

Risk Assessment of Loss of Mains Protection

18 March 2013

Dr. Adam Dyśko University of Strathclyde Glasgow, UK e-mail: a.dysko@strath.ac.uk

- Revised work plan and methodology
- Initial DNO data
- Additional questions and data requirements
- Progress so far and completion date
- Other generation technologies (Phase II)

Phase I – Scope of work

WP1 - Simulation based assessment of Non Detection Zone (NDZ)

- RTDS real-time model of 30MVA machine connected to 33kV level (3MVA also machine considered for 'spot' checks)
- Laboratory hardware testing using a commercial relay with 8 setting options
 Setting BOCOE Time Dead
- Load modelling as fixed impedance and fixed power
- Generator control
 considered as P/pf and P/V

Setting Option	ROCOF [Hz/s]	Time Delay [s]	Dead Band applied
1	0.5	0.0	No
2	0.5	0.5	No
3	1.0	0.0	No
4	1.0	0.5	No
5	0.5	0.0	Yes
6	0.5	0.5	Yes
7	1.0	0.0	Yes
8	1.0	0.5	Yes

RTDS Model – network diagram

University of Strathclyde Engineering

Grid infeed

Adjustable loads

Generator with controllers

RTDS Model – control panel

0

OPEN2

0

BRK2

Ó

OPEN1

0

BRK1

3.04

2.06

1.08

0.1 MW

3.0

Operational mod

PSYSPU

0.0

QSYSPU 0.0 1.77

1.181

0.591

0.001

MVAR

0

WP2 – Risk level calculation at varying NDZ

- Generation range considered 5MW 50MW
- UK data
 - DG Generation statistics
 - Load profiles acquired from the utilities
 - Island formation configuration and statistics
- Overall risk of undetected islanding condition persisting longer than acceptable limit (e.g. 3s) will be established.

Phase I – Methodology

33kV

Type 1

Generator connected at 33kV at a primary busbar

Type 2

Generator connected at 11kV at a primary busbar

Type 4

Teed to a passing 33kV circuit

Low undetected island probability

Increased undetected island probability

Low undetected island probability

Randomising generator size

- Marginal probability principle is used for calculating overall probability
- Generator sizes from 5MVA to 50MVA
- Using UK DG statistics to establish DG size distribution

Non-detection zone probability at varying levels of generator output

DG Statistics (5MW-50MW)

SM based DG (5MW-50MW)

Wind generation (5MW-50MW)

LOM Safety Hazard Probability Tree

Phase I – DNO data

Requested data

- Examples of load profiles (both P and Q) recorded at a primary substation over a period of minimum 1 day with sampling period of 5s or less. – some examples received
- Total number of DGs and amount of installed DG capacity in the range between 5MW and 50MW, as well as the envisaged DG numbers and capacity in 5 years' time. – *extracted from DCRP_12_02_04*
- Typical DG connections for sizes between 5MW and 50MW (choose from the four types as shown below) – *continues*
- Typical (or average or min/max) size of network fed from a primary substation (i.e. potentially islanded) in terms of overall length of lines (cables and OHLs) at 33kV and 11kV, and number of transformers (33/11kV). – not crucial
- Current LOM practice for generators between 5MW and 50MW (ROCOF, VS or Intertripping) and estimated amount of DG with ROCOF protection. – continues
- Total number of substations and frequency of occurrence of losing a primary substation, i.e. frequency of potential islanding conditions. – *continues*

Western Power Grid Data

Western Power Grid Data

Western Power Grid Data

- 1 year data
- Sampling period 0.5h
- Current only

University of Strathclyde Engineering

SSE Load Data

- Mixed residential industrial load 6 days over 1 year
- Sampling period 5s

SPM Load Data

- 3 rural primes 1 day
- Sampling period 5s

SPM Load Data

- 3 rural primes 1 day
- Sampling period 5s

SPM Load Data

- 3 rural primes 1 day
- Sampling period 5s

12 July 2012 - Thursday
 f_{mean} = 49.9941 Hz

2 February 2013 - Saturday
 f_{mean} = 50.0001 Hz

14 March 2013 - Thursday
 f_{mean} = 49.9970 Hz

Questions

- Load model (fixed impedance or fixed power)?
- Generation profile (loading at 90% rating and *pf*=0.98 leading)?
- Generator control regime (P/pf, P/V)?
- Possible island formation scenarios?

Progress to date

- Samples of load profiles and DG statistics have been obtained
- RTDS modelling has been commenced; base model has been setup
- UK frequency analysis has been undertaken to assess the effectiveness of the proposed frequency dead band.
- Phase I completion by end of May.
- Phase II wind and PV generation stability assessment

Thank you!