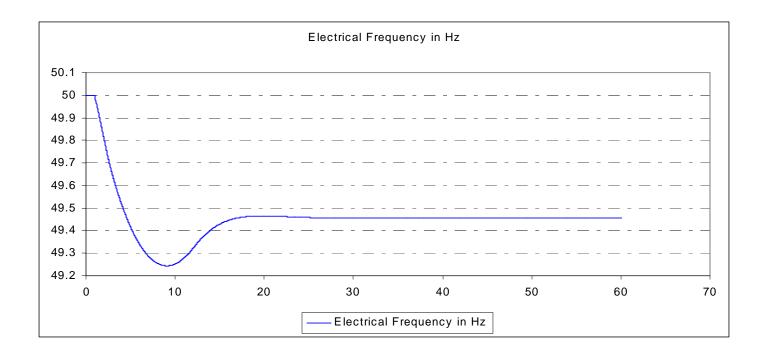


Frequency Response – Technical Subgroup

Dynamic Simulation Update – 28th March 2011


Key Points for this Meeting

- Generation Background assumptions have been updated in line with group discussions (see separate spreadsheet)
- Governor models have been refined
 - Specific parameters adopted for delays and ramp rates
 - Synchronous Plant
 - Delay 1s
 - Ramp rate equivalent to 8MW/s per generator or 16MW/s module (assuming 2:1 configuration)
 - Asynchronous Plant
 - Delay 1s
 - Ramp rate equivalent to MW/s per module (capacity) in base model
 - The following slides present results from key 2020 generation scenarios
 - Full range of scenarios are being evaluated to meet the group's objectives of evaluating frequency control requirements
 - Feedback needed from working group members
 - 1800MW loss simulated
 - Models tuned for timescales up to Primary Response only
 - Fast acting proportional governor action examined

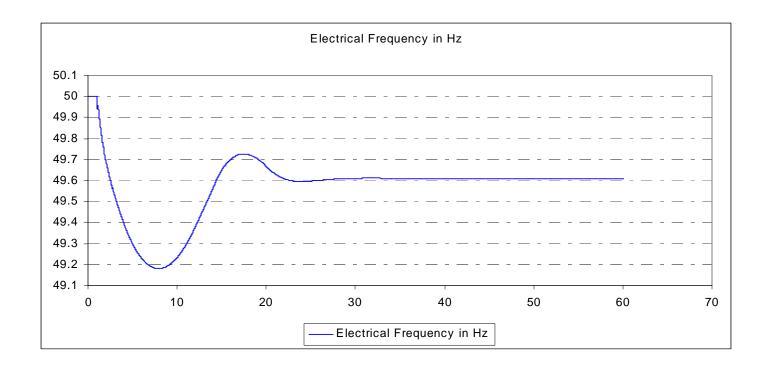
Low Demand Low Wind

 Frequency containment achieved with response holding on synchronous plant in the absence of synthetic inertia

Approximately 1400MW of dynamic response and 200MW of static response delivered

Low Demand High Wind

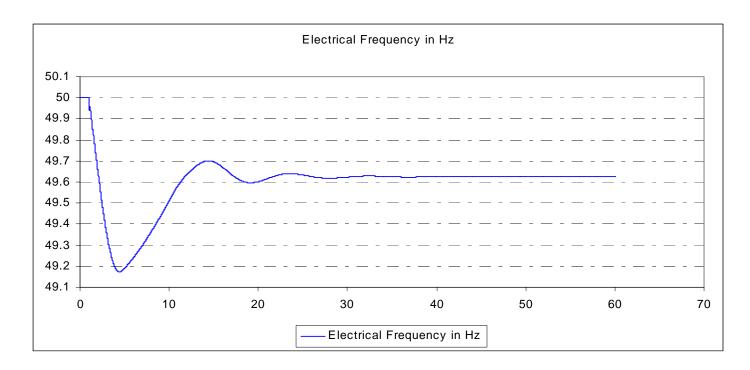
Frequency containment not achieved in the absence of synthetic inertia



 650MW of dynamic response from synchronous gens, 1200MW from wind turbines and 200MW static delivered

Low Demand High Wind

Frequency containment achieved using df/dt triggered control



450MW of dynamic response from synchronous Gens, 1200MW from wind turbines, 200MW static response and 800MW of synthetic inertia delivered

Low Demand High Wind

 Frequency containment achieved using fast acting governor action on asynchronous frequency sensitive generation

 400MW of dynamic response from sync gen, 1200MW of dynamic response from wind turbines within 4 seconds and 200MW of static response.

Summary of key points

- Simulation results highly sensitive to assumptions
 - Ramp rates
 - Capability, multiples of machines and deload point assumptions
 - Delays
 - Longer delays in response delivery would invalidate results
- Significant volume of synthetic inertia needed under 25GW high wind scenario
 - frequency containment enabled by
 - df/dt control or
 - fast acting response on frequency sensitive asynchronous generation
 - are these ramp rates and response times achievable?
- Simulation work at higher demands suggests synthetic inertia requirement becomes apparent at 35GW
 - Further information to be provided in meeting