Control Room difficult day

Paul Corre National Control

Scheduling and Real Time Operation on Easter Sunday 2019

• How do we plan and what do we plan.

• Toolkit.

• Actions taken and Consequences

How do we plan and what do we plan.

• Energy Balancing

- Analysis of BMU Data (from 11:00 at Dayahead stage)
- Analysis of contracted Ancillary Services.
- Analysis of predicted Interconnector flows.
- Demand Forecasting.
- Transmission System Planning
 - Outage Planning
 - Contingency Off-line and On-line analysis of Transmission System
 - Voltage support requirements from BMUs. (Use of MVARs)

Demand Forecasting

• Use of historical days:

	2019	2018	2017	2016
Good Friday	19 th April	30 th March	14 th April	25 th March
Easter Sunday	21 st April	1 st April	16 th April	27 th March
Easter Monday	22 nd April	2 nd April	17 th April	28 th March
BST Starts	31 st March	25 th March	26 th March	27 th March

Historical Demand Profiles for Easter Sunday

- Yellow – actual profile from Easter Sunday 21st April 2019. Red – 1st April 2018 Purple – 16th April 2017 Grey – 27th March 2016

Demand Forecasting – What factors do we look at?

• Weather

- How does this effects people's behaviour and actions.
 - Temperature.
 - Illumination.
 - Wind Speed and direction.
 - Precipitation type and amount.
- Wind output (Embedded and BMU Wind).
- PV output.

• Other factors:

- Effect of change to British Summer Time.
- Special events.
- 6

Demand Forecasting – What factors do we look at?

	2019	2018	2017	2016
PV Max (GW)	8.1	3.1	4.3	3.8
Wind Emb	3.1	1	1	2.2
Av GB Temp – C Degrees	20	6	10	9
Illumination	-10	-25	-25	-30

Illumination: -5 change equates to 70MW change during the daytime. Temperature: 1 degree equates to 730MW during the daytime.

nationalgridESO

7

Demand Forecasting – What factors do we look at?

GMT 2018/2019 Seven Day Coventional Models Relative Temperature Effects

These plots are indicative only. Please refer to EFS Weather Equation for precise data on model response.

Toolkit

- Information from Transmission System analysis to determine most effective BMUs to give system security support.
- Use of Trading.
- BMUs utilised through Balancing Mechanism.
- Demand Forecast output:
- Production of demand profile with confidence levels and continuous reassessment.
- Energy Balancing Requirements meet demand and margin requirements.
- Frequency Response.
- Largest loss assessment (response and RoCoF)
- Potential requirements for trading on Interconnectors.

Actions taken and Consequences

- Actions taken on Easter Sunday 2019
- Units acquired through Trading and BM for system security
- Congestion through Transmission system out of Scotland
- Trading on Interconnectors
- Consequences
- Lowest demand was afternoon trough and not the overnight trough.
 - Daytime demand 18.2GW
 - Sunday morning demand 19.2GW
 - Demand Forecast errors of upto 1GW seen throughout the daytime.