Power Demand

Lauren Moody Power Demand Manager National Grid

Key Drivers Change Over Time

Today

2030

			Curren	t Potentia
Very energy eff	icient - Iower r	unning costs		
(92-100) A				
(81-91)	В			
(69-80)	C			73
(55-68)	[D		
(39-54)		Ε		2
(21-38)		F	31	
(1-20)			G	

2012 Annual Demand Make Up

Gone Green Residential Demand Components

Electricity Axiom Deep Dive Energy Efficiency - Lighting

Power Axiom Deep Dive Microgeneration

Industrial Annual Demand

GG13 — SP13 - - - GG12 - - - SP12

Commercial Annual Demand

GG13 — SP13 - - - GG12 - - - SP12

Gone Green 2015 Annual Demand nationalgrid Changes From Last Year

Peak Power Demand Changes From Last Year

Peak Power Demand Why Peaks are Important

Peak Power DemandnationalgridShort Term Risk of Increase

