System Operability Framework Post-assessment Results Webinar – 22nd/27th September 2016 Patrick Cassels and William Ramsay #### Contents - Progress Update and Introduction - Results Overview - System Balancing - Frequency Management - Voltage Management - Whole System Coordination - Continuing the Conversation - ◆ Live Q&A ### **Progress Update** #### Introduction System Balancing Frequency Management Voltage Management Whole System Coordination - Normal Operation Undisturbed system - Post-event Operation Disturbed system (e.g. after a loss or fault) - System Balancing is a new area which addresses within day balancing over the next 10 years - It matches generation and demand within day to a half-hour resolution to provide a credible view of unit dispatch - A number of sensitivities have been explored - It enables us to answer three questions across our core operability topics: - What is the requirement? - How often it is required? - How does it change over time? ### System Balancing Method ### System Balancing Method #### Winter Peak - No Progression #### Winter Peak - No Progression #### Winter Peak - Consumer Power #### **Summer Minimum – No Progression** #### Summer Minimum – No Progression #### Summer Minimum – Consumer Power #### Summer Minimum – Consumer Power Arrow indicates size of interconnector export, storage import and/or demand side response ## Effect of Reducing Proportion of Reserve from Transmission Units ### nationalgrid #### 2020/21 Consumer Power – Summer Minimum #### Effect of Embedded Solar Generation #### 2019/20 Consumer Power ### Frequency Management Frequency Management Voltage Management Whole System Coordination #### **System Inertia (normal operation)** System inertia decreases as a result of reduced availability of synchronous plant. It is impacted by the number of synchronous machines #### Rate of Change of Frequency (post-event) RoCoF increases according to reductions in system inertia, demand changes and the size of the largest loss. #### **Containment (post-event)** Fast and controlled response is increasingly important as frequency deviation manifests more quickly following a system loss. ### System Inertia - Slow Progression #### **Annual Distribution of System Inertia** 100% of Reserve from System Operator Dispatchable BMUs 50% of Reserve from System Operator Dispatchable BMUs System inertia – 100% of reserve requirements obtained from transmission connected dispatchable generation ## System inertia – 50% of reserve requirements obtained from transmission connected dispatchable generation #### **Consumer Power** Years 2016/17 2018/19 2020/21 2022/23 2025/26 #### **No Progression** #### Gone Green #### **Slow Progression** #### Rate of Change of Frequency (RoCoF) - Simulations of a 1000MW generation loss - Less system inertia results in a greater RoCoF - RoCoF changes immediately, before any kind of frequency response can deliver, so has to be managed pre-fault, by increasing inertia or reducing the largest loss risk #### RoCoF and Inertia Relationship - This plot shows the relationship between system inertia, RoCoF and the largest loss risk on the system - As system inertia decreases and the largest loss increases, the RoCoF risk increases - The minimum inertia witnessed so far in 2016 was about 135GVA.s, limiting the largest loss to 680MW RoCoF Risk – 100% of reserve requirements obtained from transmission connected dispatchable generation **Consumer Power** 0.3 RoCoF Risk (Hz/s) 0.2 0.4 RoCoF Risk – 50% of reserve requirements obtained from transmission connected dispatchable generation ### Frequency Containment - Investigation into the balance of different types of response - Balance of response time (lag) and delivery time (ramp) - Balance of static and dynamic response ### Voltage Management Frequency Management Voltage Management Whole System Coordination #### **Voltage Profiles (normal operation)** Need for additional compensation across all areas to manage steady-state regional voltage profiles #### **Short Circuit Level (during fault)** Decreasing fault levels drive requirements for new protection solutions and fast fault current injection #### Static/Dynamic Compensation (post-event) Additional sources of dynamic voltage control are required to support post-event voltage recovery ### Voltage Management Regions - The voltage management zones in SOF 2016 are consistent with the Short Circuit Level zones which were studied in SOF 2015 - These regions have been selected on the basis of strongly interlinked regions of the network - This year, assessments have been performed based on known relationships between regional network characteristics and generation dispatch sensitivities - By applying the System Balancing data to this information, we have been able to characterise the regional variation and relative requirements #### Voltage Profile – East Midlands #### Voltage Profile – South East #### Voltage Profile - North Scotland #### **Short Circuit Level** #### <u>2025 – Consumer Power</u> Protection Risk Summary - SCL, or fault level, is often used as an indication of regional 'system strength'. During a fault, generators which have an overload capability and are local to the fault will inject a fault current - Short Circuit Levels (SCL) decline significantly over the next 10 years, particularly in regions where large plant is closing or availability could be limited in future years - An impact of reduced SCL is a reduction in the ability of existing network protection approaches to function at periods of low system strength - From 2020 onwards, in most regions, this begins to trigger a requirement for new approaches. #### Regional SCL – West Midlands #### Regional SCL - South East #### Static Compensation - East Midlands ## national**grid**Dynamic Compensation – East Midlands ### Whole System Coordination Frequency Management Voltage Management Whole System Coordination #### **Visibility and Control** Diminishing generation and demand visibility will drive uncertainty and requirements in other areas unless existing thresholds are reassessed #### **Distribution System Case Studies** Assessment of potential for distributed generation to provide voltage support and ANM to countermand SO instructions. #### **Contingency Control Actions** Assessment of future requirements for coordinated whole system contingency control capability ### Visibility and Control #### **Consumer Power** **Total Generation Output** ### Thresholds of Visibility #### **Slow Progression** **Grid Code Visibility Thresholds** 30MW Visibility Threshold ### Thresholds of Visibility #### **Slow Progression** **Grid Code Visibility Thresholds** **1MW Visibility Threshold** # Continuing the Conversation Thank you for listening. Please take a moment to submit questions via chat for the live Q&A. The launch event for the SOF takes place on November 30th at National Grid House, Warwick. Registration will be available from Wednesday 28th October. All material relating to SOF 2016 is made available at: www.nationalgrid.com/sof Contact us via email: sof@nationalgrid.com