

FRT Protection Settings

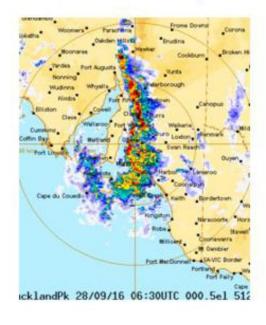
Damian Jackman

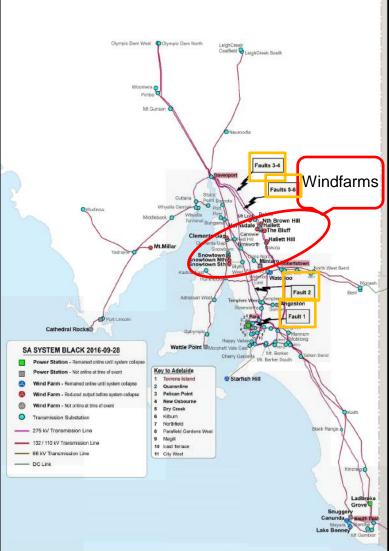
Introduction

- South Australia Blackout Event
 - Context
 - Storm passage and Fault Ride Through Events
 - Loss of Wind Generation
 - Subsequent changes to Wind Turbine FRT settings
- SSE Wind Turbine FRT Settings (Existing)
- Example of FRT shutdown on SSE Site
- Clustering of Windfarms in GB and possible FRT risk for multiple windfarms

South Australia Blackout Event - Context

- Forecast severe weather with increased lightning risk and wind speeds of 120 km/h. Potential for high wind shutdown noted leading to increased monitoring of wind output
- System operated to N-1 standard.
- Of 1895 MW demand, 883 MW was wind (46%), 330 MW was gas (17%) and, prior to the blackout, 613 MW (32%) was being imported over two interconnectors:
 - 114 MW on Murraylink DC connector (which did not subsequently trip)
 - ~500 MW on Heywood AC interconnector (*understood to have a nominal capacity 460 MW* and thermal 15min limit of 750MVA)




South Australia Blackout Event - Storm Passage and FRT Events

Five system faults within 88s resulted in <u>six</u> voltage disturbances and a loss of 445 MW wind generation. The subsequent increase in load on Heywood interconnector resulted in an interconnector trip leading to a 900 MW

sudden loss

South Australia rain radar 12 minutes after system black

South Australia Blackout – Loss of Wind Generation

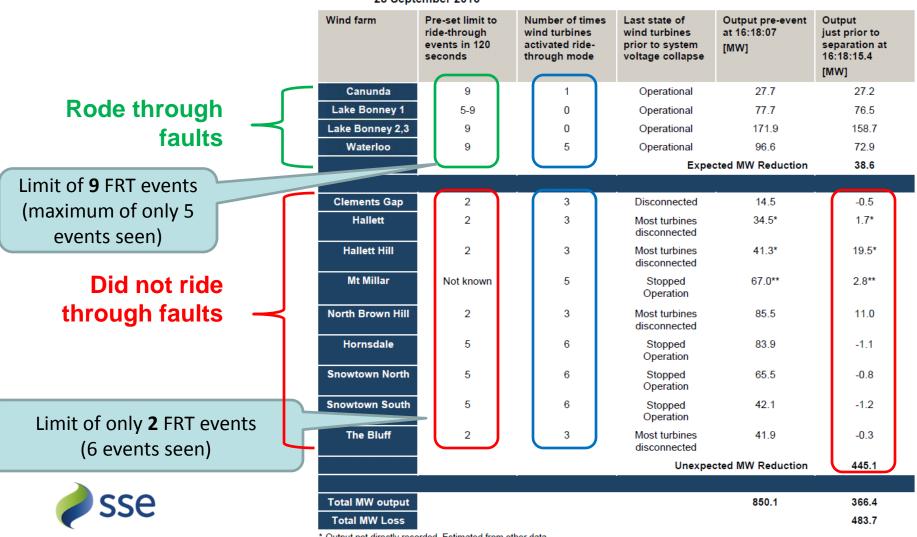


Table 4 SA wind farm responses to six voltage disturbances between 16:17:33 and 16:18:15 on 28 September 2016

* Output not directly recorded. Estimated from other data.

** Value shown is MVA. Real power output (MW) would be somewhat less.

South Australia Blackout - Subsequent Changes to FRT Settings

 Table 9
 Protection settings implemented in SA wind turbines at the time of incident, and proposed mitigation measures

Wind turbine group	Installed capacity in SA (MW)	Able to ride-through multiple faults on 28 September 2016	Multiple ride-through capability on 28 September 2016	Actions taken for improved ride-through capability
Group A	507	No	2 within 2 minutes ^a	Proposed 4 within 2 minutes
Group B	372	No	5 within 30 minutes (also 5 within 2 minutes)	Changed to 20 within 120 minutes (also 20 within 2 minutes)
Group C	70	No	Varies depending on fault duration, dip size and rate of active and reactive power recovery following fault clearance Can ride through at least 9 faults within 30 minutes if cleared within primary protection clearance time.	Investigating the possibility of modifying fault ride-through mode from zero power mode to reactive power and voltage control mode to avoid sustained power reduction during faults
Group D	627	Yes	 Up to 10 within 30 minutes 10 for Canunda, Cathedral Rocks, Lake Bonney 2, 3 and Waterloo wind farms. Wattle point, Lake Bonney 1, and Starfish Hill wind farms are yet to be confirmed. 	No further increase has been proposed

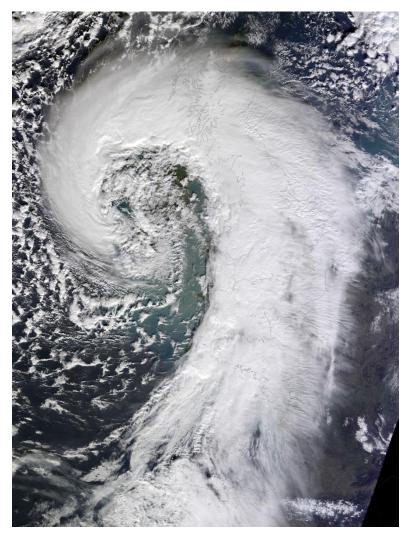
a In this table, a setting allowing plant to ride through two successive faults but disconnect on the third fault is described as "2 within 2 minutes".

SSE Generation – Wind FRT Protection Settings

- Informal survey of FRT ride through event capability
- Two main wind technology types; DFIG and 'Fully' rated Converter
- FRT event causes heating in IGBT components of converter
- Limit on no. events / defined period to prevent damage. Wide variation between manufacturers:

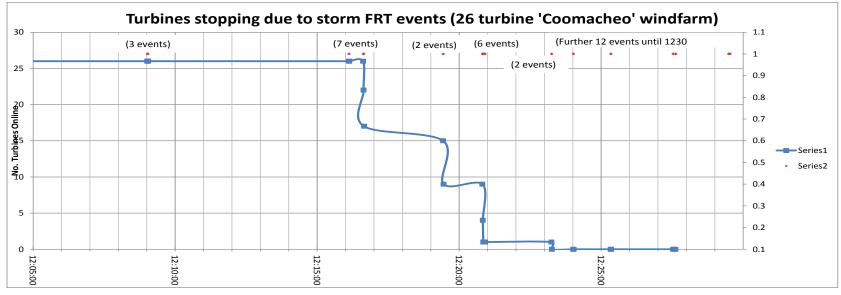
Manufacturer	MW Installed / In Construction (in GB)	Approximate MW Installed in GB (Non-SSE)	Wind Turbine Type	FRT Protection setting (No. of FRT events permitted)	
A	784.6	6000	Full Converter	6 events / 30 min period	
В	94	< 500	DFIG	None	
С	216	1400	DFIG	2 (but possibly more as it depends on depth and length of fault)	
D	191	1000	Full Converter / DFIG Mixture	10 (for both DFIG and Convertor)	

Survey of Wind Turbine Manufacturer Settings within SSE

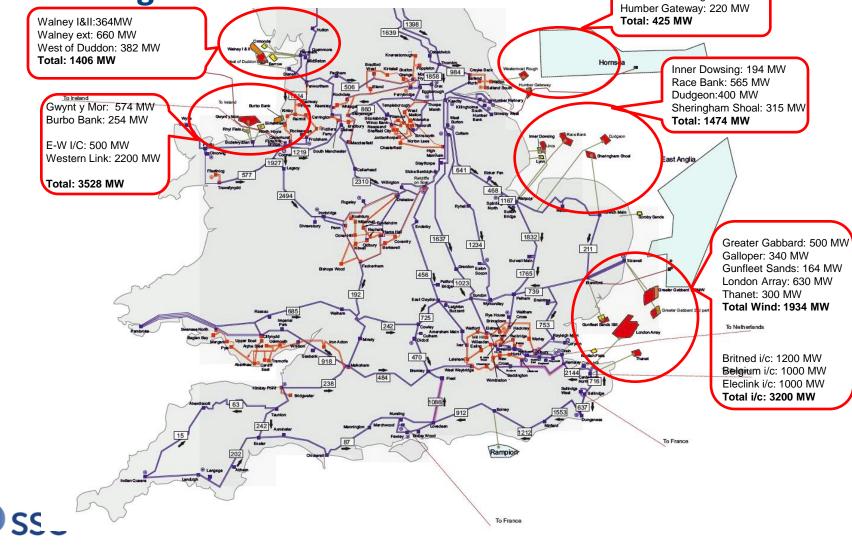

Note - Manufacturer 'type' above (e.g A, B etc) does not relate to the letter groups given in the table on previous slide

• Lack of consistency between manufacturers...but no Grid Code Requirement??

Example of Repeated FRT Event


- Ireland, 2nd February 2014 storm
- Maximum gust: 99 mph at Shannon Airport
- Storms with similar severity previously occurred on 26th December 1998 and 24th December 1997
- Widespread damage to transmission system; 260,000 customers left without power

Example of FRT induced Stop on SSE Windfarm


• Coomacheo Windfarm, 26 x 2.3 MW turbines, SW Ireland

- 33 FRT Events detected by wind turbines within period of ~ 25 min
- Events were clustered so <u>that several occurred within 1s but were still</u> <u>recorded by the wind turbines as separate events</u>
- All turbines were stopped within 5 minutes of first FRT event

Is there a risk from regional clustering of converter connected generation?

Questions to consider

- Should all transmission wind turbines have a *minimum number of FRT events within defined period*?
- What settings are required for GB?
- Are retrospective updates required?
- Are certain parts of the country at substantially higher risk?
- Are changes needed to existing fast reserve contingency when there is a high potential for FRT risk periods?
- Is there a concurrence of FRT risk with high wind shutdown?
- Are interconnectors with voltage source technology at similar risk?
- Is a workgroup required to consider the above?

Thank you

