Future Energy Scenarios 2019

Transport

July 2019

Modelling inputs and assumptions

	F Changed from <i>FES 2018</i> -
Carbon output	EV location & time of charging
Vehicle type	Engagement with technology & tariffs
Number of vehicles	Fuel
Efficiency	Autonomy
Miles driven	Public transport

nationalgridESO

Energy per year (TWh) - Consumer Evolution

Energy per year (TWh/Year) – Two Degrees

Network Innovation Allowance (NIA) Project

Element Energy

EV charging information for 2017 & 2018

Over 50% of residential chargers

70% of non-residential chargers

8 million charging instances

Residential	Work	Public
75%	15%	10%

nationalgridESO

nationalgridESO

Transport electricity peak (GW) – Community Renewables

Significant growth in electric vehicles in all scenarios

Peak EV charging is expected to be less than previously forecast

Electric vehicles can help decarbonise both transport and electricity supply for Great Britain. The market needs to align vehicle charging behaviour to complement renewable generation and meet system needs.

nationalgrideso.com

Faraday House, Warwick Technology Park, Gallows Hill, Warwick, CV346DA

