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Executive summary

The detailed findings of the report are:
1  Aggregations of wind generators can reliably deliver  

a sustained constant level of power, even for relatively 
long periods of up to 5 days, and even where the level  
of certainty required that the specified power level  
will in fact be consistently delivered is 99.9 per cent. 
However, that level of power decreases significantly as 
the duration is extended to days, and even more rapidly 
as the required reliability is increased from 50 per cent  
to 99.9 per cent, with values being very small in many  
of the combinations of duration and risk that were tested. 

An example of this is shown in table 0.1 and figure 0.1 
below which lists the average number of MW of wind 
capacity that would need to made available in advance  
(i.e. procured as part of the service) in order secure a 
sustained 500 MW of power. The averaging is across 100s 
of possible combinations of procured wind farms, and all 

possible start-times (and days of the year) are included  
in the quantile calculations. Results are shown for different:

•  Durations: the length of time for which the set  
of procured wind generators are expected to deliver  
at least as much the specified power output, 500 MW  
in this example, without dipping below this level at any 
time. Naturally, if the specified power is only needed  
for one hour, then the capacity required to reliably  
deliver it is lower than if it was required for 24 hours.

•  Percentiles: the 50th percentile value represents the 
amount of procured capacity that has a 50 per cent 
chance of success in generating at least 500 MW 
consistently throughout the required duration, given 
an unknown start time (and day of year). The 99.9th 
percentile value represents the amount of procured 
capacity necessary for a 99.9 per cent chance of 
success in delivering at least 500 MW consistently  
for the required duration, given an unknown start time.Responding to the significant changes in the energy 

landscape in the past decade, National Grid ESO are 
seeking to understand how renewable generation and 
distributed energy resources (DER) could facilitate the 
restoration of the GB power system with the decline  
and decommissioning of traditional Black Start providers 
(larger, synchronous power stations). The creation of 
smaller, distributed power islands is of particular interest  
as a result, whereby these would be initiated on distribution 
networks and grow to energise the transmission network. 
This project has considered the technical capability of the 
technologies, the challenges of creating and maintaining 
small power islands with high penetrations of renewables 
and DER, and how to better predict the reliability and 
availability of renewable generation in such a scenario. 

The project has three distinct deliverables:

•  Report 1: Overview of the capability of non-traditional 
technologies to provide Black Start and restoration 
services;

•  Report 2: Investigation of the challenges around power 
system strength and stability specifically in relation to 
power islands with high penetrations of renewables  
and converter-based technology; and

•  Report 3: A sophisticated planning tool specifically 
designed to simulate distributions for the reliable output 
of wind over periods of hours to days, and how these 
distributions vary on timescales of months and years.

This report is Report 3, one of the three deliverables  
from the “Black Start from Non-Traditional Technologies” 
project. It is concerned with characterisation of the highly 
variable nature of the resource for non-dispatchable 
renewable generation, and wind in particular. It presents  
the results of extensive quantitative assessment and 
statistical modelling of wind variability, conducted to  
explore and describe the extent to which wind generators 
have the capacity to provide the reliable and sustained 
power outputs necessary for establishing and growing 
power islands.

The analysis in this report suggests that wind farms could 
be able to displace some conventional black start providers 
in investment planning timescales. For typical combinations 
of wind farms, large volumes of capacity would be required 
to achieve this, with some specific combinations requiring 
much less than others, where favourable geographic 
diversity ensures a higher level of minimum output.

Furthermore, the analysis suggests that wind could be very 
effective for displacing traditional providers in operational 
planning timescales, i.e. where the ability of the procured 
wind generation portfolio to deliver a stable minimum output 
in the short term can be accurately predicted. This could  
be very significant for the ESO given the high cost and 
carbon impact associated with guaranteeing the readiness 
of conventional out-of-merit thermal power stations for 
Black Start.

These results are consistent with the very well-established 
view that wind generation has a ‘capacity credit’ in  
the sense of being able to maintain system reliability  
(as measured by loss of load expectation or expected 
energy unserved) when replacing conventional generation 
capacity. More specifically, the results demonstrate that  
the concept of a positive capacity credit for wind also  
holds true in different contexts – albeit defined slightly 
differently, notably Black Start. This is also, almost certainly, 
applicable to other aspects of system security including 
procurement of system services such as frequency 
response and reserves.

Combining the output of wind with electricity storage  
and solar power could enable even greater displacement 
of traditional service provision, although this hasn’t been 
considered in detail in this analysis.

TNEI Services Ltd (TNEI) was commissioned by National Grid ESO 
to investigate the capability of non‑traditional technologies in the 
restoration of the GB power system in the event of a partial or total 
system shutdown. The project is a Network Innovation Allowance 
(NIA) project initiated by National Grid ESO, with support from SP 
Energy Networks. The overall aim of the NIA project was to provide 
insight into the capability of several prevalent non‑traditional 
technologies: wind, solar, storage, demand side response (DSR)  
and electric vehicles (EV), to provide ancillary services to National 
Grid ESO in the event that the GB network requires a Black Start.

Table 0.1
The average amount of procured wind capacity (in MW) required to secure a sustained 500 MW of power, for various 
durations and risk levels

Duration 50th percentile 90th percentile 99th percentile 99.9th percentile

1 hour 1,587 5,742 14,368 27,873

4 hours 1,771 6,679 16,750 32,599

8 hours 2,019 7,816 18,731 36,635

12 hours 2,267 8,781 20,410 40,343

24 hours 3,023 10,798 23,856 52,446

Figure 0.1
The average amount of procured wind capacity required to secure a sustained 500MW of power,  
for various durations and risk levels
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Executive summary

2  There can be very large differences in the ability of two 
sets of wind farms to provide reliable output, despite 
their total capacity being very similar, due to differences 
in their geographical arrangement. This would certainly 
need to be considered carefully by the Energy System 
Operator before procuring Black Start services from 
wind generators. Despite this variability, the overall trend 
in ability of wind farm sets to provide reliable constant 
outputs as a function of total procured capacity is almost 
exactly linear.

3  The level of power that can be sustained by a specific 
set of wind farms for a specified duration, and with a 
specified risk of failure, is dependent on a number of 
factors. In order of decreasing impact, these factors are: 
(i) the initial wind speeds (i.e. resource availability state); 
(ii) the month of the year; (iii) long-term random anomalies 
in resource availability patterns; (iv) the time-of-day.

If taking average values across all of these factors,  
then the ability of wind to contribute to restoration  
is not very significant. For example, as table 0.1 above 
shows, if attempting to provide 500 MW of wind with  
only a 1% risk of failure, then between 30 to 40 times  
more wind is required to be procured compared to 
the consistent output required. However, for specific 
combinations of these factors, the availability of wind  
to contribute can actually be very high. In particular,  

if the initial wind speeds are high, the analysis shows 
that wind can be relied upon with a reasonably low risk 
of failure to provide quite high levels of outputs for long 
durations. NGESO could exploit this when planning for 
system restoration in operational timescales – for example, 
if NGESO has a reliable forecast  that wind speeds will be 
high for one or two days, then this may allow them to defer 
dispatching out-of-merit conventional Black Start providers 
without compromising their Black Start readiness.

4  A complex, multi-step statistical time series model can 
be built of the power output from a specified set of wind 
farms. The exact same model structure (with different 
parameter values) can be used to represent wind farm 
sets ranging from single wind farms to the full set of  
22 farms studied. This model has been demonstrated  
to produce synthetic series that show a very good 
degree of agreement with historical series, when 
subjected to many diverse statistical comparisons.

5  The model can be used dynamically on many planning 
and semi-operational time scales to update predictions  
of the deliverable power level at specified durations 
and risk levels. However, if there is a need to update 
predictions with a nearly real-time frequency, the  
model should be expanded to include numerical, 
meteorological forecasts, ideally in ensemble form.

1 Introduction

When growing a power island during system restoration 
with traditional providers, the ESO would be able  
to add block loads to the island based on reliable  
ramping rates and levels of output from these providers. 
There are some uncertainties over longer term planning 
timescales, for example, associated with communications 
failures for these providers or unforeseen maintenance. 
However, in operational planning and scheduling  
timescales, once the ESO knows a generator has  
been made ready, it will be able to rely on that provider’s 
output to contribute towards restoration with a high level  
of certainty.

This is not typically the case with prospective service 
provision from variable generation like wind and solar.  
This generation could, in principle, be used by the ESO  
in two different ways:
•  It could be used to supplant the provision of the service 

from traditional providers. In this case, the ESO needs  
to know what level of output can be relied upon from  
the wind and solar (at a pre-determined level of certainty) 
and, therefore, the reduction in procurement from other 
traditional providers than can be achieved.

•  It could be used to accelerate restoration, without 
reducing service procurement from traditional providers, 
by simply allowing this additional wind generation  
to spill onto the system and adding further block loads  
to match. However, in this case, ESO will need to  
be careful not to add block load too quickly, as if wind 
conditions subside before other generation becomes 
available this could lead to a shortage.

In both cases, the ESO will need to have an idea  
(i.e. forecast) of the extent to which it can rely upon  
wind to provide a minimum consistent level of output.  
The aims of this analysis, therefore, are: 

•  To determine the output of wind that can e relied 
upon during system restoration, i.e. the maximum 
sustainable output from a group of windfarms 
over some period of time. If time is modelled as 
progressing in discrete intervals/ steps (e.g. hours  
or 30 minutes), then the quantity of interest is the 
minimum, across all time steps in the restoration 
period, of the maximum power that can be delivered 
during each time-step.

•  To explore how this quantity varies depending  
on how much risk the ESO is willing to accept  
(e.g. 50 per cent chance of success vs 99 per cent 
chance of success).

•  To understand how this varies based on the required 
duration of the sustained output.

•  To understand how this varies predictably  
between seasons and time of day, and also more 
randomly between generally good and poor wind 
resource seasons.

•  To see how this varies depending on the combination 
of wind farms used.

•  To demonstrate a model which could be used  
by the ESO when planning system restoration  
using variable resources.

The capability of non‑traditional technologies, particularly  
variable renewable generation, to contribute to system restoration 
is significantly limited by the uncontrollable variability of these 
generation sources. Within this project, we have explored  
a case study of wind contributing to system restoration.
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To address these questions, the first part of the  
analysis presented here involved detailed statistical  
analysis of wind farm output time series, generated  
from historical meteorological data. Following this,  
we present the development of a generative statistical 
model capable of producing unlimited synthetic wind 
resource data, and demonstrate some of this model’s  
value. The model was trained on the quasi-historical  
series analysed in the first part on this case study.  
As it stands, a model like this could be used by the  
ESO on a planning time-scale to help understand the  
value of wind for restoration. Further, with the inclusion  
of probabilistic meteorological forecasts – such as  
those currently used by the ESO – the model could  
be adapted to become a state-of-the-art forecasting  
tool that predicts, on operational time-scales, the level  
of wind power output that can be maintained for  
a specified duration at a specified level of certainly.

We have used Scotland as a case study for this,  
as a single Black Start zone. This means the results  
are uniquely determined by both (i) the nature of the  
wind farms in Scotland (e.g. capacities and turbine models) 
and (ii) the wind resource in Scotland. We have considered 
both large onshore and offshore wind farms in Scotland 
(although in principle the same approach could be applied 
to smaller distribution connected sites).

The rest of this report is structured as follows:
1 a description of the data sources we have used
2  summarising the insight gained from exploratory  

data analysis
3  a description of the methodology used for the  

generative model
4 some example results using the generative model
5  a discussion of further applications of this model,  

and useful extensions that could be made in the  
future, including use as a forecasting tool.

1 Introduction

To complete this analysis, we needed granular time  
series (e.g. hourly) of the power output from a diverse  
mix of wind farms in the Black Start zone we are  
studying (Scotland), so that we can model evolution  
in time in such relatively short time-steps. In addition,  
these had to be long time series, to ensure that they  
fully account for both the short and long-term dynamics  
of the wind resource, given that the wind climate can 
change quite significantly year-on-year in addition to the 
short-term variability in weather. As a result, in many cases 
this might require “historical” time series for wind farms  
that actually pre-date the commissioning of the wind farms.

To get around this problem, we have generated “synthetic” 
time series, using the Renewables Ninja1 website, 
developed by Iain Staffell of Imperial College London and 
Stefan Pfenninger of ETH Zurich. This site provides the user 
with hourly-resolution time series of the (maximum) power 
outputs of virtual wind farms and solar power plant at any 
location in the world, while also accounting for the way that 
turbines and solar panels convert the renewable resource 
into power (e.g. the effect of wind turbine power curves).

These time series are generated using the user’s choice 
from two reanalysis meteorological datasets: NASA’s 
MERRA dataset and the SARAH dataset from CM-SAF, 
with the former chosen for this study, due to its superior 
accuracy for European locations. Reanalysis datasets use  
a combination of highly complex meteorological models 
with many sources of observational data and satellite 
imagery to produce a self-consistent and plausible ‘best 
guess’ of the physical state of the atmosphere at all hours 

over the last few decades, and from this the true value  
of many meteorological variables. The model allows  
for the generation of time-stamped series of wind farm 
(and solar PV) output for up to 17 historical years, namely 
2001–2017. That is, a wind power output time-stamped  
as e.g. 22:00 on 26 April 2010 is the maximum power  
a wind farm at that location could have produced at  
this time, given the meteorological conditions according  
to the chosen reanalysis model. This overall approach  
is similar in many ways to the way wind power is 
represented by the ESO in capacity adequacy studies.

The primary variable is obviously wind speed, but  
others are also used to dynamically calculate air density. 
The smoothing effect of high frequency fluctuations in  
wind speed about the hourly average values is accounted 
for, along with the fact that these fluctuations are only 
partially correlated across the spatial extent of the  
wind farm – although the model assumes fixed spatial 
dimensions. The tool also allows the user to specify  
the turbine hub height, and to choose the turbine model 
from an extensive, but not exhaustive, set of options.

As inputs to this model, we have compiled data for 22 large 
onshore and offshore wind farms in Scotland, including 
location, capacity, turbine type, and turbine hub height – 
drawing from a wide variety of online data sources, such  
as government databases. The set is comprised of the  
20 largest operational onshore wind farms in Scotland,  
and the two large offshore projects that are currently 
operational, and their details are listed in table 2.1 below.

2 Data sources

1    https://www.renewables.ninja/ 

Table 2.1
Key attributes of the Scottish windfarms modelled in the case study

Wind farm Latitude Longitude Capacity (MW) Hub height Turbine type 

Arecleoch 55.0688 -4.7971 120 95 Gamesa G80 2000

Bhlaraidh 57.2191 -4.5819 110 76 Vestas V112 3300

Black_Law 55.7622 -3.7626 124 82 Siemens SWT 2.3 101

Clyde_1 55.4416 -3.5427 350 80 Siemens SWT 2.3 82

Clyde_2 55.5041 -3.5479 172.8 80 Siemens SWT 3.0 101

Corriegarth 57.1901 -4.3596 69 78 Enercon E82 3000

Crystal_Rig_2 55.8995 -2.5293 138 75 Siemens SWT 2.3 101

Dersalloch 55.3042 -4.4882 69 50 Siemens SWT 3.0 101

Dunmaglass 57.2515 -4.2558 94 70 GE 2.75 103

EOWDC 57.2167 1.9833 93.2 120 Vestas V112 3300
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2 Data sources

This data is drawn from quite a diverse range of publicly 
available sources. Wherever possible, we have used the 
Government’s Renewable Energy Planning Database2. 
However, this has some gaps, which we have filled using 
information from sources like Wikipedia as well as the 
information websites of individual wind farm owners. 

The wind farms are shown geographically in figure 2.1.  
This illustrates that there is a reasonably diverse geographic 
coverage of the entire Black Start zone.

By running this data through the Renewables Ninja model, 
we have generated 17-year long time series for each of 
these 22 wind farms. We have also considered 500 different 
combinations of these wind farms, aggregating the time 
series together as required. The different combinations  

are plotted in figure 2.2, which shows the levels  
of maximum installed capacity that are possible  
for different combinations of wind farms. Each dot 
represents a different unique combination of wind farms.

Wind farm Latitude Longitude Capacity (MW) Hub height Turbine type 

Fallago_Rig 55.8313 -2.6880 144 80 Vestas V90 3000

Farr 57.3339 -4.1030 92 60 Bonus B82 2300

Gordonbush 58.0595 -3.9591 70 69 Vestas V80 2000

Griffin 56.5812 -3.7338 156 80 Siemens SWT 2.3 101

Hadyard_Hill 55.2568 -4.7319 119.6 70 Siemens SWT 2.3 101

Harestanes 55.2390 -3.5742 136 80 Gamesa G90 2000

Kilgallioch 54.9884 -4.8017 240 88 Gamesa G90 2000

Robin_Rigg 54.7642 -3.6955 174 80 Vestas V90 3000

Stronelairg 57.1269 -4.5264 228 125 Vestas V112 3300

Whitelee_1 55.6812 -4.2791 322 65 Siemens SWT 2.3 82

Whitelee_2 55.6771 -4.2868 108 65 Alstom Eco 110

Whitelee_3 55.6394 -4.3176 109 65 Alstom Eco 110

2    https://www.gov.uk/government/publications/renewable-energy-planning-database-monthly-extract

Figure 2.1
Geographic location of wind farms
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2 Data sources

Figure 2.2
Total capacities of each modelled windfarm combination

By studying multiple wind farm combinations, we can 
explore how their reliable level of combined output varies 
depending on which combination is selected. For example, 

there are 38 combinations of wind farms that would give 
a maximum installed capacity of between 900 MW and 
1,100 MW.

3.1 Introduction
The first five aims introduced at the start of this section  
are initially explored through analysis of the time series  
data. This is achieved by:
1 selecting one of the 500 combinations of wind farms
2  selecting a “start date” at random from the 17-year  

ries for this wind farm combination, or more specifically  
a “start datetime”

3  identifying the maximum sustainable output produced  
by this wind farm combination in the d hours after this 
start date

4  repeating this process 1,000s of times, selecting  
a different start datetime for each repetition.

As stated above, the maximum sustainable output  
is the minimum, across d hours, of the maximum (average) 
power that the wind farm could have generated during 
each hour, as a result of the meteorological conditions that 
existed at that time. The implication is that the windfarms 
would produce as much as they can during the hour with 
the least favourable meteorological conditions, but would 
curtail their output to this consistent level during the hours 
with more favourable conditions.

The outlined method means that, for any wind farm 
combination, there is a large set of values for the maximum 
output that could be sustained consistently for d hours 
by that combination. This collection of values reflects the 
variation in wind patterns within the 17-year series, and  
may be viewed as an “unconditional” probability distribution 
for the maximum sustainable power immediately following  
a blackout event at an arbitrary time. In the remainder  
of this discussion, we focus on some pre-selected 
percentiles of this probability distribution:
•  The 50th percentile. The precise meaning here is:  

“For a blackout at an arbitrary ‘datetime’, and in the 
absence of any information about the meteorological 
conditions immediately prior to the event, and without 
a meteorological-model forecast for the hours following 
the event, there is a 50 per cent probability that  the 
maximum sustainable power for d hours is as least as  
big as this 50th percentile value.” In other words, if the 
wind collection of farms promised to consistently deliver 
this level of power, there is a 50 per cent chance that  
it would fail to deliver on that promise during at least  
one hour. It should be noted that the data available 
means we can only consider the probability of the  
hourly averages being lower than promised, rather  
than failing to deliver for e.g. 1 minute only.

•  The 90th percentile – analogous to the description 
above, but a lower value, so that there is only a  
10 per cent chance that the collection of wind farms 
would fail to deliver this power during at least one hour  
of the period d.

•  The 99th percentile – analogous to the description 
above, but an even lower power value, so that there  
is only a 10 per cent chance that the collection of wind 
farms would fail to deliver this power during at least  
one hour of the period d.

•  The 99.9th percentile – analogous again to the first 
description, but so low such that there is only a  
0.1 per cent chance that the collection of wind farms 
would fail to deliver this power during at least one hour  
of the period d.

In addition, we have explored several different required 
durations, d3:
•  one hour from the start datetime
•  four hours from the start datetime
•  eight hours from the start datetime
•  12 hours from the start datetime
•  24 hours from the start datetime.

An indicative selection of results for the different durations 
and levels of risk are presented in the following subsections.

3.2 Distributions over all possible 
initial conditions
The procedure for calculating distributions for maximum 
sustainable power levels presented above was executed, 
initially covering all possible start datetimes within the  
17-year series. 

The results are presented as scatter plots in figures 3.1 
to 3.5 below. In each plot, there is a coloured point for 
each unique combination of wind farms and the risk-level 
(i.e. quantile of the distribution across start datetimes) 
is constant. The x-axis value for each point is the total 
capacity of the windfarm combination, while the y-axis  
gives the quantile of the maximum sustainable power  
for that combination. There are five colours, representing  
the five investigated values for the required duration.

For ease of comparison attempts were made to display 
results on the same axis ranges, to the greatest extent 
possible. This occurs by default with regard to the x-axis, 
and for the y-axis we have used 3 ranges, that are repeated 
throughout the following subsections. These ranges are: 
A 0–1,200 MW; 
B 0–200 MW; and 
C 0–2,500 MW.

3 Exploratory data analysis

3    Within the generative model, we explore even longer durations such as 120 hours.
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Perhaps the most surprising observation that can be  
made from the set of plots is that the maximum sustainable 
power shows a highly linear relationship to the procured 
capacity. For this reason, straight lines were fitted  
(using ordinary least squares minimisation) to describe  
the maximum sustainable power levels as linear functions 
of the procured capacity, but these are not shown in the 
figures to avoid an overload of information. Instead, the 
gradient and intercept values for the various durations 
and percentiles are presented in table 3.1. As expected, 
the table shows that gradients decrease as durations and 
percentiles increase, and given the scale of power values, 
the intercepts are negligible.

Figure 3.1 presents results for the 50th percentile, using  
the range A, and it can be seen that points are positioned 
fairly close together in a straight line, with the different 

durations showing a moderate degree of separation.  
The gradient value of 0.31 for a duration of one hour is 
certainly consistent with load factors for within GB, but 
this falls to 0.01 for the longest durations and highest 
percentiles. Similar observations can be made for 90th 
percentile values, presented in figure 3.2, although naturally 
the gradients are all reduced, by factors in the range of 
three–four. The roughly linear relationship is also true for 
99th quantile, shown initially in figure 3.3 using y-axis  
range A, and again in figure 3.4 using the y-axis range B,  
for greater clarity. The gradients for the 99th percentile  
are roughly 10 per cent of their values for the 50th 
percentile, but the degree of separation among the colours 
is noticeably reduced. This greater variability between  
different combinations of windfarms with similar capacities, 
relative to the impact of duration, is most prominent  
for 99.9th percentile values, presented in figure 3.5.

3 Exploratory data analysis

Figure 3.1
50th percentiles of the distributions of maximum sustainable power for each windfarm combination,  
over all possible conditions. Y-axis range A.

Figure 3.2
90th percentiles of the distributions of maximum sustainable power for each windfarm combination,  
over all possible conditions. Y-axis range A.

Figure 3.3
99th percentiles of the distributions of maximum sustainable power for each windfarm combination,  
over all possible conditions. Y-axis range A.
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3 Exploratory data analysis

Figure 3.4
99th percentiles of the distributions of maximum sustainable power for each windfarm combination,  
over all possible conditions. Y-axis range B.

Figure 3.5
99.9th percentiles of the distributions of maximum sustainable power for each windfarm combination,  
over all possible conditions. Y-axis range B. Figure 3.6

50th percentiles of the distributions of maximum sustainable power for each windfarm combination,  
over all starting datetimes in July. Y-axis range A.

Table 3.1
Gradient and intercepts for best-fit straight lines for maximum sustainable power vs. procured capacity,  
all years, all months

Duration 50th percentile 90th percentile 99th percentile 99.9th percentile

1 hour 0.31, 9.35 0.09, -1.78 0.03, -5.68 0.02, -4.88

4 hours 0.28, 6.82 0.07, -3.01 0.03, -5.70 0.02, -4.62

8 hours 0.24, 4.87 0.06, -3.92 0.03, -6.02 0.01, -4.64

12 hours 0.22, 3.25 0.06, -4.58 0.02, -5.91 0.01, -4.57

24 hours 0.16, 0.21 0.05, -5.85 0.02, -5,54 0.01, -4.73

3.3 Seasonal results
Very similar scatter plots and table are presented in this 
subsection, but here we present results exploring the  
effect of time-of-year on the ability of wind power to  
support system restoration. We did this by producing 
scatter plots where start times were restricted to be either  
in July (figures 3.6 and 3.7) or in January (figures 3.8  
and 3.9) – found to be on average the worst and best 
resource months, respectively. For brevity, we present 
results for only the 50th and 99th percentiles here.

It is clear from the figures and table 3.2 that:
i  The same basic patterns observed in the year-round 

plots are present here, albeit scaled-up in the case  
of January and scaled down in the case of July;

ii  The scaling factors involved are very significant.  
Indeed, for the 50th, 90th and 99th percentiles,  
the January gradients are roughly twice as large  
as the July gradients, but the differences are mostly 
insignificant (when rounded to two decima places)  
for the 99.9th percentile. Gradients for January 
are roughly 40 per cent greater than the all-month 
unconditional values.
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3 Exploratory data analysis

Figure 3.7
50th percentiles of the distributions of maximum sustainable power for each windfarm combination,  
over all starting datetimes in January. Y-axis range C.

Figure 3.8
99th percentiles of the distributions of maximum sustainable power for each windfarm combination,  
over all starting datetimes in July. Y-axis range B.

Figure 3.9
99th percentiles of the distributions of maximum sustainable power for each windfarm combination,  
over all starting datetimes in January. Y-axis range B.

Table 3.2
Gradient and intercepts for best-fit straight lines for maximum sustainable power vs. procured capacity,  
all years, July and January

Month Duration 50th percentile 90th percentile 99th percentile 99.9th percentile

Ju
ly

1 hour 0.21, 6.17 0.07, -2.44 0.03, -6.02 0.02, -4.94

4 hours 0.18, 4.36 0.06, -3.78 0.03, -5.52 0.02, -5.72

8 hours 0.16, 2.68 0.05, -4.35 0.03, -6.05 0.02, -6.63

12 hours 0.14, 0.56 0.05, -4.95 0.02, -5.26 0.02, -7.03

24 hours 0.11, -2.10 0.04, -6.89 0.02, -4.59 0.02, -7.35
Ja

nu
ar

y

1 hour 0.43, 13.55 0.13, 0.17 0.05, -7.14 0.04, -9.48

4 hours 0.39, 11.48 0.11, -1.50 0.05, -7.66 0.03, -8.00

8 hours 0.36, 8.78 0.10, -1.56 0.04, -8.66 0.03, -7.01

12 hours 0.33, 6.28 0.08, -2.35 0.04, -10.14 0.02, -6.58

24 hours 0.26, 1.56 0.07, -5.62 0.04, -9.51 0.02, -6.07
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3 Exploratory data analysis

3.4 Long‑term random variability
This subsection similarly presents results of investigations 
where start datetimes were restricted. In this case, all 
months were allowed but start datetimes were restricted 
to specific years – 2015 and 2010, found to be the best 
and worst wind resource years, respectively. This was 
established by calculating annual mean wind power 
output levels for the aggregated output of every modelled 
windfarm. This aspect of variability was investigated since  
it is well-established that the wind resource tends to display 
long-term random variability, manifested as winters that  
are quite consistently windier, or less windy, than average – 
with the relatively low yields of 2010, for example, reportedly 

placing financial stress on wind developers. This can be 
expressed in formal statistical terms as stating that wind 
resource as a random variable possesses “long memory”, 
which meteorologists are able to explain in terms of 
phenomena such as the North Atlantic Oscillation.

Figures 3.10–3.13 below demonstrate the impact of this 
variability, again showing only the 50th and 99th percentiles 
but presenting gradients for all four percentiles in table 3-3. 
It can be seen that the effect is certainly significant,  
but considerably less pronounced than the impact  
of time-of-year, and influencing 50th percentile values  
much more than the higher percentiles.

Figure 3.10
50th percentiles of the distributions of maximum sustainable power for each windfarm combination,  
over all starting datetimes in 2015. Y-axis range A.

Figure 3.11
50th percentiles of the distributions of maximum sustainable power for each windfarm combination,  
over all starting datetimes in 2010. Y-axis range A.

Figure 3.12
99th percentiles of the distributions of maximum sustainable power for each windfarm combination,  
over all starting datetimes in 2015. Y-axis range B.
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Figure 3.13
99th percentiles of the distributions of maximum sustainable power for each windfarm combination,  
over all starting datetimes in 2010. Y-axis range B.

Figure 3.14
50th percentiles of the distributions of maximum sustainable power for each windfarm combination,  
over the bottom 10 per cent ‘windiest’ starting datetimes. Y-axis range A.

3 Exploratory data analysis

Table 3.3
Gradient and intercepts for best-fit straight lines for maximum sustainable power vs. procured capacity,  
all months, 2010 and 2015

Year Duration 50th percentile 90th percentile 99th percentile 99.9th percentile

2010

1 hour 0.25, 8.49 0.07, -2.27 0.03 -3.94 0.02, -4.86

4 hours 0.22, 5.89 0.06, -3.48 0.03, -5.32 0.02, -5.56

8 hours 0.19, 3.51 0.05, -4.35 0.02, -4.54 0.02, -5.88

12 hours 0.17, 2.99 0.05, -5.72 0.02, -4.08 0.01, -5.08

24 hours 0.13, -0.99 0.04, -4.95 0.02, -4.28 0.01, -5.08

2015

1 hour 0.33, 10.35 0.09, -2.50 0.03, -4.48 0.02, -2.60

4 hours 0.30, 8.21 0.07, -3.29 0.03, -5.70 0.02, -2.58

8 hours 0.26, 6.92 0.06, -2.74 0.02, -6.19 0.02, -2.57

12 hours 0.23, 4.28 0.05, -4.36 0.02, -5.83 0.01, -2.57

24 hours 0.17, 1.88 0.04, -4.27 0.01, -2.98 0.01, -2.57

3.5 Initial wind resource state
This subsection presents results of the final aspect of 
variability investigated based on restricted start datetimes 
– the strength of the resource during the first hour of the 
sampled periods. The strength of the resource is defined 
here as the aggregated power output from every modelled 
windfarm. For contrast, we produced separate plots  
for start times where the strength of the resource was  
in the bottom 10 per cent of its values (across the 17-year 
series of such values), in figures 3.14 and 3.16, and for the  
top 10 per cent of these values, in figures 3.15 and 3.17.  
One difference here, compared to the last two subsections, 
is that the higher percentile value presented here is the 
99.9th. This choice is due to the fact that, for starting times 
with high wind speed, the results are extremely unsensitive 
to the choice of distribution percentile. Gradients for the  
full set of duration-percentile pairs are again presented,  
in table 3.4.

The plots reveal, perhaps unsurprisingly, that the initial 
‘windiness’ (i.e. comparing the top and bottom 10 per cent) 
has by far the strongest impact on results, at least an  
order of magnitude greater than the previous impacts. 
Indeed, the central gradient of the plots for the 50th 
percentiles differ by a factor of about 1,000 per cent–
1,500 per cent and, rather than decrease for the higher 
percentiles, in this case the difference grows to about  
7,000 per cent for the 99.9th percentile, and long durations 
– much bigger than the typical difference in initial conditions.

It is also worth noting that the colours are completely 
mixed in figures 3.15 and 3.17, indicating that the spatial 
distribution of the windfarms is more significant than the 
required duration at such high percentiles (i.e. extremes  
of low risk).
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Figure 3.15
50th percentiles of the distributions of maximum sustainable power for each windfarm combination,  
over the top 10 per cent ‘windiest’ starting datetimes. Y-axis range C.

3 Exploratory data analysis

Figure 3.16
99.9th percentiles of the distributions of maximum sustainable power for each windfarm combination,  
over the bottom 10 per cent ‘windiest’ starting datetimes. Y-axis range B.

Figure 3.17
99.9th percentiles of the distributions of maximum sustainable power for each windfarm combination,  
over the top 10 per cent ‘windiest’ starting datetimes. Y-axis range C.

Table 3.4
Gradient and intercepts for best-fit straight lines for maximum sustainable power vs. procured capacity,  
top and bottom 10 per cent of windiest initial conditions

Initial 
Windiness 
Range 

Duration 50th percentile 90th percentile 99th percentile 99.9th percentile

Bottom 
10%

1 hour 0.06, -1.29 0.03, -5.52 0.02, -4.86 0.02, -2.51

4 hours 0.05, -3.15 0.03, -5.59 0.02, -4.60 0.02, -2.50

8 hours 0.05, -4.24 0.03, -5.94 0.01, -4.59 0.01, -2.50

12 hours 0.04, -4.95 0.02, -5.84 0.01, -4.50 0.01, -2.50

24 hours 0.4, -5.84 0.02, -5.47 0.01, -2.56 0.01, -2.35

Top 
10%

1 hour 0.77, 23.06 0.70, 12.14 0.70, -21.88 0.70, -60.27

4 hours 0.74, 21.70 0.69, 1.49 0.70, -40.65 0.70, -81.54

8 hours 0.71, 21.00 0.69, -7.85 0.70, -51.71 0.70, -99.9

12 hours 0.70, 17.21 0.69, -13.65 0.70, -58.31 0.70, -100.23

24 hours 0.69, 7.64 0.69, -24.55 0.70, -69.31 0.72, -148.31
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4 Statistical time series modelling 

4.1 Motivation
This section describes the various components of  
a multifaceted statistical model fitted to the wind power  
time series. Such statistical models can be used for 
short term forecasting, based on recent meteorological 
conditions, but the objective in this case was to develop  
a model capable of generating unlimited new time  
series data, where the simulated series displays the  
same temporal patterns, correlations and seasonal  
dependencies on many time scales as the historic series.

One reason to do this is that the model fitting process 
provides considerable insight about the nature of the 
random process being modelled4. For example, in our  
case, it has provided an illustration of the different 
timescales over which wind output varies.

The other reason to develop a statistical model is to avoid 
being limited by the finite sample size of the historical data. 
Even though the series are very long, at about 150,000 hours, 
if one is interested in e.g. a specific month and time  
of day, the data becomes significantly smaller. Also, the 
historical series have a sample size of only 17 with regard  
to differences between e.g. annual means, or winter 
seasonal means etc.

4.2 Model fitting
4.2.1 ARMA‑type models
The basic modelling approach adopted is to assume  
that the wind power that can be generated at any  
time t is a random variable (i.e. a partially predictable 
quantity with more than one possible outcome) with  
a Normal distribution. These distributions are assumed 
to be characterised by a dynamically varying but entirely 
predictable mean, plus a random ‘noise’ term, εt, with 
zero mean and a (initially assumed) constant variance. 
The dynamic mean values are assumed to be functions 
of recent wind power values, and of recent noise values, 
and the nature of this function defines the precise model 
type. More specifically, these functions are assumed to 
belong to the set of ARMA models (Auto Regressive Moving 
Average) and their many and varied extensions, referred 
to collectively as here as ARMA-type models. Finally, the 
noise terms ε(t-1), εt, ε(t+1),… are all assumed to be statistically 
independent of eachother, and so together form what is 
known as a Gaussian white noise process. These model 
structures will be presented in the following subsections, 
but we do not cover the technical details of this approach  
in great detail here, for the sake of brevity.

One powerful feature of such models is that they allow  
the process being modelled to be simulated with ease, 

i.e. one can easily produce very large numbers of traces 
through time of how the phenomenon being modelled  
might progress into the future, given current and recent  
past conditions. In order to conduct this simulation,  
one begins by generating a set of numbers that satisfy  
the Gaussian white noise criteria described above,  
then progressively apply a number of filters and 
transformations, that represent an alternative way  
of conceiving of the model for dynamic means.

When fitting the model, we go in the opposite direction,  
i.e. start with historical wind power series and keep  
applying filters and transformations until we are left with 
‘errors’ that satisfy the Gaussian white noise conditions.  
We assume that each possible aggregated combination  
of wind farms requires a unique set of model parameters, 
but strive to find a single model structure that is close 
enough to optimum for each combination, i.e. so there  
is only one model structure, if possible.

4.2.2 The logit transformation
The first step in fitting the statistical model is to transform 
the ‘random process’, which is wind output from the  
group of wind farms being assessed, into something  
which is approximately ‘Normally’ distributed, through 
the use of a ‘logit’ transformation. This is almost like 
transforming from wind output (in MW) back to wind  
speed in ms-1. The main difference is that, with a 
‘smoothed’ power curve assumed by the Renewables 
Ninja model, a single power level can correspond to two 
wind speeds – one on both sides of the maximum power 
range, while a range of wind speeds correspond to a 
single (maximum) power level. This contrasts to the logit 
transformation where there is a one-to-one relationship 
between the inputs and outputs of the transformation.

The logit transform involves first normalising the wind 
output, X, so that it takes values only within the range  
0–1, and possibly even a smaller range within that,  
then performing a log-based transformation as follows:

The coefficients a and b are values which are close  
to the values of the minimum output from the group  
of wind farms and the maximum output, except that  
a is a little lower than the minimum output and b is a little 
larger than the maximum output. For the current model 
fitting, values were chosen through trial and error across 
250 combinations, such that the histogram of Y, taking  
all ~150,000 values of output across all 17 years,  
is approximately normally distributed5.

4.2.3 Accounting for long‑term deterministic trends
Although highly variable, wind speeds do follow both daily 
and annual cycles in their mean values when observed  
in the very long term. It is therefore necessary to account  
for these patterns when fitting the model. While it was 
obvious at the outset that the model must capture variability 
with time of year, it was not obvious that time-of-day effects 
are large enough to require representation. However, we 
found that while time-of-day effects are modest, they are 
indeed significant enough to justify the additional modelling 
complexity of representing these patterns.

The first step was to compute a matrix of mean values  
for the logit transformed output for every time of day  
and every month, across all 17 years of data. This results  
in a 12 by 24 matrix, with 12 rows for each month and  
24 columns for each hour of the day. 

These mean values were then “stretched” out to fill  
an entire 8,760-hour long year, with the pattern of  
averages repeating every day within each month.

If used directly in the model, this would result in 
discontinuities in output when moving from one month  
to the next. Therefore, this series of means is smoothed,  
by taking a weighted moving average of the values from 
each day as well as the previous and following 15 days,  
for the same time of day, as shown in the following equation.

Where Yt* is the stretched-out series of unsmoothed 
monthly/daily means, and λi is the weighting factor,  
which takes values of 0 for i = -361 and i = 361,  
a value 1 for i = 0, and varies linearly between these  
like an isosceles triangle, but taking a value of 0 for  
values of i which are not a multiple of 24 (i.e. for  
periods t which aren’t the same time of day).

The smoothed series Yt** is then subtracted from the 
original logit transformed series Yt, to give a series from 
which the long-term deterministic trends have been 
removed, Yt’.

4.2.4 Modelling low‑frequency anomalies
The next step is to account for the longer-term anomalies  
in wind output, accounting for the fact entire months 
typically have mean output values that are significantly 
lower, or higher, than their long-run seasonal mean. 
Accounting for these anomalies is achieved by calculating 
the mean for each month in each year (i.e. 12 values  
for each of the 17 years to give a total of 204 values),  
and removing them from the series. It was found that 
the 204 values of monthly fluctuation are approximately 
normally distributed, and attempts were made to fit an 
ARMA model to them. However, the result of this attempted 
model fitting was that they are best treated as a Gaussian 
white noise process, which is ideal for model simplicity.

Before the monthly anomalies could be subtracted from  
the series, they again required stretching out to 8,760 hours 
for each year (Yt

†). Smoothing was again applied before 
subtraction, as above, except in this case non-zero weights 
are admitted even for values of i which are not multiples  
of 24). We define this mathematically as:

This series is then subtracted from the series produced  
in the previous step:

4.2.5 Modelling short‑term variability
After accounting for the longer-term behaviour, the  
final step of fitting the statistical model is to fit a model  
to describe the short-term variability. This is achieved  
using ARMA type time-series statistical modelling,  
the components of which are described below.
•  Autoregressive (AR) model: The AR model is used to 

describe a time-varying random (or partially predictable) 
process where the value of the process during any given 
hour t depends linearly on its own values in previous 
hours t-i, plus a stochastic “error” term. Mathematically, 
the model is written as 
 

 
where φi are the model coefficients, c is a constant,  
and εt is either an error term (when model fitting)  
or collectively form a white noise process (when using  
the model to generate synthetic data). The values of i 
here are called the “lags” of the model, and can take  
any positive integer value. The model is written as AR(p), 
so that an AR(2) model would include the first and 
second lag. The model is essentially a filter on the  
white noise process, as described in previous sections. 
AR models are special, simpler, cases of the more 
general class of Auto Regressive Moving Average  
(ARMA) models, but it turns out that the modelled  
series in this case are best described by AR models.

•  Seasonal autoregressive integrated moving 
average (SARIMA) model: This is an extension  
of the ARMA model type, which includes (random) 
seasonal variation, with some defined period T,  
as well as the ability to deal with non-cyclical trends, 
which are not relevant to the series to be modelled  
here. Such models are specified with a collection of  
integer-valued parameters, specifically as SARIMA(p,d,q)
(P,D,Q), where p and P are the lags and the seasonal  
lags respectively. The term d  relates to the removal  
of non-cyclical trends, and q refers to the moving 
average extension that were also found, after 
investigation, to be unnecessary for our data.  
Finally, D and Q are the seasonal counterparts to  
d and q. We have found that the best fitting model  
has d=q=D=Q=0, so we have therefore not provided  
any more description of their corresponding model 
structures in this report.

4    The term ‘random’ in this context means ‘not predictable with perfect accuracy’, rather than ‘completely unpredictable’. The term ‘random process’ 
refers formally to an ordered collection of random variables, where the outputs of separate random experiments are assigned to each indexed time 
step t within the set. When simulating from a statistical model consisting of several components, some of them may be kept fixed while others vary 
randomly, as an extension of the studies presented in the preceding subsections.

5    This is measured using a statistical test called the Kolmogorov–Smirnov test, which compares the data to a perfect normal distribution with the same 
mean and variance. We selected values for a and b which provide the lowest score from the Kolmogorov-Smirnov test.
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•  Generalised Autoregressive Conditional 
Heteroskedasticity (GARCH) model: The GARCH 
model is similar conceptually to the AR model, except 
instead of describing the temporal evolution of the  
mean of a partially-predictable process, it describes  
the dynamic temporal evolution of the variance of  
an uncorrelated, Normally distributed random process.  
Such models are also filters applied to a white noise 
input with constant mean, but in this case output an 
uncorrelated noise process with dynamically evolving 
variance. Such models allow for “volatility clustering”, 
such as is seen with wind power, i.e. periods of little 
change in output followed by periods of many large 
changes. The models, and their associated  
parameters, are defined by the following equations: 
 
 
 
 
 

 
 
The ω term is a constant. The first summation  
(over lags up to order p) is essentially an autoregressive 
model for the dynamic variance, and the second term  
is a moving-average model, which together make for  
an Autoregressive moving-average (ARMA) model  
of the variance of the error term.

•  SARIMA‑GARCH model: This is a combination of the 
two models, which represents two filters being applied 
to the white noise input. One filter, the SARIMA model, 
determines the dynamic mean of the partially predictable 
output series, while the second filter, the GARCH model, 
determines the dynamic variance of that output series.

Multiple different combinations of maximum lags (i.e. model 
orders) for the SARIMA and GARCH model components 
were explored to determine the best fitting model. In the 
context of fitting time-series statistical models, best-fitting 
means there is negligible “autocorrelation” and “partial 
autocorrelation” in the residual (i.e. unexplained) error  
of the model, as well as in the squared residuals when  
fitting the GARCH model. If this is the case, it means 
that when Gaussian white noise is used to generate data 
through the model, the results should be statistically very 
similar to the historical series to which the model was fitted.

The final model for the short-term variability in wind output 
was ultimately fitted as a SARIMA(6,0,0)(5,0,0)-GARCH(1,0) 
model6 with a period of T=24. This means that the dynamic 
mean of the series is determined by the actual values  
of the series in the previous six hours, as well as the  
value at the same time of day during the last five days.  
The dynamic variance of the series is determined by its 
value in the previous hours, and it was found  thatfound  
that only the first previous hour needs to be considered  
for an optimal model. However, in both cases the 
dependence (as reflected by linear correlation) extends  
over far longer periods.

4.2.6 Additional transformation for the simulated data
Following application of each filter/model component 
described above to the historic data series, the resulting 
series of ‘residuals’ satisfied, to a very good approximation, 
the statistically desirable condition of possessing no linear 
correlations with each other. Additionally, the squares of the 
residuals were also free of linear correlation, indicating that 
the model adequately accounts for the volatility clustering  
in the original series.

As stated above, satisfying these conditions indicate that 
applying those filters (in the reverse direction compared 
to model-fitting) to a Gaussian white noise series should 
produce a synthetic series with statistical properties  
very similar to the historical series. Upon testing this,  
it was discovered that the distributions of synthetic  
values (for a few example windfarm combinations)  
weren’t acceptably close to the corresponding distributions 
of historical values. The main reason for this is that the  
‘b’ coefficient values in the initial/ final logit transformation  
need to be larger than the installed capacity of the  
wind farms in order to result in approximately normally 
distributed data. This gives rise to a significantly more 
gradual tapering-off in the simulated distributions in the 
“right-hand-side” tail of those distributions. It was found, 
through trial and error, that this discrepancy can be  
rectified almost completely with a transformation of the 
form: y = c∙xλ. For each combination of wind farms, the 
optimal pair of transformation coefficients, c,λ, were found 
by trialling values of c in the range 0.5–1.5, and λ in the 
range 0.4–1.6, and again using the Kolmogorov–Smirnov 
test to determine which pair is optimal.

6    SARIMA(6,0,0)(5,0,0) is equivalent to AR(1,2,3,4,5,6,24,48,72,96,120), although the latter is not commonly accepted notation. GARCH(1,0)  
can also be written as ARCH(1).

7    Although we didn’t validate all 500 combinations explored in the previous section.
8    The interested reader may also research the validation methods for themselves, as they are very common in the field of time series modelling,  

e.g. https://en.wikipedia.org/wiki/Q%E2%80%93Q_plot.

4.3 Statistical model validation
This section presents a number of plots demonstrating  
the rigorous validation conducted on the adopted  
model structure. The validation was conducted on  
a number of windfarm combinations, with the number  
of aggregated windfarms ranging from 1–22, and several 
values in between7. For each combination, the validation 
exercise consisted of comparing many different aspects  
of the 17-year historical series with five synthetic 17-year 
series generated by the model, e.g. the distribution  
of annual means, and the distribution of changes  
in maximum wind power output over eight hours.

The results showed that the historical and synthetic  
series were very similar in all aspects tested, and for  
all windfarm combinations. Further, the differences  
between the real and historic series were consistent  
across all windfarm combinations, albeit with those 
differences generally being somewhat greater for  
smaller numbers of aggregated windfarms – i.e. spatial 
smoothing effects favour the model. This section presents  
a selected subset of the validation plots for only one 
example of aggregated windfarms – Blacklaw (124 MW)  
and Clyde 1 (350 MW), which is a poorer than average  
fit, due to comprising only two windfarms.

For brevity, the precise nature of the validation tests 
presented here are not described. Instead, the reader  
can simply observe that plots for historical and synthetic 
data are similar, or follow closely lines of gradient 1  
and intercept 0 in the case of Quantile-Quantile plots8. 

The first plots presented, in figures 4.1 to 4.4 are  
Quantile-Quantile scatter plots (QQ plots) for the  
synthetic and historical series, for: (i) the actual series,  
(ii) differences over eight hours and (iii) differences  
over one hour.

It can be seen that there is very good agreement for the 
actual series, and almost perfect agreement for differences 
over eight hours, as is the case for differences over four 
hours, 24 hours, 48 hours and 120 hours (five days), 
although for brevity these are not included. It can also 
be seen that while agreement is generally good for the 
distributions of one-hour changes, some considerable 
outliers exist (that are different for different model runs, 
which is generally not the case for the other differences). 
It is postulated that these outliers reflect the fact that very 
sudden changes can occur in the historical data due  
to changes in wind speed to the opposite side of the 
turbine cut-off value, and that the statistical model does 
not fully replicate such changes – something extremely 
difficult to achieve. These outliers are not a serious problem 
in the current context, since it is highly likely that the ESO 
would require a consistent output from wind for periods 
considerably longer than two hours.

Figure 4.1
QQ plot of historical and simulated 17-year series (run 1)
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Figure 4.2
QQ plot of changes over eight hours, historical and simulated series (run 1)

Figure 4.4
QQ plot of changes over one hour, historical and simulated series (run 2)

Figure 4.5
Time series of annual means, historical and simulated series (runs 1–5)

Figure 4.3
QQ plot of changes over one hour, historical and simulated series (run 1)

The next set of figures (4.5 and 4.6) compare time series 
segments for the series after aggregating in two different 
ways: the first is the series of annual means, while the 
second is the progression of January means. It can be  
seen that the agreement for annual means is excellent, 
while the agreement with January means is quite good,  
but with the synthetic series displaying smaller variability 

compared to the historical series. For series involving  
a greater number of windfarms, the degree of agreement 
tends to be considerably better, and it must be remembered 
that a simpler model involving e.g. only an ARIMA or even 
SARIMA model would perform very poorly if subjected  
to these tests.
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Figure 4.6
Time series of January means, historical and simulated series (runs 1–5)

Figure 4.7
ACF for the historical 17-year series, first 50 lags

Figure 4.8
ACF for the simulated 17-year series (run 1), first 50 lags

The final set of plots (figures 4.7 to 4.10) present 
Autocorrelation functions (ACFs) for the historical and 
synthetic data, with short-range and very long-range  
plots included. The value of the ACF function for argument 
k is the linear correlation of the time series with a lagged 
version of itself, calculated across all time steps in the 
series, between values at times t and at times t-k.  
So, where the horizontal axis in the plots has a value  
of e.g. one hour, the y-axis value is the linear correlation 
between each instance of Xt and Xt-1, and so on.  

In fact, the plotting and analysis of ACFs are the primary 
tool in time series analysis and modelling. It can be seen 
from figures 4.7 and 4.8 that the simulated series ACF  
is in almost perfect agreement with the historical series  
ACF up to a lag of about 35 hours, but declines somewhat 
more rapidly after that. Figures 4.9 and 4.10 demonstrate 
that the shape of the synthetic series ACF is in close 
agreement with the shape of the historical series ACF,  
but the amplitude of the function is somewhat reduced  
for the synthetic series.
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Figure 4.9
ACF for the historical 17-year series, lags 0–30,000

Figure 4.10
ACF for the simulated 17-year series (run 1), lags 0–30,000

4 Statistical time series modelling 5 Example applications of the statistical 
analysis and modelling

5.1 Year‑round long‑term 
restoration planning
We consider, initially, the case where the ESO is conducting 
long term planning in relation to system restoration far 
ahead of real time. In this case, probably the most useful 
quantities to calculate are quantiles for the unconditional 
distribution, i.e. over all possible conditions, including all 
months of the year, times of day and good/poor resource 
years. To calculate these values, one can choose either 
of the methods presented in this report (i.e. sample from 
the historical data or generate synthetic samples using the 
statistical model). The former approach has the advantages 
of being less computationally expensive and being more 
directly representative of reality. As a result, it might be most 
appropriate where the ESO wishes to investigate many 
potential combinations of windfarms, and are interested  
in risk levels such as a five per cent or one per cent chance  

of failing to maintain the contracted wind power,  
i.e. the 95th and 99th percentiles. However, if interested  
in even lower risk levels, such as a 0.1 per cent  
chance of failure (the 99.9th percentile), the ability  
of the statistical model to simulate a large number  
of years give it a significant advantage.

Based on the data analysis presented in section 3,  
values like the gradients and intercepts presented  
in the tables might be used in long term planning,  
where the target amount of sustainable capacity,  
along with the acceptable level of risk and duration  
are estimated. This is demonstrated in table 5.1 below, 
where the values presented in table 3.1 were used to 
predict the amount of capacity that would have to be 
procured in order to consistently sustain an output of 
500 MW for the required duration and at the required  
level of risk. This is presented graphically in figure 5.1.

In this section, we present some examples of the statistical model 
being used in a variety of useful ways to generate synthetic data, 
and provide a critical discussion of the model’s full range of potential 
applications. Unless otherwise stated, the results presented  
in all figures in this subsection are for a single combination  
of 18 windfarms, with a total installed capacity of 2,534.6 MW.

Table 5.1
The average amount of procured wind capacity (in MW) required to secure a sustained 500 MW of power,  
for various durations and risk levels

Duration 50th percentile 90th percentile 99th percentile 99.9th percentile

1 hour 1,587 5,742 14,368 27,873

4 hours 1,771 6,679 16,750 32,599

8 hours 2,019 7,816 18,731 36,635

12 hours 2,267 8,781 20,410 40,343

24 hours 3,023 10,798 23,856 52,446
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5 Example applications of the statistical 
analysis and modelling

5.2 Restoration planning specific 
to season and time‑of‑day 
Another application of interest for long-term planning  
is to produce quantile values that are specific to the  
time-of-day and the month or season. This would be 
particularly useful if it was known that the risk-based 
availability of other resources procured for system 
restoration also possess such seasonal dependencies,  
or if there are other seasonal/time-of-day factors that  
are relevant to variation.

If considering only variations in wind availability by month, 
it is not clear whether the historical data sampling or the 
statistical model approach would provide the best results. 
However, if conditioning the results on both the month and 
time-of-day, the statistical model approach seems to have 
a clear advantage, again due to the finite historical sample 

size. Examples of this are presented in figures 5.2–5.5, 
which are histograms of maximum sustainable power  
for all combinations of the following: starting datetimes  
of 12am in January and 12pm in July; required durations  
of eight hours and 120 hours (five days). These plots 
provide some interesting insights on the way different 
quantiles are affected to different extents by changes  
in starting datetime and required duration.

To produce these plots, we produced 10,000 simulated 
time series segments, referred to as traces, from the 
SARIMA-GARCH model for short-term variability, each 
with different starting conditions. To each trace we added 
a different simulated slowly-varying trace, representing 
the smoothed monthly anomalies. After that, the same 
deterministic profile for seasonal means was added to  
each trace (as we are conditioning on a fixed month and 
time-of-day for the distributions), and finally the traces  
were transformed via the reverse logit and power transform.

Figure 5.1
The average amount of procured wind capacity (in MW) required to secure a sustained 500 MW of power,  
for various durations and risk levels

Figure 5.2
Histogram of max. sustainable power for eight hours, starting at 12am in January

Figure 5.3
Histogram of max. sustainable power for eight hours, starting at 12pm in July
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5 Example applications of the statistical 
analysis and modelling

Figure 5.4
Histogram of max. sustainable power for five days, starting at 12am in January

Figure 5.5
Histogram of max. sustainable power for five days, starting at 12pm in July

Figure 5.6
Histogram of 95th percentiles of maximum sustainable power for eight hours, starting at 12am in January,  
over possible conditions of low-frequency variability

5.3 Restoration planning on  
a semi‑operational time scale
In the next demonstration, presented in figures 5.6–5.11, 
we return to considering specific quantiles, in this case  
the 95th and 99.5th, and examine in isolation the effect  
of the low frequency anomalies (or in statistical terms,  
the long memory in the process) as described  
in section 3.4. This allows us to show, in isolation,  
the effect that these low frequency anomalies have. 

To achieve this, we followed the procedure below:
i  simulate 1,000 traces from the short-term  

SARIMA-GARCH model, again with different  
starting conditions for each one;

ii  produce a single sample trace for the low-frequency 
process and add it to the 1,000 short-term traces;

iii  add a fixed trace of deterministic seasonal means  
to each trace, as in the previous example;

iv  transform the values to wind power outputs,  
through the reverse logit and power transformations;

v  calculate the minimum power for each trace;
vi  calculate the required quantile for the distribution  

of trace-minima;
vii  repeat stages i–vi, 100 times, with the same set  

of traces produced in step i, the same deterministic 
means added in step iii, but different samples drawn  
for the low-frequency variability in step ii

viii  store the 100 quantile values from step vi  
as a distribution, and plot them as a histogram.

This application of the simulation from the statistical model 
allows the ESO to mimic, on a planning time scale, the 
situation on a semi-operational scale where the assumed 
availability of wind for system restoration, is re-assessed 
dynamically e.g. each month or each fortnight, depending 
on the extent to which the season appears to be good 
or poor in terms of the wind resource. The results clearly 
demonstrate that the low-frequency variability is very 
significant, and as a result there could be considerable 
value in this type of dynamic re-assessment of wind’s ability 
to support restoration. 
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5 Example applications of the statistical 
analysis and modelling

Figure 5.7
Histogram of 99.5th percentiles of maximum sustainable power for eight hours, starting at 12am in January,  
over possible conditions of low-frequency variability

Figure 5.9
Histogram of 99.5th percentiles of maximum sustainable power for eight hours, starting at 12pm in July,  
over possible conditions of low-frequency variability

Figure 5.8
Histogram of 95th percentiles of maximum sustainable power for eight hours, starting at 12pm in July,  
over possible conditions of low-frequency variability

Figure 5.10
Histogram of 95th percentiles of maximum sustainable power for five days, starting at 12am in January,  
over possible conditions of low-frequency variability
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Figure 5.11
Histogram of 95th percentiles of maximum sustainable power for five days, starting at 12pm in July,  
over possible conditions of low-frequency variability

5 Example applications of the statistical 
analysis and modelling

5.4 Nearly real‑time  
restoration planning
It might also be the case that the ESO could re-assess  
the likely contribution of wind generation to system 
restoration on a more frequent basis, e.g. weekly  
or daily. This operational-scale process could be  
mimicked on a planning scale by using the statistical  
model in a similar way to the procedure outlined above.  
The differences for such applications are that:
i  the low-frequency variation part of the model would  

be kept fixed during the 100 repetitions;
ii  within each of the 100 repetitions the 1,000 traces  

from the SARIMA-GARCH model would start from  
a single sample for the initial conditions; and

iii  each of the 100 repetitions would involve  
different sampled initial conditions for the  
SARIMA-GARCH traces. 

The ability to conduct such sophisticated planning-scale 
studies is what makes the model so powerful.

It would be useful to have a model that can actually adjust 
the likely contribution of wind capacity to system restoration 
on an operational time-scale, rather than simply mimic this 
on a planning time-scale. The model presented here would 
indeed be able to do this well in the first case of monthly 
and possibly fortnightly reviews. However, the model could 
not be considered cutting-edge in its ability to do this on  
a daily basis or similar. In order to do that, the model would 
have to be expanded to include meteorological forecasts, 
ideally of a probabilistic nature, as is currently used  
for forecasting by the ESO. We believe that this would  
be a fairly substantial modelling challenge, but that the  
model’s outputs would be of great value to the ESO.

5.5 Wider applications  
of the model
Although the data analysis and statistical model  
have been discussed in the context of Black Start  
only, both could have much wider applications to 
many aspects of transmission and distribution system 
planning and operation. The level of reliable output that 
can be provided by variable generation is an important 
consideration for network planning, ancillary services 
procurement (e.g. frequency response from wind),  
and dispatch/balancing. Some similar analysis 
was carried out as part of the consultation on the  
latest draft version of Engineering Report (EREP)  
1309, which is a supporting document to the P2  
planning standard.

One clear application would be updating the  
“scaling factors” used within the National Electricity 
Transmission System Security and Quality of Supply 
Standard (NETS SQSS) to set the level of output from 
renewable generation for transmission system planning. 
Currently, two planning backgrounds are considered,  
one where wind (and other variable generation) output  
is set to 70 per cent of registered capacity, and the  
other where it is set to 0 per cent.

One important insight from this analysis and modelling, 
which would also be relevant for any other applications,  
is that relying on variable generation for any type  
of system planning or security inherently carries risk.  
It should therefore be thought about explicitly in terms  
of probabilities, recognising that the risk varies based  
on several factors including the specific combination  
of variable generators and the required duration  
of their output.

9    The consultation documentation is available on the Distribution Code website at, under DCRP/19/02/PC http://www.dcode.org.uk/consultations/
closed-consultations/
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6 Possible extensions of the modelling  
and analysis

In this section, we describe some possible extensions  
of this modelling and analysis which could yield additional 
insight for ESO or support other applications.

6.1 Forecasting tool
As described in the previous section, the model developed 
is primarily a simulation tool for use on planning timescales, 
but could be combined in a mathematically rigorous way 
with meteorological forecasts using cutting-edge data 
science techniques, probably involving ensemble methods.

6.2 Other types  
of variable generation
The principles of the model presented here could relatively 
easily be applied to other variable generation, particularly 
photovoltaic (PV) solar panels. Of course, the details  
of the model would change, but the basic steps and 
philosophy would be very similar. In fact, the Renewables 
Ninja reanalysis data can also be used to generate solar  
PV output data.

One potential challenge for PV is that although deterministic 
trends across the year are stronger, the short-term variability 
around this can be quite extreme, due to cloud cover. It is 
possible that this effect may not even be observable in data 
with hourly granularity, and possibly other approaches will 
be needed to account for this.

6.3 Energy storage
Combining energy storage with variable generation could 
be a potentially attractive way to boost the contribution that 
this generation could make10. The analysis we have done 
has studied the minimum level of maximum output from 
variable generation over different durations. It is possible 
that, particularly during periods of high wind volatility,  
there may be times when this is limited by sharp drops  
in output which only last for an hour or two. The higher 
output before and after this drop is therefore not helpful,  
as it does not allow the ESO to displace conventional  
plant or switch on additional block loads. 

In such cases, there would be a clear role for storage  
to increase the minimum level of output by shifting  
variable output in time. For example, in figure 6.1,  
the drop in output during hours t+5 and t+6 limits the 
output of this variable generator to only around 20 MW.  
If the ‘excess’ output during hours t+3 and t+4 were  
used to fill up some energy storage, which could  
export during hours t+5 and t+6, this would allow  
for faster restoration or less reliance on traditional  
Black Start providers.

10    Elsewhere in the project, we have highlighted that storage is potentially very well suited to supporting restoration due to its technical capabilities  
(e.g. for managing frequency or voltage). 

Figure 6.1
Illustration of role of storage in supporting output from variable generation

The extent to which this is possible would depend  
on the condition of the energy storage (e.g. a battery’s  
state of charge) at the start of and during the restoration. 
One option might be to just mandate certain states  
of charge. However, this may be very complex to  
achieve, as the optimal state of charge for a battery  
will vary depending on the exact nature of its role in  
the restoration. For example, for a grid-forming battery,  
the optimal state of charge would be for it to be full, 
whereas for one that was supporting a variable generator,  
it might be for the battery to be around half-full so that  
it can both absorb and inject power as necessary. 

Rather than try to directly control the condition of the 
storage, an alternative option would be for ESO to predict 
this based on historical data. This would probably involve 
a model similar to the one we have used for wind in this 
report. It is likely that there would be strong seasonal and 
time-of-day patterns in the state of charge of a battery, 
for example, based on how it responds to external market 
conditions, which are themselves closely correlated with 
weather, season, and time-of-day. This would require data 
about states of charge of batteries or the condition of 
other storage. If not directly available, it might be possible 
to determine this based on historical metering, or possibly 
from data submitted into the Balancing Mechanism.

6.4 Spatial modelling
In this report, we have only considered the impact  
of variability of a very specific combination of wind  
farms in a single Black Start zone. An obvious next  
tep, in principle, would be to continue carrying out  
similar analysis for greater combinations of wind farms  
both in Scotland and other zones, including current  
and future wind farms.
 
However, this is likely to require considerable human and 
computational effort. Instead, it would be worth exploring 
means for doing this more efficiently. For example, one 
option might be to train a machine learning algorithm  
to assess the output from a group of wind farms, based 
only on some information about their capacities and 
locations. This could be done using direct observations  
of the data (as in section 3), but could also be used to 
predict the parameters of a statistical model (as in section 4) 
which describes their output. This would require re-running 
the model and analysis in this report on many different 
combinations to produce a training data set, which could 
then be used with a relatively simple machine learning 
regression model. This would make the use of this model 
far more practical as a planning tool, rather than requiring 
lots of time-consuming model fitting to be completed  
every time a new set of wind farms are considered.
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