Fault Ride Through

Antony Johnson / Richard Ierna National Grid – TNS Technical Policy

Summary

- Resume of Actions
- Effect on Large Nuclear Generators
- Voltage against time curves
- RfG Voltage against time curve issues
- Review of RfG Requirements / Interpretation
- RfG Frequently Asked Questions Document
- Next Steps

Actions

- A summary of the workgroup findings and proposal, as a slide pack, for discussion – Completed – See separate Slide Pack
- Consider the impact on the new large nuclear fleet of Generators Included in slide pack / Discussion
- Consider further the requirement of specifying the fault-level at either a local or global level – Discussion – Current basis is towards site specific requirement similar to that for Excitation Performance.
- Superimpose the orange voltage against time curve on top of the RfG requirement Completed Included in slide pack.
- Change the date in the terms of Reference to March 2015 instead of March 2014 In progress / Completed
- Industry parties are asked to consider the stability of their station auxiliaries against the proposed curve. – Discussion - covered as a specific agenda item.
- Industry Parties where possible, to do some further analysis particularly of large plant – against the proposed GB curve. - Discussion
- Expansion of the group to consider the requirements for Embedded Plant covered as a specific agenda item.

Effect on Large Nuclear Generators

- Detailed studies undertaken
- Noted issues
- Open Circuit Response Non Grid Code Compliant
 - Believed to be an issue with model / parameters
 - Model evaluation being undertaken
- Application of faults on this model results in undamped oscillations.
- Need to work with individual manufacturers to ensure the models are correct (especially EDF, Horizon and NuGen)

ENTSO-E RfG - Voltage Duration Profile – Possible GB Option (3)

nationalgrid

Proposed Option

- Based on the extensive study work completed to date option 3 (Orange Curve) was the preferred option
- However it has subsequently been identified that Table 7.1 of the RfG for Type D Generators includes certain deadzones between RfG MIN and RfG MAX which would prevent the suggested curve from being used
- Limitations in the range of voltage parameters identified within Table 7.1 of the RfG document
- Clarification sought from ENTSO-E drafting team.
- Checks need to be made with the smaller units (Band B and C)

Options for Voltage Against Time Curves

ENTSO-E RfG - Fault Ride Through Requirements – Voltage Against Time nationalgrid Profile – Figure 3

ENTSO-E RfG - Voltage Against Time Parameters – Table 7.1 – Type D Synchronous Power Generating Units

nationalgrid

Voltage parameters [pu]		Time parameters [seconds]	
Uret:	0	tclear:	0.14 – 0.25
Uclear:	0.25	trec1:	tclear
Urec1:	0.5 - 0.7	trec2:	trec1 – 0.7
Urec2:	0.85 − 0.9 and <u>></u> Uclear	trec3:	trec2 – 1.5

 Table 7.1 – Fault Ride Through Capability of Synchronous Power Generating Modules

ENTSO-E RfG - Voltage Duration Profile – Table 7.1 – Limitation on TSO selections

nationalgrid

Review of RfG / Interpretation

nationalgrid

- Review of RfG requirements and Frequently Asked Questions document to be reviewed to ensure correct interpretation
- System studies have been run on the basis of identifying
 - Stable operating conditions
 - Post fault voltage recovery especially for onerous faults cleared in backup operating times and the effect on generation remote from the fault
 - Generator operating conditions (ie full lead and max output)
 - Effect of Generation on fault level
- Recap of RfG Fault Ride Through requirements working group discussion

Drax – Keadby – Thorpe Marsh, nationalgrid Drax – Thorpe Marsh - Double Circuit fault

KEMS4\KEMS4 M1: Voltage, Magnitude in p.u. KEMS4\KEMS4 R1: Voltage, Magnitude in p.u. EGGB4\EGGB4 M2: Voltage, Magnitude in p.u.

12

- Ensure NGET and working group assumptions are consistent with RfG Fault Ride Through Requirements
- Re-assess and finalise RfG Voltage against time curve
- Develop Grid Code Legal Text
- Finalise how compliance simulations would be demonstrated
- Consider changes on other documents eg Guidance Notes for Synchronous Generators?
- Extend the remit and representation of the Working Group to consider the Fault Ride Through requirements for Embedded Synchronous Generators