits of the User's Subtransmission System (and any OTSUA):-

Positive Phase Sequence Reactance;

Positive Phase Sequence Resistance;

Positive Phase Sequence Susceptance;

MVAr rating of any reactive compensation equipment;

and for all transformers connecting the **User's Subtransmission System** to a lower voltage (and any **OTSUA**):

Rated MVA;

Voltage Ratio;

Positive phase sequence resistance;

Positive Phase sequence reactance;

Tap-changer range;

Number of tap steps;

Tap-changer type: on-load or off-circuit;

AVC/tap-changer time delay to first tap movement;

AVC/tap-changer inter-tap time delay;

and at the lower voltage points of those connecting transformers (and any OTSUA):-

Equivalent positive phase sequence susceptance;

MVAr rating of any reactive compensation equipment;

Equivalent positive phase sequence interconnection impedance with other lower voltage points;

The maximum **Demand** (both MW and MVAr) that could occur;

Estimate of voltage insensitive (constant power) load content in % of total load at both winter peak and 75% off-peak load conditions.

PC.A.6.6 Short Circuit Analysis

PC.A.6.6.1 Where prospective short-circuit currents on **Transmission** equipment are greater than 90% of the equipment rating, and in **The Company's** reasonable opinion more accurate calculations of short-circuit currents are required, then at **The Company's** request each **User** is required to submit data with respect to the **Connection Site** (and in the case of **OTSUA**, each **Interface Point** and **Connection Point**), current and forecast, and where not already supplied under PC.A.2.2.4 and PC.A.2.2.5, as follows:

PC.A.6.6.2 For all circuits of the **User's Subtransmission System** (and any **OTSUA**):

Positive phase sequence resistance;

Positive phase sequence reactance;

Positive phase sequence susceptance;

Zero phase sequence resistance (both self and mutuals);

Zero phase sequence reactance (both self and mutuals);

Zero phase sequence susceptance (both self and mutuals);

and for all transformers connecting the **User's Subtransmission System** to a lower voltage (and any **OTSUA**):

Rated MVA;

Voltage Ratio;

Positive phase sequence resistance (at max, min and nominal tap);

Positive Phase sequence reactance (at max, min and nominal tap);

Zero phase sequence reactance (at nominal tap);

Tap changer range;

Earthing method: direct, resistance or reactance;

Impedance if not directly earthed:

and at the lower voltage points of those connecting transformers (and any OTSUA):

The maximum **Demand** (in MW and MVAr) that could occur;

Short-circuit infeed data in accordance with PC.A.2.5.6 unless the **User**'s lower voltage network runs in parallel with the **User**'s **Subtransmission System**, when to prevent double counting in each node infeed data, a π equivalent comprising the data items of PC.A.2.5.6 for each node together with the positive phase sequence interconnection impedance between the nodes shall be submitted.

PC.A.6.7 Dynamic Models

PC.A.6.7.1 It is occasionally necessary for **The Company** to evaluate the dynamic performance of **User's Plant** and **Apparatus** at each **EU Grid Supply Point** or in the case of **EU Code Users**, their **System**. At **The Company's** reasonable request and as agreed between **The Company** and the relevant **Network Operator** or **Non-Embedded Customer**, each **User** is required to provide the following data. Where such data is required, **The Company** will work with the **Network Operator** or **Non-Embedded Customer** to establish the scope of the dynamic modelling work and share the required information where it is available:-

- (a) Dynamic model structure and block diagrams including parameters, transfer functions and individual elements (as applicable);
- (b) Power control functions and block diagrams including parameters, transfer functions and individual elements (as applicable);
- (c) Voltage control functions and block diagrams including parameters, transfer functions and individual elements (as applicable);
- (d) Converter control models and block diagrams including parameters, transfer functions and individual elements (as applicable).

PC.A.7 <u>ADDITIONAL DATA FOR NEW TYPES OF POWER STATIONS, DC CONVERTER STATIONS, OTSUA AND CONFIGURATIONS</u>

Notwithstanding the **Standard Planning Data** and **Detailed Planning Data** set out in this Appendix, as new types of configurations and operating arrangements of **Power Stations**, **HVDC Systems**, **DC Converter Stations and OTSUA** emerge in future, **The Company** may reasonably require additional data to represent correctly the performance of such **Plant** and **Apparatus** on the **System**, where the present data submissions would prove insufficient for the purpose of producing meaningful **System** studies for the relevant parties.

PART 3 - DETAILED PLANNING DATA

PC.A.8 To allow a **User** to model the **National Electricity Transmission System**, **The Company** will provide, upon request, the following **Network Data** to **Users**, calculated in accordance with **Good Industry Practice**:

To allow a **User** to assess undertaking **OTSDUW** and except where provided for in Appendix F, **The Company** will provide upon request the following **Network Data** to **Users**, calculated in accordance with **Good Industry Practice**:

PC.A.8.1 <u>Single Point of Connection</u>

For a **Single Point of Connection** to a **User's System** (and **OTSUA**), as an equivalent 400kV or 275kV source and also in Scotland and **Offshore** as an equivalent 132kV source, the data (as at the HV side of the **Point of Connection** (and in the case of **OTSUA**, each **Interface Point** and **Connection Point**) reflecting data given to **The Company** by **Users**) will be given to a **User** as follows:

The data items listed under the following parts of PC.A.8.3:

(a) (i), (ii), (iii), (iv), (v) and (vi)

and the data items shall be provided in accordance with the detailed provisions of PC.A.8.3 (b) - (e).

PC.A.8.2 Multiple Point of Connection

For a **Multiple Point of Connection** to a **User's System** equivalents suitable for use in loadflow and fault level analysis shall be provided. These equivalents will normally be in the form of a π model or extension with a source (or demand for a loadflow equivalent) at each node and a linking impedance. The boundary nodes for the equivalent shall be either at the **Connection Point** (and in the case of **OTSDUW**, each **Interface Point** and **Connection Point**) or (where **The Company** agrees) at suitable nodes (the nodes to be agreed with the **User**) within the **National Electricity Transmission System**. The data at the **Connection Point** (and in the case of **OTSDUW**, each **Interface Point** and **Connection Point**) will be given to a **User** as follows:

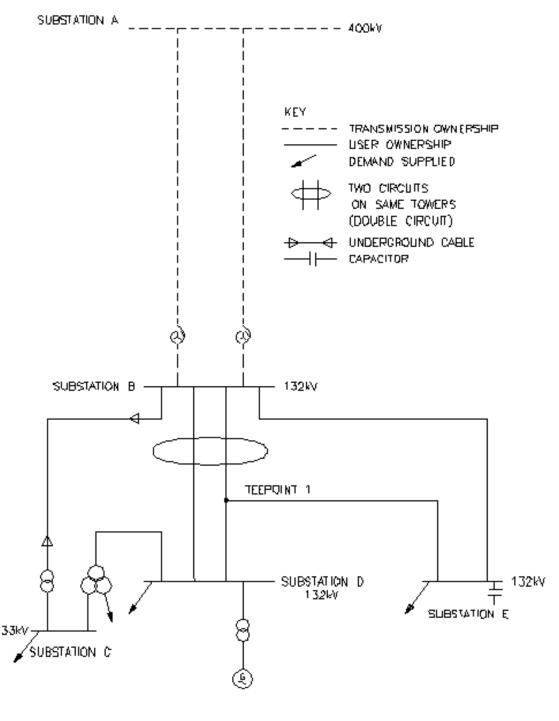
The data items listed under the following parts of PC.A.8.3:-

(a) (i), (ii), (iv), (v), (vi), (vii), (viii), (ix), (x) and (xi)

and the data items shall be provided in accordance with the detailed provisions of PC.A.8.3 (b) - (e).

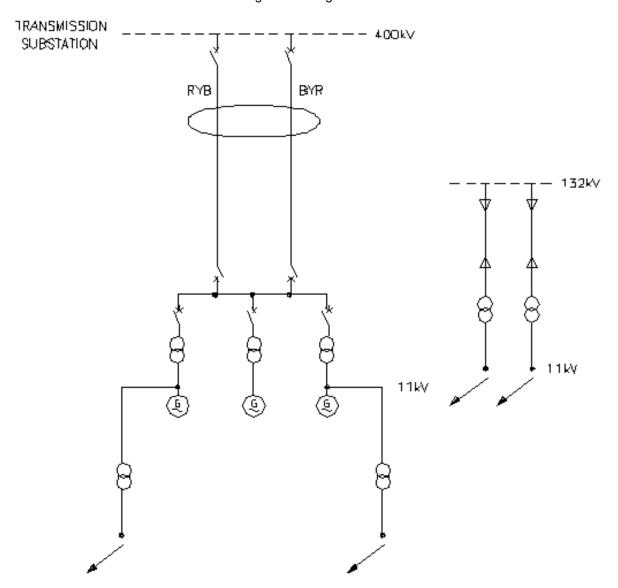
When an equivalent of this form is not required **The Company** will not provide the data items listed under the following parts of PC.A.8.3:-

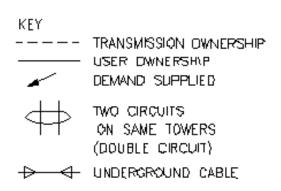
(a) (vii), (viii), (ix), (x) and (xi)


PC.A.8.3 Data Items

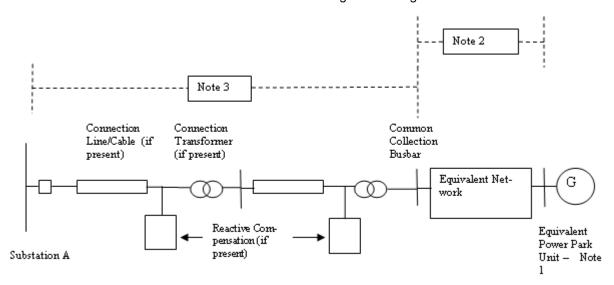
- (a) The following is a list of data utilised in this part of the **PC**. It also contains rules on the data which generally apply.
 - (i) symmetrical three-phase short circuit current infeed at the instant of fault from the **National Electricity Transmission System**, (I₁");
 - (ii) symmetrical three-phase short circuit current from the **National Electricity Transmission System** after the subtransient fault current contribution has substantially decayed, (I₁');
 - (iii) the zero sequence source resistance and reactance values at the Point of Connection (and in case of OTSUA, each Interface Point and Connection Point), consistent with the maximum infeed below;
 - (iv) the pre-fault voltage magnitude at which the maximum fault currents were calculated;
 - (v) the positive sequence X/R ratio at the instant of fault;

- (vi) the negative sequence resistance and reactance values of the National Electricity Transmission System seen from the (Point of Connection and in case of OTSUA, each Interface Point and Connection Point), if substantially different from the values of positive sequence resistance and reactance which would be derived from the data provided above;
- (vii) the initial positive sequence resistance and reactance values of the two (or more) sources and the linking impedance(s) derived from a fault study constituting the (π) equivalent and evaluated without the User network and load and where appropriate without elements of the National Electricity Transmission System between the User network and agreed boundary nodes (and in case of OTSUA, each Interface Point and Connection Point);
- (viii) the positive sequence resistance and reactance values of the two (or more) sources and the linking impendence(s) derived from a fault study, considering the short circuit current contributions after the subtransient fault current contribution has substantially decayed, constituting the (π) equivalent and evaluated without the **User** network and load, and where appropriate without elements of the **National Electricity Transmission System** between the **User** network and agreed boundary nodes (and in case of **OTSUA**, each **Interface Point** and **Connection Point**);
- (ix) the corresponding zero sequence impedance values of the (π) equivalent produced for use in fault level analysis;
- (x) the **Demand** and voltage at the boundary nodes and the positive sequence resistance and reactance values of the linking impedance(s) derived from a loadflow study considering **National Electricity Transmission System** peak **Demand** constituting the (π) loadflow equivalent; and,
- (xi) where the agreed boundary nodes are not at a Connection Point (and in case of OTSUA, Interface Point or Connection Point), the positive sequence and zero sequence impedances of all elements of the National Electricity Transmission System between the User network and agreed boundary nodes that are not included in the equivalent (and in case of OTSUA, each Interface Point and Connection Point).
- (b) To enable the model to be constructed, **The Company** will provide data based on the following conditions.
- (c) The initial symmetrical three phase short circuit current and the transient period three phase short circuit current will normally be derived from the fixed impedance studies. The latter value should be taken as applying at times of 120ms and longer. Shorter values may be interpolated using a value for the subtransient time constant of 40ms. These fault currents will be obtained from a full **System** study based on load flow analysis that takes into account any existing flow across the point of connection being considered.
- (d) Since the equivalent will be produced for the 400kV or 275kV and also in Scotland and Offshore132kV parts of the National Electricity Transmission System The Company will provide the appropriate supergrid transformer data.
- (e) The positive sequence X/R ratio and the zero sequence impedance value will correspond to The Company's source network only, that is with the section of network if any with which the equivalent is to be used excluded. These impedance values will be derived from the condition when all Generating Units (including Synchronous Generating Units forming part of a Synchronous Power Generating Module) are Synchronised to the National Electricity Transmission System or a User's System and will take account of active sources only including any contribution from the load to the fault current. The passive component of the load itself or other system shunt impedances should not be included.


(f) A User may at any time, in writing, specifically request for an equivalent to be prepared for an alternative System condition, for example where the User's System peak does not correspond to the National Electricity Transmission System peak, and The Company will, insofar as such request is reasonable, provide the information as soon as reasonably practicable following the request. PC.B.1 The diagrams below show three examples of single line diagrams, showing the detail that should be incorporated in the diagram. The first example is for an **Network Operator** connection, the second for a **Generator** connection, the third for a **Power Park Module** electrically equivalent system.


Network Operator Single Line Diagram

ISS D 41/18826_1_1 29-07-04


Generator Single Line Diagram

TO COMP MALES FOR MAY BASED FOR PERSON COMPOSITION \SS D 41/19468_1_1 29-07-04

Power Park Module Single Line Diagram

Notes:

- (1) The electrically equivalent Power Park Unit consists of a number of actual Power Park Units of the same type ie. any equipment external to the Power Park Unit terminals is considered as part of the Equivalent Network. Power Park Units of different types shall be included in separate electrically equivalent Power Park Units. The total number of equivalent Power Park Units shall represent all of the actual Power Park Units in the Power Park Module (which could be a DC Connected Power Park Module).
- (2) Separate electrically equivalent networks are required for each different type of electrically equivalent Power Park Unit. The electrically equivalent network shall include all equipment between the Power Park Unit terminals and the Common Collection Busbar.
- (3) All **Plant** and **Apparatus** including the circuit breakers, transformers, lines, cables and reactive compensation plant between the **Common Collection Busbar** and Substation A shall be shown.

APPENDIX C - TECHNICAL AND DESIGN CRITERIA

- PC.C.1 Planning and design of the **SPT** and **SHETL Transmission Systems** is based generally, but not totally, on criteria which evolved from joint consultation among various **Transmission Licensees** responsible for design of the **National Electricity Transmission System**.
- PC.C.2 The above criteria are set down within the standards, memoranda, recommendations and reports and are provided as a guide to system planning. It should be noted that each scheme for reinforcement or modification of the **Transmission System** is individually designed in the light of economic and technical factors associated with the particular system limitations under consideration.
- PC.C.3 The tables below identify the literature referred to above, together with the main topics considered within each document.

PART 1 - SHETL'S TECHNICAL AND DESIGN CRITERIA

ITEM No.	DOCUMENT	REFERENCE No.
1	National Electricity Transmission System Security and	Version []
	Quality of Supply Standard	
2	System Phasing	TPS 13/4
3	Not used	
4	Voltage fluctuations and the connection of disturbing	EREC P28 Issue 2
	equipment to transmission systems and distribution networks	
	in the United Kingdom	
5	EHV or HV Supplies to Induction Furnaces	ER P16
		(Supported by
	Voltage unbalance limits.	ACE Report
	Harmonic current limits.	No.48)
6	Planning Levels for Harmonic Voltage Distortion and the	ER G5 (Supported
	Connection of Non-Linear Loads to Transmission Systems	by ACE Report
	and Public Electricity Supply Systems in the United Kingdom	No.73)
	Harmonic distortion (waveform).	
	Harmonic voltage distortion.	
	Harmonic current distortion.	
	Stage 1 limits.	
	Stage 2 limits.	
	Stage 3 Limits	
	Addition of Harmonics	
	Short Duration Harmonics	
	Site Measurements	
7	AC Traction Supplies to British Rail	ER P24
	Type of supply point to railway system.	
	Estimation of traction loads.	
	Nature of traction current.	
	System disturbance estimation.	
	Earthing arrangements.	

ITEM No.	DOCUMENT	REFERENCE No.
8	Operational Memoranda	(SOM)
	Main System operating procedure.	SOM 1
	Operational standards of security.	SOM 3
	Voltage and reactive control on main system.	SOM 4
	System warnings and procedures for instructed load reduction.	SOM 7
	Continuous tape recording of system control telephone messages and instructions.	SOM 10
	Emergency action in the event of an exceptionally serious breakdown of the main system.	SOM 15
9	Planning Limits for Voltage Unbalance in the United Kingdom.	ER P29

PART 2 - SPT's TECHNICAL AND DESIGN CRITERIA

ITENANI-	DOCUMENT	DEEEDENGE
ITEM No.	DOCUMENT	REFERENCE
		No.
1	National Electricity Transmission System Security and	Version []
	Quality of Supply Standard	
2	System Phasing	TDM 13/10,002
		Issue 4
3	Not used	
4	Voltage fluctuations and the connection of disturbing	EREC P28 Issue
	equipment to transmission systems and distribution	2
	networks in the United Kingdom	
5	EHV or HV Supplies to Induction Furnaces	ER P16
		(Supported by
	Voltage Unbalance limits.	ACE Report
	Harmonic current limits.	No.48)
6	Planning Levels for Harmonic Voltage Distortion and the	ER G5
	Connection of Non-Linear Loads to Transmission Systems	(Supported by
	and Public Electricity Supply Systems in the United	ACE Report
	Kingdom	No.73)
		,
	Harmonic distortion (waveform).	
	Harmonic voltage distortion.	
	Harmonic current distortion.	
	Stage 1 limits.	
	Stage 2 limits.	
	Stage 3 Limits	
	Addition of Harmonics	
	Short Duration Harmonics	
	Site Measurements	
7	AC Traction Supplies to British Rail	ER P24
-		
	Type of supply point to railway system.	
	Estimation of traction loads.	
	Nature of traction current.	
	System disturbance estimation.	
	Earthing arrangements.	

APPENDIX D - DATA NOT DISCLOSED TO A RELEVANT TRANSMISSION LICENSEE

PC.D.1 Pursuant to PC.3.4, **The Company** will not disclose to a **Relevant Transmission Licensee** data items specified in the below extract:

PC REFERENCE	DATA DESCRIPTION		DATA CATEGORY
PC.A.3.2.2 (f) (i)	(i) For GB Code Users		SPD
	The Generator Performance Chart at the Generating Unit stator terminals		
	(ii) For EU Code Users:-		
	The Power Generating Module Performance Chart, and Synchronous Generating Unit Performance Chart;		
PC.A.3.2.2 (b)	Output Usable (on a monthly basis)	MW	SPD
PC.A.5.3.2 (d) Option 1 (iii)	GOVERNOR AND ASSOCIATED PRIME MOVER PARAMETERS		
	Option 1		
	BOILER & STEAM TURBINE DATA		
	Boiler time constant (Stored Active Energy)	S	DPD II
	HP turbine response ratio: (Proportion of Primary Response arising from HP turbine)		DPD II
	HP turbine response ratio: (Proportion of High Frequency Response arising from HP turbine)		DPD II
Part of	Option 2		
PC.A.5.3.2 (d) Option 2 (i)	All Generating Units (including Synchronous Generating Units forming part of a Synchronous Power Generating Module)		
	Governor Deadband and Governor Insensitivity*		
	- Maximum Setting	±Hz	DPD II
	- Normal Setting	±Hz	DPD II
	- Minimum Setting	±Hz	DPD II
	(Note Generators who are not required to satisfy the requirements of the European Connection Conditions do not need to supply Governor Insensitivity data).		
Part of PC.A.5.3.2 (d) Option 2 (ii)	Steam Units		
	Reheater Time Constant	sec	DPD II
	Boiler Time Constant	sec	DPD II
	HP Power Fraction	%	DPD II

PC REFERENCE	DATA DESCRIPTION		DATA CATEGORY
	IP Power Fraction		DPD II
Part of PC.A.5.3.2 (d) Option 2 (iii)	Gas Turbine Units Waste Heat Recovery Boiler Time Constant		
Part of PC.A.5.3.2 (e)	UNIT CONTROL OPTIONS		
	Maximum droop	%	DPD II
	Minimum droop	%	DPD II
	Maximum frequency Governor Deadband and Governor Insensitivity*	±Hz	DPD II
	Normal frequency Governor Deadband and Governor Insensitivity *	±Hz	DPD II
	Minimum frequency Governor Deadband and Governor Insensitivity*	±Hz	DPD II
	Maximum Output Governor Deadband and Governor Insensitivity*	±MW	DPD II
	Normal Output Governor Deadband and Governor Insensitivity*	±MW	DPD II
	Minimum Output Governor Deadband and Governor Insensitivity*		DPD II
	(Note Generators who are not required to satisfy the requirements of the European Connection Conditions do not need to supply Governor Insensitivity data).		
	Frequency settings between which Unit Load Controller droop applies:		
	Maximum		DPD II
	Normal		DPD II
	Minimum	Hz	DPD II
	Sustained response normally selected	Yes/No	DPD II
PC.A.3.2.2 (f) (ii)	2 (f) Performance Chart of a Power Park Modules (including DC Connected Power Park Modules) at the connection point		SPD
PC.A.3.2.2 (b)	Output Usable (on a monthly basis)		SPD
PC.A.3.2.2 (e) and (j)	DC CONVERTER STATION AND HVDC SYSTEM DATA		
	ACTIVE POWER TRANSFER CAPABILITY (PC.A.3.2.2)		
	Import MW available in excess of Registered Import Capacity.		SPD
	Time duration for which MW in excess of Registered Import Capacity is available		SPD
	Export MW available in excess of Registered Capacity.	MW	SPD

PC REFERENCE	DATA DESCRIPTION		DATA CATEGORY
	Time duration for which MW in excess of Registered Capacity is available	Min	SPD
Part of PC.A.5.4.3.3			
	MW Export		
	Nominal loading rate	MW/s	DPD I
	Maximum (emergency) loading rate	MW/s	DPD I
	MW Import		
	Nominal loading rate	MW/s	DPD I
	Maximum (emergency) loading rate	MW/s	DPD I

APPENDIX E - OFFSHORE TRANSMISSION SYSTEM AND OTSDUW PLANT AND APPARATUS TECHNICAL AND DESIGN CRITERIA

- PC.E.1 In the absence of any relevant **Electrical Standards**, **Offshore Transmission Licensees** and **Generators** undertaking **OTSDUW** are required to ensure that all equipment used in the construction of their network is:
 - (i) Fully compliant and suitably designed to any relevant **Technical Specification**;
 - (ii) Suitable for use and operation in an Offshore environment, where such parts of the Offshore Transmission System and OTSDUW Plant and Apparatus are located in Offshore Waters and are not installed in an area that is protected from that Offshore environment, and
 - (iii) Compatible with any relevant Electrical Standards or Technical Specifications at the Offshore Grid Entry Point and Interface Point.
- PC.E.2 The table below identifies the technical and design criteria that will be used in the design and development of an **Offshore Transmission System** and **OTSDUW Plant and Apparatus**.

ITEM No.	DOCUMENT	REFERENCE No.
1	National Electricity Transmission System Security and Quality of	Version []
	Supply Standard	
2*	Voltage fluctuations and the connection of disturbing equipment to	EREC P28 Issue
	transmission systems and distribution networks in the United	2
	Kingdom	
3*	Planning Levels for Harmonic Voltage Distortion and the Connection	ER G5
	of Non-Linear Loads to Transmission Systems and Public Electricity	
	Supply Systems in the United Kingdom	
4*	Planning Limits for Voltage Unbalance in the United Kingdom	ER P29

^{*} Note:- Items 2, 3 and 4 above shall only apply at the Interface Point.

APPENDIX F - OTSDUW DATA AND INFORMATION AND OTSDUW NETWORK DATA AND INFORMATION

- PC.F.1 Introduction
- PC.F.1.1 Appendix F specifies data requirements to be submitted to **The Company** by **Users** and **Users** by **The Company** in respect of **OTSDUW**.
- PC.F.1.2 Such **User** submissions shall be in accordance with the **OTSDUW Development and Data Timetable** in a **Construction Agreement**.
- PC.F.1.3 Such **The Company** submissions shall be issued with the offer of a **CUSC Contract** in the case of the data in Part 1 and otherwise in accordance with the **OTSDUW Development** and **Data Timetable** in a **Construction Agreement**.
- PC.F.2. OTSDUW Network Data and Information
- PC.F.2.1 With the offer of a **CUSC Contract** under the **OTSDUW Arrangements The Company** shall provide:
 - (a) the site specific technical design and operational criteria for the **Connection Site**;
 - (b) the site specific technical design and operational criteria for the Interface Point, and
 - (c) details of The Company's preliminary identification and consideration of the options available for the Interface Point in the context of the User's application for connection or modification, the preliminary costs used by The Company in assessing such options and the Offshore Works Assumptions including the assumed Interface Point identified during these preliminary considerations.
- PC.F.2.2 In accordance with the **OTSDUW Development and Data Timetable** in a **Construction Agreement The Company** shall provide the following information and data to a **User**:
 - (a) equivalent of the fault infeed or fault level ratings at the Interface Point (as identified in the **Offshore Works Assumptions**)
 - (b) notification of numbering and nomenclature of the **HV Apparatus** comprised in the **OTSDUW**;
 - (i) past or present physical properties, including both actual and designed physical properties, of Plant and Apparatus forming part of the National Electricity Transmission System at the Interface Point at which the OTSUA will be connected to the extent it is required for the design and construction of the OTSDUW, including but not limited to:
 - (ii) the voltage of any part of such Plant and Apparatus;
 - (iii) the electrical current flowing in or over such **Plant** and **Apparatus**;
 - (iv) the configuration of any part of such Plant and Apparatus
 - (v) the temperature of any part of such **Plant** and **Apparatus**;
 - (vi) the pressure of any fluid forming part of such Plant and Apparatus
 - (vii) the electromagnetic properties of such Plant and Apparatus; and
 - (viii) the technical specifications, settings or operation of any **Protection Systems** forming part of such **Plant** and **Apparatus**.
 - (c) information necessary to enable the **User** to harmonise the **OTSDUW** with construction works elsewhere on the **National Electricity Transmission System** that could affect the **OTSDUW**
 - (d) information related to the current or future configuration of any circuits of the Onshore Transmission System with which the OTSUA are to connect;
 - (e) any changes which are planned on the National Electricity Transmission System in the current or following six Financial Years and which will materially affect the planning or development of the OTSDUW.

- PC.F.2.3 At the **User's** reasonable request additional information and data in respect of the **National Electricity Transmission System** shall be provided.
- PC.F.2.4 OTSDUW Data And Information
- PC.F.2.4.1 In accordance with the OTSDUW Development and Data Timetable in a Construction Agreement the User shall provide to The Company the following information and data relating to the OTSDUW Plant and Apparatus in accordance with Appendix A of the Planning Code.

< END OF PLANNING CODE >

CONNECTION CONDITIONS

(CC)

CONTENTS

(This contents page does not form part of the Grid Code)

Paragraph No/Title	Page Number
CC.1 INTRODUCTION	2
CC.2 OBJECTIVE	2
CC.3 SCOPE	2
CC.4 PROCEDURE	4
CC.5 CONNECTION	4
CC.6 TECHNICAL, DESIGN AND OPERATIONAL CRITERIA	6
CC.7 SITE RELATED CONDITIONS	47
CC.8 ANCILLARY SERVICES	52
APPENDIX 1 - SITE RESPONSIBILITY SCHEDULES	54
PROFORMA FOR SITE RESPONSIBILITY SCHEDULE	58
APPENDIX 2 - OPERATION DIAGRAMS	62
PART 1A - PROCEDURES RELATING TO OPERATION DIAGRAMS	62
PART 1B - PROCEDURES RELATING TO GAS ZONE DIAGRAMS	65
PART 2 - NON-EXHAUSTIVE LIST OF APPARATUS TO BE INCLUDED ON OPE DIAGRAMS	_
APPENDIX 3 - MINIMUM FREQUENCY RESPONSE REQUIREMENT PROFILE AND OPE RANGE FOR NEW POWER STATIONS AND DC CONVERTER STATIONS	
APPENDIX 4 - FAULT RIDE THROUGH REQUIREMENTS	73
APPENDIX 4A	73
APPENDIX 4B	79
APPENDIX 5 - TECHNICAL REQUIREMENTS LOW FREQUENCY RELAYS FOR THE AUTODISCONNECTION OF SUPPLIES AT LOW FREQUENCY	
APPENDIX 6 - PERFORMANCE REQUIREMENTS FOR CONTINUOUSLY ACTING AUTOEXCITATION CONTROL SYSTEMS FOR ONSHORE SYNCHRONOUS GENERATING UNIT	-
APPENDIX 7 - PERFORMANCE REQUIREMENTS FOR CONTINUOUSLY ACTING AUTOVOLTAGE CONTROL SYSTEMS FOR ONSHORE NON-SYNCHRONOUS GENERATING ONSHORE DC CONVERTERS, ONSHORE POWER PARK MODULES AND OTSDUW PLA	UNITS, NT AND
APPARATUS AT THE INTERFACE POINT	92

CC.1 <u>INTRODUCTION</u>

CC.1.1 The **Connection Conditions** ("**CC**") specify both:

- (a) the minimum technical, design and operational criteria which must be complied with by:
 - (i) any GB Code User connected to or seeking connection with the National Electricity Transmission System, or
 - (ii) GB Code Users in respect of GB Generators (other than in respect of Small Power Stations) or GB Code User's in respect of DC Converter Station owners connected to or seeking connection to a User's System which is located in Great Britain or Offshore, and
- (b) the minimum technical, design and operational criteria with which The Company will comply in relation to the part of the National Electricity Transmission System at the Connection Site with GB Code Users. In the case of any OTSDUW Plant and Apparatus, the CC also specify the minimum technical, design and operational criteria which must be complied with by those GB Code Users when undertaking OTSDUW.
- (c) For the avoidance of doubt, the requirements of these **CC's** do not apply to **EU Code User's** for whom the requirements of the **ECC's** shall apply.

CC.2 OBJECTIVE

- CC.2.1 The objective of the CC is to ensure that by specifying minimum technical, design and operational criteria the basic rules for connection to the National Electricity Transmission System and (for certain GB Code Users) to a User's System are similar for all GB Code Users of an equivalent category and will enable The Company to comply with its statutory and Transmission Licence obligations.
- CC.2.2 In the case of any OTSDUW the objective of the CC is to ensure that by specifying the minimum technical, design and operational criteria the basic rules relating to an Offshore Transmission System designed and constructed by an Offshore Transmission Licensee and designed and/or constructed by an GB Code User under the OTSDUW Arrangements are equivalent.
- Provisions of the CC which apply in relation to OTSDUW and OTSUA, and/or a Transmission Interface Site, shall (in any particular case) apply up to the OTSUA Transfer Time, whereupon such provisions shall (without prejudice to any prior non-compliance) cease to apply, without prejudice to the continuing application of provisions of the CC applying in relation to the relevant Offshore Transmission System and/or Connection Site. It is the case therefore that in cases where the OTSUA become operational prior to the OTSUA Transfer Time that a GB Generator is required to comply with this CC both as it applies to its Plant and Apparatus at a Connection Site\Connection Point and the OTSUA at the Transmission Interface Site/Transmission Interface Point until the OTSUA Transfer Time and this CC shall be construed accordingly.
- CC.2.4 In relation to OTSDUW, provisions otherwise to be contained in a Bilateral Agreement may be contained in the Construction Agreement, and accordingly a reference in the CC to a relevant Bilateral Agreement includes the relevant Construction Agreement.

CC.3 <u>SCOPE</u>

- CC.3.1 The CC applies to The Company and to GB Code Users, which in the CC means:
 - (a) **GB Generators** (other than those which only have **Embedded Small Power Stations**), including those undertaking **OTSDUW**;
 - (b) Network Operators;
 - (c) Non-Embedded Customers;

- (d) DC Converter Station owners; and
- (e) **BM Participants** and **Externally Interconnected System Operators** in respect of CC.6.5 only.
- CC.3.2 The above categories of **GB Code User** will become bound by the **CC** prior to them generating, distributing, supplying or consuming, as the case may be, and references to the various categories should, therefore, be taken as referring to them in that prospective role as well as to **GB Code Users** actually connected.
- CC.3.3 Embedded Medium Power Stations not subject to a Bilateral Agreement and Embedded DC Converter Stations not subject to a Bilateral Agreement Provisions.

The following provisions apply in respect of **Embedded Medium Power Stations** not subject to a **Bilateral Agreement** and **Embedded DC Converter Stations** not subject to a **Bilateral Agreement**.

- CC.3.3.1 The obligations within the CC that are expressed to be applicable to GB Generators in respect of Embedded Medium Power Stations not subject to a Bilateral Agreement and DC Converter Station Owners in respect of Embedded DC Converter Stations not subject to a Bilateral Agreement (where the obligations are in each case listed in CC.3.3.2) shall be read and construed as obligations that the Network Operator within whose System any such Medium Power Station or DC Converter Station is Embedded must ensure are performed and discharged by the GB Generator or the DC Converter Station owner. Embedded Medium Power Stations not subject to a Bilateral Agreement and Embedded DC Converter Stations not subject to a Bilateral Agreement which are located Offshore and which are connected to an Onshore GB Code Users System will be required to meet the applicable requirements of the Grid Code as though they are an Onshore GB Generator or Onshore DC Converter Station Owner connected to an Onshore User System Entry Point.
- CC.3.3.2 The Network Operator within whose System a Medium Power Station not subject to a Bilateral Agreement is Embedded or a DC Converter Station not subject to a Bilateral Agreement is Embedded must ensure that the following obligations in the CC are performed and discharged by the GB Generator in respect of each such Embedded Medium Power Station or the DC Converter Station owner in the case of an Embedded DC Converter Station:

CC.5.1

CC.5.2.2

CC.5.3

CC.6.1.3

CC.6.1.5 (b)

CC.6.3.2, CC.6.3.3, CC.6.3.4, CC.6.3.6, CC.6.3.7, CC.6.3.8, CC.6.3.9, CC.6.3.10, CC.6.3.12, CC.6.3.13, CC.6.3.15, CC.6.3.16

CC.6.4.4

CC.6.5.6 (where required by CC.6.4.4)

In respect of CC.6.2.2.2, CC.6.2.2.3, CC.6.2.2.5, CC.6.1.5(a), CC.6.1.5(b) and CC.6.3.11 equivalent provisions as co-ordinated and agreed with the **Network Operator** and **GB Generator** or **DC Converter Station** owner may be required. Details of any such requirements will be notified to the **Network Operator** in accordance with CC.3.5.

CC.3.3.3 In the case of **Embedded Medium Power Station**s not subject to a **Bilateral Agreement** and **Embedded DC Converter Stations** not subject to a **Bilateral Agreement** the requirements in:

CC.6.1.6

CC.6.3.8

CC.6.3.12

CC.6.3.15

CC.6.3.16

that would otherwise have been specified in a **Bilateral Agreement** will be notified to the relevant **Network Operator** in writing in accordance with the provisions of the **CUSC** and the **Network Operator** must ensure such requirements are performed and discharged by the **GB Generator** or the **DC Converter Station** owner.

- In the case of Offshore Embedded Power Stations connected to an Offshore GB Code User's System which directly connects to an Offshore Transmission System, any additional requirements in respect of such Offshore Embedded Power Stations may be specified in the relevant Bilateral Agreement with the Network Operator or in any Bilateral Agreement between The Company and such Offshore Embedded Power Station.
- In the case of a GB Generator undertaking OTSDUW connecting to an Onshore Network Operator's System, any additional requirements in respect of such OTSDUW Plant and Apparatus will be specified in the relevant Bilateral Agreement with the GB Generator. For the avoidance of doubt, requirements applicable to GB Generators undertaking OTSDUW and connecting to a Network Operator's User System, shall be consistent with those applicable requirements of GB Generators undertaking OTSDUW and connecting to a Transmission Interface Point.

CC.4 PROCEDURE

The CUSC contains certain provisions relating to the procedure for connection to the National Electricity Transmission System or, in the case of Embedded Power Stations or Embedded DC Converter Stations, becoming operational and includes provisions relating to certain conditions to be complied with by GB Code Users prior to and during the course of The Company notifying the GB Code User that it has the right to become operational. The procedure for a GB Code User to become connected is set out in the Compliance Processes.

CC.5 CONNECTION

- CC.5.1 The provisions relating to connecting to the National Electricity Transmission System (or to a User's System in the case of a connection of an Embedded Large Power Station or Embedded Medium Power Station or Embedded DC Converter Station) are contained in:
 - (a) the CUSC and/or CUSC Contract (or in the relevant application form or offer for a CUSC Contract);
 - (b) or, in the case of an **Embedded Development**, the relevant **Distribution Code** and/or the **Embedded Development Agreement** for the connection (or in the relevant application form or offer for an **Embedded Development Agreement**),

and include provisions relating to both the submission of information and reports relating to compliance with the relevant Connection Conditions for that GB Code User, Safety Rules, commissioning programmes, Operation Diagrams and approval to connect (and their equivalents in the case of Embedded Medium Power Stations not subject to a Bilateral Agreement or Embedded DC Converter Stations not subject to a Bilateral Agreement). References in the CC to the "Bilateral Agreement" and/or "Construction Agreement" and/or "Embedded Development Agreement" shall be deemed to include references to the application form or offer therefor.

CC.5.2 <u>Items For Submission</u>

- Prior to the Completion Date (or, where the GB Generator is undertaking OTSDUW, any later date specified) under the Bilateral Agreement and/or Construction Agreement, the following is submitted pursuant to the terms of the Bilateral Agreement and/or Construction Agreement:
 - (a) updated **Planning Code** data (both **Standard Planning Data** and **Detailed Planning Data**), with any estimated values assumed for planning purposes confirmed or, where practical, replaced by validated actual values and by updated estimates for the future and by updated forecasts for **Forecast Data** items such as **Demand**, pursuant to the requirements of the **Planning Code**;
 - (b) details of the **Protection** arrangements and settings referred to in CC.6;
 - (c) copies of all Safety Rules and Local Safety Instructions applicable at Users' Sites which will be used at the Transmission/User interface (which, for the purpose of OC8, must be to The Company's satisfaction regarding the procedures for Isolation and Earthing. The Company will consult the Relevant Transmission Licensee when determining whether the procedures for Isolation and Earthing are satisfactory);
 - (d) information to enable the preparation of the **Site Responsibility Schedules** on the basis of the provisions set out in Appendix 1;
 - (e) an **Operation Diagram** for all **HV Apparatus** on the **User** side of the **Connection Point** as described in CC.7:
 - (f) the proposed name of the **User Site** (which shall not be the same as, or confusingly similar to, the name of any **Transmission Site** or of any other **User Site**);
 - (g) written confirmation that **Safety Co-ordinators** acting on behalf of the **User** are authorised and competent pursuant to the requirements of **OC8**;
 - (h) Such **RISSP** prefixes pursuant to the requirements of **OC8**. Prefixes shall be circulated utilising a proforma in accordance with **OC8**;
 - (i) a list of the telephone numbers for **Joint System Incidents** at which senior management representatives nominated for the purpose can be contacted and confirmation that they are fully authorised to make binding decisions on behalf of the **User**, pursuant to **OC9**;
 - (j) a list of managers who have been duly authorised to sign **Site Responsibility Schedules** on behalf of the **User**;
 - (k) information to enable the preparation of the **Site Common Drawings** as described in CC.7:
 - (I) a list of the telephone numbers for the **Users** facsimile machines referred to in CC.6.5.9; and
 - (m) for Sites in Scotland and Offshore a list of persons appointed by the User to undertake operational duties on the User's System (including any OTSDUW prior to the OTSUA Transfer Time) and to issue and receive operational messages and instructions in relation to the User's System (including any OTSDUW prior to the OTSUA Transfer Time); and an appointed person or persons responsible for the maintenance and testing of User's Plant and Apparatus.
- CC.5.2.2 Prior to the **Completion Date** the following must be submitted to **The Company** by the **Network Operator** in respect of an **Embedded Development**:
 - (a) updated Planning Code data (both Standard Planning Data and Detailed Planning Data), with any estimated values assumed for planning purposes confirmed or, where practical, replaced by validated actual values and by updated estimates for the future and by updated forecasts for Forecast Data items such as Demand, pursuant to the requirements of the Planning Code;

- (b) details of the **Protection** arrangements and settings referred to in CC.6;
- (c) the proposed name of the Embedded Medium Power Station or Embedded DC Converter Station Site (which shall be agreed with The Company unless it is the same as, or confusingly similar to, the name of other Transmission Site or User Site);
- CC.5.2.3 Prior to the Completion Date contained within an Offshore Transmission Distribution Connection Agreement the following must be submitted to The Company by the Network Operator in respect of a proposed new Interface Point within its User System:
 - (a) updated Planning Code data (both Standard Planning Data and Detailed Planning Data), with any estimated values assumed for planning purposes confirmed or, where practical, replaced by validated actual values and by updated estimates for the future and by updated forecasts for Forecast Data items such as Demand, pursuant to the requirements of the Planning Code;
 - (b) details of the **Protection** arrangements and settings referred to in CC.6;
 - (c) the proposed name of the **Interface Point** (which shall not be the same as, or confusingly similar to, the name of any **Transmission Site** or of any other **User Site**);
- CC.5.2.4 In the case of **OTSDUW Plant and Apparatus** (in addition to items under CC.5.2.1 in respect of the **Connection Site**), prior to the **Completion Date** (or any later date specified) under the **Construction Agreement** the following must be submitted to **The Company** by the **GB Code User** in respect of the proposed new **Connection Point** and **Interface Point**:
 - (a) updated Planning Code data (Standard Planning Data, Detailed Planning Data and OTSDUW Data and Information), with any estimated values assumed for planning purposes confirmed or, where practical, replaced by validated actual values and by updated estimates for the future and by updated forecasts for Forecast Data items such as Demand, pursuant to the requirements of the Planning Code;
 - (b) details of the **Protection** arrangements and settings referred to in CC.6;
 - (c) information to enable preparation of the **Site Responsibility Schedules** at the **Transmission Interface Site** on the basis of the provisions set out in Appendix 1.
 - (d) the proposed name of the **Interface Point** (which shall not be the same as, or confusingly similar to, the name of any **Transmission Site** or of any other **User Site**);
- CC.5.3 (a) Of the items CC.5.2.1 (c), (e), (g), (h), (k) and (m) need not be supplied in respect of **Embedded Power Stations** or **Embedded DC Converter Stations**,
 - (b) item CC.5.2.1(i) need not be supplied in respect of **Embedded Small Power Stations** and **Embedded Medium Power Stations** or **Embedded DC Converter Stations** with a **Registered Capacity** of less than 100MW, and
 - (c) items CC.5.2.1(d) and (j) are only needed in the case where the Embedded Power Station or the Embedded DC Converter Station is within a Connection Site with another User.

CC.6 TECHNICAL, DESIGN AND OPERATIONAL CRITERIA

- CC.6.1 National Electricity Transmission System Performance Characteristics
- CC.6.1.1 The Company shall ensure that, subject as provided in the Grid Code, the National Electricity Transmission System complies with the following technical, design and operational criteria in relation to the part of the National Electricity Transmission System at the Connection Site with a GB Code User and in the case of OTSDUW Plant and Apparatus, a Transmission Interface Point (unless otherwise specified in CC.6) although in relation to operational criteria The Company may be unable (and will not be required) to comply with this obligation to the extent that there are insufficient Power Stations or User Systems are not available or Users do not comply with The Company's instructions or otherwise do not comply with the Grid Code and each GB Code User shall ensure that its Plant and Apparatus complies with the criteria set out in CC.6.1.5.

Grid Frequency Variations

- CC.6.1.2 The **Frequency** of the **National Electricity Transmission System** shall be nominally 50Hz and shall be controlled within the limits of 49.5 50.5Hz unless exceptional circumstances prevail.
- CC.6.1.3 The **System Frequency** could rise to 52Hz or fall to 47Hz in exceptional circumstances. Design of **GB Code User's Plant** and **Apparatus** and **OTSDUW Plant and Apparatus** must enable operation of that **Plant** and **Apparatus** within that range in accordance with the following:

Frequency Range	Requirement
51.5Hz - 52Hz	Operation for a period of at least 15 minutes is required
	each time the Frequency is above 51.5Hz.
51Hz - 51.5Hz	Operation for a period of at least 90 minutes is required
	each time the Frequency is above 51Hz.
49.0Hz - 51Hz	Continuous operation is required
47.5Hz - 49.0Hz	Operation for a period of at least 90 minutes is required
	each time the Frequency is below 49.0Hz.
47Hz - 47.5Hz	Operation for a period of at least 20 seconds is required
	each time the Frequency is below 47.5Hz.

For the avoidance of doubt, disconnection, by frequency or speed based relays is not permitted within the frequency range 47.5Hz to 51.5Hz, unless agreed with **The Company** in accordance with CC.6.3.12.

Grid Voltage Variations

CC.6.1.4 Subject as provided below, the voltage on the 400kV part of the National Electricity Transmission System at each Connection Site with a GB Code User (and in the case of OTSDUW Plant and Apparatus, a Transmission Interface Point) will normally remain within ±5% of the nominal value unless abnormal conditions prevail. The minimum voltage is -10% and the maximum voltage is +10% unless abnormal conditions prevail, but voltages between +5% and +10% will not last longer than 15 minutes unless abnormal conditions prevail. Voltages on the 275kV and 132kV parts of the National Electricity Transmission System at each Connection Site with a User (and in the case of OTSDUW Plant and Apparatus, a Transmission Interface Point) will normally remain within the limits ±10% of the nominal value unless abnormal conditions prevail. At nominal System voltages below 132kV the voltage of the National Electricity Transmission System at each Connection Site with a User (and in the case of OTSDUW Plant and Apparatus, a Transmission Interface Point) will normally remain within the limits ±6% of the nominal value unless abnormal conditions prevail. Under fault conditions, voltage may collapse transiently to zero at the point of fault until the fault is cleared. The normal operating ranges of the National **Electricity Transmission System** are summarised below:

National Electricity Transmission System	Normal Operating Range
Nominal Voltage	
400kV	400kV ±5%
275kV	275kV ±10%
132kV	132kV ±10%

The Company and a GB Code User may agree greater or lesser variations in voltage to those set out above in relation to a particular Connection Site, and insofar as a greater or lesser variation is agreed, the relevant figure set out above shall, in relation to that GB Code User at the particular Connection Site, be replaced by the figure agreed.

Voltage Waveform Quality

CC.6.1.5 All **Plant** and **Apparatus** connected to the **National Electricity Transmission System**, and that part of the **National Electricity Transmission System** at each **Connection Site** or, in the case of **OTSDUW Plant and Apparatus**, at each **Interface Point**, should be capable of withstanding the following distortions of the voltage waveform in respect of harmonic content and phase unbalance:

(a) Harmonic Content

The Electromagnetic Compatibility Levels for harmonic distortion on the Onshore Transmission System from all sources under both Planned Outage and fault outage conditions, (unless abnormal conditions prevail) shall comply with Engineering Recommendation G5. The Electromagnetic Compatibility Levels for harmonic distortion on an Offshore Transmission System will be defined in relevant Bilateral Agreements.

Engineering Recommendation G5 contains planning criteria which The Company will apply to the connection of non-linear Load to the National Electricity Transmission System, which may result in harmonic emission limits being specified for these Loads in the relevant Bilateral Agreement. The application of the planning criteria will take into account the position of GB Code Users' and EU Code Users' Plant and Apparatus (and OTSDUW Plant and Apparatus) in relation to harmonic emissions. GB Code Users must ensure that connection of distorting loads to their User Systems do not cause any harmonic emission limits specified in the Bilateral Agreement, or where no such limits are specified, the relevant planning levels specified in Engineering Recommendation G5 to be exceeded.

(b) Phase Unbalance

Under Planned Outage conditions, the weekly 95 percentile of Phase (Voltage) Unbalance, calculated in accordance with IEC 61000-4-30 and IEC 61000-3-13, on the National Electricity Transmission System for voltages above 150kV should remain, in England and Wales, below 1.5%, and in Scotland, below 2%, and for voltages of 150kV and below, across GB below 2%, unless abnormal conditions prevail and Offshore (or in the case of OTSDUW, OTSDUW Plant and Apparatus) will be defined in relevant Bilateral Agreements.

The Phase Unbalance is calculated from the ratio of root mean square (rms) of negative phase sequence voltage to rms of positive phase sequence voltage, based on 10-minute average values, in accordance with IEC 61000-4-30.

Across GB, under the **Planned Outage** conditions stated in CC.6.1.5(b) infrequent short duration peaks with a maximum value of 2% are permitted for **Phase (Voltage) Unbalance**, for voltages above 150kV, subject to the prior agreement of **The Company** under the **Bilateral Agreement** and in relation to **OTSDUW**, the **Construction Agreement**. **The Company** will only agree following a specific assessment of the impact of these levels on **Transmission Apparatus** and other **Users Apparatus** with which it is satisfied.

Voltage Fluctuations

CC.6.1.7

- CC.6.17 Voltage changes at a **Point of Common Coupling** on the **Onshore Transmission System** shall not exceed:
 - (a) The limits specified in Table CC.6.1.7(a) with the stated frequency of occurrence, where:

<u>(i)</u>

$$\%\Delta V_{steadystate} = \left[100 \text{ x } \frac{\Delta V_{steadystate}}{Vn}\right]$$

and

$$%\Delta V_{max} = 100 \text{ x} \quad \frac{\Delta V_{max}}{V_{n}}$$
;

- (ii) V_n is the nominal system voltage;
- (iii) V_{steadystate} is the voltage at the end of a period of 1 s during which the rate of change of system voltage over time is ≤ 0.5%;
- (iv) $\Delta V_{\text{steadystate}}$ is the difference in voltage between the initial steady state voltage prior to the RVC (V₀) and the final steady state voltage after the RVC (V₀);
- (v) ΔV_{max} is the absolute change in the system voltage relative to the initial steady state system voltage (V₀);
- (vi) All voltages are the r.m.s. of the voltage measured over one cycle refreshed every half a cycle as per BS EN 61000-4-30; and
- (vii) The applications in the 'Example Applicability' column are examples only and are not definitive.

Cat- egory	Title	Maximum number of occurrence	Limits %ΔV _{max} & %ΔV _{steadystate}	Example Applicability
1	Frequent events	(see NOTE 1)	As per Figure CC.6.1.7 (1)	Any single or repetitive RVC that falls inside Figure CC.6.1.7 (1)
2	Infrequent events	4 events in 1 calendar month (see NOTE 2)	As per Figure CC.6.1.7 (2) $ \%\Delta V_{\text{steadystate}} \le 3\%$ For decrease in voltage: $ \%\Delta V_{\text{max}} \le 10\%$ (see NOTE 3) For increase in voltage: $ \%\Delta V_{\text{max}} \le 6\%$ (see NOTE 4)	Infrequent motor starting, transformer energisation, re-energisation (see NOTE 7)
3	Very infrequent events	1 event in 3 calendar months (see NOTE 2)	As per Figure CC.6.1.7 (3) $ \%\Delta V_{\text{steadystate}} \le 3\%$ For decrease in voltage: $ \%\Delta V_{\text{max}} \le 12\%$ (see NOTE 5) For increase in voltage: $ \%\Delta V_{\text{max}} \le 6\%$ (see NOTE 6)	Commissioning, maintenance & post fault switching (see NOTE 7)

NOTE 1: $\pm 6\%$ is permissible for 100 ms reduced to $\pm 3\%$ thereafter as per Figure CC.6.1.7 (1) . If the profile of repetitive voltage change(s) falls within the envelope given in Figure CC.6.1.7 (1) , the assessment of such voltage change(s) shall be undertaken according to the recommendations for assessment of flicker <u>and</u> shall conform to the planning levels provided for flicker. If any part of the voltage change(s) falls outside the envelope given in Figure CC.6.1.7(1), the assessment of such voltage changes, repetitive or not, shall be done according to the guidance and limits for RVCs.

NOTE 2: No more than 1 event is permitted per day, consisting of up to 4 RVCs, each separated by at least 10

minutes with all switching completed within a two-hour window.

- NOTE 3: -10% is permissible for 100 ms reduced to -6% until 2 s then reduced to -3% thereafter as per Figure CC.6.1.7 (2).
- NOTE 4: +6% is permissible for 0.8 s from the instant the event begins then reduced to +3% thereafter as per Figure CC.6.1.7 (2).
- NOTE 5: -12% is permissible for 100 ms reduced to -10% until 2 s then reduced to -3% thereafter as per Figure CC.6.1.7 (3).
- NOTE 6: +6% is permissible for 0.8 s from the instant the event begins then reduced to +3% thereafter as per Figure CC.6.1.7 (3).
- NOTE 7: These are examples only. Customers may opt to conform to the limits of another category providing the frequency of occurrence is not expected to exceed the 'Maximum number of occurrence' for the chosen category.

Table CC.6.1.7 (a) - Planning levels for RVC

- (b) The voltage change limit is the absolute maximum allowed of either the phase-to-earth voltage change or the phase-to-phase voltage change, whichever is the highest. The limits do not apply to single phasor equivalent voltages, e.g. positive phase sequence (PPS) voltages. For high impedance earthed systems, the maximum phase-to-phase, i.e. line voltage, should be used for assessment.
- (c) The RVCs in Category 2 and 3 should not exceed the limits depicted in the time dependent characteristic shown in Figure CC.6.1.7 (2) and Figure CC.6.1.7 (3) respectively. These limits do not apply to: 1) fault clearance operations; or 2) immediate operations in response to fault conditions; or 3) operations relating to post fault system restoration (for the avoidance of doubt this third exception pertains to a fault that is external to the Users plant and apparatus).
- (d) Any RVCs permitted in Category 2 and Category 3 should be at least 10 minutes apart.
- (e) The value of V_{steadystate} should be established immediately prior to the start of a RVC. Following a RVC, the voltage should remain within the relevant envelope, as shown in Figures CC.6.1.7 (1), CC.6.1.7 (2), CC.6.1.7 (3), until a V_{steadystate} condition has been satisfied.

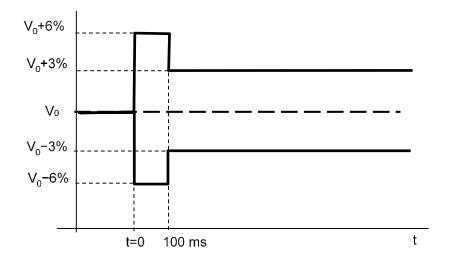


Figure CC.6.1.7 (1) — Voltage characteristic for frequent events

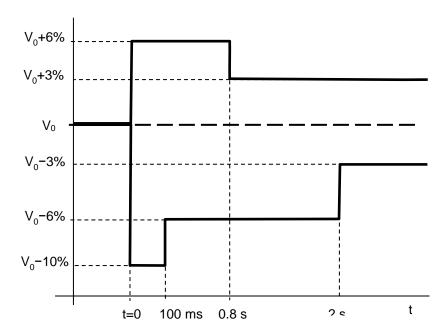


Figure CC.6.1.7 (2) — Voltage characteristic for infrequent events

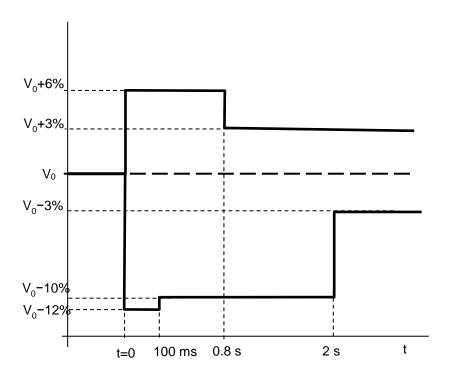


Figure CC.6.1.7 (3) — Voltage characteristic for very infrequent events

- (f) The voltage change between two steady state voltage conditions should not exceed 3%. (The limit is based on 3% of the nominal voltage of the system (V_n) as measured at the Point of Common Coupling. The step voltage change as measured at the customer's supply terminals or equipment terminals could be greater. For example: The step voltage change limit stated in BS EN 61000-3-3 and BS EN 61000-3-11 is 3.3% when measured at the equipment terminals.)
- (g) The limits apply to voltage changes measured at the Point of Common Coupling.
- (h) Category 3 events that are planned should be notified to The Company in advance.

- (i) For connections with a **Completion Date** after 1st September 2015 and where voltage changes would constitute a risk to the **National Electricity Transmission System** or, in **The Company's** view, the **System** of any **GB Code User**, **Bilateral Agreements** may include provision for **The Company** to reasonably limit the number of voltage changes in Category 2 or 3 to a lower number than specified in Table CC.6.1.7(a) to ensure that the total number of voltage changes at the **Point of Common Coupling** across multiple **Users** remains within the limits of Table CC.6.1.7(a).
- (j) The planning levels applicable to **Flicker Severity Short Term** (Pst) and **Flicker Severity Long Term** (Plt) are set out in Table CC.6.1.7(b).

Supply system Nominal voltage	Planning level		
	Flicker Severity Short Term (Pst)	Flicker Severity Long Term (Plt)	
3.3 kV, 6.6 kV, 11 kV, 20 kV, 33 kV	0.9	0.7	
66 kV, 110 kV, 132 kV, 150 kV, 200 kV, 220 kV, 275 kV, 400 kV	0.8	0.6	

NOTE 1: The magnitude of P_{st} is linear with respect to the magnitude of the voltage changes giving rise to it.

NOTE 2: Extreme caution is advised in allowing any excursions of Pst and Plt above the planning level.

Table CC.6.7.1(b) — Planning levels for flicker

The values and figures referred to in this paragraph CC.6.1.7 are derived from Engineering Recommendation P28 Issue 2.

- CC.6.1.8 Voltage fluctuations at a **Point of Common Coupling** with a fluctuating **Load** directly connected to an **Offshore Transmission System** (or in the case of **OTSDUW**, **OTSDUW Plant and Apparatus**) shall not exceed the limits set out in the **Bilateral Agreement**.
 - Sub-Synchronous Resonance and Sub-Synchronous Torsional Interaction
- CC.6.1.9 The Company shall ensure that GB Code Users' Plant and Apparatus will not be subject to unacceptable Sub-Synchronous Oscillation conditions as specified in the relevant Licence Standards.
- CC.6.1.10 The Company shall ensure where necessary, and in consultation with Relevant Transmission Licensees where required, that any relevant site specific conditions applicable at a GB Code User's Connection Site, including a description of the Sub-Synchronous Oscillation conditions considered in the application of the relevant License Standards, are set out in the GB Code User's Bilateral Agreement.

CC.6.2 Plant and Apparatus relating to Connection Site and Interface Point

The following requirements apply to **Plant** and **Apparatus** relating to the **Connection Point**, and **OTSDUW Plant and Apparatus** relating to the **Interface Point** (until the **OTSUA Transfer Time**) and **Connection Point** which (except as otherwise provided in the relevant paragraph) each **GB Code User** must ensure are complied with in relation to its **Plant** and **Apparatus** and which in the case of CC.6.2.2.2.2, CC.6.2.3.1.1 and CC.6.2.1.1(b) only, **The Company** must ensure are complied with in relation to **Transmission Plant** and **Apparatus**, as provided in those paragraphs.

CC.6.2.1 General Requirements

- CC.6.2.1.1 (a) The design of connections between the **National Electricity Transmission System** and:
 - (i) any Generating Unit (other than a CCGT Unit or Power Park Unit) DC Converter, Power Park Module or CCGT Module, or
 - (ii) any Network Operator's System, or
 - (iii) Non-Embedded Customers equipment;

will be consistent with the Licence Standards.

In the case of **OTSDUW**, the design of the **OTSUA's** connections at the **Interface Point** and **Connection Point** will be consistent with **Licence Standards**.

- (b) The National Electricity Transmission System (and any OTSDUW Plant and Apparatus) at nominal System voltages of 132kV and above is/shall be designed to be earthed with an Earth Fault Factor of, in England and Wales or Offshore, below 1.4 and in Scotland, below 1.5. Under fault conditions the rated Frequency component of voltage could fall transiently to zero on one or more phases or, in England and Wales, rise to 140% phase-to-earth voltage, or in Scotland, rise to 150% phase-to-earth voltage. The voltage rise would last only for the time that the fault conditions exist. The fault conditions referred to here are those existing when the type of fault is single or two phase-to-earth.
- (c) For connections to the National Electricity Transmission System at nominal System voltages of below 132kV the earthing requirements and voltage rise conditions will be advised by The Company as soon as practicable prior to connection and in the case of OTSDUW Plant and Apparatus shall be advised to The Company by the GB Code User.

CC.6.2.1.2 <u>Substation Plant and Apparatus</u>

- (a) The following provisions shall apply to all Plant and Apparatus which is connected at the voltage of the Connection Point (and OTSDUW Plant and Apparatus at the Interface Point) and which is contained in equipment bays that are within the Transmission busbar Protection zone at the Connection Point. This includes circuit breakers, switch disconnectors, disconnectors, Earthing Devices, power transformers, voltage transformers, reactors, current transformers, surge arresters, bushings, neutral equipment, capacitors, line traps, coupling devices, external insulation and insulation co-ordination devices. Where necessary, this is as more precisely defined in the Bilateral Agreement.
 - (i) Plant and/or Apparatus prior to 1st January 1999

Each item of such Plant and/or Apparatus which at 1st January 1999 is either:

installed; or

owned (but is either in storage, maintenance or awaiting installation); or ordered;

and is the subject of a Bilateral Agreement with regard to the purpose for which it

is in use or intended to be in use, shall comply with the relevant standards/specifications applicable at the time that the **Plant** and/or **Apparatus** was designed (rather than commissioned) and any further requirements as specified in the **Bilateral Agreement**.

(ii) Plant and/or Apparatus post 1st January 1999 for a new Connection Point (including OTSDUW Plant and Apparatus at the Interface Point)

Each item of such Plant and/or Apparatus installed in relation to a new Connection Point (or OTSDUW Plant and Apparatus at the Interface Point) after 1st January 1999 shall comply with the relevant Technical Specifications and any further requirements identified by The Company, acting reasonably, to reflect the options to be followed within the Technical Specifications and/or to complement if necessary the Technical Specifications so as to enable The Company to comply with its obligations in relation to the National Electricity Transmission System or the Relevant Transmission Licensee to comply with its obligations in relation to its Transmission System. This information, including the application dates of the relevant Technical Specifications, will be as specified in the Bilateral Agreement.

(iii) New Plant and/or Apparatus post 1st January 1999 for an existing Connection Point (including OTSDUW Plant and Apparatus at the Interface Point)

Each new additional and/or replacement item of such Plant and/or Apparatus installed in relation to a change to an existing Connection Point (or OTSDUW Plant and Apparatus at the Interface Point and Connection Point) after 1st January 1999 shall comply with the standards/specifications applicable when the change was designed, or such other standards/specifications as necessary to ensure that the item of Plant and/or Apparatus is reasonably fit for its intended purpose having due regard to the obligations of The Company, the relevant GB Code User and the Relevant Transmission Licensee under their respective Licences. Where appropriate this information, including the application dates of the relevant standards/specifications, will be as specified in the varied Bilateral Agreement.

(iv) Used Plant and/or Apparatus being moved, re-used or modified

If, after its installation, any such item of **Plant** and/or **Apparatus** is subsequently:

moved to a new location; or

used for a different purpose; or

otherwise modified;

then the standards/specifications as described in (i), (ii), or (iii) above or in ECC.6.2.1.2 (as applicable) will apply as appropriate to such **Plant** and/or **Apparatus**, which must be reasonably fit for its intended purpose having due regard to the obligations of **The Company**, the relevant **GB Code User** or **EU Code User** (as applicable) and the **Relevant Transmission Licensee** under their respective **Licences**.

- (b) **The Company** shall at all times maintain a list of those **Technical Specifications** and additional requirements which might be applicable under this CC.6.2.1.2 and which may be referenced by **The Company** in the **Bilateral Agreement**. **The Company** shall provide a copy of the list upon request to any **User**.
- (c) Where the GB Code User provides The Company with information and/or test reports in respect of Plant and/or Apparatus which the GB Code User reasonably believes demonstrate the compliance of such items with the provisions of a Technical Specification then The Company shall promptly and without unreasonable delay give due and proper consideration to such information.

- (d) Plant and Apparatus shall be designed, manufactured and tested in premises with an accredited certificate in accordance with the quality assurance requirements of the relevant standard in the BS EN ISO 9000 series (or equivalent as reasonably approved by The Company) or in respect of test premises which do not include a manufacturing facility premises with an accredited certificate in accordance with BS EN 45001.
- (e) Each connection between an GB Code User and the National Electricity Transmission System must be controlled by a circuit-breaker (or circuit breakers) capable of interrupting the maximum short circuit current at the point of connection. The Seven Year Statement gives values of short circuit current and the rating of Transmission circuit breakers at existing and committed Connection Points for future years.
- (f) Each connection between a GB Generator undertaking OTSDUW or an Onshore Transmission Licensee, must be controlled by a circuit breaker (or circuit breakers) capable of interrupting the maximum short circuit current at the Transmission Interface Point. The Seven Year Statement gives values of short circuit current and the rating of Transmission circuit breakers at existing and committed Transmission Interface Points for future years.
- CC.6.2.2 Requirements at Connection Points or, in the case of OTSDUW at Interface Points that relate to GB Generators or OTSDUW Plant and Apparatus or DC Converter Station owners
- CC.6.2.2.1 Not Used.
- CC.6.2.2.2 <u>Generating Unit, OTSDUW Plant and Apparatus and Power Station Protection Arrangements</u>
- CC.6.2.2.2.1 Minimum Requirements

Protection of Generating Units (other than Power Park Units), DC Converters, OTSDUW Plant and Apparatus or Power Park Modules and their connections to the National Electricity Transmission System shall meet the requirements given below. These are necessary to reduce the impact on the National Electricity Transmission System of faults on OTSDUW Plant and Apparatus circuits or circuits owned by GB Generators or DC Converter Station owners.

CC.6.2.2.2.2 Fault Clearance Times

- (a) The required fault clearance time for faults on the GB Generator's or DC Converter Station owner's equipment directly connected to the National Electricity Transmission System or OTSDUW Plant and Apparatus and for faults on the National Electricity Transmission System directly connected to the GB Generator or DC Converter Station owner's equipment or OTSDUW Plant and Apparatus, from fault inception to the circuit breaker arc extinction, shall be set out in the Bilateral Agreement. The fault clearance time specified in the Bilateral Agreement shall not be shorter than the durations specified below:
 - (i) 80ms at 400kV
 - (ii) 100ms at 275kV
 - (iii) 120ms at 132kV and below

but this shall not prevent the **GB Code User** or the **Relevant Transmission Licensee** or the **GB Generator** (including in respect of **OTSDUW Plant and Apparatus**) from selecting a shorter fault clearance time on their own **Plant** and **Apparatus** provided **Discrimination** is achieved.

A longer fault clearance time may be specified in the **Bilateral Agreement** for faults on the **National Electricity Transmission System**. A longer fault clearance time for faults on the **GB Generator** or **DC Converter Station** owner's equipment or **OTSDUW Plant and Apparatus** may be agreed with **The Company** in accordance with the terms of the **Bilateral Agreement** but only if **System** requirements, in **The Company's** view, permit. The probability that the fault clearance time stated in the **Bilateral Agreement** will be exceeded by any given fault, must be less than 2%.

(b) In the event that the required fault clearance time is not met as a result of failure to operate on the Main Protection System(s) provided, the GB Generators or DC Converter Station owners or GB Generators in the case of OTSDUW Plant and Apparatus shall, except as specified below provide Independent Back-Up Protection. The Relevant Transmission Licensee will also provide Back-Up Protection; and the Relevant Transmission Licensee's and the GB Code User's Back-Up Protections will be co-ordinated so as to provide Discrimination.

On a Generating Unit (other than a Power Park Unit), DC Converter or Power Park Module or OTSDUW Plant and Apparatus in respect of which the Completion Date is after 20 January 2016 and connected to the National Electricity Transmission System at 400kV or 275kV and where two Independent Main Protections are provided to clear faults on the HV Connections within the required fault clearance time, the Back-Up Protection provided by GB Generators (including in respect of OTSDUW Plant and Apparatus) and DC Converter Station owner shall operate to give a fault clearance time of no longer than 300ms at the minimum infeed for normal operation for faults on the HV Connections. Where two Independent Main Protections are installed the Back-Up Protection may be integrated into one (or both) of the Independent Main Protection relays.

On a Generating Unit (other than a Power Park Unit), DC Converter or Power Park Module or OTSDUW Plant and Apparatus in respect of which the Completion Date is after 20 January 2016 and connected to the National Electricity Transmission System at 132 kV and where only one Main Protection is provided to clear faults on the HV Connections within the required fault clearance time, the Independent Back-Up Protection provided by the GB Generator (including in respect of OTSDUW Plant and Apparatus) and the DC Converter Station owner shall operate to give a fault clearance time of no longer than 300ms at the minimum infeed for normal operation for faults on the HV Connections.

On a Generating Unit (other than a Power Park Unit), DC Converter or Power Park Module or OTSDUW Plant and Apparatus connected to the National Electricity Transmission System and on Generating Units (other than a Power Park Unit), DC Converters or Power Park Modules or OTSDUW Plant and Apparatus connected to the National Electricity Transmission System at 400 kV or 275 kV or 132 kV, in respect of which the Completion Date is before the 20 January 2016, the Back-Up Protection or Independent Back-Up Protection shall operate to give a fault clearance time of no longer than 800ms in England and Wales or 300ms in Scotland at the minimum infeed for normal operation for faults on the HV Connections.

A Generating Unit (other than a Power Park Unit), DC Converter or Power Park Module or OTSDUW Plant and Apparatus) with Back-Up Protection or Independent Back-Up Protection will also be required to withstand, without tripping, the loading incurred during the clearance of a fault on the National Electricity Transmission System by breaker fail Protection at 400kV or 275kV or of a fault cleared by Back-Up Protection where the GB Generator (including in the case of OTSDUW Plant and Apparatus) or DC Converter is connected at 132kV and below. This will permit Discrimination between GB Generator in respect of OTSDUW Plant and Apparatus or DC Converter Station owners' Back-Up Protection or Independent Back-Up Protection and the Back-Up Protection provided on the National Electricity Transmission System and other Users' Systems.

- (c) When the Generating Unit (other than Power Park Units), or the DC Converter or Power Park Module or OTSDUW Plant and Apparatus is connected to the National Electricity Transmission System at 400kV or 275kV, and in Scotland and Offshore also at 132kV, and a circuit breaker is provided by the GB Generator (including in respect of OTSDUW Plant and Apparatus) or the DC Converter Station owner, or the Relevant Transmission Licensee, as the case may be, to interrupt fault current interchange with the National Electricity Transmission System, or GB Generator's System, or DC Converter Station owner's System, as the case may be, circuit breaker fail Protection shall be provided by the GB Generator (including in respect of OTSDUW Plant and Apparatus) or DC Converter Station owner, or the Relevant Transmission Licensee as the case may be, on this circuit breaker. In the event, following operation of a Protection system, of a failure to interrupt fault current by these circuit-breakers within the Fault Current Interruption Time, the circuit breaker fail Protection is required to initiate tripping of all the necessary electrically adjacent circuit-breakers so as to interrupt the fault current within the next 200ms.
- (d) The target performance for the **System Fault Dependability Index** shall be not less than 99%. This is a measure of the ability of **Protection** to initiate successful tripping of circuit breakers which are associated with the faulty item of **Apparatus**.

CC.6.2.2.3 Equipment to be provided

CC.6.2.2.3.1 Protection of Interconnecting Connections

The requirements for the provision of **Protection** equipment for interconnecting connections will be specified in the **Bilateral Agreement**. In this **CC** the term "interconnecting connections" means the primary conductors from the current transformer accommodation on the circuit side of the circuit breaker to the **Connection Point** or the primary conductors from the current transformer accommodation on the circuit side of the **OTSDUW Plant and Apparatus** of the circuit breaker to the **Transmission Interface Point**.

CC.6.2.2.3.2 <u>Circuit-breaker fail Protection</u>

The GB Generator or DC Converter Station owner will install circuit breaker fail Protection equipment in accordance with the requirements of the Bilateral Agreement. The GB Generator or DC Converter Station owner will also provide a back-trip signal in the event of loss of air from its pressurised head circuit breakers, during the Generating Unit (other than a CCGT Unit or Power Park Unit) or CCGT Module or DC Converter or Power Park Module run-up sequence, where these circuit breakers are installed.

CC.6.2.2.3.3 Loss of Excitation

The **GB Generator** must provide **Protection** to detect loss of excitation on a **Generating Unit** and initiate a **Generating Unit** trip.

CC.6.2.2.3.4 Pole-Slipping Protection

Where, in **The Company's** reasonable opinion, **System** requirements dictate, **The Company** will specify in the **Bilateral Agreement** a requirement for **GB Generators** to fit pole-slipping **Protection** on their **Generating Units**.

CC.6.2.2.3.5 Signals for Tariff Metering

GB Generators and **DC Converter Station** owners will install current and voltage transformers supplying all tariff meters at a voltage to be specified in, and in accordance with, the **Bilateral Agreement**.

CC.6.2.2.4 Work on Protection Equipment

No busbar **Protection**, mesh corner **Protection**, circuit-breaker fail **Protection** relays, AC or DC wiring (other than power supplies or DC tripping associated with the **Generating Unit**, **DC Converter** or **Power Park Module** itself) may be worked upon or altered by the **GB Generator** or **DC Converter Station** owner personnel in the absence of a representative of the **Relevant Transmission Licensee**, or written authority from the **Relevant Transmission Licensee** to perform such work or alterations in the absence of a representative of the **Relevant Transmission Licensee**.

CC.6.2.2.5 Relay Settings

Protection and relay settings will be co-ordinated (both on connection and subsequently) across the Connection Point in accordance with the Bilateral Agreement and in relation to OTSDUW Plant and Apparatus, across the Interface Point in accordance with the Bilateral Agreement to ensure effective disconnection of faulty Apparatus.

- CC.6.2.3 Requirements at Connection Points relating to Network Operators and Non-Embedded Customers
- CC.6.2.3.1 Protection Arrangements for Network Operators and Non-Embedded Customers
- CC.6.2.3.1.1 **Protection** of **Network Operator** and **Non-Embedded Customers Systems** directly connected to the **National Electricity Transmission System**, shall meet the requirements given below:

Fault Clearance Times

- (a) The required fault clearance time for faults on Network Operator and Non-Embedded Customer equipment directly connected to the National Electricity Transmission System, and for faults on the National Electricity Transmission System directly connected to the Network Operator's or Non-Embedded Customer's equipment, from fault inception to the circuit breaker arc extinction, shall be set out in each Bilateral Agreement. The fault clearance time specified in the Bilateral Agreement shall not be shorter than the durations specified below:
 - (i) 80ms at 400kV
 - (ii) 100ms at 275kV
 - (iii) 120ms at 132kV and below

but this shall not prevent the **GB Code User** or the **Relevant Transmission Licensee** from selecting a shorter fault clearance time on its own **Plant** and **Apparatus** provided **Discrimination** is achieved.

For the purpose of establishing the **Protection** requirements in accordance with CC.6.2.3.1.1 only, the point of connection of the **Network Operator** or **Non-Embedded Customer** equipment to the **National Electricity Transmission System** shall be deemed to be the low voltage busbars at a **GB Grid Supply Point**, irrespective of the ownership of the equipment at the **GB Grid Supply Point**.

A longer fault clearance time may be specified in the **Bilateral Agreement** for faults on the **National Electricity Transmission System**. A longer fault clearance time for faults on the **Network Operator** and **Non-Embedded Customers** equipment may be agreed with **The Company** in accordance with the terms of the **Bilateral Agreement** but only if **System** requirements in **The Company's** view permit. The probability that the fault clearance time stated in the **Bilateral Agreement** will be exceeded by any given fault must be less than 2%.

- (b) (i) For the event of failure of the **Protection** systems provided to meet the above fault clearance time requirements, **Back-Up Protection** shall be provided by the **Network Operator** or **Non-Embedded Customer** as the case may be.
 - (ii) The Relevant Transmission Licensee will also provide Back-Up Protection, which will result in a fault clearance time longer than that specified for the Network

- Operator or Non-Embedded Customer Back-Up Protection so as to provide Discrimination.
- (iii) For connections with the National Electricity Transmission System at 132kV and below, it is normally required that the Back-Up Protection on the National Electricity Transmission System shall discriminate with the Network Operator or Non-Embedded Customer's Back-Up Protection.
- (iv) For connections with the National Electricity Transmission System at 400kV or 275kV, the Back-Up Protection will be provided by the Network Operator or Non-Embedded Customer, as the case may be, with a fault clearance time not longer than 300ms for faults on the Network Operator's or Non-Embedded Customer's Apparatus.
- (v) Such Protection will also be required to withstand, without tripping, the loading incurred during the clearance of a fault on the National Electricity Transmission System by breaker fail Protection at 400kV or 275kV. This will permit Discrimination between Network Operator's Back-Up Protection or Non-Embedded Customer's Back-Up Protection, as the case may be, and Back-Up Protection provided on the National Electricity Transmission System and other User Systems. The requirement for and level of Discrimination required will be specified in the Bilateral Agreement.
- (c) (i) Where the Network Operator or Non-Embedded Customer is connected to the National Electricity Transmission System at 400kV or 275kV, and in Scotland also at 132kV, and a circuit breaker is provided by the Network Operator or Non-Embedded Customer, or the Relevant Transmission Licensee, as the case may be, to interrupt the interchange of fault current with the National Electricity Transmission System or the System of the Network Operator or Non-Embedded Customer, as the case may be, circuit breaker fail Protection will be provided by the Network Operator or Non-Embedded Customer, or the Relevant Transmission Licensee, as the case may be, on this circuit breaker.
 - (ii) In the event, following operation of a **Protection** system, of a failure to interrupt fault current by these circuit-breakers within the **Fault Current Interruption Time**, the circuit breaker fail **Protection** is required to initiate tripping of all the necessary electrically adjacent circuit-breakers so as to interrupt the fault current within the next 200ms.
- (d) The target performance for the **System Fault Dependability Index** shall be not less than 99%. This is a measure of the ability of **Protection** to initiate successful tripping of circuit breakers which are associated with the faulty items of **Apparatus**.

CC.6.2.3.2 Fault Disconnection Facilities

- (a) Where no Transmission circuit breaker is provided at the GB Code User's connection voltage, the GB Code User must provide The Company with the means of tripping all the GB Code User's circuit breakers necessary to isolate faults or System abnormalities on the National Electricity Transmission System. In these circumstances, for faults on the GB Code User's System, the GB Code User's Protection should also trip higher voltage Transmission circuit breakers. These tripping facilities shall be in accordance with the requirements specified in the Bilateral Agreement.
- (b) The Company may require the installation of a System to Generator Operational Intertripping Scheme in order to enable the timely restoration of circuits following power System fault(s). These requirements shall be set out in the relevant Bilateral Agreement.

CC.6.2.3.3 Automatic Switching Equipment

Where automatic reclosure of **Transmission** circuit breakers is required following faults on the **GB Code User's System**, automatic switching equipment shall be provided in accordance with the requirements specified in the **Bilateral Agreement**.

CC.6.2.3.4 Relay Settings

Protection and relay settings will be co-ordinated (both on connection and subsequently) across the **Connection Point** in accordance with the **Bilateral Agreement** to ensure effective disconnection of faulty **Apparatus**.

CC.6.2.3.5 Work on Protection equipment

Where a **Transmission Licensee** owns the busbar at the **Connection Point**, no busbar **Protection**, mesh corner **Protection** relays, AC or DC wiring (other than power supplies or DC tripping associated with the **Network Operator** or **Non-Embedded Customer's Apparatus** itself) may be worked upon or altered by the **Network Operator** or **Non-Embedded Customer** personnel in the absence of a representative of the **Relevant Transmission Licensee** to perform such work or alterations in the absence of a representative of the **Relevant Transmission Licensee**.

CC.6.2.3.6 Equipment to be provided

CC.6.2.3.6.1 Protection of Interconnecting Connections

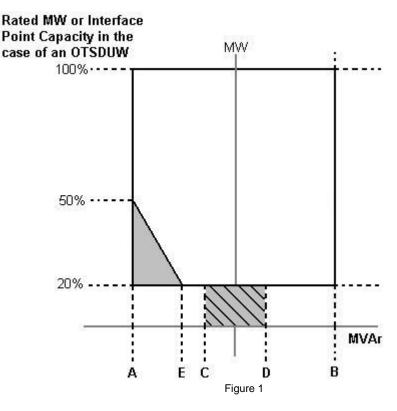
The requirements for the provision of **Protection** equipment for interconnecting connections will be specified in the **Bilateral Agreement**.

CC.6.3 GENERAL GENERATING UNIT (AND OTSDUW) REQUIREMENTS

CC.6.3.1 This section sets out the technical and design criteria and performance requirements for Generating Units, DC Converters and Power Park Modules (whether directly connected to the National Electricity Transmission System or Embedded) and (where provided in this section) OTSDUW Plant and Apparatus which each GB Generator or DC Converter Station owner must ensure are complied with in relation to its Generating Units, DC Converters and Power Park Modules and OTSDUW Plant and Apparatus but does not apply to Small Power Stations or individually to Power Park Units. References to Generating Units, DC Converters and Power Park Modules in this CC.6.3 should be read accordingly. The performance requirements that OTSDUW Plant and Apparatus must be capable of providing at the Interface Point under this section may be provided using a combination of GB Generator Plant and Apparatus and/or OTSDUW Plant and Apparatus.

<u>Plant Performance Requirements</u>

(a) When supplying Rated MW all Onshore Synchronous Generating Units must be capable of continuous operation at any point between the limits 0.85 Power Factor lagging and 0.95 Power Factor leading at the Onshore Synchronous Generating Unit terminals. At Active Power output levels other than Rated MW, all Onshore Synchronous Generating Units must be capable of continuous operation at any point between the Reactive Power capability limits identified on the Generator Performance Chart.


In addition to the above paragraph, where Onshore Synchronous Generating Unit(s):

- (i) have a Connection Entry Capacity which has been increased above Rated MW (or the Connection Entry Capacity of the CCGT module has increased above the sum of the Rated MW of the Generating Units compromising the CCGT module), and such increase takes effect after 1st May 2009, the minimum lagging Reactive Power capability at the terminals of the Onshore Synchronous Generating Unit(s) must be 0.9 Power Factor at all Active Power output levels in excess of Rated MW. Further, the User shall comply with the provisions of and any instructions given pursuant to BC1.8 and the relevant Bilateral Agreement; or
- (ii) have a Connection Entry Capacity in excess of Rated MW (or the Connection Entry Capacity of the CCGT module exceeds the sum of Rated MW of the Generating Units comprising the CCGT module) and a Completion Date before 1st May 2009, alternative provisions relating to Reactive Power capability may be specified in the Bilateral Agreement and where this is the case such provisions must be complied with.

The short circuit ratio of **Onshore Synchronous Generating Units** with an **Apparent Power** rating of less than 1600MVA shall be not less than 0.5. The short circuit ratio of **Onshore Synchronous Generating Units** with a rated **Apparent Power** of 1600MVA or above shall be not less than 0.4.

(b) Subject to paragraph (c) below, all Onshore Non-Synchronous Generating Units, Onshore DC Converters and Onshore Power Park Modules must be capable of maintaining zero transfer of Reactive Power at the Onshore Grid Entry Point (or User System Entry Point if Embedded) at all Active Power output levels under steady state voltage conditions. For Onshore Non-Synchronous Generating Units and Onshore Power Park Modules the steady state tolerance on Reactive Power transfer to and from the National Electricity Transmission System expressed in MVAr shall be no greater than 5% of the Rated MW. For Onshore DC Converters the steady state tolerance on Reactive Power transfer to and from the National Electricity Transmission System shall be specified in the Bilateral Agreement.

(c) Subject to the provisions of CC.6.3.2(d) below, all Onshore Non-Synchronous Generating Units, Onshore DC Converters (excluding current source technology) and Onshore Power Park Modules (excluding those connected to the Total System by a current source Onshore DC Converter) and OTSDUW Plant and Apparatus at the Interface Point with a Completion Date on or after 1 January 2006 must be capable of supplying Rated MW output or Interface Point Capacity in the case of OTSDUW Plant and Apparatus at any point between the limits 0.95 Power Factor lagging and 0.95 Power Factor leading at the Onshore Grid Entry Point in England and Wales or Interface Point in the case of OTSDUW Plant and Apparatus or at the HV side of the 33/132kV or 33/275kV or 33/400kV transformer for GB Generators directly connected to the Onshore Transmission System in Scotland (or User System Entry Point if Embedded). With all Plant in service, the Reactive Power limits defined at Rated MW or Interface Point Capacity in the case of OTSDUW Plant and Apparatus at Lagging Power Factor will apply at all Active Power output levels above 20% of the Rated MW or Interface Point Capacity in the case of OTSDUW Plant and Apparatus output as defined in Figure 1. With all Plant in service, the Reactive Power limits defined at Rated MW at Leading Power Factor will apply at all Active Power output levels above 50% of the Rated MW output or Interface Point Capacity in the case of OTSDUW Plant and Apparatus as defined in Figure 1. With all Plant in service, the Reactive Power limits will reduce linearly below 50% Active Power output as shown in Figure 1 unless the requirement to maintain the Reactive Power limits defined at Rated MW or Interface Point Capacity in the case of OTSDUW Plant and Apparatus at Leading Power Factor down to 20% Active Power output is specified in the Bilateral Agreement. These Reactive Power limits will be reduced pro rata to the amount of Plant in service.

Point A is equivalent (in MVAr) to

0.95 leading Power Factor at Rated MW output or **Interface Point Capacity** in the case of **OTSDUW Plant and Apparatus**

Point B is equivalent (in MVAr) to:

0.95 lagging Power Factor at Rated MW output or Interface Point Capacity in the case of OTSDUW Plant and Apparatus

Point C is equivalent (in MVAr) to:

-5% of Rated MW output or **Interface Point Capacity** in the case of **OTSDUW Plant and Apparatus**

Point D is equivalent +5% of Rated MW output or Interface Point Capacity in the case (in MVAr) to: of OTSDUW Plant and Apparatus

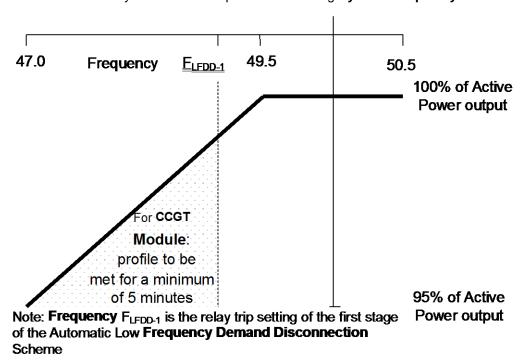
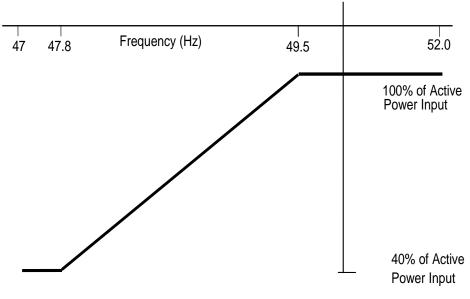
Point E is equivalent -12% of Rated MW output or Interface Point Capacity in the case

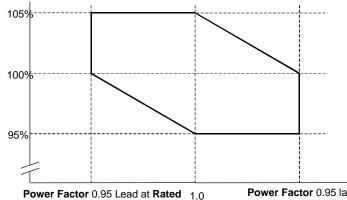
of OTSDUW Plant and Apparatus (in MVAr) to:

(d) All Onshore Non-Synchronous Generating Units and Onshore Power Park Modules in Scotland with a Completion Date after 1 April 2005 and before 1 January 2006 must be capable of supplying **Rated MW** at the range of power factors either:

- from 0.95 lead to 0.95 lag as illustrated in Figure 1 at the User System Entry Point for Embedded GB Generators or at the HV side of the 33/132kV or 33/275kV or 33/400kV transformer for GB Generators directly connected to the Onshore Transmission System. With all Plant in service, the Reactive Power limits defined at **Rated MW** will apply at all **Active Power** output levels above 20% of the Rated MW output as defined in Figure 1. These Reactive Power limits will be reduced pro rata to the amount of Plant in service, or
- (ii) from 0.95 lead to 0.90 lag at the Onshore Non-Synchronous Generating Unit (including Power Park Unit) terminals. For the avoidance of doubt GB Generators complying with this option (ii) are not required to comply with CC.6.3.2(b).
- (e) The short circuit ratio of Offshore Synchronous Generating Units at a Large Power Station shall be not less than 0.5. At a Large Power Station all Offshore Synchronous Generating Units, Offshore Non-Synchronous Generating Units, Offshore DC Converters and Offshore Power Park Modules must be capable of maintaining:
 - zero transfer of Reactive Power at the Offshore Grid Entry Point for all GB Generators with an Offshore Grid Entry Point at the LV Side of the Offshore Platform at all Active Power output levels under steady state voltage conditions. The steady state tolerance on Reactive Power transfer to and from an Offshore Transmission System expressed in MVAr shall be no greater than 5% of the Rated MW, or
 - (ii) a transfer of Reactive Power at the Offshore Grid Entry Point at a value specified in the Bilateral Agreement that will be equivalent to zero at the LV Side of the Offshore Platform. In addition, the steady state tolerance on Reactive Power transfer to and from an Offshore Transmission System expressed in MVAr at the LV Side of the Offshore Platform shall be no greater than 5% of the Rated MW, or
 - (iii) the Reactive Power capability (within associated steady state tolerance) specified in the Bilateral Agreement if any alternative has been agreed with the GB Generator, Offshore Transmission Licensee and The Company.
- (f) In addition, a Genset shall meet the operational requirements as specified in BC2.A.2.6.
- Each Generating Unit, DC Converter (including an OTSDUW DC Converter), Power Park CC.6.3.3 Module and/or CCGT Module must be capable of:
 - (a) continuously maintaining constant Active Power output for System Frequency changes within the range 50.5 to 49.5 Hz; and

(b) (subject to the provisions of CC.6.1.3) maintaining its Active Power output at a level not lower than the figure determined by the linear relationship shown in Figure 2 for System Frequency changes within the range 49.5 to 47 Hz, such that if the System Frequency drops to 47 Hz the Active Power output does not decrease by more than 5%. In the case of a CCGT Module, the above requirement shall be retained down to the Low Frequency Relay trip setting of 48.8 Hz, which reflects the first stage of the Automatic Low Frequency Demand Disconnection scheme notified to Network Operators under OC6.6.2. For System Frequency below that setting, the existing requirement shall be retained for a minimum period of 5 minutes while System Frequency remains below that setting, and special measure(s) that may be required to meet this requirement shall be kept in service during this period. After that 5 minutes period, if System Frequency remains below that setting, the special measure(s) must be discontinued if there is a materially increased risk of the Gas Turbine tripping. The need for special measure(s) is linked to the inherent Gas Turbine Active Power output reduction caused by reduced shaft speed due to falling System Frequency.


Figure 2

- (c) For the avoidance of doubt in the case of a Generating Unit or Power Park Module (or OTSDUW DC Converters at the Interface Point) using an Intermittent Power Source where the mechanical power input will not be constant over time, the requirement is that the Active Power output shall be independent of System Frequency under (a) above and should not drop with System Frequency by greater than the amount specified in (b) above.
- (d) A DC Converter Station must be capable of maintaining its Active Power input (i.e. when operating in a mode analogous to Demand) from the National Electricity Transmission System (or User System in the case of an Embedded DC Converter Station) at a level not greater than the figure determined by the linear relationship shown in Figure 3 for System Frequency changes within the range 49.5 to 47 Hz, such that if the System Frequency drops to 47.8 Hz the Active Power input decreases by more than 60%.

- Figure 3
- (e) At a Large Power Station, in the case of an Offshore Generating Unit, Offshore Power Park Module, Offshore DC Converter and OTSDUW DC Converter, the GB Generator shall comply with the requirements of CC.6.3.3. GB Generators should be aware that Section K of the STC places requirements on Offshore Transmission Licensees which utilise a Transmission DC Converter as part of their Offshore Transmission System to make appropriate provisions to enable GB Generators to fulfil their obligations.
- (f) In the case of an OTSDUW DC Converter the OTSDUW Plant and Apparatus shall provide a continuous signal indicating the real time frequency measured at the Interface Point to the Offshore Grid Entry Point.
- At the **Grid Entry Point**, the **Active Power** output under steady state conditions of any **Generating Unit**, **DC Converter** or **Power Park Module** directly connected to the **National Electricity Transmission System** or in the case of **OTSDUW**, the **Active Power** transfer at the **Interface Point**, under steady state conditions of any **OTSDUW Plant and Apparatus** should not be affected by voltage changes in the normal operating range specified in paragraph CC.6.1.4 by more than the change in **Active Power** losses at reduced or increased voltage. In addition:
 - (a) For any Onshore Generating Unit, Onshore DC Converter and Onshore Power Park Module or OTSDUW the Reactive Power output under steady state conditions should be fully available within the voltage range ±5% at 400kV, 275kV and 132kV and lower voltages, except for an Onshore Power Park Module or Onshore Non-Synchronous Generating Unit if Embedded at 33kV and below (or directly connected to the Onshore Transmission System at 33kV and below) where the requirement shown in Figure 4 applies.
 - (b) At a Large Power Station, in the case of an Offshore Generating Unit, Offshore DC Converter and Offshore Power Park Module where an alternative reactive capability has been agreed with the GB Generator, as specified in CC.6.3.2(e) (iii), the voltage / Reactive Power requirement shall be specified in the Bilateral Agreement. The Reactive Power output under steady state conditions shall be fully available within the voltage range ±5% at 400kV, 275kV and 132kV and lower voltages.

Voltage at an **Onshore Grid Entry Point** or **User System Entry Point** if **Embedded** (% of Nominal) at 33 kV and below

Power Factor 0.95 Lead at Rated MW output or Onshore Grid Entry Point equivalent Power Factor if connected to the Onshore Transmission System in Scotland

Power Factor 0.95 lag at Rated MW output or Onshore Grid Entry Point equivalent Power Factor if connected to the Onshore Transmission System in Scotland or optionally in Scotland for Plant with a Completion Date before 1 January 2006 Power Factor 0.9 lag at an Onshore Nonsynchronous Generating Unit or Onshore Power Park Unit Terminals

Figure 4

It is an essential requirement that the National Electricity Transmission System must incorporate a Black Start Capability. This will be achieved by agreeing a Black Start Capability with a number of strategically located Black Start Service Providers. For each Black Start Service Provider The Company will state in the Bilateral Agreement whether or not a Black Start Capability is required.

Control Arrangements

CC.6.3.6 (a) Each:

- (i) Offshore Generating Unit in a Large Power Station or Onshore Generating Unit; or,
- (ii) Onshore DC Converter with a Completion Date on or after 1 April 2005 or Offshore DC Converter at a Large Power Station; or,
- (iii) Onshore Power Park Module in England and Wales with a Completion Date on or after 1 January 2006; or,
- (iv) Onshore Power Park Module in operation in Scotland on or after 1 January 2006 (with a Completion Date after 1 July 2004 and in a Power Station with a Registered Capacity of 50MW or more); or,
- (v) Offshore Power Park Module in a Large Power Station with a Registered Capacity of 50MW or more;

must be capable of contributing to **Frequency** control by continuous modulation of **Active Power** supplied to the **National Electricity Transmission System** or the **User System** in which it is **Embedded**. For the avoidance of doubt each **OTSDUW DC Converter** shall provide each **GB Code User** in respect of its **Offshore Power Stations** connected to and/or using an **Offshore Transmission System** a continuous signal indicating the real time **Frequency** measured at the **Transmission Interface Point**.

(b) Each:

- (i) Onshore Generating Unit; or,
- (ii) Onshore DC Converter (with a Completion Date on or after 1 April 2005 excluding current source technologies); or

- (iii) Onshore Power Park Module in England and Wales with a Completion Date on or after 1 January 2006; or,
- (iv) Onshore Power Park Module in Scotland irrespective of Completion Date; or,
- (v) Offshore Generating Unit at a Large Power Station, Offshore DC Converter at a Large Power Station or Offshore Power Park Module at a Large Power Station which provides a reactive range beyond the minimum requirements specified in CC.6.3.2(e) (iii); or,
- (vi) OTSDUW Plant and Apparatus at a Transmission Interface Point

must be capable of contributing to voltage control by continuous changes to the **Reactive Power** supplied to the **National Electricity Transmission System** or the **User System** in which it is **Embedded**.

- CC.6.3.7

 (a) Each Generating Unit, DC Converter or Power Park Module (excluding Onshore Power Park Modules in Scotland with a Completion Date before 1 July 2004 or Onshore Power Park Modules in a Power Station in Scotland with a Registered Capacity less than 50MW or Offshore Power Park Modules in a Large Power Station located Offshore with a Registered Capacity less than 50MW) must be fitted with a fast acting proportional Frequency control device (or turbine speed governor) and unit load controller or equivalent control device to provide Frequency response under normal operational conditions in accordance with Balancing Code 3 (BC3). In the case of a Power Park Module the Frequency or speed control device(s) may be on the Power Park Module or on each individual Power Park Unit or be a combination of both. The Frequency control device(s) (or speed governor(s)) must be designed and operated to the appropriate:
 - (i) European Specification; or
 - (ii) in the absence of a relevant **European Specification**, such other standard which is in common use within the European Community (which may include a manufacturer specification);

as at the time when the installation of which it forms part was designed or (in the case of modification or alteration to the **Frequency** control device (or turbine speed governor)) when the modification or alteration was designed.

The European Specification or other standard utilised in accordance with subparagraph CC.6.3.7 (a) (ii) will be notified to The Company by the GB Generator or DC Converter Station owner or, in the case of an Embedded Medium Power Station not subject to a Bilateral Agreement or Embedded DC Converter Station not subject to a Bilateral Agreement, the relevant Network Operator:

- (i) as part of the application for a Bilateral Agreement; or
- (ii) as part of the application for a varied Bilateral Agreement; or
- (iii) in the case of an Embedded Development, within 28 days of entry into the Embedded Development Agreement (or such later time as agreed with The Company); or
- (iv) as soon as possible prior to any modification or alteration to the **Frequency** control device (or governor); and
- (b) The Frequency control device (or speed governor) in co-ordination with other control devices must control the Generating Unit, DC Converter or Power Park Module Active Power Output with stability over the entire operating range of the Generating Unit, DC Converter or Power Park Module; and
- (c) The **Frequency** control device (or speed governor) must meet the following minimum requirements:
 - (i) Where a Generating Unit, DC Converter or Power Park Module becomes

isolated from the rest of the **Total System** but is still supplying **Customers**, the **Frequency** control device (or speed governor) must also be able to control **System Frequency** below 52Hz unless this causes the **Generating Unit**, **DC Converter** or **Power Park Module** to operate below its **Designed Minimum Operating Level** when it is possible that it may, as detailed in BC 3.7.3, trip after a time. For the avoidance of doubt the **Generating Unit**, **DC Converter** or **Power Park Module** is only required to operate within the **System Frequency** range 47 - 52 Hz as defined in CC.6.1.3;

- (ii) the Frequency control device (or speed governor) must be capable of being set so that it operates with an overall speed Droop of between 3% and 5%. For the avoidance of doubt, in the case of a Power Park Module the speed Droop should be equivalent of a fixed setting between 3% and 5% applied to each Power Park Unit in service;
- (iii) in the case of all **Generating Units**, **DC Converter** or **Power Park Module** other than the **Steam Unit** within a **CCGT Module** the **Frequency** control device (or speed governor) deadband should be no greater than 0.03Hz (for the avoidance of doubt, ±0.015Hz). In the case of the **Steam Unit** within a **CCGT Module**, the speed **Governor Deadband** should be set to an appropriate value consistent with the requirements of CC.6.3.7(c)(i) and the requirements of BC3.7.2 for the provision of **Limited High Frequency Response**;

For the avoidance of doubt, the minimum requirements in (ii) and (iii) for the provision of **System Ancillary Services** do not restrict the negotiation of **Commercial Ancillary Services** between **The Company** and the **GB Code User** using other parameters; and

- (d) A facility to modify, so as to fulfil the requirements of the **Balancing Codes**, the **Target Frequency** setting either continuously or in a maximum of 0.05 Hz steps over at least the range 50 ±0.1 Hz should be provided in the unit load controller or equivalent device.
- (e) (i) Each Onshore Generating Unit and/or CCGT Module which has a Completion Date after 1 January 2001 in England and Wales, and after 1 April 2005 in Scotland, must be capable of meeting the minimum Frequency response requirement profile subject to and in accordance with the provisions of Appendix 3.
 - (ii) Each **DC Converter** at a **DC Converter Station** which has a **Completion Date** on or after 1 April 2005 and each **Offshore DC Converter** at a **Large Power Station** must be capable of meeting the minimum **Frequency** response requirement profile subject to and in accordance with the provisions of Appendix 3.
 - (iii) Each Onshore Power Park Module in operation in England and Wales with a Completion Date on or after 1 January 2006 must be capable of meeting the minimum Frequency response requirement profile subject to and in accordance with the provisions of Appendix 3.
 - (iv) Each Onshore Power Park Module in operation on or after 1 January 2006 in Scotland (with a Completion Date on or after 1 April 2005 and a Registered Capacity of 50MW or more) must be capable of meeting the minimum Frequency response requirement profile subject to and in accordance with the provisions of Appendix 3.
 - (v) Each Offshore Generating Unit in a Large Power Station must be capable of meeting the minimum Frequency response requirement profile subject to and in accordance with the provisions of Appendix 3.
 - (vi) Each Offshore Power Park Module in a Large Power Station with a Registered Capacity of 50 MW or greater, must be capable of meeting the minimum Frequency response requirement profile subject to and in accordance with the provisions of Appendix 3.
 - (vii) Subject to the requirements of CC.6.3.7(e), Offshore Generating Units at a Large Power Station, Offshore Power Park Modules at a Large Power Station and Offshore DC Converters in a Large Power Station shall comply with the

- requirements of CC.6.3.7. **GB Generators** should be aware that Section K of the **STC** places requirements on **Offshore Transmission Licensees** which utilise a **Transmission DC Converter** as part of their **Offshore Transmission System** to make appropriate provisions to enable **GB Generators** to fulfil their obligations.
- (viii) Each OTSDUW DC Converter must be capable of providing a continuous signal indicating the real time frequency measured at the Interface Point to the Offshore Grid Entry Point.
- (f) For the avoidance of doubt, the requirements of Appendix 3 do not apply to:
 - (i) Generating Units and/or CCGT Modules which have a Completion Date before 1 January 2001 in England and Wales, and before 1 April 2005 in Scotland, for whom the remaining requirements of this clause CC.6.3.7 shall continue to apply unchanged: or
 - (ii) **DC Converters** at a **DC Converter Station** which have a **Completion Date** before 1 April 2005; or
 - (iii) Onshore Power Park Modules in England and Wales with a Completion Date before 1 January 2006 for whom only the requirements of Limited Frequency Sensitive Mode (BC3.5.2) operation shall apply; or
 - (iv) Onshore Power Park Modules in operation in Scotland before 1 January 2006 for whom only the requirements of Limited Frequency Sensitive Mode (BC3.5.2) operation shall apply; or
 - (v) Onshore Power Park Modules in operation after 1 January 2006 in Scotland which have a Completion Date before 1 April 2005 for whom the remaining requirements of this clause CC.6.3.7 shall continue to apply unchanged; or
 - (vi) Offshore Power Park Modules which are in a Large Power Station with a Registered Capacity less than 50MW for whom only the requirements of Limited Frequency Sensitive Mode (BC3.5.2) operation shall apply; or

Excitation and Voltage Control Performance Requirements

- CC.6.3.8 (a) Excitation and voltage control performance requirements applicable to **Onshore**Generating Units, Onshore Power Park Modules, Onshore DC Converters and

 OTSDUW Plant and Apparatus.
 - (i) A continuously-acting automatic excitation control system is required to provide constant terminal voltage control of the Onshore Synchronous Generating Unit without instability over the entire operating range of the Onshore Generating Unit.
 - (ii) In respect of Onshore Synchronous Generating Units with a Completion Date before 1 January 2009, the requirements for excitation control facilities, including Power System Stabilisers, where in The Company's view these are necessary for system reasons, will be specified in the Bilateral Agreement. If any Modification to the excitation control facilities of such Onshore Synchronous Generating Units is made on or after 1 January 2009 the requirements that shall apply may be specified in the Bilateral Agreement as varied. To the extent that the Bilateral Agreement does not specify, the requirements given or referred to in CC.A.6 shall apply. The performance requirements for a continuously acting automatic excitation control system that shall be complied with by the GB Code User in respect of such Onshore Synchronous Generating Units with a Completion Date on or after 1 January 2009 are given or referred to in CC.A.6. Reference is made to on-load commissioning witnessed by The Company in BC2.11.2.
 - (iii) In the case of an Onshore Non-Synchronous Generating Unit, Onshore DC Converter, Onshore Power Park Module or OTSDUW Plant and Apparatus at the Interface Point a continuously-acting automatic control system is required to provide control of the voltage (or zero transfer of Reactive Power as applicable to CC.6.3.2) at the Onshore Grid Entry Point or User System Entry Point or in the

case of OTSDUW Plant and Apparatus at the Interface Point without instability over the entire operating range of the Onshore Non-Synchronous Generating Unit, Onshore DC Converter, Onshore Power Park Module or OTSDUW Plant and Apparatus. Any Plant or Apparatus used in the provisions of such voltage control within an Onshore Power Park Module may be located at the Power Park Unit terminals, an appropriate intermediate busbar or the Connection Point. OTSDUW Plant and Apparatus used in the provision of such voltage control may be located at the Offshore Grid Entry Point, an appropriate intermediate busbar or at the Interface Point. In the case of an Onshore Power Park Module in Scotland with a Completion Date before 1 January 2009, voltage control may be at the Power Park Unit terminals, an appropriate intermediate busbar or the Connection Point as specified in the Bilateral Agreement. When operating below 20% Rated MW the automatic control system may continue to provide voltage control utilising any available reactive capability. If voltage control is not being provided the automatic control system shall be designed to ensure a smooth transition between the shaded area bound by CD and the non shaded area bound by AB in Figure 1 of CC.6.3.2 (c).

- (iv) The performance requirements for a continuously acting automatic voltage control system in respect of Onshore Power Park Modules, Onshore Non-Synchronous Generating Units and Onshore DC Converters with a Completion Date before 1 January 2009 will be specified in the Bilateral Agreement. If any Modification to the continuously acting automatic voltage control system of such Onshore Power Park Modules, Onshore Non-Synchronous Generating Units and Onshore DC Converters is made on or after 1 January 2009 the requirements that shall apply may be specified in the Bilateral Agreement as varied. To the extent that the Bilateral Agreement does not specify, the requirements given or referred to in CC.A.7 shall apply. The performance requirements for a continuously acting automatic voltage control system that shall be complied with by the GB Code User in respect of Onshore Power Park Modules, Onshore Non-Synchronous Generating Units and Onshore DC Converters or OTSDUW Plant and Apparatus at the Interface Point with a Completion Date on or after 1 January 2009 are given or referred to in CC.A.7.
- (v) Unless otherwise required for testing in accordance with OC5.A.2, the automatic excitation control system of an Onshore Synchronous Generating Unit shall always be operated such that it controls the Onshore Synchronous Generating Unit terminal voltage to a value that is
 - equal to its rated value; or
 - only where provisions have been made in the **Bilateral Agreement**, greater than its rated value.
- (vi) In particular, other control facilities, including constant Reactive Power output control modes and constant Power Factor control modes (but excluding VAR limiters) are not required. However, if present in the excitation or voltage control system they will be disabled unless the Bilateral Agreement records otherwise. Operation of such control facilities will be in accordance with the provisions contained in BC2.
- (b) Excitation and voltage control performance requirements applicable to Offshore Generating Units at a Large Power Station, Offshore Power Park Modules at a Large Power Station and Offshore DC Converters at a Large Power Station.

A continuously acting automatic control system is required to provide either:

(i) control of Reactive Power (as specified in CC.6.3.2(e) (i) (ii)) at the Offshore Grid Entry Point without instability over the entire operating range of the Offshore Generating Unit, Offshore DC Converter or Offshore Power Park Module. The performance requirements for this automatic control system will be specified in the

Bilateral Agreement or;

(ii) where an alternative reactive capability has been specified in the Bilateral Agreement, in accordance with CC.6.3.2 (e) (iii), the Offshore Generating Unit, Offshore Power Park Module or Offshore DC Converter will be required to control voltage and / or Reactive Power without instability over the entire operating range of the Offshore Generating Unit, Offshore Power Park Module or Offshore DC Converter. The performance requirements of the control system will be specified in the Bilateral Agreement.

In addition to CC.6.3.8(b) (i) and (ii) the requirements for excitation control facilities, including **Power System Stabilisers**, where in **The Company's** view these are necessary for system reasons, will be specified in the **Bilateral Agreement**. Reference is made to on-load commissioning witnessed by **The Company** in BC2.11.2.

Steady state Load Inaccuracies

CC.6.3.9 The standard deviation of **Load** error at steady state **Load** over a 30 minute period must not exceed 2.5 per cent of a **Genset's Registered Capacity**. Where a **Genset** is instructed to **Frequency** sensitive operation, allowance will be made in determining whether there has been an error according to the governor droop characteristic registered under the **PC**.

For the avoidance of doubt in the case of a **Power Park Module** allowance will be made for the full variation of mechanical power output.

Negative Phase Sequence Loadings

CC.6.3.10 In addition to meeting the conditions specified in CC.6.1.5(b), each **Synchronous Generating Unit** will be required to withstand, without tripping, the negative phase sequence loading incurred by clearance of a close-up phase-to-phase fault, by **System Back-Up Protection** on the **National Electricity Transmission System** or **User System** located **Onshore** in which it is **Embedded**.

Neutral Earthing

At nominal **System** voltages of 132kV and above the higher voltage windings of a transformer of a **Generating Unit**, **DC Converter**, **Power Park Module** or transformer resulting from **OTSDUW** must be star connected with the star point suitable for connection to earth. The earthing and lower voltage winding arrangement shall be such as to ensure that the **Earth Fault Factor** requirement of paragraph CC.6.2.1.1 (b) will be met on the **National Electricity Transmission System** at nominal **System** voltages of 132kV and above.

Frequency Sensitive Relays

- As stated in CC.6.1.3, the **System Frequency** could rise to 52Hz or fall to 47Hz. Each **Generating Unit**, **DC Converter**, **OTSDUW Plant and Apparatus**, **Power Park Module** or any constituent element must continue to operate within this **Frequency** range for at least the periods of time given in CC.6.1.3 unless **The Company** has agreed to any **Frequency**-level relays and/or rate-of-change-of-**Frequency** relays which will trip such **Generating Unit**, **DC Converter**, **OTSDUW Plant and Apparatus**, **Power Park Module** and any constituent element within this **Frequency** range, under the **Bilateral Agreement**.
- CC.6.3.13 GB Generators (including in respect of OTSDUW Plant and Apparatus) and DC Converter Station owners will be responsible for protecting all their Generating Units (and OTSDUW Plant and Apparatus), DC Converters or Power Park Modules against damage should Frequency excursions outside the range 52Hz to 47Hz ever occur. Should such excursions occur, it is up to the GB Generator or DC Converter Station owner to decide whether to disconnect his Apparatus for reasons of safety of Apparatus, Plant and/or personnel.
- CC.6.3.14 It may be agreed in the **Bilateral Agreement** that a **Genset** shall have a **Fast-Start Capability**. Such **Gensets** may be used for **Operating Reserve** and their **Start-Up** may be initiated by **Frequency**-level relays with settings in the range 49Hz to 50Hz as specified pursuant to **OC2**.

CC.6.3.15 Fault Ride Through

This section sets out the fault ride through requirements on Generating Units, Power Park Modules, DC Converters and OTSDUW Plant and Apparatus. Onshore Generating Units, Onshore Power Park Modules, Onshore DC Converters (including Embedded Medium Power Stations and Embedded DC Converter Stations not subject to a Bilateral Agreement and with an Onshore User System Entry Point (irrespective of whether they are located Onshore or Offshore)) and OTSDUW Plant and Apparatus are required to operate through System faults and disturbances as defined in CC.6.3.15.1 (a), CC.6.3.15.1 (b) and CC.6.3.15.3. Offshore GB Generators in respect of Offshore Generating Units at a Large Power Station, Offshore Power Park Modules at a Large Power Station and DC Converter Station owners in respect of Offshore DC Converters at a Large Power Station shall have the option of meeting either:

- (i) CC.6.3.15.1 (a), CC.6.3.15.1 (b) and CC.6.3.15.3, or:
- (ii) CC.6.3.15.2 (a), CC.6.3.15.2 (b) and CC.6.3.15.3

Offshore GB Generators and Offshore DC Converter owners, should notify The Company which option they wish to select within 28 days (or such longer period as The Company may agree, in any event this being no later than 3 months before the Completion Date of the offer for a final CUSC Contract which would be made following the appointment of the Offshore Transmission Licensee).

- CC.6.3.15.1 Fault Ride through applicable to **Generating Units**, **Power Park Modules** and **DC Converters** and **OTSDUW Plant and Apparatus**
 - (a) Short circuit faults on the **Onshore Transmission System** (which may include an **Interface Point**) at **Supergrid Voltage** up to 140ms in duration.
 - Each Generating Unit, DC Converter, or Power Park Module and any constituent Power Park Unit thereof and OTSDUW Plant and Apparatus shall remain transiently stable and connected to the System without tripping of any Generating Unit, DC Converter or Power Park Module and / or any constituent Power Park Unit, OTSDUW Plant and Apparatus, and for Plant and Apparatus installed on or after 1 December 2017, reactive compensation equipment, for a close-up solid three-phase short circuit fault or any unbalanced short circuit fault on the Onshore Transmission System (including in respect of OTSDUW Plant and Apparatus, the Interface Point) operating at Supergrid Voltages for a total fault clearance time of up to 140 ms. A solid three-phase or unbalanced earthed fault results in zero voltage on the faulted phase(s) at the point of fault. The duration of zero voltage is dependent on local **Protection** and circuit breaker operating times. This duration and the fault clearance times will be specified in the Bilateral Agreement. Following fault clearance, recovery of the Supergrid Voltage on the Onshore Transmission System to 90% may take longer than 140ms as illustrated in Appendix 4A Figures CC.A.4A.1 (a) and (b). It should be noted that in the case of an Offshore Generating Unit, Offshore DC Converter or Offshore Power Park Module (including any Offshore Power Park Unit thereof) which is connected to an Offshore Transmission System which includes a Transmission DC Converter as part of that Offshore Transmission System, the Offshore Grid Entry Point voltage may not indicate the presence of a fault on the Onshore Transmission System. The fault will affect the level of Active Power that can be transferred to the Onshore Transmission System and therefore subject the Offshore Generating Unit, Offshore DC Converter or Offshore Power Park Module (including any Offshore Power Park Unit thereof) to a load rejection.
 - (ii) Each Generating Unit, Power Park Module and OTSDUW Plant and Apparatus, shall be designed such that upon both clearance of the fault on the Onshore Transmission System as detailed in CC.6.3.15.1 (a) (i) and within 0.5 seconds of the restoration of the voltage at the Onshore Grid Entry Point (for Onshore Generating Units or Onshore Power Park Modules) or Interface Point (for Offshore Generating Units, Offshore Power Park Modules or OTSDUW Plant

and Apparatus) to the minimum levels specified in CC.6.1.4 (or within 0.5 seconds of restoration of the voltage at the User System Entry Point to 90% of nominal or greater if Embedded), Active Power output or in the case of OTSDUW Plant and Apparatus, Active Power transfer capability, shall be restored to at least 90% of the level available immediately before the fault. Once the Active Power output, or in the case of OTSDUW Plant and Apparatus, Active Power transfer capability, has been restored to the required level, Active Power oscillations shall be acceptable provided that:

- the total **Active Energy** delivered during the period of the oscillations is at least that which would have been delivered if the **Active Power** was constant
- the oscillations are adequately damped

During the period of the fault as detailed in CC.6.3.15.1 (a) (i) for which the voltage at the Grid Entry Point (or Interface Point in the case of OTSDUW Plant and Apparatus) is outside the limits specified in CC.6.1.4, each Generating Unit or Power Park Module or OTSDUW Plant and Apparatus shall generate maximum reactive current without exceeding the transient rating limit of the Generating Unit, OTSDUW Plant and Apparatus or Power Park Module and / or any constituent Power Park Unit or reactive compensation equipment. For Plant and Apparatus installed on or after 1 December 2017, switched reactive compensation equipment (such as mechanically switched capacitors and reactors) shall be controlled such that it is not switched in or out of service during the fault but may act to assist in post fault voltage recovery.

- (iii) Each DC Converter shall be designed to meet the Active Power recovery characteristics (and OTSDUW DC Converter shall be designed to meet the Active Power transfer capability at the Interface Point) as specified in the Bilateral Agreement upon clearance of the fault on the Onshore Transmission System as detailed in CC.6.3.15.1 (a) (i).
- (b) **Supergrid Voltage** dips on the **Onshore Transmission System** greater than 140ms in duration
- (1b) Requirements applicable to **Synchronous Generating Units** subject to **Supergrid Voltage** dips on the **Onshore Transmission System** greater than 140ms in duration.

In addition to the requirements of CC.6.3.15.1 (a) each **Synchronous Generating Unit**, each with a **Completion Date** on or after **1 April 2005** shall:

(i) remain transiently stable and connected to the **System** without tripping of any **Synchronous Generating Unit** for balanced **Supergrid Voltage** dips and associated durations on the **Onshore Transmission System** (which could be at the **Interface Point**) anywhere on or above the heavy black line shown in Figure 5a. Appendix 4A and Figures CC.A.4A.3.2 (a), (b) and (c) provide an explanation and illustrations of Figure 5a; and,

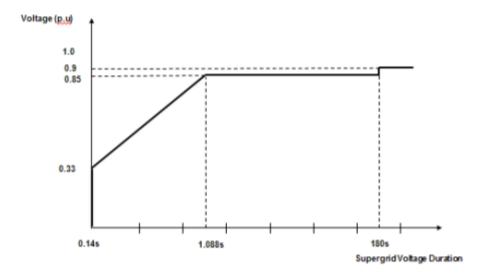


Figure 5a

- (ii) provide Active Power output at the Grid Entry Point, during Supergrid Voltage dips on the Onshore Transmission System as described in Figure 5a, at least in proportion to the retained balanced voltage at the Onshore Grid Entry Point (for Onshore Synchronous Generating Units) or Interface Point (for Offshore Synchronous Generating Units) (or the retained balanced voltage at the User System Entry Point if Embedded) and shall generate maximum reactive current (where the voltage at the Grid Entry Point is outside the limits specified in CC.6.1.4) without exceeding the transient rating limits of the Synchronous Generating Unit and,
- (iii) restore Active Power output following Supergrid Voltage dips on the Onshore Transmission System as described in Figure 5a, within 1 second of restoration of the voltage to 1.0p.u of the nominal voltage at the:
 - Onshore Grid Entry Point for directly connected Onshore Synchronous Generating Units or,
 - Interface Point for Offshore Synchronous Generating Units or,
 - User System Entry Point for Embedded Onshore Synchronous Generating Units or,
 - **User System Entry Point** for **Embedded Medium Power Stations** not subject to a **Bilateral Agreement** which comprise **Synchronous Generating Units** and with an **Onshore User System Entry Point** (irrespective of whether they are located **Onshore** or **Offshore**)

to at least 90% of the level available immediately before the occurrence of the dip. Once the **Active Power** output has been restored to the required level, **Active Power** oscillations shall be acceptable provided that:

- the total **Active Energy** delivered during the period of the oscillations is at least that which would have been delivered if the **Active Power** was constant
- the oscillations are adequately damped.

For the avoidance of doubt a balanced **Onshore Transmission System Supergrid Voltage** meets the requirements of CC.6.1.5 (b) and CC.6.1.6.

(2b) Requirements applicable to **OTSDUW Plant and Apparatus** and **Power Park Modules** subject to **Supergrid Voltage** dips on the **Onshore Transmission System** greater than 140ms in duration

In addition to the requirements of CC.6.3.15.1 (a) each OTSDUW Plant and Apparatus or each Power Park Module and / or any constituent Power Park Unit, each with a Completion Date on or after the 1 April 2005 shall:

remain transiently stable and connected to the System without tripping of any OTSDUW Plant and Apparatus, or Power Park Module and / or any constituent Power Park Unit, for balanced Supergrid Voltage dips and associated durations on the Onshore Transmission System (which could be at the Interface Point) anywhere on or above the heavy black line shown in Figure 5b. Appendix 4A and Figures CC.A.4A.3.4 (a), (b) and (c) provide an explanation and illustrations of Figure 5b; and,

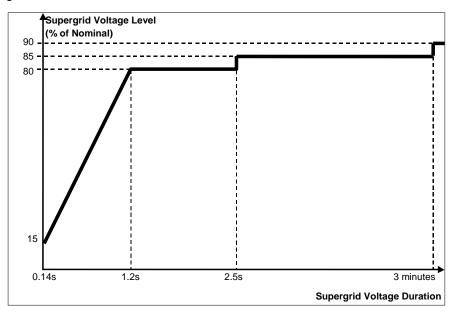


Figure 5b

- (ii) provide Active Power output at the Grid Entry Point or in the case of an OTSDUW, Active Power transfer capability at the Transmission Interface Point, during Supergrid Voltage dips on the Onshore Transmission System as described in Figure 5b, at least in proportion to the retained balanced voltage at the Onshore Grid Entry Point (for Onshore Power Park Modules) or Interface Point (for OTSDUW Plant and Apparatus and Offshore Power Park Modules) (or the retained balanced voltage at the **User System Entry Point** if **Embedded**) except in the case of a Non-Synchronous Generating Unit or OTSDUW Plant and Apparatus or Power Park Module where there has been a reduction in the Intermittent Power Source or in the case of OTSDUW Active Power transfer capability in the time range in Figure 5b that restricts the **Active Power** output or in the case of an OTSDUW Active Power transfer capability below this level and shall generate maximum reactive current (where the voltage at the Grid Entry Point, or in the case of an OTSDUW Plant and Apparatus, the Interface Point voltage, is outside the limits specified in CC.6.1.4) without exceeding the transient rating limits of the OTSDUW Plant and Apparatus or Power Park Module and any constituent Power Park Unit; and,
- (iii) restore Active Power output (or, in the case of OTSDUW, Active Power transfer capability), following Supergrid Voltage dips on the Onshore Transmission System as described in Figure 5b, within 1 second of restoration of the voltage at the:

Onshore Grid Entry Point for directly connected Onshore Power Park Modules or,

Park Modules or,

User System Entry Point for Embedded Onshore Power Park Modules or,

User System Entry Point for Embedded Medium Power Stations which comprise Power Park Modules not subject to a Bilateral Agreement and with an Onshore User System Entry Point (irrespective of whether they are located Onshore or Offshore)

to the minimum levels specified in CC.6.1.4 to at least 90% of the level available immediately before the occurrence of the dip except in the case of a **Non-Synchronous Generating Unit**, **OTSDUW Plant and Apparatus** or **Power Park Module** where there has been a reduction in the **Intermittent Power Source** in the time range in Figure 5b that restricts the **Active Power** output or, in the case of **OTSDUW**, **Active Power** transfer capability below this level. Once the **Active Power** output or, in the case of **OTSDUW**, **Active Power** transfer capability has been restored to the required level, **Active Power** oscillations shall be acceptable provided that:

- the total **Active Energy** delivered during the period of the oscillations is at least that which would have been delivered if the **Active Power** was constant
- the oscillations are adequately damped.

For the avoidance of doubt a balanced **Onshore Transmission System Supergrid Voltage** meets the requirements of CC.6.1.5 (b) and CC.6.1.6.

- CC.6.3.15.2 Fault Ride Through applicable to **Offshore Generating Units** at a **Large Power Station**, **Offshore Power Park Modules** at a **Large Power Station** and **Offshore DC Converters** at a **Large Power Station** who choose to meet the fault ride through requirements at the **LV** side of the Offshore Platform
 - (a) Requirements on Offshore Generating Units, Offshore Power Park Modules and Offshore DC Converters to withstand voltage dips on the LV Side of the Offshore Platform for up to 140ms in duration as a result of faults and / or voltage dips on the Onshore Transmission System operating at Supergrid Voltage
 - Each Offshore Generating Unit, Offshore DC Converter, or Offshore Power Park Module and any constituent Power Park Unit thereof shall remain transiently stable and connected to the System without tripping of any Offshore Generating Unit, or Offshore DC Converter or Offshore Power Park Module and / or any constituent Power Park Unit or, in the case of Plant and Apparatus installed on or after 1 December 2017, reactive compensation equipment, for any balanced or unbalanced voltage dips on the LV Side of the Offshore Platform whose profile is anywhere on or above the heavy black line shown in Figure 6. For the avoidance of doubt, the profile beyond 140ms in Figure 6 shows the minimum recovery in voltage that will be seen by the generator following clearance of the fault at 140ms. Appendix 4B and Figures CC.A.4B.2 (a) and (b) provide further illustration of the voltage recovery profile that may be seen. It should be noted that in the case of an Offshore Generating Unit, Offshore DC Converter or Offshore Power Park Module (including any Offshore Power Park Unit thereof) which is connected to an Offshore Transmission System which includes a Transmission DC Converter as part of that Offshore Transmission System, the Offshore Grid Entry Point voltage may not indicate the presence of a fault on the Onshore Transmission System. The voltage dip will affect the level of Active Power that can be transferred to the Onshore Transmission System and therefore subject the Offshore Generating Unit, Offshore DC Converter or Offshore Power Park Module (including any Offshore Power Park Unit thereof) to a load rejection.

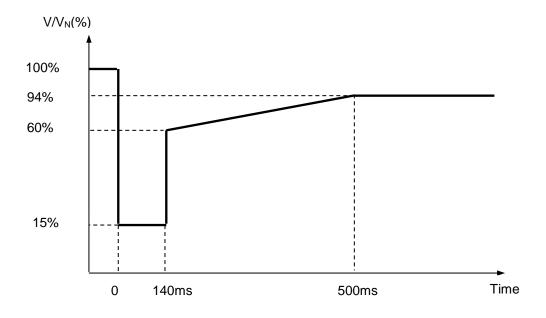
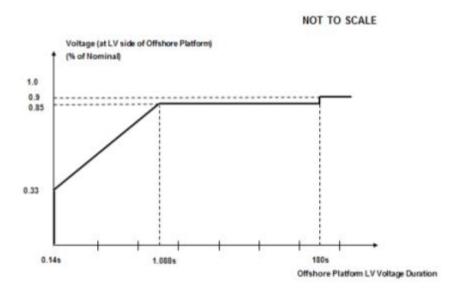


Figure 6

 V/V_N is the ratio of the actual voltage on one or more phases at the LV Side of the Offshore Platform to the nominal voltage of the LV Side of the Offshore Platform.


- (ii) Each Offshore Generating Unit, or Offshore Power Park Module and any constituent Power Park Unit thereof shall provide Active Power output, during voltage dips on the LV Side of the Offshore Platform as described in Figure 6, at least in proportion to the retained voltage at the LV Side of the Offshore Platform except in the case of an Offshore Non-Synchronous Generating Unit or Offshore Power Park Module where there has been a reduction in the Intermittent Power Source in the time range in Figure 6 that restricts the Active Power output below this level and shall generate maximum reactive current without exceeding the transient rating limits of the Offshore Generating Unit or Offshore Power Park Module and any constituent Power Park Unit or, in the case of Plant and Apparatus installed on or after 1 December 2017, reactive compensation equipment. Once the Active Power output has been restored to the required level, Active Power oscillations shall be acceptable provided that:
 - the total **Active Energy** delivered during the period of the oscillations is at least that which would have been delivered if the **Active Power** was constant
 - the oscillations are adequately damped

and:

- (iii) Each Offshore DC Converter shall be designed to meet the Active Power recovery characteristics as specified in the Bilateral Agreement upon restoration of the voltage at the LV Side of the Offshore Platform.
- (b) Requirements of **Offshore Generating Units**, **Offshore Power Park Modules**, to withstand voltage dips on the **LV Side of the Offshore Platform** greater than 140ms in duration.
- (1b) Requirements applicable to **Offshore Synchronous Generating Units** to withstand voltage dips on the **LV Side of the Offshore Platform** greater than 140ms in duration.

In addition to the requirements of CC.6.3.15.2. (a) each **Offshore Synchronous Generating Unit** shall:

Offshore Synchronous Generating Unit for any balanced voltage dips on the LV side of the Offshore Platform and associated durations anywhere on or above the heavy black line shown in Figure 7a. Appendix 4B and Figures CC.A.4B.3.2 (a), (b) and (c) provide an explanation and illustrations of Figure 7a. It should be noted that in the case of an Offshore Synchronous Generating Unit which is connected to an Offshore Transmission System which includes a Transmission DC Converter as part of that Offshore Transmission System, the Offshore Grid Entry Point voltage may not indicate the presence of a voltage dip on the Onshore Transmission System. The voltage dip will affect the level of Active Power that can be transferred to the Onshore Transmission System and therefore subject the Offshore Generating Unit, to a load rejection.

- (ii) provide Active Power output, during voltage dips on the LV Side of the Offshore Platform as described in Figure 7a, at least in proportion to the retained balanced or unbalanced voltage at the LV Side of the Offshore Platform and shall generate maximum reactive current (where the voltage at the Offshore Grid Entry Point is outside the limits specified in CC.6.1.4) without exceeding the transient rating limits of the Offshore Synchronous Generating Unit and,
- (iii) within 1 second of restoration of the voltage to 1.0p.u of the nominal voltage at the LV Side of the Offshore Platform, restore Active Power to at least 90% of the Offshore Synchronous Generating Unit's immediate pre-disturbed value, unless there has been a reduction in the Intermittent Power Source in the time range in Figure 7a that restricts the Active Power output below this level. Once the Active Power output has been restored to the required level, Active Power oscillations shall be acceptable provided that:
 - the total **Active Energy** delivered during the period of the oscillations is at least that which would have been delivered if the **Active Power** was constant
 - the oscillations are adequately damped
- (2b) Requirements applicable to **Offshore Power Park Modules** to withstand voltage dips on the **LV Side of the Offshore Platform** greater than 140ms in duration.

In addition to the requirements of CC.6.3.15.2. (a) each **Offshore Power Park Module** and / or any constituent **Power Park Unit**, shall:

(i) remain transiently stable and connected to the **System** without tripping of any **Offshore Power Park Module** and / or any constituent **Power Park Unit**, for any balanced voltage dips on the **LV side of the Offshore Platform** and associated durations anywhere on or above the heavy black line shown in Figure 7b. Appendix 4B and Figures CC.A.4B.5. (a), (b) and (c) provide an explanation and illustrations of Figure 7b. It should be noted that in the case of an **Offshore Power Park Module** (including any **Offshore Power Park Unit** thereof) which is connected to an **Offshore Transmission System** which includes a **Transmission DC Converter** as part of that **Offshore Transmission System**, the **Offshore Grid Entry Point** voltage may not indicate the presence of a voltage dip on the **Onshore Transmission System**. The voltage dip will affect the level of **Active Power** that can be transferred to the **Onshore Transmission System** and therefore subject the **Offshore Power Park Module** (including any **Offshore Power Park Unit** thereof) to a load rejection.

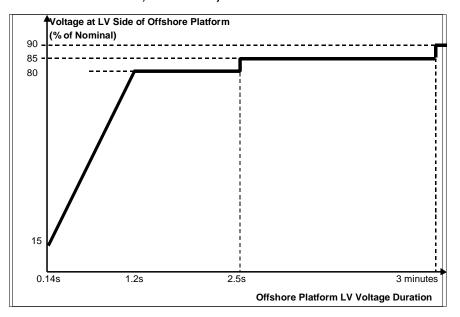


Figure 7b

- (ii) provide Active Power output, during voltage dips_on the LV Side of the Offshore Platform as described in Figure 7b, at least in proportion to the retained balanced or unbalanced voltage at the LV Side of the Offshore Platform except in the case of an Offshore Non-Synchronous Generating Unit or Offshore Power Park Module where there has been a reduction in the Intermittent Power Source in the time range in Figure 7b that restricts the Active Power output below this level and shall generate maximum reactive current (where the voltage at the Offshore Grid Entry Point is outside the limits specified in CC.6.1.4) without exceeding the transient rating limits of the Offshore Power Park Module and any constituent Power Park Unit or reactive compensation equipment. For Plant and Apparatus installed on or after 1 December 2017, switched reactive compensation equipment (such as mechanically switched capacitors and reactors) shall be controlled such that it is not switched in or out of service during the fault but may act to assist in post fault voltage recovery; and,
- (iii) within 1 second of the restoration of the voltage at the LV Side of the Offshore Platform (to the minimum levels specified in CC.6.1.4) restore Active Power to at least 90% of the Offshore Power Park Module's immediate pre-disturbed value, unless there has been a reduction in the Intermittent Power Source in the time range in Figure 7b that restricts the Active Power output below this level. Once the Active Power output has been restored to the required level, Active Power oscillations shall be acceptable provided that:

- the total **Active Energy** delivered during the period of the oscillations is at least that which would have been delivered if the **Active Power** was constant
- the oscillations are adequately damped

CC.6.3.15.3 Other Requirements

- (i) In the case of a **Power Park Module** (comprising of wind-turbine generator units), the requirements in CC.6.3.15.1 and CC.6.3.15.2 do not apply when the **Power Park Module** is operating at less than 5% of its **Rated MW** or during very high wind speed conditions when more than 50% of the wind turbine generator units in a **Power Park Module** have been shut down or disconnected under an emergency shutdown sequence to protect **GB Code User's Plant** and **Apparatus**.
- (ii) In addition to meeting the conditions specified in CC.6.1.5(b) and CC.6.1.6, each Non-Synchronous Generating Unit, OTSDUW Plant and Apparatus or Power Park Module with a Completion Date after 1 April 2005 and any constituent Power Park Unit thereof will be required to withstand, without tripping, the negative phase sequence loading incurred by clearance of a close-up phase-to-phase fault, by System Back-Up Protection on the Onshore Transmission System operating at Supergrid Voltage.
- (iii) In the case of an Onshore Power Park Module in Scotland with a Completion Date before 1 January 2004 and a Registered Capacity less than 30MW the requirements in CC.6.3.15.1 (a) do not apply. In the case of an Onshore Power Park Module in Scotland with a Completion Date on or after 1 January 2004 and before 1 July 2005 and a Registered Capacity less than 30MW the requirements in CC.6.3.15.1 (a) are relaxed from the minimum Onshore Transmission System Supergrid Voltage of zero to a minimum Onshore Transmission System Supergrid Voltage of 15% of nominal. In the case of an Onshore Power Park Module in Scotland with a Completion Date before 1 January 2004 and a Registered Capacity of 30MW and above the requirements in CC.6.3.15.1 (a) are relaxed from the minimum Onshore Transmission System Supergrid Voltage of zero to a minimum Onshore Transmission System Supergrid Voltage of 15% of nominal.
- (iv) To avoid unwanted island operation, Non-Synchronous Generating Units in Scotland (and those directly connected to a Scottish Offshore Transmission System), Power Park Modules in Scotland (and those directly connected to a Scottish Offshore Transmission System), or OTSDUW Plant and Apparatus with an Interface Point in Scotland shall be tripped for the following conditions:
 - (1) **Frequency** above 52Hz for more than 2 seconds
 - (2) **Frequency** below 47Hz for more than 2 seconds
 - (3) Voltage as measured at the Onshore Connection Point or Onshore User System Entry Point or Offshore Grid Entry Point or Interface Point in the case of OTSDUW Plant and Apparatus is below 80% for more than 2.5 seconds
 - (4) Voltage as measured at the Onshore Connection Point or Onshore User System Entry Point or Offshore Grid Entry Point or Interface Point in the case of OTSDUW Plant and Apparatus is above 120% (115% for 275kV) for more than 1 second.

The times in sections (1) and (2) are maximum trip times. Shorter times may be used to protect the Non-Synchronous Generating Units, or OTSDUW Plant and Apparatus or Power Park Modules.

Additional Damping Control Facilities for DC Converters

CC.6.3.16 (a) DC Converter owners, or GB Generators in respect of OTSDUW DC Converters or Network Operators in the case of an Embedded DC Converter Station not subject to a Bilateral Agreement must ensure that any of their Onshore DC Converters or OTSDUW DC Converters will not cause a sub-synchronous resonance problem on the Total System. Each DC Converter or OTSDUW DC Converter is required to be

provided with sub-synchronous resonance damping control facilities.

(b) Where specified in the **Bilateral Agreement**, each **DC Converter** or **OTSDUW DC Converter** is required to be provided with power oscillation damping or any other identified additional control facilities.

System to Generator Operational Intertripping Scheme

- CC.6.3.17 The Company may require that a System to Generator Operational Intertripping Scheme be installed as part of a condition of the connection of the GB Generator. Scheme specific details shall be included in the relevant Bilateral Agreement and shall, in respect of Bilateral Agreements entered into on or after 16th March 2009 include the following information:
 - (1) the relevant category(ies) of the scheme (referred to as Category 1 Intertripping Scheme, Category 2 Intertripping Scheme, Category 3 Intertripping Scheme and Category 4 Intertripping Scheme);
 - (2) the **Generating Unit(s)** or **CCGT Module(s)** or **Power Park Module(s)** to be either permanently armed or that can be instructed to be armed in accordance with BC2.8;
 - (3) the time within which the **Generating Unit(s)** or **CCGT Module(s)** or **Power Park Module(s)** circuit breaker(s) are to be automatically tripped;
 - (4) the location to which the trip signal will be provided by **The Company**. Such location will be provided by **The Company** prior to the commissioning of the **Generating Unit(s)** or **CCGT Module(s)** or **Power Park Module(s)**.

Where applicable, the **Bilateral Agreement** shall include the conditions on the **National Electricity Transmission System** during which **The Company** may instruct the **System to Generator Operational Intertripping Scheme** to be armed and the conditions that would initiate a trip signal.

- CC.6.3.18 The time within which the Generating Unit(s) or CCGT Module or Power Park Module circuit breaker(s) need to be automatically tripped is determined by the specific conditions local to the GB Generator. This 'time to trip' (defined as time from provision of the trip signal by The Company to the specified location, to circuit breaker main contact opening) can typically range from 100ms to 10sec. A longer time to trip may allow the initiation of an automatic reduction in the Generating Unit(s) or CCGT Module(s) or Power Park Module(s) output prior to the automatic tripping of the Generating Unit(s) or CCGT Module(s) or Power Park Module(s) circuit breaker. Where applicable The Company may provide separate trip signals to allow for either a longer or shorter 'time to trip' to be initiated.
- CC.6.4 <u>General Network Operator And Non-Embedded Customer Requirements</u>
- CC.6.4.1 This part of the **Grid Code** describes the technical and design criteria and performance requirements for **Network Operators** and **Non-Embedded Customers**.

Neutral Earthing

At nominal **System** voltages of 132kV and above the higher voltage windings of three phase transformers and transformer banks connected to the **National Electricity Transmission System** must be star connected with the star point suitable for connection to earth. The earthing and lower voltage winding arrangement shall be such as to ensure that the **Earth Fault Factor** requirement of paragraph CC.6.2.1.1 (b) will be met on the **National Electricity Transmission System** at nominal **System** voltages of 132kV and above.

Frequency Sensitive Relays

As explained under OC6, each Network Operator, will make arrangements that will facilitate automatic low Frequency Disconnection of Demand (based on Annual ACS Conditions). CC.A.5.5. of Appendix 5 includes specifications of the local percentage Demand that shall be disconnected at specific frequencies. The manner in which Demand subject to low Frequency disconnection will be split into discrete MW blocks is specified in OC6.6. Technical requirements relating to Low Frequency Relays are also listed in Appendix 5.

Operational Metering

Where The Company can reasonably demonstrate that an Embedded Medium Power Station or Embedded DC Converter Station has a significant effect on the National Electricity Transmission System, it may require the Network Operator within whose System the Embedded Medium Power Station or Embedded DC Converter Station is situated to ensure that the operational metering equipment described in CC.6.5.6 is installed such that The Company can receive the data referred to in CC.6.5.6. In the case of an Embedded Medium Power Station subject to, or proposed to be subject to a Bilateral Agreement The Company shall notify such Network Operator of the details of such installation in writing within 3 months of being notified of the application to connect under CUSC and in the case of an Embedded Medium Power Station not subject to, or not proposed to be subject to a Bilateral Agreement in writing as a Site Specific Requirement in accordance with the timescales in CUSC 6.5.5. In either case the Network Operator shall ensure that the data referred to in CC.6.5.6 is provided to The Company.

CC.6.5 Communications Plant

CC.6.5.1 In order to ensure control of the National Electricity Transmission System, telecommunications between GB Code Users and The Company must (including in respect of any OTSDUW Plant and Apparatus at the OTSUA Transfer Time), if required by The Company, be established in accordance with the requirements set down below.

CC.6.5.2 Control Telephony and System Telephony

- CC.6.5.2.1 Control Telephony is the principle method by which a User's Responsible Engineer/Operator and The Company's Control Engineers speak to one another for the purposes of control of the Total System in both normal and emergency operating conditions. Control Telephony provides secure point to point telephony for routine Control Calls, priority Control Calls and emergency Control Calls.
- CC.6.5.2.2 System Telephony is an alternate method by which a User's Responsible Engineer/Operator and The Company's Control Engineers speak to one another for the purposes of control of the Total System in both normal operating conditions and where practicable, emergency operating conditions. System Telephony uses the Public Switched Telephony Network to provide telephony for Control Calls, inclusive of emergency Control Calls.
- CC.6.5.2.3 Calls made and received over **Control Telephony** and **System Telephony** may be recorded and subsequently replayed for commercial and operational reasons.

CC.6.5.3 Supervisory Tones

CC.6.5.3.1 **Control Telephony** supervisory tones indicate to the calling and receiving parties dial, engaged, ringing, secondary engaged (signifying that priority may be exercised) and priority disconnect tones.

- CC.6.5.3.2 **System Telephony** supervisory tones indicate to the calling and receiving parties dial, engaged and ringing tones.
- CC.6.5.4 Obligations in respect of Control Telephony and System Telephony
- CC.6.5.4.1 Where **The Company** requires **Control Telephony**, **Users** are required to use the **Control Telephony** with **The Company** in respect of all **Connection Points** with the **National Electricity Transmission System** and in respect of all **Embedded Large Power Stations** and **Embedded DC Converter Stations**. **The Company** will have **Control Telephony** installed at the **GB Code User's Control Point** where the **GB Code User's** telephony equipment is not capable of providing the required facilities or is otherwise incompatible with the **Transmission Control Telephony**. Details of and relating to the **Control Telephony** required are contained in the **Bilateral Agreement**.
- CC.6.5.4.2 Where in **The Company's** sole opinion the installation of **Control Telephony** is not practicable at a **GB Code User's Control Point(s)**, **The Company** shall specify in the **Bilateral Agreement** whether **System Telephony** is required. Where **System Telephony** is required by **The Company**, the **GB Code User** shall ensure that **System Telephony** is installed.
- CC.6.5.4.3 Where **System Telephony** is installed, **GB Code Users** are required to use the **System Telephony** with **The Company** in respect of those **Control Point(s)** for which it has been installed. Details of and relating to the **System Telephony** required are contained in the **Bilateral Agreement**.
- CC.6.5.4.4 Where **Control Telephony** or **System Telephony** is installed, routine testing of such facilities may be required by **The Company** (not normally more than once in any calendar month). The **GB Code User** and **The Company** shall use reasonable endeavours to agree a test programme and where **The Company** requests the assistance of the **GB Code User** in performing the agreed test programme the **User** shall provide such assistance. **The Company** requires the **GB Code User** to test the backup power supplies feeding its **Control Telephony** facilities at least once every 5 years.
- CC.6.5.4.5 **Control Telephony** and **System Telephony** shall only be used for the purposes of operational voice communication between **The Company** and the relevant **User**.
- CC.6.5.4.6 **Control Telephony** contains emergency calling functionality to be used for urgent operational communication only. Such functionality enables **The Company** and **Users** to utilise a priority call in the event of an emergency. **The Company** and **GB Code Users** shall only use such priority call functionality for urgent operational communications.
- CC.6.5.5 Technical Requirements for Control Telephony and System Telephony
- CC.6.5.5.1 Detailed information on the technical interfaces and support requirements for **Control Telephony** is provided in the **Control Telephony Electrical Standard** identified in the Annex to the **General Conditions**. Where additional information, or information in relation to **Control Telephony** applicable in Scotland, is requested by **GB Code Users**, this will be provided, where possible, by **The Company**.
- CC.6.5.5.2 System Telephony shall consist of a dedicated Public Switched Telephone Network telephone line that shall be installed and configured by the relevant GB Code User. The Company shall provide a dedicated free phone number (UK only), for the purposes of receiving incoming calls to The Company, which GB Code Users shall utilise for System Telephony. System Telephony shall only be utilised by The Company Control Engineer and the GB Code User's Responsible Engineer/Operator for the purposes of operational communications.

Operational Metering

- CC.6.5.6
- (a) The Company or The Relevant Transmission Licensee, as applicable, shall provide system control and data acquisition (SCADA) outstation interface equipment. The GB Code User shall provide such voltage, current, Frequency, Active Power and Reactive Power measurement outputs and plant status indications and alarms to the Transmission SCADA outstation interface equipment as required by The Company in accordance with the terms of the Bilateral Agreement. In the case of OTSDUW, the GB Code User shall provide such SCADA outstation interface equipment and voltage, current, Frequency, Active Power and Reactive Power measurement outputs and plant status indications and alarms to the SCADA outstation interface equipment as required by The Company in accordance with the terms of the Bilateral Agreement.
- (b) For the avoidance of doubt, for **Active Power** and **Reactive Power** measurements, circuit breaker and disconnector status indications from:
 - (i) CCGT Modules at Large Power Stations, the outputs and status indications must each be provided to The Company on an individual CCGT Unit basis. In addition, where identified in the Bilateral Agreement, Active Power and Reactive Power measurements from Unit Transformers and/or Station Transformers must be provided.
 - (ii) DC Converters at DC Converter Stations and OTSDUW DC Converters, the outputs and status indications must each be provided to The Company on an individual DC Converter basis. In addition, where identified in the Bilateral Agreement, Active Power and Reactive Power measurements from converter and/or station transformers must be provided.
 - (iii) Power Park Modules at Embedded Large Power Stations and at directly connected Power Stations, the outputs and status indications must each be provided to The Company on an individual Power Park Module basis. In addition, where identified in the Bilateral Agreement, Active Power and Reactive Power measurements from station transformers must be provided.
 - (iv) In respect of OTSDUW Plant and Apparatus, the outputs and status indications must be provided to The Company for each piece of electrical equipment. In addition, where identified in the Bilateral Agreement, Active Power and Reactive Power measurements at the Interface Point must be provided.
- (c) For the avoidance of doubt, the requirements of CC.6.5.6(a) in the case of a Cascade Hydro Scheme will be provided for each Generating Unit forming part of that Cascade Hydro Scheme. In the case of Embedded Generating Units forming part of a Cascade Hydro Scheme the data may be provided by means other than the SCADA outstation located at the Power Station, such as, with the agreement of the Network Operator in whose system such Embedded Generating Unit is located, from the Network Operator's SCADA system to The Company. Details of such arrangements will be contained in the relevant Bilateral Agreements between The Company and the GB Generator and the Network Operator.
- (d) In the case of a Power Park Module, additional energy input signals (e.g. wind speed, and wind direction) may be specified in the Bilateral Agreement. For Power Park Modules with a Completion Date on or after 1st April 2016 a Power Available signal will also be specified in the Bilateral Agreement. The signals would be used to establish the potential level of energy input from the Intermittent Power Source for monitoring pursuant to CC.6.6.1 and Ancillary Services and will, in the case of a wind farm, be used to provide The Company with advanced warning of excess wind speed shutdown and to determine the level of Headroom available from Power Park Modules for the purposes of calculating response and reserve. For the avoidance of doubt, the Power Available signal would be automatically provided to The Company and represent the sum of the potential output of all available and operational Power Park Units within the Power Park Module. The refresh rate of the Power Available signal shall be specified in the Bilateral Agreement.

CC.6.5.7 The **User** shall accommodate **Instructor Facilities** provided by **The Company** for the receipt of operational messages relating to **System** conditions.

Electronic Data Communication Facilities

- CC.6.5.8 (a) All **BM Participants** must ensure that appropriate electronic data communication facilities are in place to permit the submission of data, as required by the **Grid Code**, to **The Company**.
 - (b) In addition,
 - (1) any **GB Code User** that wishes to participate in the **Balancing Mechanism**; or
 - (2) any BM Participant in respect of its BM Units at a Power Station where the Construction Agreement and/or a Bilateral Agreement has a Completion Date on or after 1 January 2013 and the BM Participant is required to provide all Part 1 System Ancillary Services in accordance with CC.8.1 (unless The Company has otherwise agreed)

must ensure that appropriate automatic logging devices are installed at the **Control Points** of its **BM Units** to submit data to and to receive instructions from **The Company**, as required by the **Grid Code**. For the avoidance of doubt, in the case of an **Interconnector User** the **Control Point** will be at the **Control Centre** of the appropriate **Externally Interconnected System Operator**.

(c) Detailed specifications of these required electronic facilities will be provided by The Company on request and they are listed as Electrical Standards in the Annex to the General Conditions.

Facsimile Machines

- CC.6.5.9 Each **GB Code User** and **The Company** shall provide a facsimile machine or machines:
 - (a) in the case of **GB Generators**, at the **Control Point** of each **Power Station** and at its **Trading Point**;
 - (b) in the case of The Company and Network Operators, at the Control Centre(s); and
 - (c) in the case of **Non-Embedded Customers** and **DC Converter Station** owners at the **Control Point**.

Each GB Code User shall notify, prior to connection to the System of the GB Code User's Plant and Apparatus, The Company of its or their telephone number or numbers, and will notify The Company of any changes. Prior to connection to the System of the GB Code User's Plant and Apparatus The Company shall notify each GB Code User of the telephone number or numbers of its facsimile machine or machines and will notify any changes.

CC.6.5.10 <u>Busbar Voltage</u>

The Relevant Transmission Licensee shall, subject as provided below, provide each GB Generator or DC Converter Station owner at each Grid Entry Point where one of its Power Stations or DC Converter Stations is connected with appropriate voltage signals to enable the GB Generator or DC Converter Station owner to obtain the necessary information to permit its Gensets or DC Converters to be Synchronised to the National Electricity Transmission System. The term "voltage signal" shall mean in this context, a point of connection on (or wire or wires from) a relevant part of Transmission Plant and/or Apparatus at the Grid Entry Point, to which the GB Generator or DC Converter Station owner, with The Company's agreement (not to be unreasonably withheld) in relation to the Plant and/or Apparatus to be attached, will be able to attach its Plant and/or Apparatus (normally a wire or wires) in order to obtain measurement outputs in relation to the busbar.

CC.6.5.11 <u>Bilingual Message Facilities</u>

- (a) A Bilingual Message Facility is the method by which the User's Responsible Engineer/Operator, the Externally Interconnected System Operator and The Company's Control Engineers communicate clear and unambiguous information in two languages for the purposes of control of the Total System in both normal and emergency operating conditions.
- (b) A Bilingual Message Facility, where required, will provide up to two hundred pre-defined messages with up to five hundred and sixty characters each. A maximum of one minute is allowed for the transmission to, and display of, the selected message at any destination. The standard messages must be capable of being displayed at any combination of locations and can originate from any of these locations. Messages displayed in the UK will be displayed in the English language.
- (c) Detailed information on a Bilingual Message Facility and suitable equipment required for individual **GB Code User** applications will be provided by **The Company** upon request.

CC.6.6 System Monitoring

- Monitoring equipment is provided on the National Electricity Transmission System to enable The Company to monitor its power system dynamic performance conditions. Where this monitoring equipment requires voltage and current signals on the Generating Unit (other than Power Park Unit), DC Converter or Power Park Module circuit from the GB Code User or from OTSDUW Plant and Apparatus, The Company will inform the GB Code User and they will be provided by the GB Code User with both the timing of the installation of the equipment for receiving such signals and its exact position being agreed (the GB Code User's agreement not to be unreasonably withheld) and the costs being dealt with, pursuant to the terms of the Bilateral Agreement.
- CC.6.6.2 For all on site monitoring by **The Company** of witnessed tests pursuant to the **CP** or **OC5** the **GB Code User** shall provide suitable test signals as outlined in OC5.A.1.
- CC.6.6.2.1 The signals which shall be provided by the **GB Code User** to **The Company** for onsite monitoring shall be of the following resolution, unless otherwise agreed by **The Company**:
 - (i) 1 Hz for reactive range tests
 - (ii) 10 Hz for frequency control tests
 - (iii) 100 Hz for voltage control tests
- CC.6.6.2.2 The **GB Code User** will provide all relevant signals for this purpose in the form of d.c. voltages within the range -10V to +10V. In exceptional circumstances some signals may be accepted as d.c. voltages within the range -60V to +60V with prior agreement between the **GB Code User** and **The Company**. All signals shall:
 - (i) in the case of an Onshore Power Park Module, DC Convertor Station or Synchronous Generating Unit, be suitably terminated in a single accessible location at the GB Generator or DC Converter Station owner's site.
 - (ii) in the case of an Offshore Power Park Module and OTSDUW Plant and Apparatus, be transmitted onshore without attenuation, delay or filtering which would result in the inability to fully demonstrate the objectives of the test, or identify any potential safety or plant instability issues, and be suitably terminated in a single robust location normally located at or near the onshore Interface Point of the Offshore Transmission System to which it is connected.
- CC.6.6.2.3 All signals shall be suitably scaled across the range. The following scaling would (unless **The Company** notify the **GB Code User** otherwise) be acceptable to **The Company**:
 - (a) 0MW to Registered Capacity or Interface Point Capacity 0-8V dc
 - (b) Maximum leading Reactive Power to maximum lagging Reactive Power -8 to 8V dc
 - (c) 48 52Hz as -8 to 8V dc
 - (d) Nominal terminal or connection point voltage -10% to +10% as -8 to 8V dc

- CC.6.6.2.4 The **GB Code User** shall provide to **The Company** a 230V power supply adjacent to the signal terminal location.
- CC.7 SITE RELATED CONDITIONS
- CC.7.1 Not used.
- CC.7.2 Responsibilities For Safety
- CC.7.2.1 Any User entering and working on its Plant and/or Apparatus (including, until the OTSUA Transfer Time, any OTSUA) on a Transmission Site will work to the Safety Rules of the Relevant Transmission Licensee, as advised by The Company.
- CC.7.2.2 For **User Sites**, **The Company** shall procure that the **Relevant Transmission Licensee** entering and working on **Transmission Plant** and/or **Apparatus** on a **User Site** will work to the **User's Safety Rules**.
- A User may, with a minimum of six weeks notice, apply to The Company for permission to work according to that Users own Safety Rules when working on its Plant and/or Apparatus on a Transmission Site rather than those set out in CC.7.2.1. If The Company is of the opinion that the User's Safety Rules provide for a level of safety commensurate with those set out in CC.7.2.1, The Company will notify the User, in writing, that, with effect from the date requested by the User, the User may use its own Safety Rules when working on its Plant and/or Apparatus on the Transmission Site. In forming its opinion, The Company will seek the opinion of the Relevant Transmission Licensee. Until receipt of such written approval from The Company, the GB Code User will continue to use the Safety Rules as set out in CC.7.2.1.
- In the case of a User Site, The Company may, with a minimum of six weeks notice, apply to a User for permission for the Relevant Transmission Licensee to work according to the Relevant Transmission Licensee's Safety Rules when working on Transmission Plant and/or Apparatus on that User Site, rather than the User's Safety Rules. If the User is of the opinion that the Relevant Transmission Licensee's Safety Rules, provide for a level of safety commensurate with that of that User's Safety Rules, it will notify The Company, in writing, that, with effect from the date requested by The Company, that the Relevant Transmission Licensee may use its own Safety Rules when working on its Transmission Plant and/or Apparatus on that User's Site. Until receipt of such written approval from the User, The Company shall procure that the Relevant Transmission Licensee shall continue to use the User's Safety Rules.
- CC.7.2.5 For a Transmission Site, if The Company gives its approval for the User's Safety Rules to apply to the User when working on its Plant and/or Apparatus, that does not imply that the User's Safety Rules will apply to entering the Transmission Site and access to the User's Plant and/or Apparatus on that Transmission Site. Bearing in mind the Relevant Transmission Licensee's responsibility for the whole Transmission Site, entry and access will always be in accordance with the Relevant Transmission Licensee's site access procedures. For a User Site, if the User gives its approval for Relevant Transmission Licensee when working on its Plant and Apparatus, that does not imply that the Relevant Transmission Licensee's Safety Rules will apply to entering the User Site, and access to the Transmission Plant and Apparatus on that User Site. Bearing in mind the User's responsibility for the whole User Site, entry and access will always be in accordance with the User's site access procedures.
- CC.7.2.6 For User Sites, Users shall notify The Company of any Safety Rules that apply to the Relevant Transmission Licensee's staff working on User Sites. The Company shall procure that the Relevant Transmission Licensee shall notify Users of any Safety Rules that apply to the User's staff working on the Transmission Site.
- CC.7.2.7 Each **Site Responsibility Schedule** must have recorded on it the **Safety Rules** which apply to each item of **Plant** and/or **Apparatus**.

- CC.7.2.8 In the case of **OTSUA** a **User Site** or **Transmission Site** shall, for the purposes of this CC.7.2, include a site at which there is an **Interface Point** until the **OTSUA Transfer Time** when it becomes part of the **National Electricity Transmission System**.
- CC.7.3 <u>Site Responsibility Schedules</u>
- In order to inform site operational staff and The Company's Control Engineers of agreed responsibilities for Plant and/or Apparatus at the operational interface, a Site Responsibility Schedule shall be produced for Connection Sites (and in the case of OTSUA, until the OTSUA Transfer Time, Interface Sites) for The Company, the Relevant Transmission Licensee and Users with whom they interface.
- CC.7.3.2 The format, principles and basic procedure to be used in the preparation of **Site Responsibility Schedules** are set down in Appendix 1.
- CC.7.4 Operation And Gas Zone Diagrams

Operation Diagrams

- An **Operation Diagram** shall be prepared for each **Connection Site** at which a **Connection Point** exists (and in the case of **OTSDUW Plant and Apparatus**, by **User's** for each **Interface Point**) using, where appropriate, the graphical symbols shown in Part 1A of Appendix 2. **Users** should also note that the provisions of **OC11** apply in certain circumstances.
- The Operation Diagram shall include all HV Apparatus and the connections to all external circuits and incorporate numbering, nomenclature and labelling, as set out in OC11. At those Connection Sites (or in the case of OTSDUW Plant and Apparatus, Interface Points) where gas-insulated metal enclosed switchgear and/or other gas-insulated HV Apparatus is installed, those items must be depicted within an area delineated by a chain dotted line which intersects gas-zone boundaries. The nomenclature used shall conform with that used on the relevant Connection Site and circuit (and in the case of OTSDUW Plant and Apparatus, Interface Point and circuit). The Operation Diagram (and the list of technical details) is intended to provide an accurate record of the layout and circuit interconnections, ratings and numbering and nomenclature of HV Apparatus and related Plant.
- CC.7.4.3 A non-exhaustive guide to the types of **HV Apparatus** to be shown in the **Operation Diagram** is shown in Part 2 of Appendix 2, together with certain basic principles to be followed unless equivalent principles are approved by **The Company**.

Gas Zone Diagrams

- CC.7.4.4 A Gas Zone Diagram shall be prepared for each Connection Site at which a Connection Point (and in the case of OTSDUW Plant and Apparatus, by User's for an Interface Point) exists where gas-insulated switchgear and/or other gas-insulated HV Apparatus is utilised. They shall use, where appropriate, the graphical symbols shown in Part 1B of Appendix 2.
- CC.7.4.5 The nomenclature used shall conform with that used in the relevant **Connection Site** and circuit (and in the case of **OTSDUW Plant and Apparatus**, relevant **Interface Point** and circuit).
- CC.7.4.6 The basic principles set out in Part 2 of Appendix 2 shall be followed in the preparation of **Gas Zone Diagrams** unless equivalent principles are approved by **The Company**.

<u>Preparation of Operation and Gas Zone Diagrams for Users' Sites and Transmission</u> Interface Sites

- In the case of a User Site, the User shall prepare and submit to The Company, an Operation Diagram for all HV Apparatus on the User side of the Connection Point (and in the case of OTSDUW Plant and Apparatus, on what will be the Offshore Transmission side of the Connection Point and the Interface Point) and The Company shall provide the User with an Operation Diagram for all HV Apparatus on the Transmission side of the Connection Point (and in the case of OTSDUW Plant and Apparatus on what will be the Onshore Transmission side of the Interface Point, in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement prior to the Completion Date under the Bilateral Agreement and/or Construction Agreement.
- CC.7.4.8 The User will then prepare, produce and distribute, using the information submitted on the User's Operation Diagram and The Company Operation Diagram, a composite Operation Diagram for the complete Connection Site (and in the case of OTSDUW Plant and Apparatus, Interface Point), also in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement.
- CC.7.4.9 The provisions of CC.7.4.7 and CC.7.4.8 shall apply in relation to **Gas Zone Diagrams** where gas-insulated switchgear and/or other gas-insulated **HV Apparatus** is utilised.

Preparation of Operation and Gas Zone Diagrams for Transmission Sites

- In the case of an **Transmission Site**, the **User** shall prepare and submit to **The Company** an **Operation Diagram** for all **HV Apparatus** on the **User** side of the **Connection Point**, in accordance with the timing requirements of the **Bilateral Agreement** and/or **Construction Agreement**.
- CC.7.4.11 The Company will then prepare, produce and distribute, using the information submitted on the User's Operation Diagram, a composite Operation Diagram for the complete Connection Site, also in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement.
- CC.7.4.12 The provisions of CC.7.4.10 and CC.7.4.11 shall apply in relation to **Gas Zone Diagrams** where gas-insulated switchgear and/or other gas-insulated **HV Apparatus** is utilised.
- CC.7.4.13 Changes to Operation and Gas Zone Diagrams
- CC.7.4.13.1 When the Relevant Transmission Licensee has decided that it wishes to install new HV Apparatus or it wishes to change the existing numbering or nomenclature of Transmission HV Apparatus at a Transmission Site, The Company, in coordination with the Relevant Transmission Licensee will (unless it gives rise to a Modification under the CUSC, in which case the provisions of the CUSC as to the timing apply) one month prior to the installation or change, send to each such User a revised Operation Diagram of that Transmission Site, incorporating the new Transmission HV Apparatus to be installed and its numbering and nomenclature or the changes, as the case may be. OC11 is also relevant to certain Apparatus.
- CC.7.4.13.2 When a User has decided that it wishes to install new HV Apparatus, or it wishes to change the existing numbering or nomenclature of its HV Apparatus at its User Site, the User will (unless it gives rise to a Modification under the CUSC, in which case the provisions of the CUSC as to the timing apply) one month prior to the installation or change, send to The Company a revised Operation Diagram of that User Site incorporating the new User HV Apparatus to be installed and its numbering and nomenclature or the changes as the case may be. OC11 is also relevant to certain Apparatus.
- CC.7.4.13.3 The provisions of CC.7.4.13.1 and CC.7.4.13.2 shall apply in relation to **Gas Zone Diagrams** where gas-insulated switchgear and/or other gas-insulated **HV Apparatus** is installed.

<u>Validity</u>

- CC.7.4.14 (a) The composite **Operation Diagram** prepared by **The Company** or the **User**, as the case may be, will be the definitive **Operation Diagram** for all operational and planning activities associated with the **Connection Site**. If a dispute arises as to the accuracy of the composite **Operation Diagram**, a meeting shall be held at the **Connection Site**, as soon as reasonably practicable, between **The Company** and the **User**, to endeavour to resolve the matters in dispute.
 - (b) The composite Operation Diagram prepared by The Company or the User, as the case may be, will be the definitive Operation Diagram for all operational and planning activities associated with the Interface Point until the OTSUA Transfer Time. If a dispute arises as to the accuracy of the composite Operation Diagram prior to the OTSUA Transfer Time, a meeting shall be held at the Interface Point, as soon as reasonably practicable, between The Company and the User, to endeavour to resolve the matters in dispute.
 - (c) An equivalent rule shall apply for **Gas Zone Diagrams** where they exist for a **Connection Site**.
- In the case of **OTSUA**, a **User Site** and **Transmission Site** shall, for the purposes of this CC.7.4, include a site at which there is an **Interface Point** until the **OTSUA Transfer Time** when it becomes part of the **National Electricity Transmission System** and references to **HV Apparatus** in this CC.7.4 shall include references to **HV OTSUA**.
- CC.7.5 <u>Site Common Drawings</u>
- CC.7.5.1 Site Common Drawings will be prepared for each Connection Site (and in the case of OTSDUW, each Interface Point) and will include Connection Site (and in the case of OTSDUW, Interface Point) layout drawings, electrical layout drawings, common Protection/control drawings and common services drawings.

Preparation of Site Common Drawings for a User Site and Transmission Interface Site

- In the case of a **User Site**, **The Company** shall prepare and submit to the **User**, **Site**Common Drawings for the Transmission side of the Connection Point (and in the case of OTSDUW Plant and Apparatus, on what will be the Onshore Transmission side of the Interface Point,) and the **User** shall prepare and submit to **The Company**, **Site Common**Drawings for the **User** side of the **Connection Point** (and in the case of **OTSDUW**, on what will be the **Offshore Transmission** side of the **Interface Point**) in accordance with the timing requirements of the **Bilateral Agreement** and/or **Construction Agreement**.
- CC.7.5.3 The User will then prepare, produce and distribute, using the information submitted on the Transmission Site Common Drawings, Site Common Drawings for the complete Connection Site (and in the case of OTSDUW, Interface Point) in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement.

Preparation of Site Common Drawings for a Transmission Site

- In the case of a **Transmission Site**, the **User** will prepare and submit to **The Company Site Common Drawings** for the **User** side of the **Connection Point** in accordance with the timing requirements of the **Bilateral Agreement** and/or **Construction Agreement**.
- CC.7.5.5 The Company will then prepare, produce and distribute, using the information submitted in the User's Site Common Drawings, Site Common Drawings for the complete Connection Site in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement.
- CC.7.5.6 When a **User** becomes aware that it is necessary to change any aspect of the **Site Common Drawings** at a **Connection Site** (and in the case of **OTSDUW**, **Interface Point**) it will:
 - (a) if it is a User Site, as soon as reasonably practicable, prepare, produce and distribute revised Site Common Drawings for the complete Connection Site (and in the case of OTSDUW, Interface Point); and

(b) if it is a Transmission Site, as soon as reasonably practicable, prepare and submit to The Company revised Site Common Drawings for the User side of the Connection Point (and in the case of OTSDUW, Interface Point) and The Company will then, as soon as reasonably practicable, prepare, produce and distribute, using the information submitted in the User's Site Common Drawings, revised Site Common Drawings for the complete Connection Site (and in the case of OTSDUW, Interface Point).

In either case, if in the **User's** reasonable opinion the change can be dealt with by it notifying **The Company** in writing of the change and for each party to amend its copy of the **Site Common Drawings** (or where there is only one set, for the party holding that set to amend it), then it shall so notify and each party shall so amend. If the change gives rise to a **Modification** under the **CUSC**, the provisions of the **CUSC** as to timing will apply.

- CC.7.5.7 When **The Company** becomes aware that it is necessary to change any aspect of the **Site Common Drawings** at a **Connection Site**(and in the case of **OTSDUW**, **Interface Point**) it

 will:
 - (a) if it is a Transmission Site, as soon as reasonably practicable, prepare, produce and distribute revised Site Common Drawings for the complete Connection Site (and in the case of OTSDUW, Interface Point); and
 - (b) if it is a User Site, as soon as reasonably practicable, prepare and submit to the User revised Site Common Drawings for the Transmission side of the Connection Point (in the case of OTSDUW, Interface Point) and the User will then, as soon as reasonably practicable, prepare, produce and distribute, using the information submitted in the Transmission Site Common Drawings, revised Site Common Drawings for the complete Connection Site (and in the case of OTSDUW, Interface Point).

In either case, if in **The Company's** reasonable opinion the change can be dealt with by it notifying the **User** in writing of the change and for each party to amend its copy of the **Site Common Drawings** (or where there is only one set, for the party holding that set to amend it), then it shall so notify and each party shall so amend. If the change gives rise to a **Modification** under the **CUSC**, the provisions of the **CUSC** as to timing will apply.

Validity

- CC.7.5.8 (a) The **Site Common Drawings** for the complete **Connection Site** prepared by the **User** or **The Company**, as the case may be, will be the definitive **Site Common Drawings** for all operational and planning activities associated with the **Connection Site**. If a dispute arises as to the accuracy of the **Site Common Drawings**, a meeting shall be held at the **Site**, as soon as reasonably practicable, between **The Company** and the **User**, to endeavour to resolve the matters in dispute.
 - (b) The Site Common Drawing prepared by The Company or the User, as the case may be, will be the definitive Site Common Drawing for all operational and planning activities associated with the Interface Point until the OTSUA Transfer Time. If a dispute arises as to the accuracy of the composite Operation Diagram prior to the OTSUA Transfer Time, a meeting shall be held at the Interface Point, as soon as reasonably practicable, between The Company and the User, to endeavour to resolve the matters in dispute.
- CC.7.5.9 In the case of **OTSUA**, a **User Site** and **Transmission Site** shall, for the purposes of this CC.7.5, include a site at which there is an **Interface Point** until the **OTSUA Transfer Time** when it becomes part of the **National Electricity Transmission System**.

CC.7.6 Access

CC.7.6.1 The provisions relating to access to **Transmission Sites** by **Users**, and to **Users' Sites** by **Relevant Transmission Licensees**, are set out in each **Interface Agreement** (or in the case of **Interfaces Sites** prior to the **OTSUA Transfer Time** agreements in similar form) with, the **Relevant Transmission Licensee** and each **User**.

- CC.7.6.2 In addition to those provisions, where a **Transmission Site** contains exposed **HV** conductors, unaccompanied access will only be granted to individuals holding an **Authority for Access** issued by the **Relevant Transmission Licensee**.
- CC.7.6.3 The procedure for applying for an **Authority for Access** is contained in the **Interface Agreement**.

CC.7.7 <u>Maintenance Standards</u>

- It is the **User's** responsibility to ensure that all its **Plant** and **Apparatus** (including, until the **OTSUA Transfer Time**, any **OTSUA**) on a **Transmission Site** is tested and maintained adequately for the purpose for which it is intended, and to ensure that it does not pose a threat to the safety of any **Transmission Plant**, **Apparatus** or personnel on the **Transmission Site**. **The Company** will have the right to inspect the test results and maintenance records relating to such **Plant** and **Apparatus** at any time
- CC.7.7.2 For **User Sites**, **The Company** shall procure that the **Relevant Transmission Licensee** has a responsibility to ensure that all **Transmission Plant** and **Apparatus** on a **User Site** is tested and maintained adequately for the purposes for which it is intended and to ensure that it does not pose a threat to the safety of any **User's Plant**, **Apparatus** or personnel on the **User Site**.

The **User** will have the right to inspect the test results and maintenance records relating to such **Plant** and **Apparatus** on its **User Site** at any time.

CC.7.8 Site Operational Procedures

- CC.7.8.1 Where there is an interface with **National Electricity Transmission System, The Company** and **Users**, must make available staff to take necessary **Safety Precautions** and carry out operational duties as may be required to enable work/testing to be carried out and for the operation of **Plant** and **Apparatus** (including, prior to the **OTSUA Transfer Time**, any **OTSUA**) connected to the **Total System**.
- GB Generators and DC Converter Station owners shall provide a Control Point in respect of each Power Station directly connected to the National Electricity Transmission System and Embedded Large Power Station or DC Converter Station to receive an act upon instructions pursuant to OC7 and BC2 at all times that Generating Units or Power Park Modules at the Power Station are generating or available to generate or DC Converters at the DC Converter Station are importing or exporting or available to do so. The Control Point shall be continuously manned except where the Bilateral Agreement in respect of such Embedded Power Station specifies that compliance with BC2 is not required, where the Control Point shall be manned between the hours of 0800 and 1800 each day.

CC.8 ANCILLARY SERVICES

CC.8.1 <u>System Ancillary Services</u>

The CC contain requirements for the capability for certain Ancillary Services, which are needed for System reasons ("System Ancillary Services"). There follows a list of these System Ancillary Services, together with the paragraph number of the CC (or other part of the Grid Code) in which the minimum capability is required or referred to. The list is divided into two categories: Part 1 lists the System Ancillary Services which

- (a) GB Generators in respect of Large Power Stations are obliged to provide (except GB Generators in respect of Large Power Stations which have a Registered Capacity of less than 50MW and comprise Power Park Modules); and,
- (b) GB Generators in respect of Large Power Stations with a Registered Capacity of less than 50MW and comprise Power Park Modules are obliged to provide in respect of Reactive Power only; and,
- (c) **DC Converter Station** owners are obliged to have the capability to supply; and

(d) **GB Generators** in respect of **Medium Power Stations** (except **Embedded Medium Power Stations**) are obliged to provide in respect of **Reactive Power** only:

and Part 2 lists the **System Ancillary Services** which **GB Generators** will provide only if agreement to provide them is reached with **The Company**:

Part 1

- (a) Reactive Power supplied (in accordance with CC.6.3.2) otherwise than by means of synchronous or static compensators (except in the case of a Power Park Module where synchronous or static compensators within the Power Park Module may be used to provide Reactive Power)
- (b) **Frequency** Control by means of **Frequency** sensitive generation CC.6.3.7 and BC3.5.1

Part 2

- (c) Frequency Control by means of Fast Start CC.6.3.14
- (d) Black Start Capability CC.6.3.5
- (e) System to Generator Operational Intertripping

CC.8.2 Commercial Ancillary Services

Other Ancillary Services are also utilised by The Company in operating the Total System if these have been agreed to be provided by a GB Code User (or other person) under an Ancillary Services Agreement or under a Bilateral Agreement, with payment being dealt with under an Ancillary Services Agreement or in the case of Externally Interconnected System Operators or Interconnector Users, under any other agreement (and in the case of Externally Interconnected System Operators and Interconnector Users includes ancillary services equivalent to or similar to System Ancillary Services) ("Commercial Ancillary Services"). The capability for these Commercial Ancillary Services is set out in the relevant Ancillary Services Agreement or Bilateral Agreement (as the case may be).

APPENDIX 1 - SITE RESPONSIBILITY SCHEDULES

FORMAT, PRINCIPLES AND BASIC PROCEDURE TO BE USED IN THE PREPARATION OF SITE RESPONSIBILITY SCHEDULES

CC.A.1.1 Principles

Types of Schedules

- CC.A.1.1.1 At all Complexes (which in the context of this CC shall include, Interface Sites until the OTSUA Transfer Time) the following Site Responsibility Schedules shall be drawn up using the relevant proforma attached or with such variations as may be agreed between The Company and Users, but in the absence of agreement the relevant proforma attached will be used. In addition, in the case of OTSDUW Plant and Apparatus, and in readiness for the OTSUA Transfer Time, the User shall provide The Company with the necessary information such that Site Responsibility Schedules in this form can be prepared by the Relevant Transmission Licensees for the Transmission Interface Site:
 - (a) Schedule of HV Apparatus
 - (b) Schedule of Plant, LV/MV Apparatus, services and supplies;
 - (c) Schedule of telecommunications and measurements **Apparatus**.

Other than at Generating Unit, DC Converter, Power Park Module and Power Station locations, the schedules referred to in (b) and (c) may be combined.

New Connection Sites

CC.A.1.1.2 In the case of a new Connection Site each Site Responsibility Schedule for a Connection Site shall be prepared by The Company in consultation with relevant GB Code Users at least 2 weeks prior to the Completion Date (or, where the OTSUA is to become Operational prior to the OTSUA Transfer Time, an alternative date) under the Bilateral Agreement and/or Construction Agreement for that Connection Site (which may form part of a Complex). In the case of a new Interface Site where the OTSUA is to become Operational prior to the OTSUA Transfer Time each Site Responsibility Schedule for an Interface Site shall be prepared by The Company in consultation with relevant GB Code Users at least 2 weeks prior to the Completion Date under the Bilateral Agreement and/or Construction Agreement for that Interface Site (which may form part of a Complex) (and references to and requirements placed on "Connection Site" in this CC shall also be read as "Interface Site" where the context requires and until the OTSUA Transfer Time). Each GB Code User shall, in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement, provide information to The Company to enable it to prepare the Site Responsibility Schedule.

Sub-division

CC.A.1.1.3 Each **Site Responsibility Schedule** will be subdivided to take account of any separate **Connection Sites** on that **Complex**.

Scope

- CC.A.1.1.4 Each **Site Responsibility Schedule** shall detail for each item of **Plant** and **Apparatus**:
 - (a) Plant/Apparatus ownership;
 - (b) Site Manager (Controller) (except in the case of **Plant/Apparatus** located in **SPT's Transmission Area**);
 - (c) Safety issues comprising applicable Safety Rules and Control Person or other responsible person (Safety Co-ordinator), or such other person who is responsible for safety;
 - (d) Operations issues comprising applicable **Operational Procedures** and control engineer;

(e) Responsibility to undertake statutory inspections, fault investigation and maintenance.

Each Connection Point shall be precisely shown.

Detail

- CC.A.1.1.5 (a) In the case of **Site Responsibility Schedules** referred to in CC.A.1.1.1(b) and (c), with the exception of **Protection Apparatus** and **Intertrip Apparatus** operation, it will be sufficient to indicate the responsible **User** or **Transmission Licensee**, as the case may be.
 - (b) In the case of the Site Responsibility Schedule referred to in CC.A.1.1.1(a) and for Protection Apparatus and Intertrip Apparatus, the responsible management unit must be shown in addition to the User or Transmission Licensee, as the case may be.
- CC.A.1.1.6 The **HV Apparatus Site Responsibility Schedule** for each **Connection Site** must include lines and cables emanating from or traversing¹ the **Connection Site**.

Issue Details

CC.A.1.1.7 Every page of each **Site Responsibility Schedule** shall bear the date of issue and the issue number.

Accuracy Confirmation

- CC.A.1.1.8 When a **Site Responsibility Schedule** is prepared it shall be sent by **The Company** to the **Users** involved for confirmation of its accuracy.
- CC.A.1.1.9 The **Site Responsibility Schedule** shall then be signed on behalf of **The Company** by its **Responsible Manager** (see CC.A.1.1.16) and on behalf of each **User** involved by its **Responsible Manager** (see CC.A.1.1.16), by way of written confirmation of its accuracy. The **Site Responsibility Schedule** will also be signed on behalf of the **Relevant Transmission Licensee** by its **Responsible Manager**.

Distribution and Availability

- CC.A.1.1.10 Once signed, two copies will be distributed by **The Company**, not less than two weeks prior to its implementation date, to each **User** which is a party on the **Site Responsibility Schedule**, accompanied by a note indicating the issue number and the date of implementation.
- CC.A.1.1.11 **The Company** and **Users** must make the **Site Responsibility Schedules** readily available to operational staff at the **Complex** and at the other relevant control points.

Alterations to Existing Site Responsibility Schedules

- CC.A 1.1.12 Without prejudice to the provisions of CC.A.1.1.15 which deals with urgent changes, when a User identified on a Site Responsibility Schedule becomes aware that an alteration is necessary, it must inform The Company immediately and in any event 8 weeks prior to any change taking effect (or as soon as possible after becoming aware of it, if less than 8 weeks remain when the User becomes aware of the change). This will cover the commissioning of new Plant and/or Apparatus at the Connection Site, whether requiring a revised Bilateral Agreement or not, de-commissioning of Plant and/or Apparatus, and other changes which affect the accuracy of the Site Responsibility Schedule.
- CC.A 1.1.13 Where **The Company** has been informed of a change by an **GB Code User**, or itself proposes a change, it will prepare a revised **Site Responsibility Schedule** by not less than six weeks prior to the change taking effect (subject to it having been informed or knowing of the change eight weeks prior to that time) and the procedure set out in CC.A.1.1.8 shall be followed with regard to the revised **Site Responsibility Schedule**.

Details of circuits traversing the Connection Site are only needed from the date which is the earlier of the date when the Site Responsibility Schedule is first updated and 15th October 2004. In Scotland or Offshore, from a date to be agreed between The Company and the Relevant Transmission Licensee.

CC.A 1.1.14 The revised **Site Responsibility Schedule** shall then be signed in accordance with the procedure set out in CC.A.1.1.9 and distributed in accordance with the procedure set out in CC.A.1.1.10, accompanied by a note indicating where the alteration(s) has/have been made, the new issue number and the date of implementation.

Urgent Changes

- CC.A.1.1.15 When an **GB Code User** identified on a **Site Responsibility Schedule**, or **The Company**, as the case may be, becomes aware that an alteration to the **Site Responsibility Schedule** is necessary urgently to reflect, for example, an emergency situation which has arisen outside its control, the **GB Code User** shall notify **The Company**, or **The Company** shall notify the **GB Code User**, as the case may be, immediately and will discuss:
 - (a) what change is necessary to the Site Responsibility Schedule;
 - (b) whether the **Site Responsibility Schedule** is to be modified temporarily or permanently;
 - (c) the distribution of the revised **Site Responsibility Schedule**.

The Company will prepare a revised Site Responsibility Schedule as soon as possible, and in any event within seven days of it being informed of or knowing the necessary alteration. The Site Responsibility Schedule will be confirmed by GB Code Users and signed on behalf of The Company and GB Code Users and the Relevant Transmission Licensee (by the persons referred to in CC.A.1.1.9) as soon as possible after it has been prepared and sent to GB Code Users for confirmation.

Responsible Managers

CC.A.1.1.16 Each GB Code User shall, prior to the Completion Date under each Bilateral Agreement and/or Construction Agreement, supply to The Company a list of Managers who have been duly authorised to sign Site Responsibility Schedules on behalf of the GB Code User and The Company shall, prior to the Completion Date under each Bilateral Agreement and/or Construction Agreement, supply to that GB Code User the name of the Relevant Transmission Licensee's Responsible Manager and each shall supply to the other any changes to such list six weeks before the change takes effect where the change is anticipated, and as soon as possible after the change, where the change was not anticipated.

De-commissioning of Connection Sites

CC.A.1.1.17 Where a **Connection Site** is to be de-commissioned, whichever of **The Company** or the **GB Code User** who is initiating the de-commissioning must contact the other to arrange for the **Site Responsibility Schedule** to be amended at the relevant time.

PROFORMA FOR SITE RESPONSIBILITY SCHEDULE

						AREA		
COMPLEX:						SCHEDULE:		
CONNECTION SITE:								
	PLANT/ APPARATUS	SITE MANAGER	SAFETY		OPERATIONS		PARTY RESPONSIBLE	
ITEM OF PLANT/ APPARATUS			SAFETY RULES	CONTROL OR OTHER RESPONSIBLE PERSON (SAFETY CO- ORDINATOR	OPERATIONAL PROCEDURES	CONTROL OR OTHER RESPONSIBLE ENGINEER	FOR UNDERTAKING STATUTORY INSPECTIONS, FAULT INVESTIGATION & MAINTENANCE	REMARKS

PAGE:

_____ ISSUE NO: _____ DATE: ____

PROFORMA FOR SITE RESPONSIBILITY SCHEDULE

		_				AREA		
COMPLEX	:					SCHEDUI	LE:	
CONNECTI	ON SITE:							
			SAFETY		OPERATIONS		PARTY	
ITEM OF PLANT/ APPARATUS	PLANT APPARATUS OWNER	SITE MANAGER	SAFETY RULES	CONTROL OR OTHER RESPONSIBLE PERSON (SAFETY CO- ORDINATOR	OPERATIONAL PROCEDURES	CONTROL OR OTHER RESPONSIBLE ENGINEER	RESPONSIBLE FOR UNDERTAKING STATUTORY INSPECTIONS, FAULT INVESTIGATION & MAINTENANCE	REMARKS
NOTES:								
SIGNED:		NAMI	E:		COMPANY:		DATE:	
SIGNED:		NAMI	E:		COMPANY:		DATE:	
SIGNED:		NAMI	E:		COMPANY:		DATE:	
SIGNED:		NAMI	E:		_ COMPANY:		DATE:	
PAGE:			ISSUE N	NO:		DATE:		

REMARKS Sheet No. Revision: Date: RELAY SECTION 'B' CUSTOMER OR OTHER PARTY DATE DATE DATE Trip and Primary Alarm Equip. TESTING PowerSystems/User Reclosure SP Iransmission Primary Protection Reclosu SP Distribution NAME SECTION 'E' ADDITIONAL INFORMATION FOR FOR FOR Protection Equip. MAINTENANCE Network Area: E arthing Isolating Closing SIGNED SIGNED Tripping OWNERSHIP, MAINTENANCE AND OPERATIONS OF EQUIPMENT SPECIAL CONDITIONS SAFETY RULES APPLICABLE LOCATION OF SUPPLY TERMINALS:-ACCESS REQUIRED: REMARKS REMARKS OWNER SECTION 'D' CONFIGURATION AND CONTROL TELEPHONE NUMBER TELEPHONE NUMBER **IDENTIFICATION** NOC. NATIONAL GRID COMPANY
SPD. SP DISTRIBUTION LID
SPS. POVER GRYSTEMS
SSPT. SP TRANSMISSION LID
ST. SCOTTISH POWER TELECOMMUNICATIONS
T. SP AUTHORISED PERSON - TRANSMISSION SYSTEM
U-USER SITE RESPONSIBILITY SCHEDULE SECTION 'A' BUILDING AND SITE D - SP AUTHORISED PERSON - DISTRIBUTION SYSTEM IN JOINT USER SITUATIONS CONTROL RESPONSIBILITY EQUIPMENT SECTION 'C' PLANT MAINTENANCE SECURITY LESSEE SAFETY TEM NOS. TEM NOS Nos

SP TRANSMISSION Ltd

Scottish Hydro-Electric Transmission Limited

Site Responsibility Schedule

		5					
	Notes						
Revision:	Operational Procedures						
Re	Safety Rules						
	Control Authority						
	Responsible Management Unit						
Number:	Responsible System User						
	Maintainer						
	Controller						
	Owner						
Substation Type	Equipment						

APPENDIX 2 - OPERATION DIAGRAMS

PART 1A - PROCEDURES RELATING TO OPERATION DIAGRAMS

FIXED CAPACITOR	+	SWITCH DISCONNECTOR	
EARTH	<u>_</u>		
EARTHING RESISTOR	, 	SWITCH DISCONNECTOR WITH INCORPORATED EARTH SWITCH	S
LIQUID EARTHING RESISTOR	 <u>+</u>	DISCONNECTOR (CENTRE ROTATING POST)	
ARC SUPPRESSION COIL			
FIXED MAINTENANCE EARTHING DEVI	CE ±	DISCONNECTOR (SINGLE BREAK DOUBLE ROTATING)	
CARRIER COUPLING EQUIPMENT (WITHOUT VT)	R&Y	DISCONNECTOR (SINGLE BREAK)	
CARRIER COUPLING EQUIPMENT (WITH VT ON ONE PHASE)	R&Y E	DISCONNECTOR (NON-INTERLOCKED)	 NI
CARRIER COUPLING EQUIPMENT (WITH VT ON 3 PHASES)	R&Y	DISCONNECTOR (POWER OPERATED) NA - NON-AUTOMATIC A - AUTOMATIC SO - SEQUENTIAL OPERATION FI - FAULT INTERFERING OPERATION	I NA
AC GENERATOR	G	EARTH SWITCH	•
SYNCHRONOUS COMPENSATOR	SC		÷
CIRCUIT BREAKER		FAULT THROWING SWITCH (PHASE TO PHASE)	
CIRCUIT BREAKER WITH DELAYED AUTO RECLOSE	DAR	FAULT THROWING SWITCH (EARTH FAULT)	
	l	SURGE ARRESTOR	-
WITHDRAWABLE METALCLAD SWITCHGEAR		THYRISTOR	*

TRANSFORMERS (VECTORS TO INDICATE WINDING CONFIGURATION) TWO WINDING		* BUSBARS * OTHER PRIMARY CONNECTIONS * CABLE & CABLE SEALING END	
THREE WINDING		* THROUGH WALL BUSHING * BYPASS FACILITY	
AUTO		* CROSSING OF CONDUCTORS (LOWER CONDUCTOR TO BE BROKEN)	
AUTO WITH DELTA TERTIARY EARTHING OR AUX. TRANSFORMER (-) INDICATE REMOTE SITE IF APPLICABLE	₩ 415v		
VOLTAGE TRANSFORMERS	' (-)		
SINGLE PHASE WOUND	y ——		
THREE PHASE WOUND		PREFERENTIAL ABBREVI	<u>ATIONS</u>
SINGLE PHASE CAPACITOR	y 🕽 🗕	AUVI IADV TRANCEADMER	, T
TWO SINGLE PHASE CAPACITOR	R&B 2 -	AUXILIARY TRANSFORMER EARTHING TRANSFORMER	Aux T ET
THREE PHASE CAPACITOR	$\bigcirc\!$	GAS TURBINE GENERATOR TRANSFORMER	Gas T Gen T
CURRENT TRANSFORMER (WHERE SEPARATE PRIMARY APPARATUS)	•	GRID TRANSFORMER SERIES REACTOR SHUNT REACTOR STATION TRANSFORMER SUPERGRID TRANSFORMER	Gr T Ser Reac Sh Reac Stn T SGT
COMBINED VT/CT UNIT FOR METERING		UNIT TRANSFORMER	UT
REACTOR	4	* NON-STANDARD SYMBOL	

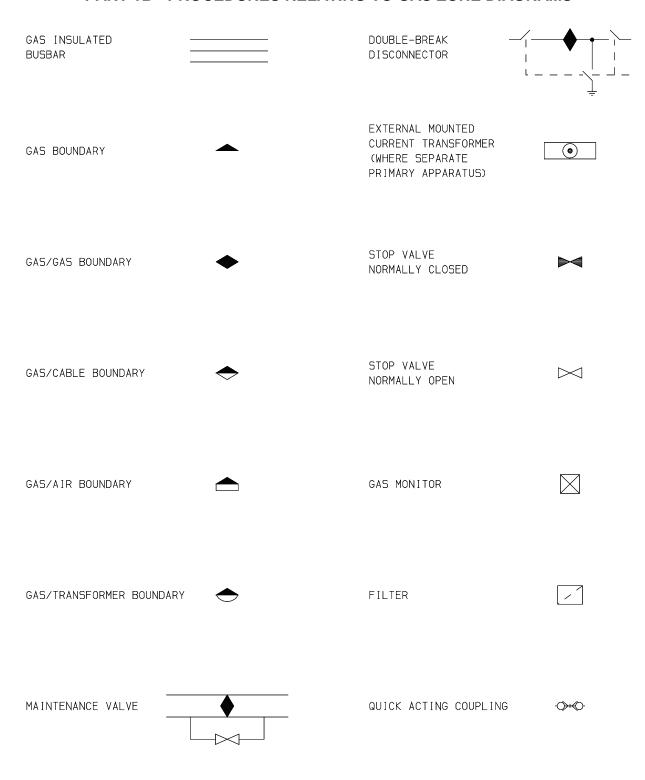
DISCONNECTOR (PANTOGRAPH TYPE)

QUADRATURE BOOSTER

DISCONNECTOR (KNEE TYPE)

SHORTING/DISCHARGE SWITCH

CAPACITOR
(INCLUDING HARMONIC FILTER)


SINGLE PHASE TRANSFORMER(BR) NEUTRAL AND PHASE CONNECTIONS

RESISTOR WITH INHERENT NON-LINEAR VARIABILITY, VOLTAGE DEPENDANT

PART 1B - PROCEDURES RELATING TO GAS ZONE DIAGRAMS

PART 2 - NON-EXHAUSTIVE LIST OF APPARATUS TO BE INCLUDED ON OPERATION DIAGRAMS

	Basic Principles					
(1)	Where practicable, all the HV Apparatus on any Connection Site shall be shown on one Operation Diagram . Provided the clarity of the diagram is not impaired, the layout shall represent as closely as possible the geographical arrangement on the Connection Site .					
(2)	Where more than one Operation Diagram is unavoidable, duplication of identical information on more than one Operation Diagram must be avoided.					
(3)	The Operation Diagram must show accurately the current status of the Apparatus e.g. whether commissioned or decommissioned. Where decommissioned, the associated switchbay will be labelled "spare bay".					
(4)	Provision will be made on the Operation Diagram for signifying approvals, together with provision for details of revisions and dates.					
(5)	Operation Diagrams will be prepared in A4 format or such other format as may be agreed with The Company .					
(6)	The Operation Diagram should normally be drawn single line. However, where appropriate, detail which applies to individual phases shall be shown. For example, some HV Apparatus is numbered individually per phase.					
	Apparatus To Be Shown On Operation Diagram					
(1)	Busbars					
(2)	Circuit Breakers					
(3)	Disconnector (Isolator) and Switch Disconnecters (Switching Isolators)					
(4)	Disconnectors (Isolators) - Automatic Facilities					
(5)	Bypass Facilities					
(6)	Earthing Switches					
(7)	Maintenance Earths					
(8)	Overhead Line Entries					
(9)	Overhead Line Traps					
(10)	Cable and Cable Sealing Ends					
(11)	Generating Unit					
(12)	Generator Transformers					
(13)	Generating Unit Transformers, Station Transformers, including the lower voltage circuit-breakers.					
(14)	Synchronous Compensators					
(15)	Static Variable Compensators					
(16)	Capacitors (including Harmonic Filters)					
(17)	Series or Shunt Reactors (Referred to as "Inductors" at nuclear power station sites)					
(18)	Supergrid and Grid Transformers					

(19)

(20)

(21)

Tertiary Windings

Three Phase VT's

Earthing and Auxiliary Transformers

(22)	Single Phase VT & Phase Identity
(23)	High Accuracy VT and Phase Identity
(24)	Surge Arrestors/Diverters
(25)	Neutral Earthing Arrangements on HV Plant
(26)	Fault Throwing Devices
(27)	Quadrature Boosters
(28)	Arc Suppression Coils
(29)	Single Phase Transformers (BR) Neutral and Phase Connections
(30)	Current Transformers (where separate plant items)
(31)	Wall Bushings
(32)	Combined VT/CT Units
(33)	Shorting and Discharge Switches
(34)	Thyristor
(35)	Resistor with Inherent Non-Linear Variability, Voltage Dependent
(36)	Gas Zone

APPENDIX 3 - MINIMUM FREQUENCY RESPONSE REQUIREMENT PROFILE AND OPERATING RANGE FOR NEW POWER STATIONS AND DC CONVERTER STATIONS

CC.A.3.1 Scope

The frequency response capability is defined in terms of **Primary Response**, **Secondary Response** and **High Frequency Response**. This appendix defines the minimum frequency response requirement profile for:

- each Onshore Generating Unit and/or CCGT Module which has a Completion Date after 1 January 2001 in England and Wales and 1 April 2005 in Scotland and Offshore Generating Unit in a Large Power Station,
- (b) each DC Converter at a DC Converter Station which has a Completion Date on or after 1 April 2005 or each Offshore DC Converter which is part of a Large Power Station.
- (c) each **Onshore Power Park Module** in England and Wales with a **Completion Date** on or after 1 January 2006.
- (d) each Onshore Power Park Module in operation in Scotland after 1 January 2006 with a Completion Date after 1 April 2005 and in Power Stations with a Registered Capacity of 50MW or more.
- (e) each Offshore Power Park Module in a Large Power Station with a Registered Capacity of 50MW or more.

For the avoidance of doubt, this appendix does not apply to:

- (i) **Generating Units** and/or **CCGT Modules** which have a **Completion Date** before 1 January 2001 in England and Wales and before 1 April 2005 in Scotland,
- (ii) DC Converters at a DC Converter Station which have a Completion Date before 1 April 2005.
- (iii) **Power Park Modules** in England and Wales with a **Completion Date** before 1 January 2006.
- (iv) **Power Park Modules** in operation in Scotland before 1 January 2006.
- (v) **Power Park Modules** in Scotland with a **Completion Date** before 1 April 2005.
- (vi) Power Park Modules in Power Stations with a Registered Capacity less than 50MW.
- (vii) Small Power Stations or individually to Power Park Units; or.
- (viii) an OTSDUW DC Converter where the Interface Point Capacity is less than 50MW.

OTSDUW Plant and Apparatus should facilitate the delivery of frequency response services provided by Offshore Generating Units and Offshore Power Park Modules at the Interface Point.

The functional definition provides appropriate performance criteria relating to the provision of Frequency control by means of Frequency sensitive generation in addition to the other requirements identified in CC.6.3.7.

In this Appendix 3 to the CC, for a CCGT Module or a Power Park Module with more than one Generating Unit, the phrase Minimum Generation applies to the entire CCGT Module or Power Park Module operating with all Generating Units Synchronised to the System.

The minimum **Frequency** response requirement profile is shown diagrammatically in Figure CC.A.3.1. The capability profile specifies the minimum required levels of **Primary Response**, **Secondary Response** and **High Frequency Response** throughout the normal plant operating range. The definitions of these **Frequency** response capabilities are illustrated diagrammatically in Figures CC.A.3.2 & CC.A.3.3.

CC.A.3.2 Plant Operating Range

The upper limit of the operating range is the **Registered Capacity** of the **Generating Unit** or **CCGT Module** or **DC Converter** or **Power Park Module**.

The Minimum Generation level may be less than, but must not be more than, 65% of the Registered Capacity. Each Generating Unit and/or CCGT Module and/or Power Park Module and/or DC Converter must be capable of operating satisfactorily down to the Designed Minimum Operating Level as dictated by System operating conditions, although it will not be instructed to below its Minimum Generation level. If a Generating Unit or CCGT Module or Power Park Module or DC Converter is operating below Minimum Generation because of high System Frequency, it should recover adequately to its Minimum Generation level as the System Frequency returns to Target Frequency so that it can provide Primary and Secondary Response from Minimum Generation if the System Frequency continues to fall. For the avoidance of doubt, under normal operating conditions steady state operation below Minimum Generation is not expected. The Designed Minimum Operating Level must not be more than 55% of Registered Capacity.

In the event of a **Generating Unit** or **CCGT Module** or **Power Park Module** or **DC Converter** load rejecting down to no less than its **Designed Minimum Operating Level** it should not trip as a result of automatic action as detailed in BC3.7. If the load rejection is to a level less than the **Designed Minimum Operating Level** then it is accepted that the condition might be so severe as to cause it to be disconnected from the **System**.

CC.A.3.3 Minimum Frequency Response Requirement Profile

Figure CC.A.3.1 shows the minimum Frequency response requirement profile diagrammatically for a 0.5 Hz change in Frequency. The percentage response capabilities and loading levels are defined on the basis of the Registered Capacity of the Generating Unit or CCGT Module or Power Park Module or DC Converter. Each Generating Unit and/or CCGT Module and/or Power Park Module and/or DC Converter must be capable of operating in a manner to provide Frequency response at least to the solid boundaries shown in the figure. If the Frequency response capability falls within the solid boundaries, the Generating Unit or CCGT Module or Power Park Module or DC Converter is providing response below the minimum requirement which is not acceptable. Nothing in this appendix is intended to prevent a Generating Unit or CCGT Module or Power Park Module or DC Converter from being designed to deliver a Frequency response in excess of the identified minimum requirement.

The **Frequency** response delivered for **Frequency** deviations of less than 0.5 Hz should be no less than a figure which is directly proportional to the minimum **Frequency** response requirement for a **Frequency** deviation of 0.5 Hz. For example, if the **Frequency** deviation is 0.2 Hz, the corresponding minimum **Frequency** response requirement is 40% of the level shown in Figure CC.A.3.1. The **Frequency** response delivered for **Frequency** deviations of more than 0.5 Hz should be no less than the response delivered for a **Frequency** deviation of 0.5 Hz.

Each Generating Unit and/or CCGT Module and/or Power Park Module and/or DC Converter must be capable of providing some response, in keeping with its specific operational characteristics, when operating between 95% to 100% of Registered Capacity as illustrated by the dotted lines in Figure CC.A.3.1.

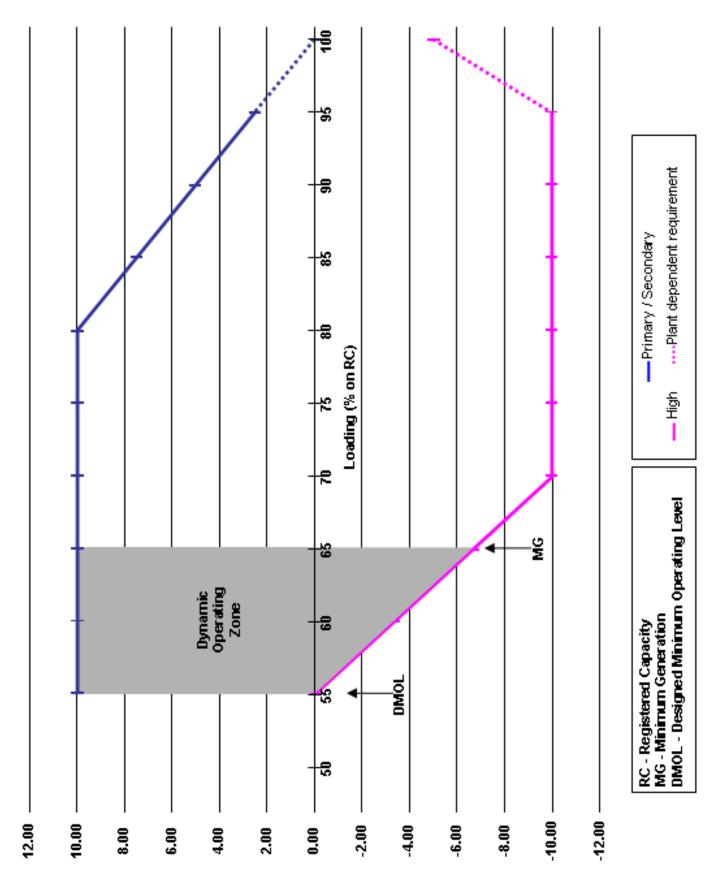
At the Minimum Generation level, each Generating Unit and/or CCGT Module and/or Power Park Module and/or DC Converter is required to provide high and low frequency response depending on the System Frequency conditions. Where the Frequency is high, the Active Power output is therefore expected to fall below the Minimum Generation level.

The **Designed Minimum Operating Level** is the output at which a **Generating Unit** and/or **CCGT Module** and/or **Power Park Module** and/or **DC Converter** has no **High Frequency Response** capability. It may be less than, but must not be more than, 55% of the **Registered Capacity**. This implies that a **Generating Unit** or **CCGT Module** or **Power Park Module** or **DC Converter** is not obliged to reduce its output to below this level unless the **Frequency** is at or above 50.5 Hz (cf BC3.7).

CC.A.3.4 Testing Of Frequency Response Capability

The response capabilities shown diagrammatically in Figure CC.A.3.1 are measured by taking the responses as obtained from some of the dynamic response tests specified by **The Company** and carried out by **GB Generators** and **DC Converter Station** owners for compliance purposes and to validate the content of **Ancillary Services Agreements** using an injection of a **Frequency** change to the plant control system (i.e. governor and load controller). The injected signal is a linear ramp from zero to 0.5 Hz **Frequency** change over a ten second period, and is sustained at 0.5 Hz **Frequency** change thereafter, as illustrated diagrammatically in figures CC.A.3.2 and CC.A.3.3. In the case of an **Embedded Medium Power Station** not subject to a **Bilateral Agreement** or **Embedded DC Converter Station** not subject to a **Bilateral Agreement**, **The Company** may require the **Network Operator** within whose **System** the **Embedded Medium Power Station** or **Embedded DC Converter Station** is situated, to ensure that the **Embedded Person** performs the dynamic response tests reasonably required by **The Company** in order to demonstrate compliance within the relevant requirements in the **CC**.

The **Primary Response** capability (P) of a **Generating Unit** or a **CCGT Module** or **Power Park Module** or **DC Converter** is the minimum increase in **Active Power** output between 10 and 30 seconds after the start of the ramp injection as illustrated diagrammatically in Figure CC.A.3.2. This increase in **Active Power** output should be released increasingly with time over the period 0 to 10 seconds from the time of the start of the **Frequency** fall as illustrated by the response from Figure CC.A.3.2.


The **Secondary Response** capability (S) of a **Generating Unit** or a **CCGT Module** or **Power Park Module** or **DC Converter** is the minimum increase in **Active Power** output between 30 seconds and 30 minutes after the start of the ramp injection as illustrated diagrammatically in Figure CC.A.3.2.

The **High Frequency Response** capability (H) of a **Generating Unit** or a **CCGT Module** or **Power Park Module** or **DC Converter** is the decrease in **Active Power** output provided 10 seconds after the start of the ramp injection and sustained thereafter as illustrated diagrammatically in Figure CC.A.3.3. This reduction in **Active Power** output should be released increasingly with time over the period 0 to 10 seconds from the time of the start of the **Frequency** rise as illustrated by the response in Figure CC.A.3.2.

CC.A.3.5 Repeatability Of Response

When a **Generating Unit** or **CCGT Module** or **Power Park Module** or **DC Converter** has responded to a significant **Frequency** disturbance, its response capability must be fully restored as soon as technically possible. Full response capability should be restored no later than 20 minutes after the initial change of **System Frequency** arising from the **Frequency** disturbance.

<u>Figure CC.A.3.1 - Minimum Frequency Response Requirement Profile for a 0.5 Hz frequency change from Target Frequency</u>

Primary / Secondary / High Frequency Response levels (% on RC)

Figure CC.A.3.2 - Interpretation of Primary and Secondary Response Values

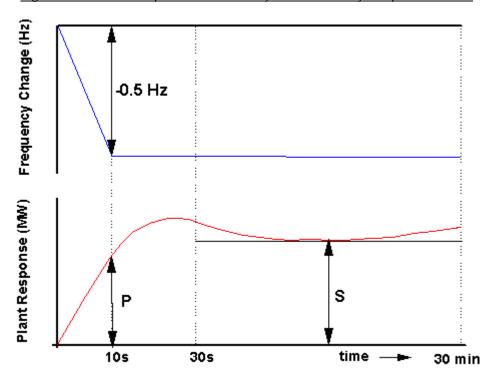
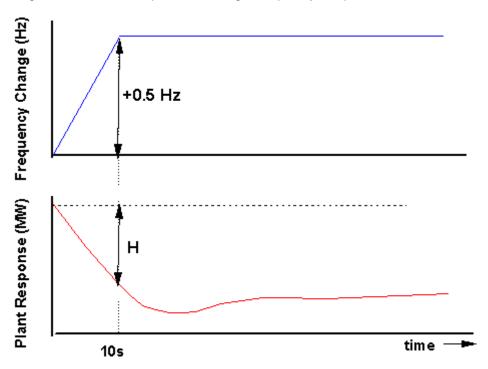
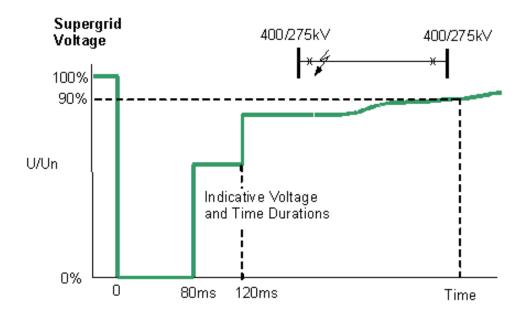



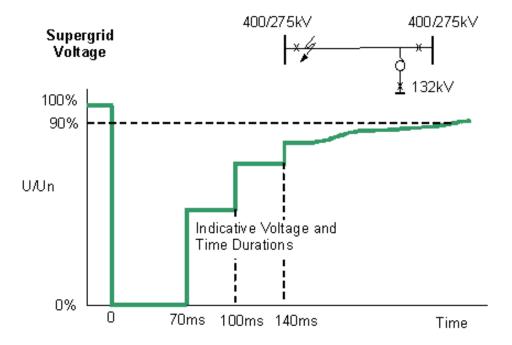
Figure CC.A.3.3 - Interpretation of High Frequency Response Values

APPENDIX 4 - FAULT RIDE THROUGH REQUIREMENTS


APPENDIX 4A - FAULT RIDE THROUGH REQUIREMENTS FOR ONSHORE SYNCHRONOUS GENERATING UNITS, ONSHORE POWER PARK MODULES, ONSHORE DC CONVERTERS OTSDUW PLANT AND APPARATUS AT THE INTERFACE POINT, OFFSHORE SYNCHRONOUS GENERATING UNITS IN A LARGE POWER STATION, OFFSHORE POWER PARK MODULES IN A LARGE POWER STATION AND OFFSHORE DC CONVERTERS IN A LARGE POWER STATION WHICH SELECT TO MEET THE FAULT RIDE THROUGH REQUIREMENTS AT THE INTERFACE POINT

CC.A.4A.1 Scope

The fault ride through requirement is defined in CC.6.3.15.1 (a), (b) and CC.6.3.15.3. This Appendix provides illustrations by way of examples only of CC.6.3.15.1 (a) (i) and further background and illustrations to CC.6.3.15.1 (1b) (i) and CC.6.3.15.1 (2b) (i) and is not intended to show all possible permutations.


CC.A.4A.2 <u>Short Circuit Faults At Supergrid Voltage On The Onshore Transmission System Up To</u> 140ms In Duration

For short circuit faults at **Supergrid Voltage** on the **Onshore Transmission System** (which could be at an **Interface Point**) up to 140ms in duration, the fault ride through requirement is defined in CC.6.3.15.1 (a) (i). Figures CC.A.4A.1 (a) and (b) illustrate two typical examples of voltage recovery for short-circuit faults cleared within 140ms by two circuit breakers (a) and three circuit breakers (b) respectively.

Typical fault cleared in less than 140ms; 2 ended circuit

Figure CC.A.4A.1 (a)

Typical fault cleared in 140ms:- 3 ended circuit

Figure CC.A.4A.1 (b)

CC.A.4A.3 <u>Supergrid Voltage Dips On The Onshore Transmission System Greater Than 140ms In Duration</u>

CC.A.4A3.1 Requirements applicable to **Synchronous Generating Units** subject to **Supergrid Voltage** dips on the **Onshore Transmission System** greater than 140ms in duration.

For balanced **Supergrid Voltage** dips on the **Onshore Transmission System** having durations greater than 140ms and up to 3 minutes, the fault ride through requirement is defined in CC.6.3.15.1 (1b) and Figure 5a which is reproduced in this Appendix as Figure CC.A.4A3.1 and termed the voltage—duration profile.

This profile is not a voltage-time response curve that would be obtained by plotting the transient voltage response at a point on the **Onshore Transmission System** (or **User System** if located **Onshore**) to a disturbance. Rather, each point on the profile (i.e. the heavy black line) represents a voltage level and an associated time duration which connected **Synchronous Generating Units** must withstand or ride through.

Figures CC.A.4A3.2 (a), (b) and (c) illustrate the meaning of the voltage-duration profile for voltage dips having durations greater than 140ms.

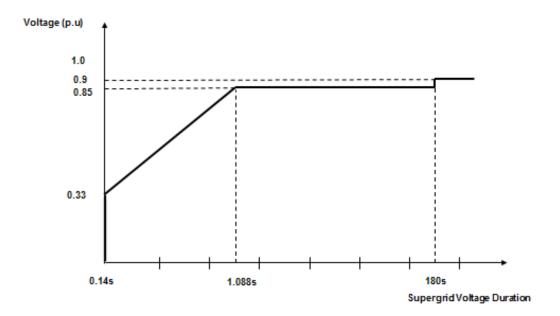
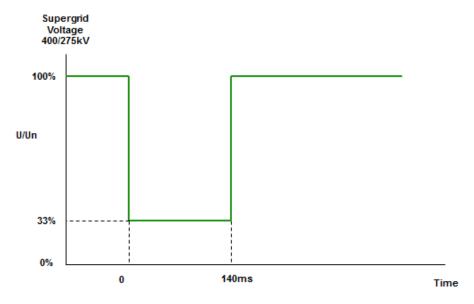
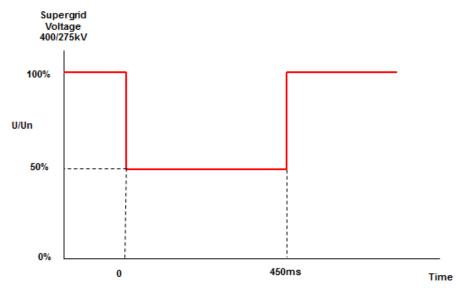




Figure CC.A.4A3.1

33% retained voltage, 140ms duration

Figure CC.A.4A3.2 (a)

50% retained voltage, 450ms duration

Figure CC.A.4A3.2 (b)

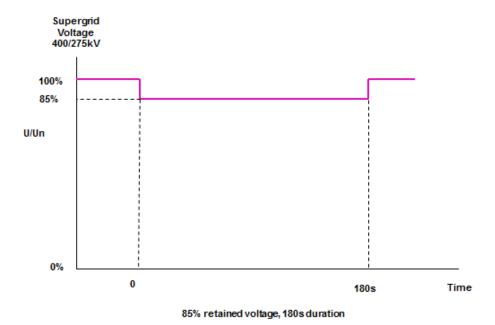


Figure CC.A.4A3.2 (c)

CC.A.4A3.2 Requirements applicable to **Power Park Modules** or **OTSDUW Plant and Apparatus** subject to **Supergrid Voltage** dips on the **Onshore Transmission System** greater than 140ms in duration

For balanced **Supergrid Voltage** dips on the **Onshore Transmission System** (which could be at an **Interface Point**) having durations greater than 140ms and up to 3 minutes the fault ride through requirement is defined in CC.6.3.15.1 (2b) and Figure 5b which is reproduced in this Appendix as Figure CC.A.4A3.3 and termed the voltage—duration profile.

This profile is not a voltage-time response curve that would be obtained by plotting the transient voltage response at a point on the **Onshore Transmission System** (or **User System** if located **Onshore**) to a disturbance. Rather, each point on the profile (i.e. the heavy black line) represents a voltage level and an associated time duration which connected **Power Park Modules** or **OTSDUW Plant and Apparatus** must withstand or ride through.

Figures CC.A.4A.4 (a), (b) and (c) illustrate the meaning of the voltage-duration profile for voltage dips having durations greater than 140ms.

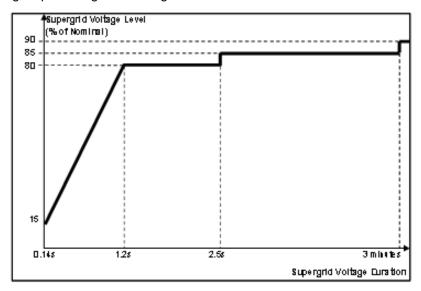
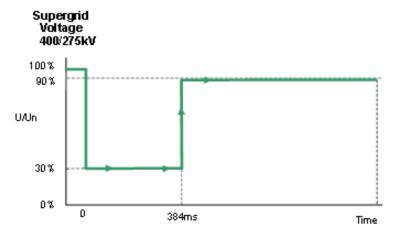
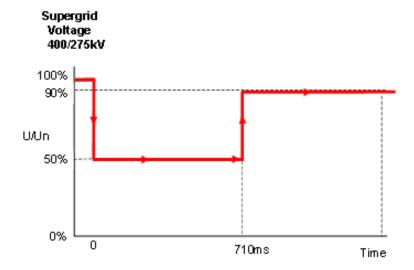




Figure CC.A.4A3.3

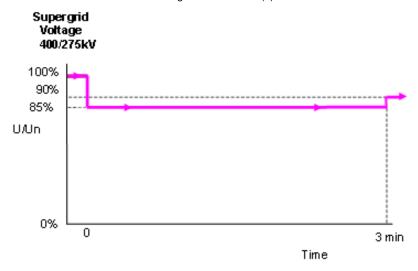

30% retained voltage, 384ms duration

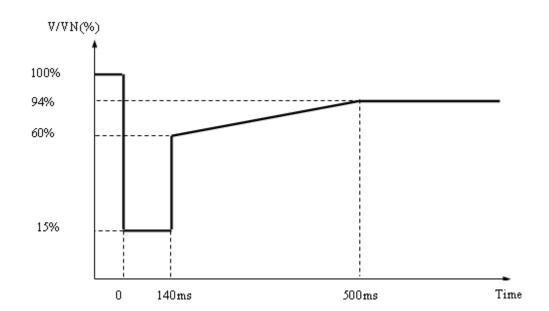
Figure CC.A.4A3.4 (a)

50% retained voltage, 710ms duration

Figure CC.A.4A3.4 (b)

85% retained voltage, 3 minutes duration

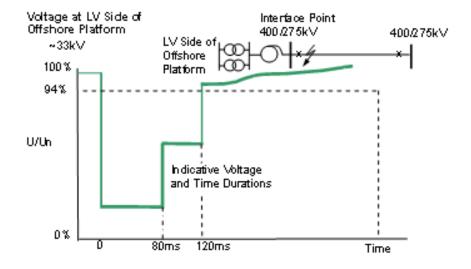
Figure CC.A.4A3.4 (c)


APPENDIX 4B - FAULT RIDE THROUGH REQUIREMENTS FOR OFFSHORE GENERATING UNITS IN A LARGE POWER STATION, OFFSHORE POWER PARK MODULES IN A LARGE POWER STATION AND OFFSHORE DC CONVERTERS IN A LARGE POWER STATION WHICH SELECT TO MEET THE FAULT RIDE THROUGH REQUIREMENTS AT THE LV SIDE OF THE OFFSHORE PLATFORM AS SPECIFIED IN CC.6.3.15.2

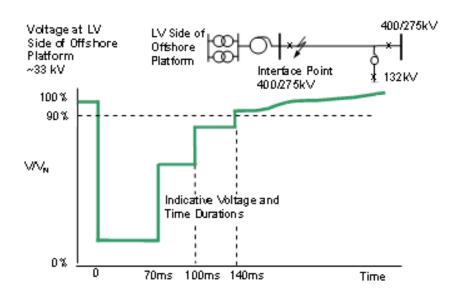
CC.A.4B.1 Scope

The fault ride through requirement is defined in CC.6.3.15.2 (a), (b) and CC.6.3.15.3. This Appendix provides illustrations by way of examples only of CC.6.3.15.2 (a) (i) and further background and illustrations to CC.6.3.15.2 (1b) and CC.6.3.15.2 (2b) and is not intended to show all possible permutations.

CC.A.4B.2 <u>Voltage Dips On The LV Side Of The Offshore Platform Up To 140ms In Duration</u>


For voltage dips on the **LV Side of the Offshore Platform** which last up to 140ms in duration, the fault ride through requirement is defined in CC.6.3.15.2 (a) (i). This includes Figure 6 which is reproduced here in Figure CC.A.4B.1. The purpose of this requirement is to translate the conditions caused by a balanced or unbalanced fault which occurs on the **Onshore Transmission System** (which may include the **Interface Point)** at the **LV Side of the Offshore Platform**.

 V/V_N is the ratio of the voltage at the LV side of the Offshore Platform to the nominal voltage of the LV side of the Offshore Platform.


Figure CC.A.4B.1

Figures CC.A.4B.2 (a) and CC.A.4B.2 (b) illustrate two typical examples of the voltage recovery seen at the **LV Side of the Offshore Platform** for a short circuit fault cleared within 140ms by (a) two circuit breakers and (b) three circuit breakers on the **Onshore Transmission System**.

Typical fault cleared in less than 140ms: 2 ended circuit.

Figure CC.A.4B.2 (a)

Typical fault cleared in 140ms:- 3 ended circuit

Figure CC.A.4B.2 (b)

CCA.4B.3 <u>Voltage Dips Which Occur On The **LV Side Of The Offshore Platform** Greater Than 140ms In Duration</u>

CC.A.4B.3.1 Requirements applicable to **Offshore Synchronous Generating Units** subject to voltage dips which occur on the **LV Side of the Offshore Platform** greater than 140ms in duration.

In addition to CC.A.4B.2 the fault ride through requirements applicable to **Offshore Synchronous Generating Units** during balanced voltage dips which occur at the **LV Side of the Offshore Platform** and having durations greater than 140ms and up to 3 minutes are defined in CC.6.3.15.2 (1b) and Figure 7a which is reproduced in this Appendix as Figure CC.A.4B3.1 and termed the voltage—duration profile.

This profile is not a voltage-time response curve that would be obtained by plotting the transient voltage response at the LV Side of the Offshore Platform to a disturbance. Rather, each point on the profile (i.e. the heavy black line) represents a voltage level and an associated time duration which connected Offshore Synchronous Generating Units must withstand or ride through.

Figures CC.A.4B3.2 (a), (b) and (c) illustrate the meaning of the voltage-duration profile for voltage dips having durations greater than 140ms.

NOT TO SCALE

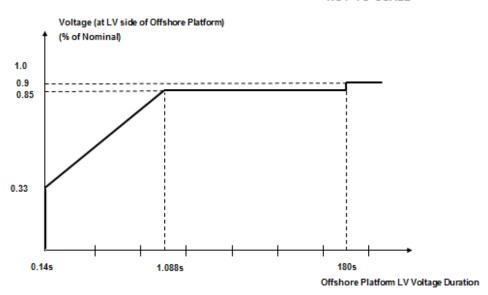


Figure CC.A.4B3.1

Voltage at LV Side of Offshore Platform

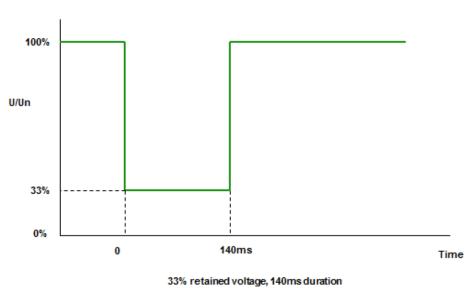
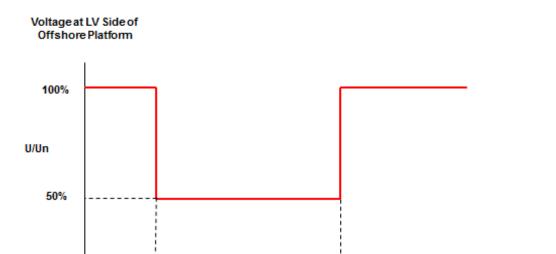



Figure CC.A.4B3.2 (a)

50% retained voltage, 450ms duration

450ms

Time

Figure CC.A.4B3.2 (b)

0%

0

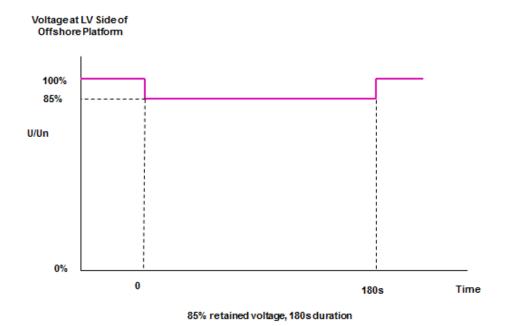


Figure CC.A.4B3.2 (c)

CC.A.4B.3.2 Requirements applicable to Offshore Power Park Modules subject to Voltage Dips Which Occur On The LV Side Of The Offshore Platform Greater Than 140ms in Duration.

In addition to CCA.4B.2 the fault ride through requirements applicable for Offshore Power Park Modules during balanced voltage dips which occur at the LV Side of the Offshore Platform and have durations greater than 140ms and up to 3 minutes are defined in CC.6.3.15.2 (2b) (i) and Figure 7b which is reproduced in this Appendix as Figure CC.A.4B.4 and termed the voltage—duration profile.

This profile is not a voltage-time response curve that would be obtained by plotting the transient voltage response at the LV Side of the Offshore Platform to a disturbance. Rather, each point on the profile (i.e. the heavy black line) represents a voltage level and an associated time duration which connected Offshore Power Park Modules must withstand or ride through.

Figures CC.A.4B.5 (a), (b) and (c) illustrate the meaning of the voltage-duration profile for voltage dips having durations greater than 140ms.

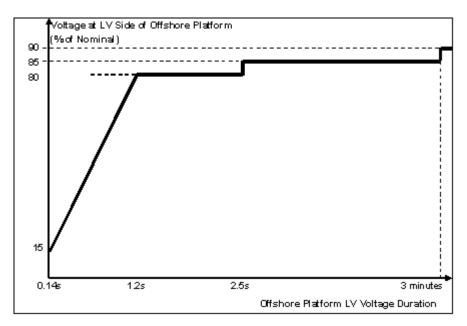
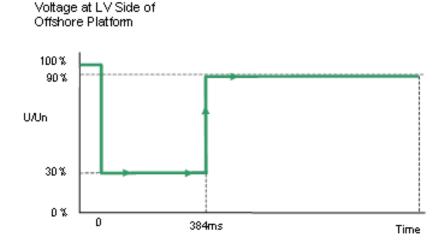
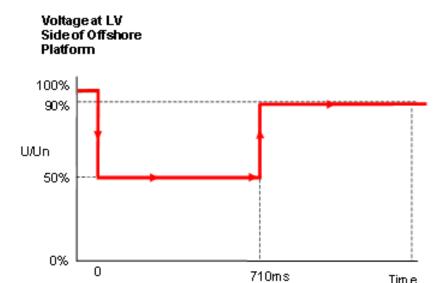
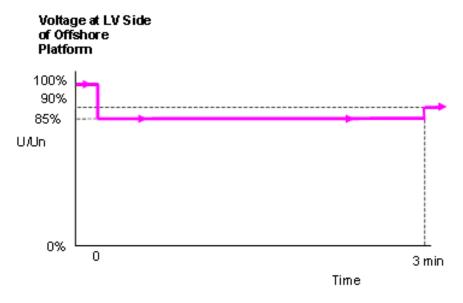




Figure CC.A.4B.4

30% retained voltage, 384ms duration


Figure CC.A.4B.5 (a)

50% retained voltage, 710ms duration

Figure CC.A.4B.5(b)

Time

85% retained voltage, 3 minutes duration

Figure CC.A.4B.5(c)

APPENDIX 5 - TECHNICAL REQUIREMENTS LOW FREQUENCY RELAYS FOR THE AUTOMATIC DISCONNECTION OF SUPPLIES AT LOW FREQUENCY

CC.A.5.1 Low Frequency Relays

CC.A.5.1.1 The **Low Frequency Relays** to be used shall have a setting range of 47.0 to 50Hz and be suitable for operation from a nominal AC input of 63.5, 110 or 240V. The following general parameters specify the requirements of approved **Low Frequency Relays** for automatic installations installed and commissioned after 1st April 2007 and provide an indication, without prejudice to the provisions that may be included in a **Bilateral Agreement**, for those installed and commissioned before 1st April 2007:

(a) **Frequency** settings: 47-50Hz in steps of 0.05Hz or better, preferably 0.01Hz;

(b) Operating time: Relay operating time shall not be more than 150 ms;

(c) Voltage lock-out: Selectable within a range of 55 to 90% of nominal voltage;

(d) Facility stages: One or two stages of **Frequency** operation;

(e) Output contacts: Two output contacts per stage to be capable of repetitively

making and breaking for 1000 operations:

(f) Accuracy: 0.01 Hz maximum error under reference environmental and

system voltage conditions.

0.05 Hz maximum error at 8% of total harmonic distortion

Electromagnetic Compatibility Level.

CC.A.5.2 Low Frequency Relay Voltage Supplies

CC.A.5.2.1 It is essential that the voltage supply to the **Low Frequency Relays** shall be derived from the primary **System** at the supply point concerned so that the **Frequency** of the **Low Frequency Relays** input voltage is the same as that of the primary **System**. This requires either:

- (a) the use of a secure supply obtained from voltage transformers directly associated with the grid transformer(s) concerned, the supply being obtained where necessary via a suitable automatic voltage selection scheme; or
- (b) the use of the substation 240V phase-to-neutral selected auxiliary supply, provided that this supply is always derived at the supply point concerned and is never derived from a standby supply **Generating Unit** or from another part of the **User System**.

CC.A.5.3 <u>Scheme Requirements</u>

CC.A.5.3.1 The tripping facility should be engineered in accordance with the following reliability considerations:

(a) Dependability

Failure to trip at any one particular **Demand** shedding point would not harm the overall operation of the scheme. However, many failures would have the effect of reducing the amount of **Demand** under low **Frequency** control. An overall reasonable minimum requirement for the dependability of the **Demand** shedding scheme is 96%, i.e. the average probability of failure of each **Demand** shedding point should be less than 4%. Thus the **Demand** under low **Frequency** control will not be reduced by more than 4% due to relay failure.

(b) Outages

Low **Frequency Demand** shedding schemes will be engineered such that the amount of **Demand** under control is as specified in Table CC.A.5.5.1a and is not reduced unacceptably during equipment outage or maintenance conditions.

CC.A.5.3.2 The total operating time of the scheme, including circuit breakers operating time, shall where reasonably practicable, be less than 200 ms. For the avoidance of doubt, the replacement of plant installed prior to October 2009 will not be required in order to achieve lower total scheme operating times.

CC.A.5.4 Low Frequency Relay Testing

CC.A.5.4.1 **Low Frequency Relays** installed and commissioned after 1st January 2007 shall be type tested in accordance with and comply with the functional test requirements for **Frequency Protection** contained in Energy Networks Association Technical Specification 48-6-5 Issue 1 dated 2005 "ENA **Protection** Assessment Functional Test Requirements – Voltage and Frequency **Protection**".

For the avoidance of doubt, **Low Frequency Relays** installed and commissioned before 1st January 2007 shall comply with the version of CC.A.5.1.1 applicable at the time such **Low Frequency Relays** were commissioned.

- CC.A.5.4.2 Each **Non-Embedded Customer** shall aim to execute testing on its low frequency demand disconnection relays installed within its network and in service at least once every three years, although this may be extended to no more than every five years if considered to be required for operational purposes.
- CC.A.5.4.3 Each Network Operator and Relevant Transmission Licensee shall aim to execute testing on its low frequency demand disconnection relays installed within its network and in service at least once every three years, although this may be extended to no more than every five years if considered to be required for operational purposes.

CC.A.5.5 <u>Scheme Settings</u>

CC.A.5.5.1 Table CC.A.5.5.1a shows, for each **Transmission Area**, the percentage of **Demand** (based on **Annual ACS Conditions**) at the time of forecast **National Electricity Transmission System** peak **Demand** that each **Network Operator** whose **System** is connected to the **Onshore Transmission System** within such **Transmission Area** shall disconnect by **Low Frequency Relays** at a range of frequencies. Where a **Network Operator's System** is connected to the **National Electricity Transmission System** in more than one **Transmission Area**, the settings for the **Transmission Area** in which the majority of the **Demand** is connected shall apply.

Frequency Hz	% Demand disconnection for each Network Operator in Transmission Area				
	NGET	SPT	SHETL		
48.8	5				
48.75	5				
48.7	10				
48.6	7.5		10		
48.5	7.5	10			
48.4	7.5	10	10		
48.2	7.5	10	10		
48.0	5	10	10		
47.8	5				
Total % Demand	60	40	40		

Table CC.A.5.5.1a

Note – the percentages in table CC.A.5.5.1a are cumulative such that, for example, should the frequency fall to 48.6 Hz in the **NGET Transmission Area**, 27.5% of the total **Demand** connected to the **National Electricity Transmission System** in the **NGET Transmission Area** shall be disconnected by the action of **Low Frequency Relays**.

The percentage **Demand** at each stage shall be allocated as far as reasonably practicable. The cumulative total percentage **Demand** is a minimum.

APPENDIX 6 - PERFORMANCE REQUIREMENTS FOR CONTINUOUSLY ACTING AUTOMATIC EXCITATION CONTROL SYSTEMS FOR ONSHORE SYNCHRONOUS GENERATING UNITS

CC.A.6.1 Scope

- CC.A.6.1.1 This Appendix sets out the performance requirements of continuously acting automatic excitation control systems for Onshore Synchronous Generating Units that must be complied with by the GB Code User. This Appendix does not limit any site specific requirements that may be included in a Bilateral Agreement where in The Company's reasonable opinion these facilities are necessary for system reasons.
- CC.A.6.1.2 Where the requirements may vary the likely range of variation is given in this Appendix. It may be necessary to specify values outside this range where The Company identifies a system need, and notwithstanding anything to the contrary The Company may specify in the Bilateral Agreement values outside of the ranges provided in this Appendix 6. The most common variations are in the on-load excitation ceiling voltage requirements and the response time required of the Exciter. Actual values will be included in the Bilateral Agreement.
- CC.A.6.1.3 Should a GB Generator anticipate making a change to the excitation control system it shall notify The Company under the Planning Code (PC.A.1.2(b) and (c)) as soon as the GB Generator anticipates making the change. The change may require a revision to the Bilateral Agreement.

CC.A.6.2 Requirements

- The Excitation System of an Onshore Synchronous Generating Unit shall include an CC.A.6.2.1 excitation source (Exciter), a Power System Stabiliser and a continuously acting Automatic Voltage Regulator (AVR) and shall meet the following functional specification.
- In respect of Onshore Synchronous Generating Units with a Completion Date on or after CC.A.6.2.2 1 January 2009, and Onshore Synchronous Generating Units with a Completion Date before 1 January 2009 subject to a Modification to the excitation control facilities where the Bilateral Agreement does not specify otherwise, the continuously acting automatic excitation control system shall include a Power System Stabiliser (PSS) as a means of supplementary control. The functional specification of the Power System Stabiliser is included in CC.A.6.2.5.

CC.A.6.2.3 Steady State Voltage Control

CC.A.6.2.3.1 An accurate steady state control of the Onshore Generating Unit pre-set terminal voltage is required. As a measure of the accuracy of the steady-state voltage control, the Automatic Voltage Regulator shall have static zero frequency gain, sufficient to limit the change in terminal voltage to a drop not exceeding 0.5% of rated terminal voltage, when the Onshore Generating Unit output is gradually changed from zero to rated MVA output at rated voltage, Active Power and Frequency.

CC.A.6.2.4 Transient Voltage Control

CC.A.6.2.4.1 For a step change from 90% to 100% of the nominal Onshore Generating Unit terminal voltage, with the Onshore Generating Unit on open circuit, the Excitation System response shall have a damped oscillatory characteristic. For this characteristic, the time for the Onshore Generating Unit terminal voltage to first reach 100% shall be less than 0.6 seconds. Also, the time to settle within 5% of the voltage change shall be less than 3 seconds.

- CC.A.6.2.4.2 To ensure that adequate synchronising power is maintained, when the **Onshore Generating**Unit is subjected to a large voltage disturbance, the **Exciter** whose output is varied by the

 Automatic Voltage Regulator shall be capable of providing its achievable upper and lower
 limit ceiling voltages to the **Onshore Generating Unit** field in a time not exceeding that
 specified in the **Bilateral Agreement**. This will normally be not less than 50 ms and not
 greater than 300 ms. The achievable upper and lower limit ceiling voltages may be
 dependent on the voltage disturbance.
- CC.A.6.2.4.3 The Exciter shall be capable of attaining an Excitation System On Load Positive Ceiling Voltage of not less than a value specified in the Bilateral Agreement that will be:

not less than 2 per unit (pu)

normally not greater than 3 pu

exceptionally up to 4 pu

of **Rated Field Voltage** when responding to a sudden drop in voltage of 10 percent or more at the **Onshore Generating Unit** terminals. **The Company** may specify a value outside the above limits where **The Company** identifies a system need.

- CC.A.6.2.4.4 If a static type **Exciter** is employed:
 - (i) the field voltage should be capable of attaining a negative ceiling level specified in the Bilateral Agreement after the removal of the step disturbance of CC.A.6.2.4.3. The specified value will be 80% of the value specified in CC.A.6.2.4.3. The Company may specify a value outside the above limits where The Company identifies a system need.
 - (ii) the Exciter must be capable of maintaining free firing when the Onshore Generating Unit terminal voltage is depressed to a level which may be between 20% to 30% of rated terminal voltage
 - (iii) the Exciter shall be capable of attaining a positive ceiling voltage not less than 80% of the Excitation System On Load Positive Ceiling Voltage upon recovery of the Onshore Generating Unit terminal voltage to 80% of rated terminal voltage following fault clearance. The Company may specify a value outside the above limits where The Company identifies a system need.
 - (iv) The requirement to provide a separate power source for the Exciter will be specified in the Bilateral Agreement if The Company, in coordination with the Relevant Transmission Licensee, identifies a Transmission System need.
- CC.A.6.2.5 <u>Power Oscillations Damping Control</u>
- CC.A.6.2.5.1 To allow the **Onshore Generating Unit** to maintain second and subsequent swing stability and also to ensure an adequate level of low frequency electrical damping power, the **Automatic Voltage Regulator** shall include a **Power System Stabiliser** as a means of supplementary control.
- CC.A.6.2.5.2 Whatever supplementary control signal is employed, it shall be of the type which operates into the **Automatic Voltage Regulator** to cause the field voltage to act in a manner which results in the damping power being improved while maintaining adequate synchronising power.
- CC.A.6.2.5.3 The arrangements for the supplementary control signal shall ensure that the **Power System Stabiliser** output signal relates only to changes in the supplementary control signal and not the steady state level of the signal. For example, if generator electrical power output is chosen as a supplementary control signal then the **Power System Stabiliser** output should relate only to changes in generator electrical power output and not the steady state level of power output. Additionally the **Power System Stabiliser** should not react to mechanical power changes in isolation for example during rapid changes in steady state load or when providing frequency response.

- CC.A.6.2.5.4 The output signal from the **Power System Stabiliser** shall be limited to not more than ±10% of the **Onshore Generating Unit** terminal voltage signal at the **Automatic Voltage Regulator** input. The gain of the **Power System Stabiliser** shall be such that an increase in the gain by a factor of 3 shall not cause instability.
- CC.A.6.2.5.5 The **Power System Stabiliser** shall include elements that limit the bandwidth of the output signal. The bandwidth limiting must ensure that the highest frequency of response cannot excite torsional oscillations on other plant connected to the network. A bandwidth of 0-5Hz would be judged to be acceptable for this application.
- CC.A.6.2.5.6 The **GB Generator** will agree **Power System Stabiliser** settings with **The Company**, in coordination with the **Relevant Transmission Licensee** prior to the on-load commissioning detailed in BC2.11.2(d). To allow assessment of the performance before on-load commissioning the **GB Generator** will provide to **The Company** a report covering the areas specified in CP.A.3.2.1.
- CC.A.6.2.5.7 The **Power System Stabiliser** must be active within the **Excitation System** at all times when **Synchronised** including when the **Under Excitation Limiter** or **Over Excitation Limiter** are active. When operating at low load when **Synchronising** or **De-Synchronising** an **Onshore Generating Unit**, the **Power System Stabiliser** may be out of service.
- CC.A.6.2.5.8 Where a **Power System Stabiliser** is fitted to a **Pumped Storage Unit** it must function when the **Pumped Storage Unit** is in both generating and pumping modes.
- CC.A.6.2.6 Overall **Excitation System** Control Characteristics
- CC.A.6.2.6.1 The overall **Excitation System** shall include elements that limit the bandwidth of the output signal. The bandwidth limiting must be consistent with the speed of response requirements and ensure that the highest frequency of response cannot excite torsional oscillations on other plant connected to the network. A bandwidth of 0-5 Hz will be judged to be acceptable for this application.
- CC.A.6.2.6.2 The response of the Automatic Voltage Regulator combined with the Power System Stabiliser shall be demonstrated by injecting similar step signal disturbances into the Automatic Voltage Regulator reference as detailed in OC5A.2.2 and OC5.A.2.4. The Automatic Voltage Regulator shall include a facility to allow step injections into the Automatic Voltage Regulator voltage reference, with the Onshore Generating Unit operating at points specified by The Company (up to rated MVA output). The damping shall be judged to be adequate if the corresponding Active Power response to the disturbances decays within two cycles of oscillation.
- CC.A.6.2.6.3 A facility to inject a band limited random noise signal into the **Automatic Voltage Regulator** voltage reference shall be provided for demonstrating the frequency domain response of the **Power System Stabiliser**. The tuning of the **Power System Stabiliser** shall be judged to be adequate if the corresponding **Active Power** response shows improved damping with the **Power System Stabiliser** in combination with the **Automatic Voltage Regulator** compared with the **Automatic Voltage Regulator** alone over the frequency range 0.3Hz 2Hz.
- CC.A.6.2.7 <u>Under-Excitation Limiters</u>
- CC.A.6.2.7.1 The security of the power system shall also be safeguarded by means of MVAr Under Excitation Limiters fitted to the generator Excitation System. The Under Excitation Limiter shall prevent the Automatic Voltage Regulator reducing the generator excitation to a level which would endanger synchronous stability. The Under Excitation Limiter shall operate when the excitation system is providing automatic control. The Under Excitation Limiter shall respond to changes in the Active Power (MW) and the Reactive Power (MVAr), and to the square of the generator voltage in such a direction that an increase in voltage will permit an increase in leading MVAr. The characteristic of the Under Excitation Limiter shall be substantially linear from no-load to the maximum Active Power output of the Onshore Generating Unit at any setting and shall be readily adjustable.

- CC.A.6.2.7.2 The performance of the **Under Excitation Limiter** shall be independent of the rate of change of the **Onshore Generating Unit** load and shall be demonstrated by testing as detailed in OC5.A.2.5. The resulting maximum overshoot in response to a step injection which operates the **Under Excitation Limiter** shall not exceed 4% of the **Onshore Generating Unit** rated MVA. The operating point of the **Onshore Generating Unit** shall be returned to a steady state value at the limit line and the final settling time shall not be greater than 5 seconds. When the step change in **Automatic Voltage Regulator** reference voltage is reversed, the field voltage should begin to respond without any delay and should not be held down by the **Under Excitation Limiter**. Operation into or out of the preset limit levels shall ensure that any resultant oscillations are damped so that the disturbance is within 0.5% of the **Onshore Generating Unit** MVA rating within a period of 5 seconds.
- CC.A.6.2.7.3 The **GB Generator** shall also make provision to prevent the reduction of the **Onshore Generating Unit** excitation to a level which would endanger synchronous stability when the **Excitation System** is under manual control.
- CC.A.6.2.8 Over-Excitation Limiters
- CC.A.6.2.8.1 The settings of the **Over-Excitation Limiter**, where it exists, shall ensure that the generator excitation is not limited to less than the maximum value that can be achieved whilst ensuring the **Onshore Generating Unit** is operating within its design limits. If the generator excitation is reduced following a period of operation at a high level, the rate of reduction shall not exceed that required to remain within any time dependent operating characteristics of the **Onshore Generating Unit**.
- CC.A.6.2.8.2 The performance of the **Over-Excitation Limiter**, where it exists, shall be demonstrated by testing as described in OC5.A.2.6. Any operation beyond the **Over-Excitation Limit** shall be controlled by the **Over-Excitation Limiter** without the operation of any **Protection** that could trip the **Onshore Generating Unit**.
- CC.A.6.2.8.3 The **GB Generator** shall also make provision to prevent any over-excitation restriction of the generator when the **Excitation System** is under manual control, other than that necessary to ensure the **Onshore Generating Unit** is operating within its design limits.

APPENDIX 7 - PERFORMANCE REQUIREMENTS FOR CONTINUOUSLY ACTING AUTOMATIC VOLTAGE CONTROL SYSTEMS FOR ONSHORE NON-SYNCHRONOUS GENERATING UNITS, ONSHORE DC CONVERTERS, ONSHORE POWER PARK MODULES AND OTSDUW PLANT AND APPARATUS AT THE INTERFACE POINT

CC.A.7.1 Scope

- CC.A.7.1.1 This Appendix sets out the performance requirements of continuously acting automatic voltage control systems for Onshore Non-Synchronous Generating Units, Onshore DC Converters, Onshore Power Park Modules and OTSDUW Plant and Apparatus at the Interface Point that must be complied with by the GB Code User. This Appendix does not limit any site specific requirements that may be included in a Bilateral Agreement where in The Company's reasonable opinion these facilities are necessary for system reasons.
- CC.A.7.1.2 Proposals by **GB Generators** to make a change to the voltage control systems are required to be notified to **The Company** under the **Planning Code** (PC.A.1.2(b) and (c)) as soon as the **GB Generator** anticipates making the change. The change may require a revision to the **Bilateral Agreement**.

CC.A.7.2 Requirements

CC.A.7.2.1 The Company requires that the continuously acting automatic voltage control system for the Onshore Non-Synchronous Generating Unit, Onshore DC Converter or Onshore Power Park Module or OTSDUW Plant and Apparatus shall meet the following functional performance specification. If a Network Operator has confirmed to The Company that its network to which an Embedded Onshore Non-Synchronous Generating Unit, Onshore DC Converter, Onshore Power Park Module or OTSDUW Plant and Apparatus is connected is restricted such that the full reactive range under the steady state voltage control requirements (CC.A.7.2.2) cannot be utilised, The Company may specify in the Bilateral Agreement alternative limits to the steady state voltage control range that reflect these restrictions. Where the **Network Operator** subsequently notifies **The Company** that such restriction has been removed, The Company may propose a Modification to the Bilateral Agreement (in accordance with the CUSC contract) to remove the alternative limits such that the continuously acting automatic voltage control system meets the following functional performance specification. All other requirements of the voltage control system will remain as in this Appendix.

CC.A.7.2.2 Steady State Voltage Control

CC.A.7.2.2.1 The Onshore Non-Synchronous Generating Unit, Onshore DC Converter, Onshore Power Park Module or OTSDUW Plant and Apparatus shall provide continuous steady state control of the voltage at the Onshore Grid Entry Point (or Onshore User System Entry Point if Embedded) (or the Interface Point in the case of OTSDUW Plant and Apparatus) with a Setpoint Voltage and Slope characteristic as illustrated in Figure CC.A.7.2.2a. It should be noted that where the Reactive Power capability requirement of a directly connected Onshore Non-Synchronous Generating Unit, Onshore DC Converter, Onshore Power Park Module in Scotland, or OTSDUW Plant and Apparatus in Scotland as specified in CC.6.3.2 (c), is not at the Onshore Grid Entry Point or Interface Point, the values of Qmin and Qmax shown in this figure will be as modified by the 33/132kV or 33/275kV or 33/400kV transformer.

Grid Entry Point voltage (or User System Entry Point voltage if Embedded) (or Interface Point in the case of OTSDUW Plant and Apparatus) Setpoint Voltage 95% < Vset < 105% Slope This is the percentage change in voltage, based on nominal, that results in a change of reactive power from 0 to Qmin or 0 to Qmax Qmin Qmax 0 Reactive capability Reactive capability corresponding to 0.95 corresponding to 0.95

lagging Power Factor at

Rated MW

Figure CC.A.7.2.2a

leading Power Factor at

Rated MW

- CC.A.7.2.2.2 The continuously acting automatic control system shall be capable of operating to a **Setpoint Voltage** between 95% and 105% with a resolution of 0.25% of the nominal voltage. For the avoidance of doubt values of 95%, 95.25%, 95.5% ... may be specified, but not intermediate values. The initial **Setpoint Voltage** will be 100%. The tolerance within which this **Setpoint Voltage** shall be achieved is specified in BC2.A.2.6. For the avoidance of doubt, with a tolerance of 0.25% and a Setpoint Voltage of 100%, the achieved value shall be between 99.75% and 100.25%. **The Company** may request the **GB Generator** to implement an alternative **Setpoint Voltage** within the range of 95% to 105%. For **Embedded GB Generators** the **Setpoint Voltage** will be discussed between **The Company** and the relevant **Network Operator** and will be specified to ensure consistency with CC.6.3.4.
- CC.A.7.2.2.3 The **Slope** characteristic of the continuously acting automatic control system shall be adjustable over the range 2% to 7% (with a resolution of 0.5%). For the avoidance of doubt values of 2%, 2.5%, 3% may be specified, but not intermediate values. The initial **Slope** setting will be 4%. The tolerance within which this **Slope** shall be achieved is specified in BC2.A.2.6. For the avoidance of doubt, with a tolerance of 0.5% and a **Slope** setting of 4%, the achieved value shall be between 3.5% and 4.5%. **The Company** may request the **GB Generator** to implement an alternative slope setting within the range of 2% to 7%. For **Embedded GB Generators** the **Slope** setting will be discussed between **The Company** and the relevant **Network Operator** and will be specified to ensure consistency with CC.6.3.4.

Grid Entry Point voltage (or User System Entry Point voltage if Embedded) (or Interface Point in the case of an OTSDUW)

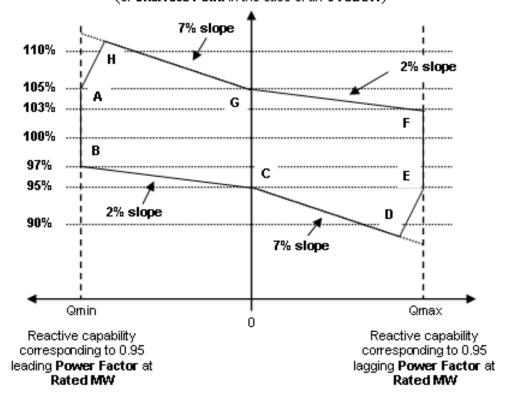
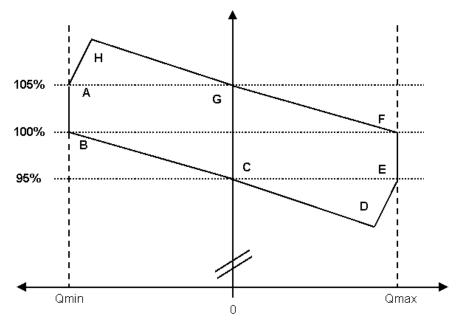
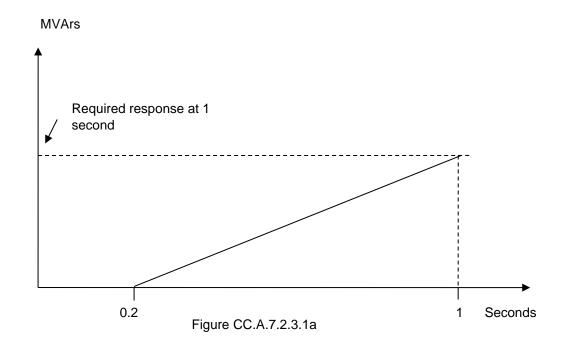



Figure CC.A.7.2.2b


Onshore Grid Entry Point voltage (or Onshore User System Entry Point voltage if Embedded) Connections at 33kV and below

- Figure CC.A.7.2.2b shows the required envelope of operation for Onshore Non-CC.A.7.2.2.4 Synchronous Generating Units, Onshore DC Converters, OTSDUW Plant and Apparatus and Onshore Power Park Modules except for those Embedded at 33kV and below or directly connected to the National Electricity Transmission System at 33kV and below. Figure CC.A.7.2.2c shows the required envelope of operation for Onshore Non-Synchronous Generating Units, Onshore DC Converters and Onshore Power Park Modules Embedded at 33kV and below or directly connected to the National Electricity Transmission System at 33kV and below. Where the Reactive Power capability requirement of a directly connected Onshore Non-Synchronous Generating Unit, Onshore DC Converter, OTSDUW Plant and Apparatus or Onshore Power Park Module in Scotland, as specified in CC.6.3.2 (c), is not at the Onshore Grid Entry Point or Interface Point in the case of OTSDUW Plant and Apparatus, the values of Qmin and Qmax shown in this figure will be as modified by the 33/132kV or 33/275kV or 33/400kV transformer. The enclosed area within points ABCDEFGH is the required capability range within which the **Slope** and **Setpoint Voltage** can be changed.
- CC.A.7.2.2.5 Should the operating point of the **Onshore Non-Synchronous Generating Unit**, **Onshore DC Converter**, **OTSDUW Plant and Apparatus** or **Onshore Power Park Module** deviate so that it is no longer a point on the operating characteristic (figure CC.A.7.2.2a) defined by the target **Setpoint Voltage** and **Slope**, the continuously acting automatic voltage control system shall act progressively to return the value to a point on the required characteristic within 5 seconds.
- CC.A.7.2.2.6 Should the Reactive Power output of the Onshore Non-Synchronous Generating Unit, Onshore DC Converter, OTSDUW Plant and Apparatus or Onshore Power Park Module reach its maximum lagging limit at a Onshore Grid Entry Point voltage (or Onshore User System Entry Point voltage if Embedded or Interface Point in the case of OTSDUW Plant and Apparatus) above 95%, the Onshore Non-Synchronous Generating Unit, Onshore DC Converter, OTSDUW Plant and Apparatus or Onshore Power Park Module shall maintain maximum lagging Reactive Power output for voltage reductions down to 95%. This requirement is indicated by the line EF in figures CC.A.7.2.2b and CC.A.7.2.2c. Should the Reactive Power output of the Onshore Non-Synchronous Generating Unit, Onshore DC Converter, OTSDUW Plant and Apparatus or Onshore Power Park Module reach its maximum leading limit at a Onshore Grid Entry Point voltage (or Onshore User System Entry Point voltage if Embedded or Interface Point in the case of OTSDUW Plant and Apparatus) below 105%, the Onshore Non-Synchronous Generating Unit, Onshore DC Converter, OTSDUW Plant and Apparatus or Onshore Power Park Module shall maintain maximum leading Reactive Power output for voltage increases up to 105%. This requirement is indicated by the line AB in figures CC.A.7.2.2b and CC.A.7.2.2c.

- CC.A.7.2.2.7 For Onshore Grid Entry Point voltages (or Onshore User System Entry Point voltages if Embedded or Interface Point voltages) below 95%, the lagging Reactive Power capability of the Onshore Non-Synchronous Generating Unit, Onshore DC Converter, OTSDUW Plant and Apparatus or Onshore Power Park Module should be that which results from the supply of maximum lagging reactive current whilst ensuring the current remains within design operating limits. An example of the capability is shown by the line DE in figures CC.A.7.2.2b and CC.A.7.2.2c. For Onshore Grid Entry Point voltages (or User System Entry Point voltages if Embedded or Interface Point voltages) above 105%, the leading Reactive Power capability of the Onshore Non-Synchronous Generating Unit, Onshore DC Converter, OTSDUW Plant and Apparatus or Onshore Power Park Module should be that which results from the supply of maximum leading reactive current whilst ensuring the current remains within design operating limits. An example of the capability is shown by the line AH in figures CC.A.7.2.2b and CC.A.7.2.2c. Should the Reactive Power output of the Onshore Non-Synchronous Generating Unit, Onshore DC Converter, OTSDUW Plant and Apparatus or Onshore Power Park Module reach its maximum lagging limit at an Onshore Grid Entry Point voltage (or Onshore User System Entry Point voltage if Embedded or Interface Point in the case of OTSDUW Plant and Apparatus) below 95%, the Onshore Non-Synchronous Generating Unit, Onshore DC Converter or Onshore Power Park Module shall maintain maximum lagging reactive current output for further voltage decreases. Should the Reactive Power output of the Onshore Non-Synchronous Generating Unit, Onshore DC Converter, OTSDUW Plant and Apparatus or Onshore Power Park Module reach its maximum leading limit at a Onshore Grid Entry Point voltage (or User System Entry Point voltage if Embedded or Interface Point voltage in the case of an OTSDUW Plant and Apparatus) above 105%, the Onshore Non-Synchronous Generating Unit, Onshore DC Converter, OTSDUW Plant and Apparatus or Onshore Power Park Module shall maintain maximum leading reactive current output for further voltage increases.
- CC.A.7.2.2.8 All OTSDUW Plant and Apparatus must be capable of enabling GB Code Users undertaking OTSDUW to comply with an instruction received from The Company relating to a variation of the Setpoint Voltage at the Interface Point within 2 minutes of such instruction being received.
- CC.A.7.2.2.9 For OTSDUW Plant and Apparatus connected to a Network Operator's System where the Network Operator has confirmed to The Company that its System is restricted in accordance with CC.A.7.2.1, clause CC.A.7.2.2.8 will not apply unless The Company can reasonably demonstrate that the magnitude of the available change in Reactive Power has a significant effect on voltage levels on the Onshore National Electricity Transmission System.
- CC.A.7.2.3 <u>Transient Voltage Control</u>
- CC.A.7.2.3.1 For an on-load step change in **Onshore Grid Entry Point** or **Onshore User System Entry Point** voltage, or in the case of **OTSDUW Plant and Apparatus** an on-load step change in **Transmission Interface Point** voltage, the continuously acting automatic control system shall respond according to the following minimum criteria:
 - (i) the Reactive Power output response of the Onshore Non-Synchronous Generating Unit, Onshore DC Converter, OTSDUW Plant and Apparatus or Onshore Power Park Module shall commence within 0.2 seconds of the application of the step. It shall progress linearly although variations from a linear characteristic shall be acceptable provided that the MVAr seconds delivered at any time up to 1 second are at least those that would result from the response shown in figure CC.A.7.2.3.1a.
 - (ii) the response shall be such that 90% of the change in the Reactive Power output of the Onshore Non-Synchronous Generating Unit, Onshore DC Converter, OTSDUW Plant and Apparatus or Onshore Power Park Module, will be achieved within
 - 1 second, where the step is sufficiently large to require a change in the steady state **Reactive Power** output from zero to its maximum leading value or maximum lagging value, as required by CC.6.3.2 (or, if appropriate, CC.A.7.2.2.6 or CC.A.7.2.2.7); and

- 2 seconds, for Plant and Apparatus installed on or after 1 December 2017, where the step is sufficiently large to require a change in the steady state Reactive Power output from its maximum leading value to its maximum lagging value or vice versa.
- (iii) the magnitude of the **Reactive Power** output response produced within 1 second shall vary linearly in proportion to the magnitude of the step change.
- (iv) within 2 seconds from achieving 90% of the response as defined in CC.A.7.2.3.1 (ii), the peak to peak magnitude of any oscillations shall be less than 5% of the change in steady state **Reactive Power**.
- (v) following the transient response, the conditions of CC.A.7.2.2 apply.

CC.A.7.2.3.2 An Onshore Non-Synchronous Generating Unit, Onshore DC Converter, OTSDUW
Plant and Apparatus or Onshore Power Park Module installed on or after 1 December 2017 shall be capable of

- (a) changing its **Reactive Power** output from its maximum lagging value to its maximum leading value, or vice versa, then reverting back to the initial level of **Reactive Power** output once every 15 seconds for at least 5 times within any 5 minute period; and
- (b) changing its **Reactive Power** output from zero to its maximum leading value then reverting back to zero **Reactive Power** output at least 25 times within any 24 hour period and from zero to its maximum lagging value then reverting back to zero **Reactive Power** output at least 25 times within any 24 hour period. Any subsequent restriction on reactive capability shall be notified to **The Company** in accordance with BC2.5.3.2, and BC2.6.1.

In all cases, the response shall be in accordance to CC.A.7.2.3.1 where the change in Reactive Power output is in response to an on-load step change in Onshore Grid Entry Point or Onshore User System Entry Point voltage, or in the case of OTSDUW Plant and Apparatus an on-load step change in Transmission Interface Point voltage.

CC.A.7.2.4 Power Oscillation Damping

- CC.A.7.2.4.1 The requirement for the continuously acting voltage control system to be fitted with a **Power System Stabiliser (PSS)** shall be specified in the **Bilateral Agreement** if, in **The Company's** view, this is required for system reasons. However if a **Power System Stabiliser** is included in the voltage control system its settings and performance shall be agreed with **The Company** and commissioned in accordance with BC2.11.2. To allow assessment of the performance before on-load commissioning the **GB Generator** will provide to **The Company** a report covering the areas specified in CP.A.3.2.2.
- CC.A.7.2.5 Overall Voltage Control System Characteristics
- CC.A.7.2.5.1 The continuously acting automatic voltage control system is required to respond to minor variations, steps, gradual changes or major variations in **Onshore Grid Entry Point** voltage (or **Onshore User System Entry Point** voltage if **Embedded** or **Interface Point** voltage in the case of **OTSDUW Plant and Apparatus**).
- CC.A.7.2.5.2 The overall voltage control system shall include elements that limit the bandwidth of the output signal. The bandwidth limiting must be consistent with the speed of response requirements and ensure that the highest frequency of response cannot excite torsional oscillations on other plant connected to the network. A bandwidth of 0-5Hz would be judged to be acceptable for this application. All other control systems employed within the Onshore Non-Synchronous Generating Unit, Onshore DC Converter, OTSDUW Plant and Apparatus or Onshore Power Park Module should also meet this requirement
- CC.A.7.2.5.3 The response of the voltage control system (including the **Power System Stabiliser** if employed) shall be demonstrated by testing in accordance with OC5A.A.3.

< END OF CONNECTION CONDITIONS >

EUROPEAN CONNECTION CONDITIONS

(ECC)

CONTENTS

(This contents page does not form part of the Grid Code)

<u>Paragra</u>	ph No/Title	Page Number
	INTRODUCTION	
	OBJECTIVE	_
ECC.3	SCOPE	3
ECC.4	PROCEDURE	5
ECC.5	CONNECTION	5
ECC.6	TECHNICAL, DESIGN AND OPERATIONAL CRITERIA	7
ECC.7	SITE RELATED CONDITIONS	81
ECC.8	ANCILLARY SERVICES	87
APPEN	DIX E1 - SITE RESPONSIBILITY SCHEDULES	88
PR	OFORMA FOR SITE RESPONSIBILITY SCHEDULE	91
APPEN	DIX E2 - OPERATION DIAGRAMS	97
PA	RT 1A - PROCEDURES RELATING TO OPERATION DIAGRAMS	97
PA	RT E1B - PROCEDURES RELATING TO GAS ZONE DIAGRAMS	100
	RT E2 - NON-EXHAUSTIVE LIST OF APPARATUS TO BE INCLUDED ON OPE	
	DIX E3 - MINIMUM FREQUENCY RESPONSE CAPABILITY REQUIREMENT PROFI TING RANGE FOR POWER GENERATING MODULES AND HVDC EQUIPMENT	
APPEN	DIX 4 - FAULT RIDE THROUGH REQUIREMENTS	109
	DIX E5 - TECHNICAL REQUIREMENTS LOW FREQUENCY RELAYS FOR THE AUTONIECTION OF SUPPLIES AT LOW FREQUENCY	-
	DIX E6 - PERFORMANCE REQUIREMENTS FOR CONTINUOUSLY ACTING AUTONION CONTROL SYSTEMS FOR ONSHORE SYNCHRONOUS GENERATING UNIT	-
VOLTAG ONSHC	DIX E7 - PERFORMANCE REQUIREMENTS FOR CONTINUOUSLY ACTING AUTO GE CONTROL SYSTEMS FOR ONSHORE NON-SYNCHRONOUS GENERATING ORE DC CONVERTERS, ONSHORE POWER PARK MODULES AND OTSDUW PLA ATUS AT THE INTERFACE POINT	UNITS, NT AND
VOLTA	DIX E8 - PERFORMANCE REQUIREMENTS FOR CONTINUOUSLY ACTING AUTO GE CONTROL SYSTEMS FOR CONFIGURATION 2 AC CONNECTED OFFSHORE MODULES AND CONFIGURATION 2 DC CONNECTED POWER PARK MODULES	POWER

ECC.1 <u>INTROD</u>UCTION

ECC.1.1 The European Connection Conditions ("ECC") specify both:

- (a) the minimum technical, design and operational criteria which must be complied with by:
 - (i) any EU Code User connected to or seeking connection with the National Electricity Transmission System, or
 - (ii) **EU Generators** or **HVDC System Owners** connected to or seeking connection to a **User's System** which is located in **Great Britain** or **Offshore**, or
 - (iii) Network Operators who are EU Code Users
 - (iv) Network Operators who are GB Code Users but only in respect of:-
 - (a) Their obligations in respect of **Embedded Medium Power Stations** not subject to a **Bilateral Agreement** for whom the requirements of ECC.3.1(b)(iii) apply alone; and/or
 - (b) The requirements of this **ECC** only in relation to each **EU Grid Supply Point**. **Network Operators** in respect of all other **Grid Supply Points** should continue to satisfy the requirements as specified in the **CC**s.
 - (v) Non-Embedded Customers who are EU Code Users
- (b) the minimum technical, design and operational criteria with which The Company will comply in relation to the part of the National Electricity Transmission System at the Connection Site with Users. In the case of any OTSDUW Plant and Apparatus, the ECC also specify the minimum technical, design and operational criteria which must be complied with by the User when undertaking OTSDUW.
- (c) The requirements of European Regulation (EU) 2016/631 shall not apply to
 - (i) Power Generating Modules that are installed to provide backup power and operate in parallel with the Total System for less than 5 minutes per calendar month while the System is in normal state. Parallel operation during maintenance or commissioning of tests of that Power Generating Module shall not count towards that five minute limit.
 - (ii) Power Generating Modules connected to the Transmission System or Network Operators System which are not operated in synchronism with a Synchronous Area.
 - (iii) Power Generating Modules that do not have a permanent Connection Point or User System Entry Point and used by The Company to temporarily provide power when normal System capacity is partly or completely unavailable.
 - (iv) Electricity Storage Modules.
- (d) Storage Users are required to comply with the entirety of the ECC but are not subject to the requirements of European Regulation (EU) 2016/631, European Regulation (EU) 2016/1388 and European Regulation EU 2016/1485. The requirements of the ECC shall therefore be enforceable against Storage Users under the Grid Code only (and not under any of the aforementioned European Regulations) and any derogation sought by a Storage User in respect of the ECC shall be deemed a derogation from the Grid Code only (and not from the aforementioned European Regulations).

ECC.2 OBJECTIVE

- The objective of the **ECC** is to ensure that by specifying minimum technical, design and operational criteria the basic rules for connection to the **National Electricity Transmission System** and (for certain **Users**) to a **User's System** are similar for all **Users** of an equivalent category and will enable **The Company** to comply with its statutory and **Transmission Licence** obligations and European Regulations.
- In the case of any OTSDUW the objective of the ECC is to ensure that by specifying the minimum technical, design and operational criteria the basic rules relating to an Offshore Transmission System designed and constructed by an Offshore Transmission Licensee and designed and/or constructed by a User under the OTSDUW Arrangements are equivalent.
- Provisions of the ECC which apply in relation to OTSUW and OTSUA, and/or a Transmission Interface Site, shall (in any particular case) apply up to the OTSUA Transfer Time, whereupon such provisions shall (without prejudice to any prior non-compliance) cease to apply, without prejudice to the continuing application of provisions of the ECC applying in relation to the relevant Offshore Transmission System and/or Connection Site. It is the case therefore that in cases where the OTSUA becomes operational prior to the OTSUA Transfer Time that a EU Generator is required to comply with this ECC both as it applies to its Plant and Apparatus at a Connection Site\Connection Point and the OTSUA at the Transmission Interface Site/Transmission Interface Point until the OTSUA Transfer Time and this ECC shall be construed accordingly.
- In relation to OTSDUW, provisions otherwise to be contained in a **Bilateral Agreement** may be contained in the **Construction Agreement**, and accordingly a reference in the **ECC** to a relevant **Bilateral Agreement** includes the relevant **Construction Agreement**.

ECC.3 SCOPE

- ECC.3.1 The **ECC** applies to **The Company** and to **Users**, which in the **ECC** means:
 - (a) EU Generators (other than those which only have Embedded Small Power Stations), including those undertaking OTSDUW including Power Generating Modules, and DC Connected Power Park Modules. For the avoidance of doubt, Electricity Storage Modules are included within the definition of Power Generating Modules for which the requirements of the ECC would be equally applicable.
 - (b) Network Operators but only in respect of:-
 - (i) Network Operators who are EU Code Users
 - (ii) Network Operators who only have EU Grid Supply Points
 - (iii) **Embedded Medium Power Stations** not subject to a **Bilateral Agreement** as provided for in ECC.3.2, ECC.3.3, EC3.4, EC3.5, ECC5.1, ECC.6.4.4 and ECA.3.4;
 - (iv) Notwithstanding the requirements of ECC3.1(b)(i)(ii) and (iii) , Network Operators who own and/or operate EU Grid Supply Points, are only required to satisfy the requirements of this ECC in relation to each EU Grid Supply Point. Network Operators in respect of all other Grid Supply Points should continue to satisfy the requirements as specified in the CCs.
 - (c) Non-Embedded Customers who are also EU Code Users ;
 - (d) HVDC System Owners who are also EU Code Users; and
 - (e) BM Participants and Externally Interconnected System Operators who are also EU Code Users in respect of ECC.6.5 only.

- ECC.3.2 The above categories of **User** will become bound by the applicable sections of the **ECC** prior to them generating, distributing, storing, supplying or consuming, as the case may be, and references to the various categories should, therefore, be taken as referring to them in that prospective role.
- ECC.3.3 Embedded Medium Power Stations not subject to a Bilateral Agreement and Embedded HVDC Systems not subject to a Bilateral Agreement Provisions.

The following provisions apply in respect of **Embedded Medium Power Stations** not subject to a **Bilateral Agreement** and **Embedded HVDC Systems** not subject to a **Bilateral Agreement**.

- The obligations within the ECC that are expressed to be applicable to EU Generators in respect of Embedded Medium Power Stations not subject to a Bilateral Agreement and HVDC System Owners in respect of Embedded HVDC Systems not subject to a Bilateral Agreement (where the obligations are in each case listed in ECC.3.3.2) shall be read and construed as obligations that the Network Operator within whose System any such Medium Power Station or HVDC System is Embedded must ensure are performed and discharged by the EU Generator or the HVDC Owner. Embedded Medium Power Stations not subject to a Bilateral Agreement and Embedded HVDC Systems not subject to a Bilateral Agreement which are located Offshore and which are connected to an Onshore User System will be required to meet the applicable requirements of the Grid Code as though they are an Onshore Generator or Onshore HVDC System Owner connected to an Onshore User System Entry Point.
- The Network Operator within whose System a Medium Power Station not subject to a Bilateral Agreement is Embedded or a HVDC System not subject to a Bilateral Agreement is Embedded must ensure that the following obligations in the ECC are performed and discharged by the EU Generator in respect of each such Embedded Medium Power Station or the HVDC System Owner in the case of an Embedded HVDC System:

ECC.5.1

ECC.5.2.2

ECC.5.3

ECC.6.1.3

ECC.6.1.5 (b)

ECC.6.3.2, ECC.6.3.3, ECC.6.3.4, ECC.6.3.6, ECC.6.3.7, ECC.6.3.8, ECC.6.3.9,

ECC.6.3.10, ECC.6.3.12, ECC.6.3.13, ECC.6.3.15, ECC.6.3.16

ECC.6.4.4

ECC.6.5.6 (where required by ECC.6.4.4)

In respect of ECC.6.2.2.2, ECC.6.2.2.3, ECC.6.2.2.5, ECC.6.1.5(a), ECC.6.1.5(b) and ECC.6.3.11 equivalent provisions as co-ordinated and agreed with the **Network Operator** and **EU Generator** or **HVDC System Owner** may be required. Details of any such requirements will be notified to the **Network Operator** in accordance with ECC.3.5.

ECC.3.3.3 In the case of **Embedded Medium Power Station**s not subject to a **Bilateral Agreement** and **Embedded HVDC Systems** not subject to a **Bilateral Agreement** the requirements in:

ECC.6.1.6

ECC.6.3.8

ECC.6.3.12

ECC.6.3.15

ECC.6.3.16

that would otherwise have been specified in a **Bilateral Agreement** will be notified to the relevant **Network Operator** in writing in accordance with the provisions of the **CUSC** and the **Network Operator** must ensure such requirements are performed and discharged by the **Generator** or the **HVDC System** owner.

- In the case of Offshore Embedded Power Generating Modules connected to an Offshore User's System which directly connects to an Offshore Transmission System, any additional requirements in respect of such Offshore Embedded Power Generating Modules may be specified in the relevant Bilateral Agreement with the Network Operator or in any Bilateral Agreement between The Company and such Offshore Generator.
- In the case of a Generator undertaking OTSDUW connecting to an Onshore Network Operator's System, any additional requirements in respect of such OTSDUW Plant and Apparatus will be specified in the relevant Bilateral Agreement with the EU Generator. For the avoidance of doubt, requirements applicable to EU Generators undertaking OTSDUW and connecting to a Network Operator's User System, shall be consistent with those applicable requirements of Generators undertaking OTSDUW and connecting to a Transmission Interface Point.
- The requirements of this ECC shall apply to EU Code Users in respect of Power Generating Modules (including DC Connected Power Park Modules and Electricity Storage Modules) and HVDC Systems.

ECC.4 PROCEDURE

The CUSC contains certain provisions relating to the procedure for connection to the National Electricity Transmission System or, in the case of Embedded Power Stations or Embedded HVDC Systems, becoming operational and includes provisions relating to certain conditions to be complied with by EU Code Users prior to and during the course of The Company notifying the User that it has the right to become operational. The procedure for an EU Code User to become connected is set out in the Compliance Processes.

ECC.5 CONNECTION

- The provisions relating to connecting to the **National Electricity Transmission System** (or to a **User's System** in the case of a connection of an **Embedded Large Power Station** or **Embedded Medium Power Stations** or **Embedded HVDC System**) are contained in:
 - (a) the CUSC and/or CUSC Contract (or in the relevant application form or offer for a CUSC Contract);
 - (b) or, in the case of an **Embedded Development**, the relevant **Distribution Code** and/or the **Embedded Development Agreement** for the connection (or in the relevant application form or offer for an **Embedded Development Agreement**),

and include provisions relating to both the submission of information and reports relating to compliance with the relevant European Connection Conditions for that EU Code User, Safety Rules, commissioning programmes, Operation Diagrams and approval to connect (and their equivalents in the case of Embedded Medium Power Stations not subject to a Bilateral Agreement or Embedded HVDC Systems not subject to a Bilateral Agreement). References in the ECC to the "Bilateral Agreement" and/or "Construction Agreement" and/or "Embedded Development Agreement" shall be deemed to include references to the application form or offer therefor.

ECC.5.2 <u>Items For Submission</u>

Prior to the **Completion Date** (or, where the **EU Generator** is undertaking **OTSDUW**, any later date specified) under the **Bilateral Agreement** and/or **Construction Agreement**, the following is submitted pursuant to the terms of the **Bilateral Agreement** and/or **Construction Agreement**:

- (a) updated Planning Code data (both Standard Planning Data and Detailed Planning Data), with any estimated values assumed for planning purposes confirmed or, where practical, replaced by validated actual values and by updated estimates for the future and by updated forecasts for Forecast Data items such as Demand, pursuant to the requirements of the Planning Code;
- (b) details of the **Protection** arrangements and settings referred to in ECC.6;
- (c) copies of all Safety Rules and Local Safety Instructions applicable at Users' Sites which will be used at the Transmission/User interface (which, for the purpose of OC8, must be to The Company's satisfaction regarding the procedures for Isolation and Earthing. The Company will consult the Relevant Transmission Licensee when determining whether the procedures for Isolation and Earthing are satisfactory);
- (d) information to enable the preparation of the **Site Responsibility Schedules** on the basis of the provisions set out in Appendix 1;
- (e) an **Operation Diagram** for all **HV Apparatus** on the **User** side of the **Connection Point** as described in ECC.7:
- (f) the proposed name of the **User Site** (which shall not be the same as, or confusingly similar to, the name of any **Transmission Site** or of any other **User Site**);
- (g) written confirmation that Safety Co-ordinators acting on behalf of the User are authorised and competent pursuant to the requirements of OC8;
- (h) Such **RISSP** prefixes pursuant to the requirements of **OC8**. Such **RISSP** prefixes shall be circulated utilising a proforma in accordance with **OC8**;
- (i) a list of the telephone numbers for **Joint System Incidents** at which senior management representatives nominated for the purpose can be contacted and confirmation that they are fully authorised to make binding decisions on behalf of the **User**, pursuant to **OC9**;
- (j) a list of managers who have been duly authorised to sign **Site Responsibility Schedules** on behalf of the **User**;
- (k) information to enable the preparation of the **Site Common Drawings** as described in ECC.7;
- a list of the telephone numbers for the **Users** facsimile machines referred to in ECC.6.5.9;
 and
- (m) for Sites in Scotland and Offshore a list of persons appointed by the User to undertake operational duties on the User's System (including any OTSDUW prior to the OTSUA Transfer Time) and to issue and receive operational messages and instructions in relation to the User's System (including any OTSDUW prior to the OTSUA Transfer Time); and an appointed person or persons responsible for the maintenance and testing of User's Plant and Apparatus.
- Prior to the **Completion Date** the following must be submitted to **The Company** by the **Network Operator** in respect of an **Embedded Development**:
 - (a) updated Planning Code data (both Standard Planning Data and Detailed Planning Data), with any estimated values assumed for planning purposes confirmed or, where practical, replaced by validated actual values and by updated estimates for the future and by updated forecasts for Forecast Data items such as Demand, pursuant to the requirements of the Planning Code;
 - (b) details of the **Protection** arrangements and settings referred to in ECC.6;
 - (c) the proposed name of the **Embedded Medium Power Station** or **Embedded HVDC System** (which shall be agreed with **The Company** unless it is the same as, or confusingly similar to, the name of other **Transmission Site** or **User Site**);

- Prior to the Completion Date contained within an Offshore Transmission Distribution
 Connection Agreement the following must be submitted to The Company by the Network
 Operator in respect of a proposed new Interface Point within its User System:
 - (a) updated Planning Code data (both Standard Planning Data and Detailed Planning Data), with any estimated values assumed for planning purposes confirmed or, where practical, replaced by validated actual values and by updated estimates for the future and by updated forecasts for Forecast Data items such as Demand, pursuant to the requirements of the Planning Code;
 - (b) details of the **Protection** arrangements and settings referred to in ECC.6;
 - (c) the proposed name of the **Interface Point** (which shall not be the same as, or confusingly similar to, the name of any **Transmission Site** or of any other **User Site**);
- In the case of OTSDUW Plant and Apparatus (in addition to items under ECC.5.2.1 in respect of the Connection Site), prior to the Completion Date (or any later date specified) under the Construction Agreement the following must be submitted to The Company by the User in respect of the proposed new Connection Point and Interface Point:
 - (a) updated Planning Code data (Standard Planning Data, Detailed Planning Data and OTSDUW Data and Information), with any estimated values assumed for planning purposes confirmed or, where practical, replaced by validated actual values and by updated estimates for the future and by updated forecasts for Forecast Data items such as Demand, pursuant to the requirements of the Planning Code;
 - (b) details of the **Protection** arrangements and settings referred to in ECC.6;
 - (c) information to enable preparation of the **Site Responsibility Schedules** at the **Transmission Interface Site** on the basis of the provisions set out in Appendix E1.
 - (d) the proposed name of the **Interface Point** (which shall not be the same as, or confusingly similar to, the name of any **Transmission Site** or of any other **User Site**);
- ECC.5.3 (a) Of the items ECC.5.2.1 (c), (e), (g), (h), (k) and (m) need not be supplied in respect of **Embedded Power Stations** or **Embedded HVDC Systems**,
 - (b) item ECC.5.2.1(i) need not be supplied in respect of Embedded Small Power Stations and Embedded Medium Power Stations or Embedded HVDC Systems with a Registered Capacity of less than 100MW, and
 - (c) items ECC.5.2.1(d) and (j) are only needed in the case where the **Embedded Power Station** or the **Embedded HVDC System** is within a **Connection Site** with another **User**.

ECC.6 TECHNICAL, DESIGN AND OPERATIONAL CRITERIA

ECC.6.1 National Electricity Transmission System Performance Characteristics

ECC.6.1.1 The Company shall ensure that, subject as provided in the Grid Code, the National Electricity Transmission System complies with the following technical, design and operational criteria in relation to the part of the National Electricity Transmission System at the Connection Site with a User and in the case of OTSDUW Plant and Apparatus, a Transmission Interface Point (unless otherwise specified in ECC.6) although in relation to operational criteria The Company may be unable (and will not be required) to comply with this obligation to the extent that there are insufficient Power Stations or User Systems are not available or Users do not comply with The Company's instructions or otherwise do not comply with the Grid Code and each User shall ensure that its Plant and Apparatus complies with the criteria set out in ECC.6.1.5.

ECC.6.1.2 Grid Frequency Variations

ECC.6.1.2.1 Grid Frequency Variations

- ECC.6.1.2.1.1 The **Frequency** of the **National Electricity Transmission System** shall be nominally 50Hz and shall be controlled within the limits of 49.5 50.5Hz unless exceptional circumstances prevail.
- ECC.6.1.2.1.2 The **System Frequency** could rise to 52Hz or fall to 47Hz in exceptional circumstances. Design of **User's Plant** and **Apparatus** and **OTSDUW Plant and Apparatus** must enable operation of that **Plant** and **Apparatus** within that range in accordance with the following:

Frequency Range	<u>Requirement</u>
51.5Hz - 52Hz	Operation for a period of at least 15 minutes is required each
	time the Frequency is above 51.5Hz.
51Hz - 51.5Hz	Operation for a period of at least 90 minutes is required each
	time the Frequency is above 51Hz.
49.0Hz - 51Hz	Continuous operation is required
47.5Hz - 49.0Hz	Operation for a period of at least 90 minutes is required each
	time the Frequency is below 49.0Hz.
47Hz - 47.5Hz	Operation for a period of at least 20 seconds is required
	each time the Frequency is below 47.5Hz.

- ECC.6.1.2.1.3 For the avoidance of doubt, disconnection, by frequency or speed based relays is not permitted within the frequency range 47.5Hz to 51.5Hz. **EU Generators** should however be aware of the combined voltage and frequency operating ranges as defined in ECC.6.3.12 and ECC.6.3.13.
- ECC.6.1.2.1.4 The Company in co-ordination with the Relevant Transmission Licensee and/or Network Operator and a User may agree on wider variations in frequency or longer minimum operating times to those set out in ECC.6.1.2.1.2 or specific requirements for combined frequency and voltage deviations. Any such requirements in relation to Power Generating Modules shall be in accordance with ECC.6.3.12 and ECC.6.3.13. A User shall not unreasonably withhold consent to apply wider frequency ranges or longer minimum times for operation taking account of their economic and technical feasibility.
- ECC.6.1.2.2 <u>Grid Frequency variations for HVDC Systems</u> and Remote End HVDC Converter Stations
- ECC.6.1.2.2.1 **HVDC Systems** and **Remote End HVDC Converter Stations** shall be capable of staying connected to the **System** and remaining operable within the frequency ranges and time periods specified in Table ECC.6.1.2.2 below. This requirement shall continue to apply during the **Fault Ride Through** conditions defined in ECC.6.3.15

Frequency Range (Hz)	Time Period for Operation (s)
47.0 – 47.5Hz	60 seconds
47.5 – 49.0Hz	90 minutes and 30 seconds
49.0 – 51.0Hz	Unlimited
51.0 – 51.5Hz	90 minutes and 30 seconds
51.5Hz – 52 Hz	20 minutes

- Table ECC.6.1.2.2 Minimum time periods HVDC Systems and Remote End HVDC Converter Stations shall be able to operate for different frequencies deviating from a nominal value without disconnecting from the National Electricity Transmission System
- ECC.6.1.2.2.2 The Company in coordination with the Relevant Transmission Licensee and a HVDC System Owner may agree wider frequency ranges or longer minimum operating times if required to preserve or restore system security. If wider frequency ranges or longer minimum times for operation are economically and technically feasible, the HVDC System Owner shall not unreasonably withhold consent.

- ECC.6.1.2.2.3 Not withstanding the requirements of ECC.6.1.2.2.1, an HVDC System or Remote End HVDC Converter Station shall be capable of automatic disconnection at frequencies specified by The Company and/or Relevant Network Operator.
- ECC.6.1.2.2.4 In the case of **Remote End HVDC Converter Stations** where the **Remote End HVDC Converter Station** is operating at either nominal frequency other than 50Hz or a variable frequency, the requirements defined in ECC6.1.2.2.1 to ECC.6.1.2.2.3 shall apply to the **Remote End HVDC Converter Station** other than in respect of the frequency ranges and time periods.
- ECC.6.1.2.3 Grid Frequency Variations for DC Connected Power Park Modules
- ECC.6.1.2.3.1 DC Connected Power Park Modules shall be capable of staying connected to the Remote End DC Converter network at the HVDC Interface Point and operating within the Frequency ranges and time periods specified in Table ECC.6.1.2.3 below. Where a nominal frequency other than 50Hz, or a Frequency variable by design is used as agreed with The Company and the Relevant Transmission Licensee the applicable Frequency ranges and time periods shall be specified in the Bilateral Agreement which shall (where applicable) reflect the requirements in Table ECC.6.1.2.3.

Frequency Range (Hz)	Time Period for Operation (s)
47.0 – 47.5Hz	20 seconds
47.5 – 49.0Hz	90 minutes
49.0 – 51.0Hz	Unlimited
51.0 – 51.5Hz	90 minutes
51.5Hz – 52 Hz	15 minutes

- Table ECC.6.1.2.3 Minimum time periods a **DC Connected Power Park Module** shall be able to operate for different frequencies deviating from a nominal value without disconnecting from the **System**
- ECC.6.1.2.3.2 The Company in coordination with the Relevant Transmission Licensee and a Generator may agree wider frequency ranges or longer minimum operating times if required to preserve or restore system security and to ensure the optimum capability of the DC Connected Power Park Module. If wider frequency ranges or longer minimum times for operation are economically and technically feasible, the EU Generator shall not unreasonably withhold consent.
- ECC.6.1.3 Not used
- ECC.6.1.4 Grid Voltage Variations
- ECC.6.1.4.1 Grid Voltage Variations for Users excluding DC Connected Power Park Modules and Remote End HVDC Converters

Subject as provided below, the voltage on the 400kV part of the National Electricity Transmission System at each Connection Site with a User (and in the case of OTSDUW Plant and Apparatus, a Transmission Interface Point, excluding DC Connected Power Park Modules and Remote End HVDC Converters) will normally remain within ±5% of the nominal value unless abnormal conditions prevail. The minimum voltage is -10% and the maximum voltage is +10% unless abnormal conditions prevail, but voltages between +5% and +10% will not last longer than 15 minutes unless abnormal conditions prevail. Voltages on the 275kV and 132kV parts of the National Electricity Transmission System at each Connection Point (and in the case of OTSDUW Plant and Apparatus, a Transmission Interface Point) will normally remain within the limits ±10% of the nominal value unless abnormal conditions prevail. At nominal System voltages below 110kV the voltage of the National Electricity Transmission System at each Connection Site with a User (and in the case of OTSDUW Plant and Apparatus, a Transmission Interface Point), excluding Connection Sites for DC Connected Power Park Modules and Remote End HVDC Converters) will normally remain within the limits ±6% of the nominal value unless abnormal conditions prevail. Under fault conditions, the voltage may collapse transiently to zero at the point of fault until the fault is cleared. The normal operating ranges of the National Electricity Transmission System are summarised below:

National Electricity Transmission System Nominal Voltage	Normal Operating Range	Time period for Operation
400kV	400kV -10% to +5% 400kV +5% to +10%	Unlimited 15 minutes
275kV	275kV ±10%	Unlimited
132kV	132kV ±10%	Unlimited
110kV	110kV ±10%	Unlimited
Below 110kV	Below 110kV ±6%	Unlimited

The Company and a **User** may agree greater variations or longer minimum time periods of operation in voltage to those set out above in relation to a particular **Connection Site**, and insofar as a greater variation is agreed, the relevant figure set out above shall, in relation to that **User** at the particular **Connection Site**, be replaced by the figure agreed.

ECC.6.1.4.2 Grid Voltage Variations for all DC Connected Power Park Modules

ECC.6.1.4.2.1 All **DC Connected Power Park Modules** shall be capable of staying connected to the **Remote End HVDC Converter Station** at the **HVDC Interface Point** and operating within the voltage ranges and time periods specified in Tables ECC.6.1.4.2(a) and ECC.6.1.4.2(b) below. The applicable voltage range and time periods specified are selected based on the reference 1pu voltage.

Voltage Range (pu)	Time Period for Operation (s)
0.85pu – 0.9pu	60 minutes
0.9pu – 1.1pu	Unlimited
1.1pu – 1.15pu	15 minutes

Table ECC.6.1.4.2(a) – Minimum time periods for which **DC Connected Power Park Modules** shall be capable of operating for different voltages deviating from reference 1pu without disconnecting from the network where the nominal voltage base is 110kV or above and less than 300kV.

Voltage Range (pu)	Time Period for Operation (s)
0.85pu – 0.9pu	60 minutes
0.9pu — 1.05pu	Unlimited
1.05pu – 1.15pu	15 minutes

- Table ECC.6.1.4.2(b) Minimum time periods for which **DC Connected Power Park Modules** shall be capable of operating for different voltages deviating from reference 1pu without disconnecting from the network where the nominal voltage base is from 300kV up to and including 400kV.
- ECC.6.1.4.2.2 The Company and a EU Generator in respect of a DC Connected Power Park Module may agree greater voltage ranges or longer minimum operating times. If greater voltage ranges or longer minimum times for operation are economically and technically feasible, the EU Generator shall not unreasonably withhold any agreement.
- ECC.6.1.4.2.3 For DC Connected Power Park Modules which have an HVDC Interface Point to the Remote End HVDC Converter Station, The Company in coordination with the Relevant Transmission Licensee may specify voltage limits at the HVDC Interface Point at which the DC Connected Power Park Module is capable of automatic disconnection.
- ECC.6.1.4.2.4 For **HVDC** Interface Points which fall outside the scope of ECC.6.1.4.2.1, ECC.6.1.4.2.2 and ECC.6.1.4.2.3, **The Company** in coordination with the **Relevant Transmission Licensee** shall specify any applicable requirements at the **Grid Entry Point** or **User System Entry Point**.
- ECC.6.1.4.2.5 Where the nominal frequency of the AC collector **System** which is connected to an **HVDC**Interface Point is at a value other than 50Hz, the voltage ranges and time periods specified by **The Company** in coordination with the **Relevant Transmission Licensee** shall be proportional to the values specified in Table ECC.6.1.4.2(a) and Table ECC.6.1.4.2(b)
- ECC.6.1.4.3 Grid Voltage Variations for all Remote End HVDC Converters
- ECC.6.1.4.3.1 All **Remote End HVDC Converter Stations** shall be capable of staying connected to the **HVDC Interface Point** and operating within the voltage ranges and time periods specified in Tables ECC.6.1.4.3(a) and ECC.6.1.4.3(b) below. The applicable voltage range and time periods specified are selected based on the reference 1pu voltage.

Voltage Range (pu)	Time Period for Operation (s)
0.85pu – 0.9pu	60 minutes
0.9pu – 1.1pu	Unlimited
1.1pu – 1.15pu	15 minutes

Table ECC.6.1.4.3(a) – Minimum time periods for which a **Remote End HVDC Converter** shall be capable of operating for different voltages deviating from reference 1pu without disconnecting from the network where the nominal voltage base is 110kV or above and less than 300kV.

Voltage Range (pu)	Time Period for Operation (s)
0.85pu – 0.9pu	60 minutes
0.9pu – 1.05pu	Unlimited
1.05pu – 1.15pu	15 minutes

- Table ECC.6.1.4.3(b) Minimum time periods for which a Remote End HVDC Converter shall be capable of operating for different voltages deviating from reference 1pu without disconnecting from the network where the nominal voltage base is from 300kV up to and including 400kV.
- ECC.6.1.4.3.2 **The Company** and a **HVDC System Owner** may agree greater voltage ranges or longer minimum operating times which shall be in accordance with the requirements of ECC.6.1.4.2.
- ECC.6.1.4.3.4 For **HVDC Interface Points** which fall outside the scope of ECC.6.1.4.3.1 **The Company** in coordination with the **Relevant Transmission Licensee** shall specify any applicable requirements at the **Grid Entry Point** or **User System Entry Point**.
- ECC.6.1.4.3.5 Where the nominal frequency of the AC collector **System** which is connected to an **HVDC**Interface Point is at a value other than 50Hz, the voltage ranges and time periods specified by **The Company** in coordination with the **Relevant Transmission Licensee** shall be proportional to the values specified in Table ECC.6.1.4.3(a) and Table ECC.6.1.4.3(b)

Voltage Waveform Quality

All Plant and Apparatus connected to the National Electricity Transmission System, and that part of the National Electricity Transmission System at each Connection Site or, in the case of OTSDUW Plant and Apparatus, at each Interface Point, should be capable of withstanding the following distortions of the voltage waveform in respect of harmonic content and phase unbalance:

(a) Harmonic Content

The Electromagnetic Compatibility Levels for harmonic distortion on the Onshore Transmission System from all sources under both Planned Outage and fault outage conditions, (unless abnormal conditions prevail) shall comply with Engineering Recommendation G5. The Electromagnetic Compatibility Levels for harmonic distortion on an Offshore Transmission System will be defined in relevant Bilateral Agreements.

Engineering Recommendation G5 contains planning criteria which The Company will apply to the connection of non-linear Load to the National Electricity Transmission System, which may result in harmonic emission limits being specified for these Loads in the relevant Bilateral Agreement. The application of the planning criteria will take into account the position of existing GB Code User's and EU Code Users' Plant and Apparatus (and OTSDUW Plant and Apparatus) in relation to harmonic emissions. EU Code Users must ensure that connection of distorting loads to their User Systems do not cause any harmonic emission limits specified in the Bilateral Agreement, or where no such limits are specified, the relevant planning levels specified in Engineering Recommendation G5 to be exceeded.

(b) Phase Unbalance

Under Planned Outage conditions, the weekly 95 percentile of Phase (Voltage) Unbalance, calculated in accordance with IEC 61000-4-30 and IEC 61000-3-13, on the National Electricity Transmission System for voltages above 150kV should remain, in England and Wales, below 1.5%, and in Scotland, below 2%, and for voltages of 150kV and below, across GB below 2%, unless abnormal conditions prevail and Offshore (or in the case of OTSDUW, OTSDUW Plant and Apparatus) will be defined in relevant Bilateral Agreements.

The Phase Unbalance is calculated from the ratio of root mean square (rms) of negative phase sequence voltage to rms of positive phase sequence voltage, based on 10-minute average values, in accordance with IEC 61000-4-30.

Across GB, under the **Planned Outage** conditions stated in ECC.6.1.5(b) infrequent short duration peaks with a maximum value of 2% are permitted for **Phase (Voltage) Unbalance**, for voltages above 150kV, subject to the prior agreement of **The Company** under the **Bilateral Agreement** and in relation to **OTSDUW**, the **Construction Agreement**. **The Company** will only agree following a specific assessment of the impact of these levels on **Transmission Apparatus** and other **Users Apparatus** with which it is satisfied.

Voltage Fluctuations

- Voltage changes at a **Point of Common Coupling** on the **Onshore Transmission System** shall not exceed:
 - (a) The limits specified in Table ECC.6.1.7(a) with the stated frequency of occurrence, where:

(i)

$$\% \Delta V_{\text{steadystate}} = \left| 100 \text{ x } \frac{\Delta V_{\text{steadystate}}}{\text{Vn}} \right| \qquad \text{and}$$

$$\% \Delta V_{\text{max}} = 100 \text{ x } \frac{\Delta V_{\text{max}}}{\text{Vn}} \text{ ;}$$

- (ii) V_n is the nominal system voltage;
- (iii) V_{steadystate} is the voltage at the end of a period of 1 s during which the rate of change of system voltage over time is ≤ 0.5%;
- (iv) $\Delta V_{\text{steadystate}}$ is the difference in voltage between the initial steady state voltage prior to the RVC (V₀) and the final steady state voltage after the RVC (V_{0'});
- (v) ΔV_{max} is the absolute change in the system voltage relative to the initial steady state system voltage (V₀);
- (vi) All voltages are the r.m.s. of the voltage measured over one cycle refreshed every half a cycle as per BS EN 61000-4-30; and
- (vii) The applications in the 'Example Applicability' column are examples only and are not definitive.

Cat- egory	Title	Maximum number of occurrence	Limits %∆V _{max} & %∆V _{steadystate}	Example Applicability
1	Frequent events	(see NOTE 1)	As per Figure ECC.6.1.7 (1)	Any single or repetitive RVC that falls inside Figure ECC.6.1.7 (1)
2	Infrequent events	4 events in 1 calendar month (see NOTE 2)	As per Figure ECC.6.1.7 (2) $ \% \Delta V_{\text{steadystate}} \leq 3\% $ For decrease in voltage: $ \% \Delta V_{\text{max}} \leq 10\% $ (see NOTE 3) For increase in voltage: $ \% \Delta V_{\text{max}} \leq 6\% $ (see NOTE 4)	Infrequent motor starting, transformer energisation, re-energisation (see NOTE 7)

3	Very infrequent events	1 event in 3 calendar months (see NOTE 2)	As per Figure ECC.6.1.7 (3) $ \%\Delta V_{\text{steadystate}} \le 3\%$ For decrease in voltage: $ \%\Delta V_{\text{max}} \le 12\%$ (see NOTE 5) For increase in voltage: $ \%\Delta V_{\text{max}} \le 6\%$ (see NOTE 6)	Commissioning, maintenance & post fault switching (see NOTE 7)
---	------------------------------	---	--	--

- NOTE 1: ±6% is permissible for 100 ms reduced to ±3% thereafter as per Figure ECC.6.1.7 (1) . If the profile of repetitive voltage change(s) falls within the envelope given in Figure ECC.6.1.7 (1) , the assessment of such voltage change(s) shall be undertaken according to the recommendations for assessment of flicker <u>and</u> shall conform to the planning levels provided for flicker. If any part of the voltage change(s) falls outside the envelope given in Figure ECC.6.1.7(1), the assessment of such voltage changes, repetitive or not, shall be done according to the guidance and limits for RVCs.
- NOTE 2: No more than 1 event is permitted per day, consisting of up to 4 RVCs, each separated by at least 10 minutes with all switching completed within a two-hour window.
- NOTE 3: -10% is permissible for 100 ms reduced to -6% until 2 s then reduced to -3% thereafter as per Figure ECC.6.1.7 (2).
- NOTE 4: +6% is permissible for 0.8 s from the instant the event begins then reduced to +3% thereafter as per Figure ECC.6.1.7 (2).
- NOTE 5: -12% is permissible for 100 ms reduced to -10% until 2 s then reduced to -3% thereafter as per Figure ECC.6.1.7 (3).
- NOTE 6: +6% is permissible for 0.8 s from the instant the event begins then reduced to +3% thereafter as per Figure ECC.6.1.7 (3).
- NOTE 7: These are examples only. Customers may opt to conform to the limits of another category providing the frequency of occurrence is not expected to exceed the 'Maximum number of occurrence' for the chosen category.

Table ECC.6.1.7 (a) – Planning levels for RVC

- (b) The voltage change limit is the absolute maximum allowed of either the phase-to-earth voltage change or the phase-to-phase voltage change, whichever is the highest. The limits do not apply to single phasor equivalent voltages, e.g. positive phase sequence (PPS) voltages. For high impedance earthed systems, the maximum phase-to-phase, i.e. line voltage, should be used for assessment.
- (c) The RVCs in Category 2 and 3 should not exceed the limits depicted in the time dependent characteristic shown in Figure ECC.6.1.7 (2) and Figure ECC.6.1.7 (3) respectively. These limits do not apply to: 1) fault clearance operations; or 2) immediate operations in response to fault conditions; or 3) operations relating to post fault system restoration (for the avoidance of doubt this third exception pertains to a fault that is external to the Users plant and apparatus).
- (d) Any RVCs permitted in Category 2 and Category 3 should be at least 10 minutes apart.
- (e) The value of V_{steadystate} should be established immediately prior to the start of a RVC. Following a RVC, the voltage should remain within the relevant envelope, as shown in Figures ECC.6.1.7 (1), ECC.6.1.7 (2), ECC.6.1.7 (3), until a V_{steadystate} condition has been satisfied.

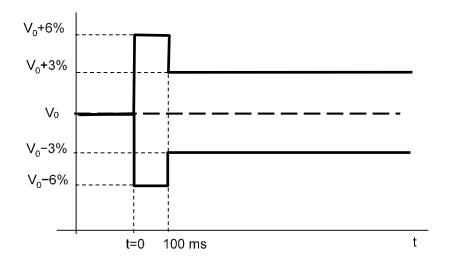


Figure ECC.6.1.7 (1) — Voltage characteristic for frequent events

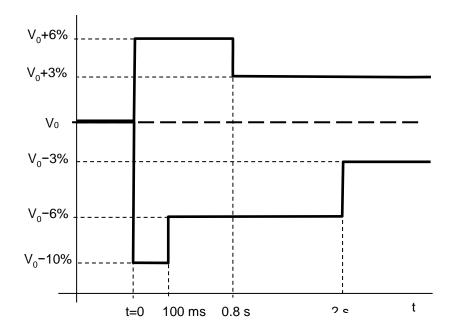


Figure ECC.6.1.7 (2) — Voltage characteristic for infrequent events

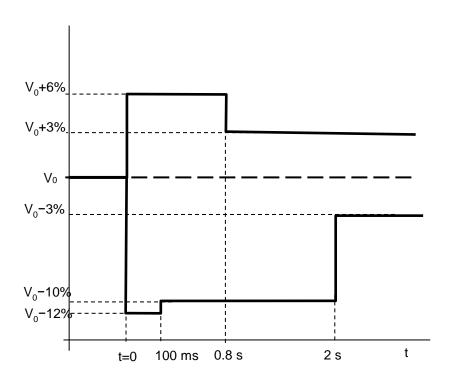


Figure ECC.6.1.7 (3) — Voltage characteristic for very infrequent events

- (f) The voltage change between two steady state voltage conditions should not exceed 3%. (The limit is based on 3% of the nominal voltage of the system (V_n) as measured at the PCC. The step voltage change as measured at the customer's supply terminals or equipment terminals could be greater. For example: The step voltage change limit stated in BS EN 61000-3-3 and BS EN 61000-3-11 is 3.3% when measured at the equipment terminals.)
- (g) The limits apply to voltage changes measured at the **Point of Common Coupling**.
- (h) Category 3 events that are planned should be notified to the Company in advance.
- (i) For connections where voltage changes would constitute a risk to the **National Electricity Transmission System** or, in **The Company's** view, the **System** of any **GB Code User**, **Bilateral Agreements** may include provision for **The Company** to reasonably limit the number of voltage changes in Category 2 or 3 to a lower number than specified in Table ECC.6.1.7(a) to ensure that the total number of voltage changes at the **Point of Common Coupling** across multiple **Users** remains within the limits of Table ECC.6.1.7(a).
- (j) The planning levels applicable to Flicker Severity Short Term (Pst) and Flicker Severity Long Term (Plt) are set out in Table ECC.6.1.7(b).

Supply system Nominal voltage	Planning level	
	Flicker Severity Short Term (Pst)	Flicker Severity Long Term (Plt)
3.3 kV, 6.6 kV, 11 kV, 20 kV, 33 kV	0.9	0.7
66 kV, 110 kV, 132 kV, 150 kV, 200 kV, 220 kV, 275 kV, 400 kV	0.8	0.6

NOTE 1: The magnitude of P_{st} is linear with respect to the magnitude of the voltage changes giving rise to it.

NOTE 2: Extreme caution is advised in allowing any excursions of Pst and Plt above the planning level.

Table ECC.6.7.1(b) — Planning levels for flicker

The values and figures referred to in this paragraph ECC.6.1.7 are derived from Engineering Recommendation P28 Issue 2.

Voltage fluctuations at a **Point of Common Coupling** with a fluctuating **Load** directly connected to an **Offshore Transmission System** (or in the case of **OTSDUW**, **OTSDUW Plant and Apparatus**) shall not exceed the limits set out in the **Bilateral Agreement**.

Sub-Synchronous Resonance and Sub-Synchronous Torsional Interaction (SSTI)

- ECC.6.1.9 The Company shall ensure that Users' Plant and Apparatus will not be subject to unacceptable Sub-Synchronous Oscillation conditions as specified in the relevant License Standards.
- The Company shall ensure where necessary, and in consultation with Relevant Transmission Licensees where required, that any relevant site specific conditions applicable at a User's Connection Site, including a description of the Sub-Synchronous Oscillation conditions considered in the application of the relevant License Standards, are set out in the User's Bilateral Agreement.

ECC.6.2 Plant and Apparatus relating to Connection Sites and Interface Points and HVDC Interface Points

The following requirements apply to Plant and Apparatus relating to the Connection Point and OTSDUW Plant and Apparatus relating to the Interface Point (until the OTSUA Transfer Time), HVDC Interface Points relating to Remote End HVDC Converters and Connection Points which (except as otherwise provided in the relevant paragraph) each EU Code User must ensure are complied with in relation to its Plant and Apparatus and which in the case of ECC.6.2.2.2.2, ECC.6.2.3.1.1 and ECC.6.2.1.1(b) only, The Company must ensure are complied with in relation to Transmission Plant and Apparatus, as provided in those paragraphs.

ECC.6.2.1 <u>General Requirements</u>

- ECC.6.2.1.1 (a) The design of connections between the **National Electricity Transmission System** and:
 - (i) any Power Generating Module Generating Unit (other than a CCGT Unit or Power Park Unit) HVDC Equipment, Power Park Module or CCGT Module, or
 - (ii) any Network Operator's User System, or
 - (iii) Non-Embedded Customers equipment;

will be consistent with the Licence Standards.

In the case of OTSDUW, the design of the OTSUA's connections at the Interface Point and Connection Point will be consistent with Licence Standards.

- (b) The National Electricity Transmission System (and any OTSDUW Plant and Apparatus) at nominal System voltages of 132kV and above is/shall be designed to be earthed with an Earth Fault Factor of, in England and Wales or Offshore, below 1.4 and in Scotland, below 1.5. Under fault conditions the rated Frequency component of voltage could fall transiently to zero on one or more phases or, in England and Wales, rise to 140% phase-to-earth voltage, or in Scotland, rise to 150% phase-to-earth voltage. The voltage rise would last only for the time that the fault conditions exist. The fault conditions referred to here are those existing when the type of fault is single or two phase-to-earth.
- (c) For connections to the National Electricity Transmission System at nominal System voltages of below 132kV the earthing requirements and voltage rise conditions will be advised by The Company as soon as practicable prior to connection and in the case of OTSDUW Plant and Apparatus shall be advised to The Company by the EU Code User.

ECC.6.2.1.2 Substation Plant and Apparatus

- (a) The following provisions shall apply to all Plant and Apparatus which is connected at the voltage of the Connection Point (and OTSDUW Plant and Apparatus at the Interface Point) and which is contained in equipment bays that are within the Transmission busbar Protection zone at the Connection Point. This includes circuit breakers, switch disconnectors, disconnectors, Earthing Devices, power transformers, voltage transformers, reactors, current transformers, surge arresters, bushings, neutral equipment, capacitors, line traps, coupling devices, external insulation and insulation coordination devices. Where necessary, this is as more precisely defined in the Bilateral Agreement.
 - (i) Plant and/or Apparatus in respect of EU Code Users connecting to a new Connection Point (including OTSDUW Plant and Apparatus at the Interface Point)

Each item of such Plant and/or Apparatus installed in relation to a new Connection Point (or OTSDUW Plant and Apparatus at the Interface Point or Remote End HVDC Converter Station at the HVDC Interface Point) shall comply with the relevant Technical Specifications and any further requirements identified by The Company, acting reasonably, to reflect the options to be followed within the Technical Specifications and/or to complement if necessary the Technical

Specifications so as to enable The Company to comply with its obligations in relation to the National Electricity Transmission System or the Relevant Transmission Licensee to comply with its obligations in relation to its Transmission System. This information, including the application dates of the relevant Technical Specifications, will be as specified in the Bilateral Agreement.

(ii) <u>EU Code User's Plant and/or Apparatus connecting to an existing Connection Point</u> (including OTSDUW Plant and Apparatus at the Interface Point)

Each new additional and/or replacement item of such Plant and/or Apparatus installed in relation to a change to an existing Connection Point (or OTSDUW Plant and Apparatus at the Interface Point and Connection Point or Remote End HVDC Converter Stations at the HVDC Interface Point)—shall comply with the standards/specifications applicable when the change was designed, or such other standards/specifications as necessary to ensure that the item of Plant and/or Apparatus is reasonably fit for its intended purpose having due regard to the obligations of The Company, the relevant User the Relevant Transmission Licensee under their respective Licences. Where appropriate this information, including the application dates of the relevant standards/specifications, will be as specified in the varied Bilateral Agreement.

(iii) Used Plant and/or Apparatus being moved, re-used or modified

If, after its installation, any such item of **Plant** and/or **Apparatus** is subsequently:

moved to a new location; or

used for a different purpose; or

otherwise modified;

then the standards/specifications as described in (i) or (ii) above as applicable will apply as appropriate to such **Plant** and/or **Apparatus**, which must be reasonably fit for its intended purpose having due regard to the obligations of **The Company**, the relevant **User** and the **Relevant Transmission Licensee** under their respective **Licences**.

- (b) The Company shall at all times maintain a list of those Technical Specifications and additional requirements which might be applicable under this ECC.6.2.1.2 and which may be referenced by The Company in the Bilateral Agreement. The Company shall provide a copy of the list upon request to any EU Code User. The Company shall also provide a copy of the list to any EU Code User upon receipt of an application form for a Bilateral Agreement for a new Connection Point.
- (c) Where the EU Code User provides The Company with information and/or test reports in respect of Plant and/or Apparatus which the EU Code User reasonably believes demonstrate the compliance of such items with the provisions of a Technical Specification then The Company shall promptly and without unreasonable delay give due and proper consideration to such information.
- (d) Plant and Apparatus shall be designed, manufactured and tested in premises with an accredited certificate in accordance with the quality assurance requirements of the relevant standard in the BS EN ISO 9000 series (or equivalent as reasonably approved by The Company) or in respect of test premises which do not include a manufacturing facility premises with an accredited certificate in accordance with BS EN 45001.
- (e) Each connection between a User and the National Electricity Transmission System must be controlled by a circuit-breaker (or circuit breakers) capable of interrupting the maximum short circuit current at the point of connection. The Seven Year Statement gives values of short circuit current and the rating of Transmission circuit breakers at existing and committed Connection Points for future years.

- (f) Each connection between a Generator undertaking OTSDUW or an Onshore Transmission Licensee, must be controlled by a circuit breaker (or circuit breakers) capable of interrupting the maximum short circuit current at the Transmission Interface Point. The Seven Year Statement gives values of short circuit current and the rating of Transmission circuit breakers at existing and committed Transmission Interface Points for future years.
- ECC.6.2.2 Requirements at Connection Points or, in the case of OTSDUW at Interface Points that relate to Generators or OTSDUW Plant and Apparatus
- ECC.6.2.2.1 Not Used.
- ECC.6.2.2.2 Power Generating Module, OTSDUW Plant and Apparatus, HVDC Equipment and Power Station Protection Arrangements
- ECC.6.2.2.2.1 Minimum Requirements

Protection of Power Generating Modules (other than Power Park Units), HVDC Equipment, OTSDUW Plant and Apparatus and their connections to the National Electricity Transmission System shall meet the requirements given below. These are necessary to reduce the impact on the National Electricity Transmission System of faults on OTSDUW Plant and Apparatus circuits or circuits owned by Generators (including DC Connected Power Park Modules) or HVDC System Owners.

ECC.6.2.2.2. Fault Clearance Times

- (a) The required fault clearance time for faults on the Generator's (including DC Connected Power Park Modules) or HVDC System Owner's equipment directly connected to the National Electricity Transmission System or OTSDUW Plant and Apparatus and for faults on the National Electricity Transmission System directly connected to the EU Generator (including DC Connected Power Park Modules) or HVDC System Owner's equipment or OTSDUW Plant and Apparatus, from fault inception to the circuit breaker arc extinction, shall be set out in the Bilateral Agreement. The fault clearance time specified in the Bilateral Agreement shall not be shorter than the durations specified below:
 - (i) 80ms at 400kV
 - (ii) 100ms at 275kV
 - (iii) 120ms at 132kV and below

but this shall not prevent the **User** or **The Company** or the **Relevant Transmission Licensee** or the **EU Generator** (including in respect of **OTSDUW Plant and Apparatus** and **DC Connected Power Park Modules**) from selecting a shorter fault clearance time on their own **Plant** and **Apparatus** provided **Discrimination** is achieved.

A longer fault clearance time may be specified in the **Bilateral Agreement** for faults on the **National Electricity Transmission System**. A longer fault clearance time for faults on the **EU Generator** or **HVDC System Owner's** equipment or **OTSDUW Plant and Apparatus** may be agreed with **The Company** in accordance with the terms of the **Bilateral Agreement** but only if **System** requirements, in **The Company's** view, permit. The probability that the fault clearance time stated in the **Bilateral Agreement** will be exceeded by any given fault, must be less than 2%.

(b) In the event that the required fault clearance time is not met as a result of failure to operate on the Main Protection System(s) provided, the Generators or HVDC System Owners or Generators in the case of OTSDUW Plant and Apparatus shall, except as specified below provide Independent Back-Up Protection. The Relevant Transmission Licensee will also provide Back-Up Protection and the Relevant Transmission Licensee's and the User's Back-Up Protections will be co-ordinated so as to provide Discrimination.

On a Power Generating Module (other than a Power Park Unit), HVDC Equipment or OTSDUW Plant and Apparatus and connected to the National Electricity Transmission System at 400kV or 275kV and where two Independent Main Protections are provided to clear faults on the HV Connections within the required fault clearance time, the Back-Up Protection provided by EU Generators (including in respect of OTSDUW Plant and Apparatus and DC Connected Power Park Modules) and HVDC System Owners shall operate to give a fault clearance time of no longer than 300ms at the minimum infeed for normal operation for faults on the HV Connections. Where two Independent Main Protections are installed the Back-Up Protection may be integrated into one (or both) of the Independent Main Protection relays.

On a Power Generating Module (other than a Power Park Unit), HVDC Equipment or OTSDUW Plant and Apparatus and connected to the National Electricity Transmission System at 132 kV and where only one Main Protection is provided to clear faults on the HV Connections within the required fault clearance time, the Independent Back-Up Protection provided by the Generator (including in respect of OTSDUW Plant and Apparatus and DC Connected Power Park Modules) and the HVDC System Owner shall operate to give a fault clearance time of no longer than 300ms at the minimum infeed for normal operation for faults on the HV Connections.

A Power Generating Module (other than a Power Park Unit), HVDC Equipment or OTSDUW Plant and Apparatus) with Back-Up Protection or Independent Back-Up Protection will also be required to withstand, without tripping, the loading incurred during the clearance of a fault on the National Electricity Transmission System by breaker fail Protection at 400kV or 275kV or of a fault cleared by Back-Up Protection where the EU Generator (including in the case of OTSDUW Plant and Apparatus or DC Connected Power Park Module) or HVDC System is connected at 132kV and below. This will permit Discrimination between the Generator in respect of OTSDUW Plant and Apparatus or DC Connected Power Park Modules or HVDC System Owners' Back-Up Protection or Independent Back-Up Protection and the Back-Up Protection provided on the National Electricity Transmission System and other Users' Systems.

- (c) When the Power Generating Module (other than Power Park Units), or the HVDC Equipment or OTSDUW Plant and Apparatus is connected to the National Electricity Transmission System at 400kV or 275kV, and in Scotland and Offshore also at 132kV, and a circuit breaker is provided by the Generator (including in respect of OTSDUW Plant and Apparatus or DC Connected Power Park Modules) or the HVDC System owner, or the Relevant Transmission Licensee, as the case may be, to interrupt fault current interchange with the National Electricity Transmission System, or Generator's System, or HVDC System Owner's System, as the case may be, circuit breaker fail Protection shall be provided by the Generator (including in respect of OTSDUW Plant and Apparatus or DC Connected Power Park Modules) or HVDC System-Owner, or the Relevant Transmission Licensee, as the case may be, on this circuit breaker. In the event, following operation of a Protection system, of a failure to interrupt fault current by these circuit-breakers within the Fault Current Interruption Time, the circuit breaker fail Protection is required to initiate tripping of all the necessary electrically adjacent circuit-breakers so as to interrupt the fault current within the next 200ms.
- (d) The target performance for the **System Fault Dependability Index** shall be not less than 99%. This is a measure of the ability of **Protection** to initiate successful tripping of circuit breakers which are associated with the faulty item of **Apparatus**.

ECC.6.2.2.3 Equipment including **Protection** equipment to be provided

The **Relevant Transmission Licensee** shall specify the **Protection** schemes and settings necessary to protect the **National Electricity Transmission System**, taking into account the characteristics of the **Power Generating Module** or **HVDC Equipment**.

The protection schemes needed for the Power Generating Module or HVDC Equipment and the National Electricity Transmission System as well as the settings relevant to the Power Generating Module and/or HVDC Equipment shall be coordinated and agreed between The Company and the EU Generator or HVDC System Owner. The agreed Protection schemes and settings will be specified in the Bilateral Agreement.

The protection schemes and settings for internal electrical faults must not prevent the **Power Generating Module** or **HVDC Equipment** from satisfying the requirements of the Grid Code although **EU Generators** should be aware of the requirements of ECC.6.3.13.1.;

electrical Protection of the Power Generating Module or HVDC Equipment shall take precedence over operational controls, taking into account the security of the National Electricity Transmission System and the health and safety of personnel, as well as mitigating any damage to the Power Generating Module or HVDC Equipment.

ECC.6.2.2.3.1 Protection of Interconnecting Connections

The requirements for the provision of **Protection** equipment for interconnecting connections will be specified in the **Bilateral Agreement**. In this **ECC** the term "interconnecting connections" means the primary conductors from the current transformer accommodation on the circuit side of the circuit breaker to the **Connection Point** or the primary conductors from the current transformer accommodation on the circuit side of the **OTSDUW Plant and Apparatus** of the circuit breaker to the **Transmission Interface Point**.

ECC.6.2.2.3.2 <u>Circuit-breaker fail Protection</u>

The EU Generator or HVDC System Owner will install circuit breaker fail Protection equipment in accordance with the requirements of the Bilateral Agreement. The EU Generator or HVDC System Owner will also provide a back-trip signal in the event of loss of air from its pressurised head circuit breakers, during the Power Generating Module (other than a CCGT Unit or Power Park Unit) or HVDC Equipment run-up sequence, where these circuit breakers are installed.

ECC.6.2.2.3.3 Loss of Excitation

The **EU Generator** must provide **Protection** to detect loss of excitation in respect of each of its **Generating Units** within a **Synchronous Power Generating Module** to initiate a **Generating Unit** trip.

ECC.6.2.2.3.4 Pole-Slipping Protection

Where, in **The Company's** reasonable opinion, **System** requirements dictate, **The Company** will specify in the **Bilateral Agreement** a requirement for **EU Generators** to fit pole-slipping **Protection** on their **Generating Units** within each **Synchronous Power Generating Module**.

ECC.6.2.2.3.5 Signals for Tariff Metering

EU Generators and **HVDC System Owners** will install current and voltage transformers supplying all tariff meters at a voltage to be specified in, and in accordance with, the **Bilateral Agreement**.

ECC.6.2.2.3.6 Commissioning of Protection Systems

No EU Generator or HVDC System Owner equipment shall be energised until the Protection settings have been finalised. The EU Generator or HVDC System Owner shall agree with The Company (in coordination with the Relevant Transmission Licensee) and carry out a combined commissioning programme for the Protection systems, and generally, to a minimum standard as specified in the Bilateral Agreement.

ECC.6.2.2.4 Work on Protection Equipment

No busbar **Protection**, mesh corner **Protection**, circuit-breaker fail **Protection** relays, AC or DC wiring (other than power supplies or DC tripping associated with the **Power Generating Module**, **HVDC Equipment** itself) may be worked upon or altered by the **EU Generator** or **HVDC System Owner** personnel in the absence of a representative of the **Relevant Transmission Licensee** to perform such work or alterations in the absence of a representative of the **Relevant Transmission Licensee**.

ECC.6.2.2.5 Relay Settings

Protection and relay settings will be co-ordinated (both on connection and subsequently) across the **Connection Point** in accordance with the **Bilateral Agreement** and in relation to **OTSDUW Plant and Apparatus**, across the **Interface Point** in accordance with the **Bilateral Agreement** to ensure effective disconnection of faulty **Apparatus**.

- ECC.6.2.2.6 Changes to **Protection** Schemes and **HVDC System** Control Modes
- ECC.6.2.2.6.1 Any subsequent alterations to the protection settings (whether by **The Company**, the **Relevant Transmission Licensee**, the **EU Generator** or the **HVDC System Owner**) shall be agreed between **The Company** (in co-ordination with the **Relevant Transmission Licensee**) and the **EU Generator** or **HVDC System Owner** in accordance with the Grid Code (ECC.6.2.2.5). No alterations are to be made to any protection schemes unless agreement has been reached between **The Company**, the **Relevant Transmission Licensee**, the **EU Generator** or **HVDC System Owner**.
- ECC.6.2.2.6.2 The parameters of different control modes of the **HVDC System** shall be able to be changed in the **HVDC Converter Station**, if required by **The Company** in coordination with the **Relevant Transmission Licensee** and in accordance with ECC.6.2.2.6.4.
- ECC.6.2.2.6.3 Any change to the schemes or settings of parameters of the different control modes and protection of the HVDC System including the procedure shall be agreed with The Company in coordination with the Relevant Transmission Licensee and the HVDC System Owner.
- ECC.6.2.2.6.4 The control modes and associated set points shall be capable of being changed remotely, as specified by **The Company** in coordination with the **Relevant Transmission Licensee**.
- ECC.6.2.2.7 Control Schemes and Settings
- ECC.6.2.2.7.1 The schemes and settings of the different control devices on the **Power Generating Module** and **HVDC Equipment** that are necessary for **Transmission System** stability and for taking emergency action shall be agreed with **The Company** in coordination with the **Relevant Transmission Licensee** and the **EU Generator** or **HVDC System Owner**.
- ECC.6.2.2.7.2 Subject to the requirements of ECC.6.2.2.7.1 any changes to the schemes and settings, defined in ECC.6.2.2.7.1, of the different control devices of the **Power Generating Module** or **HVDC Equipment** shall be coordinated and agreed between , the **Relevant Transmission Licensee**, the **EU Generator** and **HVDC System Owner**.
- ECC.6.2.2.8 Ranking of Protection and Control
- ECC.6.2.2.8.1 **The Company** in coordination with **Relevant Transmission Licensees**, shall agree and coordinate the protection and control devices of **EU Generators Plant** and **Apparatus** in accordance with the following general priority ranking (from highest to lowest):
 - (i) The interface between the National Electricity Transmission System and the Power Generating Module or HVDC Equipment Protection equipment;
 - (ii) frequency control (active power adjustment);
 - (iii) power restriction; and
 - (iv) power gradient constraint;

- ECC.6.2.2.8.2 A control scheme, specified by the **HVDC System Owner** consisting of different control modes, including the settings of the specific parameters, shall be coordinated and agreed between **The Company** in coordination with the **Relevant Transmission Licensee** and the **HVDC System Owner**. These details would be specified in the **Bilateral Agreement**.
- ECC.6.2.2.8.3 **The Company** in coordination with **Relevant Transmission Licensees**, shall agree and coordinate the protection and control devices of **HVDC System Owners Plant** and **Apparatus** in accordance with the following general priority ranking (from highest to lowest)
 - (i) The interface between the **National Electricity Transmission System** and **HVDC System Protection** equipment;
 - (ii) Active Power control for emergency assistance
 - (iii) automatic remedial actions as specified in ECC.6.3.6.1.2.5
 - (iv) **Limited Frequency Sensitive Mode** (LFSM) of operation;
 - (v) Frequency Sensitive Mode of operation and Frequency control; and
 - (vi) power gradient constraint.

ECC.6.2.2.9 Synchronising

- ECC.6.2.2.9.1 For any **Power Generating Module** directly connected to the **National Electricity Transmission System** or **Type D Power Generating Module**, synchronisation shall be performed by the **EU Generator** only after instruction by **The Company** in accordance with the requirements of BC.2.5.2.
- ECC.6.2.2.9.2 Each **Power Generating Module** directly connected to the **National Electricity Transmission System** or **Type D Power Generating Module** shall be equipped with the necessary synchronisation facilities. Synchronisation shall be possible within the range of frequencies specified in ECC.6.1.2.
- ECC.6.2.2.9.3 The requirements for synchronising equipment shall be specified in accordance with the requirements in the **Electrical Standards** listed in the annex to the **General Conditions**. The synchronisation settings shall include the following elements below. Any variation to these requirements shall be pursuant to the terms of the **Bilateral Agreement**.
 - (a) voltage
 - (b) Frequency
 - (c) phase angle range
 - (d) phase sequence
 - (e) deviation of voltage and Frequency
- ECC.6.2.2.9.4 HVDC Equipment shall be required to satisfy the requirements of ECC.6.2.2.9.1 ECC.6.2.2.9.3. In addition, unless otherwise specified by The Company, during the synchronisation of a DC Connected Power Park Module to the National Electricity Transmission System, any HVDC Equipment shall have the capability to limit any steady state voltage changes to the limits specified within ECC.6.1.7 or ECC.6.1.8 (as applicable) which shall not exceed 5% of the pre-synchronisation voltage. The Company in coordination with the Relevant Transmission Licensee shall specify any additional requirements for the maximum magnitude, duration and measurement of the voltage transients over and above those defined in ECC.6.1.7 and ECC.6.1.8 in the Bilateral Agreement.
- ECC.6.2.2.9.5 **EU Generators** in respect of **DC Connected Power Park Modules** shall also provide output synchronisation signals specified by **The Company** in co-ordination with the **Relevant Transmission Licensee**.

ECC.6.2.2.9.6 In addition to the requirements of ECC.6.2.2.9.1 to ECC.6.2.2.9.5, **EU Generators** and **HVDC System Owners** should also be aware of the requirements of ECC.6.5.10 relating to busbar voltage

ECC.6.2.2.9.10 HVDC Parameters and Settings

The parameters and settings of the main control functions of an HVDC System shall be agreed between the HVDC System owner and The Company, in coordination with the Relevant Transmission Licensee. The parameters and settings shall be implemented within such a control hierarchy that makes their modification possible if necessary. Those main control functions are at least:

- (b) Frequency Sensitive Modes (FSM, LFSM-O, LFSM-U);
- (c) Frequency control, if applicable;
- (d) Reactive Power control mode, if applicable;
- (e) power oscillation damping capability;
- (f) subsynchronous torsional interaction damping capability,.

ECC.6.2.2.11 Automatic Reconnection

ECC.6.2.2.11.1 EU Generators in respect of Type A, Type B, Type C and Type D Power Generating Modules (including DC Connected Power Park Modules) which have signed a CUSC Contract with The Company are not permitted to automatically reconnect to the Total System without instruction from The Company. The Company will issue instructions for reconnection or re-synchronisation in accordance with the requirements of BC2.5.2. Where synchronising is permitted in accordance with BC2.5.2, the voltage and frequency at the Grid Entry Point or User System Entry Point shall be within the limits defined in ECC.6.1.2 and ECC.6.1.4 and the ramp rate limits pursuant to BC1.A.1.1. For the avoidance of doubt this requirement does not apply to EU Generators who are not required to satisfy the requirements of the Balancing Codes.

ECC.6.2.2.12 <u>Automatic Disconnection</u>

- ECC.6.2.2.12.1 No **Power Generating Module** or **HVDC Equipment** shall disconnect within the frequency range or voltage range defined in ECC.6.1.2 and ECC.6.1.4.
- ECC.6.2.2.13 <u>Special Provisions relating to Power Generating Modules embedded within Industrial Sites</u> which supply electricity as a bi-product of their industrial process
- ECC.6.2.2.13.1 **Generators** in respect of **Power Generating Modules** which form part of an industrial network, where the **Power Generating Module** is used to supply critical loads within the industrial process shall be permitted to operate isolated from the **Total System** if agreed with **The Company** in the **Bilateral Agreement**.
- ECC.6.2.2.13.2 Except for the requirements of ECC.6.3.3 and ECC.6.3.7.1, **Power Generating Modules** which are embedded within industrial sites are not required to satisfy the requirements of ECC.6.3.6.2.1 and ECC.6.3.9. In this case this exception would only apply to **Power Generating Modules** on industrial sites used for combined heat and power production which are embedded in the network of an industrial site where all the following criteria are met.
 - (a) The primary purpose of these sites is to produce heat for production processes of the industrial site concerned,
 - (b) Heat and power generation is inextricably interlinked, that is to say any change to heat generation results inadvertently in a change of active power generating and visa versa.
 - (c) The Power Generating Modules are of Type A, Type B or Type C.
 - (d) Combined heat and power generating facilities shall be assessed on the basis of their electrical **Maximum Capacity**.

- ECC.6.2.3 Requirements at EU Grid Supply Points relating to Network Operators and Non-Embedded Customers
- ECC.6.2.3.1 <u>Protection Arrangements for EU Code Users in respect of Network Operators and Non-</u> Embedded Customers
- ECC.6.2.3.1.1 Protection arrangements for EU Code Users in respect of Network Operators and Non-Embedded Customers User Systems directly connected to the National Electricity Transmission System, shall meet the requirements given below:

Fault Clearance Times

- (a) The required fault clearance time for faults on Network Operator and Non-Embedded Customer equipment directly connected to the National Electricity Transmission System, and for faults on the National Electricity Transmission System directly connected to the Network Operator's or Non-Embedded Customer's equipment, from fault inception to the circuit breaker arc extinction, shall be set out in each Bilateral Agreement. The fault clearance time specified in the Bilateral Agreement shall not be shorter than the durations specified below:
 - (i) 80ms at 400kV
 - (ii) 100ms at 275kV
 - (iii) 120ms at 132kV and below

but this shall not prevent the **User** or **The Company** or **Relevant Transmission Licensee** from selecting a shorter fault clearance time on its own **Plant** and **Apparatus** provided **Discrimination** is achieved.

For the purpose of establishing the **Protection** requirements in accordance with ECC.6.2.3.1.1 only, the point of connection of the **Network Operator** or **Non-Embedded Customer** equipment to the **National Electricity Transmission System** shall be deemed to be the low voltage busbars at an **EU Grid Supply Point**, irrespective of the ownership of the equipment at the **EU Grid Supply Point**.

A longer fault clearance time may be specified in the **Bilateral Agreement** for faults on the **National Electricity Transmission System**. A longer fault clearance time for faults on the **Network Operator** and **Non-Embedded Customers** equipment may be agreed with **The Company** in accordance with the terms of the **Bilateral Agreement** but only if **System** requirements in **The Company's** view permit. The probability that the fault clearance time stated in the **Bilateral Agreement** will be exceeded by any given fault must be less than 2%.

- (b) (i) For the event of failure of the **Protection** systems provided to meet the above fault clearance time requirements, **Back-Up Protection** shall be provided by the **Network Operator** or **Non-Embedded Customer** as the case may be.
 - (ii) The Relevant Transmission Licensee will also provide Back-Up Protection, which will result in a fault clearance time longer than that specified for the Network Operator or Non-Embedded Customer Back-Up Protection so as to provide Discrimination.
 - (iii) For connections with the **National Electricity Transmission System** at 132kV and below, it is normally required that the **Back-Up Protection** on the **National Electricity Transmission System** shall discriminate with the **Network Operator** or **Non-Embedded Customer's Back-Up Protection**.
 - (iv) For connections with the National Electricity Transmission System at 400kV or 275kV, the Back-Up Protection will be provided by the Network Operator or Non-Embedded Customer, as the case may be, with a fault clearance time not longer than 300ms for faults on the Network Operator's or Non-Embedded Customer's Apparatus.
 - (v) Such Protection will also be required to withstand, without tripping, the loading

incurred during the clearance of a fault on the National Electricity Transmission System by breaker fail Protection at 400kV or 275kV. This will permit Discrimination between Network Operator's Back-Up Protection or Non-Embedded Customer's Back-Up Protection, as the case may be, and Back-Up Protection provided on the National Electricity Transmission System and other User Systems. The requirement for and level of Discrimination required will be specified in the Bilateral Agreement.

- (c) (i) Where the Network Operator or Non-Embedded Customer is connected to the National Electricity Transmission System at 400kV or 275kV, and in Scotland also at 132kV, and a circuit breaker is provided by the Network Operator or Non-Embedded Customer, or the Relevant Transmission Licensee, as the case may be, to interrupt the interchange of fault current with the National Electricity Transmission System or the System of the Network Operator or Non-Embedded Customer, as the case may be, circuit breaker fail Protection will be provided by the Network Operator or Non-Embedded Customer, or the Relevant Transmission Licensee, as the case may be, on this circuit breaker.
 - (ii) In the event, following operation of a **Protection** system, of a failure to interrupt fault current by these circuit-breakers within the **Fault Current Interruption Time**, the circuit breaker fail **Protection** is required to initiate tripping of all the necessary electrically adjacent circuit-breakers so as to interrupt the fault current within the next 200ms.
- (d) The target performance for the **System Fault Dependability Index** shall be not less than 99%. This is a measure of the ability of **Protection** to initiate successful tripping of circuit breakers which are associated with the faulty items of **Apparatus**.

ECC.6.2.3.2 Fault Disconnection Facilities

- (a) Where no Transmission circuit breaker is provided at the User's connection voltage, the User must provide The Company with the means of tripping all the User's circuit breakers necessary to isolate faults or System abnormalities on the National Electricity Transmission System. In these circumstances, for faults on the User's System, the User's Protection should also trip higher voltage Transmission circuit breakers. These tripping facilities shall be in accordance with the requirements specified in the Bilateral Agreement.
- (b) The Company may require the installation of a System to Generator Operational Intertripping Scheme in order to enable the timely restoration of circuits following power System fault(s). These requirements shall be set out in the relevant Bilateral Agreement.

ECC.6.2.3.3 Automatic Switching Equipment

Where automatic reclosure of **Transmission** circuit breakers is required following faults on the **User's System**, automatic switching equipment shall be provided in accordance with the requirements specified in the **Bilateral Agreement**.

ECC.6.2.3.4 Relay Settings

Protection and relay settings will be co-ordinated (both on connection and subsequently) across the **Connection Point** in accordance with the **Bilateral Agreement** to ensure effective disconnection of faulty **Apparatus**.

ECC.6.2.3.5 Work on Protection equipment

Where a **Transmission Licensee** owns the busbar at the **Connection Point**, no busbar **Protection**, mesh corner **Protection** relays, AC or DC wiring (other than power supplies or DC tripping associated with the **Network Operator** or **Non-Embedded Customer's Apparatus** itself) may be worked upon or altered by the **Network Operator** or **Non-Embedded Customer** personnel in the absence of a representative of the **Relevant Transmission Licensee** to perform such work or alterations in the absence of a representative of the **Relevant Transmission Licensee**.

ECC.6.2.3.6 Equipment including **Protection** equipment to be provided

The Company in coordination with the Relevant Transmission Licensee shall specify and agree the Protection schemes and settings at each EU Grid Supply Point required to protect the National Electricity Transmission System in accordance with the characteristics of the Network Operator's or Non Embedded Customer's System. The Company in coordination with the Relevant Transmission Licensee and the Network Operator or Non Embedded Customer shall agree on the protection schemes and settings in respect of the busbar protection zone in respect of each EU Grid Supply Point.

Protection of the **Network Operator**'s or **Non Embedded Customer**'s **System** shall take precedence over operational controls whilst respecting the security of the **National Electricity Transmission System** and the health and safety of staff and the public.

ECC.6.2.3.6.1 Protection of Interconnecting Connections

The requirements for the provision of **Protection** equipment for interconnecting connections will be specified in the **Bilateral Agreement**.

ECC.6.2.3.7 Changes to Protection Schemes at EU Grid Supply Points

Any subsequent alterations to the busbar protection settings at the EU Grid Supply Point (whether by The Company, the Relevant Transmission Licensee, the Network Operator or the Non Embedded Customer) shall be agreed between The Company (in co-ordination with the Relevant Transmission Licensee) and the Network Operator or Non Embedded Customer in accordance with the Grid Code (ECC.6.2.3.4). No alterations are to be made to any busbar protection schemes unless agreement has been reached between The Company,

the Relevant Transmission Licensee, the Network Operator or Non Embedded Customer.

No **Network Operator** or **Non Embedded Customer** equipment shall be energised until the **Protection** settings have been agreed prior to commissioning. The **Network Operator** or **Non Embedded Customer** shall agree with **The Company** (in coordination with the **Relevant Transmission Licensee**) and carry out a combined commissioning programme for the **Protection** systems, and generally, to a minimum standard as specified in the **Bilateral Agreement**.

ECC.6.2.3.8 Control Requirements

- ECC.6.2.3.8.1 The Company in coordination with the Relevant Transmission Licensee and the Network Operator or Non Embedded Customer shall agree on the control schemes and settings at each EU Grid Supply Point of the different control devices of the Network Operator's or Non Embedded Customer's System relevant for security of the National Electricity Transmission System. Such requirements would be pursuant to the terms of the Bilateral Agreement which shall also cover at least the following elements:
 - (a) Isolated (National Electricity Transmission System) operation;
 - (b) Damping of oscillations;
 - (c) Disturbances to the National Electricity Transmission System;
 - (d) Automatic switching to emergency supply and restoration to normal topology;
 - (e) Automatic circuit breaker re-closure (on 1-phase faults).
- ECC.6.2.3.8.2 Subject to the requirements of ECC.6.2.3.8.1 any changes to the schemes and settings, defined in ECC.6.2.3.8.1 of the different control devices of the **Network Operator**'s or **Non-Embedded Customer**'s **System** at the **EU Grid Supply Point** shall be coordinated and agreed between **The Company**, the **Relevant Transmission Licensee**, the **Network Operator** or **Non Embedded Customer**.
- ECC.6.2.3.9 Ranking of **Protection** and Control
- ECC.6.2.3.9.1 The **Network Operator** or the **Non Embedded Customer** who owns or operates an **EU Grid Supply Point** shall set the **Protection** and control devices of its **System**, in compliance with the following priority ranking, organised in decreasing order of importance:
 - (a) National Electricity Transmission System Protection;
 - (b) Protection equipment at each EU Grid Supply Point;
 - (c) Frequency control (Active Power adjustment);
 - (d) Power restriction.
- ECC.6.2.3.10 Synchronising
- ECC.6.2.3.10.1 Each **Network Operator** or **Non Embedded Customer** at each **EU Grid Supply Point** shall be capable of synchronisation within the range of frequencies specified in ECC.6.1.2 unless otherwise agreed with **The Company**.
- ECC.6.2.3.10.2 **The Company** and the **Network Operator** or **Non Embedded Customer** shall agree on the settings of the synchronisation equipment at each **EU Grid Supply Point** prior to the **Completion Date**. **The Company** and the relevant **Network Operator** or **Non-Embedded Customer** shall agree the synchronisation settings which shall include the following elements.
 - (a) Voltage;
 - (b) Frequency;
 - (c) phase angle range;
 - (d) deviation of voltage and Frequency.

- ECC.6.3 <u>GENERAL POWER GENERATING MODULE, OTSDUW AND HVDC EQUIPMENT REQUIREMENTS</u>
- This section sets out the technical and design criteria and performance requirements for Power Generating Modules (which includes Electricity Storage Modules) and HVDC Equipment (whether directly connected to the National Electricity Transmission System or Embedded) and (where provided in this section) OTSDUW Plant and Apparatus which each Generator or HVDC System Owner must ensure are complied with in relation to its Power Generating Modules, HVDC Equipment and OTSDUW Plant and Apparatus. References to Power Generating Modules, HVDC Equipment in this ECC.6.3 should be read accordingly. For the avoidance of doubt, the requirements applicable to Synchronous Power Generating Modules also apply to Synchronous Electricity Storage Modules and the requirements applicable to Power Park Modules apply to Non-Synchronous Electricity Storage Modules also apply irrespective of whether the Electricity Storage Module operates in such a mode as to import or export power from the Total System.

Plant Performance Requirements

- ECC.6.3.2 REACTIVE CAPABILITY
- ECC.6.3.2.1 Reactive Capability for Type B Synchronous Power Generating Modules
- When operating at Maximum Capacity, all Type B Synchronous Power Generating Modules must be capable of continuous operation at any points between the limits of 0.95 Power Factor lagging and 0.95 Power Factor leading at the Grid Entry Point or User System Entry Point unless otherwise agreed with The Company or relevant Network Operator. At Active Power output levels other than Maximum Capacity, all Generating Units within a Type B Synchronous Power Generating Module must be capable of continuous operation at any point between the Reactive Power capability limits identified on the HV Generator Performance Chart unless otherwise agreed with The Company or relevant Network Operator.
- ECC.6.3.2.2 Reactive Capability for Type B Power Park Modules
- When operating at Maximum Capacity all Type B Power Park Modules must be capable of continuous operation at any points between the limits of 0.95 Power Factor lagging and 0.95 Power Factor leading at the Grid Entry Point or User System Entry Point unless otherwise agreed with The Company or relevant Network Operator. At Active Power output levels other than Maximum Capacity, each Power Park Module must be capable of continuous operation at any point between the Reactive Power capability limits identified on the HV Generator Performance Chart unless otherwise agreed with The Company or Network Operator.
- ECC.6.3.2.3 Reactive Capability for Type C and D Synchronous Power Generating Modules
- In addition to meeting the requirements of ECC.6.3.2.3.2 ECC.6.3.2.3.5, **EU Generators** which connect a **Type C** or **Type D Synchronous Power Generating Module**(s) to a **Non Embedded Customers System** or private network, may be required to meet additional reactive compensation requirements at the point of connection between the **System** and the **Non Embedded Customer** or private network where this is required for **System** reasons
- All Type C and Type D Synchronous Power Generating Modules shall be capable of satisfying the Reactive Power capability requirements at the Grid Entry Point or User System Entry Point as defined in Figure ECC.6.3.2.3 when operating at Maximum Capacity.

At Active Power output levels other than Maximum Capacity, all Generating Units within a Synchronous Power Generating Module must be capable of continuous operation at any point between the Reactive Power capability limit identified on the HV Generator Performance Chart at least down to the Minimum Stable Operating Level. At reduced Active Power output, Reactive Power supplied at the Grid Entry Point (or User System Entry Point if Embedded) shall correspond to the HV Generator Performance Chart of the Synchronous Power Generating Module, taking the auxiliary supplies and the Active Power and Reactive Power losses of the Generating Unit transformer or Station Transformer into account.

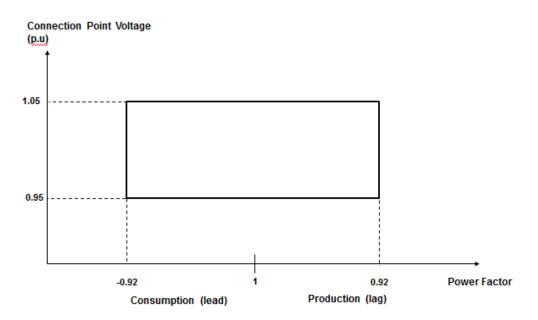


Figure ECC.6.3.2.3

In addition, to the requirements of ECC.6.3.2.3.1 – ECC.6.3.2.3.3 the short circuit ratio of all **Onshore Synchronous Generating Units** with an **Apparent Power** rating of less than 1600MVA shall not be less than 0.5. The short circuit ratio of **Onshore Synchronous Generating Units** with a rated **Apparent Power** of 1600MVA or above shall be not less than 0.4.

ECC.6.3.2.4 Reactive Capability for Type C and D Power Park Modules, HVDC Equipment and OTSDUW Plant and Apparatus at the Interface Point

EU Generators or HVDC System Owners which connect an Onshore Type C or Onshore Type D Power Park Module or HVDC Equipment to a Non Embedded Customers System or private network, may be required to meet additional reactive compensation requirements at the point of connection between the System and the Non Embedded Customer or private network where this is required for System reasons.

ECC.6.3.2.4.2

All Onshore Type C Power Park Modules and Onshore Type D Power Park Modules or HVDC Converters at an HVDC Converter Station with a Grid Entry Point or User System Entry Point voltage above 33kV, or Remote End HVDC Converters with an HVDC Interface Point voltage above 33kV, or OTSDUW Plant and Apparatus with an Interface Point voltage above 33kV shall be capable of satisfying the Reactive Power capability requirements at the Grid Entry Point or User System Entry Point (or Interface Point in the case of OTSDUW Plant and Apparatus, or HVDC Interface Point in the case of a Remote End HVDC Converter Station) as defined in Figure ECC.6.3.2.4(a) when operating at Maximum Capacity (or Interface Point Capacity in the case of OTSUW Plant and Apparatus). In the case of Remote End HVDC Converters and DC Connected Power Park Modules, The Company in co-ordination with the Relevant Transmission Licensee may agree to alternative reactive capability requirements to those specified in Figure ECC.6.3.2.4(a), where it is demonstrated that it is uneconomic and inefficient to do so, for example in the case of new technologies or advanced control strategies. For the avoidance of doubt, the requirements for Offshore Power Park Modules and DC Connected Power Park Modules are defined in ECC.6.3.2.5 and ECC.6.3.2.6.

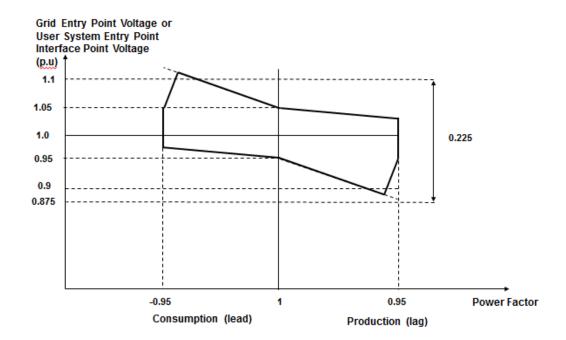


Figure ECC.6.3.2.4(a)

ECC.6.3.2.4.3

All Onshore Type C or Type D Power Park Modules or HVDC Converters at a HVDC Converter Station with a Grid Entry Point or User System Entry Point voltage at or below 33kV or Remote End HVDC Converter Station with an HVDC Interface Point Voltage at or below 33kV shall be capable of satisfying the Reactive Power capability requirements at the Grid Entry Point or User System Entry Point as defined in Figure ECC.6.3.2.4(b) when operating at Maximum Capacity. In the case of Remote End HVDC Converters The Company in co-ordination with the Relevant Transmission Licensee may agree to alternative reactive capability requirements to those specified in Figure ECC.6.3.2.4(b), where it is demonstrated that it is uneconomic and inefficient to do so, for example in the case of new technologies or advanced control strategies. For the avoidance of doubt, the requirements for Offshore Power Park Modules and DC Connected Power Park Modules are defined in ECC.6.3.2.5 and ECC.6.3.2.6.

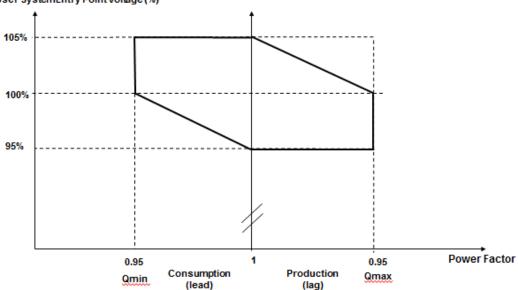


Figure ECC.6.3.2.4(b)

ECC.6.3.2.4.4

All Type C and Type D Power Park Modules, HVDC Converters at a HVDC Converter Station including Remote End HVDC Converters or OTSDUW Plant and Apparatus, shall be capable of satisfying the Reactive Power capability requirements at the Grid Entry Point or User System Entry Point (or Interface Point Capacity in the case of OTSUW Plant and Apparatus or HVDC Interface Point in the case of Remote End HVDC Converter Stations) as defined in Figure ECC.6.3.2.4(c) when operating below Maximum Capacity. With all Plant in service, the Reactive Power limits will reduce linearly below 50% Active Power output as shown in Figure ECC.6.3.2.4(c) unless the requirement to maintain the Reactive Power limits defined at Maximum Capacity (or Interface Point Capacity in the case of OTSDUW Plant and Apparatus) under absorbing Reactive Power conditions down to 20% Active Power output has been specified by The Company. These Reactive Power limits will be reduced pro rata to the amount of Plant in service. In the case of **Remote End HVDC Converters**, **The Company** in co-ordination with the Relevant Transmission Licensee may agree to alternative reactive capability requirements to those specified in Figure ECC.6.3.2.4(a), where it is demonstrated that it is uneconomic and inefficient to do so, for example in the case of new technologies or advanced control strategies. For the avoidance of doubt, the requirements for Offshore Power Park Modules and DC Connected Power Park Modules are defined in ECC.6.3.2.5 and ECC.6.3.2.6.

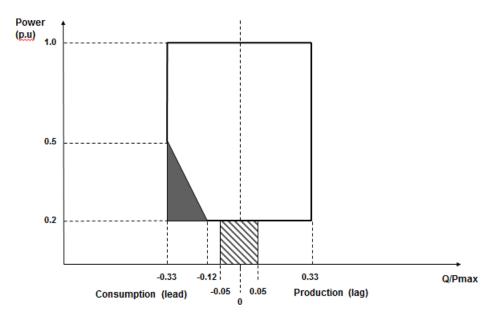


Figure ECC.6.3.2.4(c)

- ECC.6.3.2.5 Reactive Capability for Offshore Synchronous Power Generating Modules,
 Configuration 1 AC connected Offshore Power Park Modules and Configuration 1 DC
 Connected Power Park Modules.
- The short circuit ratio of any Offshore Synchronous Generating Units within a Synchronous Power Generating Module shall not be less than 0.5. All Offshore Synchronous Generating Units, Configuration 1 AC connected Offshore Power Park Modules or Configuration 1 DC Connected Power Park Modules must be capable of maintaining zero transfer of Reactive Power at the Offshore Grid Entry Point. The steady state tolerance on Reactive Power transfer to and from an Offshore Transmission System expressed in MVAr shall be no greater than 5% of the Maximum Capacity.
- For the avoidance of doubt if an **EU Generator** (including those in respect of **DC Connected Power Park Modules**) wishes to provide a **Reactive Power** capability in excess of the minimum requirements defined in ECC.6.3.2.5.1 then such capability (including steady state tolerance) shall be agreed between the **Generator**, **Offshore Transmission Licensee** and **The Company** and/or the relevant **Network Operator**.
- ECC.6.3.2.6 Reactive Capability for Configuration 2 AC Connected Offshore Power Park Modules and Configuration 2 DC Connected Power Park Modules.
- All Configuration 2 AC connected Offshore Power Park Modules and Configuration 2

 DC Connected Power Park Modules shall be capable of satisfying the minimum Reactive
 Power capability requirements at the Offshore Grid Entry Point as defined in Figure
 ECC.6.3.2.6(a) when operating at Maximum Capacity. The Company in co-ordination
 with the Relevant Transmission Licensee may agree to alternative reactive capability
 requirements to those specified in Figure ECC.6.3.2.6(a), where it is demonstrated that it
 is uneconomic and inefficient to do so, for example in the case of new technologies or
 advanced control strategies.

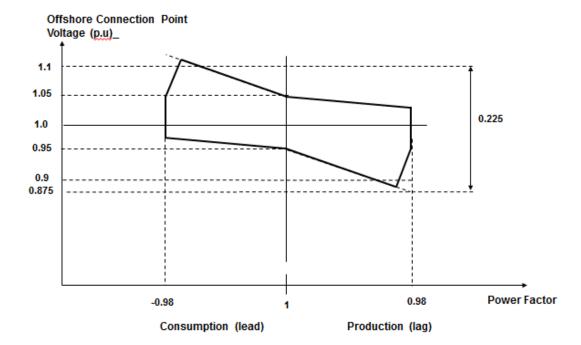


Figure ECC.6.3.2.6(a)

ECC.6.3.2.6.2

All AC Connected Configuration 2 Offshore Power Park Modules and Configuration 2 DC Connected Power Park Modules shall be capable of satisfying the Reactive Power capability requirements at the Offshore Grid Entry Point as defined in Figure ECC.6.3.2.6(b) when operating below Maximum Capacity. With all Plant in service, the Reactive Power limits will reduce linearly below 50% Active Power output as shown in Figure ECC.6.3.2.6(b) unless the requirement to maintain the Reactive Power limits defined at Maximum Capacity (or Interface Point Capacity in the case of OTSDUW Plant and Apparatus) under absorbing Reactive Power conditions down to 20% Active Power output has been specified with The Company. These Reactive Power limits will be reduced pro rata to the amount of Plant in service. The Company in co-ordination with the Relevant Transmission Licensee may agree to alternative reactive capability requirements to those specified in Figure ECC.6.3.2.6(b), where it is demonstrated that it is uneconomic and inefficient to do so, for example in the case of new technologies or advanced control strategies.

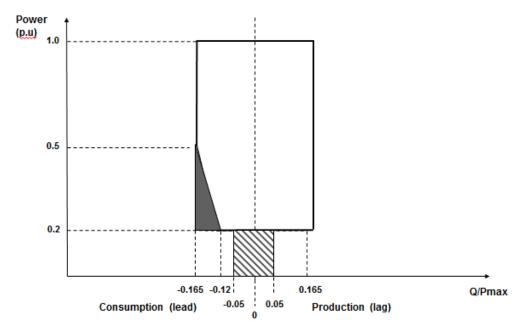
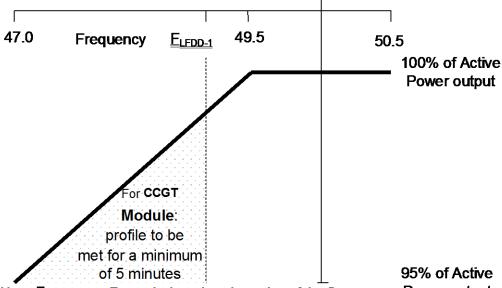


Figure ECC.6.3.2.6(b)

ECC.6.3.2.6.3 For the avoidance of doubt if an **EU Generator** (including **Generators** in respect of **DC Connected Power Park Modules** referred to in ECC.6.3.2.6.2) wishes to provide a **Reactive Power** capability in excess of the minimum requirements defined in ECC.6.3.2.6.1 then such capability (including any steady state tolerance) shall be between the **EU Generator**, **Offshore Transmission Licensee** and **The Company** and/or the relevant **Network Operator**.


ECC.6.3.3 OUTPUT POWER WITH FALLING FREQUENCY

ECC.6.3.3.1 Output power with falling frequency for Power Generating Modules and HVDC Equipment

ECC.6.3.3.1.1 Each Power Generating Module and HVDC Equipment must be capable of:

- (a) continuously maintaining constant **Active Power** output for **System Frequency** changes within the range 50.5 to 49.5 Hz; and
- (b) (subject to the provisions of ECC.6.1.2) maintaining its Active Power output at a level not lower than the figure determined by the linear relationship shown in Figure ECC.6.3.3(a) for **System Frequency** changes within the range 49.5 to 47 Hz for all ambient temperatures up to and including 25°C, such that if the System Frequency drops to 47 Hz the Active Power output does not decrease by more than 5%. In the case of a CCGT Module, the above requirement shall be retained down to the Low Frequency Relay trip setting of 48.8 Hz, which reflects the first stage of the Automatic Low Frequency Demand Disconnection scheme notified to Network Operators under OC6.6.2. For **System Frequency** below that setting, the existing requirement shall be retained for a minimum period of 5 minutes while System Frequency remains below that setting, and special measure(s) that may be required to meet this requirement shall be kept in service during this period. After that 5 minutes period, if System Frequency remains below that setting, the special measure(s) must be discontinued if there is a materially increased risk of the Gas Turbine tripping. The need for special measure(s) is linked to the inherent Gas Turbine Active Power output reduction caused by reduced shaft speed due to falling System Frequency. Where the need for special measures is identified in order to maintain output in line with the level identified in Figure ECC.6.3.3(a) these measures should be still continued at ambient temperatures above 25°C maintaining as much of the Active Power achievable within the capability of the plant. For the avoidance of doubt, Generators in respect of Pumped Storage Plant and Electricity Storage Modules shall also be required to satisfy the requirements of OC6.6.6.

Figure ECC.6.3.3(a) Active Power Output with falling frequency for Power Generating Modules and HVDC Systems and Electricity Storage Modules when operating in an exporting mode of operation

Note: **Frequency** F_{LFDD-1} is the relay trip setting of the first stage Power output of the Automatic Low **Frequency Demand Disconnection**Scheme

- (c) For the avoidance of doubt, in the case of a Power Generating Module including a DC Connected Power Park Module using an Intermittent Power Source where the mechanical power input will not be constant over time, the requirement is that the Active Power output shall be independent of System Frequency under (a) above and should not drop with System Frequency by greater than the amount specified in (b) above.
- (d) An HVDC System must be capable of maintaining its Active Power input (i.e. when operating in a mode analogous to Demand) from the National Electricity Transmission System (or User System in the case of an Embedded HVDC System) at a level not greater than the figure determined by the linear relationship shown in Figure ECC.6.3.3(b) for System Frequency changes within the range 49.5 to 47 Hz, such that if the System Frequency drops to 47.8 Hz the Active Power input decreases by more than 60%.

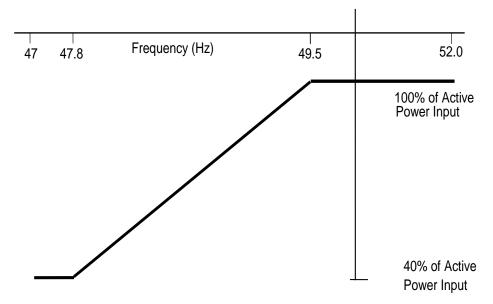


Figure ECC.6.3.3(b) Active Power input with falling frequency for HVDC Systems

- (e) In the case of an Offshore Generating Unit or Offshore Power Park Module or DC Connected Power Park Module or Remote End HVDC Converter or Transmission DC Converter, the EU Generator shall comply with the requirements of ECC.6.3.3. EU Generators should be aware that Section K of the STC places requirements on Offshore Transmission Licensees which utilise a Transmission DC Converter as part of their Offshore Transmission System to make appropriate provisions to enable EU Generators to fulfil their obligations.
- (f) Transmission DC Converters and Remote End HVDC Converters shall provide a continuous signal indicating the real time frequency measured at the Interface Point to the Offshore Grid Entry Point or HVDC Interface Point for the purpose of Offshore Generators or DC Connected Power Park Modules to respond to changes in System Frequency on the Main Interconnected Transmission System. A DC Connected Power Park Module or Offshore Power Generating Module shall be capable of receiving and processing this signal within 100ms.

ECC.6.3.4 ACTIVE POWER OUTPUT UNDER SYSTEM VOLTAGE VARIATIONS

At the **Grid Entry Point** or **User System Entry Point**, the **Active Power** output under steady state conditions of any **Power Generating Module** or **HVDC Equipment** directly connected to the **National Electricity Transmission System** or in the case of **OTSDUW**, the **Active Power** transfer at the **Interface Point**, under steady state conditions of any **OTSDUW Plant and Apparatus** should not be affected by voltage changes in the normal operating range specified in paragraph ECC.6.1.4 by more than the change in **Active Power** losses at reduced or increased voltage.

ECC.6.3.5 BLACK START

- ECC.6.3.5.1 Black Start is not a mandatory requirement, however EU Code Users may wish to notify The Company of their ability to provide a Black Start facility and the cost of the service. The Company will then consider whether it wishes to contract with the EU Code User for the provision of a Black Start service which would be specified via a Black Start Contract. Where an EU Code User does not offer to provide a cost for the provision of a Black Start Capability, The Company may make such a request if it considers System security to be at risk due to a lack of Black Start capability.
- ECC.6.3.5.2 It is an essential requirement that the National Electricity Transmission System must incorporate a Black Start Capability. This will be achieved by agreeing a Black Start Capability at a number of strategically located Power Stations and HVDC Systems. For each Power Station or HVDC System, The Company will state in the Bilateral Agreement whether or not a Black Start Capability is required.
- Where an EU Code User has entered into a Black Start Contract to provide a Black Start Capability in respect of a Type C Power Generating Module or Type D Power Generating Module (including DC Connected Power Park Modules) the following requirements shall apply.
 - (i) The **Power-Generating Module** or **DC Connected Power Park Module** shall be capable of starting from shutdown without any external electrical energy supply within a time frame specified by **The Company** in the **Black Start Contract**.
 - (ii) Each **Power Generating Module** or **DC Connected Power Park Module** shall be able to synchronise within the frequency limits defined in ECC.6.1. and, where applicable, voltage limits specified in ECC.6.1.4;
 - (iii) The **Power Generating Module** or **DC Connected Power Park Module** shall be capable of connecting on to an unenergised **System**.
 - (iv) The **Power-Generating Module** or **DC Connected Power Park Module** shall be capable of automatically regulating dips in voltage caused by connection of demand;
 - (v) The Power Generating Module or DC Connected Power Park Module shall: be capable of Block Load Capability,

be capable of operating in **LFSM-O** and **LFSM-U**, as specified in ECC.6.3.7.1 and ECC.6.3.7.2

control **Frequency** in case of overfrequency and underfrequency within the whole **Active Power** output range between the **Minimum Regulating Level** and **Maximum Capacity** as well as at houseload operation levels

be capable of parallel operation of a few **Power Generating Modules** including **DC Connected Power Park Modules** within an isolated part of the **Total System** that is still supplying **Customers**, and control voltage automatically during the system restoration phase;

- ECC.6.3.5.4 Each HVDC System or Remote End HVDC Converter Station which has a Black Start Capability shall be capable of energising the busbar of an AC substation to which the another HVDC Converter Station is connected. The timeframe after shutdown of the HVDC System prior to energisation of the AC substation shall be pursuant to the terms of the Black Start Contract. The HVDC System shall be able to synchronise within the Frequency limits defined in ECC.6.1.2.1.2 and voltage limits defined in ECC.6.1.4.1 unless otherwise specified in the Black Start Contract. Wider Frequency and voltage ranges can be specified in the Black Start Contract in order to restore System security.
- ECC.6.3.5.5 With regard to the capability to take part in operation of an isolated part of the **Total System** that is still supplying **Customers**:
- (b)Power Generating Modules including DC Connected Power Park Modules shall be capable of taking part in island operation if specified in the Black Start Contract required by The Company and:

the **Frequency** limits for island operation shall be those specified in ECC.6.1.2,

the voltage limits for island operation shall be those defined in ECC.6.1.4;

- (i) Power Generating Modules including DC Connected Power Park Modules shall be able to operate in Frequency Sensitive Mode during island operation, as specified in ECC.6.3.7.3. In the event of a power surplus, Power Generating Modules including DC Connected Power Park Modules shall be capable of reducing the Active Power output from a previous operating point to any new operating point within the Power Generating Module Performance Chart. Power Generating Modules including DC Connected Power Park Modules shall be capable of reducing Active Power output as much as inherently technically feasible, but to at least 55 % of Maximum Capacity;
- (iii) The method for detecting a change from interconnected system operation to island operation shall be agreed between the EU Generator, The Company and the Relevant Transmission Licensee. The agreed method of detection must not rely solely on The Company, Relevant Transmission Licensee's or Network Operators switchgear position signals;
- (iv) Power Generating Modules including DC Connected Power Park Modules shall be able to operate in LFSM-O and LFSM-U during island operation, as specified in ECC.6.3.7.1 and ECC.6.3.7.2;

ECC.6.3.5.6 With regard to quick re-synchronisation capability:

(b) In case of disconnection of the Power Generating Module including DC Connected Power Park Modules from the System, the Power Generating Module shall be capable of quick re-synchronisation in line with the Protection strategy agreed between The Company and/or Network Operator in co-ordination with the Relevant Transmission Licensee and the Generator;

- (i) A Power Generating Module including a DC Connected Power Park Module with a minimum re-synchronisation time greater than 15 minutes after its disconnection from any external power supply must be capable of Houseload Operation from any operating point on-its-Power Generating Module Performance Chart. In this case, the identification of Houseload Operation must not be based solely on the Total System's-switchgear position signals;
- (ii) Power Generating Modules including DC Connected Power Park Modules shall be capable of Houseload Operation, irrespective of any auxiliary connection to the Total System. The minimum operation time shall be specified by The Company, taking into consideration the specific characteristics of prime mover technology.

ECC.6.3.6 CONTROL ARRANGEMENTS

- ECC.6.3.6.1 ACTIVE POWER CONTROL
- ECC.6.3.6.1.1 <u>Active Power control in respect of Power Generating Modules including DC Connected</u>
 Power Park Modules
- ECC.6.3.6.1.1.1 Type A Power Generating Modules shall be equipped with a logic interface (input port) in order to cease Active Power output within five seconds following receipt of a signal from The Company. The Company shall specify the requirements for such facilities, including the need for remote operation, in the Bilateral Agreement where they are necessary for System reasons.
- ECC.6.3.6.1.1.2 Type B Power Generating Modules shall be equipped with an interface (input port) in order to be able to reduce Active Power output following receipt of a signal from The Company.

 The Company shall specify the requirements for such facilities, including the need for remote operation, in the Bilateral Agreement where they are necessary for System reasons.
- ECC.6.3.6.1.1.3 Type C and Type D Power Generating Modules and DC Connected Power Park Modules shall be capable of adjusting the Active Power setpoint in accordance with instructions issued by The Company.
- ECC.6.3.6.1.2 Active Power control in respect of HVDC Systems and Remote End HVDC Converter Stations
- ECC.6.3.6.1.2.1 **HVDC Systems** shall be capable of adjusting the transmitted **Active Power** upon receipt of an instruction from **The Company** which shall be in accordance with the requirements of BC2.6.1.
- ECC.6.3.6.1.2.2The requirements for fast **Active Power** reversal (if required) shall be specified by **The Company**. Where **Active Power** reversal is specified in the **Bilateral Agreement**, each **HVDC System** and **Remote End HVDC Converter Station** shall be capable of operating from maximum import to maximum export in a time which is as fast as technically feasible or in a time that is no greater than 2 seconds except where a **HVDC Converter Station Owner** has justified to **The Company** that a longer reversal time is required.
- ECC.6.3.6.1.2.3Where an HVDC System connects various Control Areas or Synchronous Areas, each HVDC System or Remote End HVDC Converter Station shall be capable of responding to instructions issued by The Company under the Balancing Code to modify the transmitted Active Power for the purposes of cross-border balancing.
- ECC.6.3.6.1.2.4An **HVDC System** shall be capable of adjusting the ramping rate of **Active Power** variations within its technical capabilities in accordance with instructions issued by **The Company**. In case of modification of **Active Power** according to ECC.6.3.15 and ECC.6.3.6.1.2.2, there shall be no adjustment of ramping rate.

ECC.6.3.6.1.2.5 If specified by **The Company**, in coordination with the **Relevant Transmission Licensees**, the control functions of an **HVDC System** shall be capable of taking automatic remedial actions including, but not limited to, stopping the ramping and blocking FSM, LFSM-O, LFSM-U and **Frequency** control. The triggering and blocking criteria shall be specified by **The Company**.

ECC.6.3.6.2 MODULATION OF ACTIVE POWER

ECC.6.3.6.2.1 Each Power Generating Module (including DC Connected Power Park Modules) and Onshore HVDC Converters at an Onshore HVDC Converter Station must be capable of contributing to Frequency control by continuous modulation of Active Power supplied to the National Electricity Transmission System. For the avoidance of doubt each Onshore HVDC Converter at an Onshore HVDC Converter Station and/or OTSDUW DC Converter shall provide each EU Code User in respect of its Offshore Power Stations connected to and/or using an Offshore Transmission System a continuous signal indicating the real time Frequency measured at the Transmission Interface Point. A DC Connected Power Park Module or Offshore Power Generating Module shall be capable of receiving and processing this signal within 100ms.

ECC.6.3.6.3 MODULATION OF REACTIVE POWER

ECC.6.3.6.3.1 Notwithstanding the requirements of ECC.6.3.2, each **Power Generating Module** or **HVDC Equipment** (and **OTSDUW Plant and Apparatus** at a **Transmission Interface Point** and **Remote End HVDC Converter** at an **HVDC Interface Point**) (as applicable) must be capable of contributing to voltage control by continuous changes to the **Reactive Power** supplied to the **National Electricity Transmission System** or the **User System** in which it is **Embedded**.

ECC.6.3.7 FREQUENCY RESPONSE

- ECC.6.3.7.1 Limited Frequency Sensitive Mode Overfrequency (LFSM-O)
- ECC.6.3.7.1.1 Each Power Generating Module (including DC Connected Power Park Modules) and HVDC Systems shall be capable of reducing Active Power output in response to Frequency on the Total System when this rises above 50.4Hz. For the avoidance of doubt, the provision of this reduction in Active Power output is not an Ancillary Service. Such provision is known as Limited High Frequency Response. The Power Generating Module (including DC Connected Power Park Modules) or HVDC Systems shall be capable of operating stably during LFSM-O operation. However for a Power Generating Module (including DC Connected Power Park Modules) or HVDC Systems operating in Frequency Sensitive Mode the requirements of LFSM-O shall apply when the frequency exceeds 50.5Hz.
- ECC.6.3.7.1.2 (i) The rate of change of **Active Power** output must be at a minimum a rate of 2 percent of output per 0.1 Hz deviation of **System Frequency** above 50.4Hz (ie a **Droop** of 10%) as shown in Figure ECC.6.3.7.1 below. This would not preclude a **EU Generator** or **HVDC System Owner** from designing their **Power Generating Module** with a **Droop** of less than 10% but in all cases the **Droop** should be 2% or greater.
 - (ii) The reduction in **Active Power** output must be continuously and linearly proportional, as far as is practicable, to the excess of **Frequency** above 50.4 Hz and must be provided increasingly with time over the period specified in (iii) below.
 - (iii) As much as possible of the proportional reduction in Active Power output must result from the frequency control device (or speed governor) action and must be achieved within 10 seconds of the time of the Frequency increase above 50.4 Hz. The Power Generating Module (including DC Connected Power Park Modules) or HVDC Systems shall be capable of initiating a power Frequency response with an initial delay that is as short as possible. If the delay exceeds 2 seconds the EU Generator or HVDC System Owner shall justify the variation, providing technical evidence to The Company.
 - (iii) The residue of the proportional reduction in **Active Power** output which results from automatic action of the **Power Generating Module** (including **DC Connected Power**

Park Modules) or **HVDC System** output control devices other than the frequency control devices (or speed governors) must be achieved within 3 minutes for the time of the **Frequency** increase above 50.4Hz.

- (iv) For the avoidance of doubt, the **LFSM-O** response must be reduced when the **Frequency** falls again and, when to a value less than 50.4Hz, as much as possible of the increase in **Active Power** must be achieved within 10 seconds.
 - (v) For Type A and Type B Power Generating Modules which are not required to have Frequency Sensitive Mode (FSM) as described in ECC.6.3.7.3 for deviations in Frequency up to 50.9Hz at least half of the proportional reduction in Active Power output must be achieved in 10 seconds of the time of the Frequency increase above 50.4Hz. For deviations in Frequency beyond 50.9Hz the measured rate of change of Active Power reduction must exceed 0.5%/sec of the initial output. The LFSM-O response must be reduced when the Frequency subsequently falls again and when to a value less than 50.4Hz, at least half the increase in Active Power must be achieved in 10 seconds. For a Frequency excursion returning from beyond 50.9Hz the measured rate of change of Active Power increase must exceed 0.5%/second.

Active Power Frequency response capability of when operating in LFSM-O

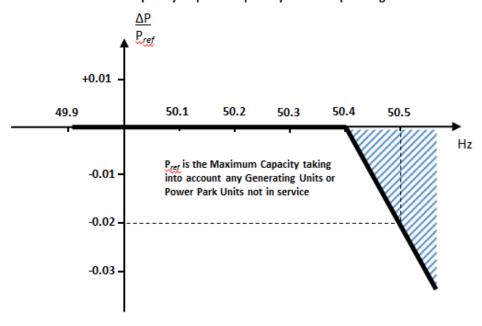


Figure ECC.6.3.7.1 – P_{ref} is the reference **Active Power** to which ΔP is related and ΔP is the change in **Active Power** output from the **Power Generating Module** (including **DC Connected Power Park Modules**) or **HVDC System**. The **Power Generating Module** (including **DC Connected Power Park Modules** or **HVDC Systems**) has to provide a negative **Active Power** output change with a droop of 10% or less based on Pref.

- ECC.6.3.7.1.3 Each Power Generating Module (including DC Connected Power Park Modules) or HVDC Systems which is providing Limited High Frequency Response (LFSM-O) must continue to provide it until the Frequency has returned to or below 50.4Hz or until otherwise instructed by The Company. EU Generators in respect of Gensets and HVDC Converter Station Owners in respect of an HVDC System should also be aware of the requirements in BC.3.7.2.2.
- ECC.6.3.7.1.4 Steady state operation below the Minimum Stable Operating Level in the case of Power Generating Modules including DC Connected Power Park Modules or Minimum Active Power Transmission Capacity in the case of HVDC Systems is not expected but if System operating conditions cause operation below the Minimum Stable Operating Level or Minimum Active Power Transmission Capacity which could give rise to operational

difficulties for the Power Generating Module including a DC Connected Power Park Module or HVDC Systems then the EU Generator or HVDC System Owner shall be able to return the output of the Power Generating Module including a DC Connected Power Park Module to an output of not less than the Minimum Stable Operating Level or HVDC System to an output of not less than the Minimum Active Power Transmission Capacity.

- ECC.6.3.7.1.5 All reasonable efforts should in the event be made by the EU Generator or HVDC System Owner to avoid such tripping provided that the System Frequency is below 52Hz in accordance with the requirements of ECC.6.1.2. If the System Frequency is at or above 52Hz, the requirement to make all reasonable efforts to avoid tripping does not apply and the EU Generator or HVDC System Owner is required to take action to protect its Power Generating Modules including DC Connected Power Park Modules or HVDC Converter Stations.
- ECC.6.3.7.2 <u>Limited Frequency Sensitive Mode Underfrequency (LFSM-U)</u>
- ECC.6.3.7.2.1 Each Type C Power Generating Module and Type D Power Generating Module (including DC Connected Power Park Modules) or HVDC Systems operating in Limited Frequency Sensitive Mode shall be capable of increasing Active Power output in response to System Frequency when this falls below 49.5Hz. For the avoidance of doubt, the provision of this increase in Active Power output is not a mandatory Ancillary Service and it is not anticipated Power Generating Modules (including DC Connected Power Park Modules) or HVDC Systems are operated in an inefficient mode to facilitate delivery of LFSM-U response, but any inherent capability (where available) should be made without undue delay. The Power Generating Module (including DC Connected Power Park Modules) or HVDC Systems shall be capable of stable operation during LFSM-U Mode. For example, a EU Generator which is operating with no headroom (eg it is operating at maximum output or is de-loading as part of a run down sequence and has no headroom) would not be required to provide LFSM-U.
- ECC.6.3.7.2.2 (i) The rate of change of **Active Power** output must be at a minimum a rate of 2 percent of output per 0.1 Hz deviation of **System Frequency** below 49.5Hz (ie a **Droop** of 10%) as shown in Figure ECC.6.3.7.2.2 below. This requirement only applies if the **Power Generating Module** has headroom and the ability to increase **Active Power** output. In the case of a **Power Park Module** or **DC Connected Power Park Module** the requirements of Figure ECC.6.3.7.2.2 shall be reduced pro-rata to the amount of **Power Park Units** in service and available to generate. For the avoidance of doubt, this would not preclude an **EU Generator** or **HVDC System Owner** from designing their **Power Generating Module** with a lower **Droop** setting, for example between 3 5%.
 - (ii) As much as possible of the proportional increase in **Active Power** output must result from the **Frequency** control device (or speed governor) action and must be achieved for **Frequencies** below 49.5 Hz. The **Power Generating Module** (including **DC Connected Power Park Modules**) or **HVDC Systems** shall be capable of initiating a power **Frequency** response with minimal delay. If the delay exceeds 2 seconds the **EU Generator** or HV**DC System Owner** shall justify the delay, providing technical evidence to **The Company**).
 - (iii) The actual delivery of **Active Power Frequency Response** in **LFSM-U** mode shall take into account

The ambient conditions when the response is to be triggered

The operating conditions of the **Power Generating Module** (including **DC Connected Power Park Modules**) or **HVDC Systems** in particular limitations on operation near **Maximum Capacity** or **Maximum HVDC Active Power Transmission Capacity** at low frequencies and the respective impact of ambient conditions as detailed in ECC.6.3.3.

The availability of primary energy sources.

(iv) In LFSM_U Mode, the Power Generating Module (including DC Connected Power Park Modules) and HVDC Systems, shall be capable of providing a power increase up to its Maximum Capacity or Maximum HVDC Active Power Transmission Capacity (as applicable).

Active Power Frequency response capability of when operating in LFSM-U

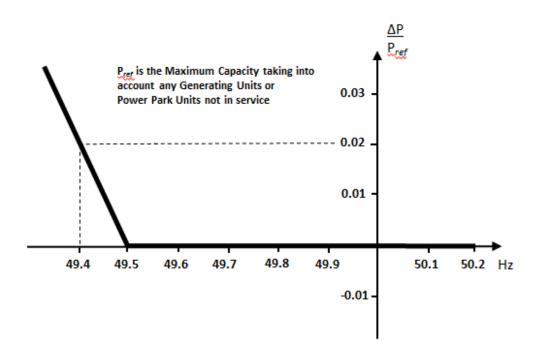


Figure ECC.6.3.7.2.2 – P_{ref} is the reference **Active Power** to which ΔP is related and ΔP is the change in **Active Power** output from the **Power Generating Module** (including **DC Connected Power Park Modules**) or **HVDC System**. The **Power Generating Module** (including **DC Connected Power Park Modules** or **HVDC Systems**) has to provide a positive **Active Power** output change with a droop of 10% or less based on Pref.

ECC.6.3.7.3 Frequency Sensitive Mode – (FSM)

ECC.6.3.7.3.1 In addition to the requirements of ECC.6.3.7.1 and ECC.6.3.7.2 each Type C Power Generating Module and Type D Power Generating Module (including DC Connected Power Park Modules) or HVDC Systems must be fitted with a fast acting proportional Frequency control device (or turbine speed governor) and unit load controller or equivalent control device to provide Frequency response under normal operational conditions in accordance with Balancing Code 3 (BC3). In the case of a Power Park Module including a DC Connected Power Park Module (including a DC Connected Power Park Module) or on each individual Power Park Unit (including a Power Park Unit within a DC Connected Power Park Module) or be a combination of both. The Frequency control device(s) (or speed governor(s)) must be designed and operated to the appropriate:

- (i) European Specification: or
- (ii) in the absence of a relevant **European Specification**, such other standard which is in common use within the European Community (which may include a manufacturer specification);

as at the time when the installation of which it forms part was designed or (in the case of modification or alteration to the **Frequency** control device (or turbine speed governor)) when the modification or alteration was designed.

The **European Specification** or other standard utilised in accordance with sub paragraph ECC.6.3.7.3.1 (a) (ii) will be notified to **The Company** by the **EU Generator** or **HVDC System Owner**:

- (i) as part of the application for a Bilateral Agreement; or
- (ii) as part of the application for a varied Bilateral Agreement; or
- (iii) in the case of an Embedded Development, within 28 days of entry into the Embedded Development Agreement (or such later time as agreed with **The Company**) or
- (iv) as soon as possible prior to any modification or alteration to the **Frequency** control device (or governor); and
- ECC.6.3.7.3.2 The Frequency control device (or speed governor) in co-ordination with other control devices must control each Type C Power Generating Module and Type D Power Generating Module (including DC Connected Power Park Modules) or HVDC Systems Active Power Output or Active Power transfer capability with stability over the entire operating range of the Power Generating Module (including DC Connected Power Park Modules) or HVDC Systems; and
- ECC.6.3.7.3.3 **Type C** and **Type D Power Generating Modules** and **DC Connected Power Park Modules** shall also meet the following minimum requirements:
 - (i) capable of providing **Active Power Frequency** response in accordance with the performance characteristic shown in Figure 6.3.7.3.3(a) and parameters in Table 6.3.7.3.3(a)

Active Power Frequency Response capability of Power Generating Modules Including HVDC connected Power Park Modules when operating in FSM

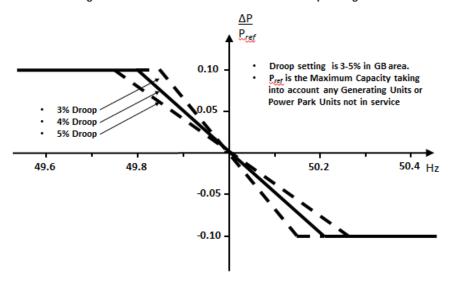


Figure 6.3.7.3.3(a) – Frequency Sensitive Mode capability of Power Generating Modules and DC Connected Power Park Modules

Parameter	Setting
Nominal System Frequency	50Hz
Active Power as a percentage of Maximum Capacity $(\frac{ \Delta P_1 }{P_{max}})$	10%
Frequency Response Insensitivity in mHz ($ \Delta f_i $)	±15mHz

Frequency Response Insensitivity as a percentage of nominal frequency $\binom{ \Delta f_i }{f_n}$	±0.03%
Frequency Response Deadband in mHz	0 (mHz)
Droop (%)	3 – 5%

Table 6.3.7.3.3(a) – Parameters for **Active Power Frequency** response in **Frequency Sensitive Mode** including the mathematical expressions in Figure 6.3.7.3.3(a).

(ii) In satisfying the performance requirements specified in ECC.6.3.7.3(i) **EU Generators** in respect of each **Type C** and **Type D Power Generating Modules and DC Connected Power Park Module** should be aware:-

in the case of overfrequency, the **Active Power Frequency** response is limited by the **Minimum Regulating Level**,

in the case of underfrequency, the **Active Power Frequency** response is limited by the **Maximum Capacity**,

the actual delivery of **Active Power** frequency response depends on the operating and ambient conditions of the **Power Generating Module** (including **DC Connected Power Park Modules**) when this response is triggered, in particular limitations on operation near **Maximum Capacity** at low **Frequencies** as specified in ECC.6.3.3 and available primary energy sources.

The frequency control device (or speed governor) must also be capable of being set so that it operates with an overall speed **Droop** of between 3 – 5%. The **Frequency Response Deadband** and **Droop** must be able to be reselected repeatedly. For the avoidance of doubt, in the case of a **Power Park Module** (including **DC Connected Power Park Modules**) the speed **Droop** should be equivalent of a fixed setting between 3% and 5% applied to each **Power Park Unit** in service.

(iii) In the event of a **Frequency** step change, each **Type C** and **Type D Power Generating Module** and **DC Connected Power Park Module** shall be capable of activating full and stable **Active Power Frequency** response (without undue power oscillations), in accordance with the performance characteristic shown in Figure 6.3.7.3.3(b) and parameters in Table 6.3.7.3.3(b).

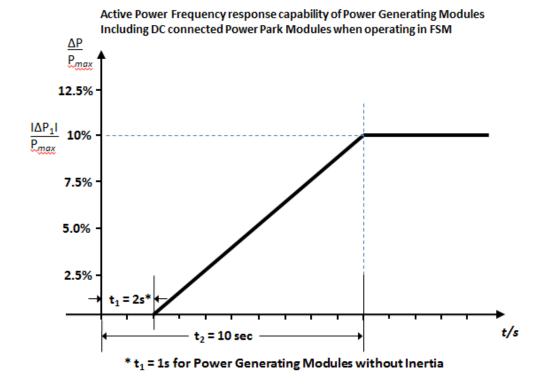


Figure 6.3.7.3.3(b) Active Power Frequency Response capability.

Parameter	Setting
Active Power as a percentage of Maximum Capacity (frequency response range) $(\frac{ \Delta P_1 }{P_{max}})$	10%
Maximum admissible initial delay t ₁ for Power Generating Modules (including DC Connected Power Park Modules) with inertia unless justified as specified in ECC.6.3.7.3.3 (iv)	2 seconds
Maximum admissible initial delay t ₁ for Power Generating Modules (including DC Connected Power Park Modules) which do not contribute to System inertia unless justified as specified in ECC.6.3.7.3.3 (iv)	1 second
Activation time t ₂	10 seconds

Table 6.3.7.3.3(b) – Parameters for full activation of **Active Power Frequency** response resulting from a **Frequency** step change. Table 6.3.7.3.3(b) also includes the mathematical expressions used in Figure 6.3.7.3.3(b).

- (iv) The initial activation of Active Power Primary Frequency response shall not be unduly delayed. For Type C and Type D Power Generating Modules (including DC Connected Power Park Modules) with inertia the delay in initial Active Power Frequency response shall not be greater than 2 seconds. For Type C and Type D Power Generating Modules (including DC Connected Power Park Modules) without inertia, the delay in initial Active Power Frequency response shall not be greater than 1 second. If the Generator cannot meet this requirement they shall provide technical evidence to The Company demonstrating why a longer time is needed for the initial activation of Active Power Frequency response.
- (v) in the case of Type C and Type D Power Generating Modules (including DC Connected Power Park Modules) other than the Steam Unit within a CCGT Module the combined effect of the Frequency Response Insensitivity and Frequency Response Deadband of the Frequency control device (or speed governor) should be no greater than 0.03Hz (for the avoidance of doubt, ±0.015Hz). In the case of the Steam Unit within a CCGT Module, the Frequency Response Deadband should be set to an appropriate value consistent with the requirements of ECC.6.3.7.3.5(ii) and the requirements of BC3.7.2.2 for the provision of LFSM-O taking account of any Frequency Response Insensitivity of the Frequency control device (or speed governor);

ECC.6.3.7.3.4 **HVDC Systems** shall also meet the following minimum requirements:

(i) **HVDC Systems** shall be capable of responding to **Frequency** deviations in each connected AC **System** by adjusting their **Active Power** import or export as shown in Figure 6.3.7.3.4(a) with the corresponding parameters in Table 6.3.7.3.4(a).

Active Power Frequency response capability of HVDC systems when operating in FSI

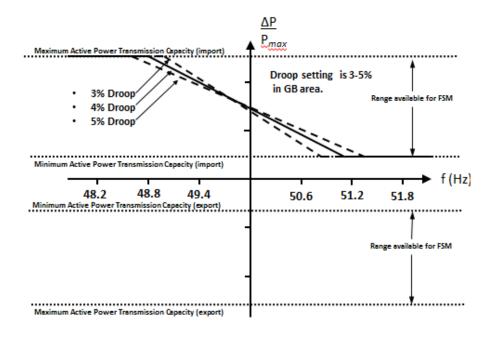


Figure 6.3.7.3.4(a) – **Active Power** frequency response capability of a **HVDC System** operating in **Frequency Sensitive Mode** (FSM). ΔP is the change in active power output from the **HVDC System**..

Parameter	Setting

Frequency Response Deadband	0
Droop S1 and S2 (upward and downward regulation) where S1=S2.	3 – 5%
Frequency Response Insensitivity	±15mHz

Table 6.3.7.3.4(a) – Parameters for **Active Power Frequency** response in **FSM** including the mathematical expressions in Figure 6.3.7.3.4.

- (ii) Each **HVDC System** shall be capable of adjusting the **Droop** for both upward and downward regulation and the **Active Power** range over which **Frequency Sensitive Mode** of operation is available as defined in ECC.6.3.7.3.4.
- (iii) In addition to the requirements in ECC.6.3.7.4(ii) and ECC.6.3.7.4(iii) each **HVDC System** shall be capable of:-

delivering the response as soon as technically feasible

delivering the response on or above the solid line in Figure 6.3.7.3.4(b) in accordance with the parameters shown in Table 6.3.7.3.4(b)

initiating the delivery of **Primary Response** in no less than 0.5 seconds unless otherwise agreed with **The Company**. Where the initial delay time (t₁ – as shown in Figure 6.3.7.3.4(b)) is longer than 0.5 seconds the **HVDC Converter Station Owner** shall reasonably justify it to **The Company**.

Active Power Frequency response capability of HVDC Systems when operating in FSM

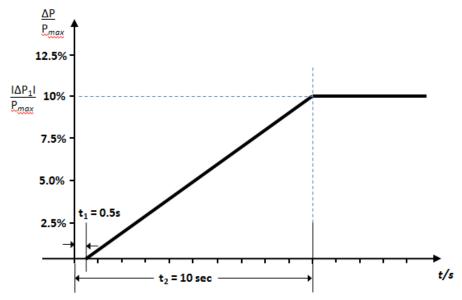


Figure 6.3.7.3.4(b) **Active Power Frequency Response** capability of a **HVDC System**. ΔP is the change in **Active Power** triggered by the step change in frequency

Parameter	Setting
Active Power as a percentage of Maximum Capacity (frequency response range) $(\frac{ \Delta P_1 }{P_{max}})$	10%
Maximum admissible delay t ₁	0.5 seconds

Maximum admissible time for full	10 seconds
activation t2, unless longer activation	
times are agreed with The Company	

Table 6.3.7.3.4(b) – Parameters for full activation of **Active Power Frequency** response resulting from a **Frequency** step change.

- (iv) For HVDC Systems connecting various Synchronous Areas, each HVDC System shall be capable of adjusting the full Active Power Frequency Response when operating in Frequency Sensitive Mode at any time and for a continuous time period. In addition, the Active Power controller of each HVDC System shall not have any adverse impact on the delivery of frequency response.
- ECC.6.3.7.3.5 For HVDC Systems and Type C and Type D Power Generating Modules (including DC Connected Power Park Modules), other than the Steam Unit within a CCGT Module the combined effect of the Frequency Response Insensitivity and Frequency Response Deadband of the Frequency control device (or speed governor) should be no greater than 0.03Hz (for the avoidance of doubt, ±0.015Hz). In the case of the Steam Unit within a CCGT Module, the Frequency Response Deadband should be set to an appropriate value consistent with the requirements of ECC.6.3.7.3.5(ii) and the requirements of BC3.7.2.2 for the provision of LFSM-O taking account of any Frequency Response Insensitivity of the Frequency control device (or speed governor);
 - (i) With regard to disconnection due to underfrequency, **EU Generators** responsible for **Type C** and **Type D Power Generating Modules** (including **DC Connected Power Park Modules**) capable of acting as a load, including but not limited to **Pumped Storage** and tidal **Power Generating Modules**, **HVDC Systems** and **Remote End HVDC Converter Stations**, shall be capable of disconnecting their load in case of underfrequency which will be agreed with **The Company**. For the avoidance of doubt this requirement does not apply to station auxiliary supplies; **EU Generators** in respect of **Type C** and **Type D Pumped Storage Power Generating Modules** should also be aware of the requirements in OC.6.6.6.
 - (ii) Where a Type C or Type D Power Generating Module, DC Connected Power Park Module or HVDC System becomes isolated from the rest of the Total System but is still supplying Customers, the Frequency control device (or speed governor) must also be able to control System Frequency below 52Hz unless this causes the Type C or Type D Power Generating Module or DC Connected Power Park Module to operate below its Minimum Regulating Level or Minimum Active Power Transmission Capacity when it is possible that it may, as detailed in BC 3.7.3, trip after a time. For the avoidance of doubt Power Generating Modules (including DC Connected Power Park Modules) and HVDC Systems are only required to operate within the System Frequency range 47 52 Hz as defined in ECC.6.1.2 and for converter based technologies, the remaining island contains sufficient fault level for effective commutation;
 - (iii) Each **Type C** and **Type D Power Generating Module** and **HVDC Systems** shall have the facility to modify the **Target Frequency** setting either continuously or in a maximum of 0.05Hz steps over at least the range 50 ±0.1Hz should be provided in the unit load controller or equivalent device.
- ECC.6.3.7.3.6 In addition to the requirements of ECC.6.3.7.3 each **Type C** and **Type D Power Generating**Module and HVDC System shall be capable of meeting the minimum Frequency response requirement profile subject to and in accordance with the provisions of Appendix A3.
- ECC.6.3.7.3.7 For the avoidance of doubt, the requirements of Appendix A3 do not apply to **Type A** and **Type B Power Generating Modules**.

- ECC.6.3.8 <u>EXCITATION AND VOLTAGE CONTROL PERFORMANCE REQUIREMENTS</u>
- ECC.6.3.8.1 Excitation Performance Requirements for Type B Synchronous Power Generating Modules
- ECC.6.3.8.1.1 Each Synchronous Generating Unit within a Type B Synchronous Power Generating Module shall be equipped with a permanent automatic excitation control system that shall have the capability to provide constant terminal voltage control at a selectable setpoint without instability over the entire operating range of the Type B Synchronous Power Generating Module.
- In addition to the requirements of ECC.6.3.8.1.1, **The Company** or the relevant **Network Operator** will specify if the control system of the **Type B Synchronous Power Generating Module** shall contribute to voltage control or **Reactive Power** control or **Power Factor** control at the **Grid Entry Point** or **User System Entry Point** (or other defined busbar). The performance requirements of the control system including slope (where applicable) shall be agreed between **The Company** and/or the relevant **Network Operator** and the **EU Generator**.
- ECC.6.3.8.2 <u>Voltage Control Requirements for Type B Power Park Modules</u>
- The Company or the relevant Network Operator will specify if the control system of the Type B Power Park Module shall contribute to voltage control or Reactive Power control or Power Factor control at the Grid Entry Point or User System Entry Point (or other defined busbar). The performance requirements of the control system including slope (where applicable) shall be agreed between The Company and/or the relevant Network Operator and the EU Generator.
- ECC.6.3.8.3 <u>Excitation Performance Requirements for Type C and Type D Onshore Synchronous Power Generating Modules</u>
- ECC.6.3.8.3.1 Each Synchronous Generating Unit within a Type C and Type D Onshore Synchronous Power Generating Modules shall be equipped with a permanent automatic excitation control system that shall have the capability to provide constant terminal voltage control at a selectable setpoint without instability over the entire operating range of the Synchronous Power Generating Module.
- ECC.6.3.8.3.2 The requirements for excitation control facilities are specified in ECC.A.6. Any site specific requirements shall be specified by **The Company** or the relevant **Network Operator**.
- Unless otherwise required for testing in accordance with OC5.A.2, the automatic excitation control system of an **Onshore Synchronous Power Generating Module** shall always be operated such that it controls the **Onshore Synchronous Generating Unit** terminal voltage to a value that is
 - equal to its rated value: or
 - only where provisions have been made in the **Bilateral Agreement**, greater than its rated value.
- In particular, other control facilities including constant **Reactive Power** output control modes and constant **Power Factor** control modes (but excluding VAR limiters) are not required. However if present in the excitation or voltage control system they will be disabled unless otherwise agreed with **The Company** or the relevant **Network Operator**. Operation of such control facilities will be in accordance with the provisions contained in **BC2**.
- ECC.6.3.8.3.5 The excitation performance requirements for **Offshore Synchronous Power Generating Modules** with an **Offshore Grid Entry Point** shall be specified by **The Company**.
- ECC.6.3.8.4 <u>Voltage Control Performance Requirements for Type C and Type D Onshore Power Park</u>

 <u>Modules, Onshore HVDC Converters and OTSUW Plant and Apparatus at the Interface Point</u>

- ECC.6.3.8.4.1 Each Type C and Type D Onshore Power Park Module, Onshore HVDC Converter and OTSDUW Plant and Apparatus shall be fitted with a continuously acting automatic control system to provide control of the voltage at the Grid Entry Point or User System Entry Point (or Interface Point in the case of OTSDUW Plant and Apparatus) without instability over the entire operating range of the Onshore Power Park Module, or Onshore HVDC Converter or OTSDUW Plant and Apparatus. Any Plant or Apparatus used in the provisions of such voltage control within an Onshore Power Park Module may be located at the Power Park Unit terminals, an appropriate intermediate busbar or the Grid Entry Point or User System Entry Point. In the case of an Onshore HVDC Converter at a HVDC Converter Station any Plant or Apparatus used in the provisions of such voltage control may be located at any point within the User's Plant and Apparatus including the Grid Entry Point or User System Entry Point. OTSDUW Plant and Apparatus used in the provision of such voltage control may be located at the Offshore Grid Entry Point an appropriate intermediate busbar or at the Interface Point. When operating below 20% Maximum Capacity the automatic control system may continue to provide voltage control using any available reactive capability. If voltage control is not being provided, the automatic control system shall be designed to ensure a smooth transition between the shaded area below 20% of Active Power output and the non-shaded area above 20% of Active Power output in Figure ECC.6.3.2.5(c) and Figure ECC.6.3.2.7(b) The performance requirements for a continuously acting automatic voltage control system that shall be complied with by the User in respect of Onshore Power Park Modules, Onshore HVDC Converters at an Onshore HVDC Converter Station, OTSDUW Plant and Apparatus at the Interface Point are defined in ECC.A.7.
- In particular, other control facilities, including constant **Reactive Power** output control modes and constant **Power Factor** control modes (but excluding VAR limiters) are not required. However if present in the voltage control system they will be disabled unless otherwise agreed with **The Company** or the relevant **Network Operator**. Operation of such control facilities will be in accordance with the provisions contained in BC2. Where **Reactive Power** output control modes and constant **Power Factor** control modes have been fitted within the voltage control system they shall be required to satisfy the requirements of ECC.A.7.3 and ECC.A.7.4.
- ECC.6.3.8.5 Excitation Control Performance requirements applicable to AC Connected Offshore

 Synchronous Power Generating Modules and voltage control performance requirements applicable to AC connected Offshore Power Park Modules, DC Connected Power Park Modules and Remote End HVDC Converters
- A continuously acting automatic control system is required to provide control of Reactive Power (as specified in ECC.6.3.2.5 and ECC.6.3.2.6) at the Offshore Grid Entry Point (or HVDC Interface Point in the case of Configuration 1 DC Connected Power Park Modules and Remote End HVDC Converters) without instability over the entire operating range of the AC connected Offshore Synchronous Power Generating Module or Configuration 1 AC connected Offshore Power Park Module or Configuration 1 DC Connected Power Park Modules or Remote End HVDC Converter. The performance requirements for this automatic control system will be specified by The Company which would be consistent with the requirements of ECC.6.3.2.5 and ECC.6.3.2.6.
- A continuously acting automatic control system is required to provide control of Reactive Power (as specified in ECC.6.3.2.8) at the Offshore Grid Entry Point (or HVDC Interface Point in the case of Configuration 2 DC Connected Power Park Modules) without instability over the entire operating range of the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Modules. otherwise the requirements of ECC.6.3.2.6 shall apply. The performance requirements for this automatic control system are specified in ECC.A.8
- In addition to ECC.6.3.8.5.1 and ECC.6.3.8.5.2 the requirements for excitation or voltage control facilities, including **Power System Stabilisers**, where these are necessary for system reasons, will be specified by **The Company**. Reference is made to on-load commissioning witnessed by **The Company** in BC2.11.2.

ECC.6.3.9 STEADY STATE LOAD INACCURACIES

The standard deviation of **Load** error at steady state **Load** over a 30 minute period must not exceed 2.5 per cent of a **Type C** or **Type D Power Generating Modules** (including a **DC Connected Power Park Module**) **Maximum Capacity**. Where a **Type C** or **Type D Power Generating Module** (including a **DC Connected Power Park Module**) is instructed to **Frequency** sensitive operation, allowance will be made in determining whether there has been an error according to the governor droop characteristic registered under the **PC**.

For the avoidance of doubt in the case of a **Power Park Module** (excluding a **Non-Synchronous Electricity Storage Module**) an allowance will be made for the full variation of mechanical power output.

In the case of an **Electricity Storage Module**, an allowance will be made for the storage reserve capability of the **Electricity Storage Module**.

ECC.6.3.10 NEGATIVE PHASE SEQUENCE LOADINGS

ECC.6.3.10.1 In addition to meeting the conditions specified in ECC.6.1.5(b), each **Synchronous Power Generating Module** will be required to withstand, without tripping, the negative phase sequence loading incurred by clearance of a close-up phase-to-phase fault, by **System Back-Up Protection** on the **National Electricity Transmission System** or **User System** located **Onshore** in which it is **Embedded**.

ECC.6.3.11 NEUTRAL EARTHING

At nominal **System** voltages of 110kV and above the higher voltage windings of a transformer of a **Power Generating Module** or **HVDC Equipment** or transformer resulting from **OTSDUW** must be star connected with the star point suitable for connection to earth. The earthing and lower voltage winding arrangement shall be such as to ensure that the **Earth Fault Factor** requirement of paragraph ECC.6.2.1.1 (b) will be met on the **National Electricity Transmission System** at nominal **System** voltages of 110kV and above.

ECC.6.3.12 FREQUENCY AND VOLTAGE DEVIATIONS

ECC.6.3.12.1 As stated in ECC.6.1.2, the **System Frequency** could rise to 52Hz or fall to 47Hz. Each **Power Generating Module** (including **DC Connected Power Park Modules**) must continue to operate within this **Frequency** range for at least the periods of time given in ECC.6.1.2 unless **The Company** has specified any requirements for combined **Frequency** and voltage deviations which are required to ensure the best use of technical capabilities of **Power Generating Modules** (including **DC Connected Power Park Modules**) if required to preserve or restore system security.- Notwithstanding this requirement, **EU Generators** should also be aware of the requirements of ECC.6.3.13.

ECC.6.3.13 <u>FREQUENCY, RATE OF CHANGE OF FREQUENCY AND VOLATGE PROTECTION SETTING ARRANGEMENTS</u>

- ECC.6.3.13.1 EU Generators (including in respect of OTSDUW Plant and Apparatus) and HVDC System Owners will be responsible for protecting all their Power Generating Modules (and OTSDUW Plant and Apparatus) or HVDC Equipment against damage should Frequency excursions outside the range 52Hz to 47Hz ever occur. Should such excursions occur, it is up to the EU Generator or HVDC System Owner to decide whether to disconnect his Apparatus for reasons of safety of Apparatus, Plant and/or personnel.
- Each **Power Generating Module** when connected and synchronised to the **System**, shall be capable of withstanding without tripping a rate of change of **Frequency** up to and including 1 Hz per second as measured over a rolling 500 milliseconds period. Voltage dips may cause localised rate of change of **Frequency** values in excess of 1 Hz per second for short periods, and in these cases, the requirements under ECC.6.3.15 (fault ride through) supersedes this clause. For the avoidance of doubt, this requirement relates to the capabilities of **Power Generating Modules** only and does not impose the need for rate of change of **Frequency** protection nor does it impose a specific setting for anti-islanding or loss-of-mains protection relays.

- ECC.6.3.13.3 Each HVDC System and Remote End HVDC Converter Station when connected and synchronised to the System, shall be capable of withstanding without tripping a rate of change of Frequency up to and including ±2.5Hz per second as measured over the previous 1 second period. Voltage dips may cause localised rate of change of Frequency values in excess of ±2.5 Hz per second for short periods, and in these cases, the requirements under ECC.6.3.15 (fault ride through) supersedes this clause. For the avoidance of doubt, this requirement relates to the capabilities of HVDC Systems and Remote End HVDC Converter Stations only and does not impose the need for rate of change of Frequency protection nor does it impose a specific setting for anti-islanding or loss-of-mains protection relays.
- ECC.6.3.13.4 Each **DC Connected Power Park Module** when connected to the **System**, shall be capable of withstanding without tripping a rate of change of **Frequency** up to and including ±2.0Hz per second as measured over the previous 1 second period. **Voltage** dips may cause localised rate of change of **Frequency** values in excess of ±2.0 Hz per second for short periods, and in these cases, the requirements under ECC.6.3.15 (fault ride through) supersedes this clause. For the avoidance of doubt, this requirement relates to the capabilities of **DC Connected Power Park Modules** only and does not impose the need for rate of change of **Frequency** protection nor does it impose a specific setting for anti-islanding or loss-of-mains protection relays.
- As stated in ECC.6.1.2, the System Frequency could rise to 52Hz or fall to 47Hz and the System voltage at the Grid Entry Point or User System Entry Point could rise or fall within the values outlined in ECC.6.1.4. Each Type C and Type D Power Generating Module (including DC Connected Power Park Modules) or any constituent element must continue to operate within this Frequency range for at least the periods of time given in ECC.6.1.2 and voltage range as defined in ECC.6.1.4 unless The Company has agreed to any simultaneous overvoltage and underfrequency relays and/or simultaneous undervoltage and over frequency relays which will trip such Power Generating Module (including DC Connected Power Park Modules), and any constituent element within this Frequency or voltage range.

ECC.6.3.14 FAST START CAPABILITY

ECC.6.3.14.1 It may be agreed in the **Bilateral Agreement** that a **Genset** shall have a **Fast-Start Capability**. Such **Gensets** may be used for **Operating Reserve** and their **Start-Up** may be initiated by **Frequency**-level relays with settings in the range 49Hz to 50Hz as specified pursuant to **OC2**.

ECC.6.3.15 FAULT RIDE THROUGH

- ECC.6.3.15.1 General Fault Ride Through requirements, principles and concepts applicable to Type B.

 Type C and Type D Power Generating Modules and OTSDUW Plant and Apparatus subject to faults up to 140ms in duration
- ECC.6.3.15.1.1 ECC.6.3.15.8 section sets out the **Fault Ride Through** requirements on **Type B**, **Type C** and **Type D Power Generating Modules**, **OTSDUW Plant and Apparatus** and **HVDC Equipment** that shall apply in the event of a fault lasting up to 140ms in duration.
- ECC.6.3.15.1.2 Each Power Generating Module, Power Park Module, HVDC Equipment and OTSDUW Plant and Apparatus is required to remain connected and stable for any balanced and unbalanced fault where the voltage at the Grid Entry Point or User System Entry Point or (HVDC Interface Point in the case of Remote End DC Converter Stations or Interface Point in the case of OTSDUW Plant and Apparatus) remains on or above the heavy black line defined in sections ECC.6.3.15.2 ECC.6.3.15.7 below.

The voltage against time curves defined in ECC.6.3.15.2 – ECC.6.3.15.7 expresses the lower limit (expressed as the ratio of its actual value and its reference 1pu) of the actual course of the phase to phase voltage (or phase to earth voltage in the case of asymmetrical/unbalanced faults) on the System voltage level at the Grid Entry Point or User System Entry Point (or HVDC Interface Point in the case of Remote End HVDC Converter Stations or Interface Point in the case of OTSDUW Plant and Apparatus) during a symmetrical or asymmetrical/unbalanced fault, as a function of time before, during and after the fault.

ECC.6.3.15.2 Voltage against time curve and parameters applicable to **Type B Synchronous Power Generating Modules**

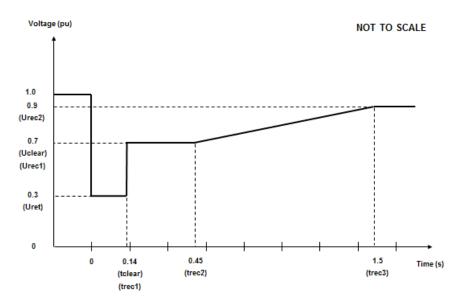


Figure ECC.6.3.15.2 - Voltage against time curve applicable to **Type B Synchronous Power Generating Modules**

Voltage parameters (pu)		Time parameters (seconds)	
Uret	0.3	tclear	0.14
Uclear	0.7	trec1	0.14
Urec1	0.7	trec2	0.45
Urec2	0.9	trec3	1.5

Table ECC.6.3.15.2 Voltage against time parameters applicable to **Type B Synchronous Power Generating Modules**

ECC.6.3.15.3 Voltage against time curve and parameters applicable to Type C and D Synchronous Power Generating Modules connected below 110kV

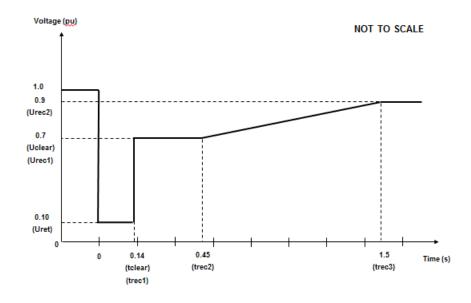


Figure ECC.6.3.15.3 - Voltage against time curve applicable to **Type C** and **D Synchronous Power Generating Modules** connected below 110kV

Voltage parameters (pu)		Time parameters (seconds)	
Uret	0.1	tclear	0.14
Uclear	0.7	trec1	0.14
Urec1	0.7	trec2	0.45
Urec2	0.9	trec3	1.5

Table ECC.6.3.15.3 Voltage against time parameters applicable to **Type C** and **D Synchronous Power Generating Modules** connected below 110kV

ECC.6.3.15.4 Voltage against time curve and parameters applicable to Type D Synchronous Power Generating Modules connected at or above 110kV

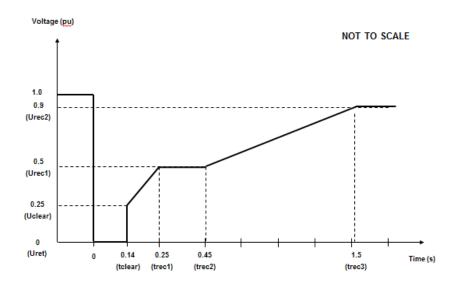


Figure ECC.6.3.15.4 - Voltage against time curve applicable to **Type D Synchronous Power Generating Modules** connected at or above 110kV

Voltage parameters (pu)		Time parameters (seconds)	
Uret	0	tclear	0.14
Uclear	0.25	trec1	0.25
Urec1	0.5	trec2	0.45
Urec2	0.9	trec3	1.5

Table ECC.6.3.15.4 Voltage against time parameters applicable to **Type D Synchronous Power Generating Modules** connected at or above 110kV

ECC.6.3.15.5 Voltage against time curve and parameters applicable to **Type B**, **C** and **D Power Park**Modules connected below 110kV

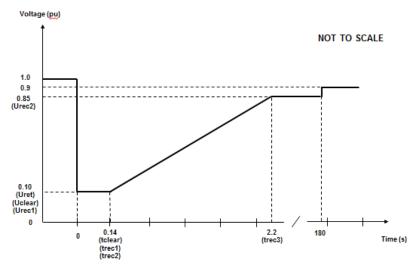


Figure ECC.6.3.15.5 - Voltage against time curve applicable to **Type B**, **C** and **D Power Park Modules** connected below 110kV

Voltage parameters (pu)		Time parameters (seconds)	
Uret	0.10	tclear	0.14
Uclear	0.10	trec1	0.14
Urec1	0.10	trec2	0.14
Urec2	0.85	trec3	2.2

Table ECC.6.3.15.5 Voltage against time parameters applicable to **Type B**, **C** and **D Power Park Modules** connected below 110kV

ECC.6.3.15.6 Voltage against time curve and parameters applicable to Type D Power Park Modules with a Grid Entry Point or User System Entry Point at or above 110kV, DC Connected Power Park Modules at the HVDC Interface Point or OTSDUW Plant and Apparatus at the Interface Point.

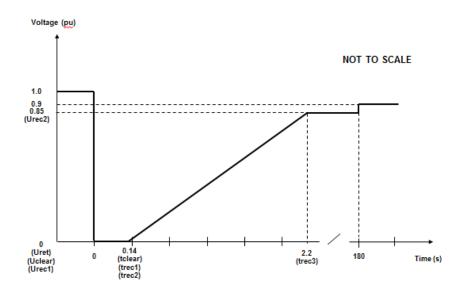


Figure ECC.6.3.15.6 - Voltage against time curve applicable to Type D Power Park Modules with a Grid Entry Point or User System Entry Point at or above 110kV, DC Connected Power Park Modules at the HVDC Interface Point or OTSDUW Plant and Apparatus at the Interface Point.

Voltage parameters (pu)		Time parameters (seconds)	
Uret	0	tclear	0.14
Uclear	0	trec1	0.14
Urec1	0	trec2	0.14
Urec2	0.85	trec3	2.2

Table ECC.6.3.15.6 Voltage against time parameters applicable to a **Type D Power Park Modules** with a **Grid Entry Point** or **User System Entry Point** at or above 110kV, **DC Connected Power Park Modules** at the **HVDC Interface Point** or **OTSDUW Plant and Apparatus** at the **Interface Point**.

ECC.6.3.15.7 <u>Voltage against time curve and parameters applicable to HVDC Systems and Remote End</u> HVDC Converter Stations

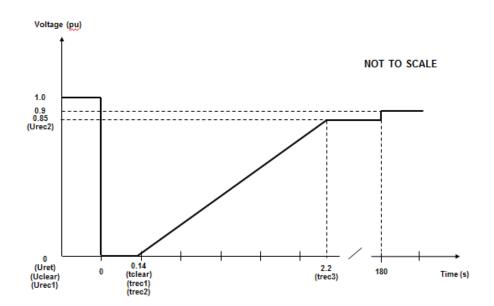


Figure ECC.6.3.15.7 - Voltage against time curve applicable to HVDC Systems and Remote End HVDC Converter Stations

Voltage parameters (pu)		Time parameters (seconds)	
Uret	0	tclear	0.14
Uclear	0	trec1	0.14
Urec1	0	trec2	0.14
Urec2	0.85	trec3	2.2

Table ECC.6.3.15.7 Voltage against time parameters applicable to HVDC Systems and Remote End HVDC Converter Stations

ECC.6.3.15.8 In addition to the requirements in ECC.6.3.15.1 – ECC.6.3.15.7:

- (i) Each Type B, Type C and Type D Power Generating Module at the Grid Entry Point or User System Entry Point, HVDC Equipment (or OTSDUW Plant and Apparatus at the Interface Point) shall be capable of satisfying the above requirements when operating at Rated MW output and maximum leading Power Factor.
- (ii) The Company will specify upon request by the User the pre-fault and post fault short circuit capacity (in MVA) at the Grid Entry Point or User System Entry Point (or HVDC Interface Point in the case of a remote end HVDC Converter Stations or Interface Point in the case of OTSDUW Plant and Apparatus).
- (iii) The pre-fault voltage shall be taken to be 1.0pu and the post fault voltage shall not be less than 0.9pu.
- (iv) To allow a User to model the Fault Ride Through performance of its Type B, Type C and/or Type D Power Generating Modules or HVDC Equipment, The Company will provide additional network data as may reasonably be required by the EU Code User to undertake such study work in accordance with PC.A.8. Alternatively, The Company may provide generic values derived from typical cases.
- (v) **The Company** will publish fault level data under maximum and minimum demand conditions in the **Electricity Ten Year Statement**.
- Each EU Generator (in respect of Type B, Type C, Type D Power Generating (vi) Modules and DC Connected Power Park Modules) and HVDC System Owners (in respect of HVDC Systems) shall satisfy the requirements in ECC.6.3.15.8(i) -(vii) unless the protection schemes and settings for internal electrical faults trips the Type B, Type C and Type D Power Generating Module, HVDC Equipment (or OTSDUW Plant and Apparatus) from the System. The protection schemes and settings should not jeopardise Fault Ride Through performance as specified in ECC.6.3.15.8(i) - (vii). The undervoltage protection at the Grid Entry Point or User System Entry Point (or HVDC Interface Point in the case of a Remote End HVDC Converter Stations or Interface Point in the case of OTSDUW Plant and Apparatus) shall be set by the EU Generator (or HVDC System Owner or OTSDUA in the case of OTSDUW Plant and Apparatus) according to the widest possible range unless The Company and the EU Code User have agreed to narrower settings. All protection settings associated with undervoltage protection shall be agreed between the EU Generator and/or HVDC System Owner with The Company and Relevant Transmission Licensee's and relevant Network Operator (as applicable).
- (vii) Each Type B, Type C and Type D Power Generating Module, HVDC System and OTSDUW Plant and Apparatus at the Interface Point shall be designed such that upon clearance of the fault on the Onshore Transmission System and within 0.5 seconds of restoration of the voltage at the Grid Entry Point or User System Entry Point or HVDC Interface Point in the case of a Remote End HVDC Converter Stations or Interface Point in the case of OTSDUW Plant and Apparatus to 90% of nominal voltage or greater, Active Power output (or Active Power transfer capability in the case of OTSDW Plant and Apparatus or Remote End HVDC Converter Stations) shall be restored to at least 90% of the level immediately before the fault. Once Active Power output (or Active Power transfer capability in the case of OTSDUW Plant and Apparatus or Remote End HVDC Converter Stations) has been restored to the required level, Active Power oscillations shall be acceptable provided that:
 - The total **Active Energy** delivered during the period of the oscillations is at least that which would have been delivered if the **Active Power** was constant
 - The oscillations are adequately damped.
 - In the event of power oscillations, Power Generating Modules shall retain steady state stability when operating at any point on the Power Generating Module Performance Chart.

For AC Connected **Onshore** and **Offshore Power Park Modules** comprising switched reactive compensation equipment (such as mechanically switched capacitors and reactors), such switched reactive compensation equipment shall be controlled such that it is not switched in or out of service during the fault but may act to assist in post fault voltage recovery.

ECC.6.3.15.9 General Fault Ride Through requirements for faults in excess of 140ms in duration.

- ECC.6.3.15.9.1 General Fault Ride Through requirements applicable to HVDC Equipment and OTSDUW DC Converters subject to faults and voltage dips in excess of 140ms.
- ECC.6.3.15.9.1.1 The requirements applicable to HVDC Equipment including OTSDUW DC Converters subject to faults and voltage disturbances at the Grid Entry Point or User System Entry Point or Interface Point or HVDC Interface Point, including Active Power transfer capability shall be specified in the Bilateral Agreement.
- ECC.6.3.15.9.2 Fault Ride Through requirements for Type C and Type D Synchronous Power Generating

 Modules and Type C and Type D Power Park Modules and OTSDUW Plant and Apparatus

 subject to faults and voltage disturbances on the Onshore Transmission System in excess

 of 140ms
- The Fault Ride Through requirements for Type C and Type D Synchronous Power Generating Modules subject to faults and voltage disturbances on the Onshore Transmission System in excess of 140ms are defined in ECC.6.3.15.9.2.1(a) and the Fault Ride Through Requirements for Type C and Type D Power Park Modules and OTSDUW Plant and Apparatus subject to faults and voltage disturbances on the Onshore Transmission System greater than 140ms in duration are defined in ECC.6.3.15.9.2.1(b).
 - (a) Requirements applicable to **Synchronous Power Generating Modules** subject to **Supergrid Voltage** dips on the **Onshore Transmission System** greater than 140ms in duration.

In addition to the requirements of ECC.6.3.15.1 – ECC.6.3.15.8 each **Synchronous Power Generating Module** shall:

(i) remain transiently stable and connected to the **System** without tripping of any **Synchronous Power Generating Module** for balanced **Supergrid Voltage** dips and associated durations on the **Onshore Transmission System** (which could be at the **Interface Point**) anywhere on or above the heavy black line shown in Figure ECC.6.3.15.9(a) Appendix 4 and Figures EA.4.3.2(a), (b) and (c) provide an explanation and illustrations of Figure ECC.6.3.15.9(a); and,

NOT TO SCALE

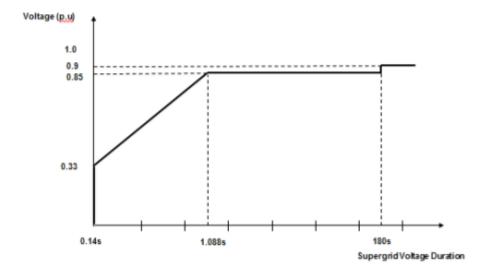


Figure ECC.6.3.15.9(a)

- (ii) provide Active Power output at the Grid Entry Point, during Supergrid Voltage dips on the Onshore Transmission System as described in Figure ECC.6.3.15.9(a), at least in proportion to the retained balanced voltage at the Onshore Grid Entry Point (for Onshore Synchronous Power Generating Modules) or Interface Point (for Offshore Synchronous Power Generating Modules) (or the retained balanced voltage at the User System Entry Point if Embedded) and shall generate maximum reactive current (where the voltage at the Grid Entry Point is outside the limits specified in ECC.6.1.4) without exceeding the transient rating limits of the Synchronous Power Generating Module and,
- (iii) restore **Active Power** output following **Supergrid Voltage** dips on the **Onshore Transmission System** as described in Figure ECC.6.3.15.9(a), within 1 second of restoration of the voltage to 1.0pu of the nominal voltage at the:

Onshore Grid Entry Point for directly connected Onshore Synchronous Power Generating Modules or,

Interface Point for Offshore Synchronous Power Generating Modules or.

User System Entry Point for **Embedded Onshore Synchronous Power Generating Modules**

or

User System Entry Point for **Embedded Medium Power Stations** not subject to a **Bilateral Agreement** which comprise **Synchronous Generating Units** and with an **Onshore User System Entry Point** (irrespective of whether they are located **Onshore** or **Offshore**)

to at least 90% of the level available immediately before the occurrence of the dip. Once the **Active Power** output has been restored to the required level, **Active Power** oscillations shall be acceptable provided that:

- the total Active Energy delivered during the period of the oscillations is at least that which would have been delivered if the Active Power was constant
- the oscillations are adequately damped.

For the avoidance of doubt a balanced **Onshore Transmission System Supergrid Voltage** meets the requirements of ECC.6.1.5 (b) and ECC.6.1.6.

(b) Requirements applicable to Type C and Type D Power Park Modules and OTSDUW Plant and Apparatus (excluding OTSDUW DC Converters) subject to Supergrid Voltage dips on the Onshore Transmission System greater than 140ms in duration.

In addition to the requirements of ECC.6.3.15.5, ECC.6.3.15.6 and ECC.6.3.15.8 (as applicable) each **OTSDUW Plant and Apparatus** or each **Power Park Module** and / or any constituent **Power Park Unit**, shall:

(i) remain transiently stable and connected to the **System** without tripping of any **OTSDUW Plant and Apparatus**, or **Power Park Module** and / or any constituent **Power Park Unit**, for balanced **Supergrid Voltage** dips and associated durations on the **Onshore Transmission System** (which could be at the **Interface Point**) anywhere on or above the heavy black line shown in Figure ECC.6.3.15.9(b). Appendix 4 and Figures EA.4.3.4 (a), (b) and (c) provide an explanation and illustrations of Figure ECC.6.3.15.9(b); and,

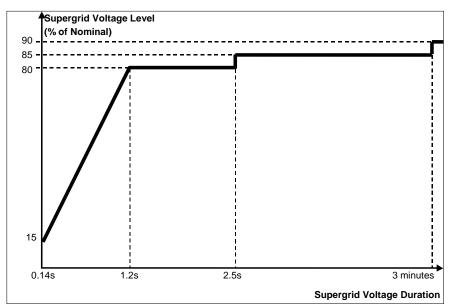


Figure ECC.6.3.15.9(b)

- (ii) be required to satisfy the requirements of ECC.6.3.16. In the case of a Non-Synchronous Generating Unit or OTSDUW Plant and Apparatus or Power Park Module where there has been a reduction in the Intermittent Power Source or in the case of OTSDUW Active Power transfer capability in the time range in Figure ECC.6.3.15.9(b) an allowance shall be made for the fall in input power and the corresponding reduction of real and reactive current.
- (iii) restore Active Power output (or, in the case of OTSDUW, Active Power transfer capability), following Supergrid Voltage dips on the Onshore Transmission System as described in Figure ECC.6.3.15.9(b), within 1 second of restoration of the voltage to 0.9 pu of the nominal voltage at the:

Onshore Grid Entry Point for directly connected Onshore Power Park Modules or.

Interface Point for OTSDUW Plant and Apparatus and Offshore Power Park Modules or.

User System Entry Point for Embedded Onshore Power Park Modules or ,

User System Entry Point for Embedded Medium Power Stations which comprise Power Park Modules not subject to a Bilateral Agreement and with an Onshore User System Entry Point (irrespective of whether they are located Onshore or Offshore)

to at least 90% of the level available immediately before the occurrence of the dip except in the case of a Non-Synchronous Generating Unit, OTSDUW Plant and Apparatus or Power Park Module where there has been a reduction in the Intermittent Power Source in the time range in Figure ECC.6.3.15.9(b) that restricts the Active Power output or, in the case of OTSDUW, Active Power transfer capability below this level. Once the Active Power output or, in the case of OTSDUW, Active Power transfer capability has been restored to the required level, Active Power oscillations shall be acceptable provided that:

- the total Active Energy delivered during the period of the oscillations is at least that which would have been delivered if the Active Power was constant
- the oscillations are adequately damped.

For the avoidance of doubt a balanced **Onshore Transmission System Supergrid Voltage** meets the requirements of ECC.6.1.5 (b) and ECC.6.1.6.

- (i) In the case of a Power Park Module (excluding Non-Synchronous Electricity Storage Modules), the requirements in ECC.6.3.15.9 do not apply when the Power Park Module (excluding Non-Synchronous Electricity Storage Modules) is operating at less than 5% of its Rated MW or during very high primary energy source conditions when more than 50% of the Power Park Units in a Power Park Module have been shut down or disconnected under an emergency shutdown sequence to protect User's Plant and Apparatus.
- (ii) In addition to meeting the conditions specified in ECC.6.1.5(b) and ECC.6.1.6, each Non-Synchronous Generating Unit, OTSDUW Plant and Apparatus or Power Park Module and any constituent Power Park Unit thereof will be required to withstand, without tripping, the negative phase sequence loading incurred by clearance of a close-up phase-to-phase fault, by System Back-Up Protection on the Onshore Transmission System operating at Supergrid Voltage.
- (iii) Generators in respect of Type B, Type C and Type D Power Park Modules and HVDC System Owners are required to confirm to The Company, their repeated ability to operate through balanced and unbalanced faults and System disturbances each time the voltage at the Grid Entry Point or User System Entry Point falls outside the limits specified in ECC.6.1.4. Demonstration of this capability would be satisfied by EU Generators and HVDC System Owners supplying the protection settings of their plant, informing The Company of the maximum number of repeated operations that can be performed under such conditions and any limiting factors to repeated operation such as protection or thermal rating; and
- (iv) Notwithstanding the requirements of ECC.6.3.15(v), **Power Generating Modules** shall be capable of remaining connected during single phase or three phase auto-reclosures to the **National Electricity Transmission System** and operating without power reduction as long as the voltage and frequency remain within the limits defined in ECC.6.1.4 and ECC.6.1.2; and
- (v) For the avoidance of doubt the requirements specified in ECC.6.3.15 do not apply to **Power Generating Modules** connected to either an unhealthy circuit and/or islanded from the **Transmission System** even for delayed auto reclosure times.
- (vi) To avoid unwanted island operation, Non-Synchronous Generating Units in Scotland (and those directly connected to a Scottish Offshore Transmission System), Power Park Modules in Scotland (and those directly connected to a Scottish Offshore Transmission System), or OTSDUW Plant and Apparatus with an Interface Point in Scotland shall be tripped for the following conditions:
 - (1) **Frequency** above 52Hz for more than 2 seconds
 - (2) **Frequency** below 47Hz for more than 2 seconds
 - (3) Voltage as measured at the Onshore Connection Point or Onshore User System Entry Point or Offshore Grid Entry Point or Interface Point in the case of OTSDUW Plant and Apparatus is below 80% for more than 2.5 seconds

Voltage as measured at the Onshore Connection Point or Onshore User System Entry Point or Offshore Grid Entry Point or Interface Point in the case of OTSDUW Plant and Apparatus is above 120% (115% for 275kV) for more than 1 second. The times in sections (1) and (2) are maximum trip times. Shorter times may be used to protect the Non-Synchronous Generating Units, or OTSDUW Plant and Apparatus.

ECC.6.3.15.11 <u>HVDC System Robustness</u>

The HVDC System shall be capable of finding stable operation points with a minimum change in Active Power flow and voltage level, during and after any planned or unplanned change in the HVDC System or AC System to which it is connected. The Company shall specify the changes in the System conditions for which the HVDC Systems shall remain in stable operation.

- The HVDC System owner shall ensure that the tripping or disconnection of an HVDC Converter Station, as part of any multi-terminal or embedded HVDC System, does not result in transients at the Grid Entry Point or User System Entry Point beyond the limit specified by The Company in co-ordination with the Relevant Transmission Licensee.
- The **HVDC System** shall withstand transient faults on HVAC lines in the network adjacent or close to the **HVDC System**, and shall not cause any of the equipment in the **HVDC System** to disconnect from the network due to autoreclosure of lines in the **System**.
- ECC.6.3.15.11.4 The **HVDC System Owner** shall provide information to **The Company** on the resilience of the **HVDC System** to AC **System** disturbances.
- ECC.6.3.16 FAST FAULT CURRENT INJECTION
- ECC.6.3.16.1 <u>General Fast Fault Current injection, principles and concepts applicable to Type B, Type C and Type D Power Park Modules and HVDC Equipment</u>
- In addition to the requirements of ECC.6.1.4, ECC.6.3.2, ECC.6.3.8 and ECC.A.7, each Type B, Type C and Type D Power Park Module or each Power Park Unit within a Type B, Type C and Type D Power Park Module or HVDC Equipment shall be required to satisfy the following requirements. For the purposes of this requirement, current and voltage are assumed to be positive phase sequence values.
- For any balanced fault which results in the positive phase sequence voltage falling below the voltage levels specified in ECC.6.1.4 at the **Grid Entry Point** or **User System Entry Point** (if **Embedded**), each **Type B**, **Type C** and **Type D Power Park Module** or each **Power Park Unit** within a **Type B**, **Type C** and **Type D Power Park Module** or **HVDC Equipment** shall, as a minimum (unless an alternative type registered solution has otherwise been agreed with **The Company**), be required to inject a reactive current above the heavy black line shown in Figure ECC.16.3.16(a)

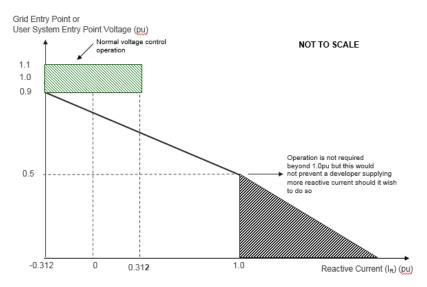


Figure ECC.6.3.16(a)

ECC.6.3.16.1.3 Figure ECC.6.3.16(a) defines the reactive current (I_R) to be supplied under a faulted condition which shall be dependent upon the pre-fault operating condition and the retained voltage at the **Grid Entry Point** or **User System Entry Point** voltage. For the avoidance of doubt, each **Power Park Module** (and any constituent element thereof) or **HVDC Equipment**, shall be required to inject a reactive current (I_R) which shall be not less than its pre-fault reactive current and which shall as a minimum increase with the fall in the retained voltage each time the voltage at the **Grid Entry Point** or **User System Entry Point** (if **Embedded**) falls below 0.9pu whilst ensuring the overall rating of the **Power Park Module** (or constituent element thereof) or **HVDC Equipment** shall not be exceeded.

ECC.6.3.16.1.4 In addition to the requirements of ECC.6.3.16.1.2 and ECC.6.3.16.1.3, each Type B, Type C and Type D Power Park Module or each Power Park Unit within a Type B, Type C and Type D Power Park Module or HVDC Equipment shall be required to inject reactive current above the shaded area shown in Figure ECC.6.3.16(b) and Figure ECC.6.3.16(c) which illustrates how the reactive current shall be injected over time from fault inception in which the value of I_R is determined from Figure ECC.6.3.16(a). In figures ECC.6.3.16(b) and ECC.6.3.16(c) ΔI_R is the value of the reactive current (I_R) less the prefault current. In this context fault inception is taken to be when the voltage at the Grid Entry Point or User System Entry Point falls below 0.9pu.

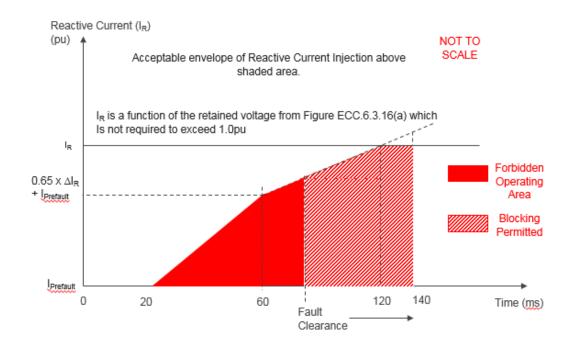


Figure ECC.16.3.16(b)

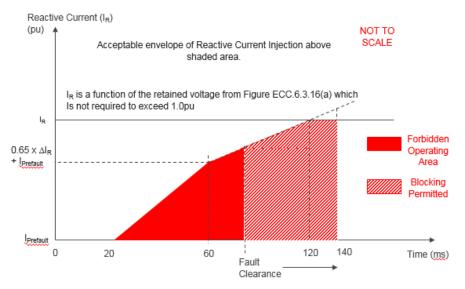


Figure ECC.16.3.16(c)

ECC.6.3.16.1.5 The injected reactive current (I_R)shall be above the shaded area shown in Figure ECC.6.3.16(b) and Figure ECC.6.3.16(c) with priority being given to reactive current injection with any residual capability being supplied as active current. Under any faulted condition, where the voltage falls outside the limits specified in ECC.6.1.4, there would be no requirement for each **Power Park Module** or constituent **Power Park Unit** or **HVDC Equipment** to exceed its transient or steady state rating of 1.0pu as defined in ECC.6.3.16.1.7.

ECC.6.3.16.1.6 For any planned or switching events (as outlined in ECC.6.1.7 of the Grid Code) or unplanned events which results in temporary power frequency over voltages (TOV's), each Type B, Type C and Type D Power Generating Module or each Power Park Unit within a Type B, Type C or Type D Power Park Module or HVDC Equipment will be required to satisfy the transient overvoltage limits specified in the Bilateral Agreement.

For the purposes of this requirement, the maximum rated current is taken to be the maximum current each Power Park Module (or the sum of the constituent Power Park Units which are connected to the System at the Grid Entry Point or User System Entry Point) or HVDC Converter is capable of supplying. In the case of a Power Park Module this would be the maximum rated current at the Grid Entry Point (or User System Entry Point if Embedded) when the Power Park Module is operating at rated Active Power and rated Reactive Power (as required under ECC.6.3.2) whilst operating over the nominal voltage range as required under ECC.6.1.4 at the Grid Entry Point (or User System Entry Point if Embedded). In the case of a Power Park Unit forming part of a Type B, Type C and Type D Power Park Module, the maximum rated current expected would be the maximum current supplied from each constituent Power Park Unit when the Power Park Module is operating at rated Active Power and rated Reactive Power over the nominal voltage operating range as defined in ECC.6.1.4 less the contribution from the reactive compensation equipment.

For example, in the case of a 100MW **Power Park Module** (consisting of 50 x 2MW Power Park Units and +10MVAr reactive compensation equipment) the **Rated Active Power** at the **Grid Entry Point** (or **User System Entry Point** if **Embedded**) would be taken as 100MW and the rated **Reactive Power** at the **Grid Entry Point** or (**User System Entry Point** if **Embedded**) would be taken as 32.8MVArs (ie **Rated MW** output operating at 0.95 **Power Factor** lead or 0.95 **Power Factor** lag as required under ECC.6.3.2.4). In this example, the maximum rating of each constituent **Power Park Unit** is obtained when the **Power Park**

Module is operating at 100MW, and +32.8MVAr less 10MVAr equal to 22.8MVAr or – 32.8MVAr (less the reactive compensation equipment component of 10MVAr (ie - 22.8MVAr) when operating within the normal voltage operating range as defined under ECC.6.1.4 (allowing for any reactive compensation equipment or losses in the **Power Park Module** array network).

For the avoidance of doubt, the total current of 1.0pu would be assumed to be on the MVA rating of the **Power Park Module** or **HVDC Equipment** (less losses). Under all normal and abnormal conditions, the steady state or transient rating of the **Power Park Module** (or any constituent element including the **Power Park Units**) or **HVDC Equipment**, would not be required to exceed the locus shown in Figure 16.3.16(d).

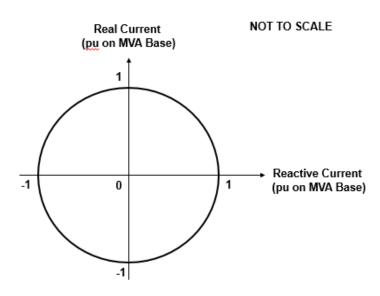


Figure ECC.16.3.16(d)

ECC.6.3.16.1.7

Each Type B, Type C and Type D Power Park Module or HVDC Equipment shall be designed to ensure a smooth transition between voltage control mode and fault ride through mode in order to prevent the risk of instability which could arise in the transition between the steady state voltage operating range as defined under ECC.6.1.4 and abnormal conditions where the retained voltage falls below 90% of nominal voltage. Such a requirement is necessary to ensure adequate performance between the pre-fault operating condition of the Power Park Module or HVDC Equipment and its subsequent behaviour under faulted conditions. EU Generators and HVDC System Owners are required to both advise and agree with The Company the control strategy employed to mitigate the risk of such instability.

ECC.6.3.16.1.8

Each Type B, Type C and Type D Power Park Module or HVDC Equipment shall be designed to reduce the risk of transient over voltage levels arising following clearance of the fault and in order to mitigate the risk of any form of instability which could result. EU Generators or HVDC System Owners shall be permitted to block or employ other means where the anticipated transient overvoltage would otherwise exceed the maximum permitted values specified in ECC.6.1.7. Figure ECC.16.3.16(b) and Figure ECC.16.3.16(c) shows the impact of variations in fault clearance time. For main protection operating times this would not exceed 140ms. The requirements for the maximum transient overvoltage withstand capability and associated time duration, shall be agreed between the EU Code User and The Company as part of the Bilateral Agreement. Where the EU Code User is able to demonstrate to The Company that blocking or other control strategies are required in order to prevent the risk of transient over voltage excursions as specified in ECC.6.3.16.1.5, EU Generators and HVDC System Owners are required to both advise and agree with The Company the control strategy, which must also include the approach taken to de-blocking

- In addition to the requirements of ECC.6.3.15, Generators in respect of Type B, Type C and Type D Power Park Modules or each Power Park Unit within a Type B, Type C and Type D Power Park Module or DC Connected Power Park Modules and HVDC System Owners in respect of HVDC Systems are required to confirm to The Company, their repeated ability to supply Fast Fault Current to the System each time the voltage at the Grid Entry Point or User System Entry Point falls outside the limits specified in ECC.6.1.4. EU Generators and HVDC Equipment Owners should inform The Company of the maximum number of repeated operations that can be performed under such conditions and any limiting factors to repeated operation such as protection or thermal rating.
- To permit additional flexibility for example from **Power Park Modules** made up of full converter machines, DFIG machines, induction generators or **HVDC Systems** or **Remote End HVDC Converters**, **The Company** will permit transient or marginal deviations below the shaded area shown in Figures ECC.16.3.16(b) or ECC.16.3.16(c) provided the injected reactive current supplied exceeds the area bound in Figure ECC.6.3.16(b) or ECC.6.3.16(c). Such agreement would be confirmed and agreed between **The Company** and **Generator**.
- ECC.6.3.16.1.11 In the case of a **Power Park Module** or **DC Connected Power Park Module**, where it is not practical to demonstrate the compliance requirements of ECC.6.3.16.1.1 to ECC.6.3.16.1.6 at the **Grid Entry Point** or **User System Entry Point**, **The Company** will accept compliance of the above requirements at the **Power Park Unit** terminals.
- ECC.6.3.16.1.12 For the avoidance of doubt, **Generators** in respect of **Type C** and **Type D Power Park Modules** and **OTSDUW Plant and Apparatus** are also required to satisfy the requirements of ECC.6.3.15.9.2.1(b) which specifies the requirements for fault ride through for voltage dips in excess of 140ms.
- ECC.6.3.16.1.13 In the case of an unbalanced fault, each Type B, Type C and Type D Power Park Module or each Power Park Unit within a Type B, Type C and Type D Power Park Module or HVDC Equipment shall be required to inject reactive current (IR) which shall as a minimum increase with the fall in the retained unbalanced voltage up to its maximum reactive current without exceeding the transient rating of the Power Park Module (or constituent element thereof) or HVDC Equipment.
- In the case of a unbalanced fault, the **Generator** or **HVDC System Owner** shall confirm to **The Company** their ability to prevent transient overvoltages arising on the remaining healthy phases and the control strategy employed.
- ECC.6.3.17 <u>SUBSYNCHRONOUS TORSIONAL INTERACTION DAMPING CAPABILITY, POWER OSCILLATION DAMPING CAPABILITY AND CONTROL FACILITIES FOR HVDC SYSTEMS</u>
- ECC.6.3.17.1 Subsynchronous Torsional Interaction Damping Capability
- ECC.6.3.17.1.1 HVDC System Owners, or Generators in respect of OTSDUW DC Converters or Network Operators in the case of an Embedded HVDC Systems not subject to a Bilateral Agreement must ensure that any of their Onshore HVDC Systems or OTSDUW DC Converters will not cause a sub-synchronous resonance problem on the Total System. Each HVDC System or OTSDUW DC Converter is required to be provided with sub-synchronous resonance damping control facilities. HVDC System Owners and EU Generators in respect of OTSDUW DC Converters should also be aware of the requirements in ECC.6.1.9 and ECC.6.1.10.
- ECC.6.3.17.1.2 Where specified in the **Bilateral Agreement**, each **OTSDUW DC Converter** is required to be provided with power oscillation damping or any other identified additional control facilities.

- ECC.6.3.17.1.3 Each HVDC System shall be capable of contributing to the damping of power oscillations on the National Electricity Transmission System. The control system of the HVDC System shall not reduce the damping of power oscillations. The Company in coordination with the Relevant Transmission Licensee (as applicable) shall specify a frequency range of oscillations that the control scheme shall positively damp and the System conditions when this occurs, at least accounting for any dynamic stability assessment studies undertaken by the Relevant Transmission Licensee or The Company (as applicable) to identify the stability limits and potential stability problems on the National Electricity Transmission System. The selection of the control parameter settings shall be agreed between The Company in coordination with the Relevant Transmission Licensee and the HVDC System Owner.
- ECC.6.3.17.1.4 **The Company** shall specify the necessary extent of SSTI studies and provide input parameters, to the extent available, related to the equipment and relevant system conditions on the **National Electricity Transmission System**. The SSTI studies shall be provided by the **HVDC System Owner**. The studies shall identify the conditions, if any, where SSTI exists and propose any necessary mitigation procedure. The responsibility for undertaking the studies in accordance with these requirements lies with the **Relevant Transmission Licensee** in co-ordiantion with **The Company**. All parties shall be informed of the results of the studies.
- ECC.6.3.17.1.5 All parties identified by **The Company** as relevant to each **Grid Entry Point** or **User System Entry Point** (if **Embedded**), including the **Relevant Transmission Licensee**, shall contribute to the studies and shall provide all relevant data and models as reasonably required to meet the purposes of the studies. **The Company** shall collect this data and, where applicable, pass it on to the party responsible for the studies in accordance with Article 10 of **European Regulation 2016/1447**. Specific information relating to the interface schedules, input/output requirements, timing and submission of any studies or data would be agreed between the **User** and **The Company** and specified (where applicable) in the **Bilateral Agreement**.
- ECC.6.3.17.1.6 **The Company** in coordination with the **Relevant Transmission Licensee** shall assess the result of the SSTI studies. If necessary for the assessment, **The Company** in coordination with the **Relevant Transmission Licensee** may request that the **HVDC System Owner** perform further SSTI studies in line with this same scope and extent.
- ECC.6.3.17.1.7 **The Company** in coordination with the **Relevant Transmission Licensee** may review or replicate the study. The **HVDC System Owner** shall provide **The Company** with all relevant data and models that allow such studies to be performed. Submission of this data to **Relevant Transmission Licensee's** shall be in accordance with the requirements of Article 10 of **European Regulation** 2016/1447.
- ECC.6.3.17.1.8 Any necessary mitigating actions identified by the studies carried out in accordance with paragraphs ECC.6.3.17.1.4 or ECC.6.3.17.1.6, and reviewed by **The Company** in coordination with the **Relevant Transmission Licensees**, shall be undertaken by the **HVDC System Owner** as part of the connection of the new **HVDC Converter Station**.
- ECC.6.3.17.1.9 As part of the studies and data flow in respect of ECC.6.3.17.1 ECC.6.3.17.8 the following data exchange would take place with the time scales being pursuant to the terms of the Bilateral Agreement.

Information supplied by The Company and Relevant Transmission Licensees

Studies provided by the User

User review

The Company review

Changes to studies and agreed updates between **The Company**, the **Relevant Transmission Licensee** and **User**

Final review

ECC.6.3.17.2 Interaction between HVDC Systems or other User's Plant and Apparatus

- ECC.6.3.17.2.1 Notwithstanding the requirements of ECC6.1.9 and ECC.6.1.10, when several HVDC Converter Stations or other User's Plant and Apparatus are within close electrical proximity, The Company may specify that a study is required, and the scope and extent of that study, to demonstrate that no adverse interaction will occur. If adverse interaction is identified, the studies shall identify possible mitigating actions to be implemented to ensure compliance with the requirements of ECC.6.1.9
- ECC.6.3.17.2.2 The studies shall be carried out by the connecting HVDC System Owner with the participation of all other User's identified by The Company in coordination with Relevant Transmission Licensees as relevant to each Connection Point.
- ECC.6.3.17.2.3 All **User's** identified by **The Company** as relevant to the connection, and where applicable **Relevant Transmission Licensee's**, shall contribute to the studies and shall provide all relevant data and models as reasonably required to meet the purposes of the studies. **The Company** shall collect this input and, where applicable, pass it on to the party responsible for the studies in accordance with Article 10 of **European Regulation 2016/1447**. Specific information relating to the interface schedules, input/output requirements, timing and submission of any studies or data would be agreed between the **User** and **The Company** and specified (where applicable) in the **Bilateral Agreement**.
- ECC.6.3.17.2.4 **The Company** in coordination with **Relevant Transmission Licensees** shall assess the result of the studies based on their scope and extent as specified in accordance with ECC.6.3.17.2.1. If necessary for the assessment, **The Company** in coordination with the **Relevant Transmission Licensee** may request the **HVDC System Owner** to perform further studies in line with the scope and extent specified in accordance with ECC.6.3.17.2.1.
- ECC.6.3.17.2.5 **The Company** in coordination with the **Relevant Transmission Licensee** may review or replicate some or all of the studies. The **HVDC System Owner** shall provide **The Company** all relevant data and models that allow such studies to be performed.
- ECC.6.3.17.2.6 The **EU Code User** and **The Company**, in coordination with the **Relevant Transmission Licensee**, shall agree any mitigating actions identified by the studies carried out following the site specific requirements and works, including any transmission reinforcement works and / or **User** works required to ensure that all sub-synchronous oscillations are sufficiently damped.
- ECC.6.1.17.3 Fast Recovery from DC faults
- ECC.6.1.17.3.1 **HVDC Systems**, including DC overhead lines, shall be capable of fast recovery from transient faults within the **HVDC System**. Details of this capability shall be subject to the **Bilateral Agreement** and the protection requirements specified in ECC.6.2.2.
- ECC.6.1.17.4 Maximum loss of **Active Power**
- ECC.6.1.14.4.1 An **HVDC System** shall be configured in such a way that its loss of **Active Power** injection in the **GB Synchronous Area** shall be in accordance with the requirements of the **SQSS**.
- ECC.6.3.18 SYSTEM TO GENERATOR OPERATIONAL INTERTRIPPING SCHEMES
- ECC.6.3.18.1 The Company may require that a System to Generator Operational Intertripping Scheme be installed as part of a condition of the connection of the EU Generator. Scheme specific details shall be included in the relevant Bilateral Agreement and shall, include the following information:
 - (1) the relevant category(ies) of the scheme (referred to as Category 1 Intertripping Scheme, Category 2 Intertripping Scheme, Category 3 Intertripping Scheme and Category 4 Intertripping Scheme);
 - (2) the **Power Generating Module** to be either permanently armed or that can be instructed to be armed in accordance with BC2.8;
 - (3) the time within which the **Power Generating Module** circuit breaker(s) are to be automatically tripped;

(4) the location to which the trip signal will be provided by **The Company**. Such location will be provided by **The Company** prior to the commissioning of the **Power Generating Module**.

Where applicable, the **Bilateral Agreement** shall include the conditions on the **National Electricity Transmission System** during which **The Company** may instruct the **System to Generator Operational Intertripping Scheme** to be armed and the conditions that would initiate a trip signal.

- ECC.6.3.18.2 The time within which the **Power Generating Module(s)** circuit breaker(s) need to be automatically tripped is determined by the specific conditions local to the **EU Generator**. This 'time to trip' (defined as the time from provision of the trip signal by **The Company** to the specified location, to circuit breaker main contact opening) can typically range from 100ms to 10sec. A longer time to trip may allow the initiation of an automatic reduction in the **Power Generating Module(s)** circuit breaker. Where applicable **The Company** may provide separate trip signals to allow for either a longer or shorter 'time to trip' to be initiated.
- ECC.6.4 General Network Operator And Non-Embedded Customer Requirements
- This part of the **Grid Code** describes the technical and design criteria and performance requirements for **Network Operators** and **Non-Embedded Customers**.

Neutral Earthing

At nominal **System** voltages of 132kV and above the higher voltage windings of three phase transformers and transformer banks connected to the **National Electricity Transmission System** must be star connected with the star point suitable for connection to earth. The earthing and lower voltage winding arrangement shall be such as to ensure that the **Earth Fault Factor** requirement of paragraph ECC.6.2.1.1 (b) will be met on the **National Electricity Transmission System** at nominal **System** voltages of 132kV and above.

Frequency Sensitive Relays

As explained under OC6, each Network Operator and Non Embedded Customer, will make arrangements that will facilitate automatic low Frequency Disconnection of Demand (based on Annual ACS Conditions). ECC.A.5.5. of Appendix E5 includes specifications of the local percentage Demand that shall be disconnected at specific frequencies. The manner in which Demand subject to low Frequency disconnection will be split into discrete MW blocks is specified in OC6.6. Technical requirements relating to Low Frequency Relays are also listed in Appendix E5.

Operational Metering

Where The Company can reasonably demonstrate that an Embedded Medium Power Station or Embedded HVDC System has a significant effect on the National Electricity Transmission System, it may require the Network Operator within whose System the Embedded Medium Power Station or Embedded HVDC System is situated to ensure that the operational metering equipment described in ECC.6.5.6 is installed such that The Company can receive the data referred to in ECC.6.5.6. In the case of an Embedded Medium Power Station subject to, or proposed to be subject to a Bilateral Agreement, The Company shall notify such Network Operator of the details of such installation in writing within 3 months of being notified of the application to connect under CUSC and in the case of an Embedded Medium Power Station not subject to, or not proposed to be subject to a Bilateral Agreement in writing as a Site Specific Requirement in accordance with the timescales in CUSC 6.5.5. In either case the Network Operator shall ensure that the data referred to in ECC.6.5.6 is provided to The Company.

ECC.6.4.5 Reactive Power Requirements at each EU Grid Supply Point

At each EU Grid Supply Point, Non-Embedded Customers and Network Operators who are EU Code Users shall ensure their Systems are capable of steady state operation within the Reactive Power limits as specified in ECC.6.4.5.1(a) and ECC.6.4.5.1(b). Where The Company requires a Reactive Power range which is broader than the limits defined in ECC.6.4.5.1(a) and ECC.6.4.5.1(b), this will be agreed as a reasonable requirement through joint assessment between the relevant EU Code User and The Company and justified in accordance with the requirements of ECC.6.4.5.1(c), (d), (e) and (f). For Non-Embedded Customers who are EU Code Users, the Reactive Power range at each EU Grid Supply Point, under both importing and exporting conditions, shall not exceed 48% of the larger of the Maximum Import Capability or Maximum Export Capability (0.9 Power Factor import or export of Active Power), except in situations where either technical or financial system benefits are demonstrated for Non-Embedded Customers and accepted by The Company in coordination with the Relevant Transmission Licensee.

- (a) For **Network Operators** who are **EU Code Users** at each **EU Grid Supply Point**, the **Reactive Power** range shall not exceed:
 - (i) 48 percent (i.e. 0.9 **Power Factor**) of the larger of the **Maximum Import Capability** or **Maximum Export Capability** during **Reactive Power** import (consumption); and
 - (ii) 48 percent (i.e. 0.9 **Power Factor**) of the larger of the **Maximum Import** Capability or **Maximum Export Capability** during **Reactive Power** export (production);

Except in situations where either technical or financial system benefits are proved by **The Company** in coordination with the **Relevant Transmission Licensee** and the relevant **Network Operator** through joint analysis.

- (b) The Company in co-ordination with the Relevant Transmission Licensee shall agree with the Network Operator on the scope of the analysis, which shall determine the optimal solution for Reactive Power exchange between their Systems at each EU Grid Supply Point, taking adequately into consideration the specific System characteristics, variable structure of power exchange, bidirectional flows and the Reactive Power capabilities of the Network Operator's System. Any proposed solutions shall take the above issues into account and shall be agreed as a reasonable requirement through joint assessment between the relevant Network Operator or Non-Embedded Customer and The Company in coordination with the Relevant Transmission Licensee. In the event of a shared site between a GB Code User and EU Code User, the requirements would generally be allocated to each User on the basis of their Demand in the case of a Network Operator who is a GB Code User and applied on the basis of the Maximum Import Capability or Maximum Export Capability as specified in ECC.6.4.5.1 in the case of a Network Operator who is an EU Code User.
- (c) The Company in coordination with the Relevant Transmission Licensee may specify the Reactive Power capability range at the EU Grid Supply Point in another form other than Power Factor.
- (d) Notwithstanding the ability of **Network Operators** or **Non Embedded Customers** to apply for a derogation from ECC.6.4.5.1 (e), where an **EU Grid Supply Point** is shared between a **Power Generating Module** and a **Non-Embedded Customers System**, the **Reactive Power** range would be apportioned to each **EU Code User** at their **Connection Point**.
- Where agreed with the **Network Operator** who is an **EU Code User** and justified though appropriate **System** studies, **The Company** may reasonably require the **Network Operator** not to export **Reactive Power** at the **EU Grid Supply Point** (at nominal voltage) at an **Active Power** flow of less than 25 % of the **Maximum Import Capability**. Where applicable, the **Authority** may require **The Company** in coordination with the **Relevant Transmission Licensee** to justify its request through a joint analysis with the relevant **Network Operator** and demonstrate that any such requirement is reasonable. If this requirement is not justified based on the joint analysis, **The Company** in coordination with the **Relevant Transmission Licensee** and the **Network Operator** shall agree on necessary requirements according to the outcomes of a joint analysis.
- Notwithstanding the requirements of ECC.6.4.5.1(b) and subject to agreement between The Company and the relevant Network Operator there may be a requirement to actively control the exchange of Reactive Power at the EU Grid Supply Point for the benefit of the Total System. The Company and the relevant Network Operator shall agree on a method to carry out this control, to ensure the justified level of security of supply for both parties. Any such solution including joint study work and timelines would be agreed between The Company and the relevant Network Operator as reasonable, efficient and proportionate.
- In accordance with ECC.6.4.5.3, the relevant **Network Operator** may require **The Company** to consider its **Network Operator's System** for **Reactive Power** management. Any such requirement would need to be agreed between **The Company** and the relevant **Network Operator** and justified by **The Company**.

ECC.6.5 Communications Plant

In order to ensure control of the **National Electricity Transmission System**, telecommunications between **Users** and **The Company** must (including in respect of any **OTSDUW Plant and Apparatus** at the **OTSUA Transfer Time**), if required by **The Company**, be established in accordance with the requirements set down below.

- ECC.6.5.2 Control Telephony and System Telephony
- ECC.6.5.2.1 Control Telephony is the principle method by which a User's Responsible Engineer/Operator and The Company's Control Engineers speak to one another for the purposes of control of the Total System in both normal and emergency operating conditions. Control Telephony provides secure point to point telephony for routine Control Calls, priority Control Calls and emergency Control Calls.
- ECC.6.5.2.2 System Telephony is an alternate method by which a User's Responsible Engineer/Operator and The Company's Control Engineers speak to one another for the purposes of control of the Total System in both normal operating conditions and where practicable, emergency operating conditions. System Telephony uses the Public Switched Telephony Network to provide telephony for Control Calls, inclusive of emergency Control Calls.
- ECC.6.5.2.3 Calls made and received over **Control Telephony** and **System Telephony** may be recorded and subsequently replayed for commercial and operational reasons.
- ECC.6.5.3 <u>Supervisory Tones</u>
- ECC.6.5.3.1 **Control Telephony** supervisory tones indicate to the calling and receiving parties dial, engaged, ringing, secondary engaged (signifying that priority may be exercised) and priority disconnect tones.
- **System Telephony** supervisory tones indicate to the calling and receiving parties dial, engaged and ringing tones.
- ECC.6.5.4 Obligations in respect of Control Telephony and System Telephony
- Where The Company requires Control Telephony, Users are required to use the Control Telephony with The Company in respect of all Connection Points with the National Electricity Transmission System and in respect of all Embedded Large Power Stations and Embedded HVDC Systems. The Company will have Control Telephony installed at the User's Control Point where the User's telephony equipment is not capable of providing the required facilities or is otherwise incompatible with the Transmission Control Telephony. Details of and relating to the Control Telephony required are contained in the Bilateral Agreement.
- Where in **The Company's** sole opinion the installation of **Control Telephony** is not practicable at a **User's Control Point(s)**, **The Company** shall specify in the **Bilateral Agreement** whether **System Telephony** is required. Where **System Telephony** is required by **The Company**, the **User** shall ensure that **System Telephony** is installed.
- Where **System Telephony** is installed, **Users** are required to use the **System Telephony** with **The Company** in respect of those **Control Point(s)** for which it has been installed. Details of and relating to the **System Telephony** required are contained in the **Bilateral Agreement**.
- Where **Control Telephony** or **System Telephony** is installed, routine testing of such facilities may be required by **The Company** (not normally more than once in any calendar month). The **User** and **The Company** shall use reasonable endeavours to agree a test programme and where **The Company** requests the assistance of the **User** in performing the agreed test programme the **User** shall provide such assistance. **The Company** requires the **EU Code User** to test the backup power supplies feeding its **Control Telephony** facilities at least once every 5 years.
- ECC.6.5.4.5 **Control Telephony** and **System Telephony** shall only be used for the purposes of operational voice communication between **The Company** and the relevant **User**.
- Control Telephony contains emergency calling functionality to be used for urgent operational communication only. Such functionality enables **The Company** and **Users** to utilise a priority call in the event of an emergency. **The Company** and **Users** shall only use such priority call functionality for urgent operational communications.

- ECC.6.5.5 Technical Requirements for Control Telephony and System Telephony
- ECC.6.5.5.1 Detailed information on the technical interfaces and support requirements for **Control Telephony** is provided in the **Control Telephony Electrical Standard** identified in the Annex to the **General Conditions**. Where additional information, or information in relation to **Control Telephony** applicable in Scotland, is requested by **Users**, this will be provided, where possible, by **The Company**.
- System Telephony shall consist of a dedicated Public Switched Telephone Network telephone line that shall be installed and configured by the relevant User. The Company shall provide a dedicated free phone number (UK only), for the purposes of receiving incoming calls to The Company, which Users shall utilise for System Telephony. System Telephony shall only be utilised by The Company's Control Engineer and the User's Responsible Engineer/Operator for the purposes of operational communications.

ECC.6.5.6 Operational Metering

- ECC.6.5.6.1 It is an essential requirement for **The Company** and **Network Operators** to have visibility of the real time output and status of indications of **User's Plant and Apparatus** so they can control the operation of the **System**.
- Type B, Type C and Type D Power Park Modules, HVDC Equipment, Network Operators and Non Embedded Customers are required to be capable of exchanging operational metering data with The Company and Relevant Transmission Licensees (as applicable) with time stamping. Time stamping would generally be to a sampling rate of 1 second or better unless otherwise specified by The Company in the Bilateral Agreement.
- The Company in coordination with the Relevant Transmission Licensee shall specify in the Bilateral Agreement the operational metering signals to be provided by the EU Generator, HVDC System Owner, Network Operator or Non-Embedded Customer. In the case of Network Operators and Non-Embedded Customers, detailed specifications relating to the operational metering standards at EU Grid Supply Points and the data required are published as Electrical Standards in the Annex to the General Conditions.
- (a) The Company or The Relevant Transmission Licensee, as applicable, shall provide system control and data acquisition (SCADA) outstation interface equipment., each EU Code User shall provide such voltage, current, Frequency, Active Power and Reactive Power measurement outputs and plant status indications and alarms to the Transmission SCADA outstation interface equipment as required by The Company in accordance with the terms of the Bilateral Agreement. In the case of OTSDUW, the User shall provide such SCADA outstation interface equipment and voltage, current, Frequency, Active Power and Reactive Power measurement outputs and plant status indications and alarms to the SCADA outstation interface equipment as required by The Company in accordance with the terms of the Bilateral Agreement.
 - (b) For the avoidance of doubt, for **Active Power** and **Reactive Power** measurements, circuit breaker and disconnector status indications from:
 - (i) CCGT Modules from Type B, Type C and Type D Power Generating Modules, the outputs and status indications must each be provided to The Company on an individual CCGT Unit basis. In addition, where identified in the Bilateral Agreement, Active Power and Reactive Power measurements from Unit Transformers and/or Station Transformers must be provided.
 - (ii) For Type B, Type C and Type D Power Park Modules the outputs and status indications must each be provided to The Company on an individual Power Park Module basis. In addition, where identified in the Bilateral Agreement, Active Power and Reactive Power measurements from station transformers must be provided.
 - (iii) In respect of OTSDUW Plant and Apparatus, the outputs and status indications must be provided to The Company for each piece of electrical equipment. In

addition, where identified in the **Bilateral Agreement**, **Active Power** and **Reactive Power** measurements at the **Interface Point** must be provided.

- (c) For the avoidance of doubt, the requirements of ECC.6.5.6.4(a) in the case of a Cascade Hydro Scheme will be provided for each Generating Unit forming part of that Cascade Hydro Scheme. In the case of Embedded Generating Units forming part of a Cascade Hydro Scheme the data may be provided by means other than the SCADA outstation located at the Power Station, such as, with the agreement of the Network Operator in whose system such Embedded Generating Unit is located, from the Network Operator's SCADA system to The Company. Details of such arrangements will be contained in the relevant Bilateral Agreements between The Company and the Generator and the Network Operator.
- (d) In the case of a Power Park Module, additional energy input signals (e.g. wind speed, and wind direction) may be specified in the Bilateral Agreement. A Power Available signal will also be specified in the Bilateral Agreement. The signals would be used to establish the potential level of energy input from the Intermittent Power Source for monitoring pursuant to ECC.6.6.1 and Ancillary Services and will, in the case of a wind farm, be used to provide The Company with advanced warning of excess wind speed shutdown and to determine the level of Headroom available from Power Park Modules for the purposes of calculating response and reserve. For the avoidance of doubt, the Power Available signal would be automatically provided to The Company and represent the sum of the potential output of all available and operational Power Park Units within the Power Park Module. The refresh rate of the Power Available signal shall be specified in the Bilateral Agreement. In the case of an Electricity Storage Module, the requirement to provide a Power Available Signal when the Plant is in both an importing and exporting mode of operation would be specified in the Bilateral Agreement.
- (e) In the case of an Electricity Storage Module, additional input signals (e.g. state of energy (MWhr, and system availability) may be specified in the Bilateral Agreement. A Power Available signal will also be specified in the Bilateral Agreement in accordance with the requirements of ECC.6.5.6.4(d).
- ECC.6.5.6.5 In addition to the requirements of the **Balancing Codes**, each **HVDC Converter** unit of an **HVDC system** shall be equipped with an automatic controller capable of receiving instructions from **The Company**. This automatic controller shall be capable of operating the **HVDC Converter** units of the **HVDC System** in a coordinated way. **The Company** shall specify the automatic controller hierarchy per **HVDC Converter** unit.
- ECC.6.5.6.6 The automatic controller of the **HVDC System** referred to in paragraph ECC.6.5.6.5 shall be capable of sending the following signal types to **The Company** (where applicable):
 - (a) operational metering signals, providing at least the following:
 - (i) start-up signals;
 - (ii) AC and DC voltage measurements;
 - (iii) AC and DC current measurements;
 - (iv) Active and Reactive Power measurements on the AC side;
 - (v) DC power measurements;
 - (vi) HVDC Converter unit level operation in a multi-pole type HVDC Converter;
 - (vii) elements and topology status; and
 - (viii) Frequency Sensitive Mode, Limited Frequency Sensitive Mode Overfrequency and Limited Frequency Sensitive Mode Underfrequency Active Power ranges (where applicable).
 - (b) alarm signals, providing at least the following:
 - (i) emergency blocking;

- (ii) ramp blocking;
- (iii) fast Active Power reversal (where applicable)
- ECC.6.5.6.7 The automatic controller referred to in ECC.6.5.6.5 shall be capable of receiving the following signal types from **The Company** (where applicable):
 - (a) operational metering signals, receiving at least the following:
 - (i) start-up command;
 - (ii) Active Power setpoints;
 - (iii) Frequency Sensitive Mode settings;
 - (iv) Reactive Power, voltage or similar setpoints;
 - (v) Reactive Power control modes;
 - (vi) power oscillation damping control; and
 - (b) alarm signals, receiving at least the following:
 - (i) emergency blocking command;
 - (ii) ramp blocking command;
 - (iii) Active Power flow direction; and
 - (iv)) fast Active Power reversal command.
 - ECC.6.5.6.8 With regards to operational metering signals, the resolution and refresh rate required would be 1 second or better unless otherwise agreed with **The Company**

Instructor Facilities

ECC.6.5.7 The **User** shall accommodate **Instructor Facilities** provided by **The Company** for the receipt of operational messages relating to **System** conditions.

Electronic Data Communication Facilities

- ECC.6.5.8 (a) All **BM Participants** must ensure that appropriate electronic data communication facilities are in place to permit the submission of data, as required by the **Grid Code**, to **The Company**.
 - (b) In addition,
 - (1) any **User** that wishes to participate in the **Balancing Mechanism**;

or

(2) any BM Participant in respect of its BM Units at a Power Station and the BM Participant is required to provide all Part 1 System Ancillary Services in accordance with ECC.8.1 (unless The Company has otherwise agreed)

must ensure that appropriate automatic logging devices are installed at the **Control Points** of its **BM Units** to submit data to and to receive instructions from **The Company**, as required by the **Grid Code**. For the avoidance of doubt, in the case of an **Interconnector User** the **Control Point** will be at the **Control Centre** of the appropriate **Externally Interconnected System Operator**.

(c) Detailed specifications of these required electronic facilities will be provided by The Company on request and they are listed as Electrical Standards in the Annex to the General Conditions.

Facsimile Machines

- (a) in the case of **Generators**, at the **Control Point** of each **Power Station** and at its **Trading Point**:
- (b) in the case of The Company and Network Operators, at the Control Centre(s); and
- (c) in the case of **Non-Embedded Customers** and **HVDC Equipment** owners at the **Control Point**.

Each User shall notify, prior to connection to the System of the User's Plant and Apparatus, The Company of its or their telephone number or numbers, and will notify The Company of any changes. Prior to connection to the System of the User's Plant and Apparatus The Company shall notify each User of the telephone number or numbers of its facsimile machine or machines and will notify any changes.

ECC.6.5.10 Busbar Voltage

The Relevant Transmission Licensee shall, subject as provided below, provide each Generator or HVDC System Owner at each Grid Entry Point where one of its Power Stations or HVDC Systems is connected with appropriate voltage signals to enable the Generator or HVDC System owner to obtain the necessary information to permit its Power Generating Modules (including DC Connected Power Park Modules) or HVDC System to be Synchronised to the National Electricity Transmission System. The term "voltage signal" shall mean in this context, a point of connection on (or wire or wires from) a relevant part of Transmission Plant and/or Apparatus at the Grid Entry Point, to which the Generator or HVDC System Owner, with The Company's agreement (not to be unreasonably withheld) in relation to the Plant and/or Apparatus to be attached, will be able to attach its Plant and/or Apparatus (normally a wire or wires) in order to obtain measurement outputs in relation to the busbar.

ECC.6.5.11 Bilingual Message Facilities

- (a) A Bilingual Message Facility is the method by which the User's Responsible Engineer/Operator, the Externally Interconnected System Operator and The Company's Control Engineers communicate clear and unambiguous information in two languages for the purposes of control of the Total System in both normal and emergency operating conditions.
- (b) A Bilingual Message Facility, where required, will provide up to two hundred pre-defined messages with up to five hundred and sixty characters each. A maximum of one minute is allowed for the transmission to, and display of, the selected message at any destination. The standard messages must be capable of being displayed at any combination of locations and can originate from any of these locations. Messages displayed in the UK will be displayed in the English language.
- (c) Detailed information on a Bilingual Message Facility and suitable equipment required for individual **User** applications will be provided by **The Company** upon request.

ECC.6.6 Monitoring

ECC.6.6.1 <u>System Monitoring</u>

ECC.6.6.1.1 Each Type C and Type D Power Generating Module including DC Connected Power Park Modules shall be equipped with a facility to provide fault recording and monitoring of dynamic system behaviour. These requirements are necessary to record conditions during System faults and detect poorly damped power oscillations. This facility shall record the following parameters:

— voltage,
— Active Power,
— Reactive Power, and
— Frequency.

- ECC.6.6.1.2 Detailed specifications for fault recording and dynamic system monitoring equipment including triggering criteria and sample rates are listed as **Electrical Standards** in the **Annex** to the **General Conditions**. For Dynamic System Monitoring, the specification for the communication protocol and recorded data shall also be included in the **Electrical Standard**.
- The Company in coordination with the Relevant Transmission Licensee shall specify any requirements for Power Quality Monitoring in the Bilateral Agreement. The power quality parameters to be monitored, the communication protocols for the recorded data and the time frames for compliance shall be agreed between The Company, the Relevant Transmission Licensee and EU Generator.
- ECC.6.6.1.4 **HVDC Systems** shall be equipped with a facility to provide fault recording and dynamic system behaviour monitoring of the following parameters for each of its **HVDC Converter Stations**:
 - (a) AC and DC voltage;
 - (b) AC and DC current;
 - (c) Active Power;
 - (d) Reactive Power; and
 - (e) Frequency.
- ECC.6.6.1.5 **The Company** in coordination with the **Relevant Transmission Licensee** may specify quality of supply parameters to be complied with by the **HVDC System**, provided a reasonable prior notice is given.
- ECC.6.6.1.6 The particulars of the fault recording equipment referred to in ECC.6.6.1.4, including analogue and digital channels, the settings, including triggering criteria and the sampling rates, shall be agreed between the HVDC System Owner and The Company in coordination with the Relevant Transmission Licensee.
- ECC.6.6.1.7 All dynamic system behaviour monitoring equipment shall include an oscillation trigger, specified by **The Company**, in coordination with the **Relevant Transmission Licensee**, with the purpose of detecting poorly damped power oscillations.
- ECC.6.6.1.8 The facilities for quality of supply and dynamic system behaviour monitoring shall include arrangements for the HVDC System Owner and The Company and/or Relevant Transmission Licensee to access the information electronically. The communications protocols for recorded data shall be agreed between the HVDC System Owner, The Company and the Relevant Transmission Licensee.
- ECC.6.6.2 Frequency Response Monitoring
- ECC.6.6.2.1 Each Type C and Type D Power Generating Module including DC Connected Power Park Modules shall be fitted with equipment capable of monitoring the real time Active Power output of a Power Generating Module when operating in Frequency Sensitive Mode.
- ECC.6.6.2.2

Detailed specifications of the **Active Power Frequency** response requirements including the communication requirements are listed as **Electrical Standards** in the **Annex** to the **General Conditions**.

- ECC.6.6.2.3 The Company in co-ordination with the Relevant Transmission Licensee shall specify additional signals to be provided by the EU Generator by monitoring and recording devices in order to verify the performance of the Active Power Frequency response provision of participating Power Generating Modules.
- ECC.6.6.3 <u>Compliance Monitoring</u>
- For all on site monitoring by **The Company** of witnessed tests pursuant to the **CP** or **OC5** or **ECP** the **User** shall provide suitable test signals as outlined in either OC5.A.1or **ECP.A.4** (as applicable).

- ECC.6.6.3.2 The signals which shall be provided by the **User** to **The Company** for onsite monitoring shall be of the following resolution, unless otherwise agreed by **The Company**:
 - (i) 1 Hz for reactive range tests
 - (ii) 10 Hz for frequency control tests
 - (iii) 100 Hz for voltage control tests
- ECC.6.6.3.3 The **User** will provide all relevant signals for this purpose in the form of d.c. voltages within the range -10V to +10V. In exceptional circumstances some signals may be accepted as d.c. voltages within the range -60V to +60V with prior agreement between the **User** and **The Company**. All signals shall:
 - (i) in the case of an **Onshore Power Generating Module** or **Onshore HVDC Convertor Station**, be suitably terminated in a single accessible location at the **Generator** or **HVDC Converter Station** owner's site.
 - (ii) in the case of an Offshore Power Generating Module and OTSDUW Plant and Apparatus, be transmitted onshore without attenuation, delay or filtering which would result in the inability to fully demonstrate the objectives of the test, or identify any potential safety or plant instability issues, and be suitably terminated in a single robust location normally located at or near the onshore Interface Point of the Offshore Transmission System to which it is connected.
- ECC.6.6.3.4 All signals shall be suitably scaled across the range. The following scaling would (unless **The Company** notify the **User** otherwise) be acceptable to **The Company**:
 - (a) 0MW to Maximum Capacity or Interface Point Capacity 0-8V dc
 - (b) Maximum leading Reactive Power to maximum lagging Reactive Power -8 to 8V dc
 - (c) 48 52Hz as -8 to 8V dc
 - (d) Nominal terminal or connection point voltage -10% to +10% as -8 to 8V dc
- ECC.6.6.3.5 The **User** shall provide to **The Company** a 230V power supply adjacent to the signal terminal location.
- ECC.7 SITE RELATED CONDITIONS
- ECC.7.1 Not used.
- ECC.7.2 Responsibilities For Safety
- Any User entering and working on its Plant and/or Apparatus (including, until the OTSUA Transfer Time, any OTSUA) on a Transmission Site will work to the Safety Rules of the Relevant Transmission Licensee, as advised by The Company.
- For **User Sites**, **The Company** shall procure that the **Relevant Transmission Licensee** entering and working on **Transmission Plant** and/or **Apparatus** on a **User Site** will work to the **User's Safety Rules**.
- A User may, with a minimum of six weeks notice, apply to The Company for permission to work according to that Users own Safety Rules when working on its Plant and/or Apparatus on a Transmission Site rather than those set out in ECC.7.2.1. If The Company is of the opinion that the User's Safety Rules provide for a level of safety commensurate with those set out in ECC.7.2.1, The Company will notify the User, in writing, that, with effect from the date requested by the User, the User may use its own Safety Rules when working on its Plant and/or Apparatus on the Transmission Site. For a Transmission Site, in forming its opinion, The Company will seek the opinion of the Relevant Transmission Licensee. Until receipt of such written approval from The Company, the User will continue to use the Safety Rules as set out in ECC.7.2.1.

- In the case of a User Site, The Company may, with a minimum of six weeks notice, apply to a User for permission for the Relevant Transmission Licensee to work according to the Relevant Transmission Licensee's Safety Rules when working on Transmission Plant and/or Apparatus on that User Site, rather than the User's Safety Rules. If the User is of the opinion that the Relevant Transmission Licensee's Safety Rules, provide for a level of safety commensurate with that of that User's Safety Rules, it will notify The Company, in writing, that, with effect from the date requested by The Company, that the Relevant Transmission Licensee may use its own Safety Rules when working on its Transmission Plant and/or Apparatus on that User's Site. Until receipt of such written approval from the User, The Company shall procure that the Relevant Transmission Licensee shall continue to use the User's Safety Rules.
- For a Transmission Site, if The Company gives its approval for the User's Safety Rules to apply to the User when working on its Plant and/or Apparatus, that does not imply that the User's Safety Rules will apply to entering the Transmission Site and access to the User's Plant and/or Apparatus on that Transmission Site. Bearing in mind the Relevant Transmission Licensee's responsibility for the whole Transmission Site, entry and access will always be in accordance with the Relevant Transmission Licensee's site access procedures. For a User Site, if the User gives its approval for Relevant Transmission Licensee when working on its Plant and Apparatus, that does not imply that the Relevant Transmission Licensee's Safety Rules will apply to entering the User Site, and access to the Transmission Plant and Apparatus on that User Site. Bearing in mind the User's responsibility for the whole User Site, entry and access will always be in accordance with the User's site access procedures.
- For User Sites, Users shall notify The Company of any Safety Rules that apply to the Relevant Transmission Licensee's staff working on User Sites. The Company shall procure that the Relevant Transmission Licensee shall notify Users of any Safety Rules that apply to the User's staff working on the Transmission Site.
- ECC.7.2.7 Each **Site Responsibility Schedule** must have recorded on it the **Safety Rules** which apply to each item of **Plant** and/or **Apparatus**.
- ECC.7.2.8 In the case of **OTSUA** a **User Site** or **Transmission Site** shall, for the purposes of this ECC.7.2, include a site at which there is an **Interface Point** until the **OTSUA Transfer Time** when it becomes part of the **National Electricity Transmission System**.
- ECC.7.3 <u>Site Responsibility Schedules</u>
- In order to inform site operational staff and The Company's Control Engineers of agreed responsibilities for Plant and/or Apparatus at the operational interface, a Site Responsibility Schedule shall be produced for Connection Sites (and in the case of OTSUA, until the OTSUA Transfer Time, Interface Sites) for The Company, the Relevant Transmission Licensee and Users with whom they interface.
- ECC.7.3.2 The format, principles and basic procedure to be used in the preparation of **Site Responsibility Schedules** are set down in Appendix 1.
- ECC.7.4 Operation And Gas Zone Diagrams

Operation Diagrams

An **Operation Diagram** shall be prepared for each **Connection Site** at which a **Connection Point** exists (and in the case of **OTSDUW Plant and Apparatus**, by **User's** for each **Interface Point**) using, where appropriate, the graphical symbols shown in Part 1A of Appendix 2. **Users** should also note that the provisions of **OC11** apply in certain circumstances.

- The Operation Diagram shall include all HV Apparatus and the connections to all external circuits and incorporate numbering, nomenclature and labelling, as set out in OC11. At those Connection Sites (or in the case of OTSDUW Plant and Apparatus, Interface Points) where gas-insulated metal enclosed switchgear and/or other gas-insulated HV Apparatus is installed, those items must be depicted within an area delineated by a chain dotted line which intersects gas-zone boundaries. The nomenclature used shall conform with that used on the relevant Connection Site and circuit (and in the case of OTSDUW Plant and Apparatus, Interface Point and circuit). The Operation Diagram (and the list of technical details) is intended to provide an accurate record of the layout and circuit interconnections, ratings and numbering and nomenclature of HV Apparatus and related Plant.
- A non-exhaustive guide to the types of **HV Apparatus** to be shown in the **Operation Diagram** is shown in Part 2 of Appendix 2, together with certain basic principles to be followed unless equivalent principles are approved by **The Company**.

Gas Zone Diagrams

- A Gas Zone Diagram shall be prepared for each Connection Site at which a Connection Point (and in the case of OTSDUW Plant and Apparatus, by User's for an Interface Point) exists where gas-insulated switchgear and/or other gas-insulated HV Apparatus is utilised. They shall use, where appropriate, the graphical symbols shown in Part 1B of Appendix 2.
- The nomenclature used shall conform with that used in the relevant **Connection Site** and circuit (and in the case of **OTSDUW Plant and Apparatus**, relevant **Interface Point** and circuit).
- The basic principles set out in Part 2 of Appendix 2 shall be followed in the preparation of **Gas Zone Diagrams** unless equivalent principles are approved by **The Company**.

<u>Preparation of Operation and Gas Zone Diagrams for Users' Sites and Transmission Interface Sites</u>

- In the case of a User Site, the User shall prepare and submit to The Company, an Operation Diagram for all HV Apparatus on the User side of the Connection Point (and in the case of OTSDUW Plant and Apparatus, on what will be the Offshore Transmission side of the Connection Point and the Interface Point) and The Company shall provide the User with an Operation Diagram for all HV Apparatus on the Transmission side of the Connection Point (and in the case of OTSDUW Plant and Apparatus on what will be the Onshore Transmission side of the Interface Point, in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement prior to the Completion Date under the Bilateral Agreement and/or Construction Agreement.
- The User will then prepare, produce and distribute, using the information submitted on the User's Operation Diagram and The Company's Operation Diagram, a composite Operation Diagram for the complete Connection Site (and in the case of OTSDUW Plant and Apparatus, Interface Point), also in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement.
- ECC.7.4.9 The provisions of ECC.7.4.7 and ECC.7.4.8 shall apply in relation to **Gas Zone Diagrams** where gas-insulated switchgear and/or other gas-insulated **HV Apparatus** is utilised.

Preparation of Operation and Gas Zone Diagrams for Transmission Sites

- In the case of an **Transmission Site**, the **User** shall prepare and submit to **The Company** an **Operation Diagram** for all **HV Apparatus** on the **User** side of the **Connection Point**, in accordance with the timing requirements of the **Bilateral Agreement** and/or **Construction Agreement**.
- The Company will then prepare, produce and distribute, using the information submitted on the User's Operation Diagram, a composite Operation Diagram for the complete Connection Site, also in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement.

- ECC.7.4.12 The provisions of ECC.7.4.10 and ECC.7.4.11 shall apply in relation to **Gas Zone Diagrams** where gas-insulated switchgear and/or other gas-insulated **HV Apparatus** is utilised.
- ECC.7.4.13 Changes to Operation and Gas Zone Diagrams
- ECC.7.4.13.1 When **The Company** has decided that it wishes to install new **HV Apparatus** or it wishes to change the existing numbering or nomenclature of **Transmission HV Apparatus** at a **Transmission Site**, **The Company** will (unless it gives rise to a **Modification** under the **CUSC**, in which case the provisions of the **CUSC** as to the timing apply) one month prior to the installation or change, send to each such **User** a revised **Operation Diagram** of that **Transmission Site**, incorporating the new **Transmission HV Apparatus** to be installed and its numbering and nomenclature or the changes, as the case may be. **OC11** is also relevant to certain **Apparatus**.
- When a **User** has decided that it wishes to install new **HV Apparatus**, or it wishes to change the existing numbering or nomenclature of its **HV Apparatus** at its **User Site**, the **User** will (unless it gives rise to a **Modification** under the **CUSC**, in which case the provisions of the **CUSC** as to the timing apply) one month prior to the installation or change, send to **The Company** a revised **Operation Diagram** of that **User Site** incorporating the **EU Code User HV Apparatus** to be installed and its numbering and nomenclature or the changes as the case may be. **OC11** is also relevant to certain **Apparatus**.
- ECC.7.4.13.3 The provisions of ECC.7.4.13.1 and ECC.7.4.13.2 shall apply in relation to **Gas Zone Diagrams** where gas-insulated switchgear and/or other gas-insulated **HV Apparatus** is installed.

Validity

- ECC.7.4.14
- (a) The composite **Operation Diagram** prepared by **The Company** or the **User**, as the case may be, will be the definitive **Operation Diagram** for all operational and planning activities associated with the **Connection Site**. If a dispute arises as to the accuracy of the composite **Operation Diagram**, a meeting shall be held at the **Connection Site**, as soon as reasonably practicable, between **The Company** and the **User**, to endeavour to resolve the matters in dispute.
- (b) The composite Operation Diagram prepared by The Company or the User, as the case may be, will be the definitive Operation Diagram for all operational and planning activities associated with the Interface Point until the OTSUA Transfer Time. If a dispute arises as to the accuracy of the composite Operation Diagram prior to the OTSUA Transfer Time, a meeting shall be held at the Interface Point, as soon as reasonably practicable, between The Company and the User, to endeavour to resolve the matters in dispute.
- (c) An equivalent rule shall apply for **Gas Zone Diagrams** where they exist for a **Connection**
- In the case of **OTSUA**, a **User Site** and **Transmission Site** shall, for the purposes of this ECC.7.4, include a site at which there is an **Interface Point** until the **OTSUA Transfer Time** when it becomes part of the **National Electricity Transmission System** and references to **HV Apparatus** in this ECC.7.4 shall include references to **HV OTSUA**.
- ECC.7.5 <u>Site Common Drawings</u>
- ECC.7.5.1 Site Common Drawings will be prepared for each Connection Site (and in the case of OTSDUW, each Interface Point) and will include Connection Site (and in the case of OTSDUW, Interface Point) layout drawings, electrical layout drawings, common Protection/control drawings and common services drawings.

Preparation of Site Common Drawings for a User Site and Transmission Interface Site

- In the case of a User Site, The Company shall prepare and submit to the User, Site Common Drawings for the Transmission side of the Connection Point (and in the case of OTSDUW Plant and Apparatus, on what will be the Onshore Transmission side of the Interface Point,) and the User shall prepare and submit to The Company, Site Common Drawings for the User side of the Connection Point (and in the case of OTSDUW, on what will be the Offshore Transmission side of the Interface Point) in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement.
- The User will then prepare, produce and distribute, using the information submitted on the Transmission Site Common Drawings, Site Common Drawings for the complete Connection Site (and in the case of OTSDUW, Interface Point) in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement.

Preparation of Site Common Drawings for a Transmission Site

- In the case of a **Transmission Site**, the **User** will prepare and submit to **The Company Site Common Drawings** for the **User** side of the **Connection Point** in accordance with the timing requirements of the **Bilateral Agreement** and/or **Construction Agreement**.
- The Company will then prepare, produce and distribute, using the information submitted in the User's Site Common Drawings, Site Common Drawings for the complete Connection Site in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement.
- When a **User** becomes aware that it is necessary to change any aspect of the **Site Common Drawings** at a **Connection Site** (and in the case of **OTSDUW**, **Interface Point**) it will:
 - (a) if it is a User Site, as soon as reasonably practicable, prepare, produce and distribute revised Site Common Drawings for the complete Connection Site (and in the case of OTSDUW, Interface Point); and
 - (b) if it is a Transmission Site, as soon as reasonably practicable, prepare and submit to The Company revised Site Common Drawings for the User side of the Connection Point (and in the case of OTSDUW, Interface Point) and The Company will then, as soon as reasonably practicable, prepare, produce and distribute, using the information submitted in the User's Site Common Drawings, revised Site Common Drawings for the complete Connection Site (and in the case of OTSDUW, Interface Point).

In either case, if in the **User's** reasonable opinion the change can be dealt with by it notifying **The Company** in writing of the change and for each party to amend its copy of the **Site Common Drawings** (or where there is only one set, for the party holding that set to amend it), then it shall so notify and each party shall so amend. If the change gives rise to a **Modification** under the **CUSC**, the provisions of the **CUSC** as to timing will apply.

- When **The Company** becomes aware that it is necessary to change any aspect of the **Site**Common Drawings at a Connection Site(and in the case of OTSDUW, Interface Point) it

 will:
 - (a) if it is a Transmission Site, as soon as reasonably practicable, prepare, produce and distribute revised Site Common Drawings for the complete Connection Site (and in the case of OTSDUW, Interface Point); and
 - (b) if it is a User Site, as soon as reasonably practicable, prepare and submit to the User revised Site Common Drawings for the Transmission side of the Connection Point (in the case of OTSDUW, Interface Point) and the User will then, as soon as reasonably practicable, prepare, produce and distribute, using the information submitted in the Transmission Site Common Drawings, revised Site Common Drawings for the complete Connection Site (and in the case of OTSDUW, Interface Point).

In either case, if in **The Company's** reasonable opinion the change can be dealt with by it notifying the **User** in writing of the change and for each party to amend its copy of the **Site Common Drawings** (or where there is only one set, for the party holding that set to amend it), then it shall so notify and each party shall so amend. If the change gives rise to a **Modification** under the **CUSC**, the provisions of the **CUSC** as to timing will apply.

Validity

(a) The **Site Common Drawings** for the complete **Connection Site** prepared by the **User** or **The Company**, as the case may be, will be the definitive **Site Common Drawings** for all operational and planning activities associated with the **Connection Site**. If a dispute arises as to the accuracy of the **Site Common Drawings**, a meeting shall be held at the **Site**, as soon as reasonably practicable, between **The Company** and the **User**, to

endeavour to resolve the matters in dispute.

- (b) The Site Common Drawing prepared by The Company or the User, as the case may be, will be the definitive Site Common Drawing for all operational and planning activities associated with the Interface Point until the OTSUA Transfer Time. If a dispute arises as to the accuracy of the composite Operation Diagram prior to the OTSUA Transfer Time, a meeting shall be held at the Interface Point, as soon as reasonably practicable, between The Company and the User, to endeavour to resolve the matters in dispute.
- In the case of **OTSUA**, a **User Site** and **Transmission Site** shall, for the purposes of this ECC.7.5, include a site at which there is an **Interface Point** until the **OTSUA Transfer Time** when it becomes part of the **National Electricity Transmission System**.
- ECC.7.6 Access
- The provisions relating to access to **Transmission Sites** by **Users**, and to **Users' Sites** by **Relevant Transmission Licensees**, are set out in each **Interface Agreement** (or in the case of **Interfaces Sites** prior to the **OTSUA Transfer Time** agreements in similar form) with, the **Relevant Transmission Licensee** and each **User**.
- In addition to those provisions, where a **Transmission Site** contains exposed **HV** conductors, unaccompanied access will only be granted to individuals holding an **Authority for Access** issued by the **Relevant Transmission Licensee**.
- ECC.7.6.3 The procedure for applying for an **Authority for Access** is contained in the **Interface Agreement**.
- ECC.7.7 Maintenance Standards
- It is the **User's** responsibility to ensure that all its **Plant** and **Apparatus** (including, until the **OTSUA Transfer Time**, any **OTSUA**) on a **Transmission Site** is tested and maintained adequately for the purpose for which it is intended, and to ensure that it does not pose a threat to the safety of any **Transmission Plant**, **Apparatus** or personnel on the **Transmission Site**. **The Company** will have the right to inspect the test results and maintenance records relating to such **Plant** and **Apparatus** at any time
- For **User Sites**, **The Company** shall procure that the **Relevant Transmission Licensee** has a responsibility to ensure that all **Transmission Plant** and **Apparatus** on a **User Site** is tested and maintained adequately for the purposes for which it is intended and to ensure that it does not pose a threat to the safety of any **User's Plant**, **Apparatus** or personnel on the **User Site**.

The **User** will have the right to inspect the test results and maintenance records relating to such **Plant** and **Apparatus** on its **User Site** at any time.

- ECC.7.8 <u>Site Operational Procedures</u>
- Where there is an interface with **National Electricity Transmission System The Company** and **Users** must make available staff to take necessary **Safety Precautions** and carry out operational duties as may be required to enable work/testing to be carried out and for the operation of **Plant** and **Apparatus** (including, prior to the **OTSUA Transfer Time**, any **OTSUA**) connected to the **Total System**.

Generators and HVDC System owners shall provide a Control Point in respect of each Power Station directly connected to the National Electricity Transmission System and Embedded Large Power Station or HVDC System to receive and act upon instructions pursuant to OC7 and BC2 at all times that Power Generating Modules at the Power Station are generating or available to generate or HVDC Systems are importing or exporting or available to do so. The Control Point shall be continuously manned except where the Bilateral Agreement in respect of such Embedded Power Station specifies that compliance with BC2 is not required, where the Control Point shall be manned between the hours of 0800 and 1800 each day.

ECC.8 ANCILLARY SERVICES

ECC.8.1 <u>System Ancillary Services</u>

The ECC contain requirements for the capability for certain Ancillary Services, which are needed for System reasons ("System Ancillary Services"). There follows a list of these System Ancillary Services, together with the paragraph number of the ECC (or other part of the Grid Code) in which the minimum capability is required or referred to. The list is divided into two categories: Part 1 lists the System Ancillary Services which

- (a) Generators in respect of Type C and Type D Power Generating Modules (including DC Connected Power Park Modules and Electricity Storage Modules) are obliged to provide; and,
- (b) **HVDC System Owners** are obliged to have the capability to supply;
- (c) Generators in respect of Medium Power Stations (except Embedded Medium Power Stations) are obliged to provide in respect of Reactive Power only:

and Part 2 lists the **System Ancillary Services** which **Generators** will provide only if agreement to provide them is reached with **The Company**:

Part 1

- (a) Reactive Power supplied (in accordance with ECC.6.3.2)
- (b) **Frequency** Control by means of **Frequency** sensitive generation ECC.6.3.7 and BC3.5.1

Part 2

- (c) Frequency Control by means of Fast Start ECC.6.3.14
- (d) Black Start Capability ECC.6.3.5
- (e) System to Generator Operational Intertripping

ECC.8.2 <u>Commercial Ancillary Services</u>

Other Ancillary Services are also utilised by The Company in operating the Total System if these have been agreed to be provided by a User (or other person) under an Ancillary Services Agreement or under a Bilateral Agreement, with payment being dealt with under an Ancillary Services Agreement or in the case of Externally Interconnected System Operators or Interconnector Users, under any other agreement (and in the case of Externally Interconnected System Operators and Interconnector Users includes ancillary services equivalent to or similar to System Ancillary Services) ("Commercial Ancillary Services"). The capability for these Commercial Ancillary Services is set out in the relevant Ancillary Services Agreement or Bilateral Agreement (as the case may be).

APPENDIX E1 - SITE RESPONSIBILITY SCHEDULES

FORMAT, PRINCIPLES AND BASIC PROCEDURE TO BE USED IN THE PREPARATION OF SITE RESPONSIBILITY SCHEDULES

ECC.A.1.1 Principles

Types of Schedules

- At all Complexes (which in the context of this ECC shall include, Interface Sites until the OTSUA Transfer Time) the following Site Responsibility Schedules shall be drawn up using the relevant proforma attached or with such variations as may be agreed between The Company and Users, but in the absence of agreement the relevant proforma attached will be used. In addition, in the case of OTSDUW Plant and Apparatus, and in readiness for the OTSUA Transfer Time, the User shall provide The Company with the necessary information such that Site Responsibility Schedules in this form can be prepared by the Relevant Transmission Licensees for the Transmission Interface Site:
 - (a) Schedule of HV Apparatus
 - (b) Schedule of Plant, LV/MV Apparatus, services and supplies;
 - (c) Schedule of telecommunications and measurements **Apparatus**.

Other than at **Power Generating Module** (including **DC Connected Power Park Modules**) and **Power Station** locations, the schedules referred to in (b) and (c) may be combined.

New Connection Sites

ECC.A.1.1.2 In the case of a new Connection Site each Site Responsibility Schedule for a Connection Site shall be prepared by The Company in consultation with relevant Users at least 2 weeks prior to the Completion Date (or, where the OTSUA is to become Operational prior to the OTSUA Transfer Time, an alternative date) under the Bilateral Agreement and/or Construction Agreement for that Connection Site (which may form part of a Complex). In the case of a new Interface Site where the OTSUA is to become Operational prior to the OTSUA Transfer Time each Site Responsibility Schedule for an Interface Site shall be prepared by The Company in consultation with relevant Users at least 2 weeks prior to the Completion Date under the Bilateral Agreement and/or Construction Agreement for that Interface Site (which may form part of a Complex) (and references to and requirements placed on "Connection Site" in this ECC shall also be read as "Interface Site" where the context requires and until the OTSUA Transfer Time). Each User shall, in accordance with the timing requirements of the Bilateral Agreement and/or Construction Agreement, provide information to The Company to enable it to prepare the Site Responsibility Schedule.

Sub-division

ECC.A.1.1.3 Each **Site Responsibility Schedule** will be subdivided to take account of any separate **Connection Sites** on that **Complex**.

<u>Scope</u>

- ECC.A.1.1.4 Each Site Responsibility Schedule shall detail for each item of Plant and Apparatus:
 - (a) Plant/Apparatus ownership;
 - (b) Site Manager (Controller) (except in the case of **Plant/Apparatus** located in **SPT's Transmission Area**);
 - (c) Safety issues comprising applicable Safety Rules and Control Person or other responsible person (Safety Co-ordinator), or such other person who is responsible for safety;
 - (d) Operations issues comprising applicable **Operational Procedures** and control engineer;
 - (e) Responsibility to undertake statutory inspections, fault investigation and maintenance.

Each Connection Point shall be precisely shown.

Detail

- ECC.A.1.1.5 (a) In the case of **Site Responsibility Schedules** referred to in ECC.A.1.1.1(b) and (c), with the exception of **Protection Apparatus** and **Intertrip Apparatus** operation, it will be sufficient to indicate the responsible **User** or **Transmission Licensee**, as the case may be.
 - (b) In the case of the **Site Responsibility Schedule** referred to in ECC.A.1.1.1(a) and for **Protection Apparatus** and **Intertrip Apparatus**, the responsible management unit must be shown in addition to the **User** or **Transmission Licensee**, as the case may be.
- ECC.A.1.1.6 The **HV Apparatus Site Responsibility Schedule** for each **Connection Site** must include lines and cables emanating from or traversing¹ the **Connection Site**.

Issue Details

ECC.A.1.1.7 Every page of each **Site Responsibility Schedule** shall bear the date of issue and the issue number.

Accuracy Confirmation

- ECC.A.1.1.8 When a **Site Responsibility Schedule** is prepared it shall be sent by **The Company** to the **Users** involved for confirmation of its accuracy.
- ECC.A.1.1.9 The **Site Responsibility Schedule** shall then be signed on behalf of **The Company** by its **Responsible Manager** (see ECC.A.1.1.16) and on behalf of each **User** involved by its **Responsible Manager** (see ECC.A.1.1.16), by way of written confirmation of its accuracy. The **Site Responsibility Schedule** will also be signed on behalf of the **Relevant Transmission Licensee** by its **Responsible Manager**.

Distribution and Availability

- ECC.A.1.1.10 Once signed, two copies will be distributed by **The Company**, not less than two weeks prior to its implementation date, to each **User** which is a party on the **Site Responsibility Schedule**, accompanied by a note indicating the issue number and the date of implementation.
- ECC.A.1.1.11 **The Company** and **Users** must make the **Site Responsibility Schedules** readily available to operational staff at the **Complex** and at the other relevant control points.

Alterations to Existing Site Responsibility Schedules

- ECC.A 1.1.12 Without prejudice to the provisions of ECC.A.1.1.15 which deals with urgent changes, when a User identified on a Site Responsibility Schedule becomes aware that an alteration is necessary, it must inform The Company immediately and in any event 8 weeks prior to any change taking effect (or as soon as possible after becoming aware of it, if less than 8 weeks remain when the User becomes aware of the change). This will cover the commissioning of new Plant and/or Apparatus at the Connection Site, whether requiring a revised Bilateral Agreement or not, de-commissioning of Plant and/or Apparatus, and other changes which affect the accuracy of the Site Responsibility Schedule.
- ECC.A 1.1.13 Where **The Company** has been informed of a change by a **User**, or itself proposes a change, it will prepare a revised **Site Responsibility Schedule** by not less than six weeks prior to the change taking effect (subject to it having been informed or knowing of the change eight weeks prior to that time) and the procedure set out in ECC.A.1.1.8 shall be followed with regard to the revised **Site Responsibility Schedule**.

Details of circuits traversing the Connection Site are only needed from the date which is the earlier of the date when the Site Responsibility Schedule is first updated and 15th October 2004. In Scotland or Offshore, from a date to be agreed between The Company and the Relevant Transmission Licensee.

ECC.A 1.1.14 The revised **Site Responsibility Schedule** shall then be signed in accordance with the procedure set out in ECC.A.1.1.9 and distributed in accordance with the procedure set out in ECC.A.1.1.10, accompanied by a note indicating where the alteration(s) has/have been made, the new issue number and the date of implementation.

Urgent Changes

- ECC.A.1.1.15 When a **User** identified on a **Site Responsibility Schedule**, or **The Company**, as the case may be, becomes aware that an alteration to the **Site Responsibility Schedule** is necessary urgently to reflect, for example, an emergency situation which has arisen outside its control, the **User** shall notify **The Company**, or **The Company** shall notify the **User**, as the case may be, immediately and will discuss:
 - (a) what change is necessary to the Site Responsibility Schedule;
 - (b) whether the **Site Responsibility Schedule** is to be modified temporarily or permanently;
 - (c) the distribution of the revised **Site Responsibility Schedule**.

The Company will prepare a revised Site Responsibility Schedule as soon as possible, and in any event within seven days of it being informed of or knowing the necessary alteration. The Site Responsibility Schedule will be confirmed by Users and signed on behalf of The Company and Users and the Relevant Transmission Licensee (by the persons referred to in ECC.A.1.1.9) as soon as possible after it has been prepared and sent to Users for confirmation.

Responsible Managers

ECC.A.1.1.16 Each User shall, prior to the Completion Date under each Bilateral Agreement and/or Construction Agreement, supply to The Company a list of Managers who have been duly authorised to sign Site Responsibility Schedules on behalf of the User and The Company shall, prior to the Completion Date under each Bilateral Agreement and/or Construction Agreement, supply to that User the name of its Responsible Manager and the name of the Relevant Transmission Licensee's Responsible Manager and each shall supply to the other any changes to such list six weeks before the change takes effect where the change is anticipated, and as soon as possible after the change, where the change was not anticipated.

De-commissioning of Connection Sites

ECC.A.1.1.17 Where a **Connection Site** is to be de-commissioned, whichever of **The Company** or the **User** who is initiating the de-commissioning must contact the other to arrange for the **Site Responsibility Schedule** to be amended at the relevant time.

PROFORMA FOR SITE RESPONSIBILITY SCHEDULE

	 AREA	
COMPLEX:	 SCHEDULE:	
CONNECTION SITE:		

			S	AFETY	OPER <i>A</i>	ATIONS	PARTY	
ITEM OF	PLANT APPAR		SAF	CONTRO L OR OTHER RESPON SIBLE PERSON (SAFETY	OPERATI	CONTRO L OR OTHER RESPON	RESPON SIBLE FOR UNDERT AKING STATUT ORY INSPECTI ONS, FAULT INVESTI GATION	
PLANT/	ATUS	SITE	ETY	CO-	ONAL	SIBLE ENGINEE	& MANNTEN	REMARK
APPAR ATUS	OWNE R	MANA GER	RUL ES	ORDINAT OR	PROCED URES	R	MAINTEN ANCE	S

	 <u>-</u>			 	
PAGE:	 	ISSUE	NO:	DATE:	

PROFORMA FOR SITE RESPONSIBILITY SCHEDULE

		-				AREA		
COMPLE	X:					SCHEDUL	.E:	
CONNECT	ΓΙΟΝ SITE:							
			S	AFETY	OPER <i>A</i>	ATIONS	PARTY RESPON	
ITEM OF PLANT/ APPAR ATUS	PLANT APPAR ATUS OWNE R	SITE MANA GER	SAF ETY RUL ES	CONTRO L OR OTHER RESPON SIBLE PERSON (SAFETY CO- ORDINAT OR	OPERATI ONAL PROCED URES	CONTRO L OR OTHER RESPON SIBLE ENGINEE R	SIBLE FOR UNDERT AKING STATUT ORY INSPECTI ONS, FAULT INVESTI GATION & MAINTEN ANCE	REMARK S
<u>NOTES:</u>								

D: _____ E: ____ Y: ____ E: ____

COMPAN

DAT

 NAM

SIGNE

SIGNE	NAM	COMPAN	DAT	
D:	E:	Y:	E:	
SIGNE	NAM	COMPAN	DAT	
D:	E:	Y:	E:	
SIGNE	NAM	COMPAN	DAT	
D:	E:	Y:	E:	
PAGE:	ISSUE NO:	DA	TE:	

IN JOINT USER SITUATIONS						-	Nowas.	Network Area:							Revision.	
SECTI	SECTION 'A' BUILDING AND SITE	AND SITE								S	ECTION	B' CUS	TOMER	OR OTH	SECTION 'B' CUSTOMER OR OTHER PARTY	
OWNER	R		ACCESS F	ACCESS REQUIRED:-						Z	NAME:-					
LESSEE	H.									1			+			
A	MAINTENANCE		SPECIAL	SPECIAL CONDITIONS:						4	ADDRESS		+	+		
SAPELY			1000	2 100100							IELNO-	+	+	+		
SECURITY	KIIY		TERMINALS:-	LOCATION OF SUPPLY TERMINALS:-						S I	SUB STATION:-	- NOI				
ECT	SECTION 'C' PLANT															
ITEM				SAFETY RULES		OPERATION	TION		MAINTENANCE	_	FAULTIN	FAULT INVESTIGATION	NC	TESTING	_	
Nos	EQUIPMENT	IDENTIFICATION	OWNER	APPLICABLE	Tripping	Closing	Solating	Earthing	Primary Pr Equip	Protection Pr	Primary Pro Equip. E	Protection Reci	Reclosure Ala	Trip and Primary Alarm Equip.	y SETTINGS	REMARKS
SECTI ITEM NOS.	SECTION 'D' CONFIGURATION AND CONTROL CORFIGURATION TELEPHONE NUMBER ITEM NOS. CONTROL RESPONSIBILITY TELEPHONE NUMBER	ATTON AND CONTELEPHONE NUMBER	ACCOUNT OF THE PROPERTY OF THE	PEMARKS PEMARKS		SECTION 'E' ADDITIONAL INFORMATION	N E A	POLITION	AL INF	DRMATI	8					
SP AUT	ABBREVIATIONS:- D - SP AUTHORISED PERSON - DISTRIBUTION SYSTEM	UTION SYSTEM			_ "	SIGNED				FOR		SP Iransmission	Sion		DATE	
C-NAT	NOC NATIONAL GRID COMP ANY SPD SP DISTRIBUTION LIM SPPS - POWERSYSTEMS				91	SIGNED				For		SP Distribution	E		DATE	
- SCOT	SPT - SP TRANSMISSION Ltd ST - SCOTTISH POWER TELECOMMUNICATIONS	CATIONS														
1 - SP AU	T - SP AUTHORISED PERSON - TRANSMISSION SYSTEM	MISSION SYSTEM				SIGNED				FOR		PowerSystems/User	ns/User		DATE	3

Scottish Hydro-Electric Transmission Limited

Site Responsibility Schedule

					E 7		
	Notes						
Revision:	Operational Procedures						
Rei	Safety Rules						
	Control Authority						
	Responsible Management Unit						
Number:	Responsible System User						
	Maintainer						
	Controller						
	Оwner						
Substation Type	Equipment						

APPENDIX E2 - OPERATION DIAGRAMS

PART 1A - PROCEDURES RELATING TO OPERATION DIAGRAMS

FIXED CAPACITOR	+	SWITCH DISCONNECTOR	
EARTH	<u></u>		
EARTHING RESISTOR	1 11	SWITCH DISCONNECTOR WITH INCORPORATED EARTH SWITCH	\$
LIQUID EARTHING RESISTOR	<u>+</u> -	DISCONNECTOR	
ARC SUPPRESSION COIL		(CENTRE ROTATING POST)	'
FIXED MAINTENANCE EARTHING DEVICE	<u> </u>	DISCONNECTOR (SINGLE BREAK DOUBLE ROTATING)	
CARRIER COUPLING EQUIPMENT (WITHOUT VT)	R&Y	DISCONNECTOR (SINGLE BREAK)	
CARRIER COUPLING EQUIPMENT	RRY	DISCONNECTOR (NON-INTERLOCKED)	NI
CARRIER COUPLING EQUIPMENT (WITH VT ON 3 PHASES)	RRY	DISCONNECTOR (POWER OPERATED) NA - NON-AUTOMATIC A - AUTOMATIC SO - SEQUENTIAL OPERATION FI - FAULT INTERFERING OPERATION	I NA
AC GENERATOR	G	EARTH SWITCH	•
SYNCHRONOUS COMPENSATOR	SC		÷ I
CIRCUIT BREAKER		FAULT THROWING SWITCH (PHASE TO PHASE)	 FT
CIRCUIT BREAKER WITH DELAYED AUTO RECLOSE	DAR	FAULT THROWING SWITCH (EARTH FAULT)	
		SURGE ARRESTOR	-
WITHDRAWABLE METALCLAD SWITCHGEAR		THYRISTOR	*

TRANSFORMERS (VECTORS TO INDICATE WINDING CONFIGURATION)		* BUSBARS	
		* OTHER PRIMARY CONNECTIONS	
TWO WINDING		* CABLE & CABLE SEALING END	
		* THROUGH WALL BUSHING	
THREE WINDING		* BYPASS FACILITY	
AUTO			
		* CROSSING OF CONDUCTORS (LOWER CONDUCTOR TO BE BROKEN)	
AUTO WITH DELTA TERTIARY			
EARTHING OR AUX. TRANSFORMER (-) INDICATE REMOTE SITE IF APPLICABLE	415v		
VOLTAGE TRANSFORMERS			
SINGLE PHASE WOUND	Y		
THREE PHASE WOUND		PREFERENTIAL ABBREVIAT	TONS
SINGLE PHASE CAPACITOR	y ()		
TWO SINGLE PHASE CAPACITOR	R&B (2) —		Aux T ET
THREE PHASE CAPACITOR		GENERATOR TRANSFORMER	Gas T Gen T Gr T
CURRENT TRANSFORMER (WHERE SEPARATE PRIMARY APPARATUS)	•	SHUNT REACTOR Station transformer	Ser Reac Sh Reac Stn T SGT
COMBINED VT/CT UNIT FOR METERING		UNIT TRANSFORMER	UT
REACTOR	-	* NON-STANDARD SYMBOL	

DISCONNECTOR (PANTOGRAPH TYPE)

QUADRATURE BOOSTER

DISCONNECTOR (KNEE TYPE)

SHORTING/DISCHARGE SWITCH

CAPACITOR
(INCLUDING HARMONIC FILTER)

SINGLE PHASE TRANSFORMER (BR) NEUTRAL AND PHASE CONNECTIONS

RESISTOR WITH INHERENT NON-LINEAR VARIABILITY, VOLTAGE DEPENDANT

PART E1B - PROCEDURES RELATING TO GAS ZONE DIAGRAMS

GAS INSULATEDBUSBAR	DOUBLE-BREAK - - - -	
GAS BOUNDARY	EXTERNAL MOUNTED CURRENT TRANSFORMER (WHERE SEPARATE PRIMARY APPARATUS)	•
GAS/GAS BOUNDARY	STOP VALVE NORMALLY CLOSED	M
GAS/CABLE BOUNDARY	STOP VALVE NORMALLY OPEN	\bowtie
GAS/AIR BOUNDARY	GAS MONITOR	
GAS/TRANSFORMER BOUNDARY	FILTER	
MAINTENANCE VALVE	QUICK ACTING COUPLING	◇ + (>

PART E2 - NON-EXHAUSTIVE LIST OF APPARATUS TO BE INCLUDED ON OPERATION DIAGRAMS

	Basic Principles
(1)	Where practicable, all the HV Apparatus on any Connection Site shall be shown on one Operation Diagram . Provided the clarity of the diagram is not impaired, the layout shall represent as closely as possible the geographical arrangement on the Connection Site .
(2)	Where more than one Operation Diagram is unavoidable, duplication of identical information on more than one Operation Diagram must be avoided.
(3)	The Operation Diagram must show accurately the current status of the Apparatus e.g whether commissioned or decommissioned. Where decommissioned, the associated switchbay will be labelled "spare bay".
(4)	Provision will be made on the Operation Diagram for signifying approvals, together with provision for details of revisions and dates.
(5)	Operation Diagrams will be prepared in A4 format or such other format as may be agreed with The Company .
(6)	The Operation Diagram should normally be drawn single line. However, where appropriate detail which applies to individual phases shall be shown. For example, some HV Apparatus is numbered individually per phase.
	Apparatus To Be Shown On Operation Diagram
(1)	Busbars
(2)	Circuit Breakers
(3)	Disconnector (Isolator) and Switch Disconnecters (Switching Isolators)
(4)	Disconnectors (Isolators) - Automatic Facilities
(5)	Bypass Facilities
(6)	Earthing Switches
(7)	Maintenance Earths
(8)	Overhead Line Entries
(9)	Overhead Line Traps
(10)	Cable and Cable Sealing Ends
(11)	Generating Unit
(12)	Generator Transformers
(13)	Generating Unit Transformers, Station Transformers, including the lower voltage circuit-breakers.
(14)	Synchronous Compensators
(15)	Static Variable Compensators
(16)	Capacitors (including Harmonic Filters)
(17)	Series or Shunt Reactors (Referred to as "Inductors" at nuclear power station sites)
(18)	Supergrid and Grid Transformers
(19)	Tertiary Windings

Earthing and Auxiliary Transformers

Three Phase VT's

(20)(21)

(22)	Single Phase VT & Phase Identity
(23)	High Accuracy VT and Phase Identity
(24)	Surge Arrestors/Diverters
(25)	Neutral Earthing Arrangements on HV Plant
(26)	Fault Throwing Devices
(27)	Quadrature Boosters
(28)	Arc Suppression Coils
(29)	Single Phase Transformers (BR) Neutral and Phase Connections
(30)	Current Transformers (where separate plant items)
(31)	Wall Bushings
(32)	Combined VT/CT Units
(33)	Shorting and Discharge Switches
(34)	Thyristor
(35)	Resistor with Inherent Non-Linear Variability, Voltage Dependent
(36)	Gas Zone

APPENDIX E3 - MINIMUM FREQUENCY RESPONSE CAPABILITY REQUIREMENT PROFILE AND OPERATING RANGE FOR POWER GENERATING MODULES AND HVDC EQUIPMENT

ECC.A.3.1 Scope

The frequency response capability is defined in terms of **Primary Response**, **Secondary Response** and **High Frequency Response**. In addition to the requirements defined in ECC.6.3.7 this appendix defines the minimum frequency response requirements for:-

- (a) each Type C and Type D Power Generating Module
- (b) each DC Connected Power Park Module
- (c) each HVDC System

For the avoidance of doubt, this appendix does not apply to **Type A** and **Type B Power Generating Modules**.

OTSDUW Plant and Apparatus should facilitate the delivery of frequency response services provided by **Offshore Generating Units** and **Offshore Power Park Units**.

The functional definition provides appropriate performance criteria relating to the provision of **Frequency** control by means of **Frequency** sensitive generation in addition to the other requirements identified in ECC.6.3.7.

In this Appendix 3 to the ECC, for a Power Generating Module including a CCGT Module or a Power Park Module or DC Connected Power Park Module, the phrase Minimum Regulating Level applies to the entire CCGT Module or Power Park Module or DC Connected Power Park Module operating with all Generating Units Synchronised to the System.

The minimum **Frequency** response requirement profile is shown diagrammatically in Figure ECC.A.3.1. The capability profile specifies the minimum required level of **Frequency Response** Capability throughout the normal plant operating range.

ECC.A.3.2 Plant Operating Range

The upper limit of the operating range is the **Maximum Capacity** of the **Power Generating Module** or **Generating Unit** or **CCGT Module** or **HVDC Equipment**.

The Minimum Stable Operating Level may be less than, but must not be more than, 65% of the Maximum Capacity. Each Power Generating Module and/or Generating Unit and/or CCGT Module and/or Power Park Module or HVDC Equipment must be capable of operating satisfactorily down to the Minimum Regulating Level as dictated by System operating conditions, although it will not be instructed to below its Minimum Stable Operating Level. If a Power Generating Module or Generating Unit or CCGT Module or Power Park Module, or HVDC Equipment is operating below Minimum Stable Operating Level because of high System Frequency, it should recover adequately to its Minimum Stable Operating Level as the System Frequency returns to Target Frequency so that it can provide Primary and Secondary Response from its Minimum Stable Operating Level if the System Frequency continues to fall. For the avoidance of doubt, under normal operating conditions steady state operation below the Minimum Stable Operating Level is not expected. The Minimum Regulating Level must not be more than 55% of Maximum Capacity.

In the event of a **Power Generating Module** or **Generating Unit** or **CCGT Module** or **Power Park Module** or **HVDC Equipment** load rejecting down to no less than its **Minimum Regulating Level** it should not trip as a result of automatic action as detailed in BC3.7. If the load rejection is to a level less than the **Minimum Regulating Level** then it is accepted that the condition might be so severe as to cause it to be disconnected from the **System**.

ECC.A.3.3 Minimum Frequency Response Requirement Profile

Figure ECC.A.3.1 shows the minimum **Frequency** response capability requirement profile diagrammatically for a 0.5 Hz change in **Frequency**. The percentage response capabilities and loading levels are defined on the basis of the **Maximum Capacity** of the **Power Generating Module** or **CCGT Module** or **Power Park Module** or **HVDC Equipment**. Each **Power Generating Module** or and/or **CCGT Module** or **Power Park Module** (including a **DC Connected Power Park Module**) and/or **HVDC Equipment** must be capable of operating in a manner to provide **Frequency** response at least to the solid boundaries shown in the figure. If the **Frequency** response capability falls within the solid boundaries, the **Power Generating Module** or **CCGT Module** or **Power Park Module** or **HVDC Equipment** is providing response below the minimum requirement which is not acceptable. Nothing in this appendix is intended to prevent a **Power Generating Module** or **CCGT Module** or **Power Park Module** or **HVDC Equipment** from being designed to deliver a **Frequency** response in excess of the identified minimum requirement.

The **Frequency** response delivered for **Frequency** deviations of less than 0.5 Hz should be no less than a figure which is directly proportional to the minimum **Frequency** response requirement for a **Frequency** deviation of 0.5 Hz. For example, if the **Frequency** deviation is 0.2 Hz, the corresponding minimum **Frequency** response requirement is 40% of the level shown in Figure ECC.A.3.1. The **Frequency** response delivered for **Frequency** deviations of more than 0.5 Hz should be no less than the response delivered for a **Frequency** deviation of 0.5 Hz.

Each Power Generating Module and/or CCGT Module and/or Power Park Module or HVDC Equipment must be capable of providing some response, in keeping with its specific operational characteristics, when operating between 95% to 100% of Maximum Capacity as illustrated by the dotted lines in Figure ECC.A.3.1.

At the Minimum Stable Operating level, each Power Generating Module and/or CCGT Module and/or Power Park Module and/or HVDC Equipment is required to provide high and low frequency response depending on the System Frequency conditions. Where the Frequency is high, the Active Power output is therefore expected to fall below the Minimum Stable Operating level.

The Minimum Regulating Level is the output at which a Power Generating Module and/or CCGT Module and/or Power Park Module and/or HVDC Equipment has no High Frequency Response capability. It may be less than, but must not be more than, 55% of the Maximum Capacity. This implies that a Power Generating Module or CCGT Module or Power Park Module) or HVDC Equipment is not obliged to reduce its output to below this level unless the Frequency is at or above 50.5 Hz (cf BC3.7).

ECC.A.3.4 Testing of Frequency Response Capability

The frequency response capabilities shown diagrammatically in Figure ECC.A.3.1 are measured by taking the responses as obtained from some of the dynamic step response tests specified by **The Company** and carried out by **Generators** and HV**DC System** owners for compliance purposes. The injected signal is a step of 0.5Hz from zero to 0.5 Hz **Frequency** change, and is sustained at 0.5 Hz **Frequency** change thereafter, the latter as illustrated diagrammatically in figures ECC.A.3.4 and ECC.A.3.5.

In addition to provide and/or to validate the content of **Ancillary Services Agreements** a progressive injection of a **Frequency** change to the plant control system (i.e. governor and load controller) is used. The injected signal is a ramp of 0.5Hz from zero to 0.5 Hz **Frequency** change over a ten second period, and is sustained at 0.5 Hz **Frequency** change thereafter, the latter as illustrated diagrammatically in figures ECC.A.3.2 and ECC.A.3.3. In the case of an **Embedded Medium Power Station** not subject to a **Bilateral Agreement** or **Embedded HVDC System** not subject to a **Bilateral Agreement**, **The Company** may require the **Network Operator** within whose System the **Embedded Medium Power Station** or **Embedded HVDC System** is situated, to ensure that the **Embedded Person** performs the dynamic response tests reasonably required by **The Company** in order to demonstrate compliance within the relevant requirements in the **ECC**.

The **Primary Response** capability (P) of a **Power Generating Module** or a **CCGT Module** or **Power Park Module** or **HVDC Equipment** is the minimum increase in **Active Power** output between 10 and 30 seconds after the start of the ramp injection as illustrated diagrammatically in Figure ECC.A.3.2. This increase in **Active Power** output should be released increasingly with time over the period 0 to 10 seconds from the time of the start of the **Frequency** fall as illustrated by the response from Figure ECC.A.3.2.

The **Secondary Response** capability (S) of a **Power Generating Module** or a **CCGT Module** or **Power Park Module** or **HVDC Equipment** is the minimum increase in **Active Power** output between 30 seconds and 30 minutes after the start of the ramp injection as illustrated diagrammatically in Figure ECC.A.3.2.

The **High Frequency Response** capability (H) of a **Power Generating Module** or a **CCGT Module** or **Power Park Module** or **HVDC Equipment** is the decrease in **Active Power** output provided 10 seconds after the start of the ramp injection and sustained thereafter as illustrated diagrammatically in Figure ECC.A.3.3. This reduction in **Active Power** output should be released increasingly with time over the period 0 to 10 seconds from the time of the start of the **Frequency** rise as illustrated by the response in Figure ECC.A.3.2.

ECC.A.3.5 Repeatability Of Response

When a **Power Generating Module** or **CCGT Module** or **Power Park Module** or **HVDC Equipment** has responded to a significant **Frequency** disturbance, its response capability must be fully restored as soon as technically possible. Full response capability should be restored no later than 20 minutes after the initial change of **System Frequency** arising from the **Frequency** disturbance.

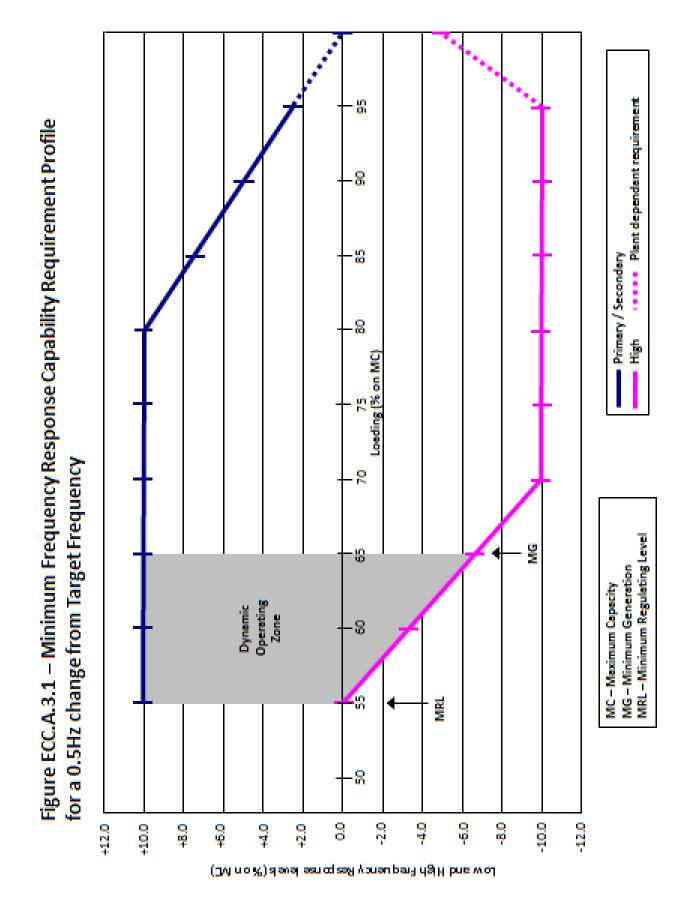


Figure ECC.A.3.2 – Interpretation of Primary and Secondary Response Service Values

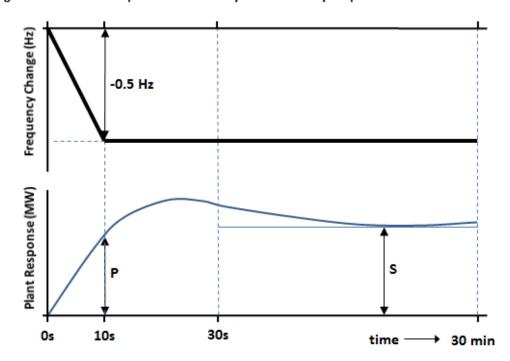


Figure ECC.A.3.3 - Interpretation of High Frequency Response Service Values

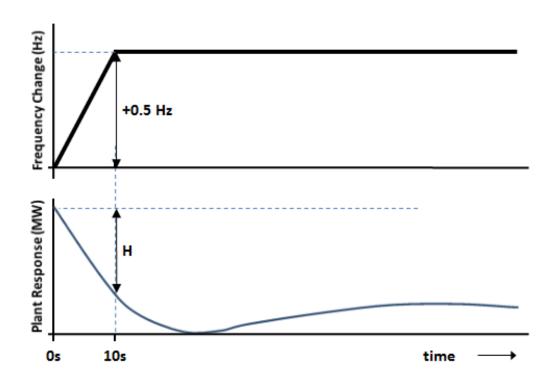


Figure ECC.A.3.4 - Interpretation of Low Frequency Response Capability Values

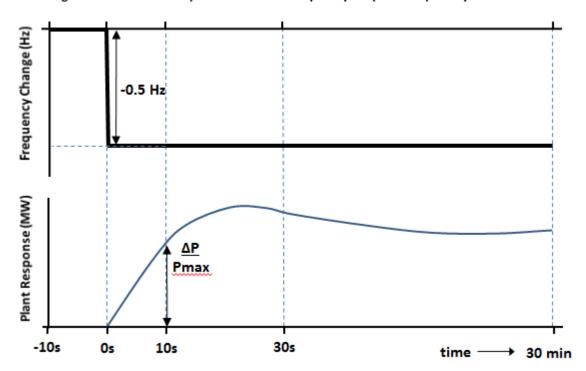
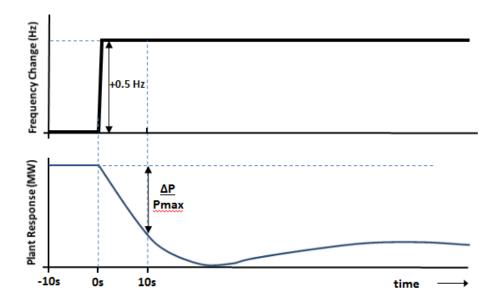



Figure ECC.A.3.5 – Interpretation of High Frequency Response Capability Values

Issue 5 Revision 44 ECC 17 June 2020

ECC.4 - APPENDIX 4 - FAULT RIDE THROUGH REQUIREMENTS

FAULT RIDE THROUGH REQUIREMENTS FOR TYPE B, TYPE C AND TYPE D POWER GENERATING MODULES (INCLUDING OFFSHORE POWER PARK MODULES WHICH ARE EITHER AC CONNECTED POWER PARK MODULES), HVDC SYSTEMS AND OTSDUW PLANT AND APPARATUS

ECC.A.4A.1 Scope

The **Fault Ride Through** requirements are defined in ECC.6.3.15. This Appendix provides illustrations by way of examples only of ECC.6.3.15.1 to ECC.6.3.15.10 and further background and illustrations and is not intended to show all possible permutations.

ECC.A.4A.2 Short Circuit Faults At Supergrid Voltage On The Onshore Transmission System Up To 140ms In Duration

For short circuit faults at **Supergrid Voltage** on the **Onshore Transmission System** (which could be at an **Interface Point**) up to 140ms in duration, the **Fault Ride Through** requirement is defined in ECC.6.3.15. In summary any **Power Generating Module** (including a **DC Connected Power Park Module**) or **HVDC System** is required to remain connected and stable whilst connected to a healthy circuit. Figure ECC.A.4.A.2 illustrates this principle.

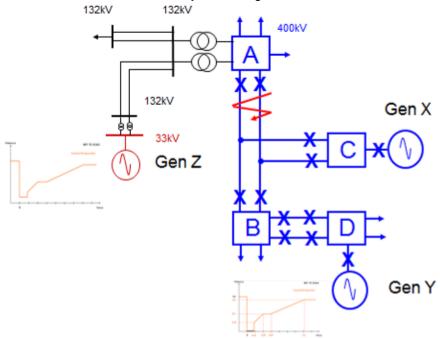
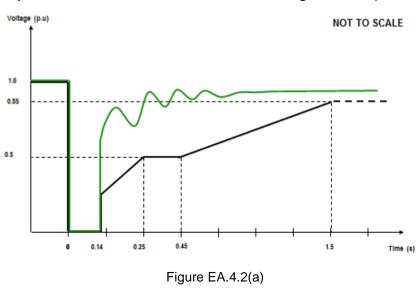


Figure ECC.A.4.A.2


In Figure ECC.A.4.A.2 a solid three phase short circuit fault is applied adjacent to substation A resulting in zero voltage at the point of fault. All circuit breakers on the faulty circuit (Lines ABC) will open within 140ms resulting in Gen X tripping. The effect of this fault, due to the low impedance of the network, will be the observation of a low voltage at each substation node across the **Total System** until the fault has been cleared. In this example, Gen Y and Gen Z (an Embedded Generator) would need to remain connected and stable as both are still connected to the **Total System** and remain connected to healthy circuits .

The criteria for assessment is based on a voltage against time curve at each **Grid Entry Point** or **User System Entry Point**. The voltage against time curve at the **Grid Entry Point** or **User System Entry Point** varies for each different type and size of **Power Generating Module** as detailed in ECC.6.3.15.2. – ECC.6.3.15.7.

The voltage against time curve represents the voltage profile at a **Grid Entry Point or User System Entry Point** that would be obtained by plotting the voltage at that **Grid Entry Point** or **User System Entry Point** before during and after the fault. This is not to be confused with a voltage duration curve (as defined under ECC.6.3.15.9) which represents a voltage level and associated time duration.

The post fault voltage at a **Grid Entry Point** or **User System Entry Point** is largely influenced by the topology of the network rather than the behaviour of the **Power Generating Module** itself. The **EU Generator** therefore needs to ensure each **Power Generating Module** remains connected and stable for a close up solid three phase short circuit fault for 140ms at the **Grid Entry Point** or **User System Entry Point**.

Two examples are shown in Figure EA.4.2(a) and Figure EA4.2(b). In Figure EA.4.2(a) the post fault profile is above the heavy black line. In this case the **Power Generating Module** must remain connected and stable. In Figure EA4.2(b) the post fault voltage dips below the heavy black line in which case the **Power Generating Module** is permitted to trip.

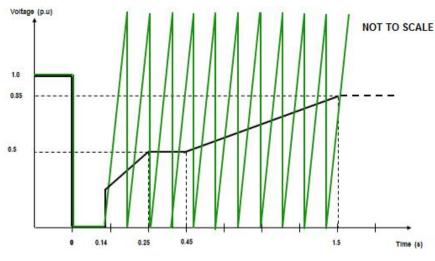


Figure EA.4.2(b)

The process for demonstrating **Fault Ride Through** compliance against the requirements of ECC.6.3.15 is detailed in ECP.A.3.5 and ECP.A.6.7 (as applicable).

ECC.A.4A.3 Supergrid Voltage Dips On The Onshore Transmission System Greater Than 140ms In Duration

ECC.A.4A3.1 Requirements applicable to **Synchronous Power Generating Modules** subject to **Supergrid Voltage** dips on the **Onshore Transmission System** greater than 140ms in duration.

For balanced **Supergrid Voltage** dips on the **Onshore Transmission System** having durations greater than 140ms and up to 3 minutes, the **Fault Ride Through** requirement is defined in ECC.6.3.15.9.2.1(a) and Figure ECC.6.3.15.9(a) which is reproduced in this Appendix as Figure EA.4.3.1 and termed the voltage—duration profile.

This profile is not a voltage-time response curve that would be obtained by plotting the transient voltage response at a point on the **Onshore Transmission System** (or **User System** if located **Onshore**) to a disturbance. Rather, each point on the profile (ie the heavy black line) represents a voltage level and an associated time duration which connected **Synchronous Power Generating Modules** must withstand or ride through.

Figures EA.4.3.2 (a), (b) and (c) illustrate the meaning of the voltage-duration profile for voltage dips having durations greater than 140ms.

NOT TO SCALE

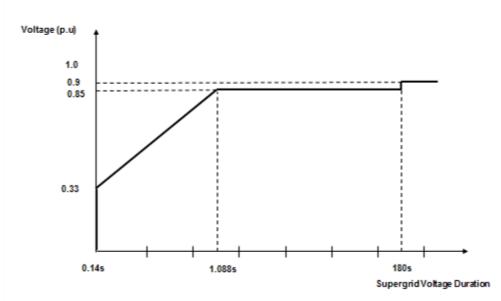
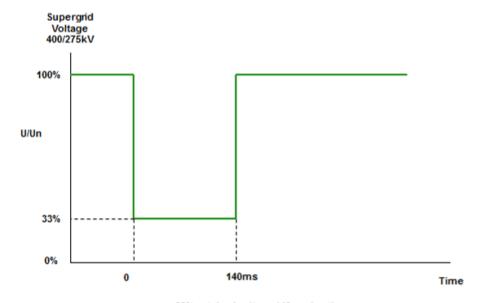
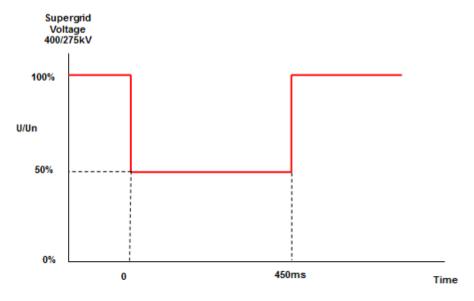




Figure EA.4.3.1

33% retained voltage, 140ms duration

Figure EA.4.3.2 (a)

50% retained voltage, 450ms duration

Figure EA.4.3.2 (b)

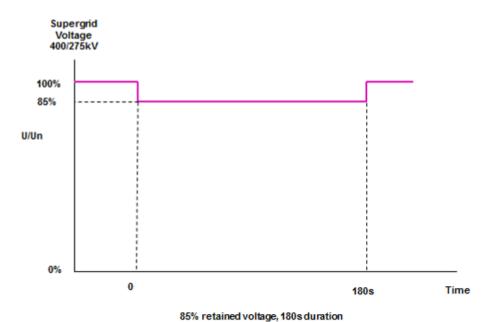


Figure EA.4.3.2 (c)

ECC.A.4A3.2 Requirements applicable to **Power Park Modules** or **OTSDUW Plant and Apparatus** subject to **Supergrid Voltage** dips on the **Onshore Transmission System** greater than 140ms in duration

For balanced **Supergrid Voltage** dips on the **Onshore Transmission System** (which could be at an **Interface Point**) having durations greater than 140ms and up to 3 minutes the **Fault Ride Through** requirement is defined in ECC.6.3.15.9.2.1(b) and Figure ECC.6.3.15.9(b) which is reproduced in this Appendix as Figure EA.4.3.3 and termed the voltage–duration profile.

This profile is not a voltage-time response curve that would be obtained by plotting the transient voltage response at a point on the **Onshore Transmission System** (or **User System** if located **Onshore**) to a disturbance. Rather, each point on the profile (ie the heavy black line) represents a voltage level and an associated time duration which connected **Power Park Modules** or **OTSDUW Plant and Apparatus** must withstand or ride through.

Figures EA.4.3.4 (a), (b) and (c) illustrate the meaning of the voltage-duration profile for voltage dips having durations greater than 140ms.

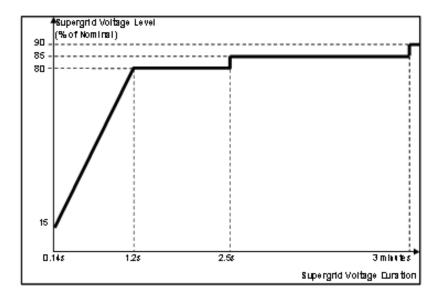
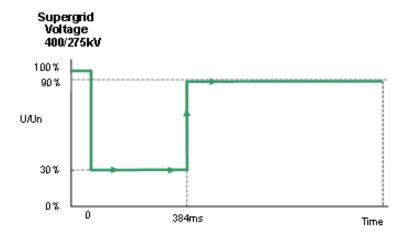
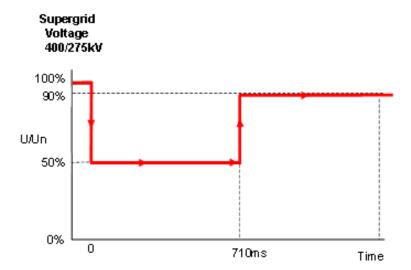
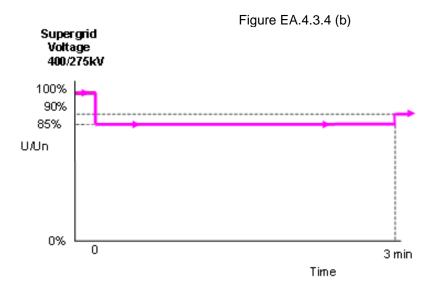




Figure EA.4.3.3



30% retained voltage, 384ms duration

Figure EA.4.3.4(a)

50% retained voltage, 710ms duration

85% retained voltage, 3 minutes duration

Figure EA.4.3.4 (c)

APPENDIX E5 - TECHNICAL REQUIREMENTS LOW FREQUENCY RELAYS FOR THE AUTOMATIC DISCONNECTION OF SUPPLIES AT LOW FREQUENCY

ECC.A.5.1 Low Frequency Relays

ECC.A.5.1.1 The **Low Frequency Relays** to be used shall have a setting range of 47.0 to 50Hz and be suitable for operation from a nominal AC input of 63.5, 110 or 240V. The following-parameters specify the requirements of approved **Low Frequency Relays**:

(a) **Frequency** settings: 47-50Hz in steps of 0.05Hz or better, preferably 0.01Hz;

(b) Operating time: Relay operating time shall not be more than 150 ms;

(c) Voltage lock-out: Selectable within a range of 55 to 90% of nominal voltage;

(d) Direction Tripping interlock for forward or reverse power flow capable of

being set in either position or off

(e) Facility stages: One or two stages of **Frequency** operation;

(f) Output contacts: Two output contacts per stage to be capable of repetitively

making and breaking for 1000 operations:

(g) Accuracy: 0.01 Hz maximum error under reference environmental and

system voltage conditions.

0.05 Hz maximum error at 8% of total harmonic distortion

Electromagnetic Compatibility Level.

In the case of **Network Operators** who are **GB Code Users**, the above requirements only apply to a relay (if any) installed at the **EU Grid Supply Point**. **Network Operators** who are also **GB Code Users** should continue to satisfy the requirements for low frequency relays as specified in the **CCs** as applicable to their **System**.

ECC.A.5.2 Low Frequency Relay Voltage Supplies

- It is essential that the voltage supply to the **Low Frequency Relays** shall be derived from the primary **System** at the supply point concerned so that the **Frequency** of the **Low Frequency Relays** input voltage is the same as that of the primary **System**. This requires either:
 - (a) the use of a secure supply obtained from voltage transformers directly associated with the grid transformer(s) concerned, the supply being obtained where necessary via a suitable automatic voltage selection scheme; or
 - (b) the use of the substation 240V phase-to-neutral selected auxiliary supply, provided that this supply is always derived at the supply point concerned and is never derived from a standby supply **Power Generating Module** or from another part of the **User System**.

ECC.A.5.3 Scheme Requirements

- ECC.A.5.3.1 The tripping facility should be engineered in accordance with the following reliability considerations:
 - (a) Dependability

Failure to trip at any one particular **Demand** shedding point would not harm the overall operation of the scheme. However, many failures would have the effect of reducing the amount of **Demand** under low **Frequency** control. An overall reasonable minimum requirement for the dependability of the **Demand** shedding scheme is 96%, i.e. the average probability of failure of each **Demand** shedding point should be less than 4%. Thus the **Demand** under low **Frequency** control will not be reduced by more than 4% due to relay failure.

(b) Outages

Low **Frequency Demand** shedding schemes will be engineered such that the amount of **Demand** under control is as specified in Table ECC.A.5.5.1a and is not reduced unacceptably during equipment outage or maintenance conditions.

- ECC.A.5.3.2 The total operating time of the scheme, including circuit breakers operating time, shall where reasonably practicable, be less than 200 ms. For the avoidance of doubt, the replacement of plant installed prior to October 2009 will not be required in order to achieve lower total scheme operating times.
- ECC.A.5.4 Low Frequency Relay Testing
- ECC.A.5.4.1 **Low Frequency Relays** installed and commissioned after 1st January 2007 shall be type tested in accordance with and comply with the functional test requirements for **Frequency Protection** contained in Energy Networks Association Technical Specification 48-6-5 Issue 1 dated 2005 "ENA **Protection** Assessment Functional Test Requirements Voltage and Frequency **Protection**".

For the avoidance of doubt, **Low Frequency Relays** installed and commissioned before 1st January 2007 shall comply with the version of ECC.A.5.1.1 applicable at the time such **Low Frequency Relays** were commissioned.

- ECC.A.5.4.2 Each **Non-Embedded Customer** shall aim to execute testing on its low frequency demand disconnection relays installed within its network and in service at least once every three years, although this may be extended to no more than every five years if considered to be required for operational purposes.
- ECC.A.5.4.3 Each **Network Operator** and **Relevant Transmission Licensee** shall aim to execute testing on its low frequency demand disconnection relays installed within its network and in service at least once every three years, although this may be extended to no more than every five years if considered to be required for operational purposes.
- ECC.A.5.5 Scheme Settings
- Table CC.A.5.5.1a shows, for each Transmission Area, the percentage of Demand (based on Annual ACS Conditions) at the time of forecast National Electricity Transmission System peak Demand that each Network Operator whose System is connected to the Onshore Transmission System within such Transmission Area shall disconnect by Low Frequency Relays at a range of frequencies. Where a Network Operator's System is connected to the National Electricity Transmission System in more than one Transmission Area, the settings for the Transmission Area in which the majority of the Demand is connected shall apply.

Frequency Hz	% Demand disconnection for each Network Operator in Transmission Area		
	NGET	SPT	SHETL
48.8	5		
48.75	5		

Total % Demand	60	40	40
47.8	5		
48.0	5	10	10
48.2	7.5	10	10
48.4	7.5	10	10
48.5	7.5	10	
48.6	7.5		10
48.7	10		

Table ECC.A.5.5.1a

Note – the percentages in table ECC.A.5.5.1a are cumulative such that, for example, should the frequency fall to 48.6 Hz in **NGET's Transmission Area**, 27.5% of the total **Demand** connected to the **National Electricity Transmission System** in **NGET's Transmission Area** shall be disconnected by the action of **Low Frequency Relays**.

The percentage **Demand** at each stage shall be allocated as far as reasonably practicable. The cumulative total percentage **Demand** is a minimum.

- ECC.A.5.5.2 In the case of a Non-Embedded Customer (who is also an EU Code User) the percentage of Demand (based on Annual ACS Conditions) at the time of forecast National Electricity Transmission System peak Demand that each Non-Embedded Customer whose System is connected to the Onshore Transmission System which shall be disconnected by Low Frequency Relays shall be in accordance with OC6.6 and the Bilateral Agreement.
- ECC.A.5.6 Connection and Reconnection
- As defined under OC.6.6 once automatic low **Frequency Demand Disconnection** has taken place, the **Network Operator** on whose **User System** it has occurred, will not reconnect until **The Company** instructs that **Network Operator** to do so in accordance with OC6. The same requirement equally applies to **Non-Embedded Customers**.
- ECC.A.5.6.2 Once **The Company** instructs the **Network Operator** or **Non Embedded Customer** to reconnect to the **National Electricity Transmission System** following operation of the **Low Frequency Demand Disconnection** scheme it shall do so in accordance with the requirements of ECC.6.2.3.10 and OC6.6.
- ECC.A.5.6.3 Network Operators or Non Embedded Customers shall be capable of being remotely disconnected from the National Electricity Transmission System when instructed by The Company. Any requirement for the automated disconnection equipment for reconfiguration of the National Electricity Transmission System in preparation for block loading and the time required for remote disconnection shall be specified by The Company in accordance with the terms of the Bilateral Agreement.

APPENDIX E6 - PERFORMANCE REQUIREMENTS FOR CONTINUOUSLY ACTING AUTOMATIC EXCITATION CONTROL SYSTEMS FOR ONSHORE SYNCHRONOUS POWER GENERATING MODULES.

ECC.A.6.1 Scope

- ECC.A.6.1.1 This Appendix sets out the performance requirements of continuously acting automatic excitation control systems for Type C and Type D Onshore Synchronous Power Generating Modules that must be complied with by the User. This Appendix does not limit any site specific requirements where in The Company's reasonable opinion these facilities are necessary for system reasons.
- Where the requirements may vary the likely range of variation is given in this Appendix. It may be necessary to specify values outside this range where **The Company** identifies a system need, and notwithstanding anything to the contrary **The Company** may specify values outside of the ranges provided in this Appendix 6. The most common variations are in the on-load excitation ceiling voltage requirements and the response time required of the **Exciter**. Actual values will be included in the **Bilateral Agreement**.
- Should an **EU Generator** anticipate making a change to the excitation control system it shall notify **The Company** under the **Planning Code** (PC.A.1.2(b) and (c)) as soon as the **EU Generator** anticipates making the change. The change may require a revision to the **Bilateral Agreement**.

ECC.A.6.2 Requirements

- The Excitation System of a Type C or Type D Onshore Synchronous Power Generating Module shall include an excitation source (Exciter), and a continuously acting Automatic Voltage Regulator (AVR) and shall meet the following functional specification. Type D Synchronous Power Generating Modules are also required to be fitted with a Power System Stabiliser in accordance with the requirements of ECC.A.6.2.5.
- ECC.A.6.2.3 <u>Steady State Voltage Control</u>
- ECC.A.6.2.3.1 An accurate steady state control of the **Onshore Synchronous Power Generating Module** pre-set **Synchronous Generating Unit** terminal voltage is required. As a measure of the accuracy of the steady-state voltage control, the **Automatic Voltage Regulator** shall have static zero frequency gain, sufficient to limit the change in terminal voltage to a drop not exceeding 0.5% of rated terminal voltage, when the output of a **Synchronous Generating Unit** within an **Onshore Synchronous Power Generating Module** is gradually changed from zero to rated MVA output at rated voltage, **Active Power** and **Frequency**.
- ECC.A.6.2.4 Transient Voltage Control
- ECC.A.6.2.4.1 For a step change from 90% to 100% of the nominal **Onshore Synchronous Generating Unit** terminal voltage, with the **Onshore Synchronous Generating Unit** on open circuit, the **Excitation System** response shall have a damped oscillatory characteristic. For this characteristic, the time for the **Onshore Synchronous Generating Unit** terminal voltage to first reach 100% shall be less than 0.6 seconds. Also, the time to settle within 5% of the voltage change shall be less than 3 seconds.
- ECC.A.6.2.4.2 To ensure that adequate synchronising power is maintained, when the **Onshore Power Generating Module** is subjected to a large voltage disturbance, the **Exciter** whose output is varied by the **Automatic Voltage Regulator** shall be capable of providing its achievable upper and lower limit ceiling voltages to the **Onshore Synchronous Generating Unit** field in a time not exceeding that specified in the **Bilateral Agreement**. This will normally be not less than 50 ms and not greater than 300 ms. The achievable upper and lower limit ceiling voltages may be dependent on the voltage disturbance.
- ECC.A.6.2.4.3 The Exciter shall be capable of attaining an Excitation System On Load Positive Ceiling Voltage of not less than a value specified in the Bilateral Agreement that will be:

not less than 2 per unit (pu) normally not greater than 3 pu exceptionally up to 4 pu

of **Rated Field Voltage** when responding to a sudden drop in voltage of 10 percent or more at the **Onshore Synchronous Generating Unit** terminals. **The Company** may specify a value outside the above limits where **The Company** identifies a system need.

ECC.A.6.2.4.4 If a static type **Exciter** is employed:

- (i) the field voltage should be capable of attaining a negative ceiling level specified in the Bilateral Agreement after the removal of the step disturbance of ECC.A.6.2.4.3. The specified value will be 80% of the value specified in ECC.A.6.2.4.3. The Company may specify a value outside the above limits where The Company identifies a system need.
- (ii) the **Exciter** must be capable of maintaining free firing when the **Onshore Synchronous Generating Unit** terminal voltage is depressed to a level which may be between 20% to 30% of rated terminal voltage
- (iii) the Exciter shall be capable of attaining a positive ceiling voltage not less than 80% of the Excitation System On Load Positive Ceiling Voltage upon recovery of the Onshore Synchronous Generating Unit terminal voltage to 80% of rated terminal voltage following fault clearance. The Company may specify a value outside the above limits where The Company identifies a system need.
- (iv) the requirement to provide a separate power source for the **Exciter** will be specified if **The Company** identifies a **Transmission System** need.

ECC.A.6.2.5 Power Oscillations Damping Control

- ECC.A.6.2.5.1 To allow **Type D Onshore Power Generating Modules** to maintain second and subsequent swing stability and also to ensure an adequate level of low frequency electrical damping power, the **Automatic Voltage Regulator** of each **Onshore Synchronous Generating Unit** within each **Type D Onshore Synchronous Power Generating Module** shall include a **Power System Stabiliser** as a means of supplementary control.
- ECC.A.6.2.5.2 Whatever supplementary control signal is employed, it shall be of the type which operates into the **Automatic Voltage Regulator** to cause the field voltage to act in a manner which results in the damping power being improved while maintaining adequate synchronising power.
- ECC.A.6.2.5.3 The arrangements for the supplementary control signal shall ensure that the **Power System Stabiliser** output signal relates only to changes in the supplementary control signal and not the steady state level of the signal. For example, if generator electrical power output is chosen as a supplementary control signal then the **Power System Stabiliser** output should relate only to changes in the **Synchronous Generating Unit** electrical power output and not the steady state level of power output. Additionally the **Power System Stabiliser** should not react to mechanical power changes in isolation for example during rapid changes in steady state load or when providing frequency response.
- ECC.A.6.2.5.4 The output signal from the **Power System Stabiliser** shall be limited to not more than ±10% of the **Onshore Synchronous Generating Unit** terminal voltage signal at the **Automatic Voltage Regulator** input. The gain of the **Power System Stabiliser** shall be such that an increase in the gain by a factor of 3 shall not cause instability.
- ECC.A.6.2.5.5 The **Power System Stabiliser** shall include elements that limit the bandwidth of the output signal. The bandwidth limiting must ensure that the highest frequency of response cannot excite torsional oscillations on other plant connected to the network. A bandwidth of 0-5Hz would be judged to be acceptable for this application.

- ECC.A.6.2.5.6 The **EU Generator** in respect of its **Type D Synchronous Power Generating Modules** will agree **Power System Stabiliser** settings with **The Company** prior to the on-load commissioning detailed in BC2.11.2(d). To allow assessment of the performance before on-load commissioning the **EU Generator** will provide to **The Company** a report covering the areas specified in ECP.A.3.2.1.
- ECC.A.6.2.5.7 The **Power System Stabiliser** must be active within the **Excitation System** at all times when **Synchronised** including when the **Under Excitation Limiter** or **Over Excitation Limiter** are active. When operating at low load when **Synchronising** or **De-Synchronising** an **Onshore Synchronous Generating Unit**, within a **Type D Synchronous Power Generating Module**, the **Power System Stabiliser** may be out of service.
- ECC.A.6.2.5.8 Where a **Power System Stabiliser** is fitted to a **Pumped Storage Unit** within a **Type D Synchronous Power Generating Module** it must function when the **Pumped Storage Unit** is in both generating and pumping modes. In addition, where a **Power System Stabiliser** is fitted to an **Electricity Storage Unit** within a **Type D Synchronous Electricity Storage Module**, it must function when the **Synchronous Electricity Storage Unit** is in both importing and exporting modes of operation.
- ECC.A.6.2.6 Overall Excitation System Control Characteristics
- ECC.A.6.2.6.1 The overall **Excitation System** shall include elements that limit the bandwidth of the output signal. The bandwidth limiting must be consistent with the speed of response requirements and ensure that the highest frequency of response cannot excite torsional oscillations on other plant connected to the network. A bandwidth of 0-5 Hz will be judged to be acceptable for this application.
- ECC.A.6.2.6.2 The response of the Automatic Voltage Regulator combined with the Power System Stabiliser shall be demonstrated by injecting similar step signal disturbances into the Automatic Voltage Regulator reference as detailed in ECPA.5.2 and ECPA.5.4. The Automatic Voltage Regulator shall include a facility to allow step injections into the Automatic Voltage Regulator voltage reference, with the Onshore Type D Power Generating Module operating at points specified by The Company (up to rated MVA output). The damping shall be judged to be adequate if the corresponding Active Power response to the disturbances decays within two cycles of oscillation.
- ECC.A.6.2.6.3 A facility to inject a band limited random noise signal into the **Automatic Voltage Regulator** voltage reference shall be provided for demonstrating the frequency domain response of the **Power System Stabiliser**. The tuning of the **Power System Stabiliser** shall be judged to be adequate if the corresponding **Active Power** response shows improved damping with the **Power System Stabiliser** in combination with the **Automatic Voltage Regulator** compared with the **Automatic Voltage Regulator** alone over the frequency range 0.3Hz 2Hz.
- ECC.A.6.2.7 <u>Under-Excitation Limiters</u>
- ECC.A.6.2.7.1 The security of the power system shall also be safeguarded by means of MVAr Under Excitation Limiters fitted to the Synchronous Power Generating Module Excitation System. The Under Excitation Limiter shall prevent the Automatic Voltage Regulator reducing the Synchronous Generating Unit excitation to a level which would endanger synchronous stability. The Under Excitation Limiter shall operate when the excitation system is providing automatic control. The Under Excitation Limiter shall respond to changes in the Active Power (MW) the Reactive Power (MVAr) and to the square of the Synchronous Generating Unit voltage in such a direction that an increase in voltage will permit an increase in leading MVAr. The characteristic of the Under Excitation Limiter shall be substantially linear from no-load to the maximum Active Power output of the Onshore Power Generating Module at any setting and shall be readily adjustable.

- ECC.A.6.2.7.2 The performance of the **Under Excitation Limiter** shall be independent of the rate of change of the **Onshore Synchronous Power Generating Module** load and shall be demonstrated by testing as detailed in ECP.A.5.5. The resulting maximum overshoot in response to a step injection which operates the **Under Excitation Limiter** shall not exceed 4% of the **Onshore Synchronous Generating Unit** rated MVA. The operating point of the **Onshore Synchronous Generating Unit** shall be returned to a steady state value at the limit line and the final settling time shall not be greater than 5 seconds. When the step change in **Automatic Voltage Regulator** reference voltage is reversed, the field voltage should begin to respond without any delay and should not be held down by the **Under Excitation Limiter**. Operation into or out of the preset limit levels shall ensure that any resultant oscillations are damped so that the disturbance is within 0.5% of the **Onshore Synchronous Generating Unit** MVA rating within a period of 5 seconds.
- ECC.A.6.2.7.3 The **EU Generator** shall also make provision to prevent the reduction of the **Onshore Synchronous Generating Unit** excitation to a level which would endanger synchronous stability when the **Excitation System** is under manual control.
- ECC.A.6.2.8 Over-Excitation and Stator Current Limiters
- ECC.A.6.2.8.1 The settings of the **Over-Excitation Limiter** and stator current limiter, shall ensure that the **Onshore Synchronous Generating Unit** excitation is not limited to less than the maximum value that can be achieved whilst ensuring the **Onshore Synchronous Generating Unit** is operating within its design limits. If the **Onshore Synchronous Generating Unit** excitation is reduced following a period of operation at a high level, the rate of reduction shall not exceed that required to remain within any time dependent operating characteristics of the **Onshore Synchronous Power Generating Module**.
- ECC.A.6.2.8.2 The performance of the **Over-Excitation Limiter**, shall be demonstrated by testing as described in ECP.A.5.6. Any operation beyond the **Over-Excitation Limit** shall be controlled by the **Over-Excitation Limiter** or stator current limiter without the operation of any **Protection** that could trip the **Onshore Synchronous Power Generating Module**.
- ECC.A.6.2.8.3 The **EU Generator** shall also make provision to prevent any over-excitation restriction of the **Onshore Synchronous Generating Unit** when the **Excitation System** is under manual control, other than that necessary to ensure the **Onshore Power Generating Module** is operating within its design limits.

APPENDIX E7 - PERFORMANCE REQUIREMENTS FOR CONTINUOUSLY ACTING AUTOMATIC VOLTAGE CONTROL SYSTEMS FOR AC CONNECTED ONSHORE POWER PARK MODULES AND OTSDUW PLANT AND APPARATUS AT THE INTERFACE POINT HVDC SYSTEMS AND REMOTE END HVDC CONVERTER STATIONS

ECC.A.7.1 Scope

- This Appendix sets out the performance requirements of continuously acting automatic voltage control systems for Onshore Power Park Modules, Onshore HVDC Converters Remote End HVDC Converter Stations and OTSDUW Plant and Apparatus at the Interface Point that must be complied with by the User. This Appendix does not limit any site specific requirements where in The Company's reasonable opinion these facilities are necessary for system reasons. The control performance requirements applicable to Configuration 2 AC Connected Offshore Power Park Modules and Configuration 2 DC Connected Power Park Modules are defined in Appendix E8.
- Proposals by **EU Generators** or **HVDC System Owners** to make a change to the voltage control systems are required to be notified to **The Company** under the **Planning Code** (PC.A.1.2(b) and (c)) as soon as the **Generator** or **HVDC System Owner** anticipates making the change. The change may require a revision to the **Bilateral Agreement**.
- In the case of a **Remote End HVDC Converter** at a **HVDC Converter Station**, the control performance requirements shall be specified in the **Bilateral Agreement**. These requirements shall be consistent with those specified in ECC.6.3.2.4. In the case where the **Remote End HVDC Converter** is required to ensure the zero transfer of **Reactive Power** at the **HVDC Interface Point** then the requirements shall be specified in the **Bilateral Agreement** which shall be consistent with those requirements specified in ECC.A.8. In the case where a wider reactive capability has been specified in ECC.6.3.2.4, then the requirements consistent with those specified in ECC.A.7.2 shall apply with any variations being agreed between the **User** and **The Company**.

ECC.A.7.2 Requirements

The Company requires that the continuously acting automatic voltage control system for the Onshore Power Park Module, Onshore HVDC Converter or OTSDUW Plant and Apparatus shall meet the following functional performance specification. If a Network Operator has confirmed to The Company that its network to which an Embedded Onshore Power Park Module or Onshore HVDC Converter or OTSDUW Plant and Apparatus is connected is restricted such that the full reactive range under the steady state voltage control requirements (ECC.A.7.2.2) cannot be utilised, The Company may specify alternative limits to the steady state voltage control range that reflect these restrictions. Where the Network Operator subsequently notifies The Company that such restriction has been removed, The Company may propose a Modification to the Bilateral Agreement (in accordance with the CUSC contract) to remove the alternative limits such that the continuously acting automatic voltage control system meets the following functional performance specification. All other requirements of the voltage control system will remain as in this Appendix.

ECC.A.7.2.2 Steady State Voltage Control

ECC.A.7.2.2.1 The Onshore Power Park Module, Onshore HVDC Converter or OTSDUW Plant and Apparatus shall provide continuous steady state control of the voltage at the Onshore Grid Entry Point (or Onshore User System Entry Point if Embedded) (or the Interface Point in the case of OTSDUW Plant and Apparatus) with a Setpoint Voltage and Slope characteristic as illustrated in Figure ECC.A.7.2.2a.

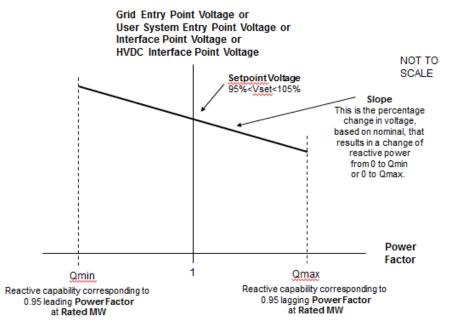


Figure ECC.A.7.2.2a

ECC.A.7.2.2.2 The continuously acting automatic control system shall be capable of operating to a **Setpoint Voltage** between 95% and 105% with a resolution of 0.25% of the nominal voltage. For the avoidance of doubt values of 95%, 95.25%, 95.5% ... may be specified, but not intermediate values. The initial **Setpoint Voltage** will be 100%. The tolerance within which this **Setpoint Voltage** shall be achieved is specified in BC2.A.2.6. For the avoidance of doubt, with a tolerance of 0.25% and a Setpoint Voltage of 100%, the achieved value shall be between 99.75% and 100.25%. **The Company** may request the **EU Generator** or **HVDC System Owner** to implement an alternative **Setpoint Voltage** within the range of 95% to 105%. For **Embedded Generators** and **Embedded HVDC System Owners** the **Setpoint Voltage** will be discussed between **The Company** and the relevant **Network Operator** and will be specified to ensure consistency with ECC.6.3.4.

ECC.A.7.2.2.3 The **Slope** characteristic of the continuously acting automatic control system shall be adjustable over the range 2% to 7% (with a resolution of 0.5%). For the avoidance of doubt values of 2%, 2.5%, 3% may be specified, but not intermediate values. The initial **Slope** setting will be 4%. The tolerance within which this **Slope** shall be achieved is specified in BC2.A.2.6. For the avoidance of doubt, with a tolerance of 0.5% and a **Slope** setting of 4%, the achieved value shall be between 3.5% and 4.5%. **The Company** may request the **EU Generator** or **HVDC System Owner** to implement an alternative slope setting within the range of 2% to 7%. For **Embedded Generators** and **Onshore Embedded HVDC Converter Station Owners** the **Slope** setting will be discussed between **The Company** and the relevant **Network Operator** and will be specified to ensure consistency with ECC.6.3.4.

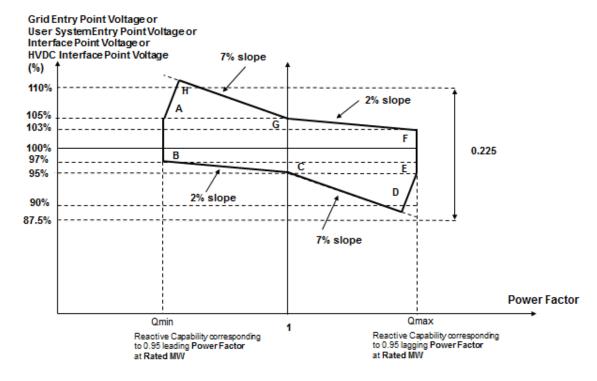


Figure ECC.A.7.2.2b

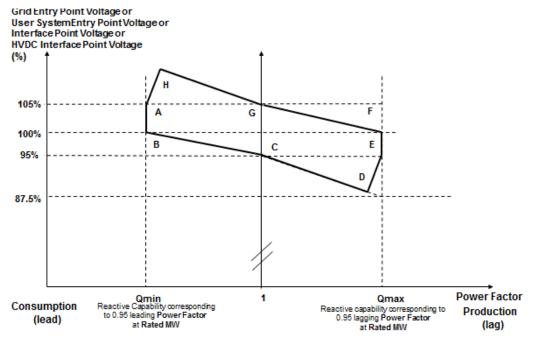
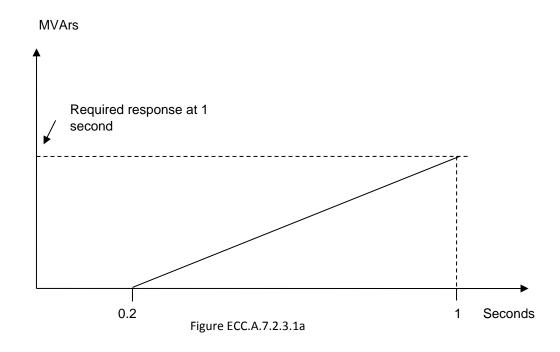



Figure ECC.A.7.2.2c

ECC.A.7.2.24 Figure ECC.A.7.2.2b shows the required envelope of operation for -, OTSDUW Plant and Apparatus, Onshore Power Park Modules and Onshore HVDC Converters except for those Embedded at 33kV and below or directly connected to the National Electricity Transmission System at 33kV and below. Figure ECC.A.7.2.2c shows the required envelope of operation for Onshore Power Park Modules Embedded at 33kV and below, or directly connected to the National Electricity Transmission System at 33kV and below. The enclosed area within points ABCDEFGH is the required capability range within which the Slope and Setpoint Voltage can be changed.

- ECC.A.7.2.2.5 Should the operating point of the, OTSDUW Plant and Apparatus or Onshore Power Park Module, or Onshore HVDC Converter deviate so that it is no longer a point on the operating characteristic (figure ECC.A.7.2.2a) defined by the target Setpoint Voltage and Slope, the continuously acting automatic voltage control system shall act progressively to return the value to a point on the required characteristic within 5 seconds.
- ECC.A.7.2.2.6 Should the Reactive Power output of the OTSDUW Plant and Apparatus or Onshore Power Park Module or Onshore HVDC Converter reach its maximum lagging limit at a Onshore Grid Entry Point voltage (or Onshore User System Entry Point voltage if Embedded (or Interface Point in the case of OTSDUW Plant and Apparatus) above 95%, the OTSDUW Plant and Apparatus or Onshore Power Park Module or HVDC System shall maintain maximum lagging Reactive Power output for voltage reductions down to 95%. This requirement is indicated by the line EF in figures ECC.A.7.2.2b and ECC.A.7.2.2c as applicable. Should the Reactive Power output of the OTSDUW Plant and Apparatus or Onshore Power Park Module, or Onshore HVDC Converter reach its maximum leading limit at a Onshore Grid Entry Point voltage (or Onshore User System Entry Point voltage if Embedded or Interface Point in the case of OTSDUW Plant and Apparatus) below 105%, the OTSDUW Plant and Apparatus or Onshore Power Park Module, or Onshore HVDC Converter shall maintain maximum leading Reactive Power output for voltage increases up to 105%. This requirement is indicated by the line AB in figures ECC.A.7.2.2b and ECC.A.7.2.2c as applicable.
- ECC.A.7.2.2.7 For Onshore Grid Entry Point voltages (or Onshore User System Entry Point voltages if Embedded-or Interface Point voltages) below 95%, the lagging Reactive Power capability of the OTSDUW Plant and Apparatus or Onshore Power Park Module or Onshore HVDC **Converters** should be that which results from the supply of maximum lagging reactive current whilst ensuring the current remains within design operating limits. An example of the capability is shown by the line DE in figures ECC.A.7.2.2b and ECC.A.7.2.2c. For Onshore Grid Entry Point voltages (or User System Entry Point voltages if Embedded or Interface Point voltages) above 105%, the leading Reactive Power capability of the OTSDUW Plant and Apparatus or Onshore Power Park Module or Onshore HVDC System Converter should be that which results from the supply of maximum leading reactive current whilst ensuring the current remains within design operating limits. An example of the capability is shown by the line AH in figures ECC.A.7.2.2b and ECC.A.7.2.2c as applicable. Should the Reactive Power output of the OTSDUW Plant and Apparatus or Onshore Power Park Module or Onshore HVDC Converter reach its maximum lagging limit at an Onshore Grid Entry Connection Point voltage (or Onshore User System Entry Point voltage if Embedded or Interface Point in the case of OTSDUW Plant and Apparatus) below 95%, the Onshore Power Park Module, Onshore HVDC Converter shall maintain maximum lagging reactive current output for further voltage decreases. Should the Reactive Power output of the OTSDUW Plant and Apparatus or Onshore Power Park Module or Onshore HVDC Converter reach its maximum leading limit at a Onshore Grid Entry Point voltage (or User System Entry Point voltage if Embedded or Interface Point voltage in the case of an OTSDUW Plant and Apparatus) above 105%, the OTSDUW Plant and Apparatus or Onshore Power Park Module or Onshore HVDC Converter shall maintain maximum leading reactive current output for further voltage increases.
- ECC.A.7.2.2.8 All **OTSDUW Plant and Apparatus** must be capable of enabling **EU Code Users** undertaking **OTSDUW** to comply with an instruction received from **The Company** relating to a variation of the **Setpoint Voltage** at the **Interface Point** within 2 minutes of such instruction being received.
- For OTSDUW Plant and Apparatus connected to a Network Operator's System where the Network Operator has confirmed to The Company that its System is restricted in accordance with ECC.A.7.2.1, clause ECC.A.7.2.2.8 will not apply unless The Company can reasonably demonstrate that the magnitude of the available change in Reactive Power has a significant effect on voltage levels on the Onshore National Electricity Transmission System.
- ECC.A.7.2.3 <u>Transient Voltage Control</u>

- ECC.A.7.2.3.1 For an on-load step change in **Onshore Grid Entry Point** or **Onshore User System Entry Point** voltage, or in the case of **OTSDUW Plant and Apparatus** an on-load step change in **Transmission Interface Point** voltage, the continuously acting automatic control system shall respond according to the following minimum criteria:
 - (i) the Reactive Power output response of the, OTSDUW Plant and Apparatus or Onshore Power Park Module or Onshore HVDC Converter shall commence within 0.2 seconds of the application of the step. It shall progress linearly although variations from a linear characteristic shall be acceptable provided that the MVAr seconds delivered at any time up to 1 second are at least those that would result from the response shown in figure ECC.A.7.2.3.1a.
 - (ii) the response shall be such that 90% of the change in the Reactive Power output of the, OTSDUW Plant and Apparatus or Onshore Power Park Module, or Onshore HVDC Converter will be achieved within
 - 2 seconds, where the step is sufficiently large to require a change in the steady state **Reactive Power** output from its maximum leading value to its maximum lagging value or vice versa and
 - 1 second where the step is sufficiently large to require a change in the steady state Reactive Power output from zero to its maximum leading value or maximum lagging value as required by ECC.6.3.2 (or, if appropriate ECC.A.7.2.2.6 or ECC.A.7.2.2.7);
 - (iii) the magnitude of the **Reactive Power** output response produced within 1 second shall vary linearly in proportion to the magnitude of the step change.
 - (iv) within 5 seconds from achieving 90% of the response as defined in ECC.A.7.2.3.1 (ii), the peak to peak magnitude of any oscillations shall be less than 5% of the change in steady state maximum Reactive Power.
 - (v) following the transient response, the conditions of ECC.A.7.2.2 apply.

ECC.A.7.2.3.2 OTSDUW Plant and Apparatus or Onshore Power Park Modules or Onshore HVDC Converters shall be capable of

(a) changing its Reactive Power output from its maximum lagging value to its maximum

- leading value, or vice versa, then reverting back to the initial level of **Reactive Power** output once every 15 seconds for at least 5 times within any 5 minute period; and
- (b) changing its Reactive Power output from zero to its maximum leading value then reverting back to zero Reactive Power output at least 25 times within any 24 hour period and from zero to its maximum lagging value then reverting back to zero Reactive Power output at least 25 times within any 24 hour period. Any subsequent restriction on reactive capability shall be notified to The Company in accordance with BC2.5.3.2, and BC2.6.1.

In all cases, the response shall be in accordance to ECC.A.7.2.3.1 where the change in Reactive Power output is in response to an on-load step change in Onshore Grid Entry Point or Onshore User System Entry Point voltage, or in the case of OTSDUW Plant and Apparatus an on-load step change in Transmission Interface Point voltage.

ECC.A.7.2.4 Power Oscillation Damping

- ECC.A.7.2.4.1 The requirement for the continuously acting voltage control system to be fitted with a **Power System Stabiliser (PSS)** shall be specified if, in **The Company's** view, this is required for system reasons. However if a **Power System Stabiliser** is included in the voltage control system its settings and performance shall be agreed with **The Company** and commissioned in accordance with BC2.11.2. To allow assessment of the performance before on-load commissioning the **Generator** will provide to **The Company** a report covering the areas specified in ECP.A.3.2.2.
- ECC.A.7.2.5 Overall Voltage Control System Characteristics
- ECC.A.7.2.5.1 The continuously acting automatic voltage control system is required to respond to minor variations, steps, gradual changes or major variations in **Onshore Grid Entry Point** voltage (or **Onshore User System Entry Point** voltage if **Embedded** or **Interface Point** voltage in the case of **OTSDUW Plant and Apparatus**).
- ECC.A.7.2.5.2 The overall voltage control system shall include elements that limit the bandwidth of the output signal. The bandwidth limiting must be consistent with the speed of response requirements and ensure that the highest frequency of response cannot excite torsional oscillations on other plant connected to the network. A bandwidth of 0-5Hz would be judged to be acceptable for this application. All other control systems employed within the OTSDUW Plant and Apparatus or Onshore Power Park Module or Onshore HVDC Converter should also meet this requirement
- ECC.A.7.2.5.3 The response of the voltage control system (including the **Power System Stabiliser** if employed) shall be demonstrated by testing in accordance with ECP.A.6.
- ECC.A.7.3 Reactive Power Control
- As defined in ECC.6.3.8.3.4, Reactive Power control mode of operation is not required in respect of Onshore Power Park Modules or OTSDUW Plant and Apparatus or Onshore HVDC Converters unless otherwise specified by The Company in coordination with the relevant Network Operator. However where there is a requirement for Reactive Power control mode of operation, the following requirements shall apply.
- ECC.A.7.3.2 The Onshore Power Park Module or OTSDUW Plant and Apparatus or Onshore HVDC Converter shall be capable of setting the Reactive Power setpoint anywhere in the Reactive Power range as specified in ECC.6.3.2.4 with setting steps no greater than 5 MVAr or 5% (whichever is smaller) of full Reactive Power, controlling the reactive power at the Grid Entry Point or User System Entry Point if Embedded to an accuracy within plus or minus 5MVAr or plus or minus 5% (whichever is smaller) of the full Reactive Power.
- ECC.A.7.3.3 Any additional requirements for **Reactive Power** control mode of operation shall be specified

by The Company in coordination with the relevant Network Operator..

ECC.A.7.4 Power Factor Control

- As defined in ECC.6.3.8.4.3, **Power Factor** control mode of operation is not required in respect of **Onshore Power Park Modules** or **OTSDUW Plant and Apparatus** or **Onshore HVDC Converters** unless otherwise specified by **The Company** in coordination with the relevant **Network Operator**. However where there is a requirement for **Power Factor** control mode of operation, the following requirements shall apply.
- The Onshore Power Park Module or OTSDUW Plant and Apparatus or Onshore HVDC Converter shall be capable of controlling the Power Factor at the Grid Entry Point or User System Entry Point (if Embedded) within the required Reactive Power range as specified in ECC.6.3.2.2.1 and ECC.6.3.2.4 to a specified target Power Factor. The Company shall specify the target Power Factor value (which shall be achieved within 0.01 of the set Power Factor), its tolerance and the period of time to achieve the target Power Factor following a sudden change of Active Power output. The tolerance of the target Power Factor shall be expressed through the tolerance of its corresponding Reactive Power. This Reactive Power tolerance shall be expressed by either an absolute value or by a percentage of the maximum Reactive Power of the Onshore Power Park Module or OTSDUW Plant and Apparatus or Onshore HVDC Converter. The details of these requirements being pursuant to the terms of the Bilateral Agreement.
- ECC.A.7.4.3 Any additional requirements for **Power Factor** control mode of operation shall be specified by **The Company** in coordination with the relevant **Network Operator**.

APPENDIX E8 - PERFORMANCE REQUIREMENTS FOR CONTINUOUSLY ACTING AUTOMATIC VOLTAGE CONTROL SYSTEMS FOR CONFIGURATION 2 AC CONNECTED OFFSHORE POWER PARK MODULES AND CONFIGURATION 2 DC CONNECTED POWER PARK MODULES

ECC.A.8.1 Scope

- ECC.A.8.1.1 This Appendix sets out the performance requirements of continuously acting automatic voltage control systems for Configuration 2 AC Connected Offshore Power Park Modules and Configuration 2 DC Connected Power Park Modules that must be complied with by the EU Code User. This Appendix does not limit any site specific requirements that may be specified where in The Company's reasonable opinion these facilities are necessary for system reasons.
- These requirements also apply to Configuration 2 DC Connected Power Park Modules. In the case of a Configuration 1 DC Connected Power Park Module the technical performance requirements shall be specified by The Company. Where the EU Generator in respect of a DC Connected Power Park Module has agreed to a wider reactive capability range as defined under ECC.6.3.2.5 and ECC.6.2.3.6 then the requirements that apply will be specified by The Company and which shall reflect the performance requirements detailed in ECC.A.8.2 below but with different parameters such as droop and Setpoint Voltage.
- ECC.A.8.1.3 Proposals by **EU Generators** to make a change to the voltage control systems are required to be notified to **The Company** under the **Planning Code** (PC.A.1.2(b) and (c)) as soon as the **Generator** anticipates making the change. The change may require a revision to the **Bilateral Agreement**.

ECC.A.8.2 Requirements

ECC.A.8.2.1 The Company requires that the continuously acting automatic voltage control system for the Configuration 2 AC connected Offshore Power Park Module and Configuration 2 DC Connected Power Park Module shall meet the following functional performance specification.

ECC.A.8.2.2 <u>Steady State Voltage Control</u>

ECC.A.8.2.2.1 The Configuration 2 AC connected Offshore Power Park Module and Configuration 2 DC Connected Power Park Module shall provide continuous steady state control of the voltage at the Offshore Connection Point with a Setpoint Voltage and Slope characteristic as illustrated in Figure ECC.A.8.2.2a.

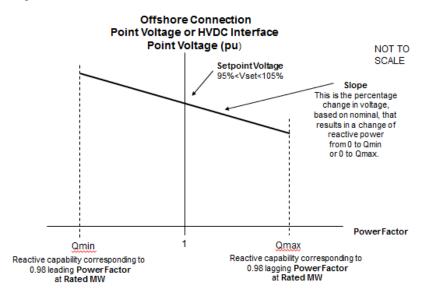


Figure ECC.A.8.2.2a

- ECC.A.8.2.2.2 The continuously acting automatic control system shall be capable of operating to a **Setpoint Voltage** between 95% and 105% with a resolution of 0.25% of the nominal voltage. For the avoidance of doubt values of 95%, 95.25%, 95.5% ... may be specified, but not intermediate values. The initial **Setpoint Voltage** will be 100%. The tolerance within which this **Setpoint Voltage** shall be achieved is specified in BC2.A.2.6. For the avoidance of doubt, with a tolerance of 0.25% and a Setpoint Voltage of 100%, the achieved value shall be between 99.75% and 100.25%. **The Company** may request the **EU Generator** to implement an alternative **Setpoint Voltage** within the range of 95% to 105%.
- ECC.A.8.2.2.3 The **Slope** characteristic of the continuously acting automatic control system shall be adjustable over the range 2% to 7% (with a resolution of 0.5%). For the avoidance of doubt values of 2%, 2.5%, 3% may be specified, but not intermediate values. The initial **Slope** setting will be 4%. The tolerance within which this **Slope** shall be achieved is specified in BC2.A.2.6. For the avoidance of doubt, with a tolerance of 0.5% and a **Slope** setting of 4%, the achieved value shall be between 3.5% and 4.5%. **The Company** may request the **EU Generator** to implement an alternative slope setting within the range of 2% to 7%.

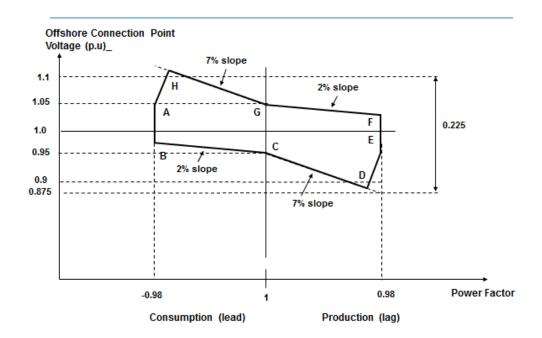
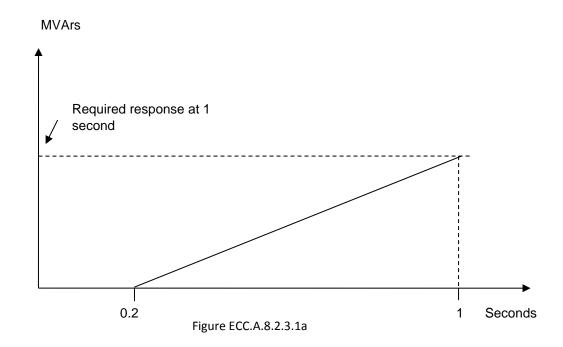


Figure ECC.A.8.2.2b


- ECC.A.8.2.2.4 Figure ECC.A.8.2.2b shows the required envelope of operation for **Configuration 2 AC** connected Offshore Power Park Module and Configuration 2 DC Connected Power Park Module. The enclosed area within points ABCDEFGH is the required capability range within which the **Slope** and **Setpoint Voltage** can be changed.
- ECC.A.8.2.2.5 Should the operating point of the **Configuration 2 AC connected Offshore Power Park or Configuration 2 DC Connected Power Park Module** deviate so that it is no longer a point on the operating characteristic (Figure ECC.A.8.2.2a) defined by the target **Setpoint Voltage** and **Slope**, the continuously acting automatic voltage control system shall act progressively to return the value to a point on the required characteristic within 5 seconds.

- ECC.A.8.2.2.6 Should the Reactive Power output of the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module reach its maximum lagging limit at an Offshore Grid Entry Point or Offshore User System Entry Point or HVDC Interface Point voltage above 95%, the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module shall maintain maximum lagging Reactive Power output for voltage reductions down to 95%. This requirement is indicated by the line EF in figure ECC.A.8.2.2b. Should the Reactive Power output of the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module reach its maximum leading limit at the Offshore Grid Entry Point or Offshore User System Entry Point or HVDC Interface Point voltage below 105%, the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module shall maintain maximum leading Reactive Power output for voltage increases up to 105%. This requirement is indicated by the line AB in figures ECC.A.8.2.2b.
- ECC.A.8.2.2.7 For Offshore Grid Entry Point or User System Entry Point or HVDC Interface Point voltages below 95%, the lagging Reactive Power capability of the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park **Module** should be that which results from the supply of maximum lagging reactive current whilst ensuring the current remains within design operating limits. An example of the capability is shown by the line DE in figures ECC.A.8.2.2b. For Offshore Grid Entry Point or Offshore User System Entry Point voltages or HVDC Interface Point voltages above 105%, the leading Reactive Power capability of the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module should be that which results from the supply of maximum leading reactive current whilst ensuring the current remains within design operating limits. An example of the capability is shown by the line AH in figures ECC.A.8.2.2b. Should the Reactive Power output of the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module reach its maximum lagging limit at an Offshore Grid Entry Point or Offshore User System Entry voltage or HVDC Interface Point voltage below 95%, the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park **Module** shall maintain maximum lagging reactive current output for further voltage decreases. Should the Reactive Power output of the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module reach its maximum leading limit at an Offshore Grid Entry Point or Offshore User System Entry voltage or HVDC Interface Point voltage above 105%, the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module shall maintain maximum leading reactive current output for further voltage increases.

ECC.A.8.2.3 Transient Voltage Control

- ECC.A.8.2.3.1 For an on-load step change in **Offshore Grid Entry Point** or **Offshore User System Entry Point** voltage or **HVDC Interface Point** voltage, the continuously acting automatic control system shall respond according to the following minimum criteria:
 - (i) the Reactive Power output response of the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module shall commence within 0.2 seconds of the application of the step. It shall progress linearly although variations from a linear characteristic shall be acceptable provided that the MVAr seconds delivered at any time up to 1 second are at least those that would result from the response shown in figure ECC.A.8.2.3.1a.
 - (ii) the response shall be such that 90% of the change in the Reactive Power output of the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module will be achieved within
 - 2 seconds, where the step is sufficiently large to require a change in the steady state Reactive Power output from its maximum leading value to its maximum lagging value or vice versa and

- 1 second where the step is sufficiently large to require a change in the steady state Reactive Power output from zero to its maximum leading value or maximum lagging value as required by ECC.6.3.2 (or, if appropriate ECC.A.8.2.2.6 or ECC.A.8.2.2.7);
- (iii) the magnitude of the **Reactive Power** output response produced within 1 second shall vary linearly in proportion to the magnitude of the step change.
- (iv) within 5 seconds from achieving 90% of the response as defined in ECC.A.8.2.3.1 (ii), the peak to peak magnitude of any oscillations shall be less than 5% of the change in steady state maximum Reactive Power.
- (v) following the transient response, the conditions of ECC.A.8.2.2 apply.

ECC.A.8.2.3.2 Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module shall be capable of

- (a) changing their **Reactive Power** output from maximum lagging value to maximum leading value, or vice versa, then reverting back to the initial level of **Reactive Power** output once every 15 seconds for at least 5 times within any 5 minute period; and
- (b) changing Reactive Power output from zero to maximum leading value then reverting back to zero Reactive Power output at least 25 times within any 24 hour period and from zero to its maximum lagging value then reverting back to zero Reactive Power output at least 25 times within any 24 hour period. Any subsequent restriction on reactive capability shall be notified to The Company in accordance with BC2.5.3.2, and BC2.6.1.

In all cases, the response shall be in accordance to ECC.A.8.2.3.1 where the change in **Reactive Power** output is in response to an on-load step change in **Offshore Grid Entry Point** or **Offshore User System Entry Point** voltage or **HVDC Interface Point** voltage.

ECC.A.8.2.4 Power Oscillation Damping

- ECC.A.8.2.4.1 The requirement for the continuously acting voltage control system to be fitted with a **Power** System Stabiliser (PSS) shall be specified if, in The Company's view, this is required for system reasons. However if a Power System Stabiliser is included in the voltage control system its settings and performance shall be agreed with The Company and commissioned in accordance with BC2.11.2. To allow assessment of the performance before on-load commissioning the Generator or HVDC System Owner will provide to The Company a report covering the areas specified in ECP.A.3.2.2.
- ECC.A.8.2.5 Overall Voltage Control System Characteristics
- ECC.A.8.2.5.1 The continuously acting automatic voltage control system is required to respond to minor variations, steps, gradual changes or major variations in Offshore Grid Entry Point or Offshore User System Entry Point or HVDC Interface Point voltage.
- ECC.A.8.2.5.2 The overall voltage control system shall include elements that limit the bandwidth of the output signal. The bandwidth limiting must be consistent with the speed of response requirements and ensure that the highest frequency of response cannot excite torsional oscillations on other plant connected to the network. A bandwidth of 0-5Hz would be judged to be acceptable for this application. All other control systems employed within the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park **Module** should also meet this requirement
- ECC.A.8.2.5.3 The response of the voltage control system (including the Power System Stabiliser if employed) shall be demonstrated by testing in accordance with ECP.A.6.
- ECC.A.8.3 Reactive Power Control
- ECC.A.8.3.1 Reactive Power control mode of operation is not required in respect of Configuration 2 AC connected Offshore Power Park Modules or Configuration 2 DC Connected Power Park Modules unless otherwise specified by The Company. However where there is a requirement for Reactive Power control mode of operation, the following requirements shall apply.
- ECC.A.8.3.2 Configuration 2 AC connected Offshore Power Park Modules or Configuration 2 DC Connected Power Park Modules shall be capable of setting the Reactive Power setpoint anywhere in the Reactive Power range as specified in ECC.6.3.2.8.2 with setting steps no greater than 5 MVAr or 5% (whichever is smaller) of full Reactive Power, controlling the Reactive Power at the Offshore Grid Entry Point or Offshore User System Entry Point or HVDC Interface Point to an accuracy within plus or minus 5MVAr or plus or minus 5% (whichever is smaller) of the full Reactive Power.
- ECC.A.8.3.3 Any additional requirements for Reactive Power control mode of operation shall be specified by The Company.
- ECC.A.8.4 **Power Factor Control**
- ECC.A.8.4.1 Power Factor control mode of operation is not required in respect of Configuration 2 AC connected Offshore Power Park Modules or Configuration 2 DC Connected Power Park Modules unless otherwise specified by The Company. However where there is a requirement for Power Factor control mode of operation, the following requirements shall apply.
- ECC.A.8.4.2 Configuration 2 AC connected Offshore Power Park Modules or Configuration 2 DC Connected Power Park Modules shall be capable of controlling the Power Factor at the Offshore Grid Entry Point or Offshore User System Entry Point or HVDC Interface Point within the required Reactive Power range as specified in ECC.6.3.2.8.2 with a target Power Factor. The Company shall specify the target Power Factor (which shall be achieved to within 0.01 of the set **Power Factor**), its tolerance and the period of time to achieve the target Power Factor following a sudden change of Active Power output. The tolerance of the target Power Factor shall be expressed through the tolerance of its corresponding Reactive Power.

This Reactive Power tolerance shall be expressed by either an absolute value or by a percentage of the maximum Reactive Power of the Configuration 2 AC connected Offshore Power Park Module or Configuration 2 DC Connected Power Park Module. The details of these requirements being specified by The Company.

ECC.A.8.4.3 Any additional requirements for **Power Factor** control mode of operation shall be specified by **The Company**.

< END OF EUROPEAN CONNECTION CONDITIONS >

OPERATING CODE NO. 5 (OC5)

TESTING AND MONITORING

CONTENTS

(This contents page does not form part of the Grid Code)

Paragraph No/Title	Page Number
OC5.1 INTRODUCTION	3
OC5.2 OBJECTIVE	4
OC5.3 SCOPE	4
OC5.4 MONITORING	4
OC5.4.1 Parameters To Be Monitored	4
OC5.4.2 Procedure For Monitoring	4
OC5.5 PROCEDURE FOR TESTING	5
OC5.5.1 The Company's Instruction For Testing	5
OC5.5.2 User Request For Testing	6
OC5.5.3 Conduct Of Test	6
OC5.5.4 Test And Monitoring Assessment	6
OC5.5.5 Test Failure / Re-test	10
OC5.5.6 Dispute Following Re-test	10
OC5.6 DISPUTE RESOLUTION	10
OC5.7 BLACK START TESTING	11
OC5.7.1 General	11
OC5.7.2 Procedure For A Black Start Test	12
OC5.8 PROCEDURES APPLYING TO EMBEDDED MEDIUM POWER STATE A BILATERAL AGREEMENT AND EMBEDDED DC CONVERTER STATION BILATERAL AGREEMENT	IS NOT SUBJECT TO A
APPENDIX 1 - ONSITE SIGNAL PROVISION FOR WITNESSING TESTS	17
APPENDIX 2 - COMPLIANCE TESTING OF SYNCHRONOUS PLANT	20
APPENDIX 3 - COMPLIANCE TESTING OF POWER PARK MODULES	30
APPENDIX 4 - COMPLIANCE TESTING FOR DC CONVERTERS AT A DC	

OC5.1 INTRODUCTION

Operating Code No. 5 ("OC5") specifies the procedures to be followed by The Company in carrying out:

- (a) monitoring
 - (i) of BM Units against their expected input or output;
 - (ii) of compliance by **Users** with the **CC** or **ECC** as applicable and in the case of response to **Frequency**, **BC3**; and
 - (iii) of the provision by **Users** of **Ancillary Services** which they are required or have agreed to provide; and
- (b) the following tests (which are subject to **System** conditions prevailing on the day):
 - (i) tests on Gensets, CCGT Modules, Power Generating Modules, Power Park Modules, DC Converters, HVDC Equipment, OTSUA (prior to the OTSUA Transfer Time) and Generating Units (excluding Power Park Units) to test that they have the capability to comply with the CC and ECC, and in the case of response to Frequency, BC3 and to provide the Ancillary Services that they are either required or have agreed to provide;
 - (ii) tests on **BM Units**, to ensure that the **BM Units** are available in accordance with their submitted **Export and Import Limits** and **Dynamic Parameters**.

The **OC5** tests include the **Black Start Test** procedure.

OC5 also specifies in OC5.8 the procedures which apply to the monitoring and testing of Embedded Medium Power Stations not subject to a Bilateral Agreement and Embedded DC Converter Stations (or Embedded HVDC Equipment) not subject to a Bilateral Agreement.

In respect of a Cascade Hydro Scheme the provisions of OC5 shall be applied as follows:

- (a) in respect of the BM Unit for the Cascade Hydro Scheme the parameters referred to at OC5.4.1 (a) and (c) in respect of Commercial Ancillary Services will be monitored and tested;
- (b) in respect of each Genset forming part of the Cascade Hydro Scheme the parameters referred to at OC5.4.1 (a), (b) and (c) will be tested and monitored. In respect of OC5.4.1 (a) the performance of the Gensets will be tested and monitored against their expected input or output derived from the data submitted under BC1.4.2(a)(2). Where necessary to give effect to the requirements for Cascade Hydro Schemes in the following provisions of OC5 the term Genset will be read and construed in the place of BM Unit.

In respect of **Embedded Exemptable Large Power Stations** the provisions of **OC5** shall be applied as follows:

- (a) where there is a **BM Unit** registered in the **BSC** in respect of **Generating Units** the provisions of **OC5** shall apply as written;
- (b) in all other cases, in respect of each Power Generating Module, and/or Generating Unit and HVDC Equipment the parameters referred to at OC5.4.1(a), (b) and (c) will be tested and monitored. In respect of OC5.4.1(a) the performance of the Power Generating Module and/or Generating Unit and HVDC Equipment will be tested and monitored against their expected input or output derived from the data submitted under BC1.4.2(a)(2). Where necessary to give effect to the requirements for such Embedded Exemptable Large Power Stations in the provisions of OC5 the term Generating Unit will be read and construed in place of BM Unit.

OC5.2 OBJECTIVE

The objectives of **OC5** are to establish:

- (a) that Users comply with the CC or ECC as applicable (including in the case of OTSUA prior to the OTSUA Transfer Time);
- (b) whether BM Units operate in accordance with their expected input or output derived from their Final Physical Notification Data and agreed Bid-Offer Acceptances issued under BC2:
- (c) whether each **BM Unit** is available as declared in accordance with its submitted **Export** and Import Limits and Dynamic Parameters; and
- (d) whether Generators, DC Converter Station owners, HVDC Equipment Owners and Suppliers can provide those Ancillary Services which they are either required or have agreed to provide.

In certain limited circumstances as specified in this **OC5** the output of **CCGT Units** may be verified, namely the monitoring of the provision of **Ancillary Services** and the testing of **Reactive Power** and automatic **Frequency Sensitive Operation**.

OC5.3 SCOPE

OC5 applies to The Company and to Users, which in OC5 means:

- (a) Generators (including those undertaking OTSDUW);
- (b) Network Operators;
- (c) Non-Embedded Customers;
- (d) Suppliers; and
- (e) DC Converter Station owners or HVDC Equipment Owners.

OC5.4 MONITORING

OC5.4.1 Parameters To Be monitored

The Company will monitor the performance of:

- (a) **BM Units** against their expected input or output derived from their **Final Physical Notification Data** and agreed **Bid-Offer Acceptances** issued under **BC2**;
- (b) compliance by Users with the CC or ECC as applicable; and
- (c) the provision by **Users** of **Ancillary Services** which they are required or have agreed to provide.

OC5.4.2 Procedure For Monitoring

- OC5.4.2.1 In the event that a **BM Unit** fails persistently, in **The Company's** reasonable view, to follow, in any material respect, its expected input or output or a **User** fails persistently to comply with the **CC** or **ECC** as applicable and in the case of response to **Frequency**, **BC3** or to provide the **Ancillary Services** it is required, or has agreed, to provide, **The Company** shall notify the relevant **User** giving details of the failure and of the monitoring that **The Company** has carried out
- OC5.4.2.2 The relevant **User** will, as soon as possible, provide **The Company** with an explanation of the reasons for the failure and details of the action that it proposes to take to:
 - (a) enable the **BM Unit** to meet its expected input or output or to provide the **Ancillary Services** it is required or has agreed to provide, within a reasonable period, or

- (b) in the case of a Power Generating Module, Generating Unit (excluding a Power Park Unit), CCGT Module, Power Park Module, OTSUA (prior to the OTSUA Transfer Time), HVDC Equipment or DC Converter to comply with the CC or ECC as applicable and in the case of response to Frequency, BC3 or to provide the Ancillary Services it is required or has agreed to provide, within a reasonable period.
- OC5.4.2.3 **The Company** and the **User** will then discuss the action the **User** proposes to take and will endeavour to reach agreement as to:
 - (a) any short term operational measures necessary to protect other Users; and
 - (b) the parameters which are to be submitted for the **BM Unit** and the effective date(s) for the application of the agreed parameters.
- OC5.4.2.4 In the event that agreement cannot be reached within 10 days of notification of the failure by **The Company** to the **User**, **The Company** or the **User** shall be entitled to require a test, as set out in OC5.5 and OC5.6, to be carried out.
- OC5.5 PROCEDURE FOR TESTING
- OC5.5.1 The Company's Instruction For Testing
- OC5.5.1.1 **The Company** may at any time (although not normally more than twice in any calendar year in respect of any particular **BM Unit**) issue an instruction requiring a **User** to carry out a test, provided **The Company** has reasonable grounds of justification based upon:
 - (a) a failure to agree arising from the process in CP.8.1 or ECP.8.1; or
 - (b) monitoring carried out in accordance with OC5.4.2.
- OC5.5.1.2 The test, referred to in OC5.5.1.1 and carried out at a time no sooner than 48 hours from the time that the instruction was issued, on any one or more of the **User's BM Units** should only be to demonstrate that the relevant **BM Unit**:
 - (a) if active in the Balancing Mechanism, meets the ability to operate in accordance with its submitted Export and Import Limits and Dynamic Parameters and achieve its expected input or output which has been monitored under OC5.4; and
 - (b) meets the requirements of the paragraphs in the **CC** which are applicable to such **BM Units**: and

in the case of a BM Unit comprising a Generating Unit, a CCGT Module, a Power Park Module, a Power Generating Module, HVDC System or a DC Converter meets,

- (c) the requirements for operation in **Frequency Sensitive Mode** and compliance with the requirements for operation in **Limited Frequency Sensitive Mode** in accordance with CC.6.3.3, ECC.6.3.3, CC.6.3.7, ECC.6.3.7, BC3.5.2 and BC3.7.2; or
- (d) the terms of the applicable **Bilateral Agreement** agreed with the **Generator** to have a **Fast Start Capability**; or
- (e) the Reactive Power capability registered with The Company under OC2 which shall meet the requirements set out in CC.6.3.2 or ECC.6.3.2 as applicable. In the case of a test on a Generating Unit within a CCGT Module the instruction need not identify the particular CCGT Unit within the CCGT Module which is to be tested, but instead may specify that a test is to be carried out on one of the CCGT Units within the CCGT Module.
- OC5.5.1.3 (a) The instruction referred to in OC5.5.1.1 may only be issued if the relevant **User** has submitted **Export and Import Limits** which notify that the relevant **BM Unit** is available in respect of the **Operational Day** current at the time at which the instruction is issued. The relevant **User** shall then be obliged to submit **Export and Import Limits** with a magnitude greater than zero for that **BM Unit** in respect of the time and the duration that the test is instructed to be carried out, unless that **BM Unit** would not then be available by reason of forced outage or **Planned Outage** expected prior to this instruction.

- (b) In the case of a CCGT Module the Export and Import Limits data must relate to the same CCGT Units which were included in respect of the Operational Day current at the time at which the instruction referred to in OC5.5.1.1 is issued and must include, in relation to each of the CCGT Units within the CCGT Module, details of the various data set out in BC1.A.1.3 and BC1.A.1.5, which parameters The Company will utilise in instructing in accordance with this OC5 in issuing Bid-Offer Acceptances. The parameters shall reasonably reflect the true operating characteristics of each CCGT Unit.
- (c) The test referred to in OC5.5.1.1 will be initiated by the issue of instructions, which may be accompanied by a **Bid-Offer Acceptance**, under **BC2** (in accordance with the **Export and Import Limits** and **Dynamic Parameters** which have been submitted for the day on which the test was called, or in the case of a **CCGT Unit**, in accordance with the parameters submitted under OC5.5.1.3(b)). The instructions in respect of a **CCGT Unit** within a **CCGT Module** will be in respect of the **CCGT Unit**, as provided in BC2.

OC5.5.2 User Request For Testing

- OC5.5.2.1 Where a **GB Code User** undertakes a test to demonstrate compliance with the **Grid Code** and **Bilateral Agreement** in accordance with CP.6 or CP.7 or CP.8 (other than a failure between **The Company** and a **GB Code User** to agree in CP.8.1 where OC5.5.1.1 applies) the **GB Code User** shall request permission to test using the process laid out in OC7.5.
- OC5.5.2.2 Where an **EU Code User** undertakes a test to demonstrate compliance with the **Grid Code** and **Bilateral Agreement** in accordance with ECP.6.1, ECP.6.2, ECP.6.3 or ECP.7 or ECP.8 (other than a failure between **The Company** and a **EU Code User** to agree in ECP.8.1 where OC5.5.1.1 applies) the **EU Code User** shall request permission to test using the process laid out in OC7.5.

OC5.5.3 Conduct Of Test

- OC5.5.3.1 The performance of the **BM Unit** will be recorded at **Transmission Control Centres** notified by **The Company** with monitoring at site when necessary, from voltage and current signals provided by the **User** for each **BM Unit** under CC.6.6.1 or ECC.6.6.1 as applicable.
- OC5.5.3.2 If monitoring at site is undertaken, the performance of the BM Unit will be recorded on a suitable recorder (with measurements, in the case of a Synchronous Generating Unit (which could be part of a Synchronous Power Generating Module), taken on the Generating Unit Stator Terminals / on the LV side of the generator transformer) or in the case of a Non-Synchronous Generating Unit (excluding Power Park Units), Power Generating Module, Power Park Module or HVDC Equipment or DC Converter at the point of connection (including where the OTSUA is operational prior to the OTSUA Transfer Time, the Transmission Interface Point) in the relevant User's Control Room, in the presence of a reasonable number of representatives appointed and authorised by The Company. If The Company or the User requests, monitoring at site will include measurement of the parameters set out in OC5.A.1.2 or OC5.A.1.3 or ECP.A4.2 or ECP.A.4.3 as appropriate.
- OC5.5.3.3 The **User** is responsible for carrying out the test and retains the responsibility for the safety of personnel and plant during the test.

OC5.5.4 Test And Monitoring Assessment

The criteria must be read in conjunction with the full text under the Grid Code reference. The BM Unit, Power Generating Module, CCGT Module, Power Park Module or Generating Unit (excluding Power Park Units), HVDC Equipment and DC Converters and OTSUA will pass the test the criteria below are met:

Parameter to be Tested		Criteria against which the test results will be assessed by The Company.	
	Harmonic Content	CC.6.1.5(a) or ECC.6.1.5(a) Measured harmonic emissions do not exceed the limits specified in the Bilateral Agreement or where no such limits are specified, the relevant planning level specified in Engineering Recommendation G5 .	
Voltage Quality	Phase Unbalance	CC.6.1.5(b) or ECC.6.1.5(b), The measured maximum Phase (Voltage) Unbalance on the National Electricity Transmission System should remain, in England and Wales, below 1% and, in Scotland, below 2% and Offshore will be defined in relevant Bilateral Agreement.	
		CC.6.1.6 or ECC.6.1.6 In England and Wales, measured infrequent short duration peaks in Phase (Voltage) Unbalance should not exceed the maximum value stated in the Bilateral Agreement .	
	Rapid Voltage Change	CC.6.1.7(a) or ECC.6.1.7(a) The measured Rapid Voltage Change at the Point of Common Coupling shall not exceed the Planning Levels specified in CC.6.1.7(a) or ECC 6.1.7.(i)	
	Flicker Severity	CC.6.1.7(j) or ECC.6.1.7(j) The measured Flicker Severity at the Point of Common Coupling shall not exceed the limits specified in the table of CC.6.1.7(j) or ECC 6.1.7(j).	
	Voltage Fluctuation	CC.6.1.8 or ECC.6.1.8 Offshore , measured voltage fluctuations at the Point of Common Coupling shall not exceed the limits set out in the Bilateral Agreement .	
Fault Clearance	Fault Clearance Times	CC.6.2.2.2(a), CC.6.2.3.1.1(a), ECC.6.2.2.2(a), ECC.6.2.3.1.1(a), Bilateral Agreement	
	Back Up Protection	CC.6.2.2.2(b), CC.6.2.3.1.1(b), ECC.6.2.2.2(a), ECC.6.2.3.1.1(a), Bilateral Agreement	
	Circuit Breaker Fail Protection	CC.6.2.2.2(c), CC.6.2.3.1.1(c), ECC.6.2.2.2(c), ECC.6.2.3.1.1(c)	

<u> </u>	Parameter to be Tested	Criteria against which the test results will be assessed by The Company.
	Reactive Capability	CC.6.3.2 or ECC.6.3.2 (and in the case of CC.6.3.2(e)(iii) and ECC.6.3.2.5 and ECC.6.3.2.6, the Bilateral Agreement), CC.6.3.4 or ECC.6.3.4, Ancillary Services Agreement .
		For a test initiated under OC.5.5.1.1 the Power Generating Module, Generating Unit, HVDC Equipment, DC Converter or Power Park Module or (prior to the OTSUA Transfer Time) OTSUA will pass the test if it is within ±5% of the reactive capability registered with The Company under OC2. the duration of the test will be for a period of upto 60 minutes during which period the system voltage at the Grid Entry Point for the relevant Power Generating Module, Generating Unit, HVDC Equipment, DC Converter or Power Park Module or Interface Point in the case of OTSUA will be maintained by the Generator or or HVDC System Owner, DC Converter Station owner at the voltage specified pursuant to BC2.8 by adjustment of Reactive Power on the remaining Power Generating Module, Generating Unit, HVDC Equipment, DC Converter or Power Park Modules or OTSUA, if necessary. Any test performed in respect of an Embedded Medium Power Station not subject to a Bilateral Agreement or, an Embedded DC Converter Station or Embedded HVDC System not subject to a Bilateral Agreement shall be as confirmed pursuant to OC5.8.3. Measurements of the Reactive Power output under steady state conditions should be consistent with Grid Code requirements i.e. fully available within the voltage
		range ±5% at 400kV, 275kV and 132kV and lower voltages.
rol	Primary Secondary and High Frequency Response	Ancillary Services Agreement , CC.6.3.7 and where applicable CC.A.3 or ECC.6.3.7 and where applicable ECC.A.3.
Governor / Frequency Control		For a test initiated under OC.5.5.1.1 the measured response in MW/Hz is within ±5% of the level of response specified in the Ancillary Services Agreement for that Genset .
or / Fr	Stability with Voltage	CC.6.3.4 or ECC.6.3.4
Govern	Governor / Load / Frequency Controller System Compliance	CC.6.3.6(a), CC.6.3.7, CC.6.3.9, CC8.1, where applicable CC.A.3, BC3.5, BC3.6, BC3.7 or ECC.6.3.6, ECC.6.3.7, ECC.6.3.9, ECC8.1, where applicable ECC.A.3, BC3.5, BC3.6, BC3.7

Parameter to be Tested		Criteria against which the test results will be assessed by The Company.	
	Output at Reduced System Frequency	CC.6.3.3 or ECC.6.3.3 - For variations in System Frequency exceeding 0.1Hz within a period of less than 10 seconds, the Active Power output is within ±0.2% of the requirements of CC.6.3.3 or ECC.6.3.3 when monitored at prevailing external air temperatures of up to 25°C., BC3.5.1	
	Fast Start	Ancillary Services Agreement requirements	
	Black Start	OC5.7	
	Excitation/Voltage Control System	CC.6.3.6(b), CC.6.3.8, CC.A.6 or CC.A.7 as applicable, BC2.11.2, and the Bilateral Agreement or ECC.6.3.6, ECC.6.3.8, ECC.A.6 or ECC.A.7 or ECC.A.8 as applicable	
	Fault Ride Through and Fast Fault Current Injection	CC.6.3.15, CC.A.4.A or CC.A.4.B as applicable or ECC.6.3.15, ECC.6.3.16, ECC.A.4. or ECC.A.4EC as applicable	
	Export and Import Limits, and Dynamic Parameters	BC2 The Export and Import Limits Dynamic Parameters under test are within 2½% of the declared value being tested.	
	Synchronisation time	BC2.5.2.3	
		Synchronisation takes place within ±5 minutes of the time it should have achieved Synchronisation .	
eters	Run-up rates	BC2	
Dynamic Parameters		Achieves the instructed output and, where applicable, the first and/or second intermediate breakpoints, each within ±3 minutes of the time it should have reached such output and breakpoints from Synchronisation (or break point, as the case may be), calculated from the run-up rates in its Dynamic Parameters .	
	Run-down rates	BC2	
		Achieves the instructed output and, where applicable, the first and/or second intermediate breakpoints, each within ±5 minutes of the time it should have reached such output and breakpoints from Synchronisation (or break point, as the case may be), calculated from the run-up rates in its Dynamic Parameters .	

Parameter to be Tested	Criteria against which the test results will be assessed by The Company.
Demand Response	DRSC.11.7 Non-Embedded Customers and BM Participants who are also Demand Response Providers shall execute a demand modification test when requested as per DRSC.11.7 to ensure the requirements of the Ancillary Services agreement and Demand Response Services Code are satisfied.

- OC5.5.4.1 The duration of the **Dynamic Parameter** tests in the above table will be consistent with and sufficient to measure the relevant expected input or output derived from the **Final Physical Notification Data** and **Bid-Offer Acceptances** issued under **BC2** which are still in dispute following the procedure in OC5.4.2.
- OC5.5.4.2 Due account will be taken of any conditions on the **System** which may affect the results of the test. The relevant **User** must, if requested, demonstrate, to **The Company's** reasonable satisfaction, the reliability of the suitable recorders, disclosing calibration records to the extent appropriate.
- OC5.5.5 Test Failure / Re-test
- OC5.5.5.1 If the BM Unit, Power Generating Module, CCGT Modules, Power Park Module, OTSUA, or Generating Unit (excluding Power Park Units), HVDC Equipment or DC Converter Station concerned fails to pass the test instructed by The Company under OC5.5.1.1 the User must provide The Company with a written report specifying in reasonable detail the reasons for any failure of the test so far as they are then known to the User after due and careful enquiry. This must be provided within five Business Days of the test.
- OC5.5.5.2 If in **The Company's** reasonable opinion the failure to pass the test relates to compliance with the **CC** or **ECC** as applicable then **The Company** may invoke the process detailed in CP.8.2 to CP.9, or ECP.8.2 to ECP.9
- OC5.5.5.3 If a dispute arises relating to the failure, **The Company** and the relevant **User** shall seek to resolve the dispute by discussion, and, if they fail to reach agreement, the **User** may by notice require **The Company** to carry out a re-test on 48 hours' notice which shall be carried out following the procedure set out in OC5.5.3 and OC5.5.4 and subject as provided in OC5.5.1.3, as if **The Company** had issued an instruction at the time of notice from the **User**.
- OC5.5.6 <u>Dispute Following Re-Test</u>

If the BM Unit, Power Generating Module, CCGT Module, Power Park Module, OTSUA, or Generating Unit (excluding Power Park Units), HVDC Equipment or DC Converter in The Company's view fails to pass the re-test and a dispute arises on that re-test, either party may use the Disputes Resolution Procedure for a ruling in relation to the dispute, which ruling shall be binding.

OC5.6 <u>DISPUTE RESOLUTION</u>

- OC5.6.1 If following the procedure set out in OC5.5 it is accepted that the BM Unit, Power Generating Module, CCGT Module, Power Park Module, OTSUA (prior to the OTSUA Transfer Time) or Generating Unit (excluding Power Park Units)), HVDC Equipment or DC Converter has failed the test or re-test (as applicable), the User shall within 14 days, or such longer period as The Company may reasonably agree, following such failure, submit in writing to The Company for approval the date and time by which the User shall have brought the BM Unit concerned to a condition where it complies with the relevant requirement. The Company will not unreasonably withhold or delay its approval of the User's proposed date and time submitted. Should The Company not approve the User's proposed date or time (or any revised proposal), the User should amend such proposal having regard to any comments The Company may have made and re-submit it for approval.
- OC5.6.2 If a BM Unit fails the test, the User shall submit revised Export and Import Limits and/or Dynamic Parameters, or in the case of a BM Unit comprising a Generating Unit, Power Generating Module, CCGT Module, HVDC Equipment, DC Converter, OTSUA (prior to the OTSUA Transfer Time) or Power Park Module, the User may amend, with The Company's approval, the relevant registered parameters of that Generating Unit, Power Generating Module, CCGT Module, HVDC Equipment, DC Converter, OTSUA (prior to the OTSUA Transfer Time) or Power Park Module, as the case may be, relating to the criteria, for the period of time until the BM Unit can achieve the parameters previously registered, as demonstrated in a re-test.
- Occ.6.3 Once the User has indicated to The Company the date and time that the BM Unit, Power Generating Module, CCGT Module, Power Park Module, Generating Unit (excluding Power Park Units) or OTSUA (prior to the OTSUA Transfer Time), HVDC Equipment or DC Converter Station can achieve the parameters previously registered or submitted, The Company shall either accept this information or require the User to demonstrate the restoration of the capability by means of a repetition of the test referred to in OC5.5.3 by an instruction requiring the User on 48 hours notice to carry out such a test. The provisions of this OC5.6 will apply to such further test.

OC5.7 BLACK START TESTING

OC5.7.1 General

- (a) The Company shall require a Black Start Service Provider to carry out a Black Start Test in order to demonstrate that a Black Start Station or Black Start HVDC System has a Black Start Capability.
 - (i) In the case of a **Generator**, **The Company** shall require a **Generator** with a **Black Start Station** to carry out a test (either a "**Black Start Unit Test**" or a **Black Start Station Test**") in order to demonstrate that a **Black Start Station** has a **Black Start Capability**.
 - (ii) In the case of an HVDC System Owner or DC Converter Station Owner, The Company shall require an HVDC System Owner or DC Converter Station Owner with a Black Start HVDC System to carry out a test (a "Black Start HVDC Test") on a HVDC System or DC Converter, in order to demonstrate that a Black Start HVDC System has a Black Start Capability.
 - (iii) In the case of an EU Generator, The Company may also require a Generator with a Black Start Station to carry out a test (a Quick Resynchronisation Unit Test) in order to demonstrate that a Black Start Station has a Quick Re-Synchronisation Capability.
- (b) Where **The Company** requires a **Black Start Service Provider** to undertake testing, the following requirements shall apply:-
 - (i) Where The Company requires a Generator with a Black Start Station to carry out a Black Start Unit Test, on each Genset, which has Black Start Capability, within such a Black Start Station, the Generator shall execute such a test at least once every three years. The Company shall not require the Black Start Test Unit to be carried out on more than one Genset at that Black Start Station at the same time, and would not, in the

absence of exceptional circumstances, expect any of the other **Gensets** at the **Black Start Station** to be directly affected by the **Black Start Unit Test**.

- (ii) The Company may occasionally require the Generator to carry out a Black Start Station Test at any time (but will not require a Black Start Station Test to be carried out more than once in every three calendar years in respect of any particular Genset unless it can justify on reasonable grounds the necessity for further tests or unless the further test is a re-test). If successful, this Black Start Station Test shall count as a successful Black Start Unit Test for the Genset used in the test.
- (iii) The Company may require the HVDC System Owner or DC Converter Station Owner to carry out a Black Start HVDC Test at any time (but will not require such a test to be carried out more than once in every three calendar years unless it can justify on reasonable grounds the necessity for further tests or unless the further test is a re-test).
- (iv) The Company may occasionally require the EU Generator to carry out a Quick Re-Synchronisation Test at any time, but will generally only be required where the EU Generator has made a change to its Plant and Apparatus which has an impact on its Houseload Operation or after two unsuccessful tripping Events in the operational environment.

The above tests will be deemed a success where starting from **Shutdown** is achieved within a time frame specified by **The Company** and which may be agreed in the **Black Start Contract**.

- c) The Company may require a Generator to carry out a Black Start Unit Test at any time (but will not require a Black Start Unit Test to be carried out more than once in each calendar year in respect of any particular Genset unless it can justify on reasonable grounds the necessity for further tests or unless the further test is a re-test).
- (d) When **The Company** wishes a **Black Start Service Provider** to carry out a **Black Start Test**, it shall notify the relevant **Black Start Service Provider** at least 7 days prior to the time of the **Black Start Test** with details of the proposed **Black Start Test**.

OC5.7.2 Procedure for a Black Start Test

The following procedure will, so far as practicable, be carried out in the following sequence for **Black Start Tests**:

OC5.7.2.1 Black Start Unit Tests

- (a) The relevant Generating Unit shall be Synchronised and Loaded;
- (b) All the Auxiliary Gas Turbines and/or Auxiliary Diesel Engines in the Black Start Station in which that Generating Unit is situated, shall be Shutdown.
- (c) The **Generating Unit** shall be **De-Loaded** and **De-Synchronised** and all alternating current electrical supplies to its **Auxiliaries** shall be disconnected.
- (d) The Auxiliary Gas Turbine(s) or Auxiliary Diesel Engine(s) to the relevant Generating Unit shall be started, and shall re-energise the Unit Board of the relevant Generating Unit.

- (e) The Auxiliaries of the relevant Generating Unit shall be fed by the Auxiliary Gas Turbine(s) or Auxiliary Diesel Engine(s), via the Unit Board, to enable the relevant Generating Unit to return to Synchronous Speed.
- (f) The relevant Generating Unit shall be Synchronised to the System but not Loaded, unless the appropriate instruction has been given by The Company under BC2 which would also be in accordance with the requirements of the Black Start Contract.
- (g) In respect of **EU Generators**, the above tests defined in OC5.7.2.1(a) (e) shall be in accordance with the requirements of ECC.6.3.5.3.

OC5.7.2.2 Black Start Station Test

- (a) All **Generating Units** at the **Black Start Station**, other than the **Generating Unit** on which the **Black Start Test** is to be carried out, and all the **Auxiliary Gas Turbines** and/or **Auxiliary Diesel Engines** at the **Black Start Station**, shall be **Shutdown**.
- (b) The relevant **Generating Unit** shall be **Synchronised** and **Loaded**.
- (c) The relevant Generating Unit shall be De-Loaded and De-Synchronised.
- (d) All external alternating current electrical supplies to the Unit Board of the relevant Generating Unit, and to the Station Board of the relevant Black Start Station, shall be disconnected.
- (e) An Auxiliary Gas Turbine or Auxiliary Diesel Engine at the Black Start Station shall be started, and shall re-energise either directly, or via the Station Board, the Unit Board of the relevant Generating Unit.
- (f) The provisions of OC5.7.2.1 (e) and (f) shall thereafter be followed.
- (g) In respect of **EU Generators**, the above tests defined in OC5.7.2.2(a) (e) shall be in accordance with the requirements of ECC.6.3.5.3.

OC5.7.2.3 Procedure for a Black Start HVDC Test

- a) The HVDC System or DC Converter Station shall demonstrate its technical capability to energise the busbar of the de-energised AC substation to which it is connected, within the GB Synchronous Area within a timeframe specified by The Company. In the case of HVDC Systems this shall be in accordance with the requirements of ECC.6.3.5.4. As part of this test, all Auxiliaries are required to be derived from within the HVDC System or DC Converter Station.
- b) The test shall be carried out while the **HVDC System** or **DC Converter Station** starts from **Shutdown**;
- c) The test shall be deemed passed, provided that the following conditions are cumulatively fulfilled:
 - i) The HVDC System Owner has demonstrated its HVDC System or DC Converter Station is able to energise the busbar of the isolated AC-substation to which it is connected within the GB Synchronous Area
 - ii) The HVDC System or DC Converter Station can achieve a stable operating point at an agreed capacity as agreed with The CompanyThe relevant HVDC System or DC Converter Station can be connected to the System but not Loaded, unless appropriate instructions are given by The Company under BC2 which would also be in accordance with the requirements of the Black Start Contract.
 - iii) In respect of **HVDC Systems** and **Remote End HVDC Converter Stations**, the above tests defined in OC5.7.2.3(a) (c) shall be in accordance with the requirements of, ECC.6.1.2, ECC.6.1.4, ECC.6.2.2.9.4 and ECC.6.3.5.4.
 - iv) In respect of **DC Converter Stations**, the above tests defined in OC5.7.2.3(a) (c) shall be in accordance with the requirements of, CC.6.1.2, CC.6.1.3 and CC.6.1.4.

- OC5.7.2.4 All **Black Start Tests** shall be carried out at the time specified by **The Company** in the notice given under OC5.7.1 and shall be undertaken in the presence of a reasonable number of representatives appointed and authorised by **The Company**, who shall be given access to all information relevant to the **Black Start Test**.
- OC5.7.2.5 Failure of a Black Start Test

A Black Start Station or Black Start HVDC System shall fail a Black Start Test if the Black Start Test shows that it does not have a Black Start Capability (ie. if the relevant Generating Unit or HVDC System or DC Converter fails to be Synchronised to the System within two hours of the Auxiliary Gas Turbine(s) or Auxiliary Diesel Engine(s) being required to start unless this is part of a Local Joint Restoration Plan where the times will be adjusted accordingly).

- OC5.7.2.6 If a Black Start Station or Black Start HVDC System fails to pass a Black Start Test the Black Start Service Provider must provide The Company with a written report specifying in reasonable detail the reasons for any failure of the test so far as they are then known to the Black Start Service Provider after due and careful enquiry. This must be provided within five Business Days of the test. If a dispute arises relating to the failure, The Company and the relevant Black Start Service Providershall seek to resolve the dispute by discussion, and if they fail to reach agreement, the Black Start Service Provider may require The Company to carry out a further Black Start Test on 48 hours notice which shall be carried out following the procedure set out in OC5.7.2.1 or OC5.7.2.2 or OC5.7.2.3 as the case may be, as if The Company had issued an instruction at the time of notice from the Black Start Service Provider.
- OC5.7.2.7 If the **Black Start Station** or **Black Start HVDC System** concerned fails to pass the re-test and a dispute arises on that re-test, either party may use the **Disputes Resolution Procedure** for a ruling in relation to the dispute, which ruling shall be binding.
- OC5.7.2.8 If following the procedure in OC5.7.2.6 and OC5.7.2.7 it is accepted that the Black Start Station or Black Start HVDC System has failed the Black Start Test (or a re-test carried out under OC5.7.2.5), within 14 days, or such longer period as The Company may reasonably agree, following such failure, the relevant Black Start Service Provider shall submit to The Company in writing for approval, the date and time by which that Black Start Service Providershall have brought that Black Start Station or Black Start HVDC System to a condition where it has a Black Start Capability and would pass the Black Start Test, and The Company will not unreasonably withhold or delay its approval of the Black Start Service Provider's proposed date and time submitted. Should The Company not approve the Black Start Service Provider's proposed date and time (or any revised proposal) the Black Start Service Providershall revise such proposal having regard to any comments The Company may have made and resubmit it for approval.
- OC5.7.2.9 Once the Black Start Service Provider has indicated to The Company that the PowerStation or HVDC System or DC Converter Station has a Black Start Capability, The Company shall either accept this information or require the Black Start Service Provider to demonstrate that the relevant Black Start Station or Black Start HVDC System has its Black Start Capability restored, by means of a repetition of the Black Start Test referred to in OC5.7.1(d) following the same procedure as for the initial Black Start Test. The provisions of this OC5.7.2 will apply to such test.
- OC5.7.4 Quick Re-synchronisation UnitTest
 - (a) The relevant **Generating Unit** shall be **Synchronised** and **Loaded**;
 - (b) All the **Auxiliary Gas Turbines** and/or **Auxiliary Diesel Engines** in the **Black Start Station** in which that **Generating Unit** is situated, shall be **Shutdown**.
 - (c) The **Generating Unit** shall tripped to house load.
 - (d) The relevant Generating Unit shall be Synchronised to the System but not Loaded, unless the appropriate instruction has been given by The Company

under **BC2** which would also be in accordance with the requirements of the **Black Start Contract**.

In respect of **EU Generators**, the above tests defined in OC5.7.2.3(a) - (e) shall be in accordance with the requirements of ECC.6.3.5.6.

OC5.8 PROCEDURES APPLYING TO EMBEDDED MEDIUM POWER STATIONS NOT SUBJECT
TO A BILATERAL AGREEMENT AND EMBEDDED DC CONVERTER STATIONS NOT
SUBJECT TO A BILATERAL AGREEMENT

OC5.8.1 Compliance Statement

Each **Network Operator** shall ensure that each **Embedded Person** provides to the **Network Operator** upon **The Company's** request:

- (a) written confirmation that each such Power Generating Module, Generating Unit, Power Park Module, HVDC Equipment, or DC Converter complies with the requirements of the CC; and
- (b) evidence, where requested, reasonably satisfactory to The Company, of such compliance. Such a request shall not normally be made by The Company more than twice in any calendar year in respect of any Generator's Power Generating Module, Generating Unit or Power Park Module or HVDC System Owner's HVDC System, or DC Converter owner's DC Converter.

The **Network Operator** shall provide the evidence or written confirmation required under OC5.8.1 (a) and (b) forthwith upon receipt to **The Company**.

OC5.8.2 Network Operator's Obligations To Facilitate Tests

If:

- (a) the **Network Operator** fails to procure the confirmation referred to at OC5.8.1(a); or
- (b) the evidence of compliance is not to **The Company's** reasonable satisfaction,

then, **The Company** shall be entitled to require the **Network Operator** to procure access upon terms reasonably satisfactory to **The Company** to enable **The Company** to witness the **Embedded Person** carrying out the tests referred to in OC5.8.3 in respect of the relevant **Embedded Medium Power Station** or **Embedded DC Converter Station** or **Embedded HVDC System**.

OC5.8.3 Testing Of Embedded Medium Power Stations Not Subject To A Bilateral Agreement Or Embedded DC Converter Stations Not Subject To A Bilateral Agreement or Embedded HVDC Equipment Not Subject To A Bilateral Agreement

The Company may, in accordance with the provisions of OC5.8.2, at any time (although not normally more than twice in any calendar year in respect of any particular Embedded Medium Power Station not subject to a Bilateral Agreement or Embedded DC Converter Station or Embedded HVDC Equipment not subject to a Bilateral Agreement) issue an instruction requiring the Network Operator within whose System the relevant Medium Power Station not subject to a Bilateral Agreement or DC Converter Station or HVDC Equipment not subject to a Bilateral Agreement is Embedded, to require the Embedded Person to carry out a test.

Such test shall be carried out at a time no sooner than 48 hours from the time that the instruction was issued, on any one or more of the **Generating Units**, **Power Generating Module**, **Power Park Module** or **DC Converter** or **HVDC Equipment** comprising part of the relevant **Embedded Medium Power Station** or **Embedded DC Converter Station** or **HVDC System** and should only be to demonstrate that:

(a) the relevant Generating Unit, Power Generating Module, Power Park Module or DC Converter or HVDC Equipment meets the requirements of the paragraphs in the CC or ECC which are applicable to such Generating Units, Power Generating Modules, Power Park Module or DC Converter or HVDC Equipment;

(b) the **Reactive Power** capability registered with **The Company** under **OC2** meets the requirements set out in CC.6.3.2 or ECC.6.3.2 as applicable.

The instruction may only be issued where, following consultation with the relevant **Network Operator**, **The Company** has:

- (a) confirmed to the relevant **Network Operator** the manner in which the test will be conducted, which shall be consistent with the principles established in OC5.5.3; and
- (b) received confirmation from the relevant Network Operator that the relevant Generating Unit, Power Generating Module, Power Park Module or DC Converter or HVDC Equipment would not then be unavailable by reason of forced outage or Planned Outage expected prior to the instruction.

The relevant **Network Operator** is responsible for ensuring the performance of any test so required by **The Company** and the **Network Operator** shall ensure that the **Embedded Person** retains the responsibility for ensuring the safety of personnel and plant during the test.

OC5.8.4 Test Failures/Re-Tests And Disputes

The relevant **Network Operator** shall:

- (a) ensure that provisions equivalent to OC5.5.5, OC5.5.6 and OC5.6 apply to Embedded Medium Power Stations not the subject of a Bilateral Agreement, Embedded DC Converter Stations not the subject of a Bilateral Agreement or Embedded HVDC Equipment not the subject of a Bilateral Agreement within its System in respect of test failures, re-tests and disputes as to test failures and re-tests;
- (b) ensure that the provisions equivalent to OC5.5.5, OC5.5.6 and OC5.6 referred to in OC5.8.4(a) are effective so that **The Company** may require, if it so wishes, the provision to it of any reports or other information equivalent to those or that to which **The Company** would be entitled in relation to test failures, re-tests and disputes as to test failures and re-tests under the provisions of OC5.5.5, OC5.5.6 and OC5.6; and
- (c) the provisions equivalent to OC5.5.5, OC5.5.6 and OC5.6 referred to in OC5.8.4(a) are effective to permit The Company to conduct itself and take decisions in such a manner in relation to test failures, re-tests and disputes as to test failures and re-tests in respect of Embedded Medium Power Stations not the subject of a Bilateral Agreement, Embedded DC Converter Stations not the subject of a Bilateral Agreement or Embedded HVDC Equipment not the subject of a Bilateral Agreement as it is able to conduct itself and take decisions in relation to test failures, re-tests and disputes as to test failures and re-tests under OC5.5.5, OC5.5.6 and OC5.6.

APPENDIX 1 - ONSITE SIGNAL PROVISION FOR WITNESSING TESTS

OC5.A.1.1 During tests witnessed on-site by **The Company**, the following signals shall be provided to **The Company** by the **GB Generator**, GB **Generator** undertaking **OTSDUW or DC Converter Station** owner in accordance with CC.6.6.2:

OC5.A.1.2 Synchronous Generating Units

- (a) All Tests
- MW Active Power at Generating Unit terminals
- (b) Reactive & Excitation System
- MVAr Reactive Power at Generating Unit terminals
- Vt Generating Unit terminal voltage
- Efd- Generating Unit field voltage and/or main exciter field voltage
- Ifd **Generating Unit** field current (where possible)
- Power System Stabiliser output, where applicable.
- Noise Injected noise signal (where applicable and possible)
- (c) Governor System & Frequency Response
- Fsys System Frequency
- Finj Injected Speed Reference
- Logic Stop / Start Logic Signal

For Gas Turbines:

- GT Fuel Demand
- GT Fuel Valve Position
- GT Inlet Guide Vane Position
- GT Exhaust Gas Temperature

For Steam Turbines at >= 1Hz:

- Pressure before Turbine Governor Valves
- Turbine Governor Valve Positions
- Governor Oil Pressure*
- Boiler Pressure Set Point *
- Superheater Outlet Pressure *
- Pressure after Turbine Governor Valves*
- Boiler Firing Demand*

*Where applicable (typically not in CCGT module)

For Hydro Plant:

- Speed Governor Demand Signal
- Actuator Output Signal
- Guide Vane / Needle Valve Position

- (d) Compliance with CC.6.3.3
- Fsys System Frequency
- Finj Injected Speed Reference
- Appropriate control system parameters as agreed with The Company (See OC5.A.2.9)

OC5.A.1.3 Power Park Modules, OTSUA and DC Converters

Each Power Park Module and DC Converters at Grid Entry Point or User System Entry Point

- (a) Real Time on site.
- Total Active Power (MW)
- Total Reactive Power (MVAr)
- Line-line Voltage (kV)
- System Frequency (Hz)
- (b) Real Time on site or Downloadable
- Injected frequency signal (Hz) or test logic signal (Boolean) when appropriate
- Injected voltage signal (per unit voltage) or test logic signal (Boolean) when appropriate
- In the case of an Onshore Power Park Module the Onshore Power Park Module site voltage (MV) (kV)
- Power System Stabiliser output, where appropriate
- In the case of a Power Park Module or DC Converter where the Reactive Power is provided by from more than one Reactive Power source, the individual Reactive Power contributions from each source, as agreed with The Company.
- In the case of **DC Converters** appropriate control system parameters as agreed with **The Company** (See OC5.A.4)
- In the case of an Offshore Power Park Module the Total Active Power (MW) and the Total Reactive Power (MVAr) at the Offshore Grid Entry Point
- (c) Real Time on site or Downloadable
- Available power for Power Park Module (MW)
- Power source speed for Power Park Module (e.g. wind speed) (m/s) when appropriate
- Power source direction for Power Park Module (degrees) when appropriate

See OC5.A.1.3.1

- OC5.A.1.3.1 **The Company** accept that the signals specified in OC5.A.1.3(c) may have lower effective sample rates than those required in CC.6.6.2 although any signals supplied for connection to **The Company's** recording equipment which do not meet at least the sample rates detailed in CC.6.6.2 should have the actual sample rates indicated to **The Company** before testing commences.
- OC5.A.1.3.2 For all **The Company** witnessed testing either;

- (i) the Generator or DC Converter Station owner shall provide to The Company all signals outlined in OC5.A.1.3 direct from the Power Park Module control system without any attenuation, delay or filtering which would result in the inability to fully demonstrate the objectives of the test, or identify any potential safety or plant instability issues, and with a signal update rate corresponding to CC.6.6.2.1; or
- (ii) in the case of **Onshore Power Park Modules** the **Generator** or **DC Converter Station** owner shall provide signals OC5.A.1.3(a) direct from one or more transducer(s) connected to current and voltage transformers for monitoring in real time on site; or,
- (iii) In the case of **Offshore Power Park Modules** and **OTSUA** signals OC5.A.1.3(a) will be provided at the **Interface Point** by the **Offshore Transmission Licensee** pursuant to the STC or by the **Generator** when **OTSDUW Arrangements** apply.
- OC5.A.1.3.3 Options OC5.A.1.3.2 (ii) and (iii) will only be available on condition that;
 - (a) all signals outlined in OC5.A.1.3 are recorded and made available to The Company by the Generator or DC Converter Station owner from the Power Park Module or OTSUA or DC Converter control systems as a download once the testing has been completed; and
 - (b) the full test results are provided by the Generator or DC Converter Station owner within 2 working days of the test date to The Company unless The Company agrees otherwise; and
 - (c) all data is provided with a sample rate in accordance with CC.6.6.2.2 unless **The Company** agrees otherwise; and
 - (d) in **The Company's** reasonable opinion the solution does not unreasonably add a significant delay between tests or impede the volume of testing which can take place on the day.
- OC5.A.1.3.4 In the case of where transducers connected to current and voltage transformers are installed (OC5.A.1.3.3 (ii) and (iii)), the transducers shall meet the following specification
 - (a) The transducer(s) shall be permanently installed to easily allow safe testing at any point in the future, and to avoid a requirement for recalibration of the current transformers and voltage transformers.
 - (b) The transducer(s) should be directly connected to the metering quality current transformers and voltage transformers or similar.
 - (c) The transducers shall either have a response time no greater than 50ms to reach 90% of output, or no greater than 300ms to reach 99.5%.

APPENDIX 2 - COMPLIANCE TESTING OF SYNCHRONOUS PLANT

OC5.A.2.1 Scope

- OC5.A.2.1.1 This Appendix sets out the tests contained therein to demonstrate compliance with the relevant clauses of the **Connection Conditions** of the Grid Code and apply only to **GB Generators**. This Appendix shall be read in conjunction with the **CP** with regard to the submission of the reports to **The Company**. The testing requirements applicable to **EU Generators** are specified in ECP.A.5.
- OC5.A.2.1.2 The tests specified in this Appendix will normally be sufficient to demonstrate compliance however **The Company** may:
 - agree an alternative set of tests provided The Company deem the alternative set of tests sufficient to demonstrate compliance with the Grid Code and Bilateral Agreement; and/or
 - (ii) require additional or alternative tests if information supplied to The Company during the compliance process suggests that the tests in this Appendix will not fully demonstrate compliance with the relevant section of the Grid Code or Bilateral Agreement.
 - (iii) Agree a reduced set of tests for subsequent Generating Units following successful completion of the first Generating Unit tests in the case of a Power Station comprised of two or more Generating Units which The Company reasonably considers to be identical.

If:

- (a) the tests performed pursuant to OC5.A.2.1.2(iii) in respect of subsequent **Generating**Units do not replicate the full tests for the first **Generating Unit**, or
- (b) any of the tests performed pursuant to OC5.A.2.1.2(iii) do not fully demonstrate compliance with the relevant aspects of the **Grid Code**, **Ancillary Services Agreement** and / or **Bilateral Agreement**,

then notwithstanding the provisions above, the full testing requirements set out in this Appendix will be applied.

- OC5.A.2.1.3 The **Generator** is responsible for carrying out the tests set out in and in accordance with this Appendix and the **Generator** retains the responsibility for the safety of personnel and plant during the test. **The Company** will witness all of the tests outlined or agreed in relation to this Appendix unless **The Company** decides and notifies the **Generator** otherwise. Reactive Capability tests may be witnessed by **The Company** remotely from the **The Company** control centre. For all on site **The Company** witnessed tests the **Generator** should ensure suitable representatives from the **Generator** and manufacturer (if appropriate) are available on site for the entire testing period. In all cases the **Generator** shall provide suitable monitoring equipment to record all relevant test signals as outlined below in OC5.A.3.1.5.
- OC5.A.2.1.6 The **Generator** shall submit a schedule of tests to **The Company** in accordance with CP.4.3.1
- OC5.A.2.1.7 Prior to the testing of a **Generating Unit** the **Generator** shall complete the **Integral Equipment Test** procedure in accordance with OC.7.5
- OC5.A.2.1.8 Full **Generating Unit** testing as required by CP.7.2 is to be completed as defined in OC5.A.2.2 through to OC5.A.2.9
- OC5.A.2.2 Excitation System Open Circuit Step Response Tests
- OC5.A.2.2.1 The open circuit step response of the **Excitation System** will be tested by applying a voltage step change from 90% to 100% of the nominal **Generating Unit** terminal voltage, with the **Generating Unit** on open circuit and at rated speed.

- OC5.A.2.2.1 The test shall be carried out prior to synchronisation in accordance with CP.6.4. This is not witnessed by **The Company** unless specifically requested by **The Company**. Where **The Company** is not witnessing the tests, the **Generator** shall supply the recordings of the following signals to **The Company** in an electronic spreadsheet format:
 - Vt Generating Unit terminal voltage
 - Efd Generating Unit field voltage or main exciter field voltage
 - Ifd- Generating Unit field current (where possible)

Step injection signal

- OC5.A.2.2.3 Results shall be legible, identifiable by labelling, and shall have appropriate scaling.
- OC5.A.2.3 Open & Short Circuit Saturation Characteristics
- OC5.A.2.3.1 The test shall normally be carried out prior to synchronisation in accordance with CP.6.4. Manufacturer factory test results may be used where appropriate or manufacturers factory type test results may be used if agreed by **The Company**.
- OC5.A.2.3.2 This is not witnessed by **The Company**. Graphical and tabular representations of the results in an electronic spreadsheet format showing per unit open circuit terminal voltage and short circuit current versus per unit field current shall be submitted to **The Company**.
- OC5.A.2.3.3 Results shall be legible, identifiable by labelling, and shall have appropriate scaling.
- OC5.A.2.4 Excitation System On-Load Tests
- OC5.A.2.4.1 The time domain performance of the **Excitation System** shall be tested by application of voltage step changes corresponding to 1% and 2% of the nominal terminal voltage.
- OC5.A.2.4.2 Where a **Power System Stabiliser** is present:
 - (i) The PSS must only be commissioned in accordance with BC2.11.2. When a PSS is switched on for the first time as part of on-load commissioning or if parameters have been adjusted the Generator should consider reducing the PSS output gain by at least 50% and should consider reducing the limits on PSS output by at least a factor of 5 to prevent unexpected PSS action affecting the stability of the Generating Unit or the National Electricity Transmission System.
 - (ii) The time domain performance of the **Excitation System** shall be tested by application of voltage step changes corresponding to 1% and 2% of the nominal terminal voltage, repeating with and without the **PSS** in service.
 - (iii) The frequency domain tuning of the **PSS** shall also be demonstrated by injecting a 0.2Hz-3Hz band limited random noise signal into the **Automatic Voltage Regulator** reference with the **Generating Unit** operating at points specified by **The Company** (up to rated MVA output).
 - (iv) The **PSS** gain margin shall be tested by increasing the **PSS** gain gradually to threefold and observing the **Generating Unit** steady state **Active Power** output.
 - (v) The interaction of the PSS with changes in Active Power shall be tested by application of a +0.5Hz frequency injection to the governor while the Generating Unit is selected to Frequency Sensitive Mode.
 - (vi) If the **Generating Unit** is of the pump storage type then the step tests shall be carried out, with and without the **PSS**, in the pumping mode in addition to the generating mode.
 - (vii) Where the Bilateral Agreement requires that the PSS is in service at a specified loading level additional testing witnessed by The Company will be required during the commissioning process before the Generating Unit or CCGT Module may exceed this output level.
 - (viii) Where the **Excitation System** includes a **PSS**, the **Generator** shall provide a suitable noise source to facilitate noise injection testing.

OC5.A.2.4.3 The following typical procedure is provided to assist **Generators** in drawing up their own site specific procedures for the **The Company** witnessed **PSS** Tests.

Test	Injection	Notes
	Synchronous Generator running rated MW, unity pf, PSS Switched Off	
1	 Record steady state for 10 seconds Inject +1% step to AVR Voltage Reference and hold for at least 10 seconds until stabilised Remove step returning AVR Voltage Reference to nominal and hold for at least 10 seconds 	
2	 Record steady state for 10 seconds Inject +2% step to AVR Voltage Reference and hold for at least 10 seconds until stabilised Remove step returning AVR Voltage Reference to nominal and hold for at least 10 seconds 	
3	 Inject band limited (0.2-3Hz) random noise signal into voltage reference and measure frequency spectrum of Real Power. Remove noise injection. 	
	Switch On Power System Stabiliser	
4	 Record steady state for 10 seconds Inject +1% step to AVR Voltage Reference and hold for at least 10 seconds until stabilised Remove step returning AVR Voltage Reference to nominal and hold for at least 10 seconds 	
5	 Record steady state for 10 seconds Inject +2% step to AVR Voltage Reference and hold for at least 10 seconds until stabilised Remove step returning AVR Voltage Reference to nominal and hold for at least 10 seconds 	
6	 Increase PSS gain at 30 second intervals. i.e. x1 - x1.5 - x2 - x2.5 - x3 Return PSS gain to initial setting 	
7	 Inject band limited (0.2-3Hz) random noise signal into voltage reference and measure frequency spectrum of Real Power. Remove noise injection. 	

Select the governor to FSM
 Inject +0.5 Hz step into governor.
 Hold until generator MW output is stabilised
 Remove step

OC5.A.2.5 Under-excitation Limiter Performance Test

- OC5.A.2.5.1 Initially the performance of the **Under-excitation Limiter** should be checked by moving the limit line close to the operating point of the **Generating Unit** when operating close to unity power factor. The operating point of the **Generating Unit** is then stepped into the limit by applying a 2% decrease in **Automatic Voltage Regulator** reference voltage.
- OC5.A.2.5.2 The final performance of the **Under-excitation Limiter** shall be demonstrated by testing its response to a step change corresponding to a 2% decrease in **Automatic Voltage Regulator** reference voltage when the **Generating Unit** is operating just off the limit line, at the designed setting as indicated on the **Performance Chart** submitted to **The Company** under OC2.
- OC5.A.2.5.3 Where possible the **Under-excitation Limiter** should also be tested by operating the tap-changer when the **Generating Unit** is operating just off the limit line, as set up.
- OC5.A.2.5.4 The **Under-excitation Limiter** will normally be tested at low **Active Power** output and at maximum **Active Power** output (**Registered Capacity**).
- OC5.A.2.5.5 The following typical procedure is provided to assist **Generators** in drawing up their own site specific procedures for the **The Company** witnessed **Under-excitation Limiter** Tests.

Test	Injection	Notes
	Synchronous generator running rated MW at unity power factor. Under-excitation limit temporarily moved close to the operating point of the generator.	
1	 PSS on. Inject -2% voltage step into AVR voltage reference and hold at least for 10 seconds until stabilised 	
	 Remove step returning AVR Voltage Reference to nominal and hold for at least 10 seconds 	
	Under-excitation limit moved to normal position. Synchronous generator running at rated MW and at leading MVArs close to Under-excitation limit.	
2	 PSS on. Inject -2% voltage step into AVR voltage reference and hold at least for 10 seconds until stabilised Remove step returning AVR Voltage Reference to nominal and hold for at least 10 seconds 	

- OC5.A.2.6 <u>Over-excitation Limiter Performance Test</u>
 - Description & Purpose of Test
- OC5.A.2.6.1 The performance of the **Over-excitation Limiter**, where it exists, shall be demonstrated by testing its response to a step increase in the **Automatic Voltage Regulator** reference voltage that results in operation of the **Over-excitation Limiter**. Prior to application of the step the **Generating Unit** shall be generating **Rated Active Power** and operating within its continuous **Reactive Power** capability. The size of the step will be determined by the minimum value necessary to operate the **Over-excitation Limiter** and will be agreed by **The Company** and the **Generator**. The resulting operation beyond the **Over-excitation Limit** shall be controlled by the **Over-excitation Limiter** without the operation of any protection that could trip the **Generating Unit**. The step shall be removed immediately on completion of the test.
- OC5.A.2.6.2 If the **Over-excitation Limiter** has multiple levels to account for heating effects, an explanation of this functionality will be necessary and if appropriate, a description of how this can be tested.
- OC5.A.2.6.3 The following typical procedure is provided to assist **Generators** in drawing up their own site specific procedures for the **The Company** witnessed **Under-excitation Limiter** Tests.

Test	Injection	Notes
	Synchronous Generator running rated MW and maximum lagging MVAr.	
	Over-excitation Limit temporarily set close to this operating point. PSS on.	
1	 Inject positive voltage step into AVR voltage reference and hold 	
	 Wait till Over-excitation Limiter operates after sufficient time delay to bring back the excitation back to the limit. 	
	 Remove step returning AVR Voltage Reference to nominal. 	
	Over-excitation Limit restored to its normal operating value. PSS on.	

- OC5.A.2.7 Reactive Capability
- OC5.A.2.7.1 The leading and lagging **Reactive Power** capability on each **Generating Unit** will normally be demonstrated by operation of the **Generating Unit** at 0.85 power factor lagging for 1 hour and 0.95 power factor leading for 1 hour.
- OC5.A.2.7.2 In the case of an **Embedded Generating Unit** where distribution network considerations restrict the **Generating Unit Reactive Power** Output then the maximum leading and lagging capability will be demonstrated without breaching the host network operators limits.
- OC5.A.2.7.3 The test procedure, time and date will be agreed with **The Company** and will be to the instruction of **The Company** control centre and shall be monitored and recorded at both the **The Company** control centre and by the **Generator**.
- OC5.A.2.7.4 Where the **Generator** is recording the voltage and **Reactive Power** at the **Generating Unit** terminals the results shall be supplied in an electronic spreadsheet format.
- OC5.A.2.7.5 The ability of the **Generating Unit** to comply with the operational requirements specified in BC2.A.2.6 and CC.6.1.7 will normally be demonstrated by changing the tap position and, where agreed in the **Bilateral Agreement**, the **Generating Unit** terminal voltage.

- OC5.A.2.8.1 The governor and load controller response performance will be tested by injecting simulated frequency deviations into the governor and load controller systems. Such simulated frequency deviation signals must be injected simultaneously at both speed governor and load controller references. For **CCGT modules**, simultaneous injection into all gas turbines, steam turbine governors and module controllers is required.
- OC5.A.2.8.2 Prior to witnessing the governor tests set out in OC5.A.2.8.6, **The Company** requires the **Generator** to conduct the preliminary tests detailed in OC5.A.2.8.4 and send the results to **The Company** for assessment unless agreed otherwise by **The Company**. The results should be supplied in an electronic spreadsheet format. These tests shall be completed at least two weeks prior to the witnessed governor response tests.
- OC5.A.2.8.3 Where **CCGT module** or **Generating Unit** is capable of operating on alternative fuels, tests will be required to demonstrate performance when operating on each fuel. **The Company** may agree a reduction from the tests listed in OC5.A.2.8.6 for demonstrating performance on the alternative fuel. This includes the case where a main fuel is supplemented by bio-fuel.

Preliminary Governor Frequency Response Testing

OC5.A.2.8.4 Prior to conducting the full set of tests as per OC5.A.2.8.6, **Generators** are required to conduct a preliminary set of tests below to confirm the frequency injection method is correct and the plant control performance is within expectation. The test numbers refer to Figure 1 below. With the plant running at 80% of full load, the following frequency injections shall be applied.

Test No (Figure 1)	Frequency Injection	Notes
8	Inject - 0.5Hz frequency fall over 10 sec	
	Hold until conditions stabilise	
	Remove the injected signal	
14	Inject +0.5Hz frequency rise over 10 sec	
	Hold until conditions stabilise	
	Remove the injected signal	
13	Inject -0.5Hz frequency fall over 10 sec	
	Hold for a further 20 sec	
	 At 30 sec from the start of the test, Inject a +0.3Hz frequency rise over 30 sec. 	
	Hold until conditions stabilise	
	Remove the injected signal	

OC5.A.2.8.5 The recorded results (e.g. Finj, MW and control signals) should be sampled at a minimum rate of 1 Hz to allow **The Company** to assess the plant performance from the initial transients (seconds) to the final steady state conditions (5-15 minutes depending on the plant design). This is not witnessed by **The Company**. The Generator shall supply the recordings including data to **The Company** in an electronic spreadsheet format. Results shall be legible, identifiable by labelling, and shall have appropriate scaling.

Full Frequency Response Testing Schedule Witnessed by The Company

OC5.A.2.8.6 The tests are to be conducted at a number of different Module Load Points (MLP). The load points are conducted as shown below unless agreed otherwise by **The Company**.

Module Load Point 6 (Maximum Export Limit)	100% MEL
Module Load Point 5	95% MEL
Module Load Point 4 (Mid point of Operating Range)	80% MEL
Module Load Point 3	70% MEL
Module Load Point 2 (Minimum Generation)	MG
Module Load Point 1 (Design Minimum Operating Level)	DMOL

- OC5.A.2.8.7 The tests are divided into the following two types;
 - (i) **Frequency** response volume tests as per OC5.A.2.8. Figure 1. These tests consist of **Frequency** profile and ramp tests.
 - (ii) **System** islanding and step response tests as shown by OC5.A.2.8. Figure 2.
- OC5.A.2.8.8 There should be sufficient time allowed between tests for control systems to reach steady state. Where the diagram states 'HOLD' the current injection should be maintained until the **Active Power** (MW) output of the **Generating Unit or CCGT Module** has stabilised. The frequency response capability test (see Figure 1) injection signal shall be returned to zero at the same rate at which it was applied. **The Company** may require repeat tests should the tests give unexpected results.

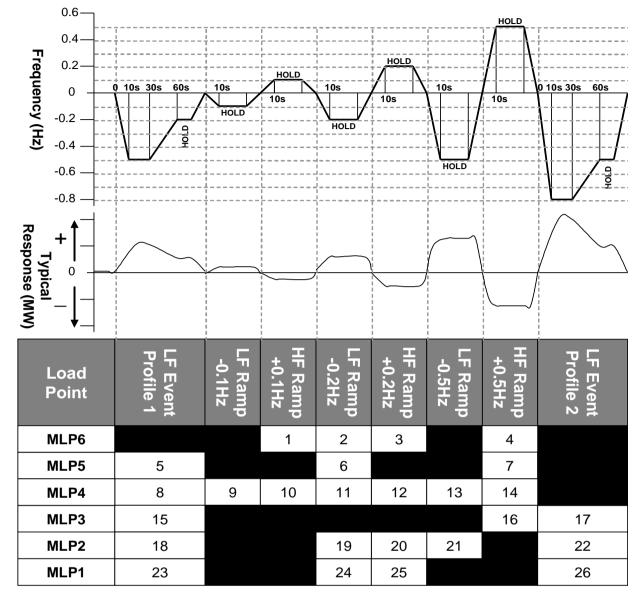


Figure 1: Frequency Response Capability Tests

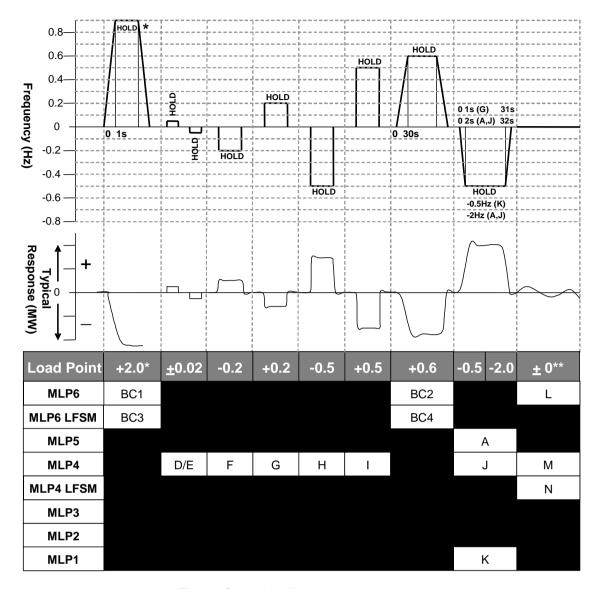


Figure 2: System islanding and step response tests

* This will generally be +2.0Hz unless an injection of this size causes a reduction in plant output that takes the operating point below **Designed Minimum Operating Level** in which case an appropriate injection should be calculated in accordance with the following:

For example 0.9Hz is needed to take an initial output 65% to a final output of 20%. If the initial output was not 65% and the **Designed Minimum Operating Level** is not 20% then the injected step should be adjusted accordingly as shown in the example given below

Initial Output 65% **Designed Minimum Operating Level** 20%

Frequency Controller Droop 4%

Frequency to be injected = (0.65 - 0.20) x 0.04 x 50 = 0.9Hz

^{**} Tests L and M in Figure 2 shall be conducted if in this range of tests the system frequency feedback signal is replaced by the injection signal rather than the injection signal being added to the system frequency signal. The tests will consist of monitoring the **Generating Unit and CCGT Module** in **Frequency Sensitive Mode** during normal system frequency variations without applying any injection. Test N in figure 2 shall be conducted in all cases. All three tests should be conducted for a period of at least 10 minutes.

- OC5.A.2.9 Compliance with CC.6.3.3 Functionality Test
- OC5.A.2.9.1 Where the plant design includes active control function or functions to deliver CC.6.3.3 compliance, the **Generator** will propose and agree a test procedure with **The Company**, which will demonstrate how the **Generating Unit Active Power** output responds to changes in **System Frequency** and ambient conditions (e.g. by **Frequency** and temperature injection methods).
- OC5.A.2.9.2 The **Generator** shall inform **The Company** if any load limiter control is additionally employed.
- OC5.A.2.9.3 With reference to the signals specified in OC5.A.1, **The Company** will agree with the **Generator** which additional control system parameters shall be monitored to demonstrate the functionality of CC.6.3.3 compliance systems. Where **The Company** recording equipment is not used results shall be supplied to **The Company** in an electronic spreadsheet format.

APPENDIX 3 - COMPLIANCE TESTING OF POWER PARK MODULES (AND OTSUA)

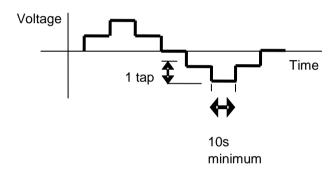
OC5.A.3.1 Scope

- OC5.A.3.1.1 This Appendix outlines the general testing requirements for **Power Park Modules** and **OTSUA** to demonstrate compliance with the relevant aspects of the **Grid Code**, **Ancillary Services Agreement** and **Bilateral Agreement** and apply only to **GB Generators**. The testing requirements applicable to **EU Generators** are specified in ECP.A.6. The tests specified in this Appendix will normally be sufficient to demonstrate compliance however **The Company** may:
 - (i) agree an alternative set of tests provided **The Company** deem the alternative set of tests sufficient to demonstrate compliance with the **Grid Code**, **Ancillary Services Agreement** and **Bilateral Agreement**; and/or
 - (ii) require additional or alternative tests if information supplied to The Company during the compliance process suggests that the tests in this Appendix will not fully demonstrate compliance with the relevant section of the Grid Code, Ancillary Services Agreement or Bilateral Agreement; and/or
 - (ii) require additional tests if a Power System Stabiliser is fitted; and/or
 - (iv) agree a reduced set of tests if a relevant **Manufacturer's Data & Performance Report** has been submitted to and deemed to be appropriate by **The Company**; and/or
 - (v) agree a reduced set of tests for subsequent Power Park Modules or OTSUA following successful completion of the first Power Park Module or OTSUA tests in the case of a Power Station comprised of two or more Power Park Modules or OTSUA which The Company reasonably considers to be identical.

lf:

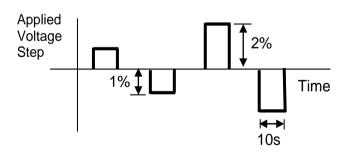
- (a) the tests performed pursuant to OC5.A.3.1.1(iv) do not replicate the results contained in the **Manufacturer's Data & Performance Report** or
- (b) the tests performed pursuant to OC5.A.3.1.1(v) in respect of subsequent Power Park Modules or OTSUA do not replicate the full tests for the first Power Park Module or OTSUA, or
- (c) any of the tests performed pursuant to OC5.A.3.1.1(iv) or OC5.A.3.1.1(v) do not fully demonstrate compliance with the relevant aspects of the **Grid Code**, **Ancillary Services Agreement** and / or **Bilateral Agreement**,

then notwithstanding the provisions above, the full testing requirements set out in this Appendix will be applied.


- OC5.A.3.1.2 The **Generator** is responsible for carrying out the tests set out in and in accordance with this Appendix and the **Generator** retains the responsibility for the safety of personnel and plant during the test. **The Company** will witness all of the tests outlined or agreed in relation to this Appendix unless **The Company** decides and notifies the **Generator** owner otherwise. Reactive Capability tests may be witnessed by **The Company** remotely from the **The Company** control centre. For all on site **The Company** witnessed tests the **Generator** must ensure suitable representatives from the **Generator** and / or **Power Park Module** manufacturer (if appropriate) and/or **OTSUA** manufacturer (if appropriate) are available on site for the entire testing period. In all cases and in addition to any recording of signals conducted by **The Company** the **Generator** shall record all relevant test signals as outlined in OC5.A.1.
- OC5.A.3.1.3 In addition to the dynamic signals supplied in OC5.A.1 the **Generator** shall inform **The Company** of the following information prior to the commencement of the tests and any changes to the following, if any values change during the tests:
 - (i) All relevant transformer tap numbers; and
 - (ii) Number of **Power Park Units** in operation

- OC5.A.3.1.4 The **Generator** shall submit a detailed schedule of tests to **The Company** in accordance with CP.6.3.1, and this Appendix.
- OC5.A.3.1.5 Prior to the testing of a **Power Park Module** or **OTSUA** the **Generator** shall complete the **Integral Equipment Tests** procedure in accordance with OC.7.5.
- OC5.A.3.1.6 Partial **Power Park Module** or **OTSUA** testing as defined in OC5.A.3.2 and OC5.A.3.3 is to be completed at the appropriate stage in accordance with CP.6.
- OC5.A.3.1.7 Full **Power Park Module** or **OTSUA** testing as required by CP.7.2 is to be completed as defined in OC5.A.3.4 through to OC5.A.3.7.
- OC5.A.3.1.8 Where **OTSDUW Arrangements** apply and prior to the **OTSUA Transfer Time** any relevant **OTSDUW Plant and Apparatus** shall be considered within the scope of testing described in this Appendix. Performance shall be assessed against the relevant Grid Code requirements for **OTSDUW Plant and Apparatus** at the **Interface Point** and other **Generator Plant** and **Apparatus** at the **Offshore Grid Entry Point**. This Appendix should be read accordingly.
- OC5.A.3.2 Pre 20% (or <50MW) Synchronised Power Park Module Basic Voltage Control Tests
- OC5.A.3.2.1 Before 20% of the **Power Park Module** (or 50MW if less) has commissioned, either voltage control test OC5.A.3.5.6(i) or (ii) must be completed in accordance with CP.6.
- OC5.A.3.2.2 In the case of an Offshore Power Park Module which provides all or a portion of the Reactive Power capability as described in CC.6.3.2(e)(iii) and / or voltage control requirements as described in CC.6.3.8(b)(ii) to enable an Offshore Transmission Licensee to meet the requirements of STC Section K, the Generator is required to cooperate with the Offshore Transmission Licensee to conduct the 20% voltage control test. The results in relation to the Offshore Power Park Module will be assessed against the requirements in the Bilateral Agreement. In the case of OTSUA prior to the OTSUA Transfer Time, the Generator shall conduct the testing by reference to the entire control system responding to changes at the Interface Point.
- OC5.A.3.3 For **Power Park Modules** with **Registered Capacity** ≥100MW Pre 70% **Power Park Module**Tests
- OC5.A.3.3.1 Before 70% but with at least 50% of the **Power Park Module** commissioned the following **Limited Frequency Sensitive** tests as detailed in OC5.A.3.6.2 must be completed.
 - (a) BC3
 - (b) BC4
- OC5.A.3.4 Reactive Capability Test
- OC5.A.3.4.1 This section details the procedure for demonstrating the reactive capability of an **Onshore Power Park Module** or an **Offshore Power Park Module** or **OTSUA** which provides all or a portion of the **Reactive Power** capability as described in CC.6.3.2(e)(iii) (for the avoidance of doubt, an **Offshore Power Park Module** which does not provide part of the **Offshore Transmission Licensee Reactive Power** capability as described in CC6.3.2(e)(i) and CC6.3.2(e)(ii) should complete the reactive power transfer / voltage control tests as per section OC5.A.3.8). These tests should be scheduled at a time where there are at least 95% of the **Power Park Units** within the **Power Park Module** in service. There should be sufficient MW resource forecasted in order to generate at least 85% of **Registered Capacity** of the **Power Park Module**.
- OC5.A.3.4.2 The tests shall be performed by modifying the voltage set-point of the voltage control scheme of the **Power Park Module** or **OTSUA** by the amount necessary to demonstrate the required reactive range. This is to be conducted for the operating points and durations specified in OC5.A.3.4.5.

- OC5.A.3.4.3 **Embedded Generator** should liaise with the relevant **Network Operator** to ensure the following tests will not have an adverse impact upon the **Network Operator's System** as per OC.7.5. In situations where the tests have an adverse impact upon the **Network Operator's System The Company** will only require demonstration within the acceptable limits of the **Network Operator**. For the avoidance of doubt, these tests do not negate the requirement to produce a complete **Power Park Module** performance chart as specified in OC2.4.2.1
- OC5.A.3.4.4 In the case where the **Reactive Power** metering point is not at the same location as the **Reactive Power** capability requirement, then an equivalent **Reactive Power** capability for the metering point shall be agreed between the **Generator** and **The Company**.
- OC5.A.3.4.5 The following tests shall be completed:
 - (i) Operation in excess of 50% **Rated MW** and maximum continuous lagging **Reactive Power** for 60 minutes.
 - (ii) Operation in excess of 50% **Rated MW** and maximum continuous leading **Reactive Power** for 60 minutes.
 - (iii) Operation at 50% Rated MW and maximum continuous leading Reactive Power for 5 minutes
 - (iv) Operation at 20% Rated MW and maximum continuous leading Reactive Power for 5 minutes.
 - (v) Operation at 20% Rated MW and maximum continuous lagging Reactive Power for 5 minutes.
 - (vi) Operation at less than 20% **Rated MW** and unity **Power Factor** for 5 minutes. This test only applies to systems which do not offer voltage control below 20% of **Rated MW**.
 - (vii) Operation at 0% Rated MW and maximum continuous leading Reactive Power for 5 minutes. This test only applies to systems which offer voltage control below 20% and hence establishes actual capability rather than required capability.
 - (viii) Operation at 0% **Rated MW** and maximum continuous lagging **Reactive Power** for 5 minutes. This test only applies to systems which offer voltage control below 20% and hence establishes actual capability rather than required capability.
- OC5.A.3.4.6 Within this OC lagging Reactive Power is the export of Reactive Power from the Power Park Module to the Total System and leading Reactive Power is the import of Reactive Power from the Total System to the Power Park Module or OTSUA.
- OC5.A.3.4.7 Where the **Generator** provides a report from a **Power Park Unit** manufacturer validating the full **Reactive Power** capability envelope of the **Power Park Unit** by test results acceptable to **The Company**, **The Company** may agree a reduction from the set of tests detailed in OC5.A.3.4.5. The validation testing detailed in the report must fully demonstrate the **Reactive Power** capability across both the **Active Power** range and the range of unit terminal voltages.
- OC5.A.3.5 Voltage Control Tests
- OC5.A.3.5.1 This section details the procedure for conducting voltage control tests on **Onshore Power Park Modules** or **OTSUA** or an **Offshore Power Park Module** which provides all or a portion of the voltage control capability as described in CC.6.3.8(b)(ii) (for the avoidance of doubt, **Offshore Power Park Modules** which do not provide part of the **Offshore Transmission Licensee** voltage control capability as described in CC6.3.8(b)(i) should complete the reactive power transfer / voltage control tests as per section OC5.A.3.8). These tests should be scheduled at a time when there are at least 95% of the **Power Park Units** within the **Power Park Module** in service. There should be sufficient MW resource forecasted in order to generate at least 65% of **Registered Capacity** of the **Onshore Power Park Module**. An **Embedded Generator** should also liaise with the relevant **Network Operator** to ensure all requirements covered in this section will not have a detrimental effect on the **Network Operator's System**.


- OC5.A.3.5.2 The voltage control system shall be perturbed with a series of step injections to the **Power Park Module** voltage reference, and where possible, multiple up-stream transformer taps. In the case of an **Offshore Power Park Module** providing part of the **Offshore Transmission Licensee** voltage control capability this may require a series of step injections to the voltage reference of the **Offshore Transmission Licensee** control system.
- OC5.A.3.5.3 For steps initiated using network tap changers the **Generator** will need to coordinate with **The Company** or the relevant **Network Operator** as appropriate. The time between transformer taps shall be at least 10 seconds as per OC5.A.3.5 Figure 1.
- OC5.A.3.5.4 For step injection into the **Power Park Module** or **OTSUA** voltage reference, steps of ±1% and ±2% shall be applied to the voltage control system reference summing junction. The injection shall be maintained for 10 seconds as per OC5.A.3.5 Figure 2.
- OC5.A.3.5.5 Where the voltage control system comprises of discretely switched plant and apparatus additional tests will be required to demonstrate that its performance is in accordance with Grid Code and **Bilateral Agreement** requirements.
- OC5.A.3.5.6 Tests to be completed:

(i)

OC5.A.3.5 Figure 1 – Transformer tap sequence for voltage control tests

(ii)

OC5.A.3.5 Figure 2 – Step injection sequence for voltage control tests

OC.A.3.5.7 In the case of **OTSUA** where the **Bilateral Agreement** specifies additional damping facilities, additional testing to demonstrate these damping facilities may be required.

OC5.A.3.6 <u>Frequency Response Tests</u>

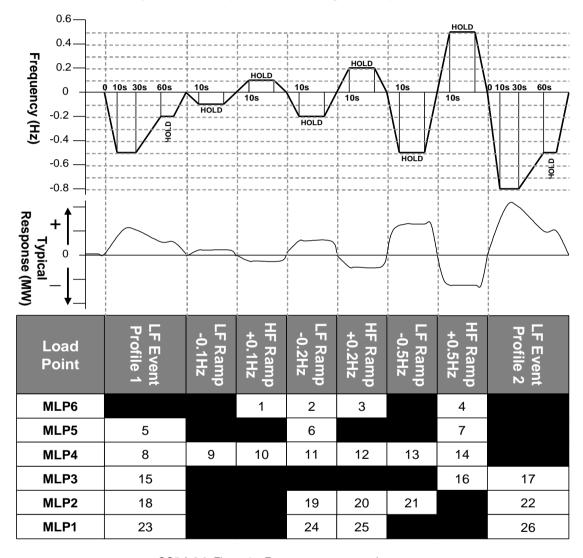
OC5.A.3.6.1 This section describes the procedure for performing frequency response testing on an **Power Park Module**. These tests should be scheduled at a time where there are at least 95% of the **Power Park Units** within the **Power Park Module** in service. There should be sufficient MW resource forecasted in order to generate at least 65% of **Registered Capacity** of the **Power Park Module**.

- OC5.A.3.6.2 The frequency controller shall be in **Frequency Sensitive Mode** or **Limited Frequency Sensitive Mode** as appropriate for each test. Simulated frequency deviation signals shall be injected into the frequency controller reference/feedback summing junction. If the injected frequency signal replaces rather than sums with the real system frequency signal then the additional tests outlined in OC5.A.3.6.6 shall be performed with the **Power Park Module** or **Power Park Unit** in normal **Frequency Sensitive Mode** monitoring actual system frequency, over a period of at least 10 minutes. The aim of this additional test is to verify that the control system correctly measures the real system frequency for normal variations over a period of time.
- OC5.A.3.6.3 In addition to the frequency response requirements it is necessary to demonstrate the **Power Park Module** ability to deliver a requested steady state power output which is not impacted by power source variation as per CC.6.3.9. This test shall be conducted in **Limited Frequency Sensitive Mode** at a part-loaded output for a period of 10 minutes as per OC5.A.3.6.6.

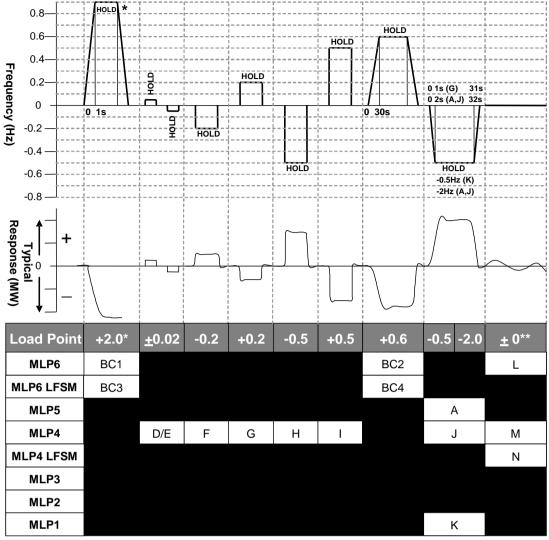
Preliminary Frequency Response Testing

OC5.A.3.6.4 Prior to conducting the full set of tests as per OC5.A.3.6.6, **Generators** are required to conduct the preliminary set of tests below to confirm the frequency injection method is correct and the plant control performance is within expectation. The test numbers refer to Figure 1 below. The test should be conducted when sufficient MW resource is forecasted in order to generate at least 65% of **Registered Capacity** of the **Power Park Module**. The following frequency injections shall be applied when operating at module load point 4.

Test No (Figure 1)	Frequency Injection	Notes
8	Inject - 0.5Hz frequency fall over 10 sec	
	Hold until conditions stabilise	
	Remove the injected signal	
14	Inject +0.5Hz frequency rise over 10 sec	
	Hold until conditions stabilise	
	Remove the injected signal	
13	Inject -0.5Hz frequency fall over 10 sec	
	Hold for a further 20 sec	
	At 30 sec from the start of the test, Inject a +0.3Hz frequency rise over 30 sec.	
	Hold until conditions stabilise	
	Remove the injected signal	


OC5.A.3.6.5 The recorded results (e.g. Finj, MW and control signals) should be sampled at a minimum rate of 1 Hz to allow **The Company** to assess the plant performance from the initial transients (seconds) to the final steady state conditions (5-15 minutes depending on the plant design). This is not witnessed by **The Company**. The **Generator** shall supply the recordings including data to **The Company** in an electronic spreadsheet format. Results shall be legible, identifiable by labelling, and shall have appropriate scaling.

Full Frequency Response Testing Schedule Witnessed by The Company


OC5.A.3.6.6 The tests are to be conducted at a number of different Module Load Points (MLP). In the case of a **Power Park Module** the module load points are conducted as shown below unless agreed otherwise by **The Company**.

Module Load Point 6 (Maximum Export Limit)	100% MEL
Module Load Point 5	90% MEL
Module Load Point 4 (Mid point of Operating Range)	80% MEL
Module Load Point 3	DMOL + 20%
Module Load Point 2	DMOL + 10%
Module Load Point 1 (Design Minimum Operating Level)	DMOL

- OC5.A.3.6.7 The tests are divided into the following two types;
 - (i) Frequency response volume tests as per OC5.A.3.6. Figure 1. These tests consist of frequency profile and ramp tests.
 - (ii) System islanding and step response tests as shown by OC5.A.3.6 Figure 2
- OC5.A.3.6.8 There should be sufficient time allowed between tests for control systems to reach steady state (depending on available power resource). Where the diagram states 'HOLD' the current injection should be maintained until the **Active Power** (MW) output of the **Power Park Module** has stabilised. All frequency response tests should be removed over the same timescale for which they were applied. **The Company** may require repeat tests should the response volume be affected by the available power, or if tests give unexpected results.

OC5.A.3.6. Figure 1 – Frequency response volume tests

OC5.A.3.6. Figure 2 – System islanding and step response tests

For example 0.9Hz is needed to take an initial output 65% to a final output of 20%. If the initial output was not 65% and the **Designed Minimum Operating Level** is not 20% then the injected step should be adjusted accordingly as shown in the example given below

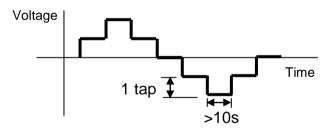
Initial Output	65%
Designed Minimum Operating Level	20%
Frequency Controller Droop	4%
Frequency to be injected =	$(0.65 - 0.20) \times 0.04 \times 50 = 0.9$ Hz

^{**} Tests L and M in Figure 2 shall be conducted if in this range of tests the system frequency feedback signal is replaced by the injection signal rather than the injection signal being added to the system frequency signal. The tests will consist of monitoring the **Power Park Module** in **Frequency Sensitive Mode** during normal system frequency variations without applying any injection. Test N in Figure 2 shall be conducted in all cases. All three tests should be conducted for a period of at least 10 minutes.

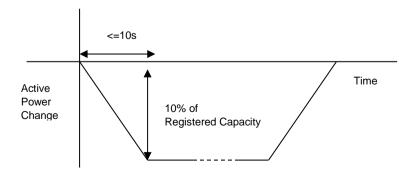
OC5.A.3.7 Fault Ride Through Testing

^{*} This will generally be +2.0Hz unless an injection of this size causes a reduction in plant output that takes the operating point below **Designed Minimum Operating Level** in which case an appropriate injection should be calculated in accordance with the following:

- OC5.A.3.7.1 This section describes the procedure for conducting fault ride through tests on a single **Power**Park Unit.
- OC5.A.3.7.2 The test circuit will utilise the full **Power Park Unit** with no exclusions (e.g. in the case of a wind turbine it would include the full wind turbine structure) and shall be conducted with sufficient resource available to produce at least 95% of the **Registered Capacity** of the **Power Park Unit**. The test will comprise of a number of controlled short circuits applied to a test network to which the **Power Park Unit** is connected, typically comprising of the **Power Park Unit** transformer and a test impedance to shield the connected network from voltage dips at the **Power Park Unit** terminals.
- OC5.A.3.7.3 In each case the tests should demonstrate the minimum voltage at the **Power Park Unit** terminals or **High Voltage** side of the **Power Park Unit** transformer which the **Power Park Unit** can withstand for the length of time specified in OC5.A.3.7.5. Any test results provided to **The Company** should contain sufficient data pre and post fault in order to determine steady state values of all signals, and the power recovery timescales.
- OC5.A.3.7.4 In addition to the signals outlined in OC5.A.1.2. the following signals from either the **Power Park Unit** transformer should be provided for this test only:
 - (i) Phase voltages
 - (ii) Positive phase sequence and negative phase sequence voltages
 - (iii) Phase currents
 - (iv) Positive phase sequence and negative phase sequence currents
 - (v) Estimate of **Power Park Unit** negative phase sequence impedance
 - (vi) MW Active Power at the generating unit.
 - (vii) MVAr Reactive Power at the generating unit.
 - (viii) Mechanical Rotor Speed
 - (ix) Real / reactive, current / power reference as appropriate
 - (x) Fault ride through protection operation (e.g. a crowbar in the case of a doubly fed induction generator)
 - (xi) Any other signals relevant to the control action of the fault ride through control deemed applicable for model validation.


At a suitable frequency rate for fault ride through tests as agreed with **The Company**.

OC5.A.3.7.5 The tests should be conducted for the times and fault types indicated in OC5.A.3.7 Table 1.


3 Phase	Phase to Phase	2 Phase to Earth	1 Phase to Earth	Grid Code Ref
0.14s	0.14s	0.14s	0.14s	CC.6.3.15a
0.384s				CC.6.3.15b
0.710s				
2.5s				
180.0s				

OC5.A.3.7 Table 1 – Types of fault for fault ride through testing

- OC5.A.3.8 Reactive Power Transfer / Voltage Control Tests for Offshore Power Park Modules
- OC5.A.3.8.1 In the case of an Offshore Power Park Module which provides all or a portion of the Reactive Power capability as described in CC.6.3.2(e)(iii) and / or voltage control requirements as described in CC.6.3.8(b)(ii) to enable an Offshore Transmission Licensee to meet the requirements of STC Section K, the testing, will comprise of the entire control system responding to changes at the onshore Interface Point. Therefore the tests in this section OC5.A.3.8 will not apply. The Generator shall cooperate with the relevant Offshore Transmission Licensee to facilitate these tests as required by The Company. The testing may be combined with testing of the corresponding Offshore Transmission Licensee requirements under the STC. The results in relation to the Offshore Power Park Module will be assessed against the requirements in the Bilateral Agreement.
- OC5.A.3.8.2 In the case of an **Offshore Power Park Module** which does not provide part of the **Offshore Transmission Licensee Reactive Power** capability the following procedure for conducting reactive power transfer control tests on **Offshore Power Park Modules** and / or voltage control system as per CC6.3.2(e)(i) and CC6.3.2(e)(ii) apply. These tests should be carried out prior to 20% of the **Power Park Units** within the **Offshore Power Park Module** being synchronised, and again when at least 95% of the **Power Park Units** within the **Offshore Power Park Module** in service. There should be sufficient power resource forecast to generate at least 85% of the **Registered Capacity** of the **Offshore Power Park Module**.
- OC5.A.3.8.3 The **Reactive Power** control system shall be perturbed by a series of system voltage changes and changes to the **Active Power** output of the **Offshore Power Park Module**.
- OC5.A.3.8.4 System voltage changes should be created by a series of multiple upstream transformer taps. The **Generator** should coordinate with **The Company** or the relevant **Network Operator** in order to conduct the required tests. The time between transformer taps should be at least 10 seconds as per OC5.A.3.8 Figure 1.
- OC5.A.3.8.5 The active power output of the **Offshore Power Park Module** should be varied by applying a sufficiently large step to the frequency controller reference/feedback summing junction to cause a 10% change in output of the **Registered Capacity** of the **Offshore Power Park Module** in a time not exceeding 10 seconds. This test does not need to be conducted provided that the frequency response tests as outlined in OC5.A.3.6 are completed.
- OC5.A.3.8.6 The following diagrams illustrate the tests to be completed:

OC5.A.3.8 Figure 1 – Transformer tap sequence for reactive transfer tests

OC5.A.3.8 Figure 2 – Active Power ramp for reactive transfer tests

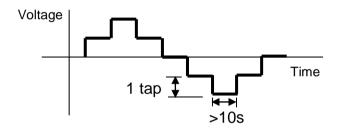
APPENDIX 4 - COMPLIANCE TESTING FOR DC CONVERTERS AT A DC CONVERTER STATION

OC5.A.4.1 Scope

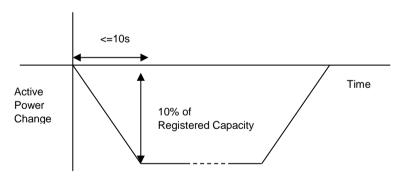
- OC5.A.4.1.1 This Appendix outlines the general testing requirements for **DC Converter Station** owners to demonstrate compliance with the relevant aspects of the **Grid Code**, **Ancillary Services Agreement** and **Bilateral Agreement** and apply only to **DC Converter Station** owners. The testing requirements applicable to **HVDC System Owners** are specified in ECP.A.7. The tests specified in this Appendix will normally be sufficient to demonstrate compliance however **The Company** may:
 - (i) agree an alternative set of tests provided **The Company** deem the alternative set of tests sufficient to demonstrate compliance with the **Grid Code**, **Ancillary Services Agreement** and **Bilateral Agreement**; and/or
 - (ii) require additional or alternative tests if information supplied to The Company during the compliance process suggests that the tests in this Appendix will not fully demonstrate compliance with the relevant section of the Grid Code, Ancillary Services Agreement or Bilateral Agreement; and/or
 - (iii) require additional tests if control functions to improve damping of power system oscillations and/or subsynchronous resonance torsional oscillations required by the **Bilateral Agreement** or included in the control scheme and active; and/or
 - (iv) agree a reduced set of tests for subsequent DC Converters following successful completion of the first DC Converter tests in the case of a Power Station comprised of two or more DC Converters which The Company reasonably considers to be identical.

lf:

- (a) the tests performed pursuant to OC5.A.4.1.1(iv) in respect of subsequent **DC Converters** do not replicate the full tests for the first **DC Converter**, or
- (b) any of the tests performed pursuant to OC5.A.4.1.1(iv) do not fully demonstrate compliance with the relevant aspects of the Grid Code, Ancillary Services Agreement and / or Bilateral Agreement,


then notwithstanding the provisions above, the full testing requirements set out in this Appendix will be applied.

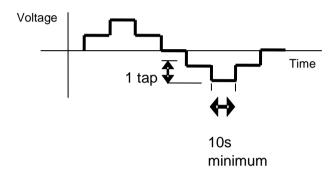
- OC5.A.4.1.2 The DC Converter Station owner is responsible for carrying out the tests set out in and in accordance with this Appendix and the DC Converter Station owner retains the responsibility for the safety of personnel and plant during the test. The DC Converter Station owner is responsible for ensuring that suitable arrangements are in place with the Externally Interconnected System Operator to facilitate testing. The Company will witness all of the tests outlined or agreed in relation to this Appendix unless The Company decides and notifies the DC Converter Station owner otherwise. Reactive Capability tests if required, may be witnessed by The Company remotely from the The Company control centre. For all on site The Company witnessed tests the DC Converter Station owner must ensure suitable representatives from the DC Converter Station owner and / or DC Converter manufacturer (if appropriate) are available on site for the entire testing period. In all cases and in addition to any recording of signals conducted by The Company the DC Converter Station owner shall record all relevant test signals as outlined in OC5.A.1.
- OC5.A.4.1.3 In addition to the dynamic signals supplied in OC5.A.1 the **DC Converter Station** owner shall inform **The Company** of the following information prior to the commencement of the tests and any changes to the following, if any values change during the tests:
 - (i) All relevant transformer tap numbers.


- OC5.A.4.1.4 The **DC Converter Station** owner shall submit a detailed schedule of tests to **The Company** in accordance with CP.6.3.1, and this Appendix.
- OC5.A.4.1.5 Prior to the testing of a **DC Converter** the **DC Converter Station** owner shall complete the **Integral Equipment Tests** procedure in accordance with OC.7.5
- OC5.A.4.1.6 Full **DC Converter** testing as required by CP.7.2 is to be completed as defined in OC5.A.4.2 through to OC5.A.4.5
- OC5.A.4.2 Reactive Capability Test
- OC5.A.4.2.1 This section details the procedure for demonstrating the reactive capability of an **Onshore DC Converter**. These tests should be scheduled at a time where there are sufficient MW resource forecasted in order to import and export full **Registered Capacity** of the **DC Converter**.
- OC5.A.4.2.2 The tests shall be performed by modifying the voltage set-point of the voltage control scheme of the **DC Converter** by the amount necessary to demonstrate the required reactive range. This is to be conducted for the operating points and durations specified in OC5.A.4.2.5.
- OC5.A.4.2.3 Embedded DC Converter Station owner should liaise with the relevant Network Operator to ensure the following tests will not have an adverse impact upon the Network Operator's System as per OC.7.5. In situations where the tests have an adverse impact upon the Network Operator's System The Company will only require demonstration within the acceptable limits of the Network Operator. For the avoidance of doubt, these tests do not negate the requirement to produce a complete DC Converter performance chart as specified in OC2.4.2.1.
- OC5.A.4.2.4 In the case where the **Reactive Power** metering point is not at the same location as the **Reactive Power** capability requirement, then an equivalent **Reactive Power** capability for the metering point shall be agreed between the **DC Converter Station** owner and **The Company**.
- OC5.A.4.2.5 The following tests shall be completed for both importing and exporting of Active Power for a **DC Converter** (excluding current source technology):
 - Operation at Rated MW and maximum continuous lagging Reactive Power for 60 minutes.
 - (ii) Operation at **Rated MW** and maximum continuous leading **Reactive Power** for 60 minutes.
 - (iii) Operation at 50% **Rated MW** and maximum continuous leading **Reactive Power** for 5 minutes.
 - (iv) Operation at 20% **Rated MW** and maximum continuous leading **Reactive Power** for 5 minutes.
 - (v) Operation at 20% Rated MW and maximum continuous lagging Reactive Power for 5 minutes.
 - (vi) Operation at less than 20% **Rated MW** and unity **Power Factor** for 5 minutes. This test only applies to systems which do not offer voltage control below 20% of **Rated MW**.
 - (vii) Operation at 0% **Rated MW** and maximum continuous leading **Reactive Power** for 5 minutes. This test only applies to systems which offer voltage control below 20% and hence establishes actual capability rather than required capability.
 - (viii) Operation at 0% **Rated MW** and maximum continuous lagging **Reactive Power** for 5 minutes. This test only applies to systems which offer voltage control below 20% and hence establishes actual capability rather than required capability.
- OC5.A.4.2.6 For the avoidance of doubt, lagging **Reactive Power** is the export of **Reactive Power** from the **DC Converter** to the **Total System** and leading **Reactive Power** is the import of **Reactive Power** from the **Total System** to the **DC Converter**.

OC5.A.4.3 Reactive Control Testing For DC Converters (Current Source Technology)

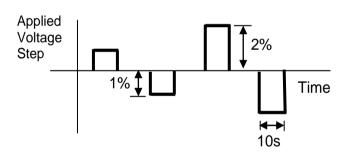
- OC5.A.4.3.1 The Reactive control testing for **DC Converters** employing current source technology shall be for both importing and exporting of Active Power and shall demonstrate that the reactive power transfer limits specified in the **Bilateral Agreement** are not exceeded. The **Reactive Power** control system shall be perturbed by a series of system voltage changes to the **Active Power** output of the **DC Converter** and changes of system voltage where possible. The **DC Converter Station** owner is responsible for ensuring that suitable arrangements are in place with the **Externally Interconnected System Operator** to facilitate the active power changes required by these tests
- OC5.A.4.3.2 The active power output of the **DC Converter** should be varied by applying a sufficiently large step to the frequency controller reference/feedback summing junction to cause at least a 10% change in output of the **Registered Capacity** of the **DC Converter** in a time not exceeding 10 seconds. This test does not need to be conducted provided that the frequency response tests as outlined in OC5.A.4.3 are completed.
- OC5.A.4.3.3 Where possible system voltage changes should be created by a series of multiple upstream transformer taps. The **DC Converter station** owner should coordinate with **The Company** or the relevant **Network Operator** in order to conduct the required tests. The time between transformer taps should be at least 10 seconds as per OC5.A.4.3 Figure 1.
- OC5.A.4.3.4 The following diagrams illustrate the tests to be completed:

OC5.A.4.3 Figure 1 - Transformer tap sequence for reactive transfer tests


OC5.A.4.3 Figure 2 – Active Power ramp for reactive transfer tests

OC5.A.4.4 <u>Voltage Control Tests</u>

- OC5.A.4.4.1 This section details the procedure for conducting voltage control tests on **DC Converters** (excluding current source technology). These tests should be scheduled at a time where there are sufficient MW resource in order to import and export full **Registered Capacity** of the **DC Converter**. An **Embedded DC Converter Station** owner should also liaise with the relevant **Network Operator** to ensure all requirements covered in this section will not have a detrimental effect on the **Network Operator's System**.
- OC5.A.4.4.2 The voltage control system shall be perturbed with a series of step injections to the **DC Converter** voltage reference, and where possible, multiple up-stream transformer taps.


- OC5.A.4.4.3 For steps initiated using network tap changers the **DC Converter Station** owner will need to coordinate with **The Company** or the relevant **Network Operator** as appropriate. The time between transformer taps shall be at least 10 seconds as per OC5.A.4.4 Figure 1.
- OC5.A.4.4.4 For step injection into the **DC Converter** voltage reference, steps of ±1% and ±2% shall be applied to the voltage control system reference summing junction. The injection shall be maintained for 10 seconds as per OC5.A.4.4 Figure 2.
- OC5.A.4.4.5 Where the voltage control system comprises of discretely switched plant and apparatus additional tests will be required to demonstrate that its performance is in accordance with **Grid Code** and **Bilateral Agreement** requirements.
- OC5.A.4.4.6 Tests to be completed:

(i)

OC5.A.4.4 Figure 1 – Transformer tap sequence for voltage control tests

(ii)

OC5.A.4.4 Figure 2 – Step injection sequence for voltage control tests

OC5.A.4.5 Frequency Response Tests

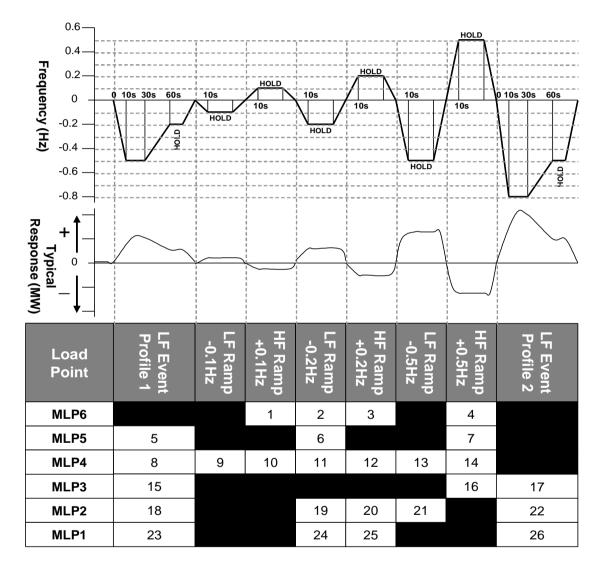
- OC5.A.4.5.1 This section describes the procedure for performing frequency response testing on a **DC**Converter. These tests should be scheduled at a time where there are sufficient MW resource in order to import and export full **Registered Capacity** of the **DC Converter**. The **DC**Converter Station owner is responsible for ensuring that suitable arrangements are in place with the **Externally Interconnected System Operator** to facilitate the active power changes required by these tests
- OC5.A.4.5.2 The frequency controller shall be in **Frequency Sensitive Mode** or **Limited Frequency Sensitive Mode** as appropriate for each test. Simulated frequency deviation signals shall be injected into the frequency controller reference/feedback summing junction. If the injected frequency signal replaces rather than sums with the real system frequency signal then the additional tests outlined in OC5.A.4.5.6 shall be performed with the **DC Converter** in normal **Frequency Sensitive Mode** monitoring actual system frequency, over a period of at least 10 minutes. The aim of this additional test is to verify that the control system correctly measures the real system frequency for normal variations over a period of time.

OC5.A.4.5.3 In addition to the frequency response requirements it is necessary to demonstrate the **DC Converter** ability to deliver a requested steady state power output which is not impacted by power source variation as per CC.6.3.9. This test shall be conducted in **Limited Frequency Sensitive Mode** at a part-loaded output for a period of 10 minutes as per OC5.A.4.5.6.

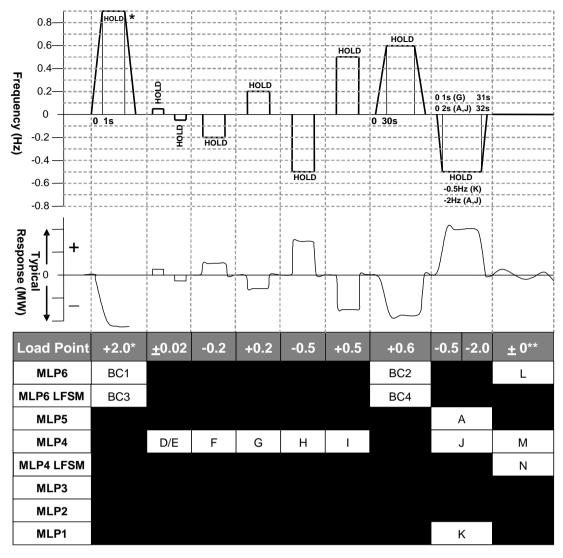
Preliminary Frequency Response Testing

OC5.A.4.5.4 Prior to conducting the full set of tests as per OC5.A.4.5.6, **DC Converter Station** owners are required to conduct a preliminary set of tests below to confirm the frequency injection method is correct and the plant control performance is within expectation. The test numbers refer to Figure 1 below. These tests should be scheduled at a time where there are sufficient MW resource in order to export full **Registered Capacity** from the **DC Converter**. The following frequency injections shall be applied when operating at module load point 4.

Test No (Figure 1)	Frequency Injection	Notes
8	Inject - 0.5Hz frequency fall over 10 sec	
	Hold until conditions stabilise	
	Remove the injected signal	
14	Inject +0.5Hz frequency rise over 10 sec	
	Hold until conditions stabilise	
	Remove the injected signal	
13	Inject -0.5Hz frequency fall over 10 sec	
	Hold for a further 20 sec	
	At 30 sec from the start of the test, Inject a +0.3Hz frequency rise over 30 sec.	
	Hold until conditions stabilise	
	Remove the injected signal	


OC5.A.4.5.5 The recorded results (e.g. Finj, MW and control signals) should be sampled at a minimum rate of 1 Hz to allow **The Company** to assess the plant performance from the initial transients (seconds) to the final steady state conditions (5-15 minutes depending on the plant design). This is not witnessed by **The Company**. The **DC Converter Station** owner shall supply the recordings including data to **The Company** in an electronic spreadsheet format. Results shall be legible, identifiable by labelling, and shall have appropriate scaling.

Full Frequency Response Testing Schedule Witnessed by The Company


OC5.A.4.5.6 The tests are to be conducted at a number of different Module Load Points (MLP). In the case of a **DC Converter** the module load points are conducted as shown below unless agreed otherwise by **The Company**.

Module Load Point 6 (Maximum Export Limit)	100% MEL
Module Load Point 5	90% MEL
Module Load Point 4 (Mid point of Operating Range)	80% MEL
Module Load Point 3	DMOL + 20%
Module Load Point 2	DMOL + 10%
Module Load Point 1 (Design Minimum Operating Level)	DMOL

- OC5.A.4.5.7 The tests are divided into the following two types;
 - (i) Frequency response volume tests as per OC5.A.4.5. Figure 1. These tests consist of frequency profile and ramp tests.
 - (ii) System islanding and step response tests as shown by OC5.A.4.5 Figure 2
- OC5.A.4.5.8 There should be sufficient time allowed between tests for control systems to reach steady state (depending on available power resource). Where the diagram states 'HOLD' the current injection should be maintained until the **Active Power** (MW) output of the **DC Converter** has stabilised. All frequency response tests should be removed over the same timescale for which they were applied. **The Company** may require repeat tests should the response volume be affected by the available power, or if tests give unexpected results.

OC5.A.4.5. Figure 1 – Frequency response volume tests

OC5.A.4.5. Figure 2 – System islanding and step response tests

* This will generally be +2.0Hz unless an injection of this size causes a reduction in plant output that takes the operating point below **Designed Minimum Operating Level** in which case an appropriate injection should be calculated in accordance with the following:

For example 0.9Hz is needed to take an initial output 65% to a final output of 20%. If the initial output was not 65% and the **Designed Minimum Operating Level** is not 20% then the injected step should be adjusted accordingly as shown in the example given below

65%

initial Output	0570
Designed Minimum Operating Level	20%
Frequency Controller Droop	4%
Frequency to be injected =	$(0.65 - 0.20) \times 0.04 \times 50 = 0.9$ Hz

Initial Output

^{**} Tests L and M in Figure 2 shall be conducted if in this range of tests the system frequency feedback signal is replaced by the injection signal rather than the injection signal being added to the system frequency signal. The tests will consist of monitoring the **DC Converter** in **Frequency Sensitive Mode** during normal system frequency variations without applying any injection. Test N in Figure 2 shall be conducted in all cases. All three tests should be conducted for a period of at least 10 minutes.

REVISIONS

(R)

(This section does not form part of the Grid Code)

- R.1 **The Company's Transmission Licence** sets out the way in which changes to the Grid Code are to be made and reference is also made to **The Company's** obligations under the General Conditions.
- R.2 All pages re-issued have the revision number on the lower left hand corner of the page and date of the revision on the lower right hand corner of the page.
- R.3 The Grid Code was introduced in March 1990 and the first issue was revised 31 times. In March 2001 the New Electricity Trading Arrangements were introduced and Issue 2 of the Grid Code was introduced which was revised 16 times. At British Electricity Trading and Transmission Arrangements (BETTA) Go-Active Issue 3 of the Grid Code was introduced and subsequently revised 35 times. At Offshore Go-active Issue 4 of the Grid Code was introduced and has been revised 13 times since its original publication. Issue 5 of the Grid Code was published to accommodate the changes made by Grid Code Modification A/10 which has incorporated the Generator compliance process into the Grid Code.
- R.4 This Revisions section provides a summary of the sections of the Grid Code changed by each revision to Issue 5.
- R.5 All enquiries in relation to revisions to the Grid Code, including revisions to Issues 1, 2, 3, 4 and 5 should be addressed to the Grid Code development team at the following email address:

Grid.Code@nationalgrideso.com

Revision	Section	Related Modification	Effective Date
0	Glossary and Definitions	A/10 and G/11	17 August 2012
0	Planning Code – PC.2.1	G/11	17 August 2012
0	Planning Code – PC.5.4	G/11	17 August 2012
0	Planning Code – PC.8	G/11	17 August 2012
0	Planning Code – PC.8.2	G/11	17 August 2012
0	Planning Code – PC.A.1	G/11	17 August 2012
0	Planning Code – PC.A.2	A/10 and G/11	17 August 2012
0	Planning Code – PC.A.3	G/11	17 August 2012
0	Planning Code – PC.A.5	A/10 and G/11	17 August 2012
0	Compliance Processes	A/10	17 August 2012
0	Connection Conditions – CC.1.1	A/10	17 August 2012
0	Connection Conditions – CC.2.2	G/11	17 August 2012
0	Connection Conditions – CC.3.3	A/10	17 August 2012
0	Connection Conditions – CC.4.1	A/10	17 August 2012
0	Connection Conditions – CC.5.2	G/11	17 August 2012
0	Connection Conditions – CC.6.1	G/11	17 August 2012
0	Connection Conditions – CC.6.3	G/11	17 August 2012
0	Connection Conditions – CC.6.6	A/10	17 August 2012
0	Connection Conditions – CC.7.2	G/11	17 August 2012

Revision	Section	Related Modification	Effective Date
0	Connection Conditions – CC.7.4	G/11	17 August 2012
0	Connection Conditions – CC.A.1	G/11	17 August 2012
0	Connection Conditions – CC.A.2	G/11	17 August 2012
0	Connection Conditions – CC.A.3	G/11	17 August 2012
0	Connection Conditions – CC.A.4	G/11	17 August 2012
0	Connection Conditions – CC.A.6	A/10	17 August 2012
0	Connection Conditions – CC.A.7	A/10 and G/11	17 August 2012
0	Connection Conditions – Figure CC.A.3.1	G/11	17 August 2012
0	Operating Code No. 2 – OC2.4	G/11	17 August 2012
0	Operating Code No. 2 – OC2.A.1	G/11	17 August 2012
0	Operating Code No. 5 – OC5.3	A/10	17 August 2012
0	Operating Code No. 5 – OC5.5	A/10 and G/11	17 August 2012
0	Operating Code No. 5 – OC5.7	G/11	17 August 2012
0	Operating Code No. 5 – OC5.8	A/10 and G/11	17 August 2012
0	Operating Code No. 5 – OC5.A.1	A/10	17 August 2012
0	Operating Code No. 5 – OC5.A.2	A/10	17 August 2012
0	Operating Code No. 5 – OC5.A.3	A/10	17 August 2012
0	Operating Code No. 5 – OC5.A.4	A/10	17 August 2012
0	Operating Code No. 7 – OC7.4	G/11	17 August 2012
0	Operating Code No. 8 – OC8.2	G/11	17 August 2012

Revision	Section	Related Modification	Effective Date
0	Operating Code No. 8 – OC8A.1	G/11	17 August 2012
0	Operating Code No. 8 – OC8A.5	G/11	17 August 2012
0	Operating Code No. 8 – OC8B.1	G/11	17 August 2012
0	Operating Code No. 8 – OC8B.4	G/11	17 August 2012
0	Operating Code No. 8 – OC8B.5	G/11	17 August 2012
0	Operating Code No. 8 – OC8B Appendix E	G/11	17 August 2012
0	Operating Code No. 9 – OC9.2	G/11	17 August 2012
0	Operating Code No. 9 – OC9.4	G/11	17 August 2012
0	Operating Code No. 9 – OC9.5	G/11	17 August 2012
0	Operating Code No. 12 – OC12.3	G/11	17 August 2012
0	Operating Code No. 12 – OC12.4	G/11	17 August 2012
0	Balancing Code No. 1 – BC1.5	G/11	17 August 2012
0	Balancing Code No. 1 – BC1.8	G/11	17 August 2012
0	Balancing Code No. 1 – BC1.A.1	G/11	17 August 2012
0	Balancing Code No. 2 – BC2.5	G/11	17 August 2012
0	Balancing Code No. 2 – BC2.8	G/11	17 August 2012
0	Balancing Code No. 2 – BC2.A.2	G/11	17 August 2012
0	Balancing Code No. 2 – BC2.A.3	G/11	17 August 2012
0	Balancing Code No. 2 – BC2.A.4	G/11	17 August 2012
0	Balancing Code No. 3 – BC3.5	G/11	17 August 2012

Revision	Section	Related Modification	Effective Date
0	Balancing Code No. 3 – BC3.7	G/11	17 August 2012
0	Data Registration Code – DRC.1.5	G/11	17 August 2012
0	Data Registration Code – DRC.4.2	G/11	17 August 2012
0	Data Registration Code – DRC.4.4	G/11	17 August 2012
0	Data Registration Code – DRC.5.2	A/10 and G/11	17 August 2012
0	Data Registration Code – DRC.5.5	G/11	17 August 2012
0	Data Registration Code – DRC.6.1	A/10 and G/11	17 August 2012
0	Data Registration Code – DRC.6.2	A/10	17 August 2012
0	Data Registration Code – Schedule 1	A/10 and G/11	17 August 2012
0	Data Registration Code – Schedule 2	G/11	17 August 2012
0	Data Registration Code – Schedule 3	G/11	17 August 2012
0	Data Registration Code – Schedule 4	G/11	17 August 2012
0	Data Registration Code – Schedule 5	G/11	17 August 2012
0	Data Registration Code – Schedule 10	G/11	17 August 2012
0	Data Registration Code – Schedule 12A	G/11	17 August 2012
0	Data Registration Code – Schedule 14	A/10 and G/11	17 August 2012
0	Data Registration Code – Schedule 15	G/11	17 August 2012
0	Data Registration Code – Schedule 19	A/10	17 August 2012
0	General Conditions – GC.4	G/11	17 August 2012
0	General Conditions – GC.12	G/11	17 August 2012

Revision	Section	Related Modification	Effective Date
0	General Conditions – GC.15	G/11	17 August 2012
0	General Conditions – GC.A1	G/11	17 August 2012
0	General Conditions – GC.A2	G/11	17 August 2012
0	General Conditions – GC.A3	G/11	17 August 2012
1	Operating Code No. 8 – OC8A.5.3.4	C/12	6 November 2012
1	Operating Code No. 8 – OC8B.5.3.4	C/12	6 November 2012
2	Balancing Code No. 1 – BC1.2.1	B/12	31 January 2013
2	Balancing Code No. 1 – BC1.4.2	B/12	31 January 2013
2	Balancing Code No. 1 – BC1.A.1.5	B/12	31 January 2013
2	Connection Conditions – CC.7.7	D/12	31 January 2013
3	Glossary and Definitions	C/11	2 April 2013
3	Operating Code No. 8 – OC8A.4.3.5	B/10	2 April 2013
3	Operating Code No. 8 – OC8B.4.3.5	B/10	2 April 2013
3	Balancing Code No. 2 – BC2.5	C/11	2 April 2013
4	Glossary and Definitions	GC0060 (F/12)	19 August 2013
4	Planning Code – PC.A.5	GC0040 (A/12)	19 August 2013
4	Operating Code No. 2 – OC2.A.10	GC0060 (F/12)	19 August 2013
4	Data Registration Code – Schedule 1	GC0040 (A/12)	19 August 2013
4	Data Registration Code – Schedule 2	GC0060 (F/12)	19 August 2013
5	Glossary and Definitions	GC0033, 71, 72 and 73	05 November 2013

Revision	Section	Related Modification	Effective Date
5	General Conditions – GC.4	GC0071, 72 and 73	05 November 2013
5	General Conditions – GC.14	GC0071, 72 and 73	05 November 2013
5	General Conditions – GC.16	GC0071, 72 and 73	05 November 2013
6	Connection Conditions – CC.A.7	GC0065	13 December 2013
6	Planning Code – PC.A.3	GC0037	13 December 2013
6	Operating Code No. 2 – OC2.4.2	GC0037	13 December 2013
6	Operating Code No. 2 – Appendix 4	GC0037	13 December 2013
6	Balancing Code No. 1 – BC1.4.2	GC0037	13 December 2013
6	Balancing Code No. 1 – BC1.A.1.8	GC0037	13 December 2013
7	Glossary and Definitions	GC0044	31 March 2014
7	Operating Code No. 9 – OC9.2.5	GC0044	31 March 2014
7	Operating Code No. 9 – OC9.4.6	GC0044	31 March 2014
7	Operating Code No. 9 – OC9.4.7.4	GC0044	31 March 2014
7	Operating Code No. 9 – OC9.4.7.9	GC0044	31 March 2014
7	Operating Code No. 9 – OC9.4.7.10	GC0044	31 March 2014
7	Balancing Code No. 2 – BC2.9.2.2	GC0044	31 March 2014
8	Glossary and Definitions	Secretary of State direction – Generator Commissioning Clause	10 June 2014
8	Planning Code	Secretary of State direction –	10 June 2014

Revision	Section	Related Modification	Effective Date
		Generator Commissioning Clause	
8	Connection Conditions	Secretary of State direction – Generator Commissioning Clause	10 June 2014
8	Compliance Processes	Secretary of State direction – Generator Commissioning Clause	10 June 2014
8	Operating Code No. 5	Secretary of State direction – Generator Commissioning Clause	10 June 2014
8	Operating Code No. 7	Secretary of State direction – Generator Commissioning Clause	10 June 2014
8	Operating Code No. 8	Secretary of State direction – Generator Commissioning Clause	10 June 2014
8	Operating Code No. 8A	Secretary of State direction – Generator Commissioning Clause	10 June 2014
8	Operating Code No. 8B	Secretary of State direction – Generator Commissioning Clause	10 June 2014
8	Balancing Code No. 2	Secretary of State direction – Generator Commissioning Clause	10 June 2014
9	Operating Code No. 6 – OC6.5	GC0050	01 July 2014
9	Operating Code No. 6 – OC6.7	GC0050	01 July 2014

Revision	Section	Related Modification	Effective Date
9	Balancing Code No. 2 – Appendix 3 Annexures	GC0068	01 July 2014
9	Balancing Code No. 2 – Appendix 4 Annexure	GC0068	01 July 2014
10	Glossary and Definitions	Secretary of State direction – EMR	01 August 2014
10	Planning Code – PC.5.4	Secretary of State direction – EMR	01 August 2014
10	Planning Code – PC.5.6	Secretary of State direction – EMR	01 August 2014
10	General Conditions – GC.4.6	Secretary of State direction – EMR	01 August 2014
10	General Conditions – GC.12	Secretary of State direction – EMR	01 August 2014
11	Planning Code – PC.A.3.1.4	GC0042	21 August 2014
11	Planning Code – PC.A.5	GC0042	21 August 2014
11	Data Registration Code – DRC6.1.11	GC0042	21 August 2014
11	Data Registration Code – Schedule 11	GC0042	21 August 2014
12	Glossary and Definitions	GC0083	01 November 2014
12	Planning Code – PC.A.3.4.3	GC0083	01 November 2014
12	Planning Code – PC.D.1	GC0052	01 November 2014
12	Operating Code No. 2 – OC2.4.2.3	GC0083	01 November 2014
12	Operating Code No. 2 – OC2.4.7	GC0083	01 November 2014
12	Operating Code No. 6 – OC6.1.5	GC0061	01 November 2014
12	Data Registration Code – Schedule 1	GC0052	01 November 2014

Revision	Section	Related Modification	Effective Date
12	Data Registration Code – Schedule 2	GC0052	01 November 2014
12	Data Registration Code – Schedule 6	GC0083	01 November 2014
13	Glossary and Definitions	GC0063	22 January 2015
13	Connection Conditions – CC.6.5.6	GC0063	22 January 2015
13	Balancing Code No. 1 – BC1.A.1.3.1	GC0063	22 January 2015
13	General Conditions – Annex to General Conditions	GC0080	22 January 2015
14	Connection Conditions - CC6.1.7	GC0076	26 August 2015
15	Glossary and Definitions	GC0023	03 February 2016
15	Connection Conditions - CC6.2.2	GC0023	03 February 2016
15	Connection Conditions - CC6.2.3	GC0023	03 February 2016
15	Planning Code - PC.A.5.3.2	GC0028	03 February 2016
15	Connection Conditions - CC 6.3.2	GC0028	03 February 2016
15	Connection Conditions - CC 6.3.8	GC0028	03 February 2016
15	Compliance Processes – CP.A.3.3.2	GC0028	03 February 2016
15	Compliance Processes – CP.A.3.3.3 & 4	GC0028	03 February 2016
15	Operating Code No. 2 – OC2.4.2.1	GC0028	03 February 2016
15	Operating Code No. 5 - OC5.A.2.7.5	GC0028	03 February 2016
15	Balancing Code No. 2 – BC2.A.2.6	GC0028	03 February 2016
15	Data Registration Code – Schedule 1	GC0028	03 February 2016
15	Connection Conditions - CC.6.1.5	GC0088	03 February 2016

Revision	Section	Related Modification	Effective Date
15	Connection Conditions - CC.6.1.6	GC0088	03 February 2016
16	Connections Conditions - CC.6.3.15.1	GC0075	24 May 2016
16	Connections Conditions - CC.6.3.15.2	GC0075	24 May 2016
16	Connections Conditions - CC.A.7.2.3.1	GC0075	24 May 2016
16	Connections Conditions - CC.A.7.2.3.2	GC0075	24 May 2016
16	Operating Code No. 9 – OC9.4.7.9	Communications/ Interface Standards	24 May 2016
16	General Condition - Annex to General Conditions	Communications/ Interface Standards	24 May 2016
16	Glossary and Definitions – 'Cluster' removed	Housekeeping change - error resulting from Issue 3 Revision 10	24 May 2016
16	Glossary and Definitions – 'Maximum Import Capacity' amended	Housekeeping change – duplicate definition	24 May 2016
17	Connections Conditions - CC.6.3.15.1	GC0062	29 June 2016
17	Connections Conditions - CC.6.3.15.2	GC0062	29 June 2016
17	Connections Conditions – Appendix 4	GC0062	29 June 2016
18	Operating Code No. 2 – OC2.4.1.3	GC0092	11 August 2016
19	Glossary and Definitions 'Inadequate System Margin' amended	GC0093	30 September 2016
19	Operating Conditions – OC7.4.8.4	GC0093	30 September 2016
19	Operating Conditions – OC7.4.8.5	GC0093	30 September 2016

Revision	Section	Related Modification	Effective Date
19	Operating Conditions – OC7.4.8.6	GC0093	30 September 2016
19	Operating Conditions – OC7.4.8.6.1	GC0093	30 September 2016
19	Operating Conditions – OC7.4.8.10	GC0093	30 September 2016
19	Operating Conditions – Appendix 1	GC0093	30 September 2016
19	Balancing Conditions – BC1.5.4	GC0093	30 September 2016
19	Balancing Conditions – BC2.4.2	GC0093	30 September 2016
20	General Conditions - GC	GC0086	20 February 2017
20	Glossary and Definitions	GC0086	20 February 2017
20	Constitution and Rules of the Grid Code Review Panel	GC0086	20 February 2017
20	Governance Rules - GR	GC0086	20 February 2017
21	Connection Conditions – CC	GC0077	21 March 2017
22	Glossary and Definitions	GC0100, 101 and 102	16 May 2018
22	Planning Code - PC	GC0100, 101 and 102	16 May 2018
22	Connections Code - CC	GC0100, 101 and 102	16 May 2018
22	European Connections Code - ECC	GC0100, 101 and 102	16 May 2018
22	Compliance Processes	GC0100, 101 and 102	16 May 2018
22	European Compliance Processes	GC0100, 101 and 102	16 May 2018
22	Operating Code No.1	GC0100, 101 and 102	16 May 2018

Revision	Section	Related Modification	Effective Date
22	Operating Code No.2	GC0100, 101 and 102	16 May 2018
22	Operating Code No.5	GC0100, 101 and 102	16 May 2018
22	Operating Code No.6	GC0100, 101 and 102	16 May 2018
22	Operating Code No.7	GC0100, 101 and 102	16 May 2018
22	Operating Code No.8	GC0100, 101 and 102	16 May 2018
22	Operating Code No.8a	GC0100, 101 and 102	16 May 2018
22	Operating Code No.8b	GC0100, 101 and 102	16 May 2018
22	Operating Code No.9	GC0100, 101 and 102	16 May 2018
22	Operating Code No.10	GC0100, 101 and 102	16 May 2018
22	Operating Code No.11	GC0100, 101 and 102	16 May 2018
22	Operating Code No.12	GC0100, 101 and 102	16 May 2018
22	Balancing Code No.1	GC0100, 101 and 102	16 May 2018
22	Balancing Code No.2	GC0100, 101 and 102	16 May 2018
22	Balancing Code No.3	GC0100, 101 and 102	16 May 2018
22	Data Registration Code	GC0100, 101 and 102	16 May 2018

Revision	Section	Related Modification	Effective Date
23	Governance Rules	GC0119	10 August 2018
24	Glossary and Definitions	G0115 and GC0116	16 August 2018
24	Planning Code	GC0115	16 August 2018
24	Connection Conditions	GC0115	16 August 2018
24	European Connection Conditions	GC0115	16 August 2018
24	Compliance Processes	GC0115	16 August 2018
24	European Compliance Processes	GC0115	16 August 2018
24	Operating Code No.5	GC0115	16 August 2018
24	Operating Code No.8a	GC0115	16 August 2018
24	Balancing Code No.1	GC0115	16 August 2018
24	Balancing Code No.2	GC0115	16 August 2018
24	Data Registration Code	GC0115	16 August 2018
25	Glossary and Definitions	GC0097 and GC0104	07 September 2018
25	Balancing Code No.1	GC0097	07 September 2018
25	Balancing Code No.2	GC0097	07 September 2018
25	Balancing Code No.4	GC0097	07 September 2018
25	Planning Code	GC0104	07 September 2018
25	Connection Conditions	GC0104	07 September 2018
25	European Connection Conditions	GC0104	07 September 2018

Revision	Section	Related Modification	Effective Date
25	Demand Response Services	GC0104	07 September 2018
25	European Compliance Processes	GC0104	07 September 2018
25	Data Registration Code	GC0104	07 September 2018
26	Preface	GC0115	26 September 2018
26	Glossary Definitions	GC0115	26 September 2018
26	Operating Code 1	GC0115	26 September 2018
26	Operating Code 2	GC0115	26 September 2018
26	Operating Code 6	GC0115	26 September 2018
26	Operating Code 7	GC0115	26 September 2018
26	Operating Code 8	GC0115	26 September 2018
26	Operating Code 8B	GC0115	26 September 2018
26	Operating Code 9	GC0115	26 September 2018
26	Operating Code 10	GC0115	26 September 2018
26	Operating Code 11	GC0115	26 September 2018
26	Operating Code 12	GC0115	26 September 2018
26	Balancing Code 3	GC0115	26 September 2018
26	General Conditions	GC0115	26 September 2018
26	Governance Rules	GC0115	26 September 2018
26	Glossary Definitions	GC0116	26 September 2018
27	European Connection Conditions	GC0110	04 October 2018

Revision	Section	Related Modification	Effective Date
28	Glossary Definitions	GC0099	01 November 2018
28	Balancing Code 1	GC0099	01 November 2018
28	Balancing Code 2	GC0099	01 November 2018
29	Planning Code	GC0098	01 November 2018
30	Operating Code 5	GC0108	18 December 2018
31	Planning Code	GC0106	14 March 2019
31	Data Registration Code	GC0106	14 March 2019
32	Glossary and Definitions	GC0112	1 April 2019
32	Planning Code	GC0112	1 April 2019
32	Connections Conditions	GC0112	1 April 2019
32	European Connections	GC0112	1 April 2019
32	Operating Code 6	GC0112	1 April 2019
32	Operating Code 7	GC0112	1 April 2019
32	Operating Code 8	GC0112	1 April 2019
32	Operating Code 8A	GC0112	1 April 2019
32	Operating Code 9	GC0112	1 April 2019
32	Operating Code 11	GC0112	1 April 2019
32	Balancing Code 1	GC0112	1 April 2019
32	Balancing Code 2	GC0112	1 April 2019
32	Data Registration Code	GC0112	1 April 2019

Revision	Section	Related Modification	Effective Date
32	General Conditions	GC0112	1 April 2019
32	Governance Rules	GC0112	1 April 2019
32	Glossary and Definitions	GC0120	1 April 2019
33	Glossary and Definitions	GC0122	5 April 2019
33	Planning Code	GC0122	5 April 2019
33	Connection Conditions	GC0122	5 April 2019
33	European Connection Conditions	GC0122	5 April 2019
33	Demand Response Services	GC0122	5 April 2019
33	European Compliance Processes	GC0122	5 April 2019
33	Balancing Code 1	GC0122	5 April 2019
33	Balancing Code 2	GC0122	5 April 2019
33	Data Registration Code	GC0122	5 April 2019
33	General Conditions	GC0122	5 April 2019
34	Connection Conditions	GC0118	23 May 2019
34	European Connection Conditions	GC0118	23 May 2019
34	Glossary and Definitions	GC0118	23 May 2019
34	Operating Code 5	GC0118	23 May 2019
34	Planning Code	GC0118	23 May 2019
35	Glossary and Definitions	GC0114	23 May 2019
35	Balancing Code 4	GC0114	23 May 2019

Revision	Section	Related Modification	Effective Date
35	Balancing Code 5	GC0114	23 May 2019
36	European Connection Conditions	GC0111	12 July 2019
37	Governance Rules	GC0124	1 August 2019
38	Connection Conditions	GC0123	04 September 2019
38	Data Registration Code	GC0123	04 September 2019
38	European Connection Conditions	GC0123	04 September 2019
38	Glossary Definitions	GC0123	04 September 2019
39	Glossary Definitions	GC0125, GC0127, GC0128	12 February 2020
39	Planning Code	GC0125	12 February 2020
39	Connections Conditions	GC0125, GC0127, GC0128	12 February 2020
39	European Connections Conditions	GC0125, GC0127, GC0128	12 February 2020
39	Demand Response Services Code	GC0127, GC0128	12 February 2020
39	Operating Code 5	GC0125, GC0127, GC0128	12 February 2020
39	Operating Code 9	GC0125	12 February 2020
39	Operating Code 6	GC0127,GC0128	12 February 2020
39	Data Registration Code	GC0125	12 February 2020
40	Glossary Definitions	GC0135	05 March 2020
40	Operating Code 5	GC0135	05 March 2020
40	Balancing Code 1	GC0135	05 March 2020
40	Balancing Code 2	GC0135	05 March 2020

Revision	Section	Related Modification	Effective Date
40	Data Registration Code	GC0135	05 March 2020
41	Balancing Code 2	GC0143	07 May 2020
42	Glossary and Definitions	GC0096	04 June 2020
42	Planning Code	GC0096	04 June 2020
42	Connection Conditions	GC0096	04 June 2020
42	European Connection Conditions	GC0096	04 June 2020
42	European Compliance Processes	GC0096	04 June 2020
42	Operating Code 1	GC0096	04 June 2020
42	Operating Code 6	GC0096	04 June 2020
42	Operating Code 9	GC0096	04 June 2020
42	Balancing Code 2	GC0096	04 June 2020
42	Data Registration Code	GC0096	04 June 2020
43	Glossary and Definitions	GC0105	8 June 2020
43	Operating Code 3	GC0105	8 June 2020
44	Glossary and Definitions	GC0129	17 June 2020
44	Planning Code	GC0129	17 June 2020
44	Connection Conditions	GC0129	17 June 2020
44	European Connection Conditions	GC0129	17 June 2020
44	Operating Code 5	GC0129	17 June 2020